Analysis of functional image analysis contest (FIAC) data with brainvoyager QX: From single-subject to cortically aligned group general linear model analysis and self-organizing group independent component analysis

The Functional Image Analysis Contest (FIAC) 2005 dataset was analyzed using BrainVoyager QX. First, we performed a standard analysis of the functional and anatomical data that includes preprocessing, spatial normalization into Talairach space, hypothesis‐driven statistics (one‐ and two‐factorial, s...

Full description

Saved in:
Bibliographic Details
Published inHuman brain mapping Vol. 27; no. 5; pp. 392 - 401
Main Authors Goebel, Rainer, Esposito, Fabrizio, Formisano, Elia
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc., A Wiley Company 01.05.2006
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The Functional Image Analysis Contest (FIAC) 2005 dataset was analyzed using BrainVoyager QX. First, we performed a standard analysis of the functional and anatomical data that includes preprocessing, spatial normalization into Talairach space, hypothesis‐driven statistics (one‐ and two‐factorial, single‐subject and group‐level random effects, General Linear Model [GLM]) of the block‐ and event‐related paradigms. Strong sentence and weak speaker group‐level effects were detected in temporal and frontal regions. Following this standard analysis, we performed single‐subject and group‐level (Talairach‐based) Independent Component Analysis (ICA) that highlights the presence of functionally connected clusters in temporal and frontal regions for sentence processing, besides revealing other networks related to auditory stimulation or to the default state of the brain. Finally, we applied a high‐resolution cortical alignment method to improve the spatial correspondence across brains and re‐run the random effects group GLM as well as the group‐level ICA in this space. Using spatially and temporally unsmoothed data, this cortex‐based analysis revealed comparable results but with a set of spatially more confined group clusters and more differential group region of interest time courses. Hum. Brain Mapp, 2006. © 2006 Wiley‐Liss, Inc.
AbstractList The Functional Image Analysis Contest (FIAC) 2005 dataset was analyzed using BrainVoyager QX. First, we performed a standard analysis of the functional and anatomical data that includes preprocessing, spatial normalization into Talairach space, hypothesis‐driven statistics (one‐ and two‐factorial, single‐subject and group‐level random effects, General Linear Model [GLM]) of the block‐ and event‐related paradigms. Strong sentence and weak speaker group‐level effects were detected in temporal and frontal regions. Following this standard analysis, we performed single‐subject and group‐level (Talairach‐based) Independent Component Analysis (ICA) that highlights the presence of functionally connected clusters in temporal and frontal regions for sentence processing, besides revealing other networks related to auditory stimulation or to the default state of the brain. Finally, we applied a high‐resolution cortical alignment method to improve the spatial correspondence across brains and re‐run the random effects group GLM as well as the group‐level ICA in this space. Using spatially and temporally unsmoothed data, this cortex‐based analysis revealed comparable results but with a set of spatially more confined group clusters and more differential group region of interest time courses. Hum. Brain Mapp, 2006. © 2006 Wiley‐Liss, Inc.
The Functional Image Analysis Contest (FIAC) 2005 dataset was analyzed using BrainVoyager QX. First, we performed a standard analysis of the functional and anatomical data that includes preprocessing, spatial normalization into Talairach space, hypothesis-driven statistics (one- and two-factorial, single- subject and group-level random effects, General Linear Model [GLM]) of the block- and event-related paradigms. Strong sentence and weak speaker group-level effects were detected in temporal and frontal regions. Following this standard analysis, we performed single-subject and group-level (Talairach-based) Independent Component Analysis (ICA) that highlights the presence of functionally connected clusters in temporal and frontal regions for sentence processing, besides revealing other networks related to auditory stimulation or to the default state of the brain. Finally, we applied a high-resolution cortical alignment method to improve the spatial correspondence across brains and re-run the random effects group GLM as well as the group-level ICA in this space. Using spatially and temporally unsmoothed data, this cortex-based analysis revealed comparable results but with a set of spatially more confined group clusters and more differential group region of interest time courses. Hum. Brain Mapp, 2006.
The Functional Image Analysis Contest (FIAC) 2005 dataset was analyzed using BrainVoyager QX. First, we performed a standard analysis of the functional and anatomical data that includes preprocessing, spatial normalization into Talairach space, hypothesis-driven statistics (one- and two-factorial, single-subject and group-level random effects, General Linear Model [GLM]) of the block- and event-related paradigms. Strong sentence and weak speaker group-level effects were detected in temporal and frontal regions. Following this standard analysis, we performed single-subject and group-level (Talairach-based) Independent Component Analysis (ICA) that highlights the presence of functionally connected clusters in temporal and frontal regions for sentence processing, besides revealing other networks related to auditory stimulation or to the default state of the brain. Finally, we applied a high-resolution cortical alignment method to improve the spatial correspondence across brains and re-run the random effects group GLM as well as the group-level ICA in this space. Using spatially and temporally unsmoothed data, this cortex-based analysis revealed comparable results but with a set of spatially more confined group clusters and more differential group region of interest time courses.The Functional Image Analysis Contest (FIAC) 2005 dataset was analyzed using BrainVoyager QX. First, we performed a standard analysis of the functional and anatomical data that includes preprocessing, spatial normalization into Talairach space, hypothesis-driven statistics (one- and two-factorial, single-subject and group-level random effects, General Linear Model [GLM]) of the block- and event-related paradigms. Strong sentence and weak speaker group-level effects were detected in temporal and frontal regions. Following this standard analysis, we performed single-subject and group-level (Talairach-based) Independent Component Analysis (ICA) that highlights the presence of functionally connected clusters in temporal and frontal regions for sentence processing, besides revealing other networks related to auditory stimulation or to the default state of the brain. Finally, we applied a high-resolution cortical alignment method to improve the spatial correspondence across brains and re-run the random effects group GLM as well as the group-level ICA in this space. Using spatially and temporally unsmoothed data, this cortex-based analysis revealed comparable results but with a set of spatially more confined group clusters and more differential group region of interest time courses.
The Functional Image Analysis Contest (FIAC) 2005 dataset was analyzed using BrainVoyager QX. First, we performed a standard analysis of the functional and anatomical data that includes preprocessing, spatial normalization into Talairach space, hypothesis-driven statistics (one- and two-factorial, single-subject and group-level random effects, General Linear Model [GLM]) of the block- and event-related paradigms. Strong sentence and weak speaker group-level effects were detected in temporal and frontal regions. Following this standard analysis, we performed single-subject and group-level (Talairach-based) Independent Component Analysis (ICA) that highlights the presence of functionally connected clusters in temporal and frontal regions for sentence processing, besides revealing other networks related to auditory stimulation or to the default state of the brain. Finally, we applied a high-resolution cortical alignment method to improve the spatial correspondence across brains and re-run the random effects group GLM as well as the group-level ICA in this space. Using spatially and temporally unsmoothed data, this cortex-based analysis revealed comparable results but with a set of spatially more confined group clusters and more differential group region of interest time courses.
Author Formisano, Elia
Goebel, Rainer
Esposito, Fabrizio
AuthorAffiliation 1 Brain Innovation, Maastricht, The Netherlands
2 Department of Cognitive Neuroscience, Faculty of Psychology, Maastricht University, Maastricht, The Netherlands
AuthorAffiliation_xml – name: 1 Brain Innovation, Maastricht, The Netherlands
– name: 2 Department of Cognitive Neuroscience, Faculty of Psychology, Maastricht University, Maastricht, The Netherlands
