3D-Branched ZnO/CdS Nanowire Arrays for Solar Water Splitting and the Service Safety Research

Modulation of broadband light trapping through assembly of 3D structures and modification with narrow band‐gap semiconductors provide an effective way to improve the photoelectrochemical (PEC) performance. Here, 3D‐branched ZnO nanowire arrays (NWAs) modified with cadmium sulfide (CdS) nanoparticles...

Full description

Saved in:
Bibliographic Details
Published inAdvanced energy materials Vol. 6; no. 3; pp. np - n/a
Main Authors Bai, Zhiming, Yan, Xiaoqin, Li, Yong, Kang, Zhuo, Cao, Shiyao, Zhang, Yue
Format Journal Article
LanguageEnglish
Published Weinheim Blackwell Publishing Ltd 01.02.2016
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Modulation of broadband light trapping through assembly of 3D structures and modification with narrow band‐gap semiconductors provide an effective way to improve the photoelectrochemical (PEC) performance. Here, 3D‐branched ZnO nanowire arrays (NWAs) modified with cadmium sulfide (CdS) nanoparticles are designed and synthesized via solution chemical routes. The 3D‐branched ZnO NWA–CdS nanoparticle photoanodes show an excellent PEC performance in UV and visible region and the maximum photo‐to‐hydrogen conversion efficiency reaches to 3.1%. The high performance of 3D‐branched ZnO NWA–CdS composites is mainly attributed to the excellent carrier collection capability and high light‐trapping ability of 3D‐branched ZnO NWAs as well as the excellent photocatalytic activity of CdS nanoparticles in the visible region. In addition, the photocorrosion mechanism of 3D‐branched ZnO NWA–CdS photoanodes is systematically investigated, and a protective TiO2 layer is deposited onto the photoanodes to elevate the PEC stability. The results benefit a deeper understanding of the role of 3D‐branched structures decorated with narrow band‐gap semiconductors in solar water splitting. The photoelectrochemical (PEC) performance of 3D ZnO nanowire arrays (NWAs)–Cadmium sulfide (CdS) is greatly affected by the CdS deposition cycle number, and the 50‐deposition cycle sample shows the highest conversion efficiency of 3.1%. CdS nanoparticles expand the photocatalytic activity of 3D ZnO NWA–CdS in the visible range. The TiO2 layer greatly reduces the photocorrosion reaction and enhances the PEC stability.
AbstractList Modulation of broadband light trapping through assembly of 3D structures and modification with narrow band‐gap semiconductors provide an effective way to improve the photoelectrochemical (PEC) performance. Here, 3D‐branched ZnO nanowire arrays (NWAs) modified with cadmium sulfide (CdS) nanoparticles are designed and synthesized via solution chemical routes. The 3D‐branched ZnO NWA–CdS nanoparticle photoanodes show an excellent PEC performance in UV and visible region and the maximum photo‐to‐hydrogen conversion efficiency reaches to 3.1%. The high performance of 3D‐branched ZnO NWA–CdS composites is mainly attributed to the excellent carrier collection capability and high light‐trapping ability of 3D‐branched ZnO NWAs as well as the excellent photocatalytic activity of CdS nanoparticles in the visible region. In addition, the photocorrosion mechanism of 3D‐branched ZnO NWA–CdS photoanodes is systematically investigated, and a protective TiO 2 layer is deposited onto the photoanodes to elevate the PEC stability. The results benefit a deeper understanding of the role of 3D‐branched structures decorated with narrow band‐gap semiconductors in solar water splitting.
Modulation of broadband light trapping through assembly of 3D structures and modification with narrow band‐gap semiconductors provide an effective way to improve the photoelectrochemical (PEC) performance. Here, 3D‐branched ZnO nanowire arrays (NWAs) modified with cadmium sulfide (CdS) nanoparticles are designed and synthesized via solution chemical routes. The 3D‐branched ZnO NWA–CdS nanoparticle photoanodes show an excellent PEC performance in UV and visible region and the maximum photo‐to‐hydrogen conversion efficiency reaches to 3.1%. The high performance of 3D‐branched ZnO NWA–CdS composites is mainly attributed to the excellent carrier collection capability and high light‐trapping ability of 3D‐branched ZnO NWAs as well as the excellent photocatalytic activity of CdS nanoparticles in the visible region. In addition, the photocorrosion mechanism of 3D‐branched ZnO NWA–CdS photoanodes is systematically investigated, and a protective TiO2 layer is deposited onto the photoanodes to elevate the PEC stability. The results benefit a deeper understanding of the role of 3D‐branched structures decorated with narrow band‐gap semiconductors in solar water splitting. The photoelectrochemical (PEC) performance of 3D ZnO nanowire arrays (NWAs)–Cadmium sulfide (CdS) is greatly affected by the CdS deposition cycle number, and the 50‐deposition cycle sample shows the highest conversion efficiency of 3.1%. CdS nanoparticles expand the photocatalytic activity of 3D ZnO NWA–CdS in the visible range. The TiO2 layer greatly reduces the photocorrosion reaction and enhances the PEC stability.
Modulation of broadband light trapping through assembly of 3D structures and modification with narrow band-gap semiconductors provide an effective way to improve the photoelectrochemical (PEC) performance. Here, 3D-branched ZnO nanowire arrays (NWAs) modified with cadmium sulfide (CdS) nanoparticles are designed and synthesized via solution chemical routes. The 3D-branched ZnO NWA-CdS nanoparticle photoanodes show an excellent PEC performance in UV and visible region and the maximum photo-to-hydrogen conversion efficiency reaches to 3.1%. The high performance of 3D-branched ZnO NWA-CdS composites is mainly attributed to the excellent carrier collection capability and high light-trapping ability of 3D-branched ZnO NWAs as well as the excellent photocatalytic activity of CdS nanoparticles in the visible region. In addition, the photocorrosion mechanism of 3D-branched ZnO NWA-CdS photoanodes is systematically investigated, and a protective TiO sub(2) layer is deposited onto the photoanodes to elevate the PEC stability. The results benefit a deeper understanding of the role of 3D-branched structures decorated with narrow band-gap semiconductors in solar water splitting. The photoelectrochemical (PEC) performance of 3D ZnO nanowire arrays (NWAs)-Cadmium sulfide (CdS) is greatly affected by the CdS deposition cycle number, and the 50-deposition cycle sample shows the highest conversion efficiency of 3.1%. CdS nanoparticles expand the photocatalytic activity of 3D ZnO NWA-CdS in the visible range. The TiO sub(2) layer greatly reduces the photocorrosion reaction and enhances the PEC stability.
Modulation of broadband light trapping through assembly of 3D structures and modification with narrow band-gap semiconductors provide an effective way to improve the photoelectrochemical (PEC) performance. Here, 3D-branched ZnO nanowire arrays (NWAs) modified with cadmium sulfide (CdS) nanoparticles are designed and synthesized via solution chemical routes. The 3D-branched ZnO NWA-CdS nanoparticle photoanodes show an excellent PEC performance in UV and visible region and the maximum photo-to-hydrogen conversion efficiency reaches to 3.1%. The high performance of 3D-branched ZnO NWA-CdS composites is mainly attributed to the excellent carrier collection capability and high light-trapping ability of 3D-branched ZnO NWAs as well as the excellent photocatalytic activity of CdS nanoparticles in the visible region. In addition, the photocorrosion mechanism of 3D-branched ZnO NWA-CdS photoanodes is systematically investigated, and a protective TiO2 layer is deposited onto the photoanodes to elevate the PEC stability. The results benefit a deeper understanding of the role of 3D-branched structures decorated with narrow band-gap semiconductors in solar water splitting.
Author Yan, Xiaoqin
Li, Yong
Bai, Zhiming
Cao, Shiyao
Zhang, Yue
Kang, Zhuo
Author_xml – sequence: 1
  givenname: Zhiming
  surname: Bai
  fullname: Bai, Zhiming
  organization: State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, 10083, Beijing, P. R. China
– sequence: 2
  givenname: Xiaoqin
  surname: Yan
  fullname: Yan, Xiaoqin
  organization: State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, 10083, Beijing, P. R. China
– sequence: 3
  givenname: Yong
  surname: Li
  fullname: Li, Yong
  organization: State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, 10083, Beijing, P. R. China
– sequence: 4
  givenname: Zhuo
  surname: Kang
  fullname: Kang, Zhuo
  organization: State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, 10083, Beijing, P. R. China
– sequence: 5
  givenname: Shiyao
  surname: Cao
  fullname: Cao, Shiyao
  organization: State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, 10083, Beijing, P. R. China
– sequence: 6
  givenname: Yue
  surname: Zhang
  fullname: Zhang, Yue
  email: yuezhang@ustb.edu.cn
  organization: State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, 10083, Beijing, P. R. China
BookMark eNqFkU1rGzEQhpeSQtM0154FvfSyjj5Xu0fXTZ2kqQN1QiBQhFaarZWutY4kN_G_j1IXUwKhusyAnmfQ6H1b7PnBQ1G8J3hEMKZHGvxyRDERmHDRvCr2SUV4WdUc7-16Rt8UhzHe4nx4QzBj-8UP9rn8FLQ3C7Doxl8cTewczbQf7l0ANA5BbyLqhoDmQ68DutYJcr_qXUrO_0TaW5QWgOYQfjuTq-4gbdB3iKCDWbwrXne6j3D4tx4UV1-OLycn5fnF9HQyPi8Nr2lTctZ2FgvoMO0a6GoAa1m-IJ0wRLQ1ASnBcqNb3HKDbStJnRcg3DCwtSTsoPi4nbsKw90aYlJLFw30vfYwrKMidd5YCixoRj88Q2-HdfD5dYo0XFCC6Z-BL1OyopXk-TczxbeUCUOMATplXNLJDT4F7XpFsHoKRz2Fo3bhZG30TFsFt9Rh87LQbIV718PmP7QaH8--_euWW9fFBA87V4dfqpJMCnU9m6qpOJvfnNRcfWWPvyqw7Q
CitedBy_id crossref_primary_10_1016_j_apcatb_2017_09_012
crossref_primary_10_1016_j_mseb_2023_116413
crossref_primary_10_26599_NRE_2022_9120020
crossref_primary_10_1016_j_ijhydene_2017_02_166
crossref_primary_10_1016_j_electacta_2019_135282
crossref_primary_10_1016_j_jallcom_2021_162146
crossref_primary_10_1016_j_jwpe_2024_105120
crossref_primary_10_1016_j_nanoen_2017_09_053
crossref_primary_10_1016_j_jcis_2020_12_078
crossref_primary_10_1016_j_solidstatesciences_2024_107600
crossref_primary_10_1021_acs_chemmater_8b02504
crossref_primary_10_1016_j_apcatb_2019_03_074
crossref_primary_10_1016_j_jallcom_2016_12_261
crossref_primary_10_1007_s10008_020_04741_9
crossref_primary_10_1007_s11664_020_08153_3
crossref_primary_10_1002_adfm_202106887
crossref_primary_10_1021_acs_langmuir_4c04874
crossref_primary_10_1063_5_0027906
crossref_primary_10_1016_j_jallcom_2019_03_178
crossref_primary_10_1039_C7CY02641B
crossref_primary_10_1002_elsa_202100114
crossref_primary_10_1039_D2SE00717G
crossref_primary_10_1039_C9NR10908K
crossref_primary_10_1016_j_ijhydene_2024_12_516
crossref_primary_10_1142_S1793292019501467
crossref_primary_10_1002_sstr_202200371
crossref_primary_10_1016_j_scitotenv_2021_150698
crossref_primary_10_1186_s11671_019_3023_x
crossref_primary_10_1039_D1TA04829E
crossref_primary_10_1002_adfm_201808032
crossref_primary_10_1002_aenm_201600683
crossref_primary_10_1039_C8QI00231B
crossref_primary_10_1016_j_matlet_2020_128567
crossref_primary_10_1016_j_apsusc_2021_149904
crossref_primary_10_1149_2_0321803jes
crossref_primary_10_1016_j_nanoen_2016_04_001
crossref_primary_10_1007_s40843_017_9105_3
crossref_primary_10_1021_acsanm_0c00081
crossref_primary_10_1038_srep38400
crossref_primary_10_1016_j_apcatb_2023_122833
crossref_primary_10_1016_j_ceramint_2016_06_020
crossref_primary_10_1016_j_jallcom_2024_174644
crossref_primary_10_1007_s11051_017_3982_8
crossref_primary_10_1039_D4TA00411F
crossref_primary_10_1002_aenm_202003052
crossref_primary_10_1002_adfm_201701102
crossref_primary_10_1016_j_nanoen_2018_03_014
crossref_primary_10_1021_acsami_9b14713
crossref_primary_10_1016_j_apsusc_2022_155682
crossref_primary_10_1016_j_nanoen_2019_04_098
crossref_primary_10_1039_C9CC09559D
crossref_primary_10_1016_j_jallcom_2022_167415
crossref_primary_10_1016_j_mtphys_2020_100262
crossref_primary_10_1039_C7NR02655B
crossref_primary_10_3390_molecules28052142
crossref_primary_10_1016_j_cej_2024_159093
crossref_primary_10_1016_j_jallcom_2023_170669
crossref_primary_10_1016_j_renene_2020_12_076
crossref_primary_10_1088_1361_6528_ad8b53
crossref_primary_10_1007_s10562_024_04899_1
crossref_primary_10_1016_j_jallcom_2018_07_297
crossref_primary_10_1002_smll_201602870
crossref_primary_10_1021_acsanm_3c04168
crossref_primary_10_1016_j_ceramint_2016_09_112
crossref_primary_10_1142_S1793604720510145
crossref_primary_10_1016_j_jallcom_2017_06_246
crossref_primary_10_1002_chem_201701219
crossref_primary_10_1021_acsami_5b12870
crossref_primary_10_1016_j_jallcom_2019_152186
crossref_primary_10_1016_j_apcatb_2016_10_051
crossref_primary_10_1002_adma_201600437
crossref_primary_10_1016_j_cclet_2019_07_020
crossref_primary_10_1016_j_jsamd_2017_08_006
crossref_primary_10_1007_s11705_024_2456_7
crossref_primary_10_1016_j_jallcom_2021_159187
crossref_primary_10_1039_C8TA03398F
crossref_primary_10_1002_advs_202103744
crossref_primary_10_1002_aenm_202001005
crossref_primary_10_1016_j_nanoen_2019_104089
crossref_primary_10_1016_j_ijhydene_2019_09_129
crossref_primary_10_1016_j_apcatb_2018_04_008
crossref_primary_10_1016_j_electacta_2019_04_090
crossref_primary_10_1021_acssuschemeng_8b03259
crossref_primary_10_1088_1361_6463_ad5212
crossref_primary_10_1016_j_apsusc_2019_144703
crossref_primary_10_1002_ente_202000819
crossref_primary_10_1002_smll_201603279
crossref_primary_10_1016_j_ijhydene_2019_06_059
crossref_primary_10_3390_catal11030355
crossref_primary_10_1002_aenm_202000280
crossref_primary_10_1021_acssuschemeng_8b01190
crossref_primary_10_1117_1_JPE_10_023505
crossref_primary_10_1016_j_electacta_2019_134674
crossref_primary_10_1149_2_1281707jes
crossref_primary_10_1039_C9NJ01373C
crossref_primary_10_1007_s10853_021_05900_7
crossref_primary_10_1016_j_apsusc_2018_11_054
crossref_primary_10_1039_C6RA24247B
crossref_primary_10_1039_C8NR06880A
crossref_primary_10_1039_C7TA02626A
crossref_primary_10_1016_j_jcis_2021_11_070
crossref_primary_10_1016_j_renene_2020_02_001
crossref_primary_10_1021_acs_chemrev_8b00599
crossref_primary_10_1021_acs_jpcc_9b11623
crossref_primary_10_1002_solr_202000741
crossref_primary_10_1016_j_ijhydene_2018_02_007
crossref_primary_10_1039_D0TC04352D
crossref_primary_10_1016_j_susmat_2018_e00075
crossref_primary_10_1021_acs_chemrev_9b00164
crossref_primary_10_1021_acs_jpcc_8b04675
crossref_primary_10_3390_catal9050457
crossref_primary_10_1016_j_ijhydene_2024_04_279
crossref_primary_10_1039_C8TA08837C
crossref_primary_10_1002_solr_201900364
crossref_primary_10_3390_nano11010233
crossref_primary_10_1002_solr_201800237
crossref_primary_10_1002_aenm_201600923
crossref_primary_10_1007_s42114_024_01023_0
crossref_primary_10_3390_su15054638
crossref_primary_10_1002_admi_201600494
crossref_primary_10_1016_j_ijhydene_2020_01_069
crossref_primary_10_1039_C9TA13028D
crossref_primary_10_1007_s11801_019_8162_x
crossref_primary_10_1016_j_catcom_2017_05_029
crossref_primary_10_1021_acs_chemmater_2c03489
crossref_primary_10_1088_1361_6528_ac9482
crossref_primary_10_1016_j_jallcom_2023_170659
crossref_primary_10_1088_2053_1591_aa701a
crossref_primary_10_1039_D0CP06489K
crossref_primary_10_1039_C9TA03701B
crossref_primary_10_1021_acssuschemeng_9b04868
crossref_primary_10_1002_celc_201901459
crossref_primary_10_1016_j_apsusc_2020_148044
crossref_primary_10_1002_smtd_201800029
crossref_primary_10_1016_j_apcatb_2019_05_040
crossref_primary_10_1016_j_apsusc_2017_05_144
crossref_primary_10_1016_j_nanoen_2021_106220
crossref_primary_10_1186_s11671_017_2278_3
crossref_primary_10_1016_j_ijhydene_2016_10_135
crossref_primary_10_1016_j_jcis_2018_01_030
crossref_primary_10_1016_j_apcatb_2024_124631
crossref_primary_10_1016_j_jallcom_2023_173373
crossref_primary_10_1016_j_sna_2016_11_014
crossref_primary_10_1021_acs_chemrestox_9b00308
crossref_primary_10_1002_adfm_201807275
crossref_primary_10_1016_j_colsurfa_2023_131897
crossref_primary_10_1021_acs_jpcc_7b04923
crossref_primary_10_1002_cey2_48
crossref_primary_10_1002_smll_201801352
crossref_primary_10_1016_j_cej_2019_123878
crossref_primary_10_1016_j_ijhydene_2019_07_206
crossref_primary_10_1016_j_jcis_2024_05_229
crossref_primary_10_1038_srep29907
crossref_primary_10_1016_j_carbon_2017_05_095
crossref_primary_10_1016_j_ceramint_2016_04_136
crossref_primary_10_1007_s40843_017_9172_x
crossref_primary_10_1039_C9TC00759H
crossref_primary_10_20964_2022_09_13
crossref_primary_10_1016_j_nanoen_2017_03_042
crossref_primary_10_1021_acsami_8b06382
crossref_primary_10_1039_C9TA00020H
crossref_primary_10_1016_j_surfin_2024_105240
crossref_primary_10_1016_j_apcatb_2024_124023
crossref_primary_10_1021_acssuschemeng_7b00242
crossref_primary_10_1016_j_jallcom_2018_10_225
crossref_primary_10_1002_cplu_202200304
crossref_primary_10_3390_coatings13020275
crossref_primary_10_1038_s41598_019_57044_z
crossref_primary_10_1016_j_apsusc_2018_04_102
crossref_primary_10_1007_s10854_017_6495_4
crossref_primary_10_1039_D1TA02560K
crossref_primary_10_1002_adfm_201706785
crossref_primary_10_1039_C7NR06182J
crossref_primary_10_1002_smll_201800395
crossref_primary_10_1039_C8EE02096E
crossref_primary_10_1002_smll_202100294
crossref_primary_10_1016_j_apcatb_2019_117813
crossref_primary_10_1016_j_jpcs_2020_109504
crossref_primary_10_1016_j_jcis_2023_12_183
crossref_primary_10_3139_146_111797
crossref_primary_10_1016_j_mtener_2023_101475
crossref_primary_10_1007_s00339_018_1830_z
crossref_primary_10_1007_s12274_024_6904_2
crossref_primary_10_1016_j_ijhydene_2020_09_115
crossref_primary_10_1016_j_nanoen_2020_104648
crossref_primary_10_1016_j_jpowsour_2019_04_116
crossref_primary_10_1016_j_chemosphere_2021_132168
crossref_primary_10_1016_j_apcatb_2018_03_014
crossref_primary_10_1002_adma_201806411
crossref_primary_10_1016_j_jallcom_2020_154472
Cites_doi 10.1038/nmat1387
10.1021/nl4018385
10.1039/C4NR00137K
10.1021/am403149g
10.1002/adma.201104382
10.1016/j.apsusc.2014.01.170
10.1038/nmat3017
10.1016/j.jcrysgro.2006.12.011
10.1021/nl901181n
10.1002/anie.201001827
10.1039/C2CS35266D
10.1039/C0EE00570C
10.1016/j.apcatb.2013.02.042
10.1021/nl100250z
10.1021/am500234v
10.1039/b904993b
10.1016/j.cap.2012.07.005
10.1039/c2nr31800h
10.1039/c2cp41272a
10.1021/nn1001547
10.1021/nl304539x
10.1021/nl0600225
10.1039/C4EE02403F
10.1002/adfm.201301889
10.1021/nl4026902
10.1016/j.ijhydene.2013.06.028
10.1021/ja300319g
10.1021/am400964c
10.1038/nphoton.2012.175
10.1039/c2nr11952h
10.1039/c0cc05548d
10.1021/nl2037326
10.1016/j.ijhydene.2012.07.117
10.1002/lpor.200910025
10.1039/c0ee00469c
10.1016/j.ijhydene.2011.09.046
10.1039/b810388g
10.1021/nl3014567
10.1021/ja808790p
10.1021/ja307449z
10.1016/j.nanoen.2014.09.005
10.1016/S0022-0728(99)00109-6
10.1038/ncomms4038
10.1557/mrs.2010.9
10.1021/nl900772q
10.1039/b926931b
10.1016/j.ijhydene.2013.05.009
ContentType Journal Article
Copyright 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: Copyright © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
DBID BSCLL
AAYXX
CITATION
7SP
7TB
8FD
F28
FR3
H8D
L7M
DOI 10.1002/aenm.201501459
DatabaseName Istex
CrossRef
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList CrossRef

Aerospace Database
Aerospace Database
Aerospace Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1614-6840
EndPage n/a
ExternalDocumentID 3943545201
10_1002_aenm_201501459
AENM201501459
ark_67375_WNG_G5JSZH84_K
Genre article
GrantInformation_xml – fundername: Program of Introducing Talents of Discipline to Universities, NSFC
  funderid: 51527802; 51232001; 51172022; 51372023; 51372020
– fundername: National Major Research Program of China
  funderid: 2013CB932602
– fundername: Major Project of International Cooperation and Exchanges
  funderid: 2012DFA50990
GroupedDBID 05W
0R~
1OC
31~
33P
4.4
50Y
5VS
8-0
8-1
A00
AAESR
AAHHS
AAIHA
AANLZ
AASGY
AAXRX
AAZKR
ABCUV
ABJNI
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADKYN
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFZJQ
AHBTC
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMYDB
ASPBG
AVWKF
AZFZN
AZVAB
BDRZF
BFHJK
BMXJE
BRXPI
BSCLL
D-A
DCZOG
EBS
EJD
FEDTE
G-S
GODZA
HGLYW
HVGLF
HZ~
KBYEO
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MY.
MY~
O9-
P2W
P4E
RNS
ROL
RX1
SUPJJ
WBKPD
WOHZO
WXSBR
WYJ
ZZTAW
~S-
AAHQN
AAMMB
AAMNL
AAYCA
ACYXJ
ADMLS
AEFGJ
AEYWJ
AFWVQ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
ALVPJ
AANHP
AAYXX
ACRPL
ADNMO
CITATION
7SP
7TB
8FD
F28
FR3
H8D
L7M
ID FETCH-LOGICAL-c4829-43bfd05ef02f9ef8eedd38291f5c15b81e77ed4cab0b4c0db71849114c3ed8713
ISSN 1614-6832
IngestDate Thu Jul 10 17:55:03 EDT 2025
Fri Jul 25 12:08:39 EDT 2025
Fri Jul 25 12:23:52 EDT 2025
Tue Jul 01 01:43:14 EDT 2025
Thu Apr 24 22:59:50 EDT 2025
Wed Aug 20 07:25:38 EDT 2025
Wed Oct 30 09:54:50 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c4829-43bfd05ef02f9ef8eedd38291f5c15b81e77ed4cab0b4c0db71849114c3ed8713
Notes ArticleID:AENM201501459
Major Project of International Cooperation and Exchanges - No. 2012DFA50990
National Major Research Program of China - No. 2013CB932602
ark:/67375/WNG-G5JSZH84-K
istex:D90F254A75AE48AE5E3861A292333E63A20426CD
Program of Introducing Talents of Discipline to Universities, NSFC - No. 51527802; No. 51232001; No. 51172022; No. 51372023; No. 51372020
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 1762674832
PQPubID 886389
PageCount 8
ParticipantIDs proquest_miscellaneous_1800475052
proquest_journals_1945210271
proquest_journals_1762674832
crossref_citationtrail_10_1002_aenm_201501459
crossref_primary_10_1002_aenm_201501459
wiley_primary_10_1002_aenm_201501459_AENM201501459
istex_primary_ark_67375_WNG_G5JSZH84_K
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20160201
PublicationDateYYYYMMDD 2016-02-01
PublicationDate_xml – month: 02
  year: 2016
  text: 20160201
  day: 01
PublicationDecade 2010
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Advanced energy materials
PublicationTitleAlternate Adv. Energy Mater
PublicationYear 2016
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
References Z. Bai, X. Yan, X. Chen, H. Liu, Y. Shen, Y. Zhang, Curr. Appl. Phys. 2013, 13, 165.
Y. Li, Z. Liu, Y. Wang, Z. Liu, J. Han, J. Ya, Int. J. Hydrogen Energy 2012, 37, 15029.
J. Z. Zhang, MRS Bull. 2011, 36, 48.
Y. Li, J. Z. Zhang, Laser Photonics Rev. 2009, 4, 517.
C. Li, T. Ahmed, M. Ma, T. Edvinsson, J. Zhu, Appl. Catal. B: Environ. 2013, 138-139, 175.
G. Wang, X. Yang, F. Qian, J. Z. Zhang, Y. Li, Nano Lett. 2010, 10, 1088.
Y. G. Lin, Y. K. Hsu, Y. C. Chen, L. C. Chen, S. Y. Chen, K. H. Chen, Nanoscale 2012, 4, 6515.
J. Hou, C. Yang, H. Cheng, S. Jiao, O. Takeda, H. Zhu, Energy Environ. Sci. 2014, 73758.
Y. Bu, Z. Chen, W. Li, B. Hou, ACS Appl. Mater. Interfaces 2013, 5, 12361.
X. Wang, H. Zhu, Y. Xu, H. Wang, Y. Tao, S. Hark, X. Xiao, Q. Li, ACS Nano 2010, 4, 3302.
Z. Bian, T. Tachikawa, P. Zhang, M. Fujitsuka, T. Majima, Nat. Commun. 2014, 5, 3038.
D. J. Fermiń, E. A. Ponomarev, L. M. Peter, J. Electroanal. Chem. 1999, 473, 192.
A. Kargar, K. Sun, Y. Jing, C. Choi, H. Jeong, Y. Zhou, K. Madsen, P. Naughton, S. Jin, G. Y. Jung, D. Wang, Nano Lett. 2013, 13, 3017.
J. K. Kim, K. Shin, S. M. Cho, T.-W. Lee, J. H. Park, Energy Environ. Sci. 2011, 4, 1465.
F. Amano, D. Li, B. Ohtani, Chem. Commun. 2010, 46, 2769.
Y. Tak, H. Kim, D. Lee, K. Yong, Chem. Commun. 2008, 38, 4585.
C.-H. Hsu, D.-H. Chen, Int. J. Hydrogen Energy 2011, 36, 15538.
H. M. Chen, C. K. Chen, Y. C. Chang, C. W. Tsai, R. S. Liu, S. F. Hu, W. S. Chang, K. H. Chen, Angew. Chem. 2010, 49, 5966.
F. E. Osterloh, Chem. Soc. Rev. 2013, 42, 2294.
M. Ye, J. Gong, Y. Lai, C. Lin, Z. Lin, J. Am. Chem. Soc. 2012, 134, 15720.
X. Yang, A. Wolcott, G. Wang, A. Sobo, R. C. Fitzmorris, F. Qian, J. Z. Zhang, Y. Li, Nano Lett. 2009, 9, 2331.
E. Hendry, M. Koeberg, B. O'Regan, M. Bonn, Nano Lett. 2006, 6, 755.
X. Chen, Z. Bai, X. Yan, H. Yuan, G. Zhang, P. Lin, Z. Zhang, Y. Liu, Y. Zhang, Nanoscale 2014, 6, 4691.
Y. Qiu, K. Yan, H. Deng, S. Yang, Nano Lett. 2012, 12, 407.
Y. C. Pu, G. Wang, K. D. Chang, Y. Ling, Y. K. Lin, B. C. Fitzmorris, C. M. Liu, X. Lu, Y. Tong, J. Z. Zhang, Y. J. Hsu, Y. Li, Nano Lett. 2013, 13, 3817.
A. Paracchino, V. Laporte, K. Sivula, M. Gratzel, E. Thimsen, Nat. Mater. 2011, 10, 456.
S. M. Liu, S. L. Gu, S. M. Zhu, J. D. Ye, W. Liu, X. Zhou, R. Zhang, Y. Shi, Y. D. Zheng, J. Cryst. Growth 2007, 299, 303.
W. Chen, Y. Qiu, S. Yang, Phys. Chem. Chem. Phys. 2012, 14, 10872.
Y. Lin, Y. Xu, M. T. Mayer, Z. I. Simpson, G. McMahon, S. Zhou, D. Wang, J. Am. Chem. Soc. 2012, 134, 5508.
Z. Liu, Y. Wang, B. Wang, Y. Li, Z. Liu, J. Han, K. Guo, Y. Li, T. Cui, L. Han, C. Liu, G. Li, Int. J. Hydrogen Energy 2013, 38, 10226.
N. Chouhan, C. L. Yeh, S. F. Hu, R. S. Liu, W. S. Chang, K. H. Chen, Chem. Commun. 2011, 47, 3493.
M. Shao, F. Ning, M. Wei, D. G. Evans, X. Duan, Adv. Funct. Mater. 2014, 24, 580.
W. Han, L. Ren, X. Qi, Y. Liu, X. Wei, Z. Huang, J. Zhong, Appl. Surf. Sci. 2014, 299, 12.
M. Law, L. E. Greene, J. C. Johnson, R. Saykally, P. Yang, Nat. Mater. 2005, 4, 455.
Z. Bai, X. Yan, Z. Kang, Y. Hu, X. Zhang, Y. Zhang, Nano Energy 2015, 14, 392.
X. Zhang, Y. Liu, Z. Kang, ACS Appl. Mater. Interfaces 2014, 6, 4480.
Y. Zhang, X. Yan, Y. Yang, Y. Huang, Q. Liao, J. Qi, Adv. Mater. 2012, 24, 4647.
Y. Tachibana, L. Vayssieres, J. R. Durrant, Nat. Photonics 2012, 6, 511.
Y. Tak, S. J. Hong, J. S. Lee, K. Yong, J. Mater. Chem. 2009, 19, 5945.
H. G. Yang, G. Liu, S. Z. Qiao, C. H. Sun, Y. G. Jin, S. C. Smith, J. Zou, H. M. Cheng, G. Q. Lu, J. Am. Chem. Soc. 2009, 131, 4078.
Y. Bu, Z. Chen, W. Li, J. Yu, ACS Appl. Mater. Interfaces 2013, 5, 5097.
S. F. Leung, M. Yu, Q. Lin, K. Kwon, K. L. Ching, L. Gu, K. Yu, Z. Fan, Nano Lett. 2012, 12, 3682.
Y. Dai, C. M. Cobley, J. Zeng, Y. Sun, Y. Xia, Nano Lett. 2009, 9, 2455.
H. Dotan, K. Sivula, M. Grätzel, A. Rothschild, S. C. Warren, Energy Environ. Sci. 2011, 4, 958.
I. S. Cho, M. Logar, C. H. Lee, L. Cai, F. B. Prinz, X. Zheng, Nano Lett. 2014, 14, 24.
R. Liu, X. Wang, H. Zhou, T. Wang, J. Zhang, Y. Xu, C. He, B. Wang, J. Zhang, H. Wang, Int. J. Hydrogen Energy 2013, 38, 16755.
K. Sun, Y. Jing, C. Li, X. Zhang, R. Aguinaldo, A. Kargar, K. Madsen, K. Banu, Y. Zhou, Y. Bando, Z. Liu, D. Wang, Nanoscale 2012, 4, 1515.
2010; 10
2015; 14
2013; 138–139
2013; 42
2008; 38
2014; 24
2006; 6
2011; 10
2011; 36
2012; 37
2009; 131
2011; 4
2012; 14
2013; 5
2012; 12
2014; 299
2007; 299
2014; 5
2010; 49
2012; 134
2010; 46
2013; 38
2013; 13
2005; 4
1999; 473
2009; 9
2014; 14
2009; 4
2011; 47
2012; 6
2012; 24
2009; 19
2014; 7
2012; 4
2014; 6
2010; 4
e_1_2_6_32_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_30_1
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_17_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_42_1
e_1_2_6_43_1
e_1_2_6_21_1
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_40_1
e_1_2_6_9_1
e_1_2_6_8_1
e_1_2_6_5_1
e_1_2_6_4_1
e_1_2_6_7_1
e_1_2_6_6_1
e_1_2_6_1_1
e_1_2_6_25_1
e_1_2_6_24_1
e_1_2_6_3_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_22_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_28_1
e_1_2_6_45_1
e_1_2_6_27_1
e_1_2_6_46_1
e_1_2_6_26_1
e_1_2_6_47_1
References_xml – reference: J. K. Kim, K. Shin, S. M. Cho, T.-W. Lee, J. H. Park, Energy Environ. Sci. 2011, 4, 1465.
– reference: Z. Bai, X. Yan, X. Chen, H. Liu, Y. Shen, Y. Zhang, Curr. Appl. Phys. 2013, 13, 165.
– reference: N. Chouhan, C. L. Yeh, S. F. Hu, R. S. Liu, W. S. Chang, K. H. Chen, Chem. Commun. 2011, 47, 3493.
– reference: Y. Qiu, K. Yan, H. Deng, S. Yang, Nano Lett. 2012, 12, 407.
– reference: A. Kargar, K. Sun, Y. Jing, C. Choi, H. Jeong, Y. Zhou, K. Madsen, P. Naughton, S. Jin, G. Y. Jung, D. Wang, Nano Lett. 2013, 13, 3017.
– reference: G. Wang, X. Yang, F. Qian, J. Z. Zhang, Y. Li, Nano Lett. 2010, 10, 1088.
– reference: M. Shao, F. Ning, M. Wei, D. G. Evans, X. Duan, Adv. Funct. Mater. 2014, 24, 580.
– reference: Y. Dai, C. M. Cobley, J. Zeng, Y. Sun, Y. Xia, Nano Lett. 2009, 9, 2455.
– reference: X. Wang, H. Zhu, Y. Xu, H. Wang, Y. Tao, S. Hark, X. Xiao, Q. Li, ACS Nano 2010, 4, 3302.
– reference: Y. Tak, S. J. Hong, J. S. Lee, K. Yong, J. Mater. Chem. 2009, 19, 5945.
– reference: J. Z. Zhang, MRS Bull. 2011, 36, 48.
– reference: F. Amano, D. Li, B. Ohtani, Chem. Commun. 2010, 46, 2769.
– reference: W. Han, L. Ren, X. Qi, Y. Liu, X. Wei, Z. Huang, J. Zhong, Appl. Surf. Sci. 2014, 299, 12.
– reference: I. S. Cho, M. Logar, C. H. Lee, L. Cai, F. B. Prinz, X. Zheng, Nano Lett. 2014, 14, 24.
– reference: X. Yang, A. Wolcott, G. Wang, A. Sobo, R. C. Fitzmorris, F. Qian, J. Z. Zhang, Y. Li, Nano Lett. 2009, 9, 2331.
– reference: K. Sun, Y. Jing, C. Li, X. Zhang, R. Aguinaldo, A. Kargar, K. Madsen, K. Banu, Y. Zhou, Y. Bando, Z. Liu, D. Wang, Nanoscale 2012, 4, 1515.
– reference: A. Paracchino, V. Laporte, K. Sivula, M. Gratzel, E. Thimsen, Nat. Mater. 2011, 10, 456.
– reference: F. E. Osterloh, Chem. Soc. Rev. 2013, 42, 2294.
– reference: D. J. Fermiń, E. A. Ponomarev, L. M. Peter, J. Electroanal. Chem. 1999, 473, 192.
– reference: C.-H. Hsu, D.-H. Chen, Int. J. Hydrogen Energy 2011, 36, 15538.
– reference: C. Li, T. Ahmed, M. Ma, T. Edvinsson, J. Zhu, Appl. Catal. B: Environ. 2013, 138-139, 175.
– reference: Y. Li, J. Z. Zhang, Laser Photonics Rev. 2009, 4, 517.
– reference: Y. Tak, H. Kim, D. Lee, K. Yong, Chem. Commun. 2008, 38, 4585.
– reference: Y. Lin, Y. Xu, M. T. Mayer, Z. I. Simpson, G. McMahon, S. Zhou, D. Wang, J. Am. Chem. Soc. 2012, 134, 5508.
– reference: X. Chen, Z. Bai, X. Yan, H. Yuan, G. Zhang, P. Lin, Z. Zhang, Y. Liu, Y. Zhang, Nanoscale 2014, 6, 4691.
– reference: W. Chen, Y. Qiu, S. Yang, Phys. Chem. Chem. Phys. 2012, 14, 10872.
– reference: H. G. Yang, G. Liu, S. Z. Qiao, C. H. Sun, Y. G. Jin, S. C. Smith, J. Zou, H. M. Cheng, G. Q. Lu, J. Am. Chem. Soc. 2009, 131, 4078.
– reference: Y. Tachibana, L. Vayssieres, J. R. Durrant, Nat. Photonics 2012, 6, 511.
– reference: M. Ye, J. Gong, Y. Lai, C. Lin, Z. Lin, J. Am. Chem. Soc. 2012, 134, 15720.
– reference: R. Liu, X. Wang, H. Zhou, T. Wang, J. Zhang, Y. Xu, C. He, B. Wang, J. Zhang, H. Wang, Int. J. Hydrogen Energy 2013, 38, 16755.
– reference: Y. C. Pu, G. Wang, K. D. Chang, Y. Ling, Y. K. Lin, B. C. Fitzmorris, C. M. Liu, X. Lu, Y. Tong, J. Z. Zhang, Y. J. Hsu, Y. Li, Nano Lett. 2013, 13, 3817.
– reference: Y. Zhang, X. Yan, Y. Yang, Y. Huang, Q. Liao, J. Qi, Adv. Mater. 2012, 24, 4647.
– reference: Z. Bian, T. Tachikawa, P. Zhang, M. Fujitsuka, T. Majima, Nat. Commun. 2014, 5, 3038.
– reference: Z. Liu, Y. Wang, B. Wang, Y. Li, Z. Liu, J. Han, K. Guo, Y. Li, T. Cui, L. Han, C. Liu, G. Li, Int. J. Hydrogen Energy 2013, 38, 10226.
– reference: J. Hou, C. Yang, H. Cheng, S. Jiao, O. Takeda, H. Zhu, Energy Environ. Sci. 2014, 73758.
– reference: H. M. Chen, C. K. Chen, Y. C. Chang, C. W. Tsai, R. S. Liu, S. F. Hu, W. S. Chang, K. H. Chen, Angew. Chem. 2010, 49, 5966.
– reference: Y. Bu, Z. Chen, W. Li, J. Yu, ACS Appl. Mater. Interfaces 2013, 5, 5097.
– reference: Y. Bu, Z. Chen, W. Li, B. Hou, ACS Appl. Mater. Interfaces 2013, 5, 12361.
– reference: E. Hendry, M. Koeberg, B. O'Regan, M. Bonn, Nano Lett. 2006, 6, 755.
– reference: X. Zhang, Y. Liu, Z. Kang, ACS Appl. Mater. Interfaces 2014, 6, 4480.
– reference: Y. Li, Z. Liu, Y. Wang, Z. Liu, J. Han, J. Ya, Int. J. Hydrogen Energy 2012, 37, 15029.
– reference: S. M. Liu, S. L. Gu, S. M. Zhu, J. D. Ye, W. Liu, X. Zhou, R. Zhang, Y. Shi, Y. D. Zheng, J. Cryst. Growth 2007, 299, 303.
– reference: S. F. Leung, M. Yu, Q. Lin, K. Kwon, K. L. Ching, L. Gu, K. Yu, Z. Fan, Nano Lett. 2012, 12, 3682.
– reference: H. Dotan, K. Sivula, M. Grätzel, A. Rothschild, S. C. Warren, Energy Environ. Sci. 2011, 4, 958.
– reference: Y. G. Lin, Y. K. Hsu, Y. C. Chen, L. C. Chen, S. Y. Chen, K. H. Chen, Nanoscale 2012, 4, 6515.
– reference: M. Law, L. E. Greene, J. C. Johnson, R. Saykally, P. Yang, Nat. Mater. 2005, 4, 455.
– reference: Z. Bai, X. Yan, Z. Kang, Y. Hu, X. Zhang, Y. Zhang, Nano Energy 2015, 14, 392.
– volume: 4
  start-page: 3302
  year: 2010
  publication-title: ACS Nano
– volume: 131
  start-page: 4078
  year: 2009
  publication-title: J. Am. Chem. Soc.
– volume: 36
  start-page: 48
  year: 2011
  publication-title: MRS Bull.
– volume: 14
  start-page: 10872
  year: 2012
  publication-title: Phys. Chem. Chem. Phys.
– volume: 134
  start-page: 15720
  year: 2012
  publication-title: J. Am. Chem. Soc.
– volume: 14
  start-page: 24
  year: 2014
  publication-title: Nano Lett.
– volume: 10
  start-page: 456
  year: 2011
  publication-title: Nat. Mater.
– volume: 5
  start-page: 5097
  year: 2013
  publication-title: ACS Appl. Mater. Interfaces
– volume: 13
  start-page: 165
  year: 2013
  publication-title: Curr. Appl. Phys.
– volume: 19
  start-page: 5945
  year: 2009
  publication-title: J. Mater. Chem.
– volume: 12
  start-page: 407
  year: 2012
  publication-title: Nano Lett.
– volume: 5
  start-page: 3038
  year: 2014
  publication-title: Nat. Commun.
– volume: 49
  start-page: 5966
  year: 2010
  publication-title: Angew. Chem.
– volume: 299
  start-page: 303
  year: 2007
  publication-title: J. Cryst. Growth
– volume: 9
  start-page: 2455
  year: 2009
  publication-title: Nano Lett.
– volume: 24
  start-page: 580
  year: 2014
  publication-title: Adv. Funct. Mater.
– volume: 37
  start-page: 15029
  year: 2012
  publication-title: Int. J. Hydrogen Energy
– volume: 10
  start-page: 1088
  year: 2010
  publication-title: Nano Lett.
– volume: 24
  start-page: 4647
  year: 2012
  publication-title: Adv. Mater.
– volume: 299
  start-page: 12
  year: 2014
  publication-title: Appl. Surf. Sci.
– volume: 6
  start-page: 511
  year: 2012
  publication-title: Nat. Photonics
– volume: 4
  start-page: 1515
  year: 2012
  publication-title: Nanoscale
– volume: 38
  start-page: 10226
  year: 2013
  publication-title: Int. J. Hydrogen Energy
– volume: 473
  start-page: 192
  year: 1999
  publication-title: J. Electroanal. Chem.
– volume: 38
  start-page: 4585
  year: 2008
  publication-title: Chem. Commun.
– volume: 12
  start-page: 3682
  year: 2012
  publication-title: Nano Lett.
– volume: 5
  start-page: 12361
  year: 2013
  publication-title: ACS Appl. Mater. Interfaces
– volume: 13
  start-page: 3017
  year: 2013
  publication-title: Nano Lett.
– volume: 6
  start-page: 755
  year: 2006
  publication-title: Nano Lett.
– volume: 6
  start-page: 4691
  year: 2014
  publication-title: Nanoscale
– volume: 138–139
  start-page: 175
  year: 2013
  publication-title: Appl. Catal. B: Environ.
– volume: 46
  start-page: 2769
  year: 2010
  publication-title: Chem. Commun.
– volume: 36
  start-page: 15538
  year: 2011
  publication-title: Int. J. Hydrogen Energy
– volume: 4
  start-page: 517
  year: 2009
  publication-title: Laser Photonics Rev.
– volume: 9
  start-page: 2331
  year: 2009
  publication-title: Nano Lett.
– volume: 13
  start-page: 3817
  year: 2013
  publication-title: Nano Lett.
– volume: 47
  start-page: 3493
  year: 2011
  publication-title: Chem. Commun.
– volume: 38
  start-page: 16755
  year: 2013
  publication-title: Int. J. Hydrogen Energy
– volume: 4
  start-page: 958
  year: 2011
  publication-title: Energy Environ. Sci.
– volume: 134
  start-page: 5508
  year: 2012
  publication-title: J. Am. Chem. Soc.
– volume: 4
  start-page: 455
  year: 2005
  publication-title: Nat. Mater.
– volume: 6
  start-page: 4480
  year: 2014
  publication-title: ACS Appl. Mater. Interfaces
– volume: 14
  start-page: 392
  year: 2015
  publication-title: Nano Energy
– volume: 7
  start-page: 3758
  year: 2014
  publication-title: Energy Environ. Sci.
– volume: 4
  start-page: 6515
  year: 2012
  publication-title: Nanoscale
– volume: 42
  start-page: 2294
  year: 2013
  publication-title: Chem. Soc. Rev.
– volume: 4
  start-page: 1465
  year: 2011
  publication-title: Energy Environ. Sci.
– ident: e_1_2_6_18_1
  doi: 10.1038/nmat1387
– ident: e_1_2_6_14_1
  doi: 10.1021/nl4018385
– ident: e_1_2_6_46_1
  doi: 10.1039/C4NR00137K
– ident: e_1_2_6_17_1
  doi: 10.1021/am403149g
– ident: e_1_2_6_21_1
  doi: 10.1002/adma.201104382
– ident: e_1_2_6_34_1
  doi: 10.1016/j.apsusc.2014.01.170
– ident: e_1_2_6_38_1
  doi: 10.1038/nmat3017
– ident: e_1_2_6_39_1
  doi: 10.1016/j.jcrysgro.2006.12.011
– ident: e_1_2_6_44_1
  doi: 10.1021/nl901181n
– ident: e_1_2_6_16_1
  doi: 10.1002/anie.201001827
– ident: e_1_2_6_1_1
  doi: 10.1039/C2CS35266D
– ident: e_1_2_6_7_1
  doi: 10.1039/C0EE00570C
– ident: e_1_2_6_32_1
  doi: 10.1016/j.apcatb.2013.02.042
– ident: e_1_2_6_6_1
  doi: 10.1021/nl100250z
– ident: e_1_2_6_25_1
  doi: 10.1021/am500234v
– ident: e_1_2_6_47_1
  doi: 10.1039/b904993b
– ident: e_1_2_6_20_1
  doi: 10.1016/j.cap.2012.07.005
– ident: e_1_2_6_28_1
  doi: 10.1039/c2nr31800h
– ident: e_1_2_6_22_1
  doi: 10.1039/c2cp41272a
– ident: e_1_2_6_31_1
  doi: 10.1021/nn1001547
– ident: e_1_2_6_24_1
  doi: 10.1021/nl304539x
– ident: e_1_2_6_19_1
  doi: 10.1021/nl0600225
– ident: e_1_2_6_12_1
  doi: 10.1039/C4EE02403F
– ident: e_1_2_6_15_1
  doi: 10.1002/adfm.201301889
– ident: e_1_2_6_13_1
  doi: 10.1021/nl4026902
– ident: e_1_2_6_33_1
  doi: 10.1016/j.ijhydene.2013.06.028
– ident: e_1_2_6_8_1
  doi: 10.1021/ja300319g
– ident: e_1_2_6_37_1
  doi: 10.1021/am400964c
– ident: e_1_2_6_2_1
  doi: 10.1038/nphoton.2012.175
– ident: e_1_2_6_23_1
  doi: 10.1039/c2nr11952h
– ident: e_1_2_6_29_1
  doi: 10.1039/c0cc05548d
– ident: e_1_2_6_26_1
  doi: 10.1021/nl2037326
– ident: e_1_2_6_30_1
  doi: 10.1016/j.ijhydene.2012.07.117
– ident: e_1_2_6_3_1
  doi: 10.1002/lpor.200910025
– ident: e_1_2_6_9_1
  doi: 10.1039/c0ee00469c
– ident: e_1_2_6_27_1
  doi: 10.1016/j.ijhydene.2011.09.046
– ident: e_1_2_6_41_1
  doi: 10.1039/b810388g
– ident: e_1_2_6_42_1
  doi: 10.1021/nl3014567
– ident: e_1_2_6_45_1
  doi: 10.1021/ja808790p
– ident: e_1_2_6_36_1
  doi: 10.1021/ja307449z
– ident: e_1_2_6_40_1
  doi: 10.1016/j.nanoen.2014.09.005
– ident: e_1_2_6_43_1
  doi: 10.1016/S0022-0728(99)00109-6
– ident: e_1_2_6_11_1
  doi: 10.1038/ncomms4038
– ident: e_1_2_6_4_1
  doi: 10.1557/mrs.2010.9
– ident: e_1_2_6_5_1
  doi: 10.1021/nl900772q
– ident: e_1_2_6_10_1
  doi: 10.1039/b926931b
– ident: e_1_2_6_35_1
  doi: 10.1016/j.ijhydene.2013.05.009
SSID ssj0000491033
Score 2.5520227
Snippet Modulation of broadband light trapping through assembly of 3D structures and modification with narrow band‐gap semiconductors provide an effective way to...
Modulation of broadband light trapping through assembly of 3D structures and modification with narrow band-gap semiconductors provide an effective way to...
SourceID proquest
crossref
wiley
istex
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage np
SubjectTerms 3D structures
Arrays
Broadband
Cadmium sulfide
Catalytic activity
Chemical synthesis
Deposition
Nanoparticles
Nanowires
photoanodes
Photocatalysis
Photovoltaic cells
Semiconductors
service safety
Solar energy
Three dimensional
Three dimensional composites
Titanium dioxide
Titanium oxides
Trapping
Water splitting
Zinc oxide
Title 3D-Branched ZnO/CdS Nanowire Arrays for Solar Water Splitting and the Service Safety Research
URI https://api.istex.fr/ark:/67375/WNG-G5JSZH84-K/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faenm.201501459
https://www.proquest.com/docview/1762674832
https://www.proquest.com/docview/1945210271
https://www.proquest.com/docview/1800475052
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELagvcAB8RSFBRkJwaEKGyd2kxwL291qH91DWm2phCwndrYrIIHSSsCvZ-zESSoVWLhErW0lqefzdGY8_gahl4OEpiSMXIf5XuDQVAgn8Zl0QC-KjARukKUmy3cyGM_o8ZzNmx18c7pknbxJf-48V_I_UoU2kKs-JfsPkq1vCg3wGeQLV5AwXK8lY__AeasLYyzBalzk55rrVsZaYRaagbg_XK3ED8O30I-1B9u_EJoSMQa7s8x2ttmTlcLoxyJTxihvhbgsQ63NFVDlYcHP-lb6FzahUJMXsFjqMmGXtTIp46vzK1F8vWqyf8zQ90Uz7qQKWy-Wm6IdiCB17vK11V1LzYJR4AzCKrKp2m0leZPVzYMWBP2dGr9kkBUq17QCxOySRs1_m93Pn5zzw9npKZ-O5tObqOuBT-F1UHd4cHYa1yE5cJaI65sjGfb9LM2n6-1vP2LLjOnqFfl9y0dpezrGVJneRXcqHwMPS8DcQzdUfh_dbjFPPkAfWtDBAJ19AA62wMElcDAABxvgYAMcXAMHA3AwAAdXU49L4GALnIdodjiavhs7VaUNJ6WhFznUTzLpMpW5XhapLATDSfrQQTKWEpaERAWBkrCSExfWtisTsGhgsghNfSXB5fYfoU5e5OoxwkFCB0RFUoaMUsqyKBGCSMlcSmSgsrSHHDtxPK1o6HU1lE-8JND2uJ5oXk90D72ux38pCVh-O_KVkUM9TKw-6rTFgPGLyRE_YsfxYhxSftJDe1ZQvFrN3zgBq0AX3vG93d0RZTo6EpAeelF3gyrW-2siV8UGxoSae1VXhuwhz8j_L2_Mh6PJWf3tyZ-f-xTdalbdHuqsVxv1DAzidfK8AvIvMjSywg
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=3D-Branched+ZnO%2FCdS+Nanowire+Arrays+for+Solar+Water+Splitting+and+the+Service+Safety+Research&rft.jtitle=Advanced+energy+materials&rft.au=Bai%2C+Zhiming&rft.au=Yan%2C+Xiaoqin&rft.au=Li%2C+Yong&rft.au=Kang%2C+Zhuo&rft.date=2016-02-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1614-6832&rft.eissn=1614-6840&rft.volume=6&rft.issue=3&rft_id=info:doi/10.1002%2Faenm.201501459&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1614-6832&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1614-6832&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1614-6832&client=summon