Materials and Structures for Stretchable Energy Storage and Conversion Devices

Stretchable energy storage and conversion devices (ESCDs) are attracting intensive attention due to their promising and potential applications in realistic consumer products, ranging from portable electronics, bio‐integrated devices, space satellites, and electric vehicles to buildings with arbitrar...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 26; no. 22; pp. 3592 - 3617
Main Authors Xie, Keyu, Wei, Bingqing
Format Journal Article
LanguageEnglish
Published Germany Blackwell Publishing Ltd 11.06.2014
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Stretchable energy storage and conversion devices (ESCDs) are attracting intensive attention due to their promising and potential applications in realistic consumer products, ranging from portable electronics, bio‐integrated devices, space satellites, and electric vehicles to buildings with arbitrarily shaped surfaces. Material synthesis and structural design are core in the development of highly stretchable supercapacitors, batteries, and solar cells for practical applications. This review provides a brief summary of research development on the stretchable ESCDs in the past decade, from structural design strategies to novel materials synthesis. The focuses are on the fundamental insights of mechanical characteristics of materials and structures on the performance of the stretchable ESCDs, as well as challenges for their practical applications. Finally, some of the important directions in the areas of material synthesis and structural design facing the stretchable ESCDs are discussed. Stretchable energy storage and conversion devices (ESCDs) are of great interest for their potential applications in realistic consumer products, ranging from portable electronics, bio‐integrated devices, space satellites, and electric vehicles to buildings with arbitrarily shaped surfaces. Rational design and engineering of materials and/or structures for stretchable ESCDs are crucial to tackle enormous challenges to satisfy the evergrowing needs arising from these above‐mentioned fields. The latest advances in the exploration and development of stretchable materials and structures are reviewed and the fundamental insights, challenges, and prospects of stretchable ESCDs are discussed.
AbstractList Stretchable energy storage and conversion devices (ESCDs) are attracting intensive attention due to their promising and potential applications in realistic consumer products, ranging from portable electronics, bio-integrated devices, space satellites, and electric vehicles to buildings with arbitrarily shaped surfaces. Material synthesis and structural design are core in the development of highly stretchable supercapacitors, batteries, and solar cells for practical applications. This review provides a brief summary of research development on the stretchable ESCDs in the past decade, from structural design strategies to novel materials synthesis. The focuses are on the fundamental insights of mechanical characteristics of materials and structures on the performance of the stretchable ESCDs, as well as challenges for their practical applications. Finally, some of the important directions in the areas of material synthesis and structural design facing the stretchable ESCDs are discussed. Stretchable energy storage and conversion devices (ESCDs) are of great interest for their potential applications in realistic consumer products, ranging from portable electronics, bio-integrated devices, space satellites, and electric vehicles to buildings with arbitrarily shaped surfaces. Rational design and engineering of materials and/or structures for stretchable ESCDs are crucial to tackle enormous challenges to satisfy the evergrowing needs arising from these above-mentioned fields. The latest advances in the exploration and development of stretchable materials and structures are reviewed and the fundamental insights, challenges, and prospects of stretchable ESCDs are discussed.
Stretchable energy storage and conversion devices (ESCDs) are attracting intensive attention due to their promising and potential applications in realistic consumer products, ranging from portable electronics, bio-integrated devices, space satellites, and electric vehicles to buildings with arbitrarily shaped surfaces. Material synthesis and structural design are core in the development of highly stretchable supercapacitors, batteries, and solar cells for practical applications. This review provides a brief summary of research development on the stretchable ESCDs in the past decade, from structural design strategies to novel materials synthesis. The focuses are on the fundamental insights of mechanical characteristics of materials and structures on the performance of the stretchable ESCDs, as well as challenges for their practical applications. Finally, some of the important directions in the areas of material synthesis and structural design facing the stretchable ESCDs are discussed.
Stretchable energy storage and conversion devices (ESCDs) are attracting intensive attention due to their promising and potential applications in realistic consumer products, ranging from portable electronics, bio‐integrated devices, space satellites, and electric vehicles to buildings with arbitrarily shaped surfaces. Material synthesis and structural design are core in the development of highly stretchable supercapacitors, batteries, and solar cells for practical applications. This review provides a brief summary of research development on the stretchable ESCDs in the past decade, from structural design strategies to novel materials synthesis. The focuses are on the fundamental insights of mechanical characteristics of materials and structures on the performance of the stretchable ESCDs, as well as challenges for their practical applications. Finally, some of the important directions in the areas of material synthesis and structural design facing the stretchable ESCDs are discussed. Stretchable energy storage and conversion devices (ESCDs) are of great interest for their potential applications in realistic consumer products, ranging from portable electronics, bio‐integrated devices, space satellites, and electric vehicles to buildings with arbitrarily shaped surfaces. Rational design and engineering of materials and/or structures for stretchable ESCDs are crucial to tackle enormous challenges to satisfy the evergrowing needs arising from these above‐mentioned fields. The latest advances in the exploration and development of stretchable materials and structures are reviewed and the fundamental insights, challenges, and prospects of stretchable ESCDs are discussed.
Author Xie, Keyu
Wei, Bingqing
Author_xml – sequence: 1
  givenname: Keyu
  surname: Xie
  fullname: Xie, Keyu
  organization: State Key Laboratory of Solidification Processing and School of Materials Science and Engineering, Northwestern Polytechnical University, 710072, Xi'an, P.R. China
– sequence: 2
  givenname: Bingqing
  surname: Wei
  fullname: Wei, Bingqing
  email: weib@udel.edu
  organization: State Key Laboratory of Solidification Processing and School of Materials Science and Engineering, Northwestern Polytechnical University, 710072, Xi'an, P.R. China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24643976$$D View this record in MEDLINE/PubMed
BookMark eNqNkDtPwzAURi0Eog9YGVFGlhQ_4jgeS1sKqC1IVILNcpKbEkiTYieF_ntSUio2mK58fb6jq6-DDvMiB4TOCO4RjOmljpe6RzFhmEsiD1CbcEpcD0t-iNpYMu5K3wtaqGPtK8ZY-tg_Ri3q-R6Twm-j2VSXYFKdWUfnsfNYmioqKwPWSQqzfUIZvegwA2eUg1ls6lVh9AK-6UGRr8HYtMidIazTCOwJOkpqF5zuZhfNr0fzwY07uR_fDvoTN_ICKt1AaM2SwNexRwWhPJEyJIyRSIdUepJBImjISP0fR6H0BNSHJ1oyGoREy4R10UWjXZnivQJbqmVqI8gynUNRWUU4J1gElPF_oKxuSwjs12ivQSNTWGsgUSuTLrXZKILVtm21bVvt264D5zt3FS4h3uM_9daAbICPNIPNHzrVH077v-Vuk01tCZ_7rDZvyhdMcPU0G6vhMxN3XDyoK_YFOUKb9Q
CitedBy_id crossref_primary_10_1021_acsami_6b06774
crossref_primary_10_1039_C5TA07053H
crossref_primary_10_1016_j_ensm_2015_09_001
crossref_primary_10_1039_D2TA05799A
crossref_primary_10_1039_C5GC02409A
crossref_primary_10_1007_s10853_016_0539_7
crossref_primary_10_1038_s41598_023_50888_6
crossref_primary_10_1016_j_solmat_2021_111318
crossref_primary_10_1021_acsami_0c15305
crossref_primary_10_1039_D2TA09874A
crossref_primary_10_1016_j_jpowsour_2018_08_066
crossref_primary_10_1039_C6TA07868K
crossref_primary_10_1016_j_apenergy_2014_08_046
crossref_primary_10_1021_acsnano_5b04185
crossref_primary_10_1021_acs_chemmater_8b04487
crossref_primary_10_1002_aenm_201502514
crossref_primary_10_1016_j_carbon_2016_04_031
crossref_primary_10_1021_acsaem_8b00836
crossref_primary_10_33218_prnano1_2__180709_1
crossref_primary_10_4071_isom_2017_WP25_161
crossref_primary_10_1016_j_ensm_2022_09_030
crossref_primary_10_1080_02670836_2015_1112536
crossref_primary_10_1016_j_jpowsour_2016_09_093
crossref_primary_10_1039_C6TA10165H
crossref_primary_10_1002_adma_201601278
crossref_primary_10_1021_acsami_5b03042
crossref_primary_10_1039_C6CS00041J
crossref_primary_10_1021_acsaem_3c01865
crossref_primary_10_1016_j_apsusc_2017_10_010
crossref_primary_10_1002_marc_201800103
crossref_primary_10_1016_j_electacta_2022_140486
crossref_primary_10_1002_aenm_201402115
crossref_primary_10_1039_C6TA02437H
crossref_primary_10_1039_C6RA25260E
crossref_primary_10_1016_j_jallcom_2016_10_015
crossref_primary_10_1016_j_apenergy_2017_10_007
crossref_primary_10_1039_C8DT03231A
crossref_primary_10_1021_acs_jpcc_9b09105
crossref_primary_10_1021_acsnano_5b01244
crossref_primary_10_1149_2_0041504jss
crossref_primary_10_1002_adma_202003155
crossref_primary_10_1002_sstr_202100103
crossref_primary_10_1007_s11581_017_2050_9
crossref_primary_10_31613_ceramist_2021_24_1_03
