Magnetoencephalographic gamma power reduction in patients with schizophrenia during resting condition

Objective: The “default network” represents a baseline condition of brain function and is of interest in schizophrenia research because its component brain regions are believed to be aberrant in the disorder. We hypothesized that magnetoencephalographic (MEG) source localization analysis would revea...

Full description

Saved in:
Bibliographic Details
Published inHuman brain mapping Vol. 30; no. 10; pp. 3254 - 3264
Main Authors Rutter, Lindsay, Carver, Frederick W., Holroyd, Tom, Nadar, Sreenivasan Rajamoni, Mitchell-Francis, Judy, Apud, Jose, Weinberger, Daniel R., Coppola, Richard
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc., A Wiley Company 01.10.2009
Wiley-Liss
Subjects
Online AccessGet full text
ISSN1065-9471
1097-0193
1097-0193
DOI10.1002/hbm.20746

Cover

Abstract Objective: The “default network” represents a baseline condition of brain function and is of interest in schizophrenia research because its component brain regions are believed to be aberrant in the disorder. We hypothesized that magnetoencephalographic (MEG) source localization analysis would reveal abnormal resting activity within particular frequency bands in schizophrenia. Experimental Design: Eyes‐closed resting state MEG signals were collected for two comparison groups. Patients with schizophrenia (N = 38) were age‐gender matched with healthy control subjects (N = 38), and with a group of unmedicated unaffected siblings of patients with schizophrenia (N = 38). To localize 3D‐brain regional differences, synthetic aperture magnetometry was calculated across established frequency bands as follows: delta (0.9–4 Hz), theta (4–8 Hz), alpha (8–14 Hz), beta (14–30 Hz), gamma (30–80 Hz), and super‐gamma (80–150 Hz). Principle Observations: Patients with schizophrenia showed significantly reduced activation in the gamma frequency band in the posterior region of the medial parietal cortex. As a group, unaffected siblings of schizophrenia patients also showed significantly reduced activation in the gamma bandwidth across similar brain regions. Moreover, using the significant region for the patients and examining the gamma band power gave an odds ratio of 6:1 for reductions of two standard deviations from the mean. This suggests that the measure might be the basis of an intermediate phenotype. Conclusions: MEG resting state analysis adds to the evidence that schizophrenic patients experience this condition very differently than healthy controls. Whether this baseline difference relates to network abnormalities remains to be seen. Hum Brain Mapp, 2009. © 2009 Wiley‐Liss, Inc.
AbstractList The "default network" represents a baseline condition of brain function and is of interest in schizophrenia research because its component brain regions are believed to be aberrant in the disorder. We hypothesized that magnetoencephalographic (MEG) source localization analysis would reveal abnormal resting activity within particular frequency bands in schizophrenia. Eyes-closed resting state MEG signals were collected for two comparison groups. Patients with schizophrenia (N = 38) were age-gender matched with healthy control subjects (N = 38), and with a group of unmedicated unaffected siblings of patients with schizophrenia (N = 38). To localize 3D-brain regional differences, synthetic aperture magnetometry was calculated across established frequency bands as follows: delta (0.9-4 Hz), theta (4-8 Hz), alpha (8-14 Hz), beta (14-30 Hz), gamma (30-80 Hz), and super-gamma (80-150 Hz). PRINCIPLE OBSERVATIONS: Patients with schizophrenia showed significantly reduced activation in the gamma frequency band in the posterior region of the medial parietal cortex. As a group, unaffected siblings of schizophrenia patients also showed significantly reduced activation in the gamma bandwidth across similar brain regions. Moreover, using the significant region for the patients and examining the gamma band power gave an odds ratio of 6:1 for reductions of two standard deviations from the mean. This suggests that the measure might be the basis of an intermediate phenotype. MEG resting state analysis adds to the evidence that schizophrenic patients experience this condition very differently than healthy controls. Whether this baseline difference relates to network abnormalities remains to be seen.
