Three-dimensional intervertebral range of motion in the cervical spine: Does the method of calculation matter?

•Within-subjects, intervertebral ROM was significantly different among calculation methods.•The method of calculation can significantly affect the group mean ROM.•The differences in group mean ROM due to using different calculation methods decreased from 6.0° to 1.5° when increasing the group size f...

Full description

Saved in:
Bibliographic Details
Published inMedical engineering & physics Vol. 41; pp. 109 - 115
Main Authors Anderst, William J, Aucie, Yashar
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 01.03.2017
Subjects
Online AccessGet full text
ISSN1350-4533
1873-4030
1873-4030
DOI10.1016/j.medengphy.2017.01.009

Cover

Abstract •Within-subjects, intervertebral ROM was significantly different among calculation methods.•The method of calculation can significantly affect the group mean ROM.•The differences in group mean ROM due to using different calculation methods decreased from 6.0° to 1.5° when increasing the group size from 5 to 25 subjects.•To analyze motions that occur primarily about the sagittal plane, the first rotation should be calculated about the axis of flexion/extension.•To analyze motions that primarily consist of rotation and/or lateral bending, the first rotation should be calculated about the axis of lateral bending. Intervertebral range of motion (ROM) is commonly calculated using ordered rotations or projection angles. Ordered rotations are sequence-dependent, and projection angles are dependent upon on which orientation vectors are projected. This study assessed the effect of calculation method on intervertebral ROM in the subaxial cervical spine (C3–C7) during in vivo dynamic, three-dimensional, functional movement. Biplane radiographs were collected at 30 images per second while 29 participants performed full ROM flexion/extension, axial rotation and lateral bending movements of their cervical spine. In vivo bone motion was tracked with sub-millimeter accuracy using a validated volumetric model-based tracking technique. Intervertebral rotations were calculated using six Cardan angle sequences and two projection angle combinations. Within-subject comparisons revealed significant differences in intervertebral ROM among calculation methods (all p<0.002). Group mean ROM differences were small, but significantly different among calculation methods (p<0.001). A resampling technique demonstrated that as group size increases, the differences between calculation methods decreases substantially. It is concluded that the method used to calculate intervertebral rotations of the sub-axial cervical spine can significantly affect within-subject and between group comparisons of intervertebral ROM.
AbstractList •Within-subjects, intervertebral ROM was significantly different among calculation methods.•The method of calculation can significantly affect the group mean ROM.•The differences in group mean ROM due to using different calculation methods decreased from 6.0° to 1.5° when increasing the group size from 5 to 25 subjects.•To analyze motions that occur primarily about the sagittal plane, the first rotation should be calculated about the axis of flexion/extension.•To analyze motions that primarily consist of rotation and/or lateral bending, the first rotation should be calculated about the axis of lateral bending. Intervertebral range of motion (ROM) is commonly calculated using ordered rotations or projection angles. Ordered rotations are sequence-dependent, and projection angles are dependent upon on which orientation vectors are projected. This study assessed the effect of calculation method on intervertebral ROM in the subaxial cervical spine (C3–C7) during in vivo dynamic, three-dimensional, functional movement. Biplane radiographs were collected at 30 images per second while 29 participants performed full ROM flexion/extension, axial rotation and lateral bending movements of their cervical spine. In vivo bone motion was tracked with sub-millimeter accuracy using a validated volumetric model-based tracking technique. Intervertebral rotations were calculated using six Cardan angle sequences and two projection angle combinations. Within-subject comparisons revealed significant differences in intervertebral ROM among calculation methods (all p<0.002). Group mean ROM differences were small, but significantly different among calculation methods (p<0.001). A resampling technique demonstrated that as group size increases, the differences between calculation methods decreases substantially. It is concluded that the method used to calculate intervertebral rotations of the sub-axial cervical spine can significantly affect within-subject and between group comparisons of intervertebral ROM.
Intervertebral range of motion (ROM) is commonly calculated using ordered rotations or projection angles. Ordered rotations are sequence-dependent, and projection angles are dependent upon on which orientation vectors are projected. This study assessed the effect of calculation method on intervertebral ROM in the subaxial cervical spine (C3-C7) during in vivo dynamic, three-dimensional, functional movement. Biplane radiographs were collected at 30 images per second while 29 participants performed full ROM flexion/extension, axial rotation and lateral bending movements of their cervical spine. In vivo bone motion was tracked with sub-millimeter accuracy using a validated volumetric model-based tracking technique. Intervertebral rotations were calculated using six Cardan angle sequences and two projection angle combinations. Within-subject comparisons revealed significant differences in intervertebral ROM among calculation methods (all p<0.002). Group mean ROM differences were small, but significantly different among calculation methods (p<0.001). A resampling technique demonstrated that as group size increases, the differences between calculation methods decreases substantially. It is concluded that the method used to calculate intervertebral rotations of the sub-axial cervical spine can significantly affect within-subject and between group comparisons of intervertebral ROM.