crossref_primary_10_1007_s40843_017_9177_5
crossref_primary_10_1021_acsapm_0c00439
crossref_primary_10_5229_JECST_2015_6_1_1
crossref_primary_10_1002_advs_201600382
crossref_primary_10_1063_5_0151297
crossref_primary_10_1039_C7TA01526G
crossref_primary_10_1002_smtd_202300591
crossref_primary_10_1002_adma_201601928
crossref_primary_10_1039_D1TA02846D
crossref_primary_10_1109_TNANO_2016_2537338
crossref_primary_10_1016_j_electacta_2017_09_003
crossref_primary_10_1039_C6TA04712B
crossref_primary_10_1021_acs_chemrev_7b00291
crossref_primary_10_1016_j_jiec_2023_10_004
crossref_primary_10_1039_C7TA10163E
crossref_primary_10_1002_marc_201700616
crossref_primary_10_1002_ange_201504514
crossref_primary_10_1039_C5TC02121A
crossref_primary_10_1039_C8CS00609A
crossref_primary_10_1007_s12274_017_1771_4
crossref_primary_10_1002_anie_201800269
crossref_primary_10_1002_adma_202002180
crossref_primary_10_1002_advs_202203391
crossref_primary_10_1002_aenm_201903977
crossref_primary_10_3390_molecules26123554
crossref_primary_10_1021_acssuschemeng_8b02728
crossref_primary_10_1002_adfm_201600014
crossref_primary_10_1039_D1SE00198A
crossref_primary_10_1016_j_cej_2021_130353
crossref_primary_10_1007_s12039_022_02130_5
crossref_primary_10_1002_admt_201800444
crossref_primary_10_1021_acs_jpcc_0c01054
crossref_primary_10_1021_acsami_5b03148
crossref_primary_10_20964_2020_01_13
crossref_primary_10_1016_j_electacta_2020_136099
crossref_primary_10_1038_srep12299
crossref_primary_10_1002_adfm_201908945
crossref_primary_10_1002_pip_3093
crossref_primary_10_1016_j_jallcom_2024_174786
crossref_primary_10_1002_smll_201800998
crossref_primary_10_1002_anie_201504514
crossref_primary_10_1021_acs_nanolett_5b00738
crossref_primary_10_1016_j_sna_2022_113696
crossref_primary_10_1002_admt_202000476
crossref_primary_10_1016_j_jpowsour_2018_01_032
crossref_primary_10_1021_acsnano_6b00949
crossref_primary_10_3390_mi14020487
crossref_primary_10_1021_nn503570j
crossref_primary_10_1039_C6RA02757A
crossref_primary_10_1016_j_inoche_2023_111163
crossref_primary_10_1016_j_mseb_2023_116297
crossref_primary_10_1039_C6EE00966B
crossref_primary_10_1088_0031_8949_92_1_013001
crossref_primary_10_1016_j_bios_2021_113609
crossref_primary_10_1016_j_matlet_2022_132743
crossref_primary_10_1002_aelm_201600314
crossref_primary_10_1016_j_carbon_2015_02_066
crossref_primary_10_1021_acs_nanolett_1c01744
crossref_primary_10_1039_C5TA07046E
crossref_primary_10_1002_adfm_201404348
crossref_primary_10_1016_j_mseb_2023_116724
crossref_primary_10_1039_C5TA01229E
crossref_primary_10_1002_adma_201502263
crossref_primary_10_1016_j_cossms_2015_01_002
crossref_primary_10_1002_aenm_201801007
crossref_primary_10_1016_j_nanoen_2016_07_008
crossref_primary_10_1002_aenm_201501867
crossref_primary_10_1016_j_est_2019_01_010
crossref_primary_10_1016_j_matt_2022_02_006
crossref_primary_10_1109_LED_2017_2649497
crossref_primary_10_1039_D0TA09799C
crossref_primary_10_1007_s12274_022_5238_x
crossref_primary_10_1002_mame_202300379
crossref_primary_10_3390_ma14247688
crossref_primary_10_1002_adfm_201602459
crossref_primary_10_1002_aenm_201700648
crossref_primary_10_1002_adfm_201604639
crossref_primary_10_1039_C7EE01913K
crossref_primary_10_1021_acsnano_6b02319
crossref_primary_10_1016_j_mattod_2022_06_001
crossref_primary_10_1002_cey2_320
crossref_primary_10_1016_j_cej_2016_10_067
crossref_primary_10_1021_acsami_6b03504
crossref_primary_10_1039_D2TA00164K
crossref_primary_10_1016_j_jpowsour_2017_06_087
crossref_primary_10_1063_1_5040368
crossref_primary_10_1016_j_nanoen_2014_11_048
crossref_primary_10_1039_C5CE02510A
crossref_primary_10_1002_advs_201900529
crossref_primary_10_1002_adma_201602251
crossref_primary_10_1088_1757_899X_254_3_032002
crossref_primary_10_1002_admt_202000694
crossref_primary_10_1039_C6TA08458C
crossref_primary_10_1016_j_egyr_2021_05_004
crossref_primary_10_1016_j_ensm_2017_05_002
crossref_primary_10_1016_j_apcatb_2019_118209
crossref_primary_10_1016_j_electacta_2015_05_019
crossref_primary_10_1002_adfm_201601283
crossref_primary_10_1016_j_electacta_2015_09_123
crossref_primary_10_1016_j_fuel_2023_130218
crossref_primary_10_1016_j_matlet_2018_12_043
crossref_primary_10_1016_j_nanoen_2020_104812
crossref_primary_10_1002_adma_201802104
crossref_primary_10_1002_adma_201504225
crossref_primary_10_1002_aenm_201801025
crossref_primary_10_1016_j_jpowsour_2017_11_053
crossref_primary_10_1002_pat_3857
crossref_primary_10_1007_s10854_021_07610_x
crossref_primary_10_1002_aenm_201702261
crossref_primary_10_1016_j_nanoen_2014_10_031
crossref_primary_10_1039_C7NJ02976D
crossref_primary_10_1021_acsami_5b10158
crossref_primary_10_1021_acsaem_8b00321
crossref_primary_10_1039_C5TA03635F
crossref_primary_10_1039_C6CP07784F
crossref_primary_10_1039_C9TA04569D
crossref_primary_10_1016_j_materresbull_2020_110889
crossref_primary_10_1021_acs_energyfuels_1c00201
crossref_primary_10_1063_1_5082195
crossref_primary_10_1039_C5RA10961B
crossref_primary_10_1002_eom2_12443
crossref_primary_10_1016_j_ensm_2024_103184
crossref_primary_10_1002_ente_201402182
crossref_primary_10_1016_j_mseb_2023_117151
crossref_primary_10_1002_cnma_201600110
crossref_primary_10_1021_acsenergylett_8b02496
crossref_primary_10_1021_acsaem_2c00815
crossref_primary_10_1021_nn507178a
crossref_primary_10_1002_adma_201801368
crossref_primary_10_1021_acsaelm_4c00607
crossref_primary_10_3934_era_2023117
crossref_primary_10_1007_s11340_021_00759_w
crossref_primary_10_1021_am507588p
crossref_primary_10_1007_s40843_017_9095_4
crossref_primary_10_1002_adfm_201606161
crossref_primary_10_1039_D2NH00089J
crossref_primary_10_1149_1945_7111_ac56a1
crossref_primary_10_1016_j_electacta_2016_01_228
crossref_primary_10_1002_adma_201901961
crossref_primary_10_1002_smll_201703665
crossref_primary_10_1002_adma_201504403
crossref_primary_10_1016_j_electacta_2018_03_075
crossref_primary_10_1016_j_electacta_2019_03_230
crossref_primary_10_1021_acsami_9b21927
crossref_primary_10_1039_D1TC01082D
crossref_primary_10_1021_acsnano_6b07389
crossref_primary_10_1016_j_electacta_2017_01_183
crossref_primary_10_3390_mi8010007
crossref_primary_10_1002_adma_201900756
crossref_primary_10_1002_adma_201601665
crossref_primary_10_1021_acsami_5b11622
crossref_primary_10_1039_C7DT01170A
crossref_primary_10_1002_advs_202001116
crossref_primary_10_1016_j_ensm_2020_07_005
crossref_primary_10_1038_am_2014_106
crossref_primary_10_1039_C8PY00763B
crossref_primary_10_1021_acssuschemeng_7b01906
crossref_primary_10_1016_j_ensm_2019_07_007
crossref_primary_10_1016_j_ensm_2020_07_003
crossref_primary_10_1016_j_ensm_2017_07_006
crossref_primary_10_1021_acsnano_2c08166
crossref_primary_10_1016_j_isci_2021_102698
crossref_primary_10_1016_j_cej_2019_02_138
crossref_primary_10_1039_C5EE03109E
crossref_primary_10_1039_C9TA10073C
crossref_primary_10_1002_aenm_201702478
crossref_primary_10_1002_ange_201800269
crossref_primary_10_1002_adma_201805468
crossref_primary_10_1002_batt_202000115
crossref_primary_10_1007_s40843_020_1613_4
crossref_primary_10_1016_j_carbon_2015_05_096
crossref_primary_10_1002_adhm_202100577
crossref_primary_10_1002_aelm_201800799
crossref_primary_10_1002_pi_5982
crossref_primary_10_1021_acsaem_8b00891
crossref_primary_10_1155_2022_7098989
crossref_primary_10_1021_acsami_6b16716
crossref_primary_10_1016_j_ensm_2019_03_002
crossref_primary_10_1007_s10008_017_3536_0
crossref_primary_10_1021_acs_jpcc_9b04700
crossref_primary_10_1002_adma_201401513
crossref_primary_10_1016_j_jechem_2017_10_033
crossref_primary_10_1002_adfm_202006213
crossref_primary_10_1039_C7TA05373H
crossref_primary_10_33961_JECST_2015_6_1_1
crossref_primary_10_1002_ente_202100121
crossref_primary_10_1016_j_jpowsour_2016_07_071
crossref_primary_10_1002_celc_201701286
crossref_primary_10_1021_acsomega_0c05967
crossref_primary_10_1016_j_jechem_2021_03_021
crossref_primary_10_1016_j_sna_2018_07_021
crossref_primary_10_1002_ente_201600661
crossref_primary_10_1016_j_cej_2019_123794
crossref_primary_10_1021_acsnano_5b00860
crossref_primary_10_1002_adma_201605336
crossref_primary_10_1039_C6TA03762C
crossref_primary_10_1002_aenm_202003308
crossref_primary_10_1016_j_mattod_2014_10_040
crossref_primary_10_1039_C5MH00136F
crossref_primary_10_1016_j_mtnano_2019_100050
crossref_primary_10_1007_s10854_022_08311_9
crossref_primary_10_1155_2018_4580921
crossref_primary_10_1002_aenm_201701369
crossref_primary_10_1016_j_jallcom_2019_151802
crossref_primary_10_1002_admt_201600142
crossref_primary_10_1002_advs_202004170
crossref_primary_10_1088_2053_1591_aaed13
crossref_primary_10_1016_j_compscitech_2021_108692
crossref_primary_10_1039_C7SE00443E
crossref_primary_10_1016_j_matlet_2016_04_053
crossref_primary_10_1016_j_mattod_2021_01_026
crossref_primary_10_1002_adma_201502549
crossref_primary_10_1002_eom2_12198
crossref_primary_10_1007_s10853_015_9643_3
crossref_primary_10_1088_0957_4484_27_22_225402
crossref_primary_10_1002_aelm_201800456
crossref_primary_10_1016_j_electacta_2017_12_115
crossref_primary_10_1039_C9TA05138D
crossref_primary_10_1002_eom2_12073
crossref_primary_10_1039_C4EE03749A
crossref_primary_10_1039_D0RA09126J
crossref_primary_10_1016_j_flatc_2020_100171
crossref_primary_10_3390_catal10090969
crossref_primary_10_3390_nano11102589
crossref_primary_10_1115_1_4042320
crossref_primary_10_1016_j_jpowsour_2018_03_046
crossref_primary_10_1088_1361_6528_abe9e8
crossref_primary_10_1039_C7TA00491E
crossref_primary_10_1002_adma_201404446
crossref_primary_10_1021_acsami_5b01625
crossref_primary_10_1557_mrs_2017_270
crossref_primary_10_1002_adfm_202004137
crossref_primary_10_1002_admi_201701240
crossref_primary_10_1002_anie_201907805
crossref_primary_10_1039_D0TA10171K
crossref_primary_10_1039_C4TC02997F
crossref_primary_10_1016_j_ensm_2018_11_010