Objective: The “default network” represents a baseline condition of brain function and is of interest in schizophrenia research because its component brain regions are believed to be aberrant in the disorder. We hypothesized that magnetoencephalographic (MEG) source localization analysis would reveal abnormal resting activity within particular frequency bands in schizophrenia. Experimental Design: Eyes‐closed resting state MEG signals were collected for two comparison groups. Patients with schizophrenia (N = 38) were age‐gender matched with healthy control subjects (N = 38), and with a group of unmedicated unaffected siblings of patients with schizophrenia (N = 38). To localize 3D‐brain regional differences, synthetic aperture magnetometry was calculated across established frequency bands as follows: delta (0.9–4 Hz), theta (4–8 Hz), alpha (8–14 Hz), beta (14–30 Hz), gamma (30–80 Hz), and super‐gamma (80–150 Hz). Principle Observations: Patients with schizophrenia showed significantly reduced activation in the gamma frequency band in the posterior region of the medial parietal cortex. As a group, unaffected siblings of schizophrenia patients also showed significantly reduced activation in the gamma bandwidth across similar brain regions. Moreover, using the significant region for the patients and examining the gamma band power gave an odds ratio of 6:1 for reductions of two standard deviations from the mean. This suggests that the measure might be the basis of an intermediate phenotype. Conclusions: MEG resting state analysis adds to the evidence that schizophrenic patients experience this condition very differently than healthy controls. Whether this baseline difference relates to network abnormalities remains to be seen. Hum Brain Mapp, 2009. © 2009 Wiley‐Liss, Inc.
Objective: The “default network” represents a baseline condition of brain function and is of interest in schizophrenia research because its component brain regions are believed to be aberrant in the disorder. We hypothesized that magnetoencephalographic (MEG) source localization analysis would reveal abnormal resting activity within particular frequency bands in schizophrenia. Experimental Design: Eyes‐closed resting state MEG signals were collected for two comparison groups. Patients with schizophrenia ( N = 38) were age‐gender matched with healthy control subjects ( N = 38), and with a group of unmedicated unaffected siblings of patients with schizophrenia ( N = 38). To localize 3D‐brain regional differences, synthetic aperture magnetometry was calculated across established frequency bands as follows: delta (0.9–4 Hz), theta (4–8 Hz), alpha (8–14 Hz), beta (14–30 Hz), gamma (30–80 Hz), and super‐gamma (80–150 Hz). Principle Observations: Patients with schizophrenia showed significantly reduced activation in the gamma frequency band in the posterior region of the medial parietal cortex. As a group, unaffected siblings of schizophrenia patients also showed significantly reduced activation in the gamma bandwidth across similar brain regions. Moreover, using the significant region for the patients and examining the gamma band power gave an odds ratio of 6:1 for reductions of two standard deviations from the mean. This suggests that the measure might be the basis of an intermediate phenotype. Conclusions: MEG resting state analysis adds to the evidence that schizophrenic patients experience this condition very differently than healthy controls. Whether this baseline difference relates to network abnormalities remains to be seen. Hum Brain Mapp, 2009. © 2009 Wiley‐Liss, Inc.