Highlights • Within-subjects, intervertebral ROM was significantly different among calculation methods. • The method of calculation can significantly affect the group mean ROM. • The differences in group mean ROM due to using different calculation methods decreased from 6.0° to 1.5° when increasing the group size from 5 to 25 subjects. • To analyze motions that occur primarily about the sagittal plane, the first rotation should be calculated about the axis of flexion/extension. • To analyze motions that primarily consist of rotation and/or lateral bending, the first rotation should be calculated about the axis of lateral bending.
Intervertebral range of motion (ROM) is commonly calculated using ordered rotations or projection angles. Ordered rotations are sequence-dependent, and projection angles are dependent upon on which orientation vectors are projected. This study assessed the effect of calculation method on intervertebral ROM in the subaxial cervical spine (C3-C7) during in vivo dynamic, three-dimensional, functional movement. Biplane radiographs were collected at 30 images per second while 29 participants performed full ROM flexion/extension, axial rotation and lateral bending movements of their cervical spine. In vivo bone motion was tracked with sub-millimeter accuracy using a validated volumetric model-based tracking technique. Intervertebral rotations were calculated using six Cardan angle sequences and two projection angle combinations. Within-subject comparisons revealed significant differences in intervertebral ROM among calculation methods (all p<0.002). Group mean ROM differences were small, but significantly different among calculation methods (p<0.001). A resampling technique demonstrated that as group size increases, the differences between calculation methods decreases substantially. It is concluded that the method used to calculate intervertebral rotations of the sub-axial cervical spine can significantly affect within-subject and between group comparisons of intervertebral ROM.Intervertebral range of motion (ROM) is commonly calculated using ordered rotations or projection angles. Ordered rotations are sequence-dependent, and projection angles are dependent upon on which orientation vectors are projected. This study assessed the effect of calculation method on intervertebral ROM in the subaxial cervical spine (C3-C7) during in vivo dynamic, three-dimensional, functional movement. Biplane radiographs were collected at 30 images per second while 29 participants performed full ROM flexion/extension, axial rotation and lateral bending movements of their cervical spine. In vivo bone motion was tracked with sub-millimeter accuracy using a validated volumetric model-based tracking technique. Intervertebral rotations were calculated using six Cardan angle sequences and two projection angle combinations. Within-subject comparisons revealed significant differences in intervertebral ROM among calculation methods (all p<0.002). Group mean ROM differences were small, but significantly different among calculation methods (p<0.001). A resampling technique demonstrated that as group size increases, the differences between calculation methods decreases substantially. It is concluded that the method used to calculate intervertebral rotations of the sub-axial cervical spine can significantly affect within-subject and between group comparisons of intervertebral ROM.
Author Aucie, Yashar
Anderst, William J
Author_xml – sequence: 1
  givenname: William J
  surname: Anderst
  fullname: Anderst, William J
  email: anderst@pitt.edu
  organization: Department of Orthopaedic Surgery, Biodynamics Lab, University of Pittsburgh, 3820 South Water Street, Pittsburgh, PA 15203, USA
– sequence: 2
  givenname: Yashar
  orcidid: 0000-0001-8552-2200
  surname: Aucie
  fullname: Aucie, Yashar
  organization: Department of Bioengineering, University of Pittsburgh, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28126422$$D View this record in MEDLINE/PubMed
BookMark eNqNUstu3CAURVWqvH-h9bIbuxewsV2pjaL0KUXqoskaYXydYWrDFHCk-fvgmaSLSFWz4aHzAM7hhBxYZ5GQtxQKClS8XxcT9mjvNqttwYDWBdACoH1FjmlT87wEDgdpzSvIy4rzI3ISwhoAylLwQ3LEGspEydgxsTcrj5j3ZkIbjLNqzIyN6O_RR-x82npl7zBzQza5mAgJzuIKM504Ric8bIzFD9lnh2EHTBhXrl8ECdXzqHaqScXkenFGXg9qDHj-OJ-S269fbq6-59c_v_24urzOddmwmHMcWgFDW7edoBTKng2VAqVEX3Vt1VdYt6JDpBVtyo7zlopGtF1Xp6FnHDg_Je_2vhvv_swYopxM0DiOyqKbg6SNYLUoW7pQ3zxS5y6FKjfeTMpv5VNGifBxT9DeheBxkNrE3auiV2aUFOTSiVzLv53IpRMJVKZOkr5-pn864v_Ky70SU1T3Br0M2qDV2BuPOsremRd4fHrmoUdjl-Z-4xbD2s0-lZ4SkYFJkL-WP7N8GVpzALqL8uLfBi-6wgM29tai
CitedBy_id crossref_primary_10_1016_j_msksp_2019_07_003
crossref_primary_10_1016_j_jbiomech_2024_112236
crossref_primary_10_1080_15389588_2022_2152282
crossref_primary_10_1007_s10439_024_03567_0
crossref_primary_10_1097_BRS_0000000000004388
crossref_primary_10_1097_BRS_0000000000004677
crossref_primary_10_1097_BRS_0000000000004080
crossref_primary_10_21496_ams_2018_009