Author_xml – sequence: 1
  givenname: Rainer
  surname: Goebel
  fullname: Goebel, Rainer
  email: r.goebel@psychology.unimaas.nl
  organization: Brain Innovation, Maastricht, The Netherlands
– sequence: 2
  givenname: Fabrizio
  surname: Esposito
  fullname: Esposito, Fabrizio
  organization: Brain Innovation, Maastricht, The Netherlands
– sequence: 3
  givenname: Elia
  surname: Formisano
  fullname: Formisano, Elia
  organization: Department of Cognitive Neuroscience, Faculty of Psychology, Maastricht University, Maastricht, The Netherlands
BackLink https://www.ncbi.nlm.nih.gov/pubmed/16596654$$D View this record in MEDLINE/PubMed
BookMark eNqFUsluFDEUbKEgssCBH0A-IXLoxO7N0xyQhoFJIiUQRAjcLLf93HHitge7O2H4UL4HD7OwCMTFtvyq6tVbdpMt6ywkyWOCDwjG2eFV0x1kOCvqe8kOwTVNManzrcW7KtO6oGQ72Q3hGmNCSkweJNukKuuqKoud5NvYcjMPOiCnkBqs6LWLP0h3vAXE10HhbA-hR8-mJ-PJPpK85-hO91eo8VzbWzePaI_efXqOpt51KGjbGkjD0FyD6FHvooDvteDGzBE3urUgUevdMEMtWPAxodEWuEedk2B-5uVWogBGpc633OqvUXfF01bCDOJh-yjezWJH4mtNfJjcV9wEeLS695IP09cXk-P09O3RyWR8mopilNWpLGohAEtRCpEVsiSlyBueV0QJmiuKVQFlJmkmVc1BUZqpRkigFJOypqRQ-V7yYqk7G5oOpIgeYjFs5mP__Jw5rtnvEauvWOtuWTWiJKM0CjxdCXj3eYgtZp0OAozhFtwQWEVrjDEl_wWSuhpVpKoi8MmvljZe1jOPgMMlQHgXggfFhO75Yu7RoTaMYLbYKha3iv3YqsjY_4OxEf0LdqV-pw3M_w1kxy_P1ox0ydChhy8bBvc3sfqcluzjmyN2fnl-9v7V5QUr8u8XxfKf
CitedBy_id crossref_primary_10_1016_j_bandl_2012_09_002
crossref_primary_10_1111_j_1460_9568_2008_06350_x
crossref_primary_10_1002_hbm_21078
crossref_primary_10_1016_j_neuropsychologia_2011_04_008
crossref_primary_10_1093_cercor_bhr352
crossref_primary_10_1016_j_neuroimage_2014_05_071
crossref_primary_10_1016_j_neuroimage_2017_03_063
crossref_primary_10_1371_journal_pone_0018307
crossref_primary_10_1016_j_appet_2014_12_204
crossref_primary_10_1523_JNEUROSCI_0068_23_2023
crossref_primary_10_1007_s10545_011_9439_9
crossref_primary_10_1093_scan_nss098
crossref_primary_10_1016_j_neuroimage_2008_06_016
crossref_primary_10_1098_rstb_2015_0376
crossref_primary_10_1016_j_neuroimage_2023_120240
crossref_primary_10_1016_j_pscychresns_2009_03_002
crossref_primary_10_1073_pnas_1617622114
crossref_primary_10_1016_j_mri_2009_12_026
crossref_primary_10_1093_brain_awae096
crossref_primary_10_1016_j_bandc_2015_07_003
crossref_primary_10_1016_j_neuroimage_2012_10_080
crossref_primary_10_1038_nmeth_1431
crossref_primary_10_1007_s00221_013_3575_4
crossref_primary_10_1016_j_schres_2013_04_024
crossref_primary_10_1016_j_cortex_2014_12_020
crossref_primary_10_1016_j_pediatrneurol_2011_09_004
crossref_primary_10_1016_j_neuroimage_2011_05_008
crossref_primary_10_1016_j_neuroimage_2017_03_048
crossref_primary_10_1017_S1092852918000767
crossref_primary_10_3389_fnhum_2015_00504
crossref_primary_10_1097_WNR_0000000000001163
crossref_primary_10_1109_TBME_2016_2553960
crossref_primary_10_3389_fnins_2017_00345
crossref_primary_10_1007_s00234_012_1044_6
crossref_primary_10_1038_mp_2009_129
crossref_primary_10_1055_s_0040_1712496
crossref_primary_10_1017_S0033291717001192
crossref_primary_10_1080_17470919_2011_609907
crossref_primary_10_1111_j_1469_7610_2008_01963_x
crossref_primary_10_1177_1533317513517047
crossref_primary_10_1523_JNEUROSCI_0587_18_2018
crossref_primary_10_1016_j_neuroimage_2009_10_074
crossref_primary_10_1002_alz_12718
crossref_primary_10_1016_j_neuroimage_2016_07_011
crossref_primary_10_3390_brainsci12030391
crossref_primary_10_1016_j_nicl_2016_09_023
crossref_primary_10_1016_j_jneumeth_2023_109899
crossref_primary_10_1126_science_1167371
crossref_primary_10_1016_j_euroneuro_2015_08_007
crossref_primary_10_1016_j_neuroimage_2017_11_020
crossref_primary_10_1016_j_nicl_2017_04_012
crossref_primary_10_3389_fneur_2016_00201
crossref_primary_10_1016_j_pain_2009_08_009
crossref_primary_10_1002_hbm_23444
crossref_primary_10_1152_jn_00008_2015
crossref_primary_10_1002_hbm_24538
crossref_primary_10_1016_j_neuroimage_2019_05_021
crossref_primary_10_1007_s00415_012_6569_4
crossref_primary_10_1038_s41562_017_0093
crossref_primary_10_1016_j_neuroimage_2008_05_028
crossref_primary_10_1016_j_neuroimage_2011_05_035
crossref_primary_10_1093_scan_nst138
crossref_primary_10_1016_j_cortex_2012_01_005
crossref_primary_10_1016_j_neuroimage_2017_02_040
crossref_primary_10_1016_j_media_2010_02_007
crossref_primary_10_3390_brainsci14070713
crossref_primary_10_1002_hbm_22387
crossref_primary_10_1111_j_1460_9568_2009_07003_x
crossref_primary_10_1016_j_neuroimage_2011_04_008
crossref_primary_10_1007_s11858_010_0264_7
crossref_primary_10_1016_j_neuroimage_2011_05_043
crossref_primary_10_3174_ajnr_A3052
crossref_primary_10_1007_s11682_015_9380_x
crossref_primary_10_1186_1744_8069_10_18
crossref_primary_10_3390_brainsci3031357
crossref_primary_10_1016_j_neuroimage_2006_11_015
crossref_primary_10_1093_cercor_bht347
crossref_primary_10_3389_fnhum_2018_00492
crossref_primary_10_1146_annurev_clinpsy_072220_014550
crossref_primary_10_1016_j_neuroimage_2009_01_001
crossref_primary_10_1523_ENEURO_0314_16_2016
crossref_primary_10_1002_hipo_23205
crossref_primary_10_1016_j_neuroimage_2009_03_074
crossref_primary_10_1371_journal_pcbi_1003412
crossref_primary_10_1186_1744_8069_10_23
crossref_primary_10_1371_journal_pone_0190164
crossref_primary_10_1162_jocn_a_00028
crossref_primary_10_3174_ajnr_A5246
crossref_primary_10_1016_j_neuropsychologia_2011_03_004
crossref_primary_10_1007_s10548_013_0331_9
crossref_primary_10_1097_MD_0000000000001977
crossref_primary_10_1111_desc_12385
crossref_primary_10_1002_hbm_21471
crossref_primary_10_1007_s00406_020_01167_2
crossref_primary_10_1016_j_pscychresns_2011_06_007
crossref_primary_10_1002_nbm_5267
crossref_primary_10_1016_j_concog_2008_12_009
crossref_primary_10_3389_fnins_2015_00455
crossref_primary_10_1002_oby_20630
crossref_primary_10_1016_j_dib_2017_04_007
crossref_primary_10_1111_j_1365_2982_2009_01436_x
crossref_primary_10_1068_p7640
crossref_primary_10_1016_j_neuroimage_2021_118671
crossref_primary_10_18510_hssr_2019_7496
crossref_primary_10_1093_scan_nst100
crossref_primary_10_1007_s00701_021_04802_6
crossref_primary_10_1002_hbm_23640
crossref_primary_10_1111_ejn_12659
crossref_primary_10_1016_j_neuron_2007_10_015
crossref_primary_10_1371_journal_pone_0137056
crossref_primary_10_1016_j_biopsych_2011_04_005
crossref_primary_10_1162_jocn_a_00008
crossref_primary_10_1523_JNEUROSCI_0188_15_2015
crossref_primary_10_1080_13554794_2014_960428
crossref_primary_10_1093_cercor_bhp314
crossref_primary_10_1016_j_neuroimage_2014_02_025
crossref_primary_10_1016_j_neuroimage_2014_11_044
crossref_primary_10_1093_scan_nss009
crossref_primary_10_1002_hbm_22543
crossref_primary_10_1088_0031_9155_60_20_8109
crossref_primary_10_1007_s00429_019_01828_6
crossref_primary_10_1371_journal_pone_0025453
crossref_primary_10_1093_cercor_bhac473
crossref_primary_10_1016_j_neuropsychologia_2012_01_017
crossref_primary_10_1155_2022_8744982
crossref_primary_10_3389_fnins_2022_793036
crossref_primary_10_1016_j_ejrad_2008_01_042
crossref_primary_10_1016_j_bandc_2010_07_002
crossref_primary_10_1016_j_neuroimage_2009_12_064
crossref_primary_10_1086_684285
crossref_primary_10_1109_TSIPN_2020_2982765
crossref_primary_10_1080_02643290802340972
crossref_primary_10_1002_hbm_21247
crossref_primary_10_1002_hbm_22336
crossref_primary_10_1016_j_neuroimage_2020_117281
crossref_primary_10_1002_hbm_21480
crossref_primary_10_1016_j_jneumeth_2023_109808
crossref_primary_10_3233_JAD_191127
crossref_primary_10_1002_mrm_29202
crossref_primary_10_1016_j_neuroimage_2017_01_063
crossref_primary_10_1093_cercor_bhy151
crossref_primary_10_1371_journal_pone_0086068
crossref_primary_10_3389_fnbeh_2014_00179
crossref_primary_10_1016_j_neuroimage_2011_08_033
crossref_primary_10_1089_brain_2016_0450
crossref_primary_10_1016_j_neuroimage_2011_08_035
crossref_primary_10_1016_j_dcn_2012_04_004
crossref_primary_10_1007_s12021_023_09645_3
crossref_primary_10_1093_cercor_bhy183
crossref_primary_10_1093_cercor_bhp130
crossref_primary_10_1080_14616734_2024_2384393
crossref_primary_10_1007_s11682_018_9919_8
crossref_primary_10_1016_j_brainres_2024_149119
crossref_primary_10_1038_srep13779
crossref_primary_10_1371_journal_pone_0164891
crossref_primary_10_1016_j_dcn_2012_04_001
crossref_primary_10_1167_19_2_9
crossref_primary_10_1038_s41539_019_0057_x
crossref_primary_10_1016_j_neuroimage_2011_08_093
crossref_primary_10_1016_j_cortex_2011_11_003
crossref_primary_10_1093_cercor_bhz021
crossref_primary_10_1177_0031512517700054
crossref_primary_10_1093_brain_awp308
crossref_primary_10_1093_cercor_bhaa246
crossref_primary_10_1212_WNL_0000000000000496
crossref_primary_10_1111_j_1460_9568_2011_07915_x
crossref_primary_10_1093_cercor_bhac427
crossref_primary_10_1152_jn_00592_2016
crossref_primary_10_1016_j_neuroimage_2023_120296
crossref_primary_10_1016_j_neuropsychologia_2008_11_009
crossref_primary_10_1162_jocn_a_00891
crossref_primary_10_1093_scan_nsq010
crossref_primary_10_1016_j_neuroimage_2011_12_005
crossref_primary_10_1523_JNEUROSCI_0340_07_2007
crossref_primary_10_1002_hbm_22774
crossref_primary_10_1089_brain_2016_0419
crossref_primary_10_1111_desc_12546
crossref_primary_10_1016_j_cortex_2014_02_026
