3D-Branched ZnO/CdS Nanowire Arrays for Solar Water Splitting and the Service Safety Research
Modulation of broadband light trapping through assembly of 3D structures and modification with narrow band‐gap semiconductors provide an effective way to improve the photoelectrochemical (PEC) performance. Here, 3D‐branched ZnO nanowire arrays (NWAs) modified with cadmium sulfide (CdS) nanoparticles...
Saved in:
Published in | Advanced energy materials Vol. 6; no. 3; pp. np - n/a |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Blackwell Publishing Ltd
01.02.2016
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Modulation of broadband light trapping through assembly of 3D structures and modification with narrow band‐gap semiconductors provide an effective way to improve the photoelectrochemical (PEC) performance. Here, 3D‐branched ZnO nanowire arrays (NWAs) modified with cadmium sulfide (CdS) nanoparticles are designed and synthesized via solution chemical routes. The 3D‐branched ZnO NWA–CdS nanoparticle photoanodes show an excellent PEC performance in UV and visible region and the maximum photo‐to‐hydrogen conversion efficiency reaches to 3.1%. The high performance of 3D‐branched ZnO NWA–CdS composites is mainly attributed to the excellent carrier collection capability and high light‐trapping ability of 3D‐branched ZnO NWAs as well as the excellent photocatalytic activity of CdS nanoparticles in the visible region. In addition, the photocorrosion mechanism of 3D‐branched ZnO NWA–CdS photoanodes is systematically investigated, and a protective TiO2 layer is deposited onto the photoanodes to elevate the PEC stability. The results benefit a deeper understanding of the role of 3D‐branched structures decorated with narrow band‐gap semiconductors in solar water splitting.
The photoelectrochemical (PEC) performance of 3D ZnO nanowire arrays (NWAs)–Cadmium sulfide (CdS) is greatly affected by the CdS deposition cycle number, and the 50‐deposition cycle sample shows the highest conversion efficiency of 3.1%. CdS nanoparticles expand the photocatalytic activity of 3D ZnO NWA–CdS in the visible range. The TiO2 layer greatly reduces the photocorrosion reaction and enhances the PEC stability. |
---|---|
AbstractList | Modulation of broadband light trapping through assembly of 3D structures and modification with narrow band‐gap semiconductors provide an effective way to improve the photoelectrochemical (PEC) performance. Here, 3D‐branched ZnO nanowire arrays (NWAs) modified with cadmium sulfide (CdS) nanoparticles are designed and synthesized via solution chemical routes. The 3D‐branched ZnO NWA–CdS nanoparticle photoanodes show an excellent PEC performance in UV and visible region and the maximum photo‐to‐hydrogen conversion efficiency reaches to 3.1%. The high performance of 3D‐branched ZnO NWA–CdS composites is mainly attributed to the excellent carrier collection capability and high light‐trapping ability of 3D‐branched ZnO NWAs as well as the excellent photocatalytic activity of CdS nanoparticles in the visible region. In addition, the photocorrosion mechanism of 3D‐branched ZnO NWA–CdS photoanodes is systematically investigated, and a protective TiO
2
layer is deposited onto the photoanodes to elevate the PEC stability. The results benefit a deeper understanding of the role of 3D‐branched structures decorated with narrow band‐gap semiconductors in solar water splitting. Modulation of broadband light trapping through assembly of 3D structures and modification with narrow band‐gap semiconductors provide an effective way to improve the photoelectrochemical (PEC) performance. Here, 3D‐branched ZnO nanowire arrays (NWAs) modified with cadmium sulfide (CdS) nanoparticles are designed and synthesized via solution chemical routes. The 3D‐branched ZnO NWA–CdS nanoparticle photoanodes show an excellent PEC performance in UV and visible region and the maximum photo‐to‐hydrogen conversion efficiency reaches to 3.1%. The high performance of 3D‐branched ZnO NWA–CdS composites is mainly attributed to the excellent carrier collection capability and high light‐trapping ability of 3D‐branched ZnO NWAs as well as the excellent photocatalytic activity of CdS nanoparticles in the visible region. In addition, the photocorrosion mechanism of 3D‐branched ZnO NWA–CdS photoanodes is systematically investigated, and a protective TiO2 layer is deposited onto the photoanodes to elevate the PEC stability. The results benefit a deeper understanding of the role of 3D‐branched structures decorated with narrow band‐gap semiconductors in solar water splitting. The photoelectrochemical (PEC) performance of 3D ZnO nanowire arrays (NWAs)–Cadmium sulfide (CdS) is greatly affected by the CdS deposition cycle number, and the 50‐deposition cycle sample shows the highest conversion efficiency of 3.1%. CdS nanoparticles expand the photocatalytic activity of 3D ZnO NWA–CdS in the visible range. The TiO2 layer greatly reduces the photocorrosion reaction and enhances the PEC stability. Modulation of broadband light trapping through