crossref_primary_10_1097_BRS_0000000000004755
Cites_doi 10.1016/j.jbiomech.2015.02.049
10.1016/S0268-0033(01)00105-X
10.1016/j.math.2012.12.002
10.1002/jor.1100090608
10.1097/01.brs.0000195173.47334.1f
10.1097/01.brs.0000147806.31675.6b
10.1002/jor.1100110407
10.1016/0167-9457(95)00049-6
10.1097/00007632-199310001-00012
10.1097/BRS.0b013e31820b7e2f
10.1016/j.jbiomech.2014.08.014
10.2106/JBJS.H.01199
10.1056/NEJMoa0901249
10.1016/S0268-0033(01)00012-2
10.1115/1.2895496
10.3171/2014.1.SPINE13252
10.1016/S0021-9290(01)00222-6
10.1016/j.medengphy.2015.07.002
10.1016/S0268-0033(97)00063-6
10.1097/00007632-200112150-00012
10.1115/1.2206199
10.1097/00007632-199503010-00008
10.1097/BRS.0b013e31821cfd47
10.1115/1.3138397
10.1016/j.medengphy.2008.03.003
10.1097/01.brs.0000147740.69525.58
10.1016/j.spinee.2010.02.024
ContentType Journal Article
Copyright 2017 IPEM
IPEM
Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2017 IPEM
– notice: IPEM
– notice: Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.medengphy.2017.01.009
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE


MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
Chemistry
EISSN 1873-4030
EndPage 115
ExternalDocumentID 28126422
10_1016_j_medengphy_2017_01_009
S1350453317300103
1_s2_0_S1350453317300103
Genre Journal Article
GroupedDBID ---
--K
--M
-~X
.1-
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29M
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JM
9JN
9M8
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXUO
AAYWO
ABBQC
ABFNM
ABJNI
ABMAC
ABMZM
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACIUM
ACNNM
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HEE
HMK
HMO
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M28
M31
M41
MO0
N9A
O-L
O9-
OAUVE
OI~
OU0
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SAE
SDF
SDG
SDP
SEL
SES
SET
SEW
SPC
SPCBC
SSH
SST
SSZ
T5K
TN5
WUQ
YNT
YQT
Z5R
ZGI
ZY4
~G-
AACTN
AAXKI
ABTAH
AFCTW
AFKWA
AJOXV
AMFUW
RIG
AAIAV
ABLVK
ABYKQ
AJBFU
EFLBG
LCYCR
AAYXX
AGRNS
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c482t-3ef960f979b61104d2f5a0aa6d5b95d5e796bee15184b33916869bb769bd23033
IEDL.DBID AIKHN
ISSN 1350-4533
1873-4030
IngestDate Fri Sep 05 09:16:59 EDT 2025
Mon Jul 21 05:59:50 EDT 2025
Thu Apr 24 23:12:51 EDT 2025
Tue Jul 01 04:24:52 EDT 2025
Fri Feb 23 02:29:18 EST 2024
Tue Feb 25 20:06:44 EST 2025
Tue Aug 26 16:31:47 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Projection angles
Euler angles
Ordered rotation
Spine
Cardan angles
Kinematics
Language English
License Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c482t-3ef960f979b61104d2f5a0aa6d5b95d5e796bee15184b33916869bb769bd23033
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-8552-2200
PMID 28126422
PQID 1862764913
PQPubID 23479
PageCount 7
ParticipantIDs proquest_miscellaneous_1862764913
pubmed_primary_28126422
crossref_citationtrail_10_1016_j_medengphy_2017_01_009
crossref_primary_10_1016_j_medengphy_2017_01_009
elsevier_sciencedirect_doi_10_1016_j_medengphy_2017_01_009
elsevier_clinicalkeyesjournals_1_s2_0_S1350453317300103
elsevier_clinicalkey_doi_10_1016_j_medengphy_2017_01_009
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-03-01
PublicationDateYYYYMMDD 2017-03-01
PublicationDate_xml – month: 03
  year: 2017
  text: 2017-03-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Medical engineering & physics
PublicationTitleAlternate Med Eng Phys
PublicationYear 2017
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Lin, Lu, Wang, Hsu, Hsu, Shih (bib0006) 2014; 47
Tashman, Princehorn, Pennatto, Anderst (bib0018) 2010; 806
Thorhauer, Tashman (bib0021) 2015; 37
Fazel, Krumholz, Wang, Ross, Chen, Ting (bib0020) 2009; 361
Reitman, Mauro, Nguyen, Ziegler, Hipp (bib0007) 2004; 29
Dvorak, Panjabi, Novotny, Antinnes (bib0003) 1991; 9
Nowinski, Visarius, Nolte, Herkowitz (bib0015) 1993; 18
Grood, Suntay (bib0016) 1983; 105
Skalli, Lavaste, Descrimes (bib0011) 1995; 20
Winter (bib0026) 2009
Panjabi, Oda, Crisco, Dvorak, Grob (bib0013) 1993; 11
Panjabi, Crisco, Vasavada, Oda, Cholewicki, Nibu (bib0022) 2001; 26
Bey, Zauel, Brock, Tashman (bib0023) 2006; 128
McDonald, Bachison, Chang, Bartol, Bey (bib0029) 2010; 10
Crawford, Yamaguchi, Dickman (bib0008) 1996; 15
Sugiura, Nagamoto, Iwasaki, Kashii, Kaito, Murase (bib0012) 2014; 20
Wu, Siegler, Allard, Kirtley, Leardini, Rosenbaum (bib0017) 2002; 35
Frobin, Leivseth, Biggemann, Brinckmann (bib0004) 2002; 17
Biswas, Bible, Bohan, Simpson, Whang, Grauer (bib0019) 2009; 91
Anderst, Baillargeon, Donaldson, Lee, Kang (bib0024) 2011; 36
Auerbach, Anakwenze, Milby, Lonner, Balderston (bib0002) 2011; 36
Cole, Nigg, Ronsky, Yeadon (bib0009) 1993; 115
Hof, A.L., Koerhuis, C.L., and Winters, J.C., 2001, "'Coupled motions' in cervical spine rotation can be misleading. Comment on Feipel, V. Rondelet, B. Le Pallec, J.P. Rooze, M. Normal global motion of the cervical spine: an electrogoniometric study. Clin Biomech 1999; 14: 462–470," Clin Biomech, 16(5), pp. 455–458.