crossref_primary_10_1016_j_joule_2018_06_003
crossref_primary_10_1016_j_chempr_2018_04_019
crossref_primary_10_1016_S1872_5805_22_60594_8
crossref_primary_10_1021_acsami_2c06524
crossref_primary_10_1039_C5RA01569C
crossref_primary_10_1002_adma_201502559
crossref_primary_10_1007_s10008_019_04316_3
crossref_primary_10_1038_s41528_017_0008_7
crossref_primary_10_1016_j_cej_2018_08_009
crossref_primary_10_1149_2_0481816jes
crossref_primary_10_1016_j_est_2022_105270
crossref_primary_10_3389_fchem_2023_1198067
crossref_primary_10_1016_j_jpowsour_2018_08_014
crossref_primary_10_1016_j_mtchem_2021_100538
crossref_primary_10_1002_adfm_202205622
crossref_primary_10_1016_j_cossms_2022_101042
crossref_primary_10_1002_adma_201504299
crossref_primary_10_1016_j_eml_2017_02_007
crossref_primary_10_1038_s41427_018_0080_z
crossref_primary_10_1002_adhm_201700889
crossref_primary_10_1016_j_electacta_2015_11_090
crossref_primary_10_1021_acsnano_5b01602
crossref_primary_10_1007_s44174_023_00141_5
crossref_primary_10_1016_j_electacta_2016_05_020
crossref_primary_10_1002_adma_201902391
crossref_primary_10_1016_j_jallcom_2015_12_083
crossref_primary_10_1088_1361_6463_aa73b8
crossref_primary_10_1016_j_cplett_2023_140883
crossref_primary_10_1016_j_eml_2019_100532
crossref_primary_10_1021_acsami_4c05293
crossref_primary_10_1007_s00542_018_4234_2
crossref_primary_10_1016_j_nanoen_2016_12_049
crossref_primary_10_1002_aenm_201700369
crossref_primary_10_1039_D0SE01424A
crossref_primary_10_1038_srep11695
crossref_primary_10_3390_s21248422
crossref_primary_10_1002_aenm_201502333
crossref_primary_10_1002_adma_202004832
crossref_primary_10_1016_j_apsusc_2022_155074
crossref_primary_10_1016_j_ccr_2017_10_005
crossref_primary_10_1038_s41598_019_48320_z
crossref_primary_10_1039_C5TA06072A
crossref_primary_10_1002_adma_201602541
crossref_primary_10_1007_s12274_021_3820_2
crossref_primary_10_1016_j_ensm_2020_03_006
crossref_primary_10_1021_acsami_5b08474
crossref_primary_10_1016_j_jallcom_2019_01_365
crossref_primary_10_1002_smll_202201117
crossref_primary_10_2139_ssrn_4177583
crossref_primary_10_1039_C7NJ01478C
crossref_primary_10_1002_ange_201907805
crossref_primary_10_1177_1528083717699370
crossref_primary_10_1039_C5NR06843F
crossref_primary_10_1016_j_jpowsour_2017_01_123
crossref_primary_10_1016_j_nanoen_2014_12_016
crossref_primary_10_1038_s41598_018_31611_2
crossref_primary_10_1039_C7TA09301B
crossref_primary_10_1016_j_est_2020_101652
crossref_primary_10_5254_rct_22_77936
crossref_primary_10_1016_j_ensm_2020_08_010
crossref_primary_10_1016_j_jallcom_2019_152373
crossref_primary_10_1021_acs_macromol_8b00874
crossref_primary_10_3109_07388551_2016_1163321
crossref_primary_10_1039_C7CP05253G
Cites_doi 10.1126/science.1168539
10.1002/aenm.201100725
10.1038/nnano.2010.162
10.1002/adma.201003673
10.1021/nl200965j
10.1002/adfm.201102032
10.1088/0965-0393/17/1/015008
10.1007/s00339-012-7402-8
10.1038/nnano.2011.38
10.1021/nl802558y
10.1002/adma.201103382
10.1039/c2jm16773e
10.1038/ncomms1772
10.1116/1.3168555
10.1002/aenm.201300759
10.1002/adma.201004426
10.1021/nn101595y
10.1038/nphoton.2011.123
10.1002/smll.201102437
10.1088/0965-0393/16/3/035010
10.1126/science.1121401
10.1021/ja3091438
10.1063/1.1565683
10.1002/adma.201101423
10.1002/adfm.201002021
10.1126/science.1206157
10.1002/adfm.200601243
10.1038/nature11409
10.1021/nn403068d
10.1038/nmat3191
10.1039/c3cs35465b
10.1039/c0nr00899k
10.1063/1.3148245
10.1002/adma.201101067
10.1002/adma.201200576
10.1557/mrs.2012.37
10.1002/aenm.201100261
10.1038/ncomms1921
10.1002/smll.201200802
10.1039/b614793c
10.1038/ncomms2553
10.1038/451652a
10.1088/0022-3727/45/10/103001
10.1002/app.30349
10.1016/j.elecom.2011.03.040
10.1038/nmat3122
10.1002/adma.200901775
10.1002/adma.200902795
10.1016/j.nanoen.2012.09.008
10.1039/c1ee01881g
10.1039/c2jm15955d
10.1021/ar800229g
10.1002/adma.201201329
10.1021/nn202020w
10.1002/adma.201000602
10.1039/b923596e
10.1038/nmat2287
10.1038/30193
10.1038/nmat2459
10.1021/nl903949m
10.1039/c3cs00009e
10.1073/pnas.0702927104
10.1038/nnano.2010.132
10.1038/nature07719
10.1002/adfm.201202412
10.1126/science.1168375
10.1038/nmat3263
10.1002/adfm.201201013
10.1002/adma.200904270
10.1016/j.solmat.2012.09.005
10.1126/science.1216744
10.1038/nnano.2011.110
10.1021/nl0706244
10.1016/j.compositesb.2013.01.024
10.1016/j.ssc.2008.02.024
10.1002/anie.200703238
10.1002/adma.200600646
10.1126/science.1212741
10.1002/adma.201202196
10.1002/aenm.201100634
10.1002/adma.201003961
10.1002/adma.201300132
10.1038/nature12401
10.1002/adma.201300794
10.1002/adfm.201100306
10.1021/nl204414u
10.1002/aenm.201100488
10.1016/j.commatsci.2012.07.017
10.1038/nature12314
10.1038/ncomms2163
10.1038/srep00481
10.1002/adma.200904054
10.1002/aenm.201100529
10.1016/j.jpowsour.2010.03.038
10.1149/2.020204jes
10.1038/ncomms3487
10.1002/adfm.200801065
10.1073/pnas.0807476105
10.1038/nature11476
10.1021/nl802042g
10.1002/aenm.201301396
10.1002/adma.200904068
10.1002/adma.201100310
10.1016/j.jpowsour.2013.02.087
10.1002/adfm.201202174
10.1039/c3ta00019b
10.1021/nl3020445
10.1039/c2ee23073a
10.1002/adma.200903650
10.1021/am100036n
10.1039/b811802g
10.1021/nl102725k
10.1021/mz200249c
10.1002/adma.201203578
10.1002/anie.201209596
10.1021/nl303631e
10.1038/nnano.2013.84
10.1039/c1jm13722k
10.1038/nnano.2011.36
10.1002/adma.200902927
10.1126/science.1160309
10.1016/j.electacta.2012.01.109
10.1021/ar200215t
10.1039/c3ee40515j
10.1038/nature12340
10.1126/science.1157996
10.1038/nmat3367
10.1038/ncomms2411
10.1039/c1jm00016k
10.1016/j.elecom.2013.03.035
10.1109/JPROC.2005.851502
10.1002/adma.201200359
10.1016/j.solmat.2012.07.013
10.1021/nn901391q
10.1038/nnano.2006.131
10.1002/adma.201004533
10.1002/adma.201204003
ContentType Journal Article
Copyright 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright_xml – notice: 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DBID BSCLL
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
7SR
7TB
8BQ
8FD
FR3
JG9
DOI 10.1002/adma.201305919
DatabaseName Istex
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
MEDLINE - Academic
Engineered Materials Abstracts
Mechanical & Transportation Engineering Abstracts
METADEX
Technology Research Database
Engineering Research Database
Materials Research Database
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
MEDLINE - Academic
Materials Research Database
Engineered Materials Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
METADEX
DatabaseTitleList Materials Research Database
MEDLINE
CrossRef

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage 3617
ExternalDocumentID 10_1002_adma_201305919
24643976
ADMA201305919
ark_67375_WNG_DX37J57P_B
Genre article
Research Support, Non-U.S. Gov't
Journal Article
Review
GrantInformation_xml – fundername: National Science Foundation
  funderid: 0824790; 0926093; 1067960
– fundername: Specialized Research Fund for the Doctoral Program of Higher Education of China
  funderid: 20136102120024; 20136102140001
– fundername: National Natural Science Foundation of China
  funderid: 51302219
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
8WZ
930
A03
A6W
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAYOK
AAZKR
ABCQN
ABCUV
ABEML
ABHUG
ABIJN
ABJNI
ABLJU
ABPVW
ABTAH
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXME
ACXQS
ADAWD
ADBBV
ADDAD
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AETEA
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFVGU
AFZJQ
AGJLS
AHBTC
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
FEDTE
FOJGT
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M6K
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NDZJH
NF~
NNB
O66
O9-
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
RNS
ROL
RWI
RWM
RX1
RYL
SAMSI
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WTY
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZY4
ZZTAW
~02
~IA
~WT
AITYG
HGLYW
OIG
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
7SR
7TB
8BQ
8FD
FR3
JG9
ID FETCH-LOGICAL-c4829-87aa3f86ad427125f99b1331cab29493ef72b316addcb947e096fa9328b1a9f3
IEDL.DBID DR2
ISSN 0935-9648
IngestDate Fri Aug 16 09:38:26 EDT 2024
Fri Aug 16 04:15:11 EDT 2024
Thu Sep 26 15:56:33 EDT 2024
Sat Sep 28 08:01:48 EDT 2024
Sat Aug 24 00:51:33 EDT 2024
Wed Jan 17 05:01:15 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 22
Keywords stretchable materials
solar cells
batteries
supercapacitors
stretchable structures
Language English
License 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4829-87aa3f86ad427125f99b1331cab29493ef72b316addcb947e096fa9328b1a9f3
Notes ark:/67375/WNG-DX37J57P-B
Specialized Research Fund for the Doctoral Program of Higher Education of China - No. 20136102120024; No. 20136102140001
National Science Foundation - No. 0824790; No. 0926093; No. 1067960
ArticleID:ADMA201305919
istex:642E3D20D408F348E1E18FE5BD38B8B768214EF3
National Natural Science Foundation of China - No. 51302219
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-3
content type line 23
ObjectType-Review-1
ObjectType-Feature-1
PMID 24643976
PQID 1534097706
PQPubID 23479
PageCount 26
ParticipantIDs proquest_miscellaneous_1551078235
proquest_miscellaneous_1534097706
crossref_primary_10_1002_adma_201305919
pubmed_primary_24643976
wiley_primary_10_1002_adma_201305919_ADMA201305919
istex_primary_ark_67375_WNG_DX37J57P_B
PublicationCentury 2000
PublicationDate June 11, 2014
PublicationDateYYYYMMDD 2014-06-11
PublicationDate_xml – month: 06
  year: 2014
  text: June 11, 2014
  day: 11
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv. Mater
PublicationYear 2014
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References Y. Kim, J. Zhu, B. Yeom, M. Di Prima, X. Su, J. G. Kim, S. J. Yoo, C. Uher, N. A. Kotov, Nature 2013, 500, 59.
