Characterizing nanoscale changes in the activity of VEGFR-2 on glioma microvascular endothelial cell membranes using atomic force microscopy
The aim of the current study was to demonstrate the distribution of VEGFR-2 on glioma microvascular endothelial cells on a nanoscale and investigate changes in VEGFR-2 activity following treatment with the VEGFR-2 inhibitor and agonist sorafenib and bradykinin, respectively. Three groups were evalua...
Saved in:
Published in | Experimental and therapeutic medicine Vol. 13; no. 2; pp. 483 - 488 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Greece
Spandidos Publications
01.02.2017
Spandidos Publications UK Ltd D.A. Spandidos |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The aim of the current study was to demonstrate the distribution of VEGFR-2 on glioma microvascular endothelial cells on a nanoscale and investigate changes in VEGFR-2 activity following treatment with the VEGFR-2 inhibitor and agonist sorafenib and bradykinin, respectively. Three groups were evaluated in this study: Control glioma microvascular endothelial cells, sorafenib-treated glioma microvascular endothelial cells and bradykinin-treated glioma microvascular endothelial cells. Changes in the activity of VEGFR-2 on the glioma microvascular endothelial cell membranes following treatment with sorafenib and bradykinin were characterized by atomic force microscopy (AFM). Colloidal gold-labeled immune complexes and AFM were used to visualize the distribution of VEGFR-2 on the cell membranes. In the control group, VEGFR-2, which was observed as numerous globular structures, was evenly distributed on the cell surface membranes. The majority of the receptors were active. In the sorafenib group, only a few globular structures were observed on the cell membranes, with a density significantly lower than that in the control group (P<0.01). Furthermore, compared with the control group, fewer of the receptors were active. In the bradykinin group, numerous globular structures were densely distributed on the cell membranes, with a density significantly higher than that in the control group (P<0.01). The distribution and activity of VEGFR-2 on glioma microvascular endothelial cell membranes treated with sorafenib and bradykinin suggested that the activity of VEGFR-2 could be regulated by its inhibitor or agonist. |
---|---|
AbstractList | The aim of the current study was to demonstrate the distribution of VEGFR-2 on glioma microvascular endothelial cells on a nanoscale and investigate changes in VEGFR-2 activity following treatment with the VEGFR-2 inhibitor and agonist sorafenib and bradykinin, respectively. Three groups were evaluated in this study: Control glioma microvascular endothelial cells, sorafenib-treated glioma microvascular endothelial cells and bradykinin-treated glioma microvascular endothelial cells. Changes in the activity of VEGFR-2 on the glioma microvascular endothelial cell membranes following treatment with sorafenib and bradykinin were characterized by atomic force microscopy (AFM). Colloidal gold-labeled immune complexes and AFM were used to visualize the distribution of VEGFR-2 on the cell membranes. In the control group, VEGFR-2, which was observed as numerous globular structures, was evenly distributed on the cell surface membranes. The majority of the receptors were active. In the sorafenib group, only a few globular structures were observed on the cell membranes, with a density significantly lower than that in the control group (P<0.01). Furthermore, compared with the control group, fewer of the receptors were active. In the bradykinin group, numerous globular structures were densely distributed on the cell membranes, with a density significantly higher than that in the control group (P<0.01). The distribution and activity of VEGFR-2 on glioma microvascular endothelial cell membranes treated with sorafenib and bradykinin suggested that the activity of VEGFR-2 