Anderst, Donaldson, Lee, Kang (bib0001) 2015; 48
Salem, Lenders, Mathieu, Hermanus, Klein (bib0014) 2013; 18
Ishii, Mukai, Hosono, Sakaura, Fujii, Nakajima (bib0005) 2004; 29
Anderst, Zauel, Bishop, Demps, Tashman (bib0025) 2009; 31
Ishii, Mukai, Hosono, Sakaura, Fujii, Nakajima (bib0028) 2006; 31
McGill, Cholewicki, Peach (bib0010) 1997; 12
Crawford (10.1016/j.medengphy.2017.01.009_bib0008) 1996; 15
Anderst (10.1016/j.medengphy.2017.01.009_bib0025) 2009; 31
Tashman (10.1016/j.medengphy.2017.01.009_bib0018) 2010; 806
Reitman (10.1016/j.medengphy.2017.01.009_bib0007) 2004; 29
Bey (10.1016/j.medengphy.2017.01.009_bib0023) 2006; 128
Sugiura (10.1016/j.medengphy.2017.01.009_bib0012) 2014; 20
Anderst (10.1016/j.medengphy.2017.01.009_bib0024) 2011; 36
Ishii (10.1016/j.medengphy.2017.01.009_bib0028) 2006; 31
Ishii (10.1016/j.medengphy.2017.01.009_bib0005) 2004; 29
Anderst (10.1016/j.medengphy.2017.01.009_bib0001) 2015; 48
Salem (10.1016/j.medengphy.2017.01.009_bib0014) 2013; 18
Lin (10.1016/j.medengphy.2017.01.009_bib0006) 2014; 47
Panjabi (10.1016/j.medengphy.2017.01.009_bib0013) 1993; 11
10.1016/j.medengphy.2017.01.009_bib0027
Panjabi (10.1016/j.medengphy.2017.01.009_bib0022) 2001; 26
Cole (10.1016/j.medengphy.2017.01.009_bib0009) 1993; 115
Grood (10.1016/j.medengphy.2017.01.009_bib0016) 1983; 105
Thorhauer (10.1016/j.medengphy.2017.01.009_bib0021) 2015; 37
Auerbach (10.1016/j.medengphy.2017.01.009_bib0002) 2011; 36
McGill (10.1016/j.medengphy.2017.01.009_bib0010) 1997; 12
Winter (10.1016/j.medengphy.2017.01.009_bib0026) 2009
McDonald (10.1016/j.medengphy.2017.01.009_bib0029) 2010; 10
Dvorak (10.1016/j.medengphy.2017.01.009_bib0003) 1991; 9
Nowinski (10.1016/j.medengphy.2017.01.009_bib0015) 1993; 18
Frobin (10.1016/j.medengphy.2017.01.009_bib0004) 2002; 17
Fazel (10.1016/j.medengphy.2017.01.009_bib0020) 2009; 361
Wu (10.1016/j.medengphy.2017.01.009_bib0017) 2002; 35
Skalli (10.1016/j.medengphy.2017.01.009_bib0011) 1995; 20
Biswas (10.1016/j.medengphy.2017.01.009_bib0019) 2009; 91
References_xml – volume: 36
  start-page: E1593
  year: 2011
  end-page: E1599
  ident: bib0002
  article-title: Segmental contribution toward total cervical range of motion: a comparison of cervical disc arthroplasty and fusion
  publication-title: Spine
– volume: 128
  start-page: 604
  year: 2006
  end-page: 609
  ident: bib0023
  article-title: Validation of a new model-based tracking technique for measuring three-dimensional, in vivo glenohumeral joint kinematics
  publication-title: J Biomech Eng
– volume: 12
  start-page: 190
  year: 1997
  end-page: 194
  ident: bib0010
  article-title: Methodological considerations for using inductive sensors (3SPACE ISOTRAK) to monitor 3-D orthopaedic joint motion
  publication-title: Clin Biomech
– volume: 11
  start-page: 525
  year: 1993
  end-page: 536
  ident: bib0013
  article-title: Posture affects motion coupling patterns of the upper cervical spine
  publication-title: J Orthop Res
– volume: 20
  start-page: 404
  year: 2014
  end-page: 410
  ident: bib0012
  article-title: In vivo 3D kinematics of the upper cervical spine during head rotation in rheumatoid arthritis
  publication-title: J Neurosurg Spine
– volume: 9
  start-page: 828
  year: 1991
  end-page: 834
  ident: bib0003
  article-title: In vivo flexion/extension of the normal cervical spine
  publication-title: J Orthop Res
– volume: 18
  start-page: 339
  year: 2013
  end-page: 344
  ident: bib0014
  article-title: In vivo three-dimensional kinematics of the cervical spine during maximal axial rotation