M. R. Lee, R. D. Eckert, K. Forberich, G. Dennler, C. J. Brabec, R. A. Gaudiana, Science 2009, 324, 232.
Y. Meng, Y. Zhao, C. Hu, H. Cheng, Y. Hu, Z. Zhang, G. Shi, L. Qu, Adv. Mater. 2013, 25, 2326.
K. Jost, D. Stenger, C. R. Perez, J. K. McDonough, K. Lian, Y. Gogotsi, G. Dion, Energy Environ. Sci. 2013, 6, 2698.
T. Sekitani, H. Nakajima, H. Maeda, T. Fukushima, T. Aida, K. Hata, T. Someya, Nat. Mater. 2009, 8, 494.
J. An, W. Guo, T. Ma, Small 2012, 8, 3427.
J.-H. Ahn, J. H. Je, J. Phys. D: Appl. Phys. 2012, 45, 103001.
L. Hu, M. Pasta, F. L. Mantia, L. Cui, S. Jeong, H. D. Deshazer, J. W. Choi, S. M. Han, Y. Cui, Nano Lett. 2010, 10, 708.
S. Yang, X. Feng, L. Zhi, Q. Cao, J. Maier, K. Müllen, Adv. Mater. 2010, 22, 838.
R. J. Knuesel, H. O. Jacobs, Adv. Mater. 2011, 23, 2727.
J. G. Tait, B. J. Worfolk, S. A. Maloney, T. C. Hauger, A. L. Elias, J. M. Buriak, K. D. Harris, Sol. Energy Mater. Sol. Cells 2013, 110, 98.
B. G. Choi, J. Hong, W. H. Hong, P. T. Hammond, H. Park, ACS Nano 2011, 5, 7205.
P. Hiralal, S. Imaizumi, H. E. Unalan, H. Matsumoto, M. Minagawa, M. Rouvala, A. Tanioka, G. A. J. Amaratunga, ACS Nano 2010, 4, 2730.
K. Wang, P. Zhao, X. Zhou, H. Wu, Z. Wei, J. Mater. Chem. 2011, 21, 16373.
C. Yan, X. Wang, M. Cui, J. Wang, W. Kang, C. Y. Foo, P. S. Lee, Adv. Energy Mater. 2013, DOI: 10.1002/aenm.201301396.
H. Lin, M. Sherburn, J. Crookston, A. C. Long, M. J. Clifford, I. A. Jones, Model. Simul. Mater. SC. 2008, 16, 035010.
S. P. Lacour, S. Wagner, Z. Huang, Z. Suo, Appl. Phys. Lett. 2003, 82, 2404.
J. Ge, H. B. Yao, X. Wang, Y. D. Ye, J. L. Wang, Z. Y. Wu, J. W. Liu, F. J. Fan, H. L. Gao, C. L. Zhang, S. H. Yu, Angew. Chem. Int. Ed. 2013, 52, 1654.
J. Y. Sun, X. Zhao, W. R. Illeperuma, O. Chaudhuri, K. H. Oh, D. J. Mooney, J. J. Vlassak, Z. Suo, Nature 2012, 489, 133.
D. H. Kim, J. Xiao, J. Song, Y. Huang, J. A. Rogers, Adv. Mater. 2010, 22, 2108.
S. Rosset, H. R. Shea, Appl. Phys. A 2013. 110, 281.
J. Lee, J. Wu, J. H. Ryu, Z. Liu, M. Meitl, Y.-W. Zhang, Y. Huang, J. A. Rogers, Small 2012, 8, 1851.
J. T. Li, Z. Y. Zhou, I. Broadwell, S. G. Sun, Acc. Chem. Res. 2012, 45, 485.
L. Hu, F. La Mantia, H. Wu, X. Xie, J. McDonough, M. Pasta, Y. Cui, Adv. Energy Mater. 2011, 1, 1012.
M. Kaltenbrunner, M. S. White, E. D. Glowacki, T. Sekitani, T. Someya, N. S. Sariciftci, S. Bauer, Nat. Commun. 2012, 3, 770.
A. M. Gaikwad, A. M. Zamarayeva, J. Rousseau, H. Chu, I. Derin, D. A. Steingart, Adv. Mater. 2012, 24, 5071.
H. Lee, J.-K. Yoo, J.-H. Park, J. H. Kim, K. Kang, Y. S. Jung, Adv. Energy Mater. 2012, 2, 976.
K. Y. Xie, Z. G. Lu, H. T. Huang, W. Lu, Y. Q. Lai, J. Li, L. M. Zhou, Y. X. Liu, J. Mater. Chem. 2012, 22, 5560.
Y. Ding, M. A. Invernale, G. A. Sotzing, ACS Appl. Mater. Interfaces 2010, 2, 1588.
K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi, B. H. Hong, Nature 2009, 457, 706.
H. Jiang, D. Y. Khang, J. Song, Y. Sun, Y. Huang, J. A. Rogers, PNAS 2007, 104, 15607.
M. Zu, Q. Li, G. Wang, J.-H. Byun, T.-W. Chou, Adv. Funct. Mater. 2013, 23, 789.
X. Li, J. Rong, B. Wei, ACS Nano 2010, 4, 6039.
J. You, L. Dou, K. Yoshimura, T. Kato, K. Ohya, T. Moriarty, K. Emery, C. C. Chen, J. Gao, G. Li, Y. Yang, Nat. Commun. 2013, 4, 1446.
T. G. Yun, M. Oh, L. Hu, S. Hyun, S. M. Han, J. Power Sources 2013, 244, 783.
M. Kaltenbrunner, T. Sekitani, J. Reeder, T. Yokota, K. Kuribara, T. Tokuhara, M. Drack, R. Schwodiauer, I. Graz, S. Bauer-Gogonea, S. Bauer, T. Someya, Nature 2013, 499, 458.
T. Sekitani, Y. Noguchi, K. Hata, T. Fukushima, T. Aida, T. Someya, Science 2008, 321, 1468
Z.M. Beiley, M. D. McGehee, Energ. Environ. Sci. 2012, 5, 9173.
B. Dunn, H. Kamath, J. M. Tarascon, Science 2011, 334, 928.
D. J. Lipomi, H. Chong, M. Vosgueritchian, J. Mei, Z. Bao, Sol. Energy Mater. Sol. Cells 2012, 107, 355.
W. Gao, N. Singh, L. Song, Z. Liu, A. L. Reddy, L. Ci, R. Vajtai, Q. Zhang, B. Q. Wei, P. M. Ajayan, Nat. Nanotechnol. 2011, 6, 496.
N. Singh, C. Galande, A. Miranda, A. Mathkar, W. Gao, A. L. Reddy, A. Vlad, P. M. Ajayan, Sci. Rep. 2012, 2, 481.
Y. Liu, S. Gorgutsa, C. Santato, M. Skorobogatiy, J. Electrochem. Soc. 2012, 159, A349.
G. Mariani, P. S. Wong, A. M. Katzenmeyer, F. Leonard, J. Shapiro, D. L. Huffaker, Nano Lett. 2011, 11, 2490.
C. Yu, C. Masarapu, J. Rong, B. Q. Wei, H. Jiang, Adv. Mater. 2009, 21, 4793.
F. Xu, X. Wang, Y. Zhu, Y. Zhu, Adv. Funct. Mater. 2012, 22, 1279.
L. Cai, J. Li, P. Luan, H. Dong, D. Zhao, Q. Zhang, X. Zhang, M. Tu, Q. Zeng, W. Zhou, S. Xie, Adv. Funct. Mater. 2012, 22, 5238.
D. H. Kim, J. Song, W. M. Choi, H. S. Kim, R. H. Kim, Z. Liu, Y. Y. Huang, K. C. Hwang, Y. W. Zhang, J. A. Rogers, PNAS 2008, 105, 18675.
J. Song, H. Jiang, Y. Huang, J. A. Rogers, J. Vac. Sci. Technol. A 2009, 27, 1107.
H. Wu, L. Hu, M. W. Rowell, D. Kong, J. J. Cha, J. R. McDonough, J. Zhu, Y. Yang, M. D. McGehee, Y. Cui, Nano Lett. 2010, 10, 4242.
D. Knittel, M. Kontges, F. Heinemeyer, E. Schollmeyer, J. Appl. Polym. Sci. 2010, 115, 2763.
X. Li, T. Gu, B. Q. Wei, Nano Lett. 2012, 12, 6366.
W. M. Choi, J. Song, D. Y. Khang, H. Jiang, Y. Y. Huang, J. A. Rogers, Nano Lett. 2007, 7, 1655.
M. F. El-Kady, V. Strong, S. Dubin, R. B. Kaner, Science 2012, 335, 1326.
Y. H. Kwon, S. W. Woo, H. R. Jung, H. K. Yu, K. Kim, B. H. Oh, S. Ahn, S. Y. Lee, S. W. Song, J. Cho, H. C. Shin, J. Y. Kim, Adv. Mater. 2012, 24, 5192.