could be regulated by its inhibitor or agonist.The aim of the current study was to demonstrate the distribution of VEGFR-2 on glioma microvascular endothelial cells on a nanoscale and investigate changes in VEGFR-2 activity following treatment with the VEGFR-2 inhibitor and agonist sorafenib and bradykinin, respectively. Three groups were evaluated in this study: Control glioma microvascular endothelial cells, sorafenib-treated glioma microvascular endothelial cells and bradykinin-treated glioma microvascular endothelial cells. Changes in the activity of VEGFR-2 on the glioma microvascular endothelial cell membranes following treatment with sorafenib and bradykinin were characterized by atomic force microscopy (AFM). Colloidal gold-labeled immune complexes and AFM were used to visualize the distribution of VEGFR-2 on the cell membranes. In the control group, VEGFR-2, which was observed as numerous globular structures, was evenly distributed on the cell surface membranes. The majority of the receptors were active. In the sorafenib group, only a few globular structures were observed on the cell membranes, with a density significantly lower than that in the control group (P<0.01). Furthermore, compared with the control group, fewer of the receptors were active. In the bradykinin group, numerous globular structures were densely distributed on the cell membranes, with a density significantly higher than that in the control group (P<0.01). The distribution and activity of VEGFR-2 on glioma microvascular endothelial cell membranes treated with sorafenib and bradykinin suggested that the activity of VEGFR-2 could be regulated by its inhibitor or agonist. The aim of the current study was to demonstrate the distribution of VEGFR-2 on glioma microvascular endothelial cells on a nanoscale and investigate changes in VEGFR-2 activity following treatment with the VEGFR-2 inhibitor and agonist sorafenib and bradykinin, respectively. Three groups were evaluated in this study: Control glioma microvascular endothelial cells, sorafenib-treated glioma microvascular endothelial cells and bradykinin-treated glioma microvascular endothelial cells. Changes in the activity of VEGFR-2 on the glioma microvascular endothelial cell membranes following treatment with sorafenib and bradykinin were characterized by atomic force microscopy (AFM). Colloidal gold-labeled immune complexes and AFM were used to visualize the distribution of VEGFR-2 on the cell membranes. In the control group, VEGFR-2, which was observed as numerous globular structures, was evenly distributed on the cell surface membranes. The majority of the receptors were active. In the sorafenib group, only a few globular structures were observed on the cell membranes, with a density significantly lower than that in the control group (P<0.01). Furthermore, compared with the control group, fewer of the receptors were active. In the bradykinin group, numerous globular structures were densely distributed on the cell membranes, with a density significantly higher than that in the control group (P<0.01). The distribution and activity of VEGFR-2 on glioma microvascular endothelial cell membranes treated with sorafenib and bradykinin suggested that the activity of VEGFR-2 could be regulated by its inhibitor or agonist. The aim of the current study was to demonstrate the distribution of VEGFR-2 on glioma microvascular endothelial cells on a nanoscale and investigate changes in VEGFR-2 activity following treatment with the VEGFR-2 inhibitor and agonist sorafenib and bradykinin, respectively. Three groups were evaluated in this study: Control glioma microvascular endothelial cells, sorafenib-treated glioma microvascular endothelial cells and bradykinin-treated glioma microvascular endothelial cells. Changes in the activity of VEGFR-2 on the glioma microvascular endothelial cell membranes following treatment with sorafenib and bradykinin were characterized by atomic force