assembly of 3D structures and modification with narrow band-gap semiconductors provide an effective way to improve the photoelectrochemical (PEC) performance. Here, 3D-branched ZnO nanowire arrays (NWAs) modified with cadmium sulfide (CdS) nanoparticles are designed and synthesized via solution chemical routes. The 3D-branched ZnO NWA-CdS nanoparticle photoanodes show an excellent PEC performance in UV and visible region and the maximum photo-to-hydrogen conversion efficiency reaches to 3.1%. The high performance of 3D-branched ZnO NWA-CdS composites is mainly attributed to the excellent carrier collection capability and high light-trapping ability of 3D-branched ZnO NWAs as well as the excellent photocatalytic activity of CdS nanoparticles in the visible region. In addition, the photocorrosion mechanism of 3D-branched ZnO NWA-CdS photoanodes is systematically investigated, and a protective TiO sub(2) layer is deposited onto the photoanodes to elevate the PEC stability. The results benefit a deeper understanding of the role of 3D-branched structures decorated with narrow band-gap semiconductors in solar water splitting. The photoelectrochemical (PEC) performance of 3D ZnO nanowire arrays (NWAs)-Cadmium sulfide (CdS) is greatly affected by the CdS deposition cycle number, and the 50-deposition cycle sample shows the highest conversion efficiency of 3.1%. CdS nanoparticles expand the photocatalytic activity of 3D ZnO NWA-CdS in the visible range. The TiO sub(2) layer greatly reduces the photocorrosion reaction and enhances the PEC stability. Modulation of broadband light trapping through assembly of 3D structures and modification with narrow band-gap semiconductors provide an effective way to improve the photoelectrochemical (PEC) performance. Here, 3D-branched ZnO nanowire arrays (NWAs) modified with cadmium sulfide (CdS) nanoparticles are designed and synthesized via solution chemical routes. The 3D-branched ZnO NWA-CdS nanoparticle photoanodes show an excellent PEC performance in UV and visible region and the maximum photo-to-hydrogen conversion efficiency reaches to 3.1%. The high performance of 3D-branched ZnO NWA-CdS composites is mainly attributed to the excellent carrier collection capability and high light-trapping ability of 3D-branched ZnO NWAs as well as the excellent photocatalytic activity of CdS nanoparticles in the visible region. In addition, the photocorrosion mechanism of 3D-branched ZnO NWA-CdS photoanodes is systematically investigated, and a protective TiO2 layer is deposited onto the photoanodes to elevate the PEC stability. The results benefit a deeper understanding of the role of 3D-branched structures decorated with narrow band-gap semiconductors in solar water splitting. |
Author | Yan, Xiaoqin Li, Yong Bai, Zhiming Cao, Shiyao Zhang, Yue Kang, Zhuo |
Author_xml | – sequence: 1 givenname: Zhiming surname: Bai fullname: Bai, Zhiming organization: State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, 10083, Beijing, P. R. China – sequence: 2 givenname: Xiaoqin surname: Yan fullname: Yan, Xiaoqin organization: State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, 10083, Beijing, P. R. China – sequence: 3 givenname: Yong surname: Li fullname: Li, Yong organization: State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, 10083, Beijing, P. R. China – sequence: 4 givenname: Zhuo surname: Kang fullname: Kang, Zhuo organization: State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, 10083, Beijing, P. R. China – sequence: 5 givenname: Shiyao surname: Cao fullname: Cao, Shiyao organization: State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, 10083, Beijing, P. R. China – sequence: 6 givenname: Yue surname: Zhang fullname: Zhang, Yue email: yuezhang@ustb.edu.cn organization: State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, 10083, Beijing, P. R. China |
BookMark | eNqFkU1rGzEQhpeSQtM0154FvfSyjj5Xu0fXTZ2kqQN1QiBQhFaarZWutY4kN_G_j1IXUwKhusyAnmfQ6H1b7PnBQ1G8J3hEMKZHGvxyRDERmHDRvCr2SUV4WdUc7-16Rt8UhzHe4nx4QzBj-8UP9rn8FLQ3C7Doxl8cTewczbQf7l0ANA5BbyLqhoDmQ68DutYJcr_qXUrO_0TaW5QWgOYQfjuTq-4gbdB3iKCDWbwrXne6j3D4tx4UV1-OLycn5fnF9HQyPi8Nr2lTctZ2FgvoMO0a6GoAa1m-IJ0wRLQ1ASnBcqNb3HKDbStJnRcg3DCwtSTsoPi4nbsKw90aYlJLFw30vfYwrKMidd5YCixoRj88Q2-HdfD5dYo0XFCC6Z-BL1OyopXk-TczxbeUCUOMATplXNLJDT4F7XpFsHoKRz2Fo3bhZG30TFsFt9Rh87LQbIV718PmP7QaH8--_euWW9fFBA87V4dfqpJMCnU9m6qpOJvfnNRcfWWPvyqw7Q |
