Analysis of functional image analysis contest (FIAC) data with brainvoyager QX: From single-subject to cortically aligned group general linear model analysis and self-organizing group independent component analysis
The Functional Image Analysis Contest (FIAC) 2005 dataset was analyzed using BrainVoyager QX. First, we performed a standard analysis of the functional and anatomical data that includes preprocessing, spatial normalization into Talairach space, hypothesis‐driven statistics (one‐ and two‐factorial, s...
Saved in:
Published in | Human brain mapping Vol. 27; no. 5; pp. 392 - 401 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc., A Wiley Company
01.05.2006
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The Functional Image Analysis Contest (FIAC) 2005 dataset was analyzed using BrainVoyager QX. First, we performed a standard analysis of the functional and anatomical data that includes preprocessing, spatial normalization into Talairach space, hypothesis‐driven statistics (one‐ and two‐factorial, single‐subject and group‐level random effects, General Linear Model [GLM]) of the block‐ and event‐related paradigms. Strong sentence and weak speaker group‐level effects were detected in temporal and frontal regions. Following this standard analysis, we performed single‐subject and group‐level (Talairach‐based) Independent Component Analysis (ICA) that highlights the presence of functionally connected clusters in temporal and frontal regions for sentence processing, besides revealing other networks related to auditory stimulation or to the default state of the brain. Finally, we applied a high‐resolution cortical alignment method to improve the spatial correspondence across brains and re‐run the random effects group GLM as well as the group‐level ICA in this space. Using spatially and temporally unsmoothed data, this cortex‐based analysis revealed comparable results but with a set of spatially more confined group clusters and more differential group region of interest time courses. Hum. Brain Mapp, 2006. © 2006 Wiley‐Liss, Inc. |
---|---|
AbstractList | The Functional Image Analysis Contest (FIAC) 2005 dataset was analyzed using BrainVoyager QX. First, we performed a standard analysis of the functional and anatomical data that includes preprocessing, spatial normalization into Talairach space, hypothesis‐driven statistics (one‐ and two‐factorial, single‐subject and group‐level random effects, General Linear Model [GLM]) of the block‐ and event‐related paradigms. Strong sentence and weak speaker group‐level effects were detected in temporal and frontal regions. Following this standard analysis, we performed single‐subject and group‐level (Talairach‐based) Independent Component Analysis (ICA) that highlights the presence of functionally connected clusters in temporal and frontal regions for sentence processing, besides revealing other networks related to auditory stimulation or to the default state of the brain. Finally, we applied a high‐resolution cortical alignment method to improve the spatial correspondence across brains and re‐run the random effects group GLM as well as the group‐level ICA in this space. Using spatially and temporally unsmoothed data, this cortex‐based analysis revealed comparable results but with a set of spatially more confined group clusters and more differential group region of interest time courses. Hum. Brain Mapp, 2006. © 2006 Wiley‐Liss, Inc. The Functional Image Analysis Contest (FIAC) 2005 dataset was analyzed using BrainVoyager QX. First, we performed a standard analysis of the functional and anatomical data that includes preprocessing, spatial normalization into Talairach space, hypothesis-driven statistics (one- and two-factorial, single- subject and group-level random effects, General Linear Model [GLM]) of the block- and event-related paradigms. Strong sentence and weak speaker group-level effects were detected in temporal and frontal regions. Following this standard analysis, we performed single-subject and group-level (Talairach-based) Independent Component Analysis (ICA) that highlights the presence of functionally connected clusters in temporal and frontal regions for sentence processing, besides revealing other networks related to auditory stimulation or to the default state of the brain. Finally, we applied a high-resolution cortical alignment method to improve the spatial correspondence across brains and re-run the random effects group GLM as well as the group-level ICA in this space. Using spatially and temporally unsmoothed data, this cortex-based analysis revealed comparable results but with a set of spatially more confined group clusters and more differential group region of interest time courses. Hum. Brain Mapp, 2006. The Functional Image Analysis Contest (FIAC) 2005 dataset was analyzed using BrainVoyager QX. First, we performed a standard analysis of the functional and anatomical data that includes preprocessing, spatial normalization into Talairach space, hypothesis-driven statistics (one- and two-factorial, single-subject and group-level random effects, General Linear Model [GLM]) of the block- and event-related paradigms. Strong sentence and weak speaker group-level effects were detected in temporal and frontal regions. Following this standard analysis, we performed single-subject and group-level (Talairach-based) Independent Component Analysis (ICA) that highlights the presence of functionally connected clusters in temporal and frontal regions for sentence processing, besides revealing other networks related to auditory stimulation or to the default state of the brain. Finally, we applied a high-resolution cortical alignment method to improve the spatial correspondence across brains and re-run the random effects group GLM as well as the group-level ICA in this space. Using spatially and temporally unsmoothed data, this cortex-based analysis revealed comparable results but with a set of spatially more confined group clusters and more differential group region of interest time courses.The Functional Image Analysis Contest (FIAC) 2005 dataset was analyzed using BrainVoyager QX. First, we performed a standard analysis of the functional and anatomical data that includes preprocessing, spatial normalization into Talairach space, hypothesis-driven statistics (one- and two-factorial, single-subject and group-level random effects, General Linear Model [GLM]) of the block- and event-related paradigms. Strong sentence and weak speaker group-level effects were detected in temporal and frontal regions. Following this standard analysis, we performed single-subject and group-level (Talairach-based) Independent Component Analysis (ICA) that highlights the presence of functionally connected clusters in temporal and frontal regions for sentence processing, besides revealing other networks related to auditory stimulation or to the default state of the brain. Finally, we applied a high-resolution cortical alignment method to improve the spatial correspondence across brains and re-run the random effects group GLM as well as the group-level ICA in this space. Using spatially and temporally unsmoothed data, this cortex-based analysis revealed comparable results but with a set of spatially more confined group clusters and more differential group region of interest time courses. The Functional Image Analysis Contest (FIAC) 2005 dataset was analyzed using BrainVoyager QX. First, we performed a standard analysis of the functional and anatomical data that includes preprocessing, spatial normalization into Talairach space, hypothesis-driven statistics (one- and two-factorial, single-subject and group-level random effects, General Linear Model [GLM]) of the block- and event-related paradigms. Strong sentence and weak speaker group-level effects were detected in temporal and frontal regions. Following this standard analysis, we performed single-subject and group-level (Talairach-based) Independent Component Analysis (ICA) that highlights the presence of functionally connected clusters in temporal and frontal regions for sentence processing, besides revealing other networks related to auditory stimulation or to the default state of the brain. Finally, we applied a high-resolution cortical alignment method to improve the spatial correspondence across brains and re-run the random effects group GLM as well as the group-level ICA in this space. Using spatially and temporally unsmoothed data, this cortex-based analysis revealed comparable results but with a set of spatially more confined group clusters and more differential group region of interest time courses. |