microscopy (AFM). Colloidal gold-labeled immune complexes and AFM were used to visualize the distribution of VEGFR-2 on the cell membranes. In the control group, VEGFR-2, which was observed as numerous globular structures, was evenly distributed on the cell surface membranes. The majority of the receptors were active. In the sorafenib group, only a few globular structures were observed on the cell membranes, with a density significantly lower than that in the control group (P<0.01). Furthermore, compared with the control group, fewer of the receptors were active. In the bradykinin group, numerous globular structures were densely distributed on the cell membranes, with a density significantly higher than that in the control group (P<0.01). The distribution and activity of VEGFR-2 on glioma microvascular endothelial cell membranes treated with sorafenib and bradykinin suggested that the activity of VEGFR-2 could be regulated by its inhibitor or agonist. Key words: glioma, endothelial cell, vascular endothelial growth factor receptor-2, atomic force microscopy, sorafenib, bradykinin |
Audience | Academic |
Author | Lin, Xiaofeng Wang, Peng Zhan, Shengquan Qin, Kun Zhou, Dexiang Chen, Guangzhong Zhou, Dong |
AuthorAffiliation | Department of Neurosurgery, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P.R. China |
AuthorAffiliation_xml | – name: Department of Neurosurgery, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P.R. China |
Author_xml | – sequence: 1 givenname: Dexiang surname: Zhou fullname: Zhou, Dexiang – sequence: 2 givenname: Shengquan surname: Zhan fullname: Zhan, Shengquan – sequence: 3 givenname: Dong surname: Zhou fullname: Zhou, Dong – sequence: 4 givenname: Peng surname: Wang fullname: Wang, Peng – sequence: 5 givenname: Guangzhong surname: Chen fullname: Chen, Guangzhong – sequence: 6 givenname: Kun surname: Qin fullname: Qin, Kun – sequence: 7 givenname: Xiaofeng surname: Lin fullname: Lin, Xiaofeng |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28352319$$D View this record in MEDLINE/PubMed |
BookMark | eNptUl1rFDEUHaRia-2jrxLwxZdZ8zEfyYtQlrYKBUHU15DN3OymzCRrMrOw_Q3-aO-wW7WlyUNCcs65OTfndXESYoCieMvoQkjFP8I4LDhlzaKirHpRnLFW8ZJRVp8c91RJdlpc5HxHcdQNk7J-VZxyKWoumDorfi83Jhk7QvL3PqxJMCFma3ogdmPCGjLxgYwbIIjxOz_uSXTk59XN9beSkxjIuvdxMGTwNsWdyXbqTSIQuoic3pueWOh7MsCwSiag2pTnKmaMyCAuJgsHbrZxu39TvHSmz3BxXM-LH9dX35efy9uvN1-Wl7elrSQfS8GkdYo1ACsLTMnGtcLx1tXAwNWVVUpyqlrTtLZzK9YxPOgEg66VorXcivPi00F3O60G6CyEMZleb5MfTNrraLx-fBP8Rq_jTteikk1NUeDDUSDFXxPkUQ8-z07RY5yyxjZzKrniNULfP4HexSkFtKfxXZVsqarbf6g1tl774CLWtbOovqyUqKpWyVlr8QwKZwfYRIyG83j-iPDuf6N_HT78PwLEATB_QU7gtPWjGX2cffteM6rnoGkMmp6DpuegIat8wnoQfh7_B4Ee1iM |
CitedBy_id | crossref_primary_10_3390_ph13070156 |
Cites_doi | 10.1016/j.abb.2014.06.011 10.1002/jnr.23350 10.1007/s10571-008-9267-0 10.1124/jpet.105.084145 10.1074/jbc.M114.571000 10.1159/000332849 10.1158/1535-7163.MCT-11-0264 10.1517/14656566.7.4.453 10.1038/nrc2403 10.1097/WCO.0000000000000142 10.1038/nm0603-669 10.1158/1078-0432.CCR-14-0834 10.1007/s10571-011-9665-6 10.2174/156800911795655985 10.1084/jem.20111424 10.1158/1541-7786.MCR-06-0085 10.1158/1535-7163.MCT-08-0013 10.2741/1026 10.2174/187152709788680706 10.1016/j.jns.2007.02.031 10.1371/journal.pone.0057188 10.1124/jpet.106.108621 10.1016/S0076-6879(05)07047-3 10.1038/sj.onc.1202527 10.1159/000218165 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2017 Spandidos Publications Copyright Spandidos Publications UK Ltd. 2017 Copyright: © Zhou et al. 2017 |
Copyright_xml | – notice: COPYRIGHT 2017 Spandidos Publications – notice: Copyright Spandidos Publications UK Ltd. 2017 – notice: Copyright: © Zhou et al. 2017 |
DBID | AAYXX CITATION NPM 3V. 7RV 7X7 7XB 8FI 8FJ 8FK ABUWG AFKRA AN0 BENPR CCPQU FYUFA GHDGH K9. KB0 M0S NAPCQ PHGZM PHGZT PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM |
DOI | 10.3892/etm.2016.4014 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Nursing & Allied Health Database Health & Medical Collection ProQuest Central (purchase pre-March 2016) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland British Nursing Database ProQuest Central ProQuest One Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) ProQuest Health & Medical Collection Nursing & Allied Health Premium ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition ProQuest Health & Medical Complete (Alumni) British Nursing Index with Full Text ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Nursing & Allied Health Source ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Central China ProQuest Hospital Collection (Alumni) ProQuest Central Nursing & Allied Health Premium ProQuest Health & Medical Complete Health Research Premium Collection ProQuest One Academic UKI Edition Health and Medicine Complete (Alumni Edition) ProQuest Nursing & Allied Health Source (Alumni) ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic ProQuest One Academic Middle East (New) PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Pharmacy, Therapeutics, & Pharmacology |
EISSN | 1792-1015 |
EndPage | 488 |
ExternalDocumentID | PMC5348650 A493447985 28352319 10_3892_etm_2016_4014 |
Genre | Journal Article |
GeographicLocations | China Beijing China United States--US Japan |
GeographicLocations_xml | – name: China – name: Beijing China – name: United States--US – name: Japan |
GroupedDBID | --- 0R~ 53G 7RV 7X7 8FI 8FJ AAKDD AAYXX ABDBF ABJNI ABUWG ACGFS ACUHS ADBBV AENEX AFKRA AHMBA ALIPV ALMA_UNASSIGNED_HOLDINGS AN0 BENPR BKEYQ BNQBC BPHCQ BVXVI C45 CCPQU CITATION EBD EBS EJD ESX F5P FYUFA H13 HMCUK HUR HZ~ IAO IHR IPNFZ ITC NAPCQ O9- OVD PHGZM PHGZT PQQKQ PROAC RIG RPM TEORI UKHRP 3V. NPM OK1 PMFND 7XB 8FK K9. PKEHL PPXIY PQEST PQUKI PRINS 7X8 5PM |
ID | FETCH-LOGICAL-c482t-318cf916eebce1986f73f27f5e1ef54c9982097a67cdfb1d1998d31ed7837c2c3 |
IEDL.DBID | 7X7 |
ISSN | 1792-0981 |
IngestDate | Thu Aug 21 18:04:57 EDT 2025 Fri Jul 11 11:38:04 EDT 2025 Sun Jul 13 04:43:39 EDT 2025 Tue Jun 17 21:50:54 EDT 2025 Tue Jun 10 20:46:55 EDT 2025 Thu Jan 02 22:22:21 EST 2025 Tue Jul 01 03:33:08 EDT 2025 Thu Apr 24 22:59:14 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 2 |
Keywords | bradykinin glioma vascular endothelial growth factor receptor-2 sorafenib atomic force microscopy endothelial cell |
Language | English |
License | This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c482t-318cf916eebce1986f73f27f5e1ef54c9982097a67cdfb1d1998d31ed7837c2c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC5348650 |
PMID | 28352319 |
PQID | 1994870957 |
PQPubID | 2044959 |
PageCount | 6 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5348650 proquest_miscellaneous_1882082925 proquest_journals_1994870957 gale_infotracmisc_A493447985 gale_infotracacademiconefile_A493447985 pubmed_primary_28352319 crossref_citationtrail_10_3892_etm_2016_4014 crossref_primary_10_3892_etm_2016_4014 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-02-01 |
PublicationDateYYYYMMDD | 2017-02-01 |
PublicationDate_xml | – month: 02 year: 2017 text: 2017-02-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Greece |
PublicationPlace_xml | – name: Greece – name: Athens |
PublicationTitle | Experimental and therapeutic medicine |
PublicationTitleAlternate | Exp Ther Med |
PublicationYear | 2017 |
Publisher | Spandidos Publications Spandidos Publications UK Ltd D.A. Spandidos |
Publisher_xml | – name: Spandidos Publications – name: Spandidos Publications UK Ltd – name: D.A. Spandidos |