CitedBy_id | crossref_primary_10_1016_j_apcatb_2017_09_012 crossref_primary_10_1016_j_mseb_2023_116413 crossref_primary_10_26599_NRE_2022_9120020 crossref_primary_10_1016_j_ijhydene_2017_02_166 crossref_primary_10_1016_j_electacta_2019_135282 crossref_primary_10_1016_j_jallcom_2021_162146 crossref_primary_10_1016_j_jwpe_2024_105120 crossref_primary_10_1016_j_nanoen_2017_09_053 crossref_primary_10_1016_j_jcis_2020_12_078 crossref_primary_10_1016_j_solidstatesciences_2024_107600 crossref_primary_10_1021_acs_chemmater_8b02504 crossref_primary_10_1016_j_apcatb_2019_03_074 crossref_primary_10_1016_j_jallcom_2016_12_261 crossref_primary_10_1007_s10008_020_04741_9 crossref_primary_10_1007_s11664_020_08153_3 crossref_primary_10_1002_adfm_202106887 crossref_primary_10_1021_acs_langmuir_4c04874 crossref_primary_10_1063_5_0027906 crossref_primary_10_1016_j_jallcom_2019_03_178 crossref_primary_10_1039_C7CY02641B crossref_primary_10_1002_elsa_202100114 crossref_primary_10_1039_D2SE00717G crossref_primary_10_1039_C9NR10908K crossref_primary_10_1016_j_ijhydene_2024_12_516 crossref_primary_10_1142_S1793292019501467 crossref_primary_10_1002_sstr_202200371 crossref_primary_10_1016_j_scitotenv_2021_150698 crossref_primary_10_1186_s11671_019_3023_x crossref_primary_10_1039_D1TA04829E crossref_primary_10_1002_adfm_201808032 crossref_primary_10_1002_aenm_201600683 crossref_primary_10_1039_C8QI00231B crossref_primary_10_1016_j_matlet_2020_128567 crossref_primary_10_1016_j_apsusc_2021_149904 crossref_primary_10_1149_2_0321803jes crossref_primary_10_1016_j_nanoen_2016_04_001 crossref_primary_10_1007_s40843_017_9105_3 crossref_primary_10_1021_acsanm_0c00081 crossref_primary_10_1038_srep38400 crossref_primary_10_1016_j_apcatb_2023_122833 crossref_primary_10_1016_j_ceramint_2016_06_020 crossref_primary_10_1016_j_jallcom_2024_174644 crossref_primary_10_1007_s11051_017_3982_8 crossref_primary_10_1039_D4TA00411F crossref_primary_10_1002_aenm_202003052 crossref_primary_10_1002_adfm_201701102 crossref_primary_10_1016_j_nanoen_2018_03_014 crossref_primary_10_1021_acsami_9b14713 crossref_primary_10_1016_j_apsusc_2022_155682 crossref_primary_10_1016_j_nanoen_2019_04_098 crossref_primary_10_1039_C9CC09559D crossref_primary_10_1016_j_jallcom_2022_167415 crossref_primary_10_1016_j_mtphys_2020_100262 crossref_primary_10_1039_C7NR02655B crossref_primary_10_3390_molecules28052142 crossref_primary_10_1016_j_cej_2024_159093 crossref_primary_10_1016_j_jallcom_2023_170669 crossref_primary_10_1016_j_renene_2020_12_076 crossref_primary_10_1088_1361_6528_ad8b53 crossref_primary_10_1007_s10562_024_04899_1 crossref_primary_10_1016_j_jallcom_2018_07_297 crossref_primary_10_1002_smll_201602870 crossref_primary_10_1021_acsanm_3c04168 crossref_primary_10_1016_j_ceramint_2016_09_112 crossref_primary_10_1142_S1793604720510145 crossref_primary_10_1016_j_jallcom_2017_06_246 crossref_primary_10_1002_chem_201701219 crossref_primary_10_1021_acsami_5b12870 crossref_primary_10_1016_j_jallcom_2019_152186 crossref_primary_10_1016_j_apcatb_2016_10_051 crossref_primary_10_1002_adma_201600437 crossref_primary_10_1016_j_cclet_2019_07_020 crossref_primary_10_1016_j_jsamd_2017_08_006 crossref_primary_10_1007_s11705_024_2456_7 crossref_primary_10_1016_j_jallcom_2021_159187 crossref_primary_10_1039_C8TA03398F crossref_primary_10_1002_advs_202103744 crossref_primary_10_1002_aenm_202001005 crossref_primary_10_1016_j_nanoen_2019_104089 crossref_primary_10_1016_j_ijhydene_2019_09_129 crossref_primary_10_1016_j_apcatb_2018_04_008 crossref_primary_10_1016_j_electacta_2019_04_090 crossref_primary_10_1021_acssuschemeng_8b03259 crossref_primary_10_1088_1361_6463_ad5212 crossref_primary_10_1016_j_apsusc_2019_144703 crossref_primary_10_1002_ente_202000819 crossref_primary_10_1002_smll_201603279 crossref_primary_10_1016_j_ijhydene_2019_06_059 crossref_primary_10_3390_catal11030355 crossref_primary_10_1002_aenm_202000280 crossref_primary_10_1021_acssuschemeng_8b01190 crossref_primary_10_1117_1_JPE_10_023505 crossref_primary_10_1016_j_electacta_2019_134674 crossref_primary_10_1149_2_1281707jes crossref_primary_10_1039_C9NJ01373C crossref_primary_10_1007_s10853_021_05900_7 crossref_primary_10_1016_j_apsusc_2018_11_054 crossref_primary_10_1039_C6RA24247B crossref_primary_10_1039_C8NR06880A crossref_primary_10_1039_C7TA02626A crossref_primary_10_1016_j_jcis_2021_11_070 crossref_primary_10_1016_j_renene_2020_02_001 crossref_primary_10_1021_acs_chemrev_8b00599 crossref_primary_10_1021_acs_jpcc_9b11623 crossref_primary_10_1002_solr_202000741 crossref_primary_10_1016_j_ijhydene_2018_02_007 crossref_primary_10_1039_D0TC04352D crossref_primary_10_1016_j_susmat_2018_e00075 crossref_primary_10_1021_acs_chemrev_9b00164 crossref_primary_10_1021_acs_jpcc_8b04675 crossref_primary_10_3390_catal9050457 crossref_primary_10_1016_j_ijhydene_2024_04_279 crossref_primary_10_1039_C8TA08837C crossref_primary_10_1002_solr_201900364 crossref_primary_10_3390_nano11010233 crossref_primary_10_1002_solr_201800237 crossref_primary_10_1002_aenm_201600923 crossref_primary_10_1007_s42114_024_01023_0 crossref_primary_10_3390_su15054638 crossref_primary_10_1002_admi_201600494 crossref_primary_10_1016_j_ijhydene_2020_01_069 crossref_primary_10_1039_C9TA13028D crossref_primary_10_1007_s11801_019_8162_x crossref_primary_10_1016_j_catcom_2017_05_029 crossref_primary_10_1021_acs_chemmater_2c03489 crossref_primary_10_1088_1361_6528_ac9482 crossref_primary_10_1016_j_jallcom_2023_170659 crossref_primary_10_1088_2053_1591_aa701a crossref_primary_10_1039_D0CP06489K crossref_primary_10_1039_C9TA03701B crossref_primary_10_1021_acssuschemeng_9b04868 crossref_primary_10_1002_celc_201901459 crossref_primary_10_1016_j_apsusc_2020_148044 crossref_primary_10_1002_smtd_201800029 