  publication-title: Man Ther
– volume: 105
  start-page: 136
  year: 1983
  end-page: 144
  ident: bib0016
  article-title: A joint coordinate system for the clinical description of three-dimensional motions: application to the knee
  publication-title: J Biomech Eng
– volume: 17
  start-page: 21
  year: 2002
  end-page: 31
  ident: bib0004
  article-title: Sagittal plane segmental motion of the cervical spine. A new precision measurement protocol and normal motion data of healthy adults
  publication-title: Clin Biomech
– volume: 29
  start-page: 2826
  year: 2004
  end-page: 2831
  ident: bib0005
  article-title: Kinematics of the subaxial cervical spine in rotation in vivo three-dimensional analysis
  publication-title: Spine
– volume: 47
  start-page: 3310
  year: 2014
  end-page: 3317
  ident: bib0006
  article-title: In vivo three-dimensional intervertebral kinematics of the subaxial cervical spine during seated axial rotation and lateral bending via a fluoroscopy-to-CT registration approach
  publication-title: J Biomech
– volume: 806
  start-page: 589
  year: 2010
  ident: bib0018
  article-title: Bi-plane X-ray imaging system
  publication-title: US Pat
– volume: 10
  start-page: 497
  year: 2010
  end-page: 504
  ident: bib0029
  article-title: Three-dimensional dynamic in vivo motion of the cervical spine: assessment of measurement accuracy and preliminary findings
  publication-title: Spine J
– volume: 48
  start-page: 1286
  year: 2015
  end-page: 1293
  ident: bib0001
  article-title: Three-dimensional intervertebral kinematics in the healthy young adult cervical spine during dynamic functional loading
  publication-title: J Biomech
– volume: 26
  start-page: 2692
  year: 2001
  end-page: 2700
  ident: bib0022
  article-title: Mechanical properties of the human cervical spine as shown by three-dimensional load-displacement curves
  publication-title: Spine
– reference: Hof, A.L., Koerhuis, C.L., and Winters, J.C., 2001, "'Coupled motions' in cervical spine rotation can be misleading. Comment on Feipel, V. Rondelet, B. Le Pallec, J.P. Rooze, M. Normal global motion of the cervical spine: an electrogoniometric study. Clin Biomech 1999; 14: 462–470," Clin Biomech, 16(5), pp. 455–458.
– volume: 31
  start-page: 10
  year: 2009
  end-page: 16
  ident: bib0025
  article-title: Validation of three-dimensional model-based tibio-femoral tracking during running
  publication-title: Med Eng Phys
– volume: 15
  start-page: 55
  year: 1996
  end-page: 78
  ident: bib0008
  article-title: Methods for determining spinal flexion/extension, lateral bending, and axial rotation from marker coordinate data: Analysis and refinement
  publication-title: Hum Mov Sci
– volume: 29
  start-page: 2832
  year: 2004
  end-page: 2843
  ident: bib0007
  article-title: Intervertebral motion between flexion and extension in asymptomatic individuals
  publication-title: Spine
– volume: 361
  start-page: 849
  year: 2009
  end-page: 857
  ident: bib0020
  article-title: Exposure to low-dose ionizing radiation from medical imaging procedures
  publication-title: N Engl J Med
– volume: 91
  start-page: 1882
  year: 2009
  end-page: 1889
  ident: bib0019
  article-title: Radiation exposure from musculoskeletal computerized tomographic scans
  publication-title: J Bone Joint Surg Am
– volume: 20
  start-page: 546
  year: 1995
  end-page: 553
  ident: bib0011
  article-title: Quantification of three-dimensional vertebral rotations in scoliosis: what are the true values?