T. Sekitani, T. Someya, Adv. Mater. 2010, 22, 2228.
D. J. Lipomi, Z. Bao, Energy Environ. Sci. 2011, 4, 3314.
S. Saricilar, D. Antiohos, K. Shu, P. G. Whitten, K. Wagner, C. Wang, G. G. Wallace, Electrochem. Commun. 2013, 32, 47.
N. Bowden, S. Brittain, A. G. Evans, J. W. Hutchinson, G. M. Whitesides, Nature 1998, 393, 146.
S. Hou, Z. Lv, H. Wu, X. Cai, Z. Chu, Yiliguma, D. Zou, J. Mater. Chem. 2012, 22, 6549.
K. Wang, W. Zou, B. Quan, A. Yu, H. Wu, P. Jiang, Z. Wei, Adv. Energy Mater. 2011, 1, 1068.
S. Bae, H. Kim, Y. Lee, X. Xu, J. S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y. J. Kim, K. S. Kim, B. Ozyilmaz, J. H. Ahn, B. H. Hong, S. Iijima, Nat. Nanotechnol. 2010, 5, 574.
Y. Wang, S. W. Tong, X. F. Xu, B. Ozyilmaz, K. P. Loh, Adv. Mater. 2011, 23, 1514.
W. Lai, C. K. Erdonmez, T. F. Marinis, C. K. Bjune, N. J. Dudney, F. Xu, R. Wartena, Y.M. Chiang, Adv. Mater. 2010, 22, E139.
H. M. Stec, R. J. Williams, T. S. Jones, R. A. Hatton, Adv. Funct. Mater. 2011, 21, 1709.
K. H. Kim, M. Vural, M. F. Islam, Adv. Mater. 2011, 23, 2865.
D. Wang, S. Hou, H. Wu, C. Zhang, Z. Chu, D. Zou, J. Mater. Chem. 2011, 21, 6383.
Y. Sun, J. A. Rogers, J. Mater. Chem. 2007, 17, 832.
K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, H. L. Stormer, Solid State Commun. 2008, 146, 351.
D. Pech, M. Brunet, H. Durou, P. Huang, V. Mochalin, Y. Gogotsi, P. L. Taberna, P. Simon, Nat. Nanotechnol. 2010, 5, 651.
G. D. Moon, G. H. Lim, J. H. Song, M. Shin, T. Yu, B. Lim, U. Jeong, Adv. Mater. 2013, 25, 2707.
M. D. Stoller, S. J. Park, Y. W. Zhu, J. H. An, R. S. Ruoff, Nano Lett. 2008, 8, 3498.
G. Kettlgruber, M. Kaltenbrunner, C. M. Siket, R. Moser, I. M. Graz, R. Schwodiauer, S. Bauer, J. Mater. Chem. A 2013, 1, 5505.
J. Burschka, N. Pellet, S. J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin, M. Grätzel, Nature 2013, 499, 316.
P. G. Bruce, S. A. Freunberger, L. J. Hardwick, J. M. Tarascon, Nat. Mater. 2012, 11, 19.
Y. Zhu, F. Xu, Adv. Mater. 2012, 24, 1073.
A. Ruland, C. Schulz-Drost, V. Sgobba, D. M. Guldi, Adv. Mater. 2011, 23, 4573.
M. Kaltenbrunner, G. Kettlgruber, C. Siket, R. Schwodiauer, S. Bauer, Adv. Mater. 2010, 22, 2065.
T. Yamada, Y. Hayamizu, Y. Yamamoto, Y. Yomogida, A. Izadi-Najafabadi, D. N. Futaba, K. Hata, Nat. Nanotechnol. 2011, 6, 296.
Q. Zhang, E. Uchaker, S. L. Candelaria, G. Cao, Chem. Soc. Rev. 2013, 42, 3127.
S. Xu, Y. Zhang, J. Cho, J. Lee, X. Huang, L. Jia, J. A. Fan, Y. Su, J. Su, H. Zhang, H. Cheng, B. Lu, C. Yu, C. Chuang, T. I. Kim, T. Song, K. Shigeta, S. Kang, C. Dagdeviren, I. Petrov, P. V. Braun, Y. Huang, U. Paik, J. A. Rogers, Nat. Commun. 2013, 4, 1543.
X. H. Wang, G. I. Koleilat, J. Tang, H. Liu, I. J. Kramer, R. Debnath, L. Brzozowski, D. A. R. Barkhouse, L. Levina, S. Hoogland, E. H. Sargent, Nat. Photon. 2011, 5, 480.
M. K. Shin, J. Oh, M. Lima, M. E. Kozlov, S. J. Kim, R. H. Baughman, Adv. Mater. 2010, 22, 2663.
A. Polman, H. A. Atwater, Nat. Mater. 2012, 11, 174.
C. Wang, W. Zheng, Z. Yue, C. O. Too, G. G. Wallace, Adv. Mater. 2011, 23, 3580.
C. Yu, X. Li, T. Ma, J. Rong, R. Zhang, J. Shaffer, Y. An, Q. Liu, B. Q. Wei, H. Jiang, Adv. Energy Mater. 2012, 2, 68.
P. Yang, J. M. Tarascon, Nat. Mater. 2012, 11, 560.
Y. S. Su, A. Manthiram, Nat. Commun. 2012, 3, 1166.
H. Wu, D. Kong, Z. Ruan, P. C. Hsu, S. Wang, Z. Yu, T. J. Carney, L. Hu, S. Fan, Y. Cui, Nat. Nanotechnol. 2013, 8, 421.
Y. Zhao, J. Liu, Y. Hu, H. Cheng, C. Hu, C. Jiang, L. Jiang, A. Cao, L. Qu, Adv. Mater. 2013, 25, 591.
J. T. Kim, J. Pyo, J. Rho, J.-H. Ahn, J. H. Je, G. Margaritondo, ACS Macro Lett. 2012, 1, 375.
H. Lin, M. J. Clifford, A. C. Long, M. Sherburn, Model. Simul. Mater. SC. 2009, 17, 015008.
J. Li, K. Y. Xie, Y. Q. Lai, Z. A. Zhang, F. Q. Li, X. Hao, X. J. Chen, Y. X. Liu, J. Power Sources 2010, 195, 5344.
A. Hallal, R. Younes, F. Fardoun, Compos. Part B-Eng. 2013, 50, 22.
A. Manthiram, A. V. Murugan, A. Sarkar, T. Muraliganth, Energy Environ. Sci. 2008, 1, 621.
J. B. Goodenough, K.-S. Park, J. Am. Chem. Soc. 2013, 135, 1167.
S. P. Lacour, J. Jones, S. Wagner, T. Li, Z. G. Suo, P. IEEE 2005, 93, 1459.
C. Lee, X. Wei, J. W. Kysar, J. Hone, Science 2008, 321, 385.
J. Lee, J. Wu, M. Shi, J. Yoon, S. I. Park, M. Li, Z. Liu, Y. Huang, J. A. Rogers, Adv. Mater. 2011, 23, 986.
P. Lee, J. Lee, H. Lee, J. Yeo, S. Hong, K. H. Nam, D. Lee, S. S. Lee, S. H. Ko, Adv. Mater. 2012, 24, 3326.
K. Liu, Y. Sun, P. Liu, X. Lin, S. Fan, K. Jiang, Adv. Funct. Mater. 2011, 21, 2721.
J. Y. Kwon, D. H. Lee, M. Chitambar, S. Maldonado, A. Tuteja, A. Boukai, Nano Lett. 2012, 12, 5143.
J. Song, Y. Huang, J. Xiao, S. Wang, K. C. Hwang, H.
2007; 104
2010; 10
2013; 4
2013; 25
2013; 1
2013; 2
2009; 42
2013; 23
2013; 244
2008; 7
2011; 11
2011; 10
2008; 8
2008; 105
2011; 13
2008; 146
2008; 1
2012; 488
2013; 7
2013; 8
2012; 489
2012; 12
2012; 11
2013; 6
1998; 393
2010; 22
2010; 115
2013; 50
2013; 52
2007; 7
2011; 21
2011; 23
2010; 195
2013; 110
2003; 82
2012; 335
2012; 24
2009; 19
2010; 2
2012; 68
2010; 5
2012; 22
2010; 4
2012; 65
2009; 323
2009; 324
2009; 17
2007; 17
2011; 334
2011; 333
2009; 21
2011; 1
2010; 39
2013; 500
2013; 42
2008; 16
2009
2006; 18
2006; 1
2012; 37
2011; 4
2008; 321
2011; 3
2011; 6
2011; 5
2009; 27
2012; 107
2009; 457
2006; 311
2012; 2
2012; 3
2012; 1
2013; 32
2008; 47
2013; 499
2013; 135
2009; 8
2005; 93
2013
2012; 6
2012; 159
2012; 45
2008; 451
2012; 5
2012; 8
2009; 105
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_68_1
e_1_2_8_132_1
e_1_2_8_5_1
e_1_2_8_9_1
e_1_2_8_117_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_64_1
e_1_2_8_87_1
e_1_2_8_113_1
e_1_2_8_136_1
e_1_2_8_1_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_83_1
e_1_2_8_19_1
e_1_2_8_109_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
e_1_2_8_120_1
e_1_2_8_91_1
e_1_2_8_95_1
e_1_2_8_99_1
e_1_2_8_105_1
e_1_2_8_128_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_76_1
e_1_2_8_101_1
e_1_2_8_124_1
e_1_2_8_30_1
e_1_2_8_72_1
e_1_2_8_29_1
Liu D. (e_1_2_8_127_1) 2012; 6
e_1_2_8_25_1
e_1_2_8_48_1
e_1_2_8_2_1
e_1_2_8_133_1
e_1_2_8_110_1
e_1_2_8_6_1
e_1_2_8_21_1
e_1_2_8_67_1
e_1_2_8_44_1
e_1_2_8_86_1
e_1_2_8_118_1
e_1_2_8_63_1
e_1_2_8_137_1
e_1_2_8_40_1
e_1_2_8_82_1
e_1_2_8_114_1
e_1_2_8_18_1
e_1_2_8_14_1
e_1_2_8_37_1
e_1_2_8_79_1
e_1_2_8_94_1
e_1_2_8_90_1
e_1_2_8_121_1
e_1_2_8_98_1
e_1_2_8_10_1
e_1_2_8_56_1
e_1_2_8_106_1
e_1_2_8_33_1
e_1_2_8_75_1
e_1_2_8_129_1
e_1_2_8_52_1
e_1_2_8_102_1
e_1_2_8_71_1
e_1_2_8_125_1
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_3_1
e_1_2_8_81_1
e_1_2_8_111_1
e_1_2_8_130_1
e_1_2_8_7_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_66_1
e_1_2_8_89_1
e_1_2_8_119_1
e_1_2_8_138_1
e_1_2_8_62_1
e_1_2_8_85_1
e_1_2_8_115_1
e_1_2_8_134_1
e_1_2_8_17_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_70_1
e_1_2_8_122_1
e_1_2_8_97_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_78_1
e_1_2_8_107_1
e_1_2_8_51_1
e_1_2_8_74_1
e_1_2_8_103_1
e_1_2_8_126_1
e_1_2_8_93_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_69_1
e_1_2_8_80_1
e_1_2_8_4_1
e_1_2_8_131_1
e_1_2_8_8_1
e_1_2_8_42_1
e_1_2_8_88_1
e_1_2_8_116_1
e_1_2_8_23_1
e_1_2_8_65_1
e_1_2_8_139_1
e_1_2_8_84_1
e_1_2_8_112_1
e_1_2_8_61_1
e_1_2_8_135_1
e_1_2_8_39_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_58_1
e_1_2_8_92_1
e_1_2_8_96_1
e_1_2_8_100_1
e_1_2_8_31_1
e_1_2_8_77_1
e_1_2_8_12_1
e_1_2_8_54_1
e_1_2_8_108_1
e_1_2_8_73_1
e_1_2_8_123_1
e_1_2_8_50_1
e_1_2_8_104_1
References_xml – volume: 22
  start-page: 5560
  year: 2012
  publication-title: J. Mater. Chem.