Author | Formisano, Elia Goebel, Rainer Esposito, Fabrizio |
AuthorAffiliation | 1 Brain Innovation, Maastricht, The Netherlands 2 Department of Cognitive Neuroscience, Faculty of Psychology, Maastricht University, Maastricht, The Netherlands |
AuthorAffiliation_xml | – name: 1 Brain Innovation, Maastricht, The Netherlands – name: 2 Department of Cognitive Neuroscience, Faculty of Psychology, Maastricht University, Maastricht, The Netherlands |
Author_xml | – sequence: 1 givenname: Rainer surname: Goebel fullname: Goebel, Rainer email: r.goebel@psychology.unimaas.nl organization: Brain Innovation, Maastricht, The Netherlands – sequence: 2 givenname: Fabrizio surname: Esposito fullname: Esposito, Fabrizio organization: Brain Innovation, Maastricht, The Netherlands – sequence: 3 givenname: Elia surname: Formisano fullname: Formisano, Elia organization: Department of Cognitive Neuroscience, Faculty of Psychology, Maastricht University, Maastricht, The Netherlands |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/16596654$$D View this record in MEDLINE/PubMed |
BookMark | eNqFUsluFDEUbKEgssCBH0A-IXLoxO7N0xyQhoFJIiUQRAjcLLf93HHitge7O2H4UL4HD7OwCMTFtvyq6tVbdpMt6ywkyWOCDwjG2eFV0x1kOCvqe8kOwTVNManzrcW7KtO6oGQ72Q3hGmNCSkweJNukKuuqKoud5NvYcjMPOiCnkBqs6LWLP0h3vAXE10HhbA-hR8-mJ-PJPpK85-hO91eo8VzbWzePaI_efXqOpt51KGjbGkjD0FyD6FHvooDvteDGzBE3urUgUevdMEMtWPAxodEWuEedk2B-5uVWogBGpc633OqvUXfF01bCDOJh-yjezWJH4mtNfJjcV9wEeLS695IP09cXk-P09O3RyWR8mopilNWpLGohAEtRCpEVsiSlyBueV0QJmiuKVQFlJmkmVc1BUZqpRkigFJOypqRQ-V7yYqk7G5oOpIgeYjFs5mP__Jw5rtnvEauvWOtuWTWiJKM0CjxdCXj3eYgtZp0OAozhFtwQWEVrjDEl_wWSuhpVpKoi8MmvljZe1jOPgMMlQHgXggfFhO75Yu7RoTaMYLbYKha3iv3YqsjY_4OxEf0LdqV-pw3M_w1kxy_P1ox0ydChhy8bBvc3sfqcluzjmyN2fnl-9v7V5QUr8u8XxfKf |
CitedBy_id | crossref_primary_10_1016_j_bandl_2012_09_002 crossref_primary_10_1111_j_1460_9568_2008_06350_x crossref_primary_10_1002_hbm_21078 crossref_primary_10_1016_j_neuropsychologia_2011_04_008 crossref_primary_10_1093_cercor_bhr352 crossref_primary_10_1016_j_neuroimage_2014_05_071 crossref_primary_10_1016_j_neuroimage_2017_03_063 crossref_primary_10_1371_journal_pone_0018307 crossref_primary_10_1016_j_appet_2014_12_204 crossref_primary_10_1523_JNEUROSCI_0068_23_2023 crossref_primary_10_1007_s10545_011_9439_9 crossref_primary_10_1093_scan_nss098 crossref_primary_10_1016_j_neuroimage_2008_06_016 crossref_primary_10_1098_rstb_2015_0376 crossref_primary_10_1016_j_neuroimage_2023_120240 crossref_primary_10_1016_j_pscychresns_2009_03_002 crossref_primary_10_1073_pnas_1617622114 crossref_primary_10_1016_j_mri_2009_12_026 crossref_primary_10_1093_brain_awae096 crossref_primary_10_1016_j_bandc_2015_07_003 crossref_primary_10_1016_j_neuroimage_2012_10_080 crossref_primary_10_1038_nmeth_1431 crossref_primary_10_1007_s00221_013_3575_4 crossref_primary_10_1016_j_schres_2013_04_024 crossref_primary_10_1016_j_cortex_2014_12_020 crossref_primary_10_1016_j_pediatrneurol_2011_09_004 crossref_primary_10_1016_j_neuroimage_2011_05_008 crossref_primary_10_1016_j_neuroimage_2017_03_048 crossref_primary_10_1017_S1092852918000767 crossref_primary_10_3389_fnhum_2015_00504 crossref_primary_10_1097_WNR_0000000000001163 crossref_primary_10_1109_TBME_2016_2553960 crossref_primary_10_3389_fnins_2017_00345 crossref_primary_10_1007_s00234_012_1044_6 crossref_primary_10_1038_mp_2009_129 crossref_primary_10_1055_s_0040_1712496 crossref_primary_10_1017_S0033291717001192 crossref_primary_10_1080_17470919_2011_609907 crossref_primary_10_1111_j_1469_7610_2008_01963_x crossref_primary_10_1177_1533317513517047 crossref_primary_10_1523_JNEUROSCI_0587_18_2018 crossref_primary_10_1016_j_neuroimage_2009_10_074 crossref_primary_10_1002_alz_12718 crossref_primary_10_1016_j_neuroimage_2016_07_011 crossref_primary_10_3390_brainsci12030391 crossref_primary_10_1016_j_nicl_2016_09_023 crossref_primary_10_1016_j_jneumeth_2023_109899 crossref_primary_10_1126_science_1167371 crossref_primary_10_1016_j_euroneuro_2015_08_007 crossref_primary_10_1016_j_neuroimage_2017_11_020 crossref_primary_10_1016_j_nicl_2017_04_012 crossref_primary_10_3389_fneur_2016_00201 crossref_primary_10_1016_j_pain_2009_08_009 crossref_primary_10_1002_hbm_23444 crossref_primary_10_1152_jn_00008_2015 crossref_primary_10_1002_hbm_24538 crossref_primary_10_1016_j_neuroimage_2019_05_021 crossref_primary_10_1007_s00415_012_6569_4 crossref_primary_10_1038_s41562_017_0093 crossref_primary_10_1016_j_neuroimage_2008_05_028 crossref_primary_10_1016_j_neuroimage_2011_05_035 crossref_primary_10_1093_scan_nst138 crossref_primary_10_1016_j_cortex_2012_01_005 crossref_primary_10_1016_j_neuroimage_2017_02_040 crossref_primary_10_1016_j_media_2010_02_007 crossref_primary_10_3390_brainsci14070713 crossref_primary_10_1002_hbm_22387 crossref_primary_10_1111_j_1460_9568_2009_07003_x crossref_primary_10_1016_j_neuroimage_2011_04_008 crossref_primary_10_1007_s11858_010_0264_7 crossref_primary_10_1016_j_neuroimage_2011_05_043 crossref_primary_10_3174_ajnr_A3052 crossref_primary_10_1007_s11682_015_9380_x crossref_primary_10_1186_1744_8069_10_18 crossref_primary_10_3390_brainsci3031357 crossref_primary_10_1016_j_neuroimage_2006_11_015 crossref_primary_10_1093_cercor_bht347 crossref_primary_10_3389_fnhum_2018_00492 crossref_primary_10_1146_annurev_clinpsy_072220_014550 crossref_primary_10_1016_j_neuroimage_2009_01_001 crossref_primary_10_1523_ENEURO_0314_16_2016 crossref_primary_10_1002_hipo_23205 crossref_primary_10_1016_j_neuroimage_2009_03_074 crossref_primary_10_1371_journal_pcbi_1003412 crossref_primary_10_1186_1744_8069_10_23 crossref_primary_10_1371_journal_pone_0190164 crossref_primary_10_1162_jocn_a_00028 crossref_primary_10_3174_ajnr_A5246 crossref_primary_10_1016_j_neuropsychologia_2011_03_004 crossref_primary_10_1007_s10548_013_0331_9 crossref_primary_10_1097_MD_0000000000001977 crossref_primary_10_1111_desc_12385 crossref_primary_10_1002_hbm_21471 crossref_primary_10_1007_s00406_020_01167_2 crossref_primary_10_1016_j_pscychresns_2011_06_007 crossref_primary_10_1002_nbm_5267 crossref_primary_10_1016_j_concog_2008_12_009 crossref_primary_10_3389_fnins_2015_00455 crossref_primary_10_1002_oby_20630 crossref_primary_10_1016_j_dib_2017_04_007 crossref_primary_10_1111_j_1365_2982_2009_01436_x crossref_primary_10_1068_p7640 crossref_primary_10_1016_j_neuroimage_2021_118671 crossref_primary_10_18510_hssr_2019_7496 crossref_primary_10_1093_scan_nst100 crossref_primary_10_1007_s00701_021_04802_6 crossref_primary_10_1002_hbm_23640 crossref_primary_10_1111_ejn_12659 crossref_primary_10_1016_j_neuron_2007_10_015 crossref_primary_10_1371_journal_pone_0137056 crossref_primary_10_1016_j_biopsych_2011_04_005 crossref_primary_10_1162_jocn_a_00008 crossref_primary_10_1523_JNEUROSCI_0188_15_2015 crossref_primary_10_1080_13554794_2014_960428 crossref_primary_10_1093_cercor_bhp314 crossref_primary_10_1016_j_neuroimage_2014_02_025 crossref_primary_10_1016_j_neuroimage_2014_11_044 crossref_primary_10_1093_scan_nss009 crossref_primary_10_1002_hbm_22543 crossref_primary_10_1088_0031_9155_60_20_8109 crossref_primary_10_1007_s00429_019_01828_6 crossref_primary_10_1371_journal_pone_0025453 crossref_primary_10_1093_cercor_bhac473 crossref_primary_10_1016_j_neuropsychologia_2012_01_017 crossref_primary_10_1155_2022_8744982 crossref_primary_10_3389_fnins_2022_793036 crossref_primary_10_1016_j_ejrad_2008_01_042 crossref_primary_10_1016_j_bandc_2010_07_002 crossref_primary_10_1016_j_neuroimage_2009_12_064 crossref_primary_10_1086_684285 crossref_primary_10_1109_TSIPN_2020_2982765 crossref_primary_10_1080_02643290802340972 crossref_primary_10_1002_hbm_21247 crossref_primary_10_1002_hbm_22336 crossref_primary_10_1016_j_neuroimage_2020_117281 crossref_primary_10_1002_hbm_21480 crossref_primary_10_1016_j_jneumeth_2023_109808 crossref_primary_10_3233_JAD_191127 crossref_primary_10_1002_mrm_29202 crossref_primary_10_1016_j_neuroimage_2017_01_063 crossref_primary_10_1093_cercor_bhy151 crossref_primary_10_1371_journal_pone_0086068 crossref_primary_10_3389_fnbeh_2014_00179 crossref_primary_10_1016_j_neuroimage_2011_08_033 crossref_primary_10_1089_brain_2016_0450 crossref_primary_10_1016_j_neuroimage_2011_08_035 crossref_primary_10_1016_j_dcn_2012_04_004 crossref_primary_10_1007_s12021_023_09645_3 crossref_primary_10_1093_cercor_bhy183 crossref_primary_10_1093_cercor_bhp130 crossref_primary_10_1080_14616734_2024_2384393 crossref_primary_10_1007_s11682_018_9919_8 crossref_primary_10_1016_j_brainres_2024_149119 crossref_primary_10_1038_srep13779 crossref_primary_10_1371_journal_pone_0164891 crossref_primary_10_1016_j_dcn_2012_04_001 crossref_primary_10_1167_19_2_9 crossref_primary_10_1038_s41539_019_0057_x