  publication-title: Spine
– volume: 18
  start-page: 1995
  year: 1993
  end-page: 2004
  ident: bib0015
  article-title: A biomechanical comparison of cervical laminaplasty and cervical laminectomy with progressive facetectomy
  publication-title: Spine
– volume: 35
  start-page: 543
  year: 2002
  end-page: 548
  ident: bib0017
  article-title: ISB recommendation on definitions of joint coordinate system of various joints for the reporting of human joint motion–part I: ankle, hip, and spine. International Society of Biomechanics
  publication-title: J Biomech
– volume: 36
  start-page: E393
  year: 2011
  end-page: E400
  ident: bib0024
  article-title: Validation of a noninvasive technique to precisely measure in vivo three-dimensional cervical spine movement
  publication-title: Spine
– volume: 115
  start-page: 344
  year: 1993
  end-page: 349
  ident: bib0009
  article-title: Application of the joint coordinate system to three-dimensional joint attitude and movement representation: a standardization proposal
  publication-title: J Biomech Eng
– year: 2009
  ident: bib0026
  article-title: Biomechanics and motor control of human movement
– volume: 37
  start-page: 937
  year: 2015
  end-page: 947
  ident: bib0021
  article-title: Validation of a method for combining biplanar radiography and magnetic resonance imaging to estimate knee cartilage contact
  publication-title: Med Eng Phys
– volume: 31
  start-page: 155
  year: 2006
  end-page: 160
  ident: bib0028
  article-title: Kinematics of the cervical spine in lateral bending: in vivo three-dimensional analysis
  publication-title: Spine
– volume: 48
  start-page: 1286
  issue: 7
  year: 2015
  ident: 10.1016/j.medengphy.2017.01.009_bib0001
  article-title: Three-dimensional intervertebral kinematics in the healthy young adult cervical spine during dynamic functional loading
  publication-title: J Biomech
  doi: 10.1016/j.jbiomech.2015.02.049
– volume: 17
  start-page: 21
  issue: 1
  year: 2002
  ident: 10.1016/j.medengphy.2017.01.009_bib0004
  article-title: Sagittal plane segmental motion of the cervical spine. A new precision measurement protocol and normal motion data of healthy adults
  publication-title: Clin Biomech
  doi: 10.1016/S0268-0033(01)00105-X
– volume: 18
  start-page: 339
  issue: 4
  year: 2013
  ident: 10.1016/j.medengphy.2017.01.009_bib0014
  article-title: In vivo three-dimensional kinematics of the cervical spine during maximal axial rotation
  publication-title: Man Ther
  doi: 10.1016/j.math.2012.12.002
– volume: 9
  start-page: 828
  issue: 6
  year: 1991
  ident: 10.1016/j.medengphy.2017.01.009_bib0003
  article-title: In vivo flexion/extension of the normal cervical spine
  publication-title: J Orthop Res
  doi: 10.1002/jor.1100090608
– volume: 31
  start-page: 155
  issue: 2
  year: 2006
  ident: 10.1016/j.medengphy.2017.01.009_bib0028
  article-title: Kinematics of the cervical spine in lateral bending: in vivo three-dimensional analysis
  publication-title: Spine
  doi: 10.1097/01.brs.0000195173.47334.1f
– volume: 29
  start-page: 2826
  issue: 24
  year: 2004
  ident: 10.1016/j.medengphy.2017.01.009_bib0005
  article-title: Kinematics of the subaxial cervical spine in rotation in vivo three-dimensional analysis
  publication-title: Spine
  doi: 10.1097/01.brs.0000147806.31675.6b
– volume: 11
  start-page: 525
  issue: 4
  year: 1993
  ident: 10.1016/j.medengphy.2017.01.009_bib0013
  article-title: Posture affects motion coupling patterns of the upper cervical spine
  publication-title: J Orthop Res
  doi: 10.1002/jor.1100110407
– volume: 15
  start-page: 55
  year: 1996
  ident: 10.1016/j.medengphy.2017.01.009_bib0008
  article-title: Methods for determining spinal flexion/extension, lateral bending, and axial rotation from marker coordinate data: Analysis and refinement
  publication-title: Hum Mov Sci
  doi: 10.1016/0167-9457(95)00049-6
– volume: 18
  start-page: 1995
  issue: 14
  year: 1993
  ident: 10.1016/j.medengphy.2017.01.009_bib0015
  article-title: A biomechanical comparison of cervical laminaplasty and cervical laminectomy with progressive facetectomy
  publication-title: Spine
  doi: 10.1097/00007632-199310001-00012
– volume: 36
  start-page: E393
  issue: 6
  year: 2011
  ident: 10.1016/j.medengphy.2017.01.009_bib0024
  article-title: Validation of a noninvasive technique to precisely measure in vivo three-dimensional cervical spine movement
  publication-title: Spine
  doi: 10.1097/BRS.0b013e31820b7e2f
– volume: 47
  start-page: 3310
  issue: 13
  year: 2014
  ident: 10.1016/j.medengphy.2017.01.009_bib0006
  article-title: In vivo three-dimensional intervertebral kinematics of the subaxial cervical spine during seated axial rotation and lateral bending via a fluoroscopy-to-CT registration approach
  publication-title: J Biomech
  doi: 10.1016/j.jbiomech.2014.08.014
– volume: 91
  start-page: 1882
  issue: 8
  year: 2009