crossref_primary_10_1016_j_apcatb_2019_05_040 crossref_primary_10_1016_j_apsusc_2017_05_144 crossref_primary_10_1016_j_nanoen_2021_106220 crossref_primary_10_1186_s11671_017_2278_3 crossref_primary_10_1016_j_ijhydene_2016_10_135 crossref_primary_10_1016_j_jcis_2018_01_030 crossref_primary_10_1016_j_apcatb_2024_124631 crossref_primary_10_1016_j_jallcom_2023_173373 crossref_primary_10_1016_j_sna_2016_11_014 crossref_primary_10_1021_acs_chemrestox_9b00308 crossref_primary_10_1002_adfm_201807275 crossref_primary_10_1016_j_colsurfa_2023_131897 crossref_primary_10_1021_acs_jpcc_7b04923 crossref_primary_10_1002_cey2_48 crossref_primary_10_1002_smll_201801352 crossref_primary_10_1016_j_cej_2019_123878 crossref_primary_10_1016_j_ijhydene_2019_07_206 crossref_primary_10_1016_j_jcis_2024_05_229 crossref_primary_10_1038_srep29907 crossref_primary_10_1016_j_carbon_2017_05_095 crossref_primary_10_1016_j_ceramint_2016_04_136 crossref_primary_10_1007_s40843_017_9172_x crossref_primary_10_1039_C9TC00759H crossref_primary_10_20964_2022_09_13 crossref_primary_10_1016_j_nanoen_2017_03_042 crossref_primary_10_1021_acsami_8b06382 crossref_primary_10_1039_C9TA00020H crossref_primary_10_1016_j_surfin_2024_105240 crossref_primary_10_1016_j_apcatb_2024_124023 crossref_primary_10_1021_acssuschemeng_7b00242 crossref_primary_10_1016_j_jallcom_2018_10_225 crossref_primary_10_1002_cplu_202200304 crossref_primary_10_3390_coatings13020275 crossref_primary_10_1038_s41598_019_57044_z crossref_primary_10_1016_j_apsusc_2018_04_102 crossref_primary_10_1007_s10854_017_6495_4 crossref_primary_10_1039_D1TA02560K crossref_primary_10_1002_adfm_201706785 crossref_primary_10_1039_C7NR06182J crossref_primary_10_1002_smll_201800395 crossref_primary_10_1039_C8EE02096E crossref_primary_10_1002_smll_202100294 crossref_primary_10_1016_j_apcatb_2019_117813 crossref_primary_10_1016_j_jpcs_2020_109504 crossref_primary_10_1016_j_jcis_2023_12_183 crossref_primary_10_3139_146_111797 crossref_primary_10_1016_j_mtener_2023_101475 crossref_primary_10_1007_s00339_018_1830_z crossref_primary_10_1007_s12274_024_6904_2 crossref_primary_10_1016_j_ijhydene_2020_09_115 crossref_primary_10_1016_j_nanoen_2020_104648 crossref_primary_10_1016_j_jpowsour_2019_04_116 crossref_primary_10_1016_j_chemosphere_2021_132168 crossref_primary_10_1016_j_apcatb_2018_03_014 crossref_primary_10_1002_adma_201806411 crossref_primary_10_1016_j_jallcom_2020_154472 |
Cites_doi | 10.1038/nmat1387 10.1021/nl4018385 10.1039/C4NR00137K 10.1021/am403149g 10.1002/adma.201104382 10.1016/j.apsusc.2014.01.170 10.1038/nmat3017 10.1016/j.jcrysgro.2006.12.011 10.1021/nl901181n 10.1002/anie.201001827 10.1039/C2CS35266D 10.1039/C0EE00570C 10.1016/j.apcatb.2013.02.042 10.1021/nl100250z 10.1021/am500234v 10.1039/b904993b 10.1016/j.cap.2012.07.005 10.1039/c2nr31800h 10.1039/c2cp41272a 10.1021/nn1001547 10.1021/nl304539x 10.1021/nl0600225 10.1039/C4EE02403F 10.1002/adfm.201301889 10.1021/nl4026902 10.1016/j.ijhydene.2013.06.028 10.1021/ja300319g 10.1021/am400964c 10.1038/nphoton.2012.175 10.1039/c2nr11952h 10.1039/c0cc05548d 10.1021/nl2037326 10.1016/j.ijhydene.2012.07.117 10.1002/lpor.200910025 10.1039/c0ee00469c 10.1016/j.ijhydene.2011.09.046 10.1039/b810388g 10.1021/nl3014567 10.1021/ja808790p 10.1021/ja307449z 10.1016/j.nanoen.2014.09.005 10.1016/S0022-0728(99)00109-6 10.1038/ncomms4038 10.1557/mrs.2010.9 10.1021/nl900772q 10.1039/b926931b 10.1016/j.ijhydene.2013.05.009 |
ContentType | Journal Article |
Copyright | 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim Copyright © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: Copyright © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | BSCLL AAYXX CITATION 7SP 7TB 8FD F28 FR3 H8D L7M |
DOI | 10.1002/aenm.201501459 |
DatabaseName | Istex CrossRef Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering |
DatabaseTitleList | CrossRef Aerospace Database Aerospace Database Aerospace Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1614-6840 |
EndPage | n/a |
ExternalDocumentID | 3943545201 10_1002_aenm_201501459 AENM201501459 ark_67375_WNG_G5JSZH84_K |
Genre | article |
GrantInformation_xml | – fundername: Program of Introducing Talents of Discipline to Universities, NSFC funderid: 51527802; 51232001; 51172022; 51372023; 51372020 – fundername: National Major Research Program of China funderid: 2013CB932602 – fundername: Major Project of International Cooperation and Exchanges funderid: 2012DFA50990 |
GroupedDBID | 05W 0R~ 1OC 31~ 33P 4.4 50Y 5VS 8-0 8-1 A00 AAESR AAHHS AAIHA AANLZ AASGY AAXRX AAZKR ABCUV ABJNI ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADKYN ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AENEX AEQDE AEUYR AFBPY AFFPM AFZJQ AHBTC AIACR AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AMYDB ASPBG AVWKF AZFZN AZVAB BDRZF BFHJK BMXJE BRXPI BSCLL D-A DCZOG EBS EJD FEDTE G-S GODZA HGLYW HVGLF HZ~ KBYEO LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MY. MY~ O9- P2W P4E RNS ROL RX1 SUPJJ WBKPD WOHZO WXSBR WYJ ZZTAW ~S- AAHQN AAMMB AAMNL AAYCA ACYXJ ADMLS AEFGJ AEYWJ AFWVQ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY ALVPJ AANHP AAYXX ACRPL ADNMO CITATION 7SP 7TB 8FD F28 FR3 H8D L7M |
ID | FETCH-LOGICAL-c4829-43bfd05ef02f9ef8eedd38291f5c15b81e77ed4cab0b4c0db71849114c3ed8713 |
ISSN | 1614-6832 |
IngestDate | Thu Jul 10 17:55:03 EDT 2025 Fri Jul 25 12:08:39 EDT 2025 Fri Jul 25 12:23:52 EDT 2025 Tue Jul 01 01:43:14 EDT 2025 Thu Apr 24 22:59:50 EDT 2025 Wed Aug 20 07:25:38 EDT 2025 Wed Oct 30 09:54:50 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c4829-43bfd05ef02f9ef8eedd38291f5c15b81e77ed4cab0b4c0db71849114c3ed8713 |
Notes | ArticleID:AENM201501459 Major Project of International Cooperation and Exchanges - No. 2012DFA50990 National Major Research Program of China - No. 2013CB932602 ark:/67375/WNG-G5JSZH84-K istex:D90F254A75AE48AE5E3861A292333E63A20426CD Program of Introducing Talents of Discipline to Universities, NSFC - No. 51527802; No. 51232001; No. 51172022; No. 51372023; No. 51372020 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PQID | 1762674832 |
PQPubID | 886389 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_1800475052 proquest_journals_1945210271 proquest_journals_1762674832 crossref_citationtrail_10_1002_aenm_201501459 crossref_primary_10_1002_aenm_201501459 wiley_primary_10_1002_aenm_201501459_AENM201501459 istex_primary_ark_67375_WNG_G5JSZH84_K |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20160201 |
PublicationDateYYYYMMDD | 2016-02-01 |
PublicationDate_xml | – month: 02 year: 2016 text: 20160201 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Advanced energy materials |
PublicationTitleAlternate | Adv. Energy Mater |
PublicationYear | 2016 |
Publisher | Blackwell Publishing Ltd Wiley Subscription Services, Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley Subscription Services, Inc |
References | Z. Bai, X. Yan, X. Chen, H. Liu, Y. Shen, Y. Zhang, Curr. Appl. Phys. 2013, 13, 165. Y. Li, Z. Liu, Y. Wang, Z. Liu, J. Han, J. Ya, Int. J. Hydrogen Energy 2012, 37, 15029. J. Z. Zhang, MRS Bull. 2011, 36, 48. Y. Li, J. Z. Zhang, Laser Photonics Rev. 2009, 4, 517. C. Li, T. Ahmed, M. Ma, T. Edvinsson, J. Zhu, Appl. Catal. B: Environ. 2013, 138-139, 175. G. Wang, X. Yang, F. Qian, J. Z. Zhang, Y. Li, Nano Lett. 2010, 10, 1088. Y. G. Lin, Y. K. Hsu, Y. C. Chen, L. C. Chen, S. Y. Chen, K. H. Chen, Nanoscale 2012, 4, 6515. J. Hou, C. Yang, H. Cheng, S. Jiao, O. Takeda, H. Zhu, Energy Environ. Sci. 2014, 73758. Y. Bu, Z. Chen, W. Li, B. Hou, ACS Appl. Mater. Interfaces 2013, 5, 12361. X. Wang, H. Zhu, Y. Xu, H. Wang, Y. Tao, S. Hark, X. Xiao, Q. Li, ACS Nano 2010, 4, 3302. Z. Bian, T. Tachikawa, P. Zhang, M. Fujitsuka, T. Majima, Nat. Commun. 2014, 5, 3038. D. J. Fermiń, E. A. Ponomarev, L. M. Peter, J. Electroanal. Chem. 1999, 473, 192. A. Kargar, K. Sun, Y. Jing, C. Choi, H. Jeong, Y. Zhou, K. Madsen, P. Naughton, S. Jin, G. Y. Jung, D. Wang, Nano Lett. 2013, 13, 3017. J. K. Kim, K. Shin, S. M. Cho, T.-W. Lee, J. H. Park, Energy Environ. Sci. 2011, 4, 1465. F. Amano, D. Li, B. Ohtani, Chem. Commun. 2010, 46, 2769. Y. Tak, H. Kim, D. Lee, K. Yong, Chem. Commun. 2008, 38, 4585. C.-H. Hsu, D.-H. Chen, Int. J. Hydrogen Energy 2011, 36, 15538. H. M. Chen, C. K. Chen, Y. C. Chang, C. W. Tsai, R. S. Liu, S. F. Hu, W. S. Chang, K. H. Chen, Angew. Chem. 2010, 49, 5966. F. E. Osterloh, Chem. Soc. Rev. 2013, 42, 2294. M. Ye, J. Gong, Y. Lai, C. Lin, Z. Lin, J. Am. Chem. Soc. 2012, 134, 15720. X. Yang, A. Wolcott, G. Wang, A. Sobo, R. C. Fitzmorris, F. Qian, J. Z. Zhang, Y. Li, Nano Lett. 2009, 9, 2331. E. Hendry, M. Koeberg, B. O'Regan, M. Bonn, Nano Lett. 2006, 6, 755. X. Chen, Z. Bai, X. Yan, H. Yuan, G. Zhang, P. Lin, Z. Zhang, Y. Liu, Y. Zhang, Nanoscale 2014, 6, 4691. Y. Qiu, K. Yan, H. Deng, S. Yang, Nano Lett. 2012, 12, 407. Y. C. Pu, G. Wang, K. D. Chang, Y. Ling, Y. K. Lin, B. C. Fitzmorris, C. M. Liu, X. Lu, Y. Tong, J. Z. Zhang, Y. J. Hsu, Y. Li, Nano Lett. 2013, 13, 3817. A. Paracchino, V. Laporte, K. Sivula, M. Gratzel, E. Thimsen, Nat. Mater. 2011, 10, 456. S. M. Liu, S. L. Gu, S. M. Zhu, J. D. Ye, W. Liu, X. Zhou, R. Zhang, Y. Shi, Y. D. Zheng, J. Cryst. Growth 2007, 299, 303. W. Chen, Y. Qiu, S. Yang, Phys. Chem. Chem. Phys. 2012, 14, 10872. Y. Lin, Y. Xu, M. T. Mayer, Z. I. Simpson, G. McMahon, S. Zhou, D. Wang, J. Am. Chem. Soc. 2012, 134, 5508. Z. Liu, Y. Wang, B. Wang, Y. Li, Z. Liu, J. Han, K. Guo, Y. Li, T. Cui, L. Han, C. Liu, G. Li, Int. J. Hydrogen Energy 2013, 38, 10226. N. Chouhan, C. L. Yeh, S. F. Hu, R. S. Liu, W. S. Chang, K. H. Chen, Chem. Commun. 2011, 47, 3493. M. Shao, F. Ning, M. Wei, D. G. Evans, X. Duan, Adv. Funct. Mater. 2014, 24, 580. W. Han, L. Ren, X. Qi, Y. Liu, X. Wei, Z. Huang, J. Zhong, Appl. Surf. Sci. 2014, 299, 12. M. Law, L. E. Greene, J. C. Johnson, R. Saykally, P. Yang, Nat. Mater. 2005, 4, 455. Z. Bai, X. Yan, Z. Kang, Y. Hu, X. Zhang, Y. Zhang, Nano Energy 2015, 14, 392. X. Zhang, Y. Liu, Z. Kang, ACS Appl. Mater. Interfaces 2014, 6, 4480. Y. Zhang, X. Yan, Y. Yang, Y. Huang, Q. Liao, J. Qi, Adv. Mater. 2012, 24, 4647. Y. Tachibana, L. Vayssieres, J. R. Durrant, Nat. Photonics 2012, 6, 511. Y. Tak, S. J. Hong, J. S. Lee, K. Yong, J. Mater. Chem. 2009, 19, 5945. H. G. Yang, G. Liu, S. Z. Qiao, C. H. Sun, Y. G. Jin, S. C. Smith, J. Zou, H. M. Cheng, G. Q. Lu, J. Am. Chem. Soc. 2009, 131, 4078. Y. Bu, Z. Chen, W. Li, J. Yu, ACS Appl. Mater. Interfaces 2013, 5, 5097. S. F. Leung, M. Yu, Q. Lin, K. Kwon, K. L. Ching, L. Gu, K. Yu, Z. Fan, Nano Lett. 2012, 12, 3682. Y. Dai, C. M. Cobley, J. Zeng, Y. Sun, Y. Xia, Nano Lett. 2009, 9, 2455. H. Dotan, K. Sivula, M. Grätzel, A. Rothschild, S. C. Warren, Energy Environ. Sci. 2011, 4, 958. I. S. Cho, M. Logar, C. H. Lee, L. Cai, F. B. Prinz, X. Zheng, Nano Lett. 2014, 14, 24. R. Liu, X. Wang, H. Zhou, T. Wang, J. Zhang, Y. Xu, C. He, B. Wang, J. Zhang, H. Wang, Int. J. Hydrogen Energy 2013, 38, 16755. K. Sun, Y. Jing, C. Li, X. Zhang, R. Aguinaldo, A. Kargar, K. Madsen, K. Banu, Y. Zhou, Y. Bando, Z. Liu, D. Wang, Nanoscale 2012, 4, 1515. 2010; 10 2015; 14 2013; 138–139 2013; 42 2008; 38 2014; 24 2006; 6 2011; 10 2011; 36 2012; 37 2009; 131 2011; 4 2012; 14 2013; 5 2012; 12 2014; 299 2007; 299 2014; 5 2010; 49 2012; 134 2010; 46 2013; 38 2013; 13 2005; 4 1999; 473 2009; 9 2014; 14 2009; 4 2011; 47 2012; 6 2012; 24 2009; 19 2014; 7 2012; 4 2014; 6 2010; 4 e_1_2_6_32_1 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_30_1 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_17_1 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_16_1 e_1_2_6_37_1 e_1_2_6_42_1 e_1_2_6_43_1 e_1_2_6_21_1 e_1_2_6_20_1 e_1_2_6_41_1 e_1_2_6_40_1 e_1_2_6_9_1 e_1_2_6_8_1 e_1_2_6_5_1 e_1_2_6_4_1 e_1_2_6_7_1 e_1_2_6_6_1 e_1_2_6_1_1 e_1_2_6_25_1 e_1_2_6_24_1 e_1_2_6_3_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_22_1 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_28_1 e_1_2_6_45_1 e_1_2_6_27_1 e_1_2_6_46_1 e_1_2_6_26_1 e_1_2_6_47_1 |
References_xml | – reference: J. K. Kim, K. Shin, S. M. Cho, T.-W. Lee, J. H. Park, Energy Environ. Sci. 2011, 4, 1465. – reference: Z. Bai, X. Yan, X. Chen, H. Liu, Y. Shen, Y. Zhang, Curr. Appl. Phys. 2013, 13, 165. – reference: N. Chouhan, C. L. Yeh, S. F. Hu, R. S. Liu, W. S. Chang, K. H. Chen, Chem. Commun. 2011, 47, 3493. – reference: Y. Qiu, K. Yan, H. Deng, S. Yang, Nano Lett. 2012, 12, 407. – reference: A. Kargar, K. Sun, Y. Jing, C. Choi, H. Jeong, Y. Zhou, K. Madsen, P. Naughton, S. Jin, G. Y. Jung, D. Wang, Nano Lett. 2013, 13, 3017. – reference: G. Wang, X. Yang, F. Qian, J. Z. Zhang, Y. Li, Nano Lett. 2010, 10, 1088. – reference: M. Shao, F. Ning, M. Wei, D. G. Evans, X. Duan, Adv. Funct. Mater. 2014, 24, 580. – reference: Y. Dai, C. M. Cobley, J. Zeng, Y. Sun, Y. Xia, Nano Lett. 2009, 9, 2455. – reference: X. Wang, H. Zhu, Y. Xu, H. Wang, Y. Tao, S. Hark, X. Xiao, Q. Li, ACS Nano 2010, 4, 3302. – reference: Y. Tak, S. J. Hong, J. S. Lee, K. Yong, J. Mater. Chem. 2009, 19, 5945. – reference: J. Z. Zhang, MRS Bull. 2011, 36, 48. – reference: F. Amano, D. Li, B. Ohtani, Chem. Commun. 2010, 46, 2769. – reference: W. Han, L. Ren, X. Qi, Y. Liu, X. Wei, Z. Huang, J. Zhong, Appl. Surf. Sci. 2014, 299, 12. – reference: I. S. Cho, M. Logar, C. H. Lee, L. Cai, F. B. Prinz, X. Zheng, Nano Lett. 2014, 14, 24. – reference: X. Yang, A. Wolcott, G. Wang, A. Sobo, R. C. Fitzmorris, F. Qian, J. Z. Zhang, Y. Li, Nano Lett. 2009, 9, 2331. – reference: K. Sun, Y. Jing, C. Li, X. Zhang, R. Aguinaldo, A. Kargar, K. Madsen, K. Banu, Y. Zhou, Y. Bando, Z. Liu, D. Wang, Nanoscale 2012, 4, 1515. – reference: A. Paracchino, V. Laporte, K. Sivula, M. Gratzel, E. Thimsen, Nat. Mater. 2011, 10, 456. – reference: F. E. Osterloh, Chem. Soc. Rev. 2013, 42, 2294. – reference: D. J. Fermiń, E. A. Ponomarev, L. M. Peter, J. Electroanal. Chem. 1999, 473, 192. – reference: C.-H. Hsu, D.-H. Chen, Int. J. Hydrogen Energy 2011, 36, 15538. – reference: C. Li, T. Ahmed, M. Ma, T. Edvinsson, J. Zhu, Appl. Catal. B: Environ. 2013, 138-139, 175. – reference: Y. Li, J. Z. Zhang, Laser Photonics Rev. 2009, 4, 517. – reference: Y. Tak, H. Kim, D. Lee, K. Yong, Chem. Commun. 2008, 38, 4585. – reference: Y. Lin, Y. Xu, M. T. Mayer, Z. I. Simpson, G. McMahon, S. Zhou, D. Wang, J. Am. Chem. Soc. 2012, 134, 5508. – reference: X. Chen, Z. Bai, X. Yan, H. Yuan, G. Zhang, P. Lin, Z. Zhang, Y. Liu, Y. Zhang, Nanoscale 2014, 6, 4691. – reference: W. Chen, Y. Qiu, S. Yang, Phys. Chem. Chem. Phys. 2012, 14, 10872. – reference: H. G. Yang, G. Liu, S. Z. Qiao, C. H. Sun, Y. G. Jin, S. C. Smith, J. Zou, H. M. Cheng, G. Q. Lu, J. Am. Chem. Soc. 2009, 131, 4078. – reference: Y. Tachibana, L. Vayssieres, J. R. Durrant, Nat. Photonics 2012, 6, 511. – reference: M. Ye, J. Gong, Y. Lai, C. Lin, Z. Lin, J. Am. Chem. Soc. 2012, 134, 15720. – reference: R. Liu, X. Wang, H. Zhou, T. Wang, J. Zhang, Y. Xu, C. He, B. Wang, J. Zhang, H. Wang, Int. J. Hydrogen Energy 2013, 38, 16755. – reference: Y. C. Pu, G. Wang, K. D. Chang, Y. Ling, Y. K. Lin, B. C. Fitzmorris, C. M. Liu, X. Lu, Y. Tong, J. Z. Zhang, Y. J. Hsu, Y. Li, Nano Lett. 2013, 13, 3817. – reference: Y. Zhang, X. Yan, Y. Yang, Y. Huang, Q. Liao, J. Qi, Adv. Mater. 