crossref_primary_10_1212_WNL_0b013e318245287d
crossref_primary_10_1111_ejn_15504
crossref_primary_10_1016_j_neuroimage_2014_02_006
crossref_primary_10_1007_s00429_017_1598_5
crossref_primary_10_1111_psyg_12313
crossref_primary_10_1152_jn_00501_2013
crossref_primary_10_1016_j_neuroimage_2012_01_083
crossref_primary_10_3389_fnagi_2016_00016
crossref_primary_10_1016_j_brainres_2014_06_030
crossref_primary_10_1016_j_brainresbull_2015_10_003
crossref_primary_10_1016_j_neuropsychologia_2023_108773
crossref_primary_10_1212_01_wnl_0000295509_30630_10
crossref_primary_10_1080_17470919_2013_832374
crossref_primary_10_1007_s00406_016_0760_z
crossref_primary_10_1016_j_neuroimage_2009_10_028
crossref_primary_10_1080_23273798_2018_1442012
crossref_primary_10_1038_s41467_024_45065_w
crossref_primary_10_3233_JAD_150562
crossref_primary_10_1371_journal_pone_0115551
crossref_primary_10_1523_JNEUROSCI_2559_15_2016
crossref_primary_10_1016_j_neuroimage_2009_05_057
crossref_primary_10_1016_j_ejpn_2013_12_002
crossref_primary_10_1523_JNEUROSCI_4339_13_2014
crossref_primary_10_1162_jocn_a_01608
crossref_primary_10_1002_hbm_21500
crossref_primary_10_1016_j_bandc_2010_10_004
crossref_primary_10_1016_j_soard_2014_06_005
crossref_primary_10_1093_brain_awr005
crossref_primary_10_1038_s41598_019_41965_w
crossref_primary_10_1016_j_neuroimage_2010_10_080
crossref_primary_10_1523_JNEUROSCI_1740_07_2007
crossref_primary_10_1093_cercor_bhv269
crossref_primary_10_1523_JNEUROSCI_0065_16_2016
crossref_primary_10_1371_journal_pone_0072728
crossref_primary_10_1038_s41467_020_17786_1
crossref_primary_10_1523_ENEURO_0252_17_2018
crossref_primary_10_1016_j_neuroimage_2015_10_022
crossref_primary_10_1016_j_pscychresns_2014_11_014
crossref_primary_10_1093_cercor_bhv018
crossref_primary_10_1002_hbm_20640
crossref_primary_10_1016_j_cortex_2020_05_005
crossref_primary_10_1016_j_displa_2012_10_008
crossref_primary_10_1523_JNEUROSCI_0009_23_2023
crossref_primary_10_1016_j_neurobiolaging_2010_04_013
crossref_primary_10_1007_s00429_014_0748_2
crossref_primary_10_1007_s00429_017_1500_5
crossref_primary_10_1016_j_neuroimage_2010_09_062
crossref_primary_10_1523_JNEUROSCI_0596_15_2015
crossref_primary_10_3389_fnins_2016_00487
crossref_primary_10_3389_fnhum_2014_00658
crossref_primary_10_1016_j_neuroimage_2013_07_056
crossref_primary_10_1152_jn_01307_2007
crossref_primary_10_1111_ejn_12140
crossref_primary_10_1044_1092_4388_2008_075
crossref_primary_10_1371_journal_pone_0210803
crossref_primary_10_1016_j_neuroimage_2008_11_014
crossref_primary_10_1002_hbm_22853
crossref_primary_10_1016_j_autneu_2017_05_012
crossref_primary_10_1073_pnas_2012900118
crossref_primary_10_1038_s41562_019_0648_9
crossref_primary_10_1523_JNEUROSCI_1890_22_2023
crossref_primary_10_1016_j_ijdevneu_2015_10_003
crossref_primary_10_1002_pbc_22362
crossref_primary_10_1523_JNEUROSCI_3113_10_2011
crossref_primary_10_3389_fnins_2016_00254
crossref_primary_10_1002_brb3_2931
crossref_primary_10_1017_S0033291715000161
crossref_primary_10_1007_s10608_019_10075_2
crossref_primary_10_1093_brain_awr020
crossref_primary_10_1016_j_humov_2013_06_001
crossref_primary_10_1371_journal_pone_0019165
crossref_primary_10_1016_j_neuropsychologia_2025_109067
crossref_primary_10_1111_desc_12857
crossref_primary_10_3389_fnhum_2016_00614
crossref_primary_10_1016_j_neuroimage_2010_10_054
crossref_primary_10_1016_j_dcn_2017_02_006
crossref_primary_10_1016_j_nicl_2017_06_021
crossref_primary_10_1016_j_neuropsychologia_2017_05_009
crossref_primary_10_7554_eLife_30018
crossref_primary_10_1016_j_nicl_2014_08_015
crossref_primary_10_1016_j_brainres_2015_05_007
crossref_primary_10_1016_j_neuroimage_2008_12_059
crossref_primary_10_1016_j_neuroimage_2018_09_068
crossref_primary_10_1093_psyrad_kkab002
crossref_primary_10_1162_jocn_a_00720
crossref_primary_10_1016_j_pscychresns_2015_05_008
crossref_primary_10_1016_j_neuroimage_2008_10_022
crossref_primary_10_1017_S0033291715002998
crossref_primary_10_1016_j_nicl_2017_01_020
crossref_primary_10_1016_j_neuroimage_2016_04_056
crossref_primary_10_1371_journal_pone_0036222
crossref_primary_10_1016_j_neuroimage_2007_02_022
crossref_primary_10_1523_JNEUROSCI_0977_15_2015
crossref_primary_10_1016_j_neuroimage_2013_07_017
crossref_primary_10_1007_s11682_022_00744_4
crossref_primary_10_1371_journal_pone_0128608
crossref_primary_10_1007_s40519_017_0474_x
crossref_primary_10_1016_j_eatbeh_2013_08_006
crossref_primary_10_1007_s12311_015_0706_4
crossref_primary_10_1016_j_neuroimage_2007_02_018
crossref_primary_10_1016_j_nicl_2014_09_018
crossref_primary_10_1016_j_bbr_2019_112048
crossref_primary_10_1017_neu_2019_49
crossref_primary_10_1155_2013_251308
crossref_primary_10_1186_1471_2377_13_148
crossref_primary_10_1016_j_appet_2018_10_010
crossref_primary_10_1177_1744806916662661
crossref_primary_10_1016_j_jpsychires_2012_03_016
crossref_primary_10_3389_fnhum_2015_00277
crossref_primary_10_1093_ntr_ntt214
crossref_primary_10_1111_j_1460_9568_2010_07208_x
crossref_primary_10_1093_cercor_bhx024
crossref_primary_10_1016_j_neuroimage_2007_02_002
crossref_primary_10_1002_hbm_20860
crossref_primary_10_1016_j_neuroscience_2014_01_053
crossref_primary_10_1371_journal_pone_0146250
crossref_primary_10_1523_JNEUROSCI_2936_12_2013
crossref_primary_10_3389_fpsyg_2015_00321
crossref_primary_10_1016_j_neuropsychologia_2010_04_007
crossref_primary_10_1007_s11682_013_9273_9
crossref_primary_10_1038_s41593_020_0698_3
crossref_primary_10_1371_journal_pone_0029153
crossref_primary_10_7554_eLife_40014
crossref_primary_10_1093_cercor_bht006
crossref_primary_10_1016_j_neuropsychologia_2020_107634
crossref_primary_10_1016_j_neuropsychologia_2010_04_011
crossref_primary_10_1016_j_bbr_2008_03_040
crossref_primary_10_1016_j_neulet_2008_07_015
crossref_primary_10_1038_srep08413
crossref_primary_10_1002_hbm_23088
crossref_primary_10_1111_j_1460_9568_2009_07014_x
crossref_primary_10_3389_fnhum_2014_00226
crossref_primary_10_3389_fnhum_2016_00646
crossref_primary_10_1016_j_pain_2012_11_014
crossref_primary_10_1016_j_neuron_2006_12_025
crossref_primary_10_1016_j_visres_2011_02_005
crossref_primary_10_1371_journal_pone_0170795
crossref_primary_10_1523_ENEURO_0039_21_2021
crossref_primary_10_1016_j_neuropsychologia_2020_107405
crossref_primary_10_1007_s00701_013_1914_7
crossref_primary_10_1523_JNEUROSCI_0026_23_2023
crossref_primary_10_1523_JNEUROSCI_4572_10_2011
crossref_primary_10_3366_drs_2011_0024
crossref_primary_10_1016_j_media_2020_101700
crossref_primary_10_1523_JNEUROSCI_2713_07_2007
crossref_primary_10_1093_cercor_bhr093
crossref_primary_10_1093_cercor_bhr095
crossref_primary_10_1080_23279095_2019_1575219
crossref_primary_10_1016_j_neuroimage_2011_03_009
crossref_primary_10_1093_scan_nsw039
crossref_primary_10_1007_s41105_017_0096_8
crossref_primary_10_1016_j_neuropsychologia_2009_01_006
crossref_primary_10_1016_j_ymgme_2016_02_004
crossref_primary_10_3389_fpsyg_2015_01663
crossref_primary_10_1038_s41467_017_02080_4
crossref_primary_10_1093_cercor_bht016
crossref_primary_10_1016_j_cortex_2019_07_017
crossref_primary_10_1016_j_neuroimage_2011_01_026
crossref_primary_10_1093_scan_nsw022
crossref_primary_10_1523_JNEUROSCI_0859_14_2015
crossref_primary_10_1162_jocn_a_00900
crossref_primary_10_1016_j_pscychresns_2023_111728
crossref_primary_10_1007_s10803_022_05675_z
crossref_primary_10_1016_j_neuroimage_2016_01_015
crossref_primary_10_1002_hbm_23051
crossref_primary_10_1080_17470919_2013_858080
crossref_primary_10_1016_j_neuroimage_2012_10_053
crossref_primary_10_1016_j_schres_2019_05_010
crossref_primary_10_1093_sleep_zsaa058
crossref_primary_10_1038_s41598_022_17909_2
crossref_primary_10_1016_j_neuroimage_2013_05_032
crossref_primary_10_1016_j_neuroimage_2009_09_027
crossref_primary_10_1371_journal_pone_0120030
crossref_primary_10_1016_j_neuroimage_2017_10_050
crossref_primary_10_3390_brainsci8070128
crossref_primary_10_1016_j_pscychresns_2015_07_007
crossref_primary_10_1523_JNEUROSCI_1388_12_2012
crossref_primary_10_1016_j_pscychresns_2015_07_005
crossref_primary_10_1002_hbm_22195
crossref_primary_10_1016_j_neurobiolaging_2014_10_041
crossref_primary_10_1002_hbm_22191
crossref_primary_10_1093_sleep_32_8_999
crossref_primary_10_1016_j_neuroimage_2011_03_038
crossref_primary_10_1016_j_yebeh_2009_11_002
crossref_primary_10_1007_s10334_007_0103_1
crossref_primary_10_1371_journal_pone_0050132
crossref_primary_10_1016_j_cortex_2018_11_027
crossref_primary_10_1016_j_neuroimage_2018_05_010
crossref_primary_10_1016_j_media_2021_102271
crossref_primary_10_1016_j_neuropsychologia_2020_107699
crossref_primary_10_1016_j_expneurol_2009_01_025
crossref_primary_10_1007_s10278_009_9266_9
crossref_primary_10_1080_15294145_2014_976649
crossref_primary_10_1093_brain_awt007
crossref_primary_10_1093_cercor_bhu150
crossref_primary_10_1016_j_jneumeth_2015_12_010
crossref_primary_10_1016_j_dcn_2011_07_006
crossref_primary_10_1016_j_neuroimage_2006_10_041
crossref_primary_10_1016_j_media_2015_04_005
crossref_primary_10_1371_journal_pone_0020742
crossref_primary_10_1016_j_pscychresns_2018_04_008
crossref_primary_10_1109_TVCG_2013_161
crossref_primary_10_3389_fnhum_2017_00415