  ident: 10.1016/j.medengphy.2017.01.009_bib0019
  article-title: Radiation exposure from musculoskeletal computerized tomographic scans
  publication-title: J Bone Joint Surg Am
  doi: 10.2106/JBJS.H.01199
– volume: 361
  start-page: 849
  issue: 9
  year: 2009
  ident: 10.1016/j.medengphy.2017.01.009_bib0020
  article-title: Exposure to low-dose ionizing radiation from medical imaging procedures
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa0901249
– ident: 10.1016/j.medengphy.2017.01.009_bib0027
  doi: 10.1016/S0268-0033(01)00012-2
– volume: 115
  start-page: 344
  issue: 4A
  year: 1993
  ident: 10.1016/j.medengphy.2017.01.009_bib0009
  article-title: Application of the joint coordinate system to three-dimensional joint attitude and movement representation: a standardization proposal
  publication-title: J Biomech Eng
  doi: 10.1115/1.2895496
– volume: 20
  start-page: 404
  issue: 4
  year: 2014
  ident: 10.1016/j.medengphy.2017.01.009_bib0012
  article-title: In vivo 3D kinematics of the upper cervical spine during head rotation in rheumatoid arthritis
  publication-title: J Neurosurg Spine
  doi: 10.3171/2014.1.SPINE13252
– volume: 35
  start-page: 543
  issue: 4
  year: 2002
  ident: 10.1016/j.medengphy.2017.01.009_bib0017
  article-title: ISB recommendation on definitions of joint coordinate system of various joints for the reporting of human joint motion–part I: ankle, hip, and spine. International Society of Biomechanics
  publication-title: J Biomech
  doi: 10.1016/S0021-9290(01)00222-6
– volume: 806
  start-page: 589
  issue: 7
  year: 2010
  ident: 10.1016/j.medengphy.2017.01.009_bib0018
  article-title: Bi-plane X-ray imaging system
  publication-title: US Pat
– volume: 37
  start-page: 937
  issue: 10
  year: 2015
  ident: 10.1016/j.medengphy.2017.01.009_bib0021
  article-title: Validation of a method for combining biplanar radiography and magnetic resonance imaging to estimate knee cartilage contact
  publication-title: Med Eng Phys
  doi: 10.1016/j.medengphy.2015.07.002
– volume: 12
  start-page: 190
  issue: 3
  year: 1997
  ident: 10.1016/j.medengphy.2017.01.009_bib0010
  article-title: Methodological considerations for using inductive sensors (3SPACE ISOTRAK) to monitor 3-D orthopaedic joint motion
  publication-title: Clin Biomech
  doi: 10.1016/S0268-0033(97)00063-6
– volume: 26
  start-page: 2692
  issue: 24
  year: 2001
  ident: 10.1016/j.medengphy.2017.01.009_bib0022
  article-title: Mechanical properties of the human cervical spine as shown by three-dimensional load-displacement curves
  publication-title: Spine
  doi: 10.1097/00007632-200112150-00012
– volume: 128
  start-page: 604
  issue: 4
  year: 2006
  ident: 10.1016/j.medengphy.2017.01.009_bib0023
  article-title: Validation of a new model-based tracking technique for measuring three-dimensional, in vivo glenohumeral joint kinematics
  publication-title: J Biomech Eng
  doi: 10.1115/1.2206199
– volume: 20
  start-page: 546
  issue: 5
  year: 1995
  ident: 10.1016/j.medengphy.2017.01.009_bib0011
  article-title: Quantification of three-dimensional vertebral rotations in scoliosis: what are the true values?
  publication-title: Spine
  doi: 10.1097/00007632-199503010-00008
– volume: 36
  start-page: E1593
  issue: 25
  year: 2011
  ident: 10.1016/j.medengphy.2017.01.009_bib0002
  article-title: Segmental contribution toward total cervical range of motion: a comparison of cervical disc arthroplasty and fusion
  publication-title: Spine
  doi: 10.1097/BRS.0b013e31821cfd47
– year: 2009
  ident: 10.1016/j.medengphy.2017.01.009_bib0026
– volume: 105
  start-page: 136
  issue: 2
  year: 1983
  ident: 10.1016/j.medengphy.2017.01.009_bib0016
  article-title: A joint coordinate system for the clinical description of three-dimensional motions: application to the knee
  publication-title: J Biomech Eng
  doi: 10.1115/1.3138397
– volume: 31
  start-page: 10
  issue: 1
  year: 2009
  ident: 10.1016/j.medengphy.2017.01.009_bib0025
  article-title: Validation of three-dimensional model-based tibio-femoral tracking during running
  publication-title: Med Eng Phys
  doi: 10.1016/j.medengphy.2008.03.003
– volume: 29
  start-page: 2832
  issue: 24
  year: 2004
  ident: 10.1016/j.medengphy.2017.01.009_bib0007
  article-title: Intervertebral motion between flexion and extension in asymptomatic individuals
  publication-title: Spine
  doi: 10.1097/01.brs.0000147740.69525.58
– volume: 10
  start-page: 497
  issue: 6
  year: 2010
  ident: 10.1016/j.medengphy.2017.01.009_bib0029
  article-title: Three-dimensional dynamic in vivo motion of the cervical spine: assessment of measurement accuracy and preliminary findings
  publication-title: Spine J
  doi: 10.1016/j.spinee.2010.02.024
SSID ssj0004463
Score 2.2190928
Snippet •Within-subjects, intervertebral ROM was significantly different among calculation methods.•The method of calculation can significantly affect the group mean...