– volume: 4
  start-page: 6039
  year: 2010
  publication-title: ACS Nano
– volume: 2
  start-page: 1588
  year: 2010
  publication-title: ACS Appl. Mater. Interfaces
– volume: 25
  start-page: 1058
  year: 2013
  publication-title: Adv. Mater.
– volume: 321
  start-page: 1468
  year: 2008
  publication-title: Science
– volume: 21
  start-page: 4793
  year: 2009
  publication-title: Adv. Mater.
– volume: 4
  start-page: 2487
  year: 2013
  publication-title: Nat. Commun.
– volume: 311
  start-page: 208
  year: 2006
  publication-title: Science
– volume: 107
  start-page: 355
  year: 2012
  publication-title: Sol. Energy Mater. Sol. Cells
– volume: 104
  start-page: 15607
  year: 2007
  publication-title: PNAS
– volume: 3
  start-page: 2202
  year: 2011
  publication-title: Nanoscale
– volume: 500
  start-page: 59
  year: 2013
  publication-title: Nature
– volume: 6
  start-page: 496
  year: 2011
  publication-title: Nat. Nanotechnol.
– volume: 23
  start-page: 789
  year: 2013
  publication-title: Adv. Funct. Mater.
– volume: 12
  start-page: 2745
  year: 2012
  publication-title: Nano Lett.
– volume: 2
  start-page: 481
  year: 2012
  publication-title: Sci. Rep.
– volume: 17
  start-page: 015008
  year: 2009
  publication-title: Model. Simul. Mater. SC.
– volume: 335
  start-page: 1326
  year: 2012
  publication-title: Science
– volume: 8
  start-page: 3498
  year: 2008
  publication-title: Nano Lett.
– volume: 1
  start-page: 5505
  year: 2013
  publication-title: J. Mater. Chem. A
– volume: 11
  start-page: 19
  year: 2012
  publication-title: Nat. Mater.
– volume: 499
  start-page: 458
  year: 2013
  publication-title: Nature
– volume: 489
  start-page: 133
  year: 2012
  publication-title: Nature
– volume: 25
  start-page: 2326
  year: 2013
  publication-title: Adv. Mater.
– volume: 22
  start-page: 2663
  year: 2010
  publication-title: Adv. Mater.
– year: 2013
  publication-title: Adv. Energy Mater.
– volume: 146
  start-page: 351
  year: 2008
  publication-title: Solid State Commun.
– volume: 1
  start-page: 1012
  year: 2011
  publication-title: Adv. Energy Mater.
– volume: 23
  start-page: 2865
  year: 2011
  publication-title: Adv. Mater.
– volume: 22
  start-page: E139
  year: 2010
  publication-title: Adv. Mater.
– volume: 11
  start-page: 2490
  year: 2011
  publication-title: Nano Lett.
– volume: 6
  start-page: 296
  year: 2011
  publication-title: Nat. Nanotechnol.
– volume: 19
  start-page: 1526
  year: 2009
  publication-title: Adv. Funct. Mater.
– volume: 45
  start-page: 103001
  year: 2012
  publication-title: J. Phys. D: Appl. Phys.
– volume: 488
  start-page: 304
  year: 2012
  publication-title: Nature
– volume: 17
  start-page: 3069
  year: 2007
  publication-title: Adv. Funct. Mater.
– volume: 23
  start-page: 846
  year: 2013
  publication-title: Adv. Funct. Mater.
– volume: 23
  start-page: 3580
  year: 2011
  publication-title: Adv. Mater.
– volume: 10
  start-page: 4242
  year: 2010
  publication-title: Nano Lett.
– volume: 27
  start-page: 1107
  year: 2009
  publication-title: J. Vac. Sci. Technol. A
– volume: 8
  start-page: 494
  year: 2009
  publication-title: Nat. Mater.
– volume: 323
  start-page: 1590
  year: 2009
  publication-title: Science
– volume: 13
  start-page: 657
  year: 2011
  publication-title: Electrochem. Commun.
– volume: 244
  start-page: 783
  year: 2013
  publication-title: J. Power Sources
– volume: 8
  start-page: 1851
  year: 2012
  publication-title: Small
– volume: 18
  start-page: 2857
  year: 2006
  publication-title: Adv. Mater.
– volume: 68
  start-page: 18
  year: 2012
  publication-title: Electrochim. Acta.
– volume: 16
  start-page: 035010
  year: 2008
  publication-title: Model. Simul. Mater. SC.
– volume: 5
  start-page: 9173
  year: 2012
  publication-title: Energ. Environ. Sci.
– volume: 10
  start-page: 708
  year: 2010
  publication-title: Nano Lett.
– volume: 21
  start-page: 1709
  year: 2011
  publication-title: Adv. Funct. Mater.
– volume: 65
  start-page: 276
  year: 2012
  publication-title: Comp. Mater. Sci.
– volume: 6
  start-page: 2698
  year: 2013
  publication-title: Energy Environ. Sci.
– volume: 42
  start-page: 5031
  year: 2013
  publication-title: Chem. Soc. Rev.
– volume: 24
  start-page: 2896
  year: 2012
  publication-title: Adv. Mater.
– volume: 3
  start-page: 917
  year: 2012
  publication-title: Nat.Commun.
– volume: 393
  start-page: 146
  year: 1998
  publication-title: Nature
– volume: 24
  start-page: 1073
  year: 2012
  publication-title: Adv. Mater.
– volume: 324
  start-page: 232
  year: 2009
  publication-title: Science
– volume: 7
  start-page: 1655
  year: 2007
  publication-title: Nano Lett.
– volume: 22
  start-page: 838
  year: 2010
  publication-title: Adv. Mater.
– volume: 25
  start-page: 2707
  year: 2013
  publication-title: Adv. Mater.
– volume: 105
  start-page: 18675
  year: 2008
  publication-title: PNAS
– volume: 1
  start-page: 201
  year: 2006
  publication-title: Nat. Nanotechnol.
– volume: 23
  start-page: 4573
  year: 2011
  publication-title: Adv. Mater.
– volume: 93
  start-page: 1459
  year: 2005
  publication-title: P. IEEE
– volume: 457
  start-page: 706
  year: 2009
  publication-title: Nature
– volume: 8
  start-page: 421
  year: 2013
  publication-title: Nat. Nanotechnol.
– volume: 22
  start-page: 6549
  year: 2012
  publication-title: J. Mater. Chem.
– volume: 7
  start-page: 907
  year: 2008
  publication-title: Nat. Mater.
– volume: 451
  start-page: 652
  year: 2008
  publication-title: Nature
– volume: 82
  start-page: 2404
  year: 2003
  publication-title: Appl. Phys. Lett.
– volume: 5
  start-page: 7205
  year: 2011
  publication-title: ACS Nano
– volume: 50
  start-page: 22
  year: 2013
  publication-title: Compos. Part B‐Eng.
– volume: 3
  start-page: 770
  year: 2012
  publication-title: Nat. Commun.
– volume: 23
  start-page: 2727
  year: 2011
  publication-title: Adv. Mater.
– volume: 22
  start-page: 2228
  year: 2010
  publication-title: Adv. Mater.
– volume: 1
  start-page: 375
  year: 2012
  publication-title: ACS Macro Lett.
– volume: 11
  start-page: 174
  year: 2012
  publication-title: Nat. Mater.
– year: 2009
– volume: 159
  start-page: A349
  year: 2012
  publication-title: J. Electrochem. Soc.
– volume: 21
  start-page: 16373
  year: 2011
  publication-title: J. Mater. Chem.
– volume: 8
  start-page: 2982
  year: 2008
  publication-title: Nano Lett.
– volume: 5
  start-page: 574
  year: 2010
  publication-title: Nat. Nanotechnol.
– volume: 115
  start-page: 2763
  year: 2010
  publication-title: J. Appl. Polym. Sci.
– volume: 24
  start-page: 5192
  year: 2012
  publication-title: Adv. Mater.
– volume: 32
  start-page: 47
  year: 2013
  publication-title: Electrochem. Commun.
– volume: 23
  start-page: 986
  year: 2011
  publication-title: Adv. Mater.
– volume: 25
  start-page: 591
  year: 2013
  publication-title: Adv. Mater.
– volume: 10
  start-page: 857
  year: 2011
  publication-title: Nat. Mater.
– volume: 2
  start-page: 68
  year: 2012
  publication-title: Adv. Energy Mater.
– volume: 499
  start-page: 316
  year: 2013
  publication-title: Nature
– volume: 135
  start-page: 1167
  year: 2013
  publication-title: J. Am. Chem. Soc.
– volume: 22
  start-page: 2065
  year: 2010
  publication-title: Adv. Mater.
– volume: 37
  start-page: 207
  year: 2012
  publication-title: MRS Bull.
– volume: 2
  start-page: 976
  year: 2012
  publication-title: Adv. Energy Mater.
– volume: 2
  start-page: 546
  year: 2012
  publication-title: Adv. Energy Mater.
– volume: 1
  start-page: 1068
  year: 2011
  publication-title: Adv. Energy Mater.
– volume: 321
  start-page: 385
  year: 2008
  publication-title: Science
– volume: 22
  start-page: 2108
  year: 2010
  publication-title: Adv. Mater.