crossref_primary_10_1371_journal_pone_0106285
crossref_primary_10_3389_fnhum_2022_996989
crossref_primary_10_1007_s11682_016_9549_y
crossref_primary_10_1038_s42003_020_0764_0
crossref_primary_10_1523_JNEUROSCI_4370_10_2011
crossref_primary_10_1016_j_neuroimage_2009_09_065
crossref_primary_10_1111_jnp_12340
crossref_primary_10_1126_scitranslmed_3002865
crossref_primary_10_1111_bdi_12007
crossref_primary_10_1017_S0033291717001076
crossref_primary_10_1002_hbm_23120
crossref_primary_10_1159_000358090
crossref_primary_10_1002_hbm_24213
crossref_primary_10_3389_fpsyg_2019_02286
crossref_primary_10_1002_hbm_24452
crossref_primary_10_1016_j_neuroimage_2012_07_005
crossref_primary_10_1016_j_bandc_2016_09_014
crossref_primary_10_1016_j_neuroimage_2017_09_013
crossref_primary_10_1016_j_neuroimage_2010_12_037
crossref_primary_10_1016_j_neuropsychologia_2015_12_004
crossref_primary_10_1089_brain_2020_0814
crossref_primary_10_56532_mjsat_v3i3_155
crossref_primary_10_1371_journal_pbio_1002546
crossref_primary_10_1073_pnas_1612862114
crossref_primary_10_3389_fnbeh_2024_1451691
crossref_primary_10_1016_j_neuroimage_2009_08_042
crossref_primary_10_3389_fnagi_2016_00189
crossref_primary_10_1016_j_neuroimage_2020_117319
crossref_primary_10_1038_s41598_022_12174_9
crossref_primary_10_1177_0956797615598970
crossref_primary_10_1590_1414_431X20132799
crossref_primary_10_1111_j_1479_8301_2010_00326_x
crossref_primary_10_1186_s12901_016_0029_1
crossref_primary_10_1093_scan_nst043
crossref_primary_10_1002_aur_3104
crossref_primary_10_1016_j_neuroimage_2016_01_043
crossref_primary_10_1080_23273798_2019_1668953
crossref_primary_10_1016_j_neuroscience_2010_05_080
crossref_primary_10_1093_sleep_zsy031
crossref_primary_10_1093_scan_nsu128
crossref_primary_10_1109_TMI_2014_2332370
crossref_primary_10_1016_j_neuroimage_2013_11_042
crossref_primary_10_1038_mp_2012_181
crossref_primary_10_1002_hbm_24228
crossref_primary_10_1016_j_bandl_2012_10_003
crossref_primary_10_1016_j_neuroscience_2016_01_056
crossref_primary_10_1016_j_bbr_2012_09_033
crossref_primary_10_1016_j_jpeds_2012_10_003
crossref_primary_10_1002_hbm_23571
crossref_primary_10_1016_j_neuroimage_2009_08_067
crossref_primary_10_1002_hbm_24422
crossref_primary_10_2217_iim_10_35
crossref_primary_10_1016_j_neuroimage_2009_07_024
crossref_primary_10_3389_fnhum_2016_00054
crossref_primary_10_1148_radiol_2501072153
crossref_primary_10_1016_j_neuroscience_2013_10_047
crossref_primary_10_1002_hbm_24897
crossref_primary_10_1186_s12868_024_00892_x
crossref_primary_10_1111_j_1469_7610_2011_02406_x
crossref_primary_10_1016_j_jneumeth_2013_01_021
crossref_primary_10_1111_ejn_12978
crossref_primary_10_1002_hbm_23320
crossref_primary_10_1162_jocn_a_00165
crossref_primary_10_1016_j_neuropsychologia_2014_09_022
crossref_primary_10_1016_j_neuroimage_2013_10_061
crossref_primary_10_1016_j_neuron_2010_06_009
crossref_primary_10_1016_j_brainres_2010_06_050
crossref_primary_10_1016_j_neubiorev_2020_09_016
crossref_primary_10_1016_j_neuroimage_2012_06_002
crossref_primary_10_1016_j_explore_2012_10_006
crossref_primary_10_1038_ijo_2011_213
crossref_primary_10_1007_s11682_023_00803_4
crossref_primary_10_1542_peds_2007_1566
crossref_primary_10_1016_j_cub_2024_09_008
crossref_primary_10_1002_brb3_1373
crossref_primary_10_1162_jocn_a_00371
crossref_primary_10_1002_brb3_3554
crossref_primary_10_1016_j_physbeh_2011_08_015
crossref_primary_10_1093_cercor_bhr291
crossref_primary_10_1371_journal_pone_0071907
crossref_primary_10_1016_j_neuropsychologia_2012_05_028
crossref_primary_10_1177_17448069211037881
crossref_primary_10_1093_scan_nst006
crossref_primary_10_3945_ajcn_112_053801
crossref_primary_10_1016_j_cub_2023_10_010
crossref_primary_10_1016_j_nicl_2020_102296
crossref_primary_10_1016_j_visres_2014_07_004
crossref_primary_10_1016_j_biopsych_2013_11_008
crossref_primary_10_1002_hbm_24434
crossref_primary_10_1523_JNEUROSCI_4775_14_2015
crossref_primary_10_1016_j_neuroimage_2022_119295
crossref_primary_10_1007_s00702_021_02413_0
crossref_primary_10_1080_21678421_2020_1813306
crossref_primary_10_1523_JNEUROSCI_1302_13_2014
crossref_primary_10_3233_JAD_220055
crossref_primary_10_1152_jn_00312_2014
crossref_primary_10_1016_j_brainres_2011_10_052
crossref_primary_10_1016_j_neuroimage_2010_03_034
crossref_primary_10_1093_cercor_bhr037
crossref_primary_10_3390_life11040296
crossref_primary_10_7554_eLife_59436
crossref_primary_10_1016_j_neuroimage_2010_10_010
crossref_primary_10_1016_j_heares_2012_03_003
crossref_primary_10_1080_17470919_2021_1953582
crossref_primary_10_1016_j_dcn_2011_11_003
crossref_primary_10_1177_0956797610370754
crossref_primary_10_1016_j_rpsm_2020_08_001
crossref_primary_10_1016_j_neuropsychologia_2013_02_001
crossref_primary_10_1016_j_neuroimage_2017_07_006
crossref_primary_10_1523_JNEUROSCI_5074_09_2010
crossref_primary_10_1038_npp_2017_71
crossref_primary_10_3389_fnhum_2018_00393
crossref_primary_10_1016_j_bbr_2018_08_036
crossref_primary_10_1016_j_neuroimage_2009_07_071
crossref_primary_10_1109_TCBB_2016_2564970
crossref_primary_10_1016_j_neuroimage_2010_11_049
crossref_primary_10_1016_j_foodqual_2014_10_005
crossref_primary_10_1186_1471_2202_13_52
crossref_primary_10_1162_jocn_a_00126
crossref_primary_10_1093_cercor_bhl074
crossref_primary_10_1162_jocn_a_01695
crossref_primary_10_3389_fpsyg_2017_00174
crossref_primary_10_1002_hbm_23513
crossref_primary_10_1016_j_neuropsychologia_2014_08_029
crossref_primary_10_1093_braincomms_fcz044
crossref_primary_10_1016_j_neulet_2010_05_004
crossref_primary_10_1016_j_neuropsychologia_2013_10_017
crossref_primary_10_1016_j_neuroimage_2007_03_065
crossref_primary_10_1152_jn_00298_2011
crossref_primary_10_1016_j_neuropsychologia_2013_03_023
crossref_primary_10_1002_hbm_21132
crossref_primary_10_1111_ejn_12786
crossref_primary_10_1016_j_mri_2008_01_045
crossref_primary_10_1109_TIP_2017_2691799
crossref_primary_10_1016_j_appet_2011_10_014
crossref_primary_10_1016_j_neuroimage_2021_118532
crossref_primary_10_1016_j_neuroimage_2017_08_060
crossref_primary_10_3233_JAD_150990
crossref_primary_10_1016_j_neuroscience_2012_09_005
crossref_primary_10_1093_cercor_bhab029
crossref_primary_10_1093_schbul_sbu097
crossref_primary_10_1038_s41598_021_89118_2
crossref_primary_10_1523_JNEUROSCI_3640_14_2015
crossref_primary_10_1002_hbm_21362
crossref_primary_10_1016_j_neuroimage_2015_03_013
crossref_primary_10_1016_j_neuroimage_2008_01_029
crossref_primary_10_1016_j_bandl_2012_04_016
crossref_primary_10_1016_j_neuroimage_2010_07_068
crossref_primary_10_1016_j_bbr_2011_03_037
crossref_primary_10_1073_pnas_2002981117
crossref_primary_10_1186_1471_2202_13_74
crossref_primary_10_1371_journal_pone_0087277
crossref_primary_10_1002_mrm_28479
crossref_primary_10_1093_scan_nss109
crossref_primary_10_1002_hbm_21112
crossref_primary_10_1002_hbm_24621
crossref_primary_10_1162_jocn_a_00109
crossref_primary_10_3389_fnsys_2015_00016
crossref_primary_10_3758_s13415_016_0425_4
crossref_primary_10_1523_JNEUROSCI_3684_13_2014
crossref_primary_10_1016_j_neuropharm_2021_108815
crossref_primary_10_1523_JNEUROSCI_4045_08_2008
crossref_primary_10_1093_cercor_bhz151
crossref_primary_10_1523_ENEURO_0263_19_2019
crossref_primary_10_1016_j_neuroimage_2015_05_030
crossref_primary_10_1016_j_jad_2017_11_044
crossref_primary_10_1523_JNEUROSCI_3450_10_2011
crossref_primary_10_1016_j_neuropsychologia_2015_07_019
crossref_primary_10_1162_jocn_a_00312
crossref_primary_10_1111_desc_12215
crossref_primary_10_1097_j_pain_0000000000003052
crossref_primary_10_3758_s13415_016_0416_5
crossref_primary_10_1371_journal_pone_0124072
crossref_primary_10_1111_j_1467_7687_2009_00923_x
crossref_primary_10_1038_s41387_020_0124_7
crossref_primary_10_1016_j_neures_2011_07_1819
crossref_primary_10_1523_JNEUROSCI_1556_11_2011
crossref_primary_10_3389_fnagi_2016_00155
crossref_primary_10_1016_j_nicl_2016_12_015
crossref_primary_10_1016_j_dcn_2011_02_002
crossref_primary_10_1016_j_neuroimage_2018_02_068
crossref_primary_10_1097_WCO_0b013e32834897a5
crossref_primary_10_1016_j_ridd_2013_02_008
crossref_primary_10_1016_j_neuroimage_2018_02_065
crossref_primary_10_1016_j_neuroimage_2006_08_041
crossref_primary_10_1371_journal_pone_0187942
crossref_primary_10_1073_pnas_0805423105
crossref_primary_10_1016_j_neulet_2020_134920
crossref_primary_10_3389_fnbeh_2015_00008
crossref_primary_10_1016_j_neuroimage_2008_02_013
crossref_primary_10_1016_j_neuroimage_2012_08_029
crossref_primary_10_1162_jocn_a_00530
crossref_primary_10_3389_fnsys_2016_00053
crossref_primary_10_1002_hbm_21324
crossref_primary_10_1002_hbm_22654
crossref_primary_10_1002_hbm_20479
crossref_primary_10_3389_fninf_2016_00027
crossref_primary_10_1016_j_neuroimage_2013_02_075
crossref_primary_10_1016_j_neuroimage_2017_08_023
crossref_primary_10_1016_j_neuron_2013_10_019
crossref_primary_10_1016_j_neuropsychologia_2014_06_006
crossref_primary_10_1038_s41598_021_92490_8
crossref_primary_10_1016_j_bbr_2013_07_017
crossref_primary_10_1016_j_nicl_2019_101708
crossref_primary_10_1007_s00429_012_0382_9
crossref_primary_10_1068_i0536
crossref_primary_10_1093_cercor_bhac296
crossref_primary_10_1523_JNEUROSCI_2164_11_2011
crossref_primary_10_3389_fnagi_2019_00360