References | Ellis (key20180108134511_b12-etm-0-0-4014) 2008; 8 Yao (key20180108134511_b20-etm-0-0-4014) 2013; 8 Cai (key20180108134511_b9-etm-0-0-4014) 2006; 47 Batchelor (key20180108134511_b29-etm-0-0-4014) 2014; 20 Takahashi (key20180108134511_b7-etm-0-0-4014) 1999; 18 Argyriou (key20180108134511_b4-etm-0-0-4014) 2009; 77 Zhou (key20180108134511_b17-etm-0-0-4014) 2008; 28 Jane (key20180108134511_b14-etm-0-0-4014) 2006; 319 Kuczynski (key20180108134511_b21-etm-0-0-4014) 2011; 81 Adnane (key20180108134511_b26-etm-0-0-4014) 2006; 407 Chinot (key20180108134511_b18-etm-0-0-4014) 2014; 27 Chamberlain (key20180108134511_b3-etm-0-0-4014) 2009; 8 Ferrara (key20180108134511_b5-etm-0-0-4014) 2003; 9 Visted (key20180108134511_b2-etm-0-0-4014) 2003; 8 Cui (key20180108134511_b8-etm-0-0-4014) 2014; 289 Shibuya (key20180108134511_b10-etm-0-0-4014) 2006; 39 Zhou (key20180108134511_b13-etm-0-0-4014) 2011; 31 Arora (key20180108134511_b25-etm-0-0-4014) 2005; 315 Rini (key20180108134511_b27-etm-0-0-4014) 2006; 7 Levy (key20180108134511_b1-etm-0-0-4014) 2014; 18 Moraes (key20180108134511_b28-etm-0-0-4014) 2014; 558 Puputti (key20180108134511_b6-etm-0-0-4014) 2006; 4 Li (key20180108134511_b11-etm-0-0-4014) 2009; 40 Hamerlik (key20180108134511_b22-etm-0-0-4014) 2012; 209 Wilhelm (key20180108134511_b24-etm-0-0-4014) 2008; 7 Wang (key20180108134511_b16-etm-0-0-4014) 2007; 258 Zhou (key20180108134511_b15-etm-0-0-4014) 2014; 92 Sharma (key20180108134511_b19-etm-0-0-4014) 2011; 11 Yakes (key20180108134511_b23-etm-0-0-4014) 2011; 10 24464430 - J Neurosci Res. 2014 May;92(5):597-606 24960080 - Arch Biochem Biophys. 2014 Sep 15;558:14-27 21926191 - Mol Cancer Ther. 2011 Dec;10(12):2298-308 18317922 - Cell Mol Neurobiol. 2008 Sep;28(6):895-905 25201633 - Cancer Radiother. 2014 Oct;18(5-6):461-7 18596824 - Nat Rev Cancer. 2008 Aug;8(8):579-91 16959960 - J Pharmacol Exp Ther. 2006 Dec;319(3):1070-80 17189383 - Mol Cancer Res. 2006 Dec;4(12):927-34 10327068 - Oncogene. 1999 Apr 1;18(13):2221-30 19601816 - CNS Neurol Disord Drug Targets. 2009 Jun;8(3):184-94 23536763 - PLoS One. 2013;8(3):e57188 16757355 - Methods Enzymol. 2006;407:597-612 21486218 - Curr Cancer Drug Targets. 2011 Jun;11(5):624-53 16002463 - J Pharmacol Exp Ther. 2005 Dec;315(3):971-9 17002866 - J Biochem Mol Biol. 2006 Sep 30;39(5):469-78 25398844 - Clin Cancer Res. 2014 Nov 15;20(22):5612-9 19439998 - Oncology. 2009;77(1):1-11 17382350 - J Neurol Sci. 2007 Jul 15;258(1-2):44-51 21547490 - Cell Mol Neurobiol. 2011 Jul;31(5):687-94 22393126 - J Exp Med. 2012 Mar 12;209(3):507-20 12778165 - Nat Med. 2003 Jun;9(6):669-76 12700036 - Front Biosci. 2003 May 01;8:e289-304 25313693 - Curr Opin Neurol. 2014 Dec;27(6):675-82 25217645 - J Biol Chem. 2014 Dec 12;289(50):34871-85 17138749 - J Nucl Med. 2006 Dec;47(12 ):2048-56 19626992 - Sichuan Da Xue Xue Bao Yi Xue Ban. 2009 May;40(3):408-11 18852116 - Mol Cancer Ther. 2008 Oct;7(10 ):3129-40 16503817 - Expert Opin Pharmacother. 2006 Mar;7(4):453-61 21985798 - Oncology. 2011;81(2):126-34 |
References_xml | – volume: 558 start-page: 14 year: 2014 ident: key20180108134511_b28-etm-0-0-4014 article-title: Endothelium-derived nitric oxide (NO) activates the NO-epidermal growth factor receptor-mediated signaling pathway in bradykinin-stimulated angiogenesis publication-title: Arch Biochem Biophys doi: 10.1016/j.abb.2014.06.011 – volume: 92 start-page: 597 year: 2014 ident: key20180108134511_b15-etm-0-0-4014 article-title: Bradykinin regulates the expression of claudin-5 in brain microvascular endothelial cells via calcium-induced calcium release publication-title: J Neurosci Res doi: 10.1002/jnr.23350 – volume: 47 start-page: 2048 year: 2006 ident: key20180108134511_b9-etm-0-0-4014 article-title: PET of vascular endothelial growth factor receptor expression publication-title: J Nucl Med – volume: 28 start-page: 895 year: 2008 ident: key20180108134511_b17-etm-0-0-4014 article-title: Assessing the cytoskeletal system and its elements in C6 glioma cells and astrocytes by atomic force microscopy publication-title: Cell Mol Neurobiol doi: 10.1007/s10571-008-9267-0 – volume: 315 start-page: 971 year: 2005 ident: key20180108134511_b25-etm-0-0-4014 article-title: Role of tyrosine kinase inhibitors in cancer therapy publication-title: J Pharmacol Exp Ther doi: 10.1124/jpet.105.084145 – volume: 289 start-page: 34871 year: 2014 ident: key20180108134511_b8-etm-0-0-4014 article-title: GPR126 protein regulates developmental and pathological angiogenesis through modulation of VEGFR2 receptor signaling publication-title: J Biol Chem doi: 10.1074/jbc.M114.571000 – volume: 81 start-page: 126 year: 2011 ident: key20180108134511_b21-etm-0-0-4014 article-title: VEGFR2 Expression and TGF-β signaling in initial and recurrent high-grade human glioma publication-title: Oncology doi: 10.1159/000332849 – volume: 10 start-page: 2298 year: 2011 ident: key20180108134511_b23-etm-0-0-4014 article-title: Cabozantinib (XL184), a Novel MET and VEGFR2 inhibitor, simultaneously suppresses metastasis, angiogenesis, and tumor growth publication-title: Mol Cancer Ther doi: 10.1158/1535-7163.MCT-11-0264 – volume: 39 start-page: 469 year: 2006 ident: key20180108134511_b10-etm-0-0-4014 article-title: Differential roles of vascular endothelial growth factor receptor-1 and receptor-2 in angiogenesis publication-title: J Biochem Mol Biol – volume: 7 start-page: 453 year: 2006 ident: key20180108134511_b27-etm-0-0-4014 article-title: Sorafenib publication-title: Expert Opin Pharmacother doi: 10.1517/14656566.7.4.453 – volume: 8 start-page: 579 year: 2008 ident: key20180108134511_b12-etm-0-0-4014 article-title: VEGF-targeted therapy: Mechanisms of anti-tumour activity publication-title: Nat Rev Cancer doi: 10.1038/nrc2403 – volume: 27 start-page: 675 year: 2014 ident: key20180108134511_b18-etm-0-0-4014 article-title: The future of antiangiogenic treatment in glioblastoma publication-title: Curr Opin Neurol doi: 10.1097/WCO.0000000000000142 – volume: 9 start-page: 669 year: 2003 ident: key20180108134511_b5-etm-0-0-4014 article-title: The biology of VEGF and its receptors publication-title: Nat Med doi: 10.1038/nm0603-669 – volume: 20 start-page: 5612 year: 2014 ident: key20180108134511_b29-etm-0-0-4014 article-title: Antiangiogenic therapy for glioblastoma: Current status and future prospects publication-title: Clin Cancer Res doi: 10.1158/1078-0432.CCR-14-0834 – volume: 31 start-page: 687 year: 2011 ident: key20180108134511_b13-etm-0-0-4014 article-title: A study of the distribution and density of the VEGFR-2 receptor on glioma microvascular endothelial cell membranes publication-title: Cell Mol Neurobiol doi: 10.1007/s10571-011-9665-6 – volume: 11 start-page: 624 year: 2011 ident: key20180108134511_b19-etm-0-0-4014 article-title: VEGF/VEGFR pathway inhibitors as anti-angiogenic agents: Present and future publication-title: Curr Cancer Drug Targets doi: 10.2174/156800911795655985 – volume: 209 start-page: 507 year: 2012 ident: key20180108134511_b22-etm-0-0-4014 article-title: Autocrine VEGF-VEGFR2-Neuropilin-1 signaling promotes glioma stem-like cell viability and tumor growth publication-title: J Exp Med doi: 10.1084/jem.20111424 – volume: 40 start-page: 408 year: 2009 ident: key20180108134511_b11-etm-0-0-4014 article-title: Expression of VEGF and NGF in gliomas of human publication-title: Sichuan Da Xue Xue Bao Yi Xue Ban – volume: 4 start-page: 927 year: 2006 ident: key20180108134511_b6-etm-0-0-4014 article-title: Amplification of KIT, PDGFRA, VEGFR2, and EGFR in gliomas publication-title: Mol Cancer Res doi: 10.1158/1541-7786.MCR-06-0085 – volume: 7 start-page: 3129 year: 2008 ident: key20180108134511_b24-etm-0-0-4014 article-title: Preclinical overview of sorafenib, a multikinase inhibitor that targets both Raf and VEGF and PDGF receptor tyrosine kinase signaling publication-title: Mol Cancer Ther doi: 10.1158/1535-7163.MCT-08-0013 – volume: 8 start-page: e289 year: 2003 ident: key20180108134511_b2-etm-0-0-4014 article-title: Mechanisms of tumor cell invasion and angiogenesis in the central nervous system publication-title: Front Biosci doi: 10.2741/1026 – volume: 8 start-page: 184 year: 2009 ident: key20180108134511_b3-etm-0-0-4014 article-title: Antiangiogenic therapy for high-grade gliomas publication-title: Cns Neurol Disord Drug Targets doi: 10.2174/187152709788680706 – volume: 258 start-page: 44 