Highlights • Within-subjects, intervertebral ROM was significantly different among calculation methods. • The method of calculation can significantly affect...
Intervertebral range of motion (ROM) is commonly calculated using ordered rotations or projection angles. Ordered rotations are sequence-dependent, and...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 109
SubjectTerms Adult
Cardan angles
Cervical Vertebrae - physiology
Euler angles
Female
Humans
Kinematics
Male
Movement
Ordered rotation
Projection angles
Radiology
Range of Motion, Articular
Spine
Statistics as Topic - methods
Young Adult
Title Three-dimensional intervertebral range of motion in the cervical spine: Does the method of calculation matter?
URI https://www.clinicalkey.com/#!/content/1-s2.0-S1350453317300103
https://www.clinicalkey.es/playcontent/1-s2.0-S1350453317300103
https://dx.doi.org/10.1016/j.medengphy.2017.01.009
https://www.ncbi.nlm.nih.gov/pubmed/28126422
https://www.proquest.com/docview/1862764913
Volume 41
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9tAEB5BkNpyQDQtbaCgrdSrG9v7cJZLhVJQaAWXgsRt5fWuURB1ojhc-9s7-3AoKhWVuFiy1-O1d8Yz32jnAfBJSGEky6qEW4EOSknrRFauMqJNpebC5MyX2Dg7F5NL9u2KX63BuMuFcWGVUfcHne61dbwyjKs5nE-nwx8Z5YhHKBpA6rsVrMNGTqXgPdg4Ov0-Ob9Pj2S-oZq7P3EED8K80ObY5ho_yYV5Fb6EpwtOfNxI_QuEemN0sg1bEUWSo_Cir2HNNn14Oe6at_Vh8486g314cRZ30N9Ac4HMs4lxRf1DQQ4yDWGPi6XbQ74lC5duQGY1CQ1-cJggSCSVVyo43s7xQYfk68y2fiD0oHYEOFrFbmDkp6_b-eUtXJ4cX4wnSey5kFRslC8Tamv0aWpZSC0QGTCT17xMy1IYriU33BZSaGsRJ4yYpi5rdySk1gUeDHozlO5Ar5k19j0QJnJttKypFciCGqF8IfFY1mgtmZFiAKJbZFXFguSuL8at6iLPbtSKO8pxR6WZQu4MIF0RzkNNjqdJRh0XVZdyikpSod14mrR4jNS28WdvVabaXKXqL4EcwOGK8oFM_9-0HzthUyg7bhunbOzsDqdDJ7QQTGY4wbsghatlyBGvoUeZ7z5n6j145c5CpN0H6C0Xd3YfoddSH8D651_ZQfzBfgMOMy1s
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9swED8Bk4A9TFtho_tgRuI1NIkdp-Zlmrqh8lFeKBJvVhw7qFOXVk153d--80c60EBM2kuk5HJx4rvch_zzHcAhF1wLlpRRZjgmKAWtIlHayogmFirjOmWuxMbokg-v2dlNdrMGg3YvjIVVBtvvbbqz1uFKL8xmbz6Z9K4SmmE8QtEBUtetYB1e4GlucX1Hv_7gPDDfcSh7vDuytz8AeaHHMfUtfpAFeeWugKeFJj7uop4KQZ0rOnkNr0IMSb7613wDa6buwNagbd3WgZf3qgx2YHMU1s93oB6j6EykbUl_X46DTDzocbG0K8hTsrCbDcisIr69D5IJhoikdCYF6c0cH3RMvs1M4wi-A7VlQGoZeoGRn65q55dduD75Ph4Mo9BxISpZP11G1FSY0VQiF4pjXMB0WmVFXBRcZ0pkOjO54MoYjBL6TFG7Z7fPhVI5HjTmMpS-hY16Vps9IIynSitRUcNRBBUG8rnAY1Ghr2Ra8C7wdpJlGcqR264YU9nizn7IlXSklY6ME4nS6UK8Ypz7ihzPs_RbKcp2wymaSIle43nW_DFW04RfvZGJbFIZy7_UsQvHK84HGv1vwx60yiZRd-wiTlGb2R0OhylozplIcIB3XgtX05BitIb5ZPr-f4b-DFvD8ehCXpxenn-AbUvxmLuPsLFc3JlPGIQt1b77yX4Doy0uNw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Three-dimensional+intervertebral+range+of+motion+in+the+cervical+spine%3A+Does+the+method+of+calculation+matter%3F&rft.jtitle=Medical+engineering+%26+physics&rft.au=Anderst%2C+William+J&rft.au=Aucie%2C+Yashar&rft.date=2017-03-01&rft.pub=Elsevier+Ltd&rft.issn=1350-4533&rft.eissn=1873-4030&rft.volume=41&rft.spage=109&rft.epage=115&rft_id=info:doi/10.1016%2Fj.medengphy.2017.01.009&rft.externalDocID=S1350453317300103
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F13504533%2FS1350453316X00161%2Fcov150h.gif