crossref_primary_10_1016_j_neuroimage_2009_12_008
crossref_primary_10_1093_cercor_bhu060
crossref_primary_10_1111_ejn_12006
crossref_primary_10_1016_j_brainres_2010_12_084
crossref_primary_10_1016_j_neuroimage_2008_03_047
crossref_primary_10_1002_hbm_23806
crossref_primary_10_1162_jocn_a_00635
crossref_primary_10_1016_j_neuropsychologia_2018_06_026
crossref_primary_10_1038_npp_2011_172
crossref_primary_10_1371_journal_pone_0015712
crossref_primary_10_1109_TMI_2012_2186975
crossref_primary_10_1016_j_neuroimage_2012_04_021
crossref_primary_10_1002_hbm_20536
crossref_primary_10_1093_cercor_bhu050
crossref_primary_10_1093_cercor_bhv140
crossref_primary_10_1371_journal_pone_0114599
crossref_primary_10_1007_s11682_019_00161_0
crossref_primary_10_1111_ejn_13349
crossref_primary_10_1093_cercor_bhad151
crossref_primary_10_1073_pnas_1312857110
crossref_primary_10_1016_j_rpsmen_2022_06_004
crossref_primary_10_1016_j_neuroimage_2010_01_060
crossref_primary_10_1093_cercor_bhu294
crossref_primary_10_1371_journal_pone_0068355
crossref_primary_10_1371_journal_pcbi_1006397
crossref_primary_10_1016_j_neuroimage_2015_02_005
crossref_primary_10_1007_s11548_015_1319_6
crossref_primary_10_1523_JNEUROSCI_2428_16_2017
crossref_primary_10_1371_journal_pone_0124141
crossref_primary_10_1515_revneuro_2016_0029
crossref_primary_10_1016_j_jneumeth_2011_10_006
crossref_primary_10_1002_oby_23738
crossref_primary_10_1016_j_neuroimage_2015_03_085
crossref_primary_10_1111_ejn_15776
crossref_primary_10_1093_cercor_bhx113
crossref_primary_10_1162_jocn_2009_21399
crossref_primary_10_1016_j_ijpsycho_2019_04_011
crossref_primary_10_1093_cercor_bhn200
crossref_primary_10_1016_j_visres_2014_10_015
crossref_primary_10_1097_BRS_0000000000001930
crossref_primary_10_1088_1741_2552_ac6f81
crossref_primary_10_1162_jocn_2011_21625
crossref_primary_10_1016_j_neuroimage_2016_11_014
crossref_primary_10_1016_j_pain_2011_11_012
crossref_primary_10_1093_cercor_bhv169
crossref_primary_10_1016_j_brainres_2010_11_039
crossref_primary_10_1016_j_dcn_2019_100684
crossref_primary_10_1142_S012906571450004X
crossref_primary_10_1038_s41598_020_68300_y
crossref_primary_10_1038_s41598_018_37822_x
crossref_primary_10_7554_eLife_35854
crossref_primary_10_1002_hbm_25198
crossref_primary_10_1371_journal_pone_0070480
crossref_primary_10_3390_biomedicines10050994
crossref_primary_10_1111_ejn_15559
crossref_primary_10_1016_j_neuroimage_2008_03_007
crossref_primary_10_3945_ajcn_112_053116
crossref_primary_10_1016_j_schres_2014_10_036
crossref_primary_10_1016_j_biopsycho_2008_01_014
crossref_primary_10_1016_j_neuroimage_2007_10_033
crossref_primary_10_1016_j_dcn_2014_12_001
crossref_primary_10_1016_j_tics_2017_09_010
crossref_primary_10_1016_j_neuroimage_2019_116201
crossref_primary_10_3174_ajnr_A2428
crossref_primary_10_1016_j_cub_2009_01_065
crossref_primary_10_1016_j_cub_2009_01_066
crossref_primary_10_7554_eLife_85812
crossref_primary_10_3389_fnhum_2014_00709
crossref_primary_10_1016_j_neuroimage_2018_10_047
crossref_primary_10_1016_j_neuroimage_2016_12_071
crossref_primary_10_1002_hbm_20968
crossref_primary_10_1523_JNEUROSCI_0584_12_2012
crossref_primary_10_3389_fnhum_2017_00156
crossref_primary_10_1371_journal_pone_0090098
crossref_primary_10_1002_hbm_20960
crossref_primary_10_3389_fnagi_2019_00163
crossref_primary_10_1093_cercor_bhy243
crossref_primary_10_1080_87565641_2010_549882
crossref_primary_10_1177_1744806918767512
crossref_primary_10_1016_j_neuroimage_2019_116216
crossref_primary_10_1016_j_neuroimage_2018_10_080
crossref_primary_10_1016_j_dcn_2012_07_001
crossref_primary_10_1016_j_dcn_2019_100653
crossref_primary_10_1523_JNEUROSCI_1315_24_2024
crossref_primary_10_1016_j_neuron_2007_12_009
crossref_primary_10_1186_1471_2202_11_11
crossref_primary_10_1016_j_brainres_2013_07_050
crossref_primary_10_1007_s00213_012_2830_x
crossref_primary_10_1016_j_neuroimage_2009_05_100
crossref_primary_10_1371_journal_pone_0038785
crossref_primary_10_1177_1087054716647483
crossref_primary_10_1016_j_pscychresns_2012_05_006
crossref_primary_10_1093_cercor_bhad136
crossref_primary_10_1016_j_cortex_2013_04_003
crossref_primary_10_7554_eLife_56963
crossref_primary_10_1016_j_mri_2018_01_004
crossref_primary_10_1093_cercor_bhu224
crossref_primary_10_1093_cercor_bhs046
crossref_primary_10_1371_journal_pone_0198335
crossref_primary_10_3389_fnbeh_2022_835253
crossref_primary_10_1016_j_schres_2008_11_028
crossref_primary_10_1007_s00221_009_1881_7
crossref_primary_10_1016_j_neuroimage_2014_06_045
crossref_primary_10_23736_S2724_6302_21_02375_6
crossref_primary_10_1016_j_jneuroling_2017_12_011
crossref_primary_10_1002_hbm_26471
crossref_primary_10_1016_j_neuron_2014_09_028
crossref_primary_10_1038_s41598_017_05356_3
crossref_primary_10_1098_rsos_182067
crossref_primary_10_1111_cdev_14080
crossref_primary_10_1007_s11760_012_0326_0
crossref_primary_10_1016_j_brainres_2006_06_110
crossref_primary_10_1109_TSIPN_2017_2668146
crossref_primary_10_1016_j_neuroimage_2012_02_020
crossref_primary_10_1016_j_heares_2018_03_027
crossref_primary_10_1088_1741_2560_14_1_016004
crossref_primary_10_1007_s10334_022_01044_0
crossref_primary_10_1016_j_jad_2021_10_123
crossref_primary_10_1101_lm_025965_112
crossref_primary_10_1093_cercor_bhs067
crossref_primary_10_1016_j_neuroimage_2016_09_022
crossref_primary_10_1016_j_neuroimage_2010_03_085
crossref_primary_10_1016_j_nicl_2017_10_029
crossref_primary_10_1016_j_neuroimage_2012_05_018
crossref_primary_10_1007_s00406_013_0444_x
crossref_primary_10_1371_journal_pone_0094222
crossref_primary_10_1016_j_neuroimage_2010_02_031
crossref_primary_10_1523_JNEUROSCI_3323_17_2018
crossref_primary_10_1016_j_ophtha_2017_01_029
crossref_primary_10_3389_fcomm_2019_00039
crossref_primary_10_1016_j_jpain_2013_12_009
crossref_primary_10_1016_j_neuroimage_2018_11_054
crossref_primary_10_1371_journal_pone_0049231
crossref_primary_10_3389_fnhum_2015_00597
crossref_primary_10_3389_fnhum_2015_00598
crossref_primary_10_3389_fnhum_2016_00507
crossref_primary_10_1179_016164108X323753
crossref_primary_10_1016_j_neurobiolaging_2017_01_020
crossref_primary_10_3389_fnhum_2023_1274817
crossref_primary_10_1080_13554794_2014_986136
crossref_primary_10_1007_s12311_019_01039_z
crossref_primary_10_1016_j_neuroimage_2010_03_073
crossref_primary_10_1523_JNEUROSCI_3712_11_2011
crossref_primary_10_1016_j_neuroimage_2012_06_069
crossref_primary_10_1016_j_pnpbp_2015_01_016
crossref_primary_10_1007_s00167_009_1012_9
crossref_primary_10_1002_mrm_25408
crossref_primary_10_1093_cercor_bhs082
crossref_primary_10_1007_s11682_013_9252_1
crossref_primary_10_1007_s00406_014_0510_z
crossref_primary_10_3389_fnhum_2020_00225
crossref_primary_10_3945_ajcn_116_136903
crossref_primary_10_1016_j_neuroimage_2010_01_017
crossref_primary_10_1017_S0033291717001957
crossref_primary_10_1016_j_brainres_2013_09_032
crossref_primary_10_1038_s42003_024_06913_z
crossref_primary_10_1523_JNEUROSCI_0809_10_2010
crossref_primary_10_4081_gimle_566
crossref_primary_10_1093_scan_nsv043
crossref_primary_10_1093_scan_nsw131
crossref_primary_10_3390_healthcare4030054
crossref_primary_10_1016_j_pscychresns_2014_07_004
crossref_primary_10_1177_0301006620912134
crossref_primary_10_1007_s11332_019_00592_8
crossref_primary_10_1016_j_neuroimage_2017_03_039
crossref_primary_10_1016_j_biopsych_2012_09_004
crossref_primary_10_1016_j_neuroimage_2011_10_061
crossref_primary_10_1162_jocn_2009_21124
crossref_primary_10_1093_cercor_bhu009
crossref_primary_10_1093_scan_nst095
crossref_primary_10_1016_j_bbr_2018_02_031
crossref_primary_10_3758_s13415_018_0633_1
crossref_primary_10_1016_j_neuroimage_2012_05_051
crossref_primary_10_1093_cercor_bhw222
crossref_primary_10_1016_j_ijpsycho_2011_06_019
crossref_primary_10_3389_fpsyt_2023_1050530
crossref_primary_10_1038_oby_2011_108
crossref_primary_10_1038_nn_2413
crossref_primary_10_3945_ajcn_112_044024
crossref_primary_10_1002_hbm_26459
crossref_primary_10_3389_fnins_2020_00291
crossref_primary_10_1016_j_ridd_2017_11_012
crossref_primary_10_1007_s41782_019_00081_5
crossref_primary_10_1523_JNEUROSCI_0858_10_2010
crossref_primary_10_1016_j_neuroimage_2007_12_058
crossref_primary_10_3389_fnhum_2016_00542
crossref_primary_10_1016_j_brainres_2011_05_023
crossref_primary_10_1093_cercor_bhw211
crossref_primary_10_1016_j_neuroimage_2012_05_064
crossref_primary_10_1016_j_cortex_2018_04_012
crossref_primary_10_1186_1744_8069_7_45
crossref_primary_10_1155_2012_608501
crossref_primary_10_1172_JCI57377
Cites_doi 10.1016/j.neuron.2004.06.025
10.1016/j.tics.2004.01.008
10.1016/j.neuroimage.2005.08.004
10.1002/(SICI)1097-0193(1999)8:4<272::AID-HBM10>3.0.CO;2-4
10.1016/j.neuroimage.2004.11.017
10.1016/j.neuroimage.2004.03.027
10.1002/mrm.1156
10.1006/nimg.1997.0306
10.1006/nimg.2001.1037
10.1006/nimg.2001.0831
10.1002/mrm.1910330508
10.1016/j.neuroimage.2004.10.042
10.1016/S0896-6273(02)00747-X
10.1016/j.mri.2004.10.020
10.1097/00001756-200311140-00019
10.1016/S1053-8119(00)91610-0
10.1016/S0925-2312(02)00517-9
10.1002/0471221317
10.1002/hbm.20250
10.1002/mrm.1910350219
10.1002/hbm.10034
ContentType Journal Article
Copyright Copyright © 2006 Wiley‐Liss, Inc.