year: 2007 ident: key20180108134511_b16-etm-0-0-4014 article-title: Low dose of bradykinin selectively increases intracellular calcium in glioma cells publication-title: J Neurol Sci doi: 10.1016/j.jns.2007.02.031 – volume: 8 start-page: e57188 year: 2013 ident: key20180108134511_b20-etm-0-0-4014 article-title: Vascular endothelial growth factor receptor 2 (VEGFR-2) plays a key role in vasculogenic mimicry formation, neovascularization and tumor initiation by Glioma stem-like cells publication-title: PLoS One doi: 10.1371/journal.pone.0057188 – volume: 319 start-page: 1070 year: 2006 ident: key20180108134511_b14-etm-0-0-4014 article-title: Coadministration of sorafenib with rottlerin potently inhibits cell proliferation and migration in human malignant glioma cells publication-title: J Pharmacol Exp Ther doi: 10.1124/jpet.106.108621 – volume: 407 start-page: 597 year: 2006 ident: key20180108134511_b26-etm-0-0-4014 article-title: Sorafenib (BAY 43-9006, Nexavar), a dual-action inhibitor that targets RAF/MEK/ERK pathway in tumor cells and tyrosine kinases VEGFR/PDGFR in tumor vasculature publication-title: Methods Enzymol doi: 10.1016/S0076-6879(05)07047-3 – volume: 18 start-page: 461 year: 2014 ident: key20180108134511_b1-etm-0-0-4014 article-title: Management of gliomas publication-title: Cancer Radiother – volume: 18 start-page: 2221 year: 1999 ident: key20180108134511_b7-etm-0-0-4014 article-title: VEGF activates protein kinase C-dependent, but Ras-independent Raf-MEK-MAP kinase pathway for DNA synthesis in primary endothelial cells publication-title: Oncogene doi: 10.1038/sj.onc.1202527 – volume: 77 start-page: 1 year: 2009 ident: key20180108134511_b4-etm-0-0-4014 article-title: Angiogenesis and anti-angiogenic molecularly targeted therapies in malignant gliomas publication-title: Oncology doi: 10.1159/000218165 – reference: 23536763 - PLoS One. 2013;8(3):e57188 – reference: 19601816 - CNS Neurol Disord Drug Targets. 2009 Jun;8(3):184-94 – reference: 18596824 - Nat Rev Cancer. 2008 Aug;8(8):579-91 – reference: 16959960 - J Pharmacol Exp Ther. 2006 Dec;319(3):1070-80 – reference: 25217645 - J Biol Chem. 2014 Dec 12;289(50):34871-85 – reference: 21985798 - Oncology. 2011;81(2):126-34 – reference: 16002463 - J Pharmacol Exp Ther. 2005 Dec;315(3):971-9 – reference: 12700036 - Front Biosci. 2003 May 01;8:e289-304 – reference: 16757355 - Methods Enzymol. 2006;407:597-612 – reference: 21486218 - Curr Cancer Drug Targets. 2011 Jun;11(5):624-53 – reference: 21926191 - Mol Cancer Ther. 2011 Dec;10(12):2298-308 – reference: 17189383 - Mol Cancer Res. 2006 Dec;4(12):927-34 – reference: 24464430 - J Neurosci Res. 2014 May;92(5):597-606 – reference: 19439998 - Oncology. 2009;77(1):1-11 – reference: 25201633 - Cancer Radiother. 2014 Oct;18(5-6):461-7 – reference: 25313693 - Curr Opin Neurol. 2014 Dec;27(6):675-82 – reference: 17002866 - J Biochem Mol Biol. 2006 Sep 30;39(5):469-78 – reference: 16503817 - Expert Opin Pharmacother. 2006 Mar;7(4):453-61 – reference: 19626992 - Sichuan Da Xue Xue Bao Yi Xue Ban. 2009 May;40(3):408-11 – reference: 18852116 - Mol Cancer Ther. 2008 Oct;7(10 ):3129-40 – reference: 24960080 - Arch Biochem Biophys. 2014 Sep 15;558:14-27 – reference: 25398844 - Clin Cancer Res. 2014 Nov 15;20(22):5612-9 – reference: 12778165 - Nat Med. 2003 Jun;9(6):669-76 – reference: 17138749 - J Nucl Med. 2006 Dec;47(12 ):2048-56 – reference: 22393126 - J Exp Med. 2012 Mar 12;209(3):507-20 – reference: 10327068 - Oncogene. 1999 Apr 1;18(13):2221-30 – reference: 18317922 - Cell Mol Neurobiol. 2008 Sep;28(6):895-905 – reference: 21547490 - Cell Mol Neurobiol. 2011 Jul;31(5):687-94 – reference: 17382350 - J Neurol Sci. 2007 Jul 15;258(1-2):44-51 |
SSID | ssj0000561885 |
Score | 2.0500958 |
Snippet | The aim of the current study was to demonstrate the distribution of VEGFR-2 on glioma microvascular endothelial cells on a nanoscale and investigate changes in... |