The "default network" represents a baseline condition of brain function and is of interest in schizophrenia research because its component brain regions are believed to be aberrant in the disorder. We hypothesized that magnetoencephalographic (MEG) source localization analysis would reveal abnormal resting activity within particular frequency bands in schizophrenia.OBJECTIVEThe "default network" represents a baseline condition of brain function and is of interest in schizophrenia research because its component brain regions are believed to be aberrant in the disorder. We hypothesized that magnetoencephalographic (MEG) source localization analysis would reveal abnormal resting activity within particular frequency bands in schizophrenia.Eyes-closed resting state MEG signals were collected for two comparison groups. Patients with schizophrenia (N = 38) were age-gender matched with healthy control subjects (N = 38), and with a group of unmedicated unaffected siblings of patients with schizophrenia (N = 38). To localize 3D-brain regional differences, synthetic aperture magnetometry was calculated across established frequency bands as follows: delta (0.9-4 Hz), theta (4-8 Hz), alpha (8-14 Hz), beta (14-30 Hz), gamma (30-80 Hz), and super-gamma (80-150 Hz). PRINCIPLE OBSERVATIONS: Patients with schizophrenia showed significantly reduced activation in the gamma frequency band in the posterior region of the medial parietal cortex. As a group, unaffected siblings of schizophrenia patients also showed significantly reduced activation in the gamma bandwidth across similar brain regions. Moreover, using the significant region for the patients and examining the gamma band power gave an odds ratio of 6:1 for reductions of two standard deviations from the mean. This suggests that the measure might be the basis of an intermediate phenotype.EXPERIMENTAL DESIGNEyes-closed resting state MEG signals were collected for two comparison groups. Patients with schizophrenia (N = 38) were age-gender matched with healthy control subjects (N = 38), and with a group of unmedicated unaffected siblings of patients with schizophrenia (N = 38). To localize 3D-brain regional differences, synthetic aperture magnetometry was calculated across established frequency bands as follows: delta (0.9-4 Hz), theta (4-8 Hz), alpha (8-14 Hz), beta (14-30 Hz), gamma (30-80 Hz), and super-gamma (80-150 Hz). PRINCIPLE OBSERVATIONS: Patients with schizophrenia showed significantly reduced activation in the gamma frequency band in the posterior region of the medial parietal cortex. As a group, unaffected siblings of schizophrenia patients also showed significantly reduced activation in the gamma bandwidth across similar brain regions. Moreover, using the significant region for the patients and examining the gamma band power gave an odds ratio of 6:1 for reductions of two standard deviations from the mean. This suggests that the measure might be the basis of an intermediate phenotype.MEG resting state analysis adds to the evidence that schizophrenic patients experience this condition very differently than healthy controls. Whether this baseline difference relates to network abnormalities remains to be seen.CONCLUSIONSMEG resting state analysis adds to the evidence that schizophrenic patients experience this condition very differently than healthy controls. Whether this baseline difference relates to network abnormalities remains to be seen.
Author Coppola, Richard
Apud, Jose
Rutter, Lindsay
Holroyd, Tom
Carver, Frederick W.
Nadar, Sreenivasan Rajamoni
Mitchell-Francis, Judy
Weinberger, Daniel R.
AuthorAffiliation 2 Clinical Brain Disorders Branch, NIMH, Bethesda, Maryland
1 MEG Core Facility, National Institute of Mental Health, Bethesda, Maryland
AuthorAffiliation_xml – name: 2 Clinical Brain Disorders Branch, NIMH, Bethesda, Maryland
– name: 1 MEG Core Facility, National Institute of Mental Health, Bethesda, Maryland
Author_xml – sequence: 1
  givenname: Lindsay
  surname: Rutter
  fullname: Rutter, Lindsay
  organization: MEG Core Facility, National Institute of Mental Health, Bethesda, Maryland
– sequence: 2
  givenname: Frederick W.
  surname: Carver
  fullname: Carver, Frederick W.
  organization: MEG Core Facility, National Institute of Mental Health, Bethesda, Maryland
– sequence: 3
  givenname: Tom
  surname: Holroyd
  fullname: Holroyd, Tom
  organization: MEG Core Facility, National Institute of Mental Health, Bethesda, Maryland
– sequence: 4
  givenname: Sreenivasan Rajamoni
  surname: Nadar
  fullname: Nadar, Sreenivasan Rajamoni
  organization: MEG Core Facility, National Institute of Mental Health, Bethesda, Maryland
– sequence: 5
  givenname: Judy
  surname: Mitchell-Francis
  fullname: Mitchell-Francis, Judy
  organization: MEG Core Facility, National Institute of Mental