Copyright_xml – notice: Copyright © 2006 Wiley‐Liss, Inc.
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7X8
5PM
DOI 10.1002/hbm.20249
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Neurosciences Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Neurosciences Abstracts
MEDLINE - Academic
DatabaseTitleList
Neurosciences Abstracts

MEDLINE - Academic
MEDLINE
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
DocumentTitleAlternate Analyzing FIAC Data with BrainVoyager QX
EISSN 1097-0193
EndPage 401
ExternalDocumentID PMC6871277
16596654
10_1002_hbm_20249
HBM20249
ark_67375_WNG_PVPMSDVT_4
Genre article
Journal Article
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
702
7PT
7X7
8-0
8-1
8-3
8-4
8-5
8FI
8FJ
8UM
930
A03
AAESR
AAEVG
AAHHS
AAONW
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABIVO
ABJNI
ABPVW
ABUWG
ACBWZ
ACCFJ
ACGFS
ACIWK
ACPOU
ACPRK
ACSCC
ACXQS
ADBBV
ADEOM
ADIZJ
ADMGS
ADPDF
ADXAS
ADZOD
AEEZP
AEIMD
AENEX
AEQDE
AEUQT
AFBPY
AFGKR
AFKRA
AFPWT
AFRAH
AFZJQ
AHMBA
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BENPR
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
C45
CCPQU
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
FYUFA
G-S
G.N
GAKWD
GNP
GODZA
GROUPED_DOAJ
H.T
H.X
HBH
HF~
HHY
HHZ
HMCUK
HVGLF
HZ~
IAO
IHR
ITC
IX1
J0M
JPC
KQQ
L7B
LAW
LC2
LC3
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M6M
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OK1
OVD
OVEED
P2P
P2W
P2X
P4D
PALCI
PIMPY
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RPM
RWD
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
UB1
UKHRP
V2E
W8V
W99
WBKPD
WIB
WIH
WIK
WIN
WJL
WNSPC
WOHZO
WQJ
WRC
WUP
WXSBR
WYISQ
XG1
XSW
XV2
ZZTAW
~IA
~WT
AANHP
AAYCA
ACCMX
ACRPL
ACYXJ
ADNMO
AAFWJ
AAYXX
AFPKN
AGQPQ
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
7TK
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
7X8
5PM
ID FETCH-LOGICAL-c4829-d49cce0dc5cc24d515c3ba361fc73f70f4e52d72df9aef772fbcde770159714f3
IEDL.DBID DR2
ISSN 1065-9471
IngestDate Thu Aug 21 18:11:42 EDT 2025
Thu Jul 10 22:40:00 EDT 2025
Fri Jul 11 01:03:20 EDT 2025
Wed Feb 19 01:48:42 EST 2025
Tue Jul 01 04:25:53 EDT 2025
Thu Apr 24 23:09:10 EDT 2025
Wed Jan 22 16:51:55 EST 2025
Wed Oct 30 09:51:34 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4829-d49cce0dc5cc24d515c3ba361fc73f70f4e52d72df9aef772fbcde770159714f3
Notes istex:7DB14DFFE7C5522073FE6808B8E0CCA18BE62B6A
ArticleID:HBM20249
ark:/67375/WNG-PVPMSDVT-4
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/hbm.20249?download=true
PMID 16596654
PQID 19686166
PQPubID 23462
PageCount 10
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6871277
proquest_miscellaneous_67900071
proquest_miscellaneous_19686166
pubmed_primary_16596654
crossref_citationtrail_10_1002_hbm_20249
crossref_primary_10_1002_hbm_20249
wiley_primary_10_1002_hbm_20249_HBM20249
istex_primary_ark_67375_WNG_PVPMSDVT_4
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May 2006
PublicationDateYYYYMMDD 2006-05-01
PublicationDate_xml – month: 05
  year: 2006
  text: May 2006
PublicationDecade 2000
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
– name: United States
PublicationTitle Human brain mapping
PublicationTitleAlternate Hum. Brain Mapp
PublicationYear 2006
Publisher Wiley Subscription Services, Inc., A Wiley Company
Publisher_xml – name: Wiley Subscription Services, Inc., A Wiley Company
References Esposito F, Formisano E, Seifritz E, Goebel R, Morrone R, Tedeschi G, Di Salle F (2002): Spatial independent component analysis of functional MRI time-series: to what extent do results depend on the algorithm used? Hum Brain Mapp 16: 146-157.
Hyvärinen A, Oja E (2001): Independent component analysis. New York: John Wiley & Sons.
Formisano E, Linden DEJ, Di Salle F, Trojano L, Esposito F, Sack AT, Grossi D, Zanella FE, Goebel R (2002b): Tracking the mind's image in the brain. I. Time-resolved fMRI during visuospatial mental imagery. Neuron 35: 185-194.
Himberg J, Hyvarinen A, Esposito F (2004): Validating the independent components of neuroimaging time series via clustering and visualization. Neuroimage 22: 1214-1222.
Bullmore E, Brammer M, Williams S, Rabe-Hesketh S, Janot N, David A, Mellers J, Howard R, Sham P (1996): Statisticalmethods of estimation and inference for functional MR image analysis. Magn Reson Med 35: 261-277.
Forman SD, Cohen JD, Fitzgerald M, Eddy WF, Mintun MA, Noll DC (1995): Improved assessment of significant activation in functional magnetic resonance imaging (fMRI): use of a cluster-size threshold. Magn Reson Med 33: 636-647.
Formisano E, Esposito F, Kriegeskorte N, Tedeschi G, Di Salle F, Goebel R (2002a): Spatial independent component analysis of functional magnetic resonance imaging time-series: characterization of the cortical components. Neurocomputing 49: 241-254.
Belin P, Zatorre RJ (2003): Adaptation to speaker's voice in right anterior temporal lobe. Neuroreport 14: 2105-2109.
Talairach J, Tournoux P (1988) Co-planar stereotaxic atlas of the human brain. Stuttgart: G. Thieme.
Goebel R, Hasson U, Lefi I, Malach R (2004): Statistical analyses across aligned cortical hemispheres reveal high-resolution population maps of human visual cortex. Neuroimage 22(Suppl 2)
Genovese CR, Lazar NA, Nichols T (2002): Thresholding of statistical maps in functional neuroimaging using the false discovery rate. Neuroimage 15: 870-878.
Formisano E, Esposito F, Di Salle F, Goebel R (2004): Cortex-based independent component analysis of fMRI time-series. Magn Reson Imaging 22: 1493-1504.
Vaughan JT, Garwood M, Collins CM, Liu W, DelaBarre L, Adrainy G, Andersen P, Merkle H, Goebel R, Smith MB, Ugurbil K (2001): 7T vs. 4T: RF power, homogeneity, and signal-to-noise comparison in head images. Magn Reson Med 46: 24-30.
Kriegeskorte N, Goebel R (eds.) (2001): An efficient algorithm for topologically correct segmentation of the cortical sheet in anatomical MR volumes. Neuroimage 14: 329-346.
Van Atteveldt N, Formisano E, Goebel R, Blomert L (2004): Integration of letters and speech sounds in the human brain. Neuron 43: 271-282.
Goebel R (2000): A fast automated method for flattening cortical surfaces. Neuroimage 11: S680.
Friston KJ, Fletcher P, Josephs O, Holmes A, Rugg MD, Turner R (1998): Event-related fMRI: characterizing differential responses. Neuroimage 7: 30-40.
Roebroeck A, Formisano E, Goebel R (2005): Mapping directed influence over the brain using Granger causality and fMRI. Neuroimage 25: 230-242.
Dehaene-Lambertz G, Dehaene S, Anton JL, Campagne A, Ciuciu P, Dehaene GP, Denghien I, Jobert A, LeBihan D, Sigman M, Pallier C, Poline JB (2006): Functional segregation of cortical language areas by sentence repetition. Hum Brain Mapp 27: 360-371.
Fischl B, Sereno MI, Tootell RBH, Dale AM (1999): High-resolution inter-subject averaging and a coordinate system for the cortical surface. Hum Brain Mapp 8: 272-284.
Howarth C, Hutton C, Deichmann R (2006): Improvement of the image quality of T1-weighted anatomical brain scans. Neuroimage 29: 930-937.