SourceID | pubmedcentral proquest gale pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 483 |
SubjectTerms | Angiogenesis Antigens Brain cancer Care and treatment Cell membranes Diagnosis Dosage and administration Endothelium Glioma Gliomas Health aspects Inhibitor drugs Kinases Lung cancer Membranes Microscopy Penicillin Proteins Studies Tumors Vascular endothelial growth factor |
Title | Characterizing nanoscale changes in the activity of VEGFR-2 on glioma microvascular endothelial cell membranes using atomic force microscopy |
URI | https://www.ncbi.nlm.nih.gov/pubmed/28352319 https://www.proquest.com/docview/1994870957 https://www.proquest.com/docview/1882082925 https://pubmed.ncbi.nlm.nih.gov/PMC5348650 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fb9MwELZge-EF8ZuwMR0SKi8Na5wfdp7QmFomJKZq2lDfotS-jEqtM5buofwN_NHcJWm6IMFbJNuRpTvb39n3fSfE-8JojfEo920Uz_1I29DPdSTpS4ds5QhrovC38-TsKvo6i2fthVvVplVu98R6o7al4TvyY9awJd9KY_Xp5qfPVaP4dbUtofFQ7LN0Gad0qZnq7lgYHeu6Kie5nfRHqQ4amU06peUxrpmJHiQfKcSIesfS35vzvdOpnzl57yiaPBGPWwwJJ43Rn4oH6J6JwbQRod4M4XLHqaqGMIDpTp5681z8Pu00mn_RuQUud2VFlkJoSMAVLBwQLASmPHBlCSgL-D7-MrnwJZQOrpeLcpXDijP5tnmsgM4ylWtJ3gz8FgArXFEcTvsocGb9NVBsTyOAILLBZizzYTYvxNVkfHl65rc1GXwTablmsrUpCFIizg0GqU4KFRZSFTEGWMSRoehNjlKVJ8rYYh5YpvDZMECrKBI20oQvxZ4rHb4WkNhC5vzsOVcMY4IUA2UJkWAeh8om6Inh1iSZaQXLuW7GMqPAhS2YkQUztmDGFvTEoOt-0yh1_KvjB7ZvxiuY_mfylohAs2ItrOwkSlkGMdWxJw57PWnlmX7z1kOyduVX2c5PPfGua-aRnM3msLyjPhTWMKdZ0i9eNQ7VTZn17whzp55QPVfrOrAeeL_FLX7UuuBxGGkC3G_-P60D8UgyNKkzzw_F3vr2Dt8SsFrPj-rVcyT2P4_Ppxd_AFLkJis |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6V9AAXxJuUAoME4RLTeL1-HRAqJSGlbRRVadWbcXbXbaTELiQVCr-B38JvZCZ-pEaCW2-W9qGVZnb3G-983wC8TlQQGLcTW1q6Y0sG2rHiQAr6Chy2sjQrovDRwOufyC9n7tkG_C65MJxWWZ6Jq4NaZ4r_ke-whi35Vuj6Hy6_WVw1il9XyxIauVscmOUPCtnm7_c_kX3fCNHrjvb6VlFVwFIyEAumC6uEQJExY2Uo5PYS30mEn7jGNokrFcUfohP6secrnYxtzSQ07dhG-xTLKaEcmvcWbEqHQpkGbH7sDobH1V8dxuPBqg4oObqwOmFg58KehAvEjlkw99323lFQI2sX4d_XwbX7sJ6ree3y692DuwVqxd3cze7DhkkfQGuYy14v2zhas7jmbWzhcC2IvXwIv_YqVeifdFNiGqfZnHzDYE47nuMkRQKiyCQLrmWBWYKn3c-9Y0tgluL5dJLNYpxx7mCZOYsm1Uwem9L-QX59wJmZUeRPJzdyLv85xgsmXCOBcmXysczAWT6Ckxux12NopFlqngJ6OhExP7SOfQZOdmhsXxMGMrHr-NozTWiXJolUIZHOlTqmEYVKbMGILBixBSO2YBNaVffLXBvkXx3fsn0jPjNoPhUX1AdaFatvRbsyZOHFMHCbsF3rSXtd1ZtLD4mKs2YerXdGE15VzTyS8-dSk11RHwqkmEUtaIonuUNVS2bFPUL5YRP8mqtVHViBvN6STi5WSuSuIwOC-Fv_X9ZLuN0fHR1Gh_uDg2dwRzAwWuW9b0Nj8f3KPCdYtxi_KPYSwteb3r5_AJEZY1Y |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3bbtNAEF2VIiFeEHfcFhgkCC9xG68vaz8gVLUNLYUqQi3Km7F3xyVSYheSCoVv4Iv4OmZ8S40Eb32ztOvVSjOze8aec0aIl5kOQ_QHiW08P7W90Lh2EnqSnkKXrexhSRT-eBIcnnnvx_54TfxuuDBcVtmcieVBbQrN38h3WMOWfCuiBD6ryyJG-8O3F99s7iDFf1qbdhqVixzj8gelb_M3R_tk61dSDg9O9w7tusOArb1QLpg6rDMCSIipRkq_g0y5mVSZjw5mvqcpF5GDSCWB0iZLHcOENOM6aBTldVpql9a9IW4q13c4xtRYtd93GJmHZUdQcnlpD6LQqSQ-CSHIHVwwC94Jtim98TpX4t8Xw5WbsVu1eeUaHN4Vd2r8CruVw90Ta5jfF71RJYC97MPpis8170MPRitp7OUD8Wuv1Yf-SXcm5ElezMlLECoC8hwmORAkBaZbcFcLKDL4fPBu-MmWUORwPp0UswRmXEXY1NAC5oZpZFOKJOD_EDDDWUpXMK3GVf3nkCyYeg0EzzVW7zIXZ_lQnF2LtR6J9bzI8YmAwGQy4V-uqWII5UToKENoCBPfVSZAS_Qbk8S6Fkvnnh3TmJImtmBMFozZgjFb0BK9dvpFpRLyr4mv2b4xnx60nk5qEgTtinW44l0vYgnGKPQtsdWZSVGvu8ONh8T1qTOPVzFiiRftML_JlXQ5Fpc0h1Iq5lNLWuJx5VDtlll7j_B-ZAnVcbV2AmuRd0fyyddSk9x3vZDA_sb_t_Vc3KKgjT8cnRxvituSEVJZAL8l1hffL_Ep4btF-qwMJBBfrjty_wD1mWYm |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Characterizing+nanoscale+changes+in+the+activity+of+VEGFR-2+on+glioma+microvascular+endothelial+cell+membranes+using+atomic+force+microscopy&rft.jtitle=Experimental+and+therapeutic+medicine&rft.au=Zhou%2C+Dexiang&rft.au=Zhan%2C+Shengquan&rft.au=Zhou%2C+Dong&rft.au=Wang%2C+Peng&rft.date=2017-02-01&rft.pub=Spandidos+Publications&rft.issn=1792-0981&rft.volume=13&rft.issue=2&rft.spage=483&rft_id=info:doi/10.3892%2Fetm.2016.4014&rft.externalDocID=A493447985 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1792-0981&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1792-0981&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1792-0981&client=summon |