– volume: 21
  start-page: 6383
  year: 2011
  publication-title: J. Mater. Chem.
– volume: 4
  start-page: 1446
  year: 2013
  publication-title: Nat. Commun.
– volume: 333
  start-page: 838
  year: 2011
  publication-title: Science
– volume: 24
  start-page: 5071
  year: 2012
  publication-title: Adv. Mater.
– volume: 5
  start-page: 480
  year: 2011
  publication-title: Nat. Photon.
– volume: 3
  start-page: 1166
  year: 2012
  publication-title: Nat. Commun.
– volume: 22
  start-page: 3277
  year: 2010
  publication-title: Adv. Mater.
– volume: 6
  start-page: 1027
  year: 2012
  publication-title: ACS Nano
– volume: 11
  start-page: 560
  year: 2012
  publication-title: Nat. Mater.
– volume: 195
  start-page: 5344
  year: 2010
  publication-title: J. Power Sources
– volume: 45
  start-page: 485
  year: 2012
  publication-title: Acc. Chem. Res.
– volume: 23
  start-page: 1771
  year: 2011
  publication-title: Adv. Mater.
– volume: 47
  start-page: 5524
  year: 2008
  publication-title: Angew. Chem. Int. Ed.
– volume: 110
  start-page: 281
  year: 2013
  publication-title: Appl. Phys. A
– volume: 105
  start-page: 123516
  year: 2009
  publication-title: J. Appl. Phys.
– volume: 52
  start-page: 1654
  year: 2013
  publication-title: Angew. Chem. Int. Ed.
– volume: 6
  start-page: 277
  year: 2011
  publication-title: Nat. Nanotechnol.
– volume: 39
  start-page: 3157
  year: 2010
  publication-title: Chem. Soc. Rev.
– volume: 5
  start-page: 651
  year: 2010
  publication-title: Nat. Nanotechnol.
– volume: 12
  start-page: 5143
  year: 2012
  publication-title: Nano Lett.
– volume: 4
  start-page: 3314
  year: 2011
  publication-title: Energy Environ. Sci.
– volume: 334
  start-page: 928
  year: 2011
  publication-title: Science
– volume: 17
  start-page: 832
  year: 2007
  publication-title: J. Mater. Chem.
– volume: 22
  start-page: 1279
  year: 2012
  publication-title: Adv. Funct. Mater.
– volume: 22
  start-page: 5238
  year: 2012
  publication-title: Adv. Funct. Mater.
– volume: 8
  start-page: 3427
  year: 2012
  publication-title: Small
– volume: 42
  start-page: 3127
  year: 2013
  publication-title: Chem. Soc. Rev.
– volume: 7
  start-page: 7975
  year: 2013
  publication-title: ACS Nano
– volume: 21
  start-page: 2721
  year: 2011
  publication-title: Adv. Funct. Mater.
– volume: 1
  start-page: 621
  year: 2008
  publication-title: Energy Environ. Sci.
– volume: 4
  start-page: 2730
  year: 2010
  publication-title: ACS Nano
– volume: 12
  start-page: 6366
  year: 2012
  publication-title: Nano Lett.
– volume: 4
  start-page: 1543
  year: 2013
  publication-title: Nat. Commun.
– volume: 23
  start-page: 1514
  year: 2011
  publication-title: Adv. Mater.
– volume: 2
  start-page: 159
  year: 2013
  publication-title: Nano Energy
– volume: 24
  start-page: 3326
  year: 2012
  publication-title: Adv. Mater.
– volume: 42
  start-page: 713
  year: 2009
  publication-title: Acc. Chem. Res.
– volume: 110
  start-page: 98
  year: 2013
  publication-title: Sol. Energy Mater. Sol. Cells
– ident: e_1_2_8_129_1
  doi: 10.1126/science.1168539
– ident: e_1_2_8_84_1
  doi: 10.1002/aenm.201100725
– ident: e_1_2_8_137_1
  doi: 10.1038/nnano.2010.162
– ident: e_1_2_8_97_1
  doi: 10.1002/adma.201003673
– ident: e_1_2_8_122_1
  doi: 10.1021/nl200965j
– ident: e_1_2_8_86_1
  doi: 10.1002/adfm.201102032
– ident: e_1_2_8_66_1
  doi: 10.1088/0965-0393/17/1/015008
– ident: e_1_2_8_77_1
  doi: 10.1007/s00339-012-7402-8
– ident: e_1_2_8_4_1
  doi: 10.1038/nnano.2011.38
– ident: e_1_2_8_96_1
  doi: 10.1021/nl802558y
– ident: e_1_2_8_87_1
  doi: 10.1002/adma.201103382
– ident: e_1_2_8_60_1
  doi: 10.1039/c2jm16773e
– ident: e_1_2_8_42_1
  doi: 10.1038/ncomms1772
– ident: e_1_2_8_51_1
  doi: 10.1116/1.3168555
– ident: e_1_2_8_76_1
  doi: 10.1002/aenm.201300759
– ident: e_1_2_8_43_1
  doi: 10.1002/adma.201004426
– ident: e_1_2_8_132_1
  doi: 10.1021/nn101595y
– ident: e_1_2_8_13_1
  doi: 10.1038/nphoton.2011.123
– ident: e_1_2_8_41_1
  doi: 10.1002/smll.201102437
– ident: e_1_2_8_67_1
  doi: 10.1088/0965-0393/16/3/035010
– ident: e_1_2_8_33_1
  doi: 10.1126/science.1121401
– ident: e_1_2_8_18_1
  doi: 10.1021/ja3091438
– ident: e_1_2_8_50_1
  doi: 10.1063/1.1565683
– ident: e_1_2_8_121_1
  doi: 10.1002/adma.201101423
– ident: e_1_2_8_105_1
  doi: 10.1002/adfm.201002021
– ident: e_1_2_8_32_1
  doi: 10.1126/science.1206157
– ident: e_1_2_8_99_1
  doi: 10.1002/adfm.200601243
– ident: e_1_2_8_134_1
  doi: 10.1038/nature11409
– ident: e_1_2_8_58_1
  doi: 10.1021/nn403068d
– ident: e_1_2_8_3_1
  doi: 10.1038/nmat3191
– ident: e_1_2_8_130_1
  doi: 10.1039/c3cs35465b
– ident: e_1_2_8_110_1
  doi: 10.1039/c0nr00899k
– ident: e_1_2_8_57_1
  doi: 10.1063/1.3148245
– ident: e_1_2_8_37_1
  doi: 10.1002/adma.201101067
– ident: e_1_2_8_44_1
  doi: 10.1002/adma.201200576
– ident: e_1_2_8_31_1
  doi: 10.1557/mrs.2012.37
– ident: e_1_2_8_61_1
  doi: 10.1002/aenm.201100261
– ident: e_1_2_8_14_1
  doi: 10.1038/ncomms1921
– ident: e_1_2_8_25_1
  doi: 10.1002/smll.201200802
– ident: e_1_2_8_48_1
  doi: 10.1039/b614793c
– ident: e_1_2_8_38_1
  doi: 10.1038/ncomms2553
– ident: e_1_2_8_17_1
  doi: 10.1038/451652a
– ident: e_1_2_8_27_1
  doi: 10.1088/0022-3727/45/10/103001
– ident: e_1_2_8_59_1
  doi: 10.1002/app.30349
– ident: e_1_2_8_109_1
  doi: 10.1016/j.elecom.2011.03.040
– ident: e_1_2_8_21_1
  doi: 10.1038/nmat3122
– ident: e_1_2_8_35_1
  doi: 10.1002/adma.200901775
– ident: e_1_2_8_95_1
  doi: 10.1002/adma.200902795
– ident: e_1_2_8_111_1
  doi: 10.1016/j.nanoen.2012.09.008
– ident: e_1_2_8_29_1
  doi: 10.1039/c1ee01881g
– ident: e_1_2_8_9_1
  doi: 10.1039/c2jm15955d
– ident: e_1_2_8_117_1
  doi: 10.1021/ar800229g
– ident: e_1_2_8_71_1
  doi: 10.1002/adma.201201329
– ident: e_1_2_8_20_1
  doi: 10.1021/nn202020w
– ident: e_1_2_8_72_1
  doi: 10.1002/adma.201000602
– ident: e_1_2_8_94_1
  doi: 10.1039/b923596e
– ident: e_1_2_8_39_1
  doi: 10.1038/nmat2287
– ident: e_1_2_8_45_1
  doi: 10.1038/30193
– ident: e_1_2_8_80_1
  doi: 10.1038/nmat2459
– ident: e_1_2_8_69_1
  doi: 10.1021/nl903949m
– ident: e_1_2_8_15_1
  doi: 10.1039/c3cs00009e
– ident: e_1_2_8_46_1
  doi: 10.1073/pnas.0702927104
– ident: e_1_2_8_91_1
  doi: 10.1038/nnano.2010.132
– ident: e_1_2_8_92_1
  doi: 10.1038/nature07719
– ident: e_1_2_8_24_1
  doi: 10.1002/adfm.201202412
– volume: 6
  start-page: 1027
  year: 2012
  ident: e_1_2_8_127_1
  publication-title: ACS Nano
  contributor:
    fullname: Liu D.