Esposito F, Scarabino T, Hyvarinen A, Himberg J, Formisano E, Comani S, Tedeschi G, Goebel R, Seifritz E, Di Salle F (2005): Independent component analysis of fMRI group studies by self-organizing clustering. Neuroimage 25: 193-205.
Goebel, R., Singer, W (1999): Cortical surface-based statistical analysis of functional magnetic resonance imaging data. Neuroimage Suppl
Belin P, Fecteau S, Bedard C (2004): Thinking the voice: neural correlates of voice perception. Trends Cogn Sci 8: 129-135.
2002; 16
2004; 43
2004; 22
2002; 15
2001
2004; 8
2006; 27
2000; 11
1995; 33
2002a; 49
2003; 14
2006; 29
1999; 8
1998; 7
1996; 35
2002b; 35
2001; 46
2001; 14
2005; 25
1999
1988
e_1_2_5_25_1
e_1_2_5_26_1
e_1_2_5_23_1
e_1_2_5_21_1
e_1_2_5_22_1
Goebel R. (e_1_2_5_17_1) 1999
Goebel R (e_1_2_5_18_1) 2004; 22
e_1_2_5_20_1
e_1_2_5_15_1
e_1_2_5_14_1
e_1_2_5_9_1
e_1_2_5_16_1
e_1_2_5_8_1
e_1_2_5_11_1
e_1_2_5_7_1
e_1_2_5_10_1
e_1_2_5_6_1
e_1_2_5_13_1
e_1_2_5_5_1
e_1_2_5_12_1
e_1_2_5_4_1
e_1_2_5_3_1
e_1_2_5_2_1
e_1_2_5_19_1
Talairach J (e_1_2_5_24_1) 1988
References_xml – reference: Fischl B, Sereno MI, Tootell RBH, Dale AM (1999): High-resolution inter-subject averaging and a coordinate system for the cortical surface. Hum Brain Mapp 8: 272-284.
– reference: Genovese CR, Lazar NA, Nichols T (2002): Thresholding of statistical maps in functional neuroimaging using the false discovery rate. Neuroimage 15: 870-878.
– reference: Esposito F, Scarabino T, Hyvarinen A, Himberg J, Formisano E, Comani S, Tedeschi G, Goebel R, Seifritz E, Di Salle F (2005): Independent component analysis of fMRI group studies by self-organizing clustering. Neuroimage 25: 193-205.
– reference: Formisano E, Linden DEJ, Di Salle F, Trojano L, Esposito F, Sack AT, Grossi D, Zanella FE, Goebel R (2002b): Tracking the mind's image in the brain. I. Time-resolved fMRI during visuospatial mental imagery. Neuron 35: 185-194.
– reference: Howarth C, Hutton C, Deichmann R (2006): Improvement of the image quality of T1-weighted anatomical brain scans. Neuroimage 29: 930-937.
– reference: Friston KJ, Fletcher P, Josephs O, Holmes A, Rugg MD, Turner R (1998): Event-related fMRI: characterizing differential responses. Neuroimage 7: 30-40.
– reference: Goebel R, Hasson U, Lefi I, Malach R (2004): Statistical analyses across aligned cortical hemispheres reveal high-resolution population maps of human visual cortex. Neuroimage 22(Suppl 2)
– reference: Formisano E, Esposito F, Kriegeskorte N, Tedeschi G, Di Salle F, Goebel R (2002a): Spatial independent component analysis of functional magnetic resonance imaging time-series: characterization of the cortical components. Neurocomputing 49: 241-254.
– reference: Goebel R (2000): A fast automated method for flattening cortical surfaces. Neuroimage 11: S680.
– reference: Belin P, Zatorre RJ (2003): Adaptation to speaker's voice in right anterior temporal lobe. Neuroreport 14: 2105-2109.
– reference: Hyvärinen A, Oja E (2001): Independent component analysis. New York: John Wiley & Sons.
– reference: Roebroeck A, Formisano E, Goebel R (2005): Mapping directed influence over the brain using Granger causality and fMRI. Neuroimage 25: 230-242.
– reference: Belin P, Fecteau S, Bedard C (2004): Thinking the voice: neural correlates of voice perception. Trends Cogn Sci 8: 129-135.
– reference: Dehaene-Lambertz G, Dehaene S, Anton JL, Campagne A, Ciuciu P, Dehaene GP, Denghien I, Jobert A, LeBihan D, Sigman M, Pallier C, Poline JB (2006): Functional segregation of cortical language areas by sentence repetition. Hum Brain Mapp 27: 360-371.
– reference: Forman SD, Cohen JD, Fitzgerald M, Eddy WF, Mintun MA, Noll DC (1995): Improved assessment of significant activation in functional magnetic resonance imaging (fMRI): use of a cluster-size threshold. Magn Reson Med 33: 636-647.
– reference: Van Atteveldt N, Formisano E, Goebel R, Blomert L (2004): Integration of letters and speech sounds in the human brain. Neuron 43: 271-282.
– reference: Kriegeskorte N, Goebel R (eds.) (2001): An efficient algorithm for topologically correct segmentation of the cortical sheet in anatomical MR volumes. Neuroimage 14: 329-346.
– reference: Vaughan JT, Garwood M, Collins CM, Liu W, DelaBarre L, Adrainy G, Andersen P, Merkle H, Goebel R, Smith MB, Ugurbil K (2001): 7T vs. 4T: RF power, homogeneity, and signal-to-noise comparison in head images. Magn Reson Med 46: 24-30.
– reference: Goebel, R., Singer, W (1999): Cortical surface-based statistical analysis of functional magnetic resonance imaging data. Neuroimage Suppl
– reference: Himberg J, Hyvarinen A, Esposito F (2004): Validating the independent components of neuroimaging time series via clustering and visualization. Neuroimage 22: 1214-1222.
– reference: Bullmore E, Brammer M, Williams S, Rabe-Hesketh S, Janot N, David A, Mellers J, Howard R, Sham P (1996): Statisticalmethods of estimation and inference for functional MR image analysis. Magn Reson Med 35: 261-277.
– reference: Talairach J, Tournoux P (1988) Co-planar stereotaxic atlas of the human brain. Stuttgart: G. Thieme.
– reference: Esposito F, Formisano E, Seifritz E, Goebel R, Morrone R, Tedeschi G, Di Salle F (2002): Spatial independent component analysis of functional MRI time-series: to what extent do results depend on the algorithm used? Hum Brain Mapp 16: 146-157.
– reference: Formisano E, Esposito F, Di Salle F, Goebel R (2004): Cortex-based independent component analysis of fMRI time-series. Magn Reson Imaging 22: 1493-1504.
– volume: 15
  start-page: 870
  year: 2002
  end-page: 878
  article-title: Thresholding of statistical maps in functional neuroimaging using the false discovery rate
  publication-title: Neuroimage
– volume: 16
  start-page: 146
  year: 2002
  end-page: 157
  article-title: Spatial independent component analysis of functional MRI time‐series: to what extent do results depend on the algorithm used?
  publication-title: Hum Brain Mapp
– volume: 35
  start-page: 261
  year: 1996
  end-page: 277
  article-title: Statisticalmethods of estimation and inference for functional MR image analysis
  publication-title: Magn Reson Med
– volume: 11
  start-page: S680
  year: 2000
  article-title: A fast automated method for flattening cortical surfaces
  publication-title: Neuroimage
– year: 1999
  article-title: Cortical surface‐based statistical analysis of functional magnetic resonance imaging data
  publication-title: Neuroimage Suppl
– volume: 35
  start-page: 185
  year: 2002b
  end-page: 194
  article-title: Tracking the mind's image in the brain. I. Time‐resolved fMRI during visuospatial mental imagery
  publication-title: Neuron
– volume: 7
  start-page: 30
  year: 1998
  end-page: 40
  article-title: Event‐related fMRI: characterizing differential responses
  publication-title: Neuroimage
– volume: 43
  start-page: 271
  year: 2004
  end-page: 282
  article-title: Integration of letters and speech sounds in the human brain
  publication-title: Neuron
– volume: 14
  start-page: 2105
  year: 2003
  end-page: 2109
  article-title: Adaptation to speaker's voice in right anterior temporal lobe
  publication-title: Neuroreport
– year: 2001
– year: 1988
– volume: 29
  start-page: 930
  year: 2006
  end-page: 937
  article-title: Improvement of the image quality of T1‐weighted anatomical brain scans
  publication-title: Neuroimage
– volume: 8
  start-page: 272
  year: 1999
  end-page: 284
  article-title: High‐resolution inter‐subject averaging and a coordinate system for the cortical surface
  publication-title: Hum Brain Mapp
– volume: 22
  start-page: 1214
  year: 2004
  end-page: 1222
  article-title: Validating the independent components of neuroimaging time series via clustering and visualization
  publication-title: Neuroimage
– volume: 22
  issue: Suppl 2
  year: 2004
  article-title: Statistical analyses across aligned cortical hemispheres reveal high‐resolution population maps of human visual cortex
  publication-title: Neuroimage
– volume: 27
  start-page: 360
  year: 2006
  end-page: 371
  article-title: Functional segregation of cortical language areas by sentence repetition
  publication-title: Hum Brain Mapp
– volume: 33
  start-page: 636
  year: 1995
  end-page: 647
  article-title: Improved assessment of significant activation in functional magnetic resonance imaging (fMRI): use of a cluster‐size threshold
  publication-title: Magn Reson Med
– volume: 25
  start-page: 193
  year: 2005
  end-page: 205
  article-title: Independent component analysis of fMRI group studies by self‐organizing clustering
  publication-title: Neuroimage
– volume: 22
  start-page: 1493
  year: 2004
  end-page: 1504
  article-title: Cortex‐based independent component analysis of fMRI time‐series
  publication-title: Magn Reson Imaging
– volume: 25
  start-page: 230
  year: 2005
  end-page: 242
  article-title: Mapping directed influence over the brain using Granger causality and fMRI
  publication-title: Neuroimage
– volume: 14
  start-page: 329
  year: 2001
  end-page: 346
  article-title: An efficient algorithm for topologically correct segmentation of the cortical sheet in anatomical MR volumes
  publication-title: Neuroimage
– volume: 46
  start-page: 24
  year: 2001
  end-page: 30
  article-title: 7T vs. 4T: RF power, homogeneity, and signal‐to‐noise comparison in head images
  publication-title: Magn Reson Med
– volume: 8
  start-page: 129
  year: 2004
  end-page: 135
  article-title: Thinking the voice: neural correlates of voice perception
  publication-title: Trends Cogn Sci
– volume: 49
  start-page: 241
  year: 2002a
  end-page: 254
  article-title: Spatial independent component analysis of functional magnetic resonance imaging time‐series: characterization of the cortical components
  publication-title: Neurocomputing
– ident: e_1_2_5_25_1
  doi: 10.1016/j.neuron.2004.06.025
– ident: e_1_2_5_3_1
  doi: 10.1016/j.tics.2004.01.008
– ident: e_1_2_5_20_1
  doi: 10.1016/j.neuroimage.2005.08.004
– ident: e_1_2_5_8_1
  doi: 10.1002/(SICI)1097-0193(1999)8:4<272::AID-HBM10>3.0.CO;2-4
– ident: e_1_2_5_23_1
  doi: 10.1016/j.neuroimage.2004.11.017
– ident: e_1_2_5_19_1
  doi: 10.1016/j.neuroimage.2004.03.027
– ident: e_1_2_5_26_1
  doi: 10.1002/mrm.1156
– volume: 22
  issue: 2
  year: 2004
  ident: e_1_2_5_18_1
  article-title: Statistical analyses across aligned cortical hemispheres reveal high‐resolution population maps of human visual cortex
  publication-title: Neuroimage
– ident: e_1_2_5_13_1
  doi: 10.1006/nimg.1997.0306
– ident: e_1_2_5_14_1
  doi: 10.1006/nimg.2001.1037
– ident: e_1_2_5_16_1
– ident: e_1_2_5_22_1
  doi: 10.1006/nimg.2001.0831
– ident: e_1_2_5_9_1
  doi: 10.1002/mrm.1910330508
– ident: e_1_2_5_7_1
  doi: 10.1016/j.neuroimage.2004.10.042
– ident: e_1_2_5_11_1
  doi: 10.1016/S0896-6273(02)00747-X
– ident: e_1_2_5_12_1
  doi: 10.1016/j.mri.2004.10.020
– ident: e_1_2_5_2_1
  doi: 10.1097/00001756-200311140-00019
– ident: e_1_2_5_15_1
  doi: 10.1016/S1053-8119(00)91610-0
– ident: e_1_2_5_10_1
  doi: 10.1016/S0925-2312(02)00517-9
– ident: e_1_2_5_21_1
  doi: 10.1002/0471221317
– volume-title: Co‐planar stereotaxic atlas of the human brain
  year: 1988
  ident: e_1_2_5_24_1
– year: 1999
  ident: e_1_2_5_17_1
  article-title: Cortical surface‐based statistical analysis of functional magnetic resonance imaging data
  publication-title: Neuroimage Suppl
– ident: e_1_2_5_5_1
  doi: 10.1002/hbm.20250
– ident: e_1_2_5_4_1
  doi: 10.1002/mrm.1910350219
– ident: e_1_2_5_6_1
  doi: 10.1002/hbm.10034
SSID ssj0011501
Score 2.446119
Snippet The Functional Image Analysis Contest (FIAC) 2005 dataset was analyzed using BrainVoyager QX. First, we performed a standard analysis of the functional and...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 392
SubjectTerms Algorithms
Brain Mapping - methods
Cerebral Cortex - anatomy & histology
Cerebral Cortex - physiology
Cohort Studies
cortex-based analysis
cortical alignment
fMRI data analysis
Frontal Lobe - anatomy & histology
Frontal Lobe - physiology
functional magnetic resonance imaging
Humans
Image Processing, Computer-Assisted - methods
Image Processing, Computer-Assisted - trends
independent component analysis
Language
Language Tests
Linear Models
Magnetic Resonance Imaging - methods
Magnetic Resonance Imaging - trends
Nerve Net - anatomy & histology
Nerve Net - physiology
Principal Component Analysis - methods
Principal Component Analysis - standards
Reproducibility of Results
Software - standards
Software - trends
Speech Perception - physiology
Temporal Lobe - anatomy & histology
Temporal Lobe - physiology
Verbal Behavior - physiology
Title Analysis of functional image analysis contest (FIAC) data with brainvoyager QX: From single-subject to cortically aligned group general linear model analysis and self-organizing group independent component analysis
URI https://api.istex.fr/ark:/67375/WNG-PVPMSDVT-4/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhbm.20249
https://www.ncbi.nlm.nih.gov/pubmed/16596654
https://www.proquest.com/docview/19686166
https://www.proquest.com/docview/67900071
https://pubmed.ncbi.nlm.nih.gov/PMC6871277
Volume 27
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9NAEF5VRUK8cLQc5hwhVJUHt4mP3RieQiEEpFQFeuQBydrD20ZNHJRDon3iJ_D7eOSXMLM-QqCVEG-2PLv22LNzefYbxp4ZZdHtNokvrdV-JEPpS4yafRW3cDVxzZVxBbK7vHsQve_H_RX2stoLU-BD1Ak3WhlOX9MCl2q6vQANPVG0kRyjB9S_VKtFDtHHGjqKHB0XbKGJ9RPUwBWqUCPYrkcu2aIr9Fq_XuRo_l0v-bsf6wxR5wb7XLFQ1J-cbs1nakuf_4Hu-J883mTXSwcV2oVE3WIrWb7G1ts5BuejM9gAVzLqcvFr7Gqv_DO_zn5U6CYwtkDGssgxwmCECgtkdZEq45Fp2Oy8a-88B6pPBUoFg6JWFSWkBnzov4DOZDwCSmQMs5_fvk_nihJGMBvjFBOXfx-eAcYQx2gmwG1NgeMCQRuIbTkB1-NncWeZG5hmQ4uTFZ2sznHucuSg7gU8A6qxH-d0VA29zQ46b_Z3un7ZN8LXUStIfBMlWmcNo2Otg8igx6ZDJUPetFqEVjRslMWBEYGxicwshhdWaZMJgZ5RIpqRDe-w1RzvdI-ByUIecoNqD_VW1FJSmkyGYTPSeGa19thmJUGpLkHVqbfHMC3goIMUP2HqPqHHntakXwokkYuINpwY1hRyckqldyJOj3bfpnuHe71Prw_308hjTyo5TVEh0F8emWfj-TRFldriTc4vp-Aica6lx-4Wcr14Hh4n1I7aY2JJ4msCAiNfvpIPThwoOcfIOxACX4gT6MtZTLuveu7g_r-TPmDXitQXFZo-ZKuzyTx7hM7gTD12q_4X9Thlsg
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9NAEF6VVgJeOFqOcHWEUFUe3CY-1jHiJRRCCk1UaFrygqw9vG3UxEE5JNonfgK_j0d-CTPrIwRaCfFmy7Nrjz07l2e_YeyZlgbdbh05whjl-MITjsCo2ZFBHVcTV1xqWyDb4a1D_10v6C2xl8VemAwfoky40cqw-poWOCWkt-eooSeSdpJj-HCFrVBHbxtQfSzBo8jVseEWGlknQh1c4ApV3e1y6II1WqEX-_UiV_PvisnfPVlripo32eeCiawC5XRrNpVb6vwPfMf_5fIWu5H7qNDIhOo2W0rSVbbWSDE-H57BBtiqUZuOX2VX2_nP-TX2owA4gZEBspdZmhH6Q9RZIIqLVByPXMNmc7ex8xyoRBUoGwySulXkqBrwofcCmuPRECiXMUh-fvs-mUnKGcF0hFOMbQp-cAYYRhyjpQC7OwWOMxBtIL7FGGybn_mdRaphkgwMTpY1szrHufOR_bId8BSozH6U0lEx9A47bL7p7rScvHWEo_y6Gznaj5RKqloFSrm-RqdNeVJ4vGZU6JmwavwkcHXoahOJxGCEYaTSSRiicxSFNd94d9lyine6z0AnHve4Rs2HqsuvSyF0Ijyv5is8M0pV2GYhQrHKcdWpvccgzhCh3Rg_YWw_YYU9LUm_ZGAiFxFtWDksKcT4lKrvwiD-1Hkb7x_ttw9eH3Vjv8LWC0GNUSfQjx6RJqPZJEatWuc1zi-n4GFkvcsKu5cJ9vx5eBBRR-oKCxdEviQgPPLFK2n_xOKScwy-3TDEF2Il-nIW49artj148O-k6-xaq9vei_d2O-8fsutZJozqTh-x5el4ljxG33Aqn1gV8AvxNWnN
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6VVqq48Gh5hFdHCFXl4Dax17sxnEJDSIFEBdqSA9JqvettoyZOlYdEe-In8Ps48kuYXT9CoJUQN1ueXXvs2Xl59htCnunYoNutI08aozwqA-lJjJq9OKzjamKKxdoVyHZZ-5C-7YW9JfKy2AuT4UOUCTe7Mpy-tgv8TJudOWjoSWw3kmP0cI2sUFatW5Fufiyxo6yn46IttLFehCq4gBWq-jvl0AVjtGLf69fLPM2_CyZ_d2SdJWrdJF8KHrIClNPt2TTeVhd_wDv-J5O3yI3cQ4VGJlK3yVKSrpH1RorR-fAcNsHVjLpk_BpZ7eS_5tfJjwLeBEYGrLXMkozQH6LGAllctKXxyDRstfYau8_BFqiCzQVDbHtV5Jga8KH3Alrj0RBsJmOQ_Pz2fTKLbcYIpiOcYuwS8INzwCDiGO0EuL0pcJxBaINlW47BNfmZ31mmGibJwOBkWSurC5w7H9kvmwFPwRbZj1J7VAy9Qw5brw92217eOMJTtO5HnqaRUklVq1Apn2p02VQQy4DVjOKB4VVDk9DX3NcmkonB-MLESieco2sU8Ro1wV2ynOKd7hPQScACplHvoeKi9VhKncggqFGFZ0apCtkqJEioHFXdNvcYiAwP2hf4CYX7hBXytCQ9y6BELiPadGJYUsjxqa2946H43H0j9o_2O5-aRweCVshGIacCNYL9zSPTZDSbCNSpdVZj7GoKxiPnW1bIvUyu58_Dwsj2o64QviDxJYFFI1-8kvZPHCo5w9Db5xxfiBPoq1kU7Vcdd_Dg30k3yOp-syXe73XfPSTXszSYLTp9RJan41nyGB3DafzEKYBfo2RohQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analysis+of+functional+image+analysis+contest+%28FIAC%29+data+with+brainvoyager+QX%3A+From+single-subject+to+cortically+aligned+group+general+linear+model+analysis+and+self-organizing+group+independent+component+analysis&rft.jtitle=Human+brain+mapping&rft.au=Goebel%2C+Rainer&rft.au=Esposito%2C+Fabrizio&rft.au=Formisano%2C+Elia&rft.date=2006-05-01&rft.issn=1065-9471&rft.volume=27&rft.issue=5&rft.spage=392&rft_id=info:doi/10.1002%2Fhbm.20249&rft_id=info%3Apmid%2F16596654&rft.externalDocID=16596654
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1065-9471&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1065-9471&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1065-9471&client=summon