2012, 24, 4647. – reference: Z. Bian, T. Tachikawa, P. Zhang, M. Fujitsuka, T. Majima, Nat. Commun. 2014, 5, 3038. – reference: Z. Liu, Y. Wang, B. Wang, Y. Li, Z. Liu, J. Han, K. Guo, Y. Li, T. Cui, L. Han, C. Liu, G. Li, Int. J. Hydrogen Energy 2013, 38, 10226. – reference: J. Hou, C. Yang, H. Cheng, S. Jiao, O. Takeda, H. Zhu, Energy Environ. Sci. 2014, 73758. – reference: H. M. Chen, C. K. Chen, Y. C. Chang, C. W. Tsai, R. S. Liu, S. F. Hu, W. S. Chang, K. H. Chen, Angew. Chem. 2010, 49, 5966. – reference: Y. Bu, Z. Chen, W. Li, J. Yu, ACS Appl. Mater. Interfaces 2013, 5, 5097. – reference: Y. Bu, Z. Chen, W. Li, B. Hou, ACS Appl. Mater. Interfaces 2013, 5, 12361. – reference: E. Hendry, M. Koeberg, B. O'Regan, M. Bonn, Nano Lett. 2006, 6, 755. – reference: X. Zhang, Y. Liu, Z. Kang, ACS Appl. Mater. Interfaces 2014, 6, 4480. – reference: Y. Li, Z. Liu, Y. Wang, Z. Liu, J. Han, J. Ya, Int. J. Hydrogen Energy 2012, 37, 15029. – reference: S. M. Liu, S. L. Gu, S. M. Zhu, J. D. Ye, W. Liu, X. Zhou, R. Zhang, Y. Shi, Y. D. Zheng, J. Cryst. Growth 2007, 299, 303. – reference: S. F. Leung, M. Yu, Q. Lin, K. Kwon, K. L. Ching, L. Gu, K. Yu, Z. Fan, Nano Lett. 2012, 12, 3682. – reference: H. Dotan, K. Sivula, M. Grätzel, A. Rothschild, S. C. Warren, Energy Environ. Sci. 2011, 4, 958. – reference: Y. G. Lin, Y. K. Hsu, Y. C. Chen, L. C. Chen, S. Y. Chen, K. H. Chen, Nanoscale 2012, 4, 6515. – reference: M. Law, L. E. Greene, J. C. Johnson, R. Saykally, P. Yang, Nat. Mater. 2005, 4, 455. – reference: Z. Bai, X. Yan, Z. Kang, Y. Hu, X. Zhang, Y. Zhang, Nano Energy 2015, 14, 392. – volume: 4 start-page: 3302 year: 2010 publication-title: ACS Nano – volume: 131 start-page: 4078 year: 2009 publication-title: J. Am. Chem. Soc. – volume: 36 start-page: 48 year: 2011 publication-title: MRS Bull. – volume: 14 start-page: 10872 year: 2012 publication-title: Phys. Chem. Chem. Phys. – volume: 134 start-page: 15720 year: 2012 publication-title: J. Am. Chem. Soc. – volume: 14 start-page: 24 year: 2014 publication-title: Nano Lett. – volume: 10 start-page: 456 year: 2011 publication-title: Nat. Mater. – volume: 5 start-page: 5097 year: 2013 publication-title: ACS Appl. Mater. Interfaces – volume: 13 start-page: 165 year: 2013 publication-title: Curr. Appl. Phys. – volume: 19 start-page: 5945 year: 2009 publication-title: J. Mater. Chem. – volume: 12 start-page: 407 year: 2012 publication-title: Nano Lett. – volume: 5 start-page: 3038 year: 2014 publication-title: Nat. Commun. – volume: 49 start-page: 5966 year: 2010 publication-title: Angew. Chem. – volume: 299 start-page: 303 year: 2007 publication-title: J. Cryst. Growth – volume: 9 start-page: 2455 year: 2009 publication-title: Nano Lett. – volume: 24 start-page: 580 year: 2014 publication-title: Adv. Funct. Mater. – volume: 37 start-page: 15029 year: 2012 publication-title: Int. J. Hydrogen Energy – volume: 10 start-page: 1088 year: 2010 publication-title: Nano Lett. – volume: 24 start-page: 4647 year: 2012 publication-title: Adv. Mater. – volume: 299 start-page: 12 year: 2014 publication-title: Appl. Surf. Sci. – volume: 6 start-page: 511 year: 2012 publication-title: Nat. Photonics – volume: 4 start-page: 1515 year: 2012 publication-title: Nanoscale – volume: 38 start-page: 10226 year: 2013 publication-title: Int. J. Hydrogen Energy – volume: 473 start-page: 192 year: 1999 publication-title: J. Electroanal. Chem. – volume: 38 start-page: 4585 year: 2008 publication-title: Chem. Commun. – volume: 12 start-page: 3682 year: 2012 publication-title: Nano Lett. – volume: 5 start-page: 12361 year: 2013 publication-title: ACS Appl. Mater. Interfaces – volume: 13 start-page: 3017 year: 2013 publication-title: Nano Lett. – volume: 6 start-page: 755 year: 2006 publication-title: Nano Lett. – volume: 6 start-page: 4691 year: 2014 publication-title: Nanoscale – volume: 138–139 start-page: 175 year: 2013 publication-title: Appl. Catal. B: Environ. – volume: 46 start-page: 2769 year: 2010 publication-title: Chem. Commun. – volume: 36 start-page: 15538 year: 2011 publication-title: Int. J. Hydrogen Energy – volume: 4 start-page: 517 year: 2009 publication-title: Laser Photonics Rev. – volume: 9 start-page: 2331 year: 2009 publication-title: Nano Lett. – volume: 13 start-page: 3817 year: 2013 publication-title: Nano Lett. – volume: 47 start-page: 3493 year: 2011 publication-title: Chem. Commun. – volume: 38 start-page: 16755 year: 2013 publication-title: Int. J. Hydrogen Energy – volume: 4 start-page: 958 year: 2011 publication-title: Energy Environ. Sci. – volume: 134 start-page: 5508 year: 2012 publication-title: J. Am. Chem. Soc. – volume: 4 start-page: 455 year: 2005 publication-title: Nat. Mater. – volume: 6 start-page: 4480 year: 2014 publication-title: ACS Appl. Mater. Interfaces – volume: 14 start-page: 392 year: 2015 publication-title: Nano Energy – volume: 7 start-page: 3758 year: 2014 publication-title: Energy Environ. Sci. – volume: 4 start-page: 6515 year: 2012 publication-title: Nanoscale – volume: 42 start-page: 2294 year: 2013 publication-title: Chem. Soc. Rev. – volume: 4 start-page: 1465 year: 2011 publication-title: Energy Environ. Sci. – ident: e_1_2_6_18_1 doi: 10.1038/nmat1387 – ident: e_1_2_6_14_1 doi: 10.1021/nl4018385 – ident: e_1_2_6_46_1 doi: 10.1039/C4NR00137K – ident: e_1_2_6_17_1 doi: 10.1021/am403149g – ident: e_1_2_6_21_1 doi: 10.1002/adma.201104382 – ident: e_1_2_6_34_1 doi: 10.1016/j.apsusc.2014.01.170 – ident: e_1_2_6_38_1 doi: 10.1038/nmat3017 – ident: e_1_2_6_39_1 doi: 10.1016/j.jcrysgro.2006.12.011 – ident: e_1_2_6_44_1 doi: 10.1021/nl901181n – ident: e_1_2_6_16_1 doi: 10.1002/anie.201001827 – ident: e_1_2_6_1_1 doi: 10.1039/C2CS35266D – ident: e_1_2_6_7_1 doi: 10.1039/C0EE00570C – ident: e_1_2_6_32_1 doi: 10.1016/j.apcatb.2013.02.042 – ident: e_1_2_6_6_1 doi: 10.1021/nl100250z – ident: e_1_2_6_25_1 doi: 10.1021/am500234v – ident: e_1_2_6_47_1 doi: 10.1039/b904993b – ident: e_1_2_6_20_1 doi: 10.1016/j.cap.2012.07.005 – ident: e_1_2_6_28_1 doi: 10.1039/c2nr31800h – ident: e_1_2_6_22_1 doi: 10.1039/c2cp41272a – ident: e_1_2_6_31_1 doi: 10.1021/nn1001547 – ident: e_1_2_6_24_1 doi: 10.1021/nl304539x – ident: e_1_2_6_19_1 doi: 10.1021/nl0600225 – ident: e_1_2_6_12_1 doi: 10.1039/C4EE02403F – ident: e_1_2_6_15_1 doi: 10.1002/adfm.201301889 – ident: e_1_2_6_13_1 doi: 10.1021/nl4026902 – ident: e_1_2_6_33_1 doi: 10.1016/j.ijhydene.2013.06.028 – ident: e_1_2_6_8_1 doi: 10.1021/ja300319g – ident: e_1_2_6_37_1 doi: 10.1021/am400964c – ident: e_1_2_6_2_1 doi: 10.1038/nphoton.2012.175 – ident: e_1_2_6_23_1 doi: 10.1039/c2nr11952h – ident: e_1_2_6_29_1 doi: 10.1039/c0cc05548d – ident: e_1_2_6_26_1 doi: 10.1021/nl2037326 – ident: e_1_2_6_30_1 doi: 10.1016/j.ijhydene.2012.07.117 – ident: e_1_2_6_3_1 doi: 10.1002/lpor.200910025 – ident: e_1_2_6_9_1 doi: 10.1039/c0ee00469c – ident: e_1_2_6_27_1 doi: 10.1016/j.ijhydene.2011.09.046 – ident: e_1_2_6_41_1 doi: 10.1039/b810388g – ident: e_1_2_6_42_1 doi: 10.1021/nl3014567 – ident: e_1_2_6_45_1 doi: 10.1021/ja808790p – ident: e_1_2_6_36_1 doi: 10.1021/ja307449z – ident: e_1_2_6_40_1 doi: 10.1016/j.nanoen.2014.09.005 – ident: e_1_2_6_43_1 doi: 10.1016/S0022-0728(99)00109-6 – ident: e_1_2_6_11_1 doi: 10.1038/ncomms4038 – ident: e_1_2_6_4_1 doi: 10.1557/mrs.2010.9 – ident: e_1_2_6_5_1 doi: 10.1021/nl900772q – ident: e_1_2_6_10_1 doi: 10.1039/b926931b – ident: e_1_2_6_35_1 doi: 10.1016/j.ijhydene.2013.05.009 |
SSID | ssj0000491033 |
Score | 2.5520227 |
Snippet | Modulation of broadband light trapping through assembly of 3D structures and modification with narrow band‐gap semiconductors provide an effective way to... Modulation of broadband light trapping through assembly of 3D structures and modification with narrow band-gap semiconductors provide an effective way to... |
SourceID | proquest crossref wiley istex |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | np |
SubjectTerms | 3D structures Arrays Broadband Cadmium sulfide Catalytic activity Chemical synthesis Deposition Nanoparticles Nanowires photoanodes Photocatalysis Photovoltaic cells Semiconductors service safety Solar energy Three dimensional Three dimensional composites Titanium dioxide Titanium oxides Trapping Water splitting Zinc oxide |
Title | 3D-Branched ZnO/CdS Nanowire Arrays for Solar Water Splitting and the Service Safety Research |
URI | https://api.istex.fr/ark:/67375/WNG-G5JSZH84-K/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faenm.201501459 https://www.proquest.com/docview/1762674832 https://www.proquest.com/docview/1945210271 https://www.proquest.com/docview/1800475052 |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELagvcAB8RSFBRkJwaEKGyd2kxwL291qH91DWm2phCwndrYrIIHSSsCvZ-zESSoVWLhErW0lqefzdGY8_gahl4OEpiSMXIf5XuDQVAgn8Zl0QC-KjARukKUmy3cyGM_o8ZzNmx18c7pknbxJf-48V_I_UoU2kKs-JfsPkq1vCg3wGeQLV5AwXK8lY__AeasLYyzBalzk55rrVsZaYRaagbg_XK3ED8O30I-1B9u_EJoSMQa7s8x2ttmTlcLoxyJTxihvhbgsQ63NFVDlYcHP-lb6FzahUJMXsFjqMmGXtTIp46vzK1F8vWqyf8zQ90Uz7qQKWy-Wm6IdiCB17vK11V1LzYJR4AzCKrKp2m0leZPVzYMWBP2dGr9kkBUq17QCxOySRs1_m93Pn5zzw9npKZ-O5tObqOuBT-F1UHd4cHYa1yE5cJaI65sjGfb9LM2n6-1vP2LLjOnqFfl9y0dpezrGVJneRXcqHwMPS8DcQzdUfh_dbjFPPkAfWtDBAJ19AA62wMElcDAABxvgYAMcXAMHA3AwAAdXU49L4GALnIdodjiavhs7VaUNJ6WhFznUTzLpMpW5XhapLATDSfrQQTKWEpaERAWBkrCSExfWtisTsGhgsghNfSXB5fYfoU5e5OoxwkFCB0RFUoaMUsqyKBGCSMlcSmSgsrSHHDtxPK1o6HU1lE-8JND2uJ5oXk90D72ux38pCVh-O_KVkUM9TKw-6rTFgPGLyRE_YsfxYhxSftJDe1ZQvFrN3zgBq0AX3vG93d0RZTo6EpAeelF3gyrW-2siV8UGxoSae1VXhuwhz8j_L2_Mh6PJWf3tyZ-f-xTdalbdHuqsVxv1DAzidfK8AvIvMjSywg |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=3D-Branched+ZnO%2FCdS+Nanowire+Arrays+for+Solar+Water+Splitting+and+the+Service+Safety+Research&rft.jtitle=Advanced+energy+materials&rft.au=Bai%2C+Zhiming&rft.au=Yan%2C+Xiaoqin&rft.au=Li%2C+Yong&rft.au=Kang%2C+Zhuo&rft.date=2016-02-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1614-6832&rft.eissn=1614-6840&rft.volume=6&rft.issue=3&rft_id=info:doi/10.1002%2Faenm.201501459&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1614-6832&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1614-6832&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1614-6832&client=summon |