crossref_primary_10_1016_j_neuroimage_2011_08_093 crossref_primary_10_1016_j_cortex_2011_11_003 crossref_primary_10_1093_cercor_bhz021 crossref_primary_10_1177_0031512517700054 crossref_primary_10_1093_brain_awp308 crossref_primary_10_1093_cercor_bhaa246 crossref_primary_10_1212_WNL_0000000000000496 crossref_primary_10_1111_j_1460_9568_2011_07915_x crossref_primary_10_1093_cercor_bhac427 crossref_primary_10_1152_jn_00592_2016 crossref_primary_10_1016_j_neuroimage_2023_120296 crossref_primary_10_1016_j_neuropsychologia_2008_11_009 crossref_primary_10_1162_jocn_a_00891 crossref_primary_10_1093_scan_nsq010 crossref_primary_10_1016_j_neuroimage_2011_12_005 crossref_primary_10_1523_JNEUROSCI_0340_07_2007 crossref_primary_10_1002_hbm_22774 crossref_primary_10_1089_brain_2016_0419 crossref_primary_10_1111_desc_12546 crossref_primary_10_1016_j_cortex_2014_02_026 crossref_primary_10_1212_WNL_0b013e318245287d crossref_primary_10_1111_ejn_15504 crossref_primary_10_1016_j_neuroimage_2014_02_006 crossref_primary_10_1007_s00429_017_1598_5 crossref_primary_10_1111_psyg_12313 crossref_primary_10_1152_jn_00501_2013 crossref_primary_10_1016_j_neuroimage_2012_01_083 crossref_primary_10_3389_fnagi_2016_00016 crossref_primary_10_1016_j_brainres_2014_06_030 crossref_primary_10_1016_j_brainresbull_2015_10_003 crossref_primary_10_1016_j_neuropsychologia_2023_108773 crossref_primary_10_1212_01_wnl_0000295509_30630_10 crossref_primary_10_1080_17470919_2013_832374 crossref_primary_10_1007_s00406_016_0760_z crossref_primary_10_1016_j_neuroimage_2009_10_028 crossref_primary_10_1080_23273798_2018_1442012 crossref_primary_10_1038_s41467_024_45065_w crossref_primary_10_3233_JAD_150562 crossref_primary_10_1371_journal_pone_0115551 crossref_primary_10_1523_JNEUROSCI_2559_15_2016 crossref_primary_10_1016_j_neuroimage_2009_05_057 crossref_primary_10_1016_j_ejpn_2013_12_002 crossref_primary_10_1523_JNEUROSCI_4339_13_2014 crossref_primary_10_1162_jocn_a_01608 crossref_primary_10_1002_hbm_21500 crossref_primary_10_1016_j_bandc_2010_10_004 crossref_primary_10_1016_j_soard_2014_06_005 crossref_primary_10_1093_brain_awr005 crossref_primary_10_1038_s41598_019_41965_w crossref_primary_10_1016_j_neuroimage_2010_10_080 crossref_primary_10_1523_JNEUROSCI_1740_07_2007 crossref_primary_10_1093_cercor_bhv269 crossref_primary_10_1523_JNEUROSCI_0065_16_2016 crossref_primary_10_1371_journal_pone_0072728 crossref_primary_10_1038_s41467_020_17786_1 crossref_primary_10_1523_ENEURO_0252_17_2018 crossref_primary_10_1016_j_neuroimage_2015_10_022 crossref_primary_10_1016_j_pscychresns_2014_11_014 crossref_primary_10_1093_cercor_bhv018 crossref_primary_10_1002_hbm_20640 crossref_primary_10_1016_j_cortex_2020_05_005 crossref_primary_10_1016_j_displa_2012_10_008 crossref_primary_10_1523_JNEUROSCI_0009_23_2023 crossref_primary_10_1016_j_neurobiolaging_2010_04_013 crossref_primary_10_1007_s00429_014_0748_2 crossref_primary_10_1007_s00429_017_1500_5 crossref_primary_10_1016_j_neuroimage_2010_09_062 crossref_primary_10_1523_JNEUROSCI_0596_15_2015 crossref_primary_10_3389_fnins_2016_00487 crossref_primary_10_3389_fnhum_2014_00658 crossref_primary_10_1016_j_neuroimage_2013_07_056 crossref_primary_10_1152_jn_01307_2007 crossref_primary_10_1111_ejn_12140 crossref_primary_10_1044_1092_4388_2008_075 crossref_primary_10_1371_journal_pone_0210803 crossref_primary_10_1016_j_neuroimage_2008_11_014 crossref_primary_10_1002_hbm_22853 crossref_primary_10_1016_j_autneu_2017_05_012 crossref_primary_10_1073_pnas_2012900118 crossref_primary_10_1038_s41562_019_0648_9 crossref_primary_10_1523_JNEUROSCI_1890_22_2023 crossref_primary_10_1016_j_ijdevneu_2015_10_003 crossref_primary_10_1002_pbc_22362 crossref_primary_10_1523_JNEUROSCI_3113_10_2011 crossref_primary_10_3389_fnins_2016_00254 crossref_primary_10_1002_brb3_2931 crossref_primary_10_1017_S0033291715000161 crossref_primary_10_1007_s10608_019_10075_2 crossref_primary_10_1093_brain_awr020 crossref_primary_10_1016_j_humov_2013_06_001 crossref_primary_10_1371_journal_pone_0019165 crossref_primary_10_1016_j_neuropsychologia_2025_109067 crossref_primary_10_1111_desc_12857 crossref_primary_10_3389_fnhum_2016_00614 crossref_primary_10_1016_j_neuroimage_2010_10_054 crossref_primary_10_1016_j_dcn_2017_02_006 crossref_primary_10_1016_j_nicl_2017_06_021 crossref_primary_10_1016_j_neuropsychologia_2017_05_009 crossref_primary_10_7554_eLife_30018 crossref_primary_10_1016_j_nicl_2014_08_015 crossref_primary_10_1016_j_brainres_2015_05_007 crossref_primary_10_1016_j_neuroimage_2008_12_059 crossref_primary_10_1016_j_neuroimage_2018_09_068 crossref_primary_10_1093_psyrad_kkab002 crossref_primary_10_1162_jocn_a_00720 crossref_primary_10_1016_j_pscychresns_2015_05_008 crossref_primary_10_1016_j_neuroimage_2008_10_022 crossref_primary_10_1017_S0033291715002998 crossref_primary_10_1016_j_nicl_2017_01_020 crossref_primary_10_1016_j_neuroimage_2016_04_056 crossref_primary_10_1371_journal_pone_0036222 crossref_primary_10_1016_j_neuroimage_2007_02_022 crossref_primary_10_1523_JNEUROSCI_0977_15_2015 crossref_primary_10_1016_j_neuroimage_2013_07_017 crossref_primary_10_1007_s11682_022_00744_4 crossref_primary_10_1371_journal_pone_0128608 crossref_primary_10_1007_s40519_017_0474_x crossref_primary_10_1016_j_eatbeh_2013_08_006 crossref_primary_10_1007_s12311_015_0706_4 crossref_primary_10_1016_j_neuroimage_2007_02_018 crossref_primary_10_1016_j_nicl_2014_09_018 crossref_primary_10_1016_j_bbr_2019_112048 crossref_primary_10_1017_neu_2019_49 crossref_primary_10_1155_2013_251308 crossref_primary_10_1186_1471_2377_13_148 crossref_primary_10_1016_j_appet_2018_10_010 crossref_primary_10_1177_1744806916662661 crossref_primary_10_1016_j_jpsychires_2012_03_016 crossref_primary_10_3389_fnhum_2015_00277 crossref_primary_10_1093_ntr_ntt214 crossref_primary_10_1111_j_1460_9568_2010_07208_x crossref_primary_10_1093_cercor_bhx024 crossref_primary_10_1016_j_neuroimage_2007_02_002 crossref_primary_10_1002_hbm_20860 crossref_primary_10_1016_j_neuroscience_2014_01_053 crossref_primary_10_1371_journal_pone_0146250 crossref_primary_10_1523_JNEUROSCI_2936_12_2013 crossref_primary_10_3389_fpsyg_2015_00321 crossref_primary_10_1016_j_neuropsychologia_2010_04_007 crossref_primary_10_1007_s11682_013_9273_9 crossref_primary_10_1038_s41593_020_0698_3 crossref_primary_10_1371_journal_pone_0029153 crossref_primary_10_7554_eLife_40014 crossref_primary_10_1093_cercor_bht006 crossref_primary_10_1016_j_neuropsychologia_2020_107634 crossref_primary_10_1016_j_neuropsychologia_2010_04_011 crossref_primary_10_1016_j_bbr_2008_03_040 crossref_primary_10_1016_j_neulet_2008_07_015 crossref_primary_10_1038_srep08413 crossref_primary_10_1002_hbm_23088 crossref_primary_10_1111_j_1460_9568_2009_07014_x crossref_primary_10_3389_fnhum_2014_00226 crossref_primary_10_3389_fnhum_2016_00646 crossref_primary_10_1016_j_pain_2012_11_014 crossref_primary_10_1016_j_neuron_2006_12_025 crossref_primary_10_1016_j_visres_2011_02_005 crossref_primary_10_1371_journal_pone_0170795 crossref_primary_10_1523_ENEURO_0039_21_2021 crossref_primary_10_1016_j_neuropsychologia_2020_107405 crossref_primary_10_1007_s00701_013_1914_7 crossref_primary_10_1523_JNEUROSCI_0026_23_2023 crossref_primary_10_1523_JNEUROSCI_4572_10_2011 crossref_primary_10_3366_drs_2011_0024 crossref_primary_10_1016_j_media_2020_101700 crossref_primary_10_1523_JNEUROSCI_2713_07_2007 crossref_primary_10_1093_cercor_bhr093 crossref_primary_10_1093_cercor_bhr095 crossref_primary_10_1080_23279095_2019_1575219 crossref_primary_10_1016_j_neuroimage_2011_03_009 crossref_primary_10_1093_scan_nsw039 crossref_primary_10_1007_s41105_017_0096_8 crossref_primary_10_1016_j_neuropsychologia_2009_01_006 crossref_primary_10_1016_j_ymgme_2016_02_004 crossref_primary_10_3389_fpsyg_2015_01663 crossref_primary_10_1038_s41467_017_02080_4 crossref_primary_10_1093_cercor_bht016 crossref_primary_10_1016_j_cortex_2019_07_017 crossref_primary_10_1016_j_neuroimage_2011_01_026 crossref_primary_10_1093_scan_nsw022 crossref_primary_10_1523_JNEUROSCI_0859_14_2015 crossref_primary_10_1162_jocn_a_00900 crossref_primary_10_1016_j_pscychresns_2023_111728 crossref_primary_10_1007_s10803_022_05675_z crossref_primary_10_1016_j_neuroimage_2016_01_015 crossref_primary_10_1002_hbm_23051 crossref_primary_10_1080_17470919_2013_858080 crossref_primary_10_1016_j_neuroimage_2012_10_053 crossref_primary_10_1016_j_schres_2019_05_010 crossref_primary_10_1093_sleep_zsaa058 crossref_primary_10_1038_s41598_022_17909_2 crossref_primary_10_1016_j_neuroimage_2013_05_032 crossref_primary_10_1016_j_neuroimage_2009_09_027 crossref_primary_10_1371_journal_pone_0120030 crossref_primary_10_1016_j_neuroimage_2017_10_050 crossref_primary_10_3390_brainsci8070128 crossref_primary_10_1016_j_pscychresns_2015_07_007 crossref_primary_10_1523_JNEUROSCI_1388_12_2012 crossref_primary_10_1016_j_pscychresns_2015_07_005 crossref_primary_10_1002_hbm_22195 crossref_primary_10_1016_j_neurobiolaging_2014_10_041 crossref_primary_10_1002_hbm_22191 crossref_primary_10_1093_sleep_32_8_999 crossref_primary_10_1016_j_neuroimage_2011_03_038 crossref_primary_10_1016_j_yebeh_2009_11_002 crossref_primary_10_1007_s10334_007_0103_1 crossref_primary_10_1371_journal_pone_0050132 crossref_primary_10_1016_j_cortex_2018_11_027 crossref_primary_10_1016_j_neuroimage_2018_05_010 crossref_primary_10_1016_j_media_2021_102271 crossref_primary_10_1016_j_neuropsychologia_2020_107699 crossref_primary_10_1016_j_expneurol_2009_01_025 crossref_primary_10_1007_s10278_009_9266_9 crossref_primary_10_1080_15294145_2014_976649 crossref_primary_10_1093_brain_awt007 crossref_primary_10_1093_cercor_bhu150 crossref_primary_10_1016_j_jneumeth_2015_12_010 crossref_primary_10_1016_j_dcn_2011_07_006 crossref_primary_10_1016_j_neuroimage_2006_10_041 crossref_primary_10_1016_j_media_2015_04_005 crossref_primary_10_1371_journal_pone_0020742 crossref_primary_10_1016_j_pscychresns_2018_04_008 crossref_primary_10_1109_TVCG_2013_161 crossref_primary_10_3389_fnhum_2017_00415 crossref_primary_10_1371_journal_pone_0106285 crossref_primary_10_3389_fnhum_2022_996989 crossref_primary_10_1007_s11682_016_9549_y crossref_primary_10_1038_s42003_020_0764_0 crossref_primary_10_1523_JNEUROSCI_4370_10_2011 crossref_primary_10_1016_j_neuroimage_2009_09_065 crossref_primary_10_1111_jnp_12340 crossref_primary_10_1126_scitranslmed_3002865 crossref_primary_10_1111_bdi_12007 crossref_primary_10_1017_S0033291717001076 crossref_primary_10_1002_hbm_23120 crossref_primary_10_1159_000358090 crossref_primary_10_1002_hbm_24213 crossref_primary_10_3389_fpsyg_2019_02286 crossref_primary_10_1002_hbm_24452 crossref_primary_10_1016_j_neuroimage_2012_07_005 crossref_primary_10_1016_j_bandc_2016_09_014 crossref_primary_10_1016_j_neuroimage_2017_09_013 crossref_primary_10_1016_j_neuroimage_2010_12_037 crossref_primary_10_1016_j_neuropsychologia_2015_12_004 crossref_primary_10_1089_brain_2020_0814 crossref_primary_10_56532_mjsat_v3i3_155 crossref_primary_10_1371_journal_pbio_1002546 crossref_primary_10_1073_pnas_1612862114 crossref_primary_10_3389_fnbeh_2024_1451691 crossref_primary_10_1016_j_neuroimage_2009_08_042 crossref_primary_10_3389_fnagi_2016_00189 crossref_primary_10_1016_j_neuroimage_2020_117319 crossref_primary_10_1038_s41598_022_12174_9 crossref_primary_10_1177_0956797615598970 crossref_primary_10_1590_1414_431X20132799 crossref_primary_10_1111_j_1479_8301_2010_00326_x crossref_primary_10_1186_s12901_016_0029_1 crossref_primary_10_1093_scan_nst043 crossref_primary_10_1002_aur_3104 crossref_primary_10_1016_j_neuroimage_2016_01_043 crossref_primary_10_1080_23273798_2019_1668953 crossref_primary_10_1016_j_neuroscience_2010_05_080 crossref_primary_10_1093_sleep_zsy031 crossref_primary_10_1093_scan_nsu128 crossref_primary_10_1109_TMI_2014_2332370 crossref_primary_10_1016_j_neuroimage_2013_11_042 crossref_primary_10_1038_mp_2012_181 crossref_primary_10_1002_hbm_24228 crossref_primary_10_1016_j_bandl_2012_10_003 crossref_primary_10_1016_j_neuroscience_2016_01_056 crossref_primary_10_1016_j_bbr_2012_09_033 crossref_primary_10_1016_j_jpeds_2012_10_003 crossref_primary_10_1002_hbm_23571 crossref_primary_10_1016_j_neuroimage_2009_08_067 crossref_primary_10_1002_hbm_24422 crossref_primary_10_2217_iim_10_35 crossref_primary_10_1016_j_neuroimage_2009_07_024 crossref_primary_10_3389_fnhum_2016_00054 crossref_primary_10_1148_radiol_2501072153 crossref_primary_10_1016_j_neuroscience_2013_10_047 crossref_primary_10_1002_hbm_24897 crossref_primary_10_1186_s12868_024_00892_x crossref_primary_10_1111_j_1469_7610_2011_02406_x crossref_primary_10_1016_j_jneumeth_2013_01_021 crossref_primary_10_1111_ejn_12978 crossref_primary_10_1002_hbm_23320 crossref_primary_10_1162_jocn_a_00165 crossref_primary_10_1016_j_neuropsychologia_2014_09_022 crossref_primary_10_1016_j_neuroimage_2013_10_061 crossref_primary_10_1016_j_neuron_2010_06_009 crossref_primary_10_1016_j_brainres_2010_06_050 crossref_primary_10_1016_j_neubiorev_2020_09_016 crossref_primary_10_1016_j_neuroimage_2012_06_002 crossref_primary_10_1016_j_explore_2012_10_006 crossref_primary_10_1038_ijo_2011_213 crossref_primary_10_1007_s11682_023_00803_4 crossref_primary_10_1542_peds_2007_1566 crossref_primary_10_1016_j_cub_2024_09_008 crossref_primary_10_1002_brb3_1373 crossref_primary_10_1162_jocn_a_00371 crossref_primary_10_1002_brb3_3554 crossref_primary_10_1016_j_physbeh_2011_08_015 crossref_primary_10_1093_cercor_bhr291 crossref_primary_10_1371_journal_pone_0071907 crossref_primary_10_1016_j_neuropsychologia_2012_05_028 crossref_primary_10_1177_17448069211037881 crossref_primary_10_1093_scan_nst006 crossref_primary_10_3945_ajcn_112_053801 crossref_primary_10_1016_j_cub_2023_10_010 crossref_primary_10_1016_j_nicl_2020_102296 crossref_primary_10_1016_j_visres_2014_07_004 crossref_primary_10_1016_j_biopsych_2013_11_008 crossref_primary_10_1002_hbm_24434 crossref_primary_10_1523_JNEUROSCI_4775_14_2015 crossref_primary_10_1016_j_neuroimage_2022_119295 crossref_primary_10_1007_s00702_021_02413_0 crossref_primary_10_1080_21678421_2020_1813306 crossref_primary_10_1523_JNEUROSCI_1302_13_2014 crossref_primary_10_3233_JAD_220055 crossref_primary_10_1152_jn_00312_2014 crossref_primary_10_1016_j_brainres_2011_10_052 crossref_primary_10_1016_j_neuroimage_2010_03_034 crossref_primary_10_1093_cercor_bhr037 crossref_primary_10_3390_life11040296 crossref_primary_10_7554_eLife_59436 crossref_primary_10_1016_j_neuroimage_2010_10_010 crossref_primary_10_1016_j_heares_2012_03_003 crossref_primary_10_1080_17470919_2021_1953582 crossref_primary_10_1016_j_dcn_2011_11_003 crossref_primary_10_1177_0956797610370754 crossref_primary_10_1016_j_rpsm_2020_08_001 crossref_primary_10_1016_j_neuropsychologia_2013_02_001 crossref_primary_10_1016_j_neuroimage_2017_07_006 crossref_primary_10_1523_JNEUROSCI_5074_09_2010 crossref_primary_10_1038_npp_2017_71 crossref_primary_10_3389_fnhum_2018_00393 crossref_primary_10_1016_j_bbr_2018_08_036 crossref_primary_10_1016_j_neuroimage_2009_07_071 crossref_primary_10_1109_TCBB_2016_2564970 crossref_primary_10_1016_j_neuroimage_2010_11_049 crossref_primary_10_1016_j_foodqual_2014_10_005 crossref_primary_10_1186_1471_2202_13_52 crossref_primary_10_1162_jocn_a_00126 crossref_primary_10_1093_cercor_bhl074 crossref_primary_10_1162_jocn_a_01695 crossref_primary_10_3389_fpsyg_2017_00174 crossref_primary_10_1002_hbm_23513 crossref_primary_10_1016_j_neuropsychologia_2014_08_029 crossref_primary_10_1093_braincomms_fcz044 crossref_primary_10_1016_j_neulet_2010_05_004 crossref_primary_10_1016_j_neuropsychologia_2013_10_017 crossref_primary_10_1016_j_neuroimage_2007_03_065 crossref_primary_10_1152_jn_00298_2011 crossref_primary_10_1016_j_neuropsychologia_2013_03_023 crossref_primary_10_1002_hbm_21132 crossref_primary_10_1111_ejn_12786 crossref_primary_10_1016_j_mri_2008_01_045 crossref_primary_10_1109_TIP_2017_2691799 crossref_primary_10_1016_j_appet_2011_10_014 crossref_primary_10_1016_j_neuroimage_2021_118532 crossref_primary_10_1016_j_neuroimage_2017_08_060 crossref_primary_10_3233_JAD_150990 crossref_primary_10_1016_j_neuroscience_2012_09_005 crossref_primary_10_1093_cercor_bhab029 crossref_primary_10_1093_schbul_sbu097 crossref_primary_10_1038_s41598_021_89118_2 crossref_primary_10_1523_JNEUROSCI_3640_14_2015 crossref_primary_10_1002_hbm_21362 crossref_primary_10_1016_j_neuroimage_2015_03_013 crossref_primary_10_1016_j_neuroimage_2008_01_029 crossref_primary_10_1016_j_bandl_2012_04_016 crossref_primary_10_1016_j_neuroimage_2010_07_068 crossref_primary_10_1016_j_bbr_2011_03_037 crossref_primary_10_1073_pnas_2002981117 crossref_primary_10_1186_1471_2202_13_74 crossref_primary_10_1371_journal_pone_0087277 crossref_primary_10_1002_mrm_28479 crossref_primary_10_1093_scan_nss109 crossref_primary_10_1002_hbm_21112 crossref_primary_10_1002_hbm_24621 crossref_primary_10_1162_jocn_a_00109 crossref_primary_10_3389_fnsys_2015_00016 crossref_primary_10_3758_s13415_016_0425_4 crossref_primary_10_1523_JNEUROSCI_3684_13_2014 crossref_primary_10_1016_j_neuropharm_2021_108815 crossref_primary_10_1523_JNEUROSCI_4045_08_2008 crossref_primary_10_1093_cercor_bhz151 crossref_primary_10_1523_ENEURO_0263_19_2019 crossref_primary_10_1016_j_neuroimage_2015_05_030 crossref_primary_10_1016_j_jad_2017_11_044 crossref_primary_10_1523_JNEUROSCI_3450_10_2011 crossref_primary_10_1016_j_neuropsychologia_2015_07_019 crossref_primary_10_1162_jocn_a_00312 crossref_primary_10_1111_desc_12215 crossref_primary_10_1097_j_pain_0000000000003052 crossref_primary_10_3758_s13415_016_0416_5 crossref_primary_10_1371_journal_pone_0124072 crossref_primary_10_1111_j_1467_7687_2009_00923_x crossref_primary_10_1038_s41387_020_0124_7 crossref_primary_10_1016_j_neures_2011_07_1819 crossref_primary_10_1523_JNEUROSCI_1556_11_2011 crossref_primary_10_3389_fnagi_2016_00155 crossref_primary_10_1016_j_nicl_2016_12_015 crossref_primary_10_1016_j_dcn_2011_02_002 crossref_primary_10_1016_j_neuroimage_2018_02_068 crossref_primary_10_1097_WCO_0b013e32834897a5 crossref_primary_10_1016_j_ridd_2013_02_008 crossref_primary_10_1016_j_neuroimage_2018_02_065 crossref_primary_10_1016_j_neuroimage_2006_08_041 crossref_primary_10_1371_journal_pone_0187942 crossref_primary_10_1073_pnas_0805423105 crossref_primary_10_1016_j_neulet_2020_134920 crossref_primary_10_3389_fnbeh_2015_00008 crossref_primary_10_1016_j_neuroimage_2008_02_013 crossref_primary_10_1016_j_neuroimage_2012_08_029 crossref_primary_10_1162_jocn_a_00530 crossref_primary_10_3389_fnsys_2016_00053 crossref_primary_10_1002_hbm_21324 crossref_primary_10_1002_hbm_22654 crossref_primary_10_1002_hbm_20479 crossref_primary_10_3389_fninf_2016_00027 crossref_primary_10_1016_j_neuroimage_2013_02_075 crossref_primary_10_1016_j_neuroimage_2017_08_023 crossref_primary_10_1016_j_neuron_2013_10_019 crossref_primary_10_1016_j_neuropsychologia_2014_06_006 crossref_primary_10_1038_s41598_021_92490_8 crossref_primary_10_1016_j_bbr_2013_07_017 crossref_primary_10_1016_j_nicl_2019_101708 crossref_primary_10_1007_s00429_012_0382_9 crossref_primary_10_1068_i0536 crossref_primary_10_1093_cercor_bhac296 crossref_primary_10_1523_JNEUROSCI_2164_11_2011 crossref_primary_10_3389_fnagi_2019_00360 crossref_primary_10_1016_j_neuroimage_2009_12_008 crossref_primary_10_1093_cercor_bhu060 crossref_primary_10_1111_ejn_12006 crossref_primary_10_1016_j_brainres_2010_12_084 crossref_primary_10_1016_j_neuroimage_2008_03_047 crossref_primary_10_1002_hbm_23806 crossref_primary_10_1162_jocn_a_00635 crossref_primary_10_1016_j_neuropsychologia_2018_06_026 crossref_primary_10_1038_npp_2011_172 crossref_primary_10_1371_journal_pone_0015712 crossref_primary_10_1109_TMI_2012_2186975 crossref_primary_10_1016_j_neuroimage_2012_04_021 crossref_primary_10_1002_hbm_20536 crossref_primary_10_1093_cercor_bhu050 crossref_primary_10_1093_cercor_bhv140 crossref_primary_10_1371_journal_pone_0114599 crossref_primary_10_1007_s11682_019_00161_0 crossref_primary_10_1111_ejn_13349 crossref_primary_10_1093_cercor_bhad151 crossref_primary_10_1073_pnas_1312857110 crossref_primary_10_1016_j_rpsmen_2022_06_004 crossref_primary_10_1016_j_neuroimage_2010_01_060 crossref_primary_10_1093_cercor_bhu294 crossref_primary_10_1371_journal_pone_0068355 crossref_primary_10_1371_journal_pcbi_1006397 crossref_primary_10_1016_j_neuroimage_2015_02_005 crossref_primary_10_1007_s11548_015_1319_6 crossref_primary_10_1523_JNEUROSCI_2428_16_2017 crossref_primary_10_1371_journal_pone_0124141 crossref_primary_10_1515_revneuro_2016_0029 crossref_primary_10_1016_j_jneumeth_2011_10_006 crossref_primary_10_1002_oby_23738 crossref_primary_10_1016_j_neuroimage_2015_03_085 crossref_primary_10_1111_ejn_15776 crossref_primary_10_1093_cercor_bhx113 crossref_primary_10_1162_jocn_2009_21399 crossref_primary_10_1016_j_ijpsycho_2019_04_011 crossref_primary_10_1093_cercor_bhn200 crossref_primary_10_1016_j_visres_2014_10_015 crossref_primary_10_1097_BRS_0000000000001930 crossref_primary_10_1088_1741_2552_ac6f81 crossref_primary_10_1162_jocn_2011_21625 crossref_primary_10_1016_j_neuroimage_2016_11_014 crossref_primary_10_1016_j_pain_2011_11_012 crossref_primary_10_1093_cercor_bhv169 crossref_primary_10_1016_j_brainres_2010_11_039 crossref_primary_10_1016_j_dcn_2019_100684 crossref_primary_10_1142_S012906571450004X crossref_primary_10_1038_s41598_020_68300_y crossref_primary_10_1038_s41598_018_37822_x crossref_primary_10_7554_eLife_35854 crossref_primary_10_1002_hbm_25198 crossref_primary_10_1371_journal_pone_0070480 crossref_primary_10_3390_biomedicines10050994 crossref_primary_10_1111_ejn_15559 crossref_primary_10_1016_j_neuroimage_2008_03_007 crossref_primary_10_3945_ajcn_112_053116 crossref_primary_10_1016_j_schres_2014_10_036 crossref_primary_10_1016_j_biopsycho_2008_01_014 crossref_primary_10_1016_j_neuroimage_2007_10_033 crossref_primary_10_1016_j_dcn_2014_12_001 crossref_primary_10_1016_j_tics_2017_09_010 crossref_primary_10_1016_j_neuroimage_2019_116201 crossref_primary_10_3174_ajnr_A2428 crossref_primary_10_1016_j_cub_2009_01_065 crossref_primary_10_1016_j_cub_2009_01_066 crossref_primary_10_7554_eLife_85812 crossref_primary_10_3389_fnhum_2014_00709 crossref_primary_10_1016_j_neuroimage_2018_10_047 crossref_primary_10_1016_j_neuroimage_2016_12_071 crossref_primary_10_1002_hbm_20968 crossref_primary_10_1523_JNEUROSCI_0584_12_2012 crossref_primary_10_3389_fnhum_2017_00156 crossref_primary_10_1371_journal_pone_0090098 crossref_primary_10_1002_hbm_20960 crossref_primary_10_3389_fnagi_2019_00163 crossref_primary_10_1093_cercor_bhy243 crossref_primary_10_1080_87565641_2010_549882 crossref_primary_10_1177_1744806918767512 crossref_primary_10_1016_j_neuroimage_2019_116216 crossref_primary_10_1016_j_neuroimage_2018_10_080 crossref_primary_10_1016_j_dcn_2012_07_001 crossref_primary_10_1016_j_dcn_2019_100653 crossref_primary_10_1523_JNEUROSCI_1315_24_2024 crossref_primary_10_1016_j_neuron_2007_12_009 crossref_primary_10_1186_1471_2202_11_11 crossref_primary_10_1016_j_brainres_2013_07_050 crossref_primary_10_1007_s00213_012_2830_x crossref_primary_10_1016_j_neuroimage_2009_05_100 crossref_primary_10_1371_journal_pone_0038785 crossref_primary_10_1177_1087054716647483 crossref_primary_10_1016_j_pscychresns_2012_05_006 crossref_primary_10_1093_cercor_bhad136 crossref_primary_10_1016_j_cortex_2013_04_003 crossref_primary_10_7554_eLife_56963 crossref_primary_10_1016_j_mri_2018_01_004 crossref_primary_10_1093_cercor_bhu224 crossref_primary_10_1093_cercor_bhs046 crossref_primary_10_1371_journal_pone_0198335 crossref_primary_10_3389_fnbeh_2022_835253 crossref_primary_10_1016_j_schres_2008_11_028 crossref_primary_10_1007_s00221_009_1881_7 crossref_primary_10_1016_j_neuroimage_2014_06_045 crossref_primary_10_23736_S2724_6302_21_02375_6 crossref_primary_10_1016_j_jneuroling_2017_12_011 crossref_primary_10_1002_hbm_26471 crossref_primary_10_1016_j_neuron_2014_09_028 crossref_primary_10_1038_s41598_017_05356_3 crossref_primary_10_1098_rsos_182067 crossref_primary_10_1111_cdev_14080 crossref_primary_10_1007_s11760_012_0326_0 crossref_primary_10_1016_j_brainres_2006_06_110 crossref_primary_10_1109_TSIPN_2017_2668146 crossref_primary_10_1016_j_neuroimage_2012_02_020 crossref_primary_10_1016_j_heares_2018_03_027 crossref_primary_10_1088_1741_2560_14_1_016004 crossref_primary_10_1007_s10334_022_01044_0 crossref_primary_10_1016_j_jad_2021_10_123 crossref_primary_10_1101_lm_025965_112 crossref_primary_10_1093_cercor_bhs067 crossref_primary_10_1016_j_neuroimage_2016_09_022 crossref_primary_10_1016_j_neuroimage_2010_03_085 crossref_primary_10_1016_j_nicl_2017_10_029 crossref_primary_10_1016_j_neuroimage_2012_05_018 crossref_primary_10_1007_s00406_013_0444_x crossref_primary_10_1371_journal_pone_0094222 crossref_primary_10_1016_j_neuroimage_2010_02_031 crossref_primary_10_1523_JNEUROSCI_3323_17_2018 crossref_primary_10_1016_j_ophtha_2017_01_029 crossref_primary_10_3389_fcomm_2019_00039 crossref_primary_10_1016_j_jpain_2013_12_009 crossref_primary_10_1016_j_neuroimage_2018_11_054 crossref_primary_10_1371_journal_pone_0049231 crossref_primary_10_3389_fnhum_2015_00597 crossref_primary_10_3389_fnhum_2015_00598 crossref_primary_10_3389_fnhum_2016_00507 crossref_primary_10_1179_016164108X323753 crossref_primary_10_1016_j_neurobiolaging_2017_01_020 crossref_primary_10_3389_fnhum_2023_1274817 crossref_primary_10_1080_13554794_2014_986136 crossref_primary_10_1007_s12311_019_01039_z crossref_primary_10_1016_j_neuroimage_2010_03_073 crossref_primary_10_1523_JNEUROSCI_3712_11_2011 crossref_primary_10_1016_j_neuroimage_2012_06_069 crossref_primary_10_1016_j_pnpbp_2015_01_016 crossref_primary_10_1007_s00167_009_1012_9 crossref_primary_10_1002_mrm_25408 crossref_primary_10_1093_cercor_bhs082 crossref_primary_10_1007_s11682_013_9252_1 crossref_primary_10_1007_s00406_014_0510_z crossref_primary_10_3389_fnhum_2020_00225 crossref_primary_10_3945_ajcn_116_136903 crossref_primary_10_1016_j_neuroimage_2010_01_017 crossref_primary_10_1017_S0033291717001957 crossref_primary_10_1016_j_brainres_2013_09_032 crossref_primary_10_1038_s42003_024_06913_z crossref_primary_10_1523_JNEUROSCI_0809_10_2010 crossref_primary_10_4081_gimle_566 crossref_primary_10_1093_scan_nsv043 crossref_primary_10_1093_scan_nsw131 crossref_primary_10_3390_healthcare4030054 crossref_primary_10_1016_j_pscychresns_2014_07_004 crossref_primary_10_1177_0301006620912134 crossref_primary_10_1007_s11332_019_00592_8 crossref_primary_10_1016_j_neuroimage_2017_03_039 crossref_primary_10_1016_j_biopsych_2012_09_004 crossref_primary_10_1016_j_neuroimage_2011_10_061 crossref_primary_10_1162_jocn_2009_21124 crossref_primary_10_1093_cercor_bhu009 crossref_primary_10_1093_scan_nst095 crossref_primary_10_1016_j_bbr_2018_02_031 crossref_primary_10_3758_s13415_018_0633_1 crossref_primary_10_1016_j_neuroimage_2012_05_051 crossref_primary_10_1093_cercor_bhw222 crossref_primary_10_1016_j_ijpsycho_2011_06_019 crossref_primary_10_3389_fpsyt_2023_1050530 crossref_primary_10_1038_oby_2011_108 crossref_primary_10_1038_nn_2413 crossref_primary_10_3945_ajcn_112_044024 crossref_primary_10_1002_hbm_26459 crossref_primary_10_3389_fnins_2020_00291 crossref_primary_10_1016_j_ridd_2017_11_012 crossref_primary_10_1007_s41782_019_00081_5 crossref_primary_10_1523_JNEUROSCI_0858_10_2010 crossref_primary_10_1016_j_neuroimage_2007_12_058 crossref_primary_10_3389_fnhum_2016_00542 crossref_primary_10_1016_j_brainres_2011_05_023 crossref_primary_10_1093_cercor_bhw211 crossref_primary_10_1016_j_neuroimage_2012_05_064 crossref_primary_10_1016_j_cortex_2018_04_012 crossref_primary_10_1186_1744_8069_7_45 crossref_primary_10_1155_2012_608501 crossref_primary_10_1172_JCI57377 |
Cites_doi | 10.1016/j.neuron.2004.06.025 10.1016/j.tics.2004.01.008 10.1016/j.neuroimage.2005.08.004 10.1002/(SICI)1097-0193(1999)8:4<272::AID-HBM10>3.0.CO;2-4 10.1016/j.neuroimage.2004.11.017 10.1016/j.neuroimage.2004.03.027 10.1002/mrm.1156 10.1006/nimg.1997.0306 10.1006/nimg.2001.1037 10.1006/nimg.2001.0831 10.1002/mrm.1910330508 10.1016/j.neuroimage.2004.10.042 10.1016/S0896-6273(02)00747-X 10.1016/j.mri.2004.10.020 10.1097/00001756-200311140-00019 10.1016/S1053-8119(00)91610-0 10.1016/S0925-2312(02)00517-9 10.1002/0471221317 10.1002/hbm.20250 10.1002/mrm.1910350219 10.1002/hbm.10034 |
ContentType | Journal Article |
Copyright | Copyright © 2006 Wiley‐Liss, Inc. |
Copyright_xml | – notice: Copyright © 2006 Wiley‐Liss, Inc. |
DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7TK 7X8 5PM |
DOI | 10.1002/hbm.20249 |
DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Neurosciences Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Neurosciences Abstracts MEDLINE - Academic |
DatabaseTitleList | Neurosciences Abstracts MEDLINE - Academic MEDLINE CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Anatomy & Physiology |
DocumentTitleAlternate | Analyzing FIAC Data with BrainVoyager QX |
EISSN | 1097-0193 |
EndPage | 401 |
ExternalDocumentID | PMC6871277 16596654 10_1002_hbm_20249 HBM20249 ark_67375_WNG_PVPMSDVT_4 |
Genre | article Journal Article |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 24P 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 702 7PT 7X7 8-0 8-1 8-3 8-4 8-5 8FI 8FJ 8UM 930 A03 AAESR AAEVG AAHHS AAONW AAZKR ABCQN ABCUV ABEML ABIJN ABIVO ABJNI ABPVW ABUWG ACBWZ ACCFJ ACGFS ACIWK ACPOU ACPRK ACSCC ACXQS ADBBV ADEOM ADIZJ ADMGS ADPDF ADXAS ADZOD AEEZP AEIMD AENEX AEQDE AEUQT AFBPY AFGKR AFKRA AFPWT AFRAH AFZJQ AHMBA AIURR AIWBW AJBDE AJXKR ALAGY ALIPV ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BENPR BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 C45 CCPQU CS3 D-E D-F DCZOG DPXWK DR1 DR2 DU5 EBD EBS EJD EMOBN F00 F01 F04 F5P FEDTE FYUFA G-S G.N GAKWD GNP GODZA GROUPED_DOAJ H.T H.X HBH HF~ HHY HHZ HMCUK HVGLF HZ~ IAO IHR ITC IX1 J0M JPC KQQ L7B LAW LC2 LC3 LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M6M MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OK1 OVD OVEED P2P P2W P2X P4D PALCI PIMPY PQQKQ Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RPM RWD RWI RX1 RYL SAMSI SUPJJ SV3 TEORI UB1 UKHRP V2E W8V W99 WBKPD WIB WIH WIK WIN WJL WNSPC WOHZO WQJ WRC WUP WXSBR WYISQ XG1 XSW XV2 ZZTAW ~IA ~WT AANHP AAYCA ACCMX ACRPL ACYXJ ADNMO AAFWJ AAYXX AFPKN AGQPQ CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM 7TK AAMMB AEFGJ AGXDD AIDQK AIDYY 7X8 5PM |
ID | FETCH-LOGICAL-c4829-d49cce0dc5cc24d515c3ba361fc73f70f4e52d72df9aef772fbcde770159714f3 |
IEDL.DBID | DR2 |
ISSN | 1065-9471 |
IngestDate | Thu Aug 21 18:11:42 EDT 2025 Thu Jul 10 22:40:00 EDT 2025 Fri Jul 11 01:03:20 EDT 2025 Wed Feb 19 01:48:42 EST 2025 Tue Jul 01 04:25:53 EDT 2025 Thu Apr 24 23:09:10 EDT 2025 Wed Jan 22 16:51:55 EST 2025 Wed Oct 30 09:51:34 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4829-d49cce0dc5cc24d515c3ba361fc73f70f4e52d72df9aef772fbcde770159714f3 |
Notes | istex:7DB14DFFE7C5522073FE6808B8E0CCA18BE62B6A ArticleID:HBM20249 ark:/67375/WNG-PVPMSDVT-4 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/hbm.20249?download=true |
PMID | 16596654 |
PQID | 19686166 |
PQPubID | 23462 |
PageCount | 10 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6871277 proquest_miscellaneous_67900071 proquest_miscellaneous_19686166 pubmed_primary_16596654 crossref_citationtrail_10_1002_hbm_20249 crossref_primary_10_1002_hbm_20249 wiley_primary_10_1002_hbm_20249_HBM20249 istex_primary_ark_67375_WNG_PVPMSDVT_4 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | May 2006 |
PublicationDateYYYYMMDD | 2006-05-01 |
PublicationDate_xml | – month: 05 year: 2006 text: May 2006 |
PublicationDecade | 2000 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken – name: United States |
PublicationTitle | Human brain mapping |
PublicationTitleAlternate | Hum. Brain Mapp |
PublicationYear | 2006 |
Publisher | Wiley Subscription Services, Inc., A Wiley Company |
Publisher_xml | – name: Wiley Subscription Services, Inc., A Wiley Company |
References | Esposito F, Formisano E, Seifritz E, Goebel R, Morrone R, Tedeschi G, Di Salle F (2002): Spatial independent component analysis of functional MRI time-series: to what extent do results depend on the algorithm used? Hum Brain Mapp 16: 146-157. Hyvärinen A, Oja E (2001): Independent component analysis. New York: John Wiley & Sons. Formisano E, Linden DEJ, Di Salle F, Trojano L, Esposito F, Sack AT, Grossi D, Zanella FE, Goebel R (2002b): Tracking the mind's image in the brain. I. Time-resolved fMRI during visuospatial mental imagery. Neuron 35: 185-194. Himberg J, Hyvarinen A, Esposito F (2004): Validating the independent components of neuroimaging time series via clustering and visualization. Neuroimage 22: 1214-1222. Bullmore E, Brammer M, Williams S, Rabe-Hesketh S, Janot N, David A, Mellers J, Howard R, Sham P (1996): Statisticalmethods of estimation and inference for functional MR image analysis. Magn Reson Med 35: 261-277. Forman SD, Cohen JD, Fitzgerald M, Eddy WF, Mintun MA, Noll DC (1995): Improved assessment of significant activation in functional magnetic resonance imaging (fMRI): use of a cluster-size threshold. Magn Reson Med 33: 636-647. Formisano E, Esposito F, Kriegeskorte N, Tedeschi G, Di Salle F, Goebel R (2002a): Spatial independent component analysis of functional magnetic resonance imaging time-series: characterization of the cortical components. Neurocomputing 49: 241-254. Belin P, Zatorre RJ (2003): Adaptation to speaker's voice in right anterior temporal lobe. Neuroreport 14: 2105-2109. Talairach J, Tournoux P (1988) Co-planar stereotaxic atlas of the human brain. Stuttgart: G. Thieme. Goebel R, Hasson U, Lefi I, Malach R (2004): Statistical analyses across aligned cortical hemispheres reveal high-resolution population maps of human visual cortex. Neuroimage 22(Suppl 2) Genovese CR, Lazar NA, Nichols T (2002): Thresholding of statistical maps in functional neuroimaging using the false discovery rate. Neuroimage 15: 870-878. Formisano E, Esposito F, Di Salle F, Goebel R (2004): Cortex-based independent component analysis of fMRI time-series. Magn Reson Imaging 22: 1493-1504. Vaughan JT, Garwood M, Collins CM, Liu W, DelaBarre L, Adrainy G, Andersen P, Merkle H, Goebel R, Smith MB, Ugurbil K (2001): 7T vs. 4T: RF power, homogeneity, and signal-to-noise comparison in head images. Magn Reson Med 46: 24-30. Kriegeskorte N, Goebel R (eds.) (2001): An efficient algorithm for topologically correct segmentation of the cortical sheet in anatomical MR volumes. Neuroimage 14: 329-346. Van Atteveldt N, Formisano E, Goebel R, Blomert L (2004): Integration of letters and speech sounds in the human brain. Neuron 43: 271-282. Goebel R (2000): A fast automated method for flattening cortical surfaces. Neuroimage 11: S680. Friston KJ, Fletcher P, Josephs O, Holmes A, Rugg MD, Turner R (1998): Event-related fMRI: characterizing differential responses. Neuroimage 7: 30-40. Roebroeck A, Formisano E, Goebel R (2005): Mapping directed influence over the brain using Granger causality and fMRI. Neuroimage 25: 230-242. Dehaene-Lambertz G, Dehaene S, Anton JL, Campagne A, Ciuciu P, Dehaene GP, Denghien I, Jobert A, LeBihan D, Sigman M, Pallier C, Poline JB (2006): Functional segregation of cortical language areas by sentence repetition. Hum Brain Mapp 27: 360-371. Fischl B, Sereno MI, Tootell RBH, Dale AM (1999): High-resolution inter-subject averaging and a coordinate system for the cortical surface. Hum Brain Mapp 8: 272-284. Howarth C, Hutton C, Deichmann R (2006): Improvement of the image quality of T1-weighted anatomical brain scans. Neuroimage 29: 930-937. Esposito F, Scarabino T, Hyvarinen A, Himberg J, Formisano E, Comani S, Tedeschi G, Goebel R, Seifritz E, Di Salle F (2005): Independent component analysis of fMRI group studies by self-organizing clustering. Neuroimage 25: 193-205. Goebel, R., Singer, W (1999): Cortical surface-based statistical analysis of functional magnetic resonance imaging data. Neuroimage Suppl Belin P, Fecteau S, Bedard C (2004): Thinking the voice: neural correlates of voice perception. Trends Cogn Sci 8: 129-135. 2002; 16 2004; 43 2004; 22 2002; 15 2001 2004; 8 2006; 27 2000; 11 1995; 33 2002a; 49 2003; 14 2006; 29 1999; 8 1998; 7 1996; 35 2002b; 35 2001; 46 2001; 14 2005; 25 1999 1988 e_1_2_5_25_1 e_1_2_5_26_1 e_1_2_5_23_1 e_1_2_5_21_1 e_1_2_5_22_1 Goebel R. (e_1_2_5_17_1) 1999 Goebel R (e_1_2_5_18_1) 2004; 22 e_1_2_5_20_1 e_1_2_5_15_1 e_1_2_5_14_1 e_1_2_5_9_1 e_1_2_5_16_1 e_1_2_5_8_1 e_1_2_5_11_1 e_1_2_5_7_1 e_1_2_5_10_1 e_1_2_5_6_1 e_1_2_5_13_1 e_1_2_5_5_1 e_1_2_5_12_1 e_1_2_5_4_1 e_1_2_5_3_1 e_1_2_5_2_1 e_1_2_5_19_1 Talairach J (e_1_2_5_24_1) 1988 |
References_xml | – reference: Fischl B, Sereno MI, Tootell RBH, Dale AM (1999): High-resolution inter-subject averaging and a coordinate system for the cortical surface. Hum Brain Mapp 8: 272-284. – reference: Genovese CR, Lazar NA, Nichols T (2002): Thresholding of statistical maps in functional neuroimaging using the false discovery rate. Neuroimage 15: 870-878. – reference: Esposito F, Scarabino T, Hyvarinen A, Himberg J, Formisano E, Comani S, Tedeschi G, Goebel R, Seifritz E, Di Salle F (2005): Independent component analysis of fMRI group studies by self-organizing clustering. Neuroimage 25: 193-205. – reference: Formisano E, Linden DEJ, Di Salle F, Trojano L, Esposito F, Sack AT, Grossi D, Zanella FE, Goebel R (2002b): Tracking the mind's image in the brain. I. Time-resolved fMRI during visuospatial mental imagery. Neuron 35: 185-194. – reference: Howarth C, Hutton C, Deichmann R (2006): Improvement of the image quality of T1-weighted anatomical brain scans. Neuroimage 29: 930-937. – reference: Friston KJ, Fletcher P, Josephs O, Holmes A, Rugg MD, Turner R (1998): Event-related fMRI: characterizing differential responses. Neuroimage 7: 30-40. – reference: Goebel R, Hasson U, Lefi I, Malach R (2004): Statistical analyses across aligned cortical hemispheres reveal high-resolution population maps of human visual cortex. Neuroimage 22(Suppl 2) – reference: Formisano E, Esposito F, Kriegeskorte N, Tedeschi G, Di Salle F, Goebel R (2002a): Spatial independent component analysis of functional magnetic resonance imaging time-series: characterization of the cortical components. Neurocomputing 49: 241-254. – reference: Goebel R (2000): A fast automated method for flattening cortical surfaces. Neuroimage 11: S680. – reference: Belin P, Zatorre RJ (2003): Adaptation to speaker's voice in right anterior temporal lobe. Neuroreport 14: 2105-2109. – reference: Hyvärinen A, Oja E (2001): Independent component analysis. New York: John Wiley & Sons. – reference: Roebroeck A, Formisano E, Goebel R (2005): Mapping directed influence over the brain using Granger causality and fMRI. Neuroimage 25: 230-242. – reference: Belin P, Fecteau S, Bedard C (2004): Thinking the voice: neural correlates of voice perception. Trends Cogn Sci 8: 129-135. – reference: Dehaene-Lambertz G, Dehaene S, Anton JL, Campagne A, Ciuciu P, Dehaene GP, Denghien I, Jobert A, LeBihan D, Sigman M, Pallier C, Poline JB (2006): Functional segregation of cortical language areas by sentence repetition. Hum Brain Mapp 27: 360-371. – reference: Forman SD, Cohen JD, Fitzgerald M, Eddy WF, Mintun MA, Noll DC (1995): Improved assessment of significant activation in functional magnetic resonance imaging (fMRI): use of a cluster-size threshold. Magn Reson Med 33: 636-647. – reference: Van Atteveldt N, Formisano E, Goebel R, Blomert L (2004): Integration of letters and speech sounds in the human brain. Neuron 43: 271-282. – reference: Kriegeskorte N, Goebel R (eds.) (2001): An efficient algorithm for topologically correct segmentation of the cortical sheet in anatomical MR volumes. Neuroimage 14: 329-346. – reference: Vaughan JT, Garwood M, Collins CM, Liu W, DelaBarre L, Adrainy G, Andersen P, Merkle H, Goebel R, Smith MB, Ugurbil K (2001): 7T vs. 4T: RF power, homogeneity, and signal-to-noise comparison in head images. Magn Reson Med 46: 24-30. – reference: Goebel, R., Singer, W (1999): Cortical surface-based statistical analysis of functional magnetic resonance imaging data. Neuroimage Suppl – reference: Himberg J, Hyvarinen A, Esposito F (2004): Validating the independent components of neuroimaging time series via clustering and visualization. Neuroimage 22: 1214-1222. – reference: Bullmore E, Brammer M, Williams S, Rabe-Hesketh S, Janot N, David A, Mellers J, Howard R, Sham P (1996): Statisticalmethods of estimation and inference for functional MR image analysis. Magn Reson Med 35: 261-277. – reference: Talairach J, Tournoux P (1988) Co-planar stereotaxic atlas of the human brain. Stuttgart: G. Thieme. – reference: Esposito F, Formisano E, Seifritz E, Goebel R, Morrone R, Tedeschi G, Di Salle F (2002): Spatial independent component analysis of functional MRI time-series: to what extent do results depend on the algorithm used? Hum Brain Mapp 16: 146-157. – reference: Formisano E, Esposito F, Di Salle F, Goebel R (2004): Cortex-based independent component analysis of fMRI time-series. Magn Reson Imaging 22: 1493-1504. – volume: 15 start-page: 870 year: 2002 end-page: 878 article-title: Thresholding of statistical maps in functional neuroimaging using the false discovery rate publication-title: Neuroimage – volume: 16 start-page: 146 year: 2002 end-page: 157 article-title: Spatial independent component analysis of functional MRI time‐series: to what extent do results depend on the algorithm used? publication-title: Hum Brain Mapp – volume: 35 start-page: 261 year: 1996 end-page: 277 article-title: Statisticalmethods of estimation and inference for functional MR image analysis publication-title: Magn Reson Med – volume: 11 start-page: S680 year: 2000 article-title: A fast automated method for flattening cortical surfaces publication-title: Neuroimage – year: 1999 article-title: Cortical surface‐based statistical analysis of functional magnetic resonance imaging data publication-title: Neuroimage Suppl – volume: 35 start-page: 185 year: 2002b end-page: 194 article-title: Tracking the mind's image in the brain. I. Time‐resolved fMRI during visuospatial mental imagery publication-title: Neuron – volume: 7 start-page: 30 year: 1998 end-page: 40 article-title: Event‐related fMRI: characterizing differential responses publication-title: Neuroimage – volume: 43 start-page: 271 year: 2004 end-page: 282 article-title: Integration of letters and speech sounds in the human brain publication-title: Neuron – volume: 14 start-page: 2105 year: 2003 end-page: 2109 article-title: Adaptation to speaker's voice in right anterior temporal lobe publication-title: Neuroreport – year: 2001 – year: 1988 – volume: 29 start-page: 930 year: 2006 end-page: 937 article-title: Improvement of the image quality of T1‐weighted anatomical brain scans publication-title: Neuroimage – volume: 8 start-page: 272 year: 1999 end-page: 284 article-title: High‐resolution inter‐subject averaging and a coordinate system for the cortical surface publication-title: Hum Brain Mapp – volume: 22 start-page: 1214 year: 2004 end-page: 1222 article-title: Validating the independent components of neuroimaging time series via clustering and visualization publication-title: Neuroimage – volume: 22 issue: Suppl 2 year: 2004 article-title: Statistical analyses across aligned cortical hemispheres reveal high‐resolution population maps of human visual cortex publication-title: Neuroimage – volume: 27 start-page: 360 year: 2006 end-page: 371 article-title: Functional segregation of cortical language areas by sentence repetition publication-title: Hum Brain Mapp – volume: 33 start-page: 636 year: 1995 end-page: 647 article-title: Improved assessment of significant activation in functional magnetic resonance imaging (fMRI): use of a cluster‐size threshold publication-title: Magn Reson Med – volume: 25 start-page: 193 year: 2005 end-page: 205 article-title: Independent component analysis of fMRI group studies by self‐organizing clustering publication-title: Neuroimage – volume: 22 start-page: 1493 year: 2004 end-page: 1504 article-title: Cortex‐based independent component analysis of fMRI time‐series publication-title: Magn Reson Imaging – volume: 25 start-page: 230 year: 2005 end-page: 242 article-title: Mapping directed influence over the brain using Granger causality and fMRI publication-title: Neuroimage – volume: 14 start-page: 329 year: 2001 end-page: 346 article-title: An efficient algorithm for topologically correct segmentation of the cortical sheet in anatomical MR volumes publication-title: Neuroimage – volume: 46 start-page: 24 year: 2001 end-page: 30 article-title: 7T vs. 4T: RF power, homogeneity, and signal‐to‐noise comparison in head images publication-title: Magn Reson Med – volume: 8 start-page: 129 year: 2004 end-page: 135 article-title: Thinking the voice: neural correlates of voice perception publication-title: Trends Cogn Sci – volume: 49 start-page: 241 year: 2002a end-page: 254 article-title: Spatial independent component analysis of functional magnetic resonance imaging time‐series: characterization of the cortical components publication-title: Neurocomputing – ident: e_1_2_5_25_1 doi: 10.1016/j.neuron.2004.06.025 – ident: e_1_2_5_3_1 doi: 10.1016/j.tics.2004.01.008 – ident: e_1_2_5_20_1 doi: 10.1016/j.neuroimage.2005.08.004 – ident: e_1_2_5_8_1 doi: 10.1002/(SICI)1097-0193(1999)8:4<272::AID-HBM10>3.0.CO;2-4 – ident: e_1_2_5_23_1 doi: 10.1016/j.neuroimage.2004.11.017 – ident: e_1_2_5_19_1 doi: 10.1016/j.neuroimage.2004.03.027 – ident: e_1_2_5_26_1 doi: 10.1002/mrm.1156 – volume: 22 issue: 2 year: 2004 ident: e_1_2_5_18_1 article-title: Statistical analyses across aligned cortical hemispheres reveal high‐resolution population maps of human visual cortex publication-title: Neuroimage – ident: e_1_2_5_13_1 doi: 10.1006/nimg.1997.0306 – ident: e_1_2_5_14_1 doi: 10.1006/nimg.2001.1037 – ident: e_1_2_5_16_1 – ident: e_1_2_5_22_1 doi: 10.1006/nimg.2001.0831 – ident: e_1_2_5_9_1 doi: 10.1002/mrm.1910330508 – ident: e_1_2_5_7_1 doi: 10.1016/j.neuroimage.2004.10.042 – ident: e_1_2_5_11_1 doi: 10.1016/S0896-6273(02)00747-X – ident: e_1_2_5_12_1 doi: 10.1016/j.mri.2004.10.020 – ident: e_1_2_5_2_1 doi: 10.1097/00001756-200311140-00019 – ident: e_1_2_5_15_1 doi: 10.1016/S1053-8119(00)91610-0 – ident: e_1_2_5_10_1 doi: 10.1016/S0925-2312(02)00517-9 – ident: e_1_2_5_21_1 doi: 10.1002/0471221317 – volume-title: Co‐planar stereotaxic atlas of the human brain year: 1988 ident: e_1_2_5_24_1 – year: 1999 ident: e_1_2_5_17_1 article-title: Cortical surface‐based statistical analysis of functional magnetic resonance imaging data publication-title: Neuroimage Suppl – ident: e_1_2_5_5_1 doi: 10.1002/hbm.20250 – ident: e_1_2_5_4_1 doi: 10.1002/mrm.1910350219 – ident: e_1_2_5_6_1 doi: 10.1002/hbm.10034 |
SSID | ssj0011501 |
Score | 2.446119 |
Snippet | The Functional Image Analysis Contest (FIAC) 2005 dataset was analyzed using BrainVoyager QX. First, we performed a standard analysis of the functional and... |
SourceID | pubmedcentral proquest pubmed crossref wiley istex |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 392 |
SubjectTerms | Algorithms Brain Mapping - methods Cerebral Cortex - anatomy & histology Cerebral Cortex - physiology Cohort Studies cortex-based analysis cortical alignment fMRI data analysis Frontal Lobe - anatomy & histology Frontal Lobe - physiology functional magnetic resonance imaging Humans Image Processing, Computer-Assisted - methods Image Processing, Computer-Assisted - trends independent component analysis Language Language Tests Linear Models Magnetic Resonance Imaging - methods Magnetic Resonance Imaging - trends Nerve Net - anatomy & histology Nerve Net - physiology Principal Component Analysis - methods Principal Component Analysis - standards Reproducibility of Results Software - standards Software - trends Speech Perception - physiology Temporal Lobe - anatomy & histology Temporal Lobe - physiology Verbal Behavior - physiology |
Title | Analysis of functional image analysis contest (FIAC) data with brainvoyager QX: From single-subject to cortically aligned group general linear model analysis and self-organizing group independent component analysis |
URI | https://api.istex.fr/ark:/67375/WNG-PVPMSDVT-4/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhbm.20249 https://www.ncbi.nlm.nih.gov/pubmed/16596654 https://www.proquest.com/docview/19686166 https://www.proquest.com/docview/67900071 https://pubmed.ncbi.nlm.nih.gov/PMC6871277 |
Volume | 27 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9NAEF5VRUK8cLQc5hwhVJUHt4mP3RieQiEEpFQFeuQBydrD20ZNHJRDon3iJ_D7eOSXMLM-QqCVEG-2PLv22LNzefYbxp4ZZdHtNokvrdV-JEPpS4yafRW3cDVxzZVxBbK7vHsQve_H_RX2stoLU-BD1Ak3WhlOX9MCl2q6vQANPVG0kRyjB9S_VKtFDtHHGjqKHB0XbKGJ9RPUwBWqUCPYrkcu2aIr9Fq_XuRo_l0v-bsf6wxR5wb7XLFQ1J-cbs1nakuf_4Hu-J883mTXSwcV2oVE3WIrWb7G1ts5BuejM9gAVzLqcvFr7Gqv_DO_zn5U6CYwtkDGssgxwmCECgtkdZEq45Fp2Oy8a-88B6pPBUoFg6JWFSWkBnzov4DOZDwCSmQMs5_fvk_nihJGMBvjFBOXfx-eAcYQx2gmwG1NgeMCQRuIbTkB1-NncWeZG5hmQ4uTFZ2sznHucuSg7gU8A6qxH-d0VA29zQ46b_Z3un7ZN8LXUStIfBMlWmcNo2Otg8igx6ZDJUPetFqEVjRslMWBEYGxicwshhdWaZMJgZ5RIpqRDe-w1RzvdI-ByUIecoNqD_VW1FJSmkyGYTPSeGa19thmJUGpLkHVqbfHMC3goIMUP2HqPqHHntakXwokkYuINpwY1hRyckqldyJOj3bfpnuHe71Prw_308hjTyo5TVEh0F8emWfj-TRFldriTc4vp-Aica6lx-4Wcr14Hh4n1I7aY2JJ4msCAiNfvpIPThwoOcfIOxACX4gT6MtZTLuveu7g_r-TPmDXitQXFZo-ZKuzyTx7hM7gTD12q_4X9Thlsg |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9NAEF6VVgJeOFqOcHWEUFUe3CY-1jHiJRRCCk1UaFrygqw9vG3UxEE5JNonfgK_j0d-CTPrIwRaCfFmy7Nrjz07l2e_YeyZlgbdbh05whjl-MITjsCo2ZFBHVcTV1xqWyDb4a1D_10v6C2xl8VemAwfoky40cqw-poWOCWkt-eooSeSdpJj-HCFrVBHbxtQfSzBo8jVseEWGlknQh1c4ApV3e1y6II1WqEX-_UiV_PvisnfPVlripo32eeCiawC5XRrNpVb6vwPfMf_5fIWu5H7qNDIhOo2W0rSVbbWSDE-H57BBtiqUZuOX2VX2_nP-TX2owA4gZEBspdZmhH6Q9RZIIqLVByPXMNmc7ex8xyoRBUoGwySulXkqBrwofcCmuPRECiXMUh-fvs-mUnKGcF0hFOMbQp-cAYYRhyjpQC7OwWOMxBtIL7FGGybn_mdRaphkgwMTpY1szrHufOR_bId8BSozH6U0lEx9A47bL7p7rScvHWEo_y6Gznaj5RKqloFSrm-RqdNeVJ4vGZU6JmwavwkcHXoahOJxGCEYaTSSRiicxSFNd94d9lyine6z0AnHve4Rs2HqsuvSyF0Ijyv5is8M0pV2GYhQrHKcdWpvccgzhCh3Rg_YWw_YYU9LUm_ZGAiFxFtWDksKcT4lKrvwiD-1Hkb7x_ttw9eH3Vjv8LWC0GNUSfQjx6RJqPZJEatWuc1zi-n4GFkvcsKu5cJ9vx5eBBRR-oKCxdEviQgPPLFK2n_xOKScwy-3TDEF2Il-nIW49artj148O-k6-xaq9vei_d2O-8fsutZJozqTh-x5el4ljxG33Aqn1gV8AvxNWnN |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6VVqq48Gh5hFdHCFXl4Dax17sxnEJDSIFEBdqSA9JqvettoyZOlYdEe-In8Ps48kuYXT9CoJUQN1ueXXvs2Xl59htCnunYoNutI08aozwqA-lJjJq9OKzjamKKxdoVyHZZ-5C-7YW9JfKy2AuT4UOUCTe7Mpy-tgv8TJudOWjoSWw3kmP0cI2sUFatW5Fufiyxo6yn46IttLFehCq4gBWq-jvl0AVjtGLf69fLPM2_CyZ_d2SdJWrdJF8KHrIClNPt2TTeVhd_wDv-J5O3yI3cQ4VGJlK3yVKSrpH1RorR-fAcNsHVjLpk_BpZ7eS_5tfJjwLeBEYGrLXMkozQH6LGAllctKXxyDRstfYau8_BFqiCzQVDbHtV5Jga8KH3Alrj0RBsJmOQ_Pz2fTKLbcYIpiOcYuwS8INzwCDiGO0EuL0pcJxBaINlW47BNfmZ31mmGibJwOBkWSurC5w7H9kvmwFPwRbZj1J7VAy9Qw5brw92217eOMJTtO5HnqaRUklVq1Apn2p02VQQy4DVjOKB4VVDk9DX3NcmkonB-MLESieco2sU8Ro1wV2ynOKd7hPQScACplHvoeKi9VhKncggqFGFZ0apCtkqJEioHFXdNvcYiAwP2hf4CYX7hBXytCQ9y6BELiPadGJYUsjxqa2946H43H0j9o_2O5-aRweCVshGIacCNYL9zSPTZDSbCNSpdVZj7GoKxiPnW1bIvUyu58_Dwsj2o64QviDxJYFFI1-8kvZPHCo5w9Db5xxfiBPoq1kU7Vcdd_Dg30k3yOp-syXe73XfPSTXszSYLTp9RJan41nyGB3DafzEKYBfo2RohQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analysis+of+functional+image+analysis+contest+%28FIAC%29+data+with+brainvoyager+QX%3A+From+single-subject+to+cortically+aligned+group+general+linear+model+analysis+and+self-organizing+group+independent+component+analysis&rft.jtitle=Human+brain+mapping&rft.au=Goebel%2C+Rainer&rft.au=Esposito%2C+Fabrizio&rft.au=Formisano%2C+Elia&rft.date=2006-05-01&rft.issn=1065-9471&rft.volume=27&rft.issue=5&rft.spage=392&rft_id=info:doi/10.1002%2Fhbm.20249&rft_id=info%3Apmid%2F16596654&rft.externalDocID=16596654 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1065-9471&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1065-9471&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1065-9471&client=summon |