– ident: e_1_2_8_103_1
  doi: 10.1126/science.1168375
– ident: e_1_2_8_19_1
  doi: 10.1038/nmat3263
– ident: e_1_2_8_88_1
  doi: 10.1002/adfm.201201013
– ident: e_1_2_8_73_1
  doi: 10.1002/adma.200904270
– ident: e_1_2_8_125_1
  doi: 10.1016/j.solmat.2012.09.005
– ident: e_1_2_8_5_1
  doi: 10.1126/science.1216744
– ident: e_1_2_8_6_1
  doi: 10.1038/nnano.2011.110
– ident: e_1_2_8_54_1
  doi: 10.1021/nl0706244
– ident: e_1_2_8_65_1
  doi: 10.1016/j.compositesb.2013.01.024
– ident: e_1_2_8_90_1
  doi: 10.1016/j.ssc.2008.02.024
– ident: e_1_2_8_47_1
  doi: 10.1002/anie.200703238
– ident: e_1_2_8_49_1
  doi: 10.1002/adma.200600646
– ident: e_1_2_8_1_1
  doi: 10.1126/science.1212741
– ident: e_1_2_8_75_1
  doi: 10.1002/adma.201202196
– ident: e_1_2_8_115_1
  doi: 10.1002/aenm.201100634
– ident: e_1_2_8_40_1
  doi: 10.1002/adma.201003961
– ident: e_1_2_8_74_1
  doi: 10.1002/adma.201300132
– ident: e_1_2_8_78_1
  doi: 10.1038/nature12401
– ident: e_1_2_8_106_1
  doi: 10.1002/adma.201300794
– ident: e_1_2_8_83_1
  doi: 10.1002/adfm.201100306
– ident: e_1_2_8_98_1
  doi: 10.1021/nl204414u
– ident: e_1_2_8_23_1
  doi: 10.1002/aenm.201100488
– ident: e_1_2_8_64_1
  doi: 10.1016/j.commatsci.2012.07.017
– ident: e_1_2_8_28_1
  doi: 10.1038/nature12314
– ident: e_1_2_8_12_1
  doi: 10.1038/ncomms2163
– ident: e_1_2_8_22_1
  doi: 10.1038/srep00481
– ident: e_1_2_8_126_1
  doi: 10.1002/adma.200904054
– ident: e_1_2_8_133_1
  doi: 10.1002/aenm.201100529
– ident: e_1_2_8_116_1
  doi: 10.1016/j.jpowsour.2010.03.038
– ident: e_1_2_8_70_1
  doi: 10.1149/2.020204jes
– ident: e_1_2_8_136_1
  doi: 10.1038/ncomms3487
– ident: e_1_2_8_52_1
  doi: 10.1002/adfm.200801065
– ident: e_1_2_8_56_1
  doi: 10.1073/pnas.0807476105
– ident: e_1_2_8_11_1
  doi: 10.1038/nature11476
– ident: e_1_2_8_124_1
  doi: 10.1021/nl802042g
– ident: e_1_2_8_120_1
  doi: 10.1002/aenm.201301396
– ident: e_1_2_8_36_1
  doi: 10.1002/adma.200904068
– ident: e_1_2_8_82_1
  doi: 10.1002/adma.201100310
– ident: e_1_2_8_113_1
  doi: 10.1016/j.jpowsour.2013.02.087
– ident: e_1_2_8_85_1
  doi: 10.1002/adfm.201202174
– ident: e_1_2_8_119_1
  doi: 10.1039/c3ta00019b
– ident: e_1_2_8_26_1
  doi: 10.1021/nl3020445
– ident: e_1_2_8_139_1
  doi: 10.1039/c2ee23073a
– ident: e_1_2_8_138_1
  doi: 10.1002/adma.200903650
– ident: e_1_2_8_63_1
  doi: 10.1021/am100036n
– ident: e_1_2_8_2_1
  doi: 10.1039/b811802g
– ident: e_1_2_8_107_1
  doi: 10.1021/nl102725k
– ident: e_1_2_8_100_1
  doi: 10.1021/mz200249c
– ident: e_1_2_8_93_1
  doi: 10.1002/adma.201203578
– ident: e_1_2_8_102_1
  doi: 10.1002/anie.201209596
– ident: e_1_2_8_34_1
  doi: 10.1021/nl303631e
– ident: e_1_2_8_108_1
  doi: 10.1038/nnano.2013.84
– ident: e_1_2_8_62_1
  doi: 10.1039/c1jm13722k
– ident: e_1_2_8_79_1
  doi: 10.1038/nnano.2011.36
– ident: e_1_2_8_30_1
  doi: 10.1002/adma.200902927
– ident: e_1_2_8_81_1
  doi: 10.1126/science.1160309
– ident: e_1_2_8_101_1
  doi: 10.1016/j.electacta.2012.01.109
– ident: e_1_2_8_16_1
  doi: 10.1021/ar200215t
– ident: e_1_2_8_114_1
  doi: 10.1039/c3ee40515j
– ident: e_1_2_8_7_1
  doi: 10.1038/nature12340
– ident: e_1_2_8_89_1
  doi: 10.1126/science.1157996
– ident: e_1_2_8_10_1
  doi: 10.1038/nmat3367
– ident: e_1_2_8_8_1
  doi: 10.1038/ncomms2411
– ident: e_1_2_8_128_1
  doi: 10.1039/c1jm00016k
– ident: e_1_2_8_135_1
  doi: 10.1016/j.elecom.2013.03.035
– ident: e_1_2_8_55_1
  doi: 10.1109/JPROC.2005.851502
– ident: e_1_2_8_104_1
  doi: 10.1002/adma.201200359
– ident: e_1_2_8_131_1
  doi: 10.1016/j.solmat.2012.07.013
– ident: e_1_2_8_118_1
  doi: 10.1021/nn901391q
– ident: e_1_2_8_53_1
  doi: 10.1038/nnano.2006.131
– ident: e_1_2_8_123_1
  doi: 10.1002/adma.201004533
– ident: e_1_2_8_112_1
  doi: 10.1002/adma.201204003
– ident: e_1_2_8_68_1
SSID ssj0009606
Score 2.636752
SecondaryResourceType review_article
Snippet Stretchable energy storage and conversion devices (ESCDs) are attracting intensive attention due to their promising and potential applications in realistic...
SourceID proquest
crossref
pubmed
wiley
istex
SourceType Aggregation Database
Index Database
Publisher
StartPage 3592
SubjectTerms batteries
Biocompatible Materials - chemical synthesis
Conversion
Devices
Elastic Modulus
Electric potential
Electric Power Supplies
Electric vehicles
Electrodes
Electronics
Energy storage
Energy Transfer
Equipment Design
solar cells
stretchable materials
stretchable structures
Structural design
supercapacitors
Synthesis
Transducers
Title Materials and Structures for Stretchable Energy Storage and Conversion Devices
URI https://api.istex.fr/ark:/67375/WNG-DX37J57P-B/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201305919
https://www.ncbi.nlm.nih.gov/pubmed/24643976
https://search.proquest.com/docview/1534097706
https://search.proquest.com/docview/1551078235
Volume 26
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Na9swFH-M7LIe2m398r7wYKwnt40kR9YxS9qFQkJZW5qbeLLlHgLOWBIo--v3npw4TRkddDfLlrCs9-Hfk55-AviCInOEwoskd7lJVIoyyTIsE15yw6xU3mvejTwcdQY36mKcjh_s4q_5IZoJN7aM4K_ZwNHNTtakoVgE3iDywakJvJ_Mpseo6MeaP4rheSDbk2liOipbsTaeipPN5ht_pZc8wPd_g5ybCDb8gs53AFedrzNPJseLuTvOfz_idfyfr3sN20t8GndrhXoDL3z1FrYesBbuwmiI81pvY6yK-Cow0C4obI8JAHORNYF3ZMVnYWMh3SI9u_Ohdo-z3MMUXdz3wUvtwfX52XVvkCyPZUhylQlD_hNRllkHCyU04aPSGEeRbjtHJ4wy0pdaONmm50XujNKexFAi4UTSCjSl3IdWNa38IcQUKvKZkcIUhhy2dKRPymvmg5E5xW1lBEcrqdifNfmGrWmWheUBss0ARfA1CK2phr8mnLKmU3s7-m77Y6kvUn1pv0XweSVVS4bEqyNY-eliZsn1M_eXPu08VYdcGGEqmUZwUKtE80ahanAXgQiC_UePbbc_7Dald89p9B5e0bXixLV2-wO0SNz-I0GkufsUzOAP0o4GNw
link.rule.ids 315,786,790,1382,27955,27956,46327,46751
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT-MwEB4hOLAceOzyCM8grZZTgNpOHR8LBbpAq9VSBDfLThwOSAFBKyF-PTMOCRQhkOBox1YSz8Pf2OPPAL8NSyyi8CxKbaoiERseJYnJI9pyM0kunJN0Grnba3bOxfFlXGUT0lmYkh-iXnAjy_D-mgycFqR3XlhDTeaJg9AJx4qIPyfQ5mOyzfb_FwYpAuiebo_HkWqKpOJt3GU7o_1H5qUJGuKH90DnKIb1k9DhDNjq88vck-vt4cBup49vmB2_9X-zMP0MUcNWqVNzMOaKnzD1irjwF_S6ZlCqbmiKLDzzJLRDjNxDxMBUJGWgQ1nhgT9biFWoalfOt96nRHe_She2nXdU89A_POjvd6LnmxmiVCRMoQs1hudJ02SCSYRIuVIWg91GaixTQnGXS2Z5A59nqVVCOpRDbhAqomIYlfMFGC9uCrcEIUaLdG0kU5lCn80tqpRwkihheIqhWx7AViUWfVvyb-iSaZlpGiBdD1AAf7zU6mbm7pqy1mSsL3pHun3J5XEs_-m9ADYrsWq0JdogMYW7Gd5r9P5E_yV3mx-1QS-GsIrHASyWOlG_kYkS3wXAvGQ_-WLdandbdWn5K502YLLT757q07-9kxX4gfWC8tgajVUYR9G7NURMA7vubeIJSzUKVw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fT9swED4hkND2MGA_WLbBgjRtTwFqO3H8WEi7Dtaq2pjWN8tO7D0gBbS1EuKv586hKUUTk9ijHVtJfOfzd_bdZ4APhuUWUXiVlLZUiUgNT_Lc-ISO3EzuhXOSspGHo2zwQ5xM0smdLP6GH6LdcKOZEew1TfDLyh8sSENNFXiD0Aaning_10TGGblfxbcFgRTh88C2x9NEZSKf0zYesoPl_kvL0hqN8NXfMOcyhA1rUH8DzPzrm9CT8_3Z1O6X1_eIHf_n9zbh2S1AjbuNRm3Biqufw9M7tIUvYDQ000ZxY1NX8fdAQTtDvz1GBExFUgVKyYp7IbMQq1DRfrnQ-pjC3MMeXVy4YKZewlm_d3Y8SG7vZUhKkTOFBtQY7vPMVIJJBEheKYuubqc0limhuPOSWd7B51VplZAOxeANAkVUC6M8fwWr9UXtXkOMviJdGslUpdBic4sKJZwkQhheouPmI_g0l4q-bNg3dMOzzDQNkG4HKIKPQWhtM_P7nGLWZKp_jj7rYsLlSSrH-iiCvblUNc4kOh4xtbuY_dFo-4n8Sx5mD7VBG4agiqcRbDcq0b6RiQbdRcCCYP_xxbpbDLtt6c1jOr2H9XHR11-_jE7fwhOsFhTE1um8g1WUvNtBuDS1u2FG3AAaFQkG
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Materials+and+Structures+for+Stretchable+Energy+Storage+and+Conversion+Devices&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Xie%2C+Keyu&rft.au=Wei%2C+Bingqing&rft.date=2014-06-11&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=26&rft.issue=22&rft.spage=3592&rft.epage=3617&rft_id=info:doi/10.1002%2Fadma.201305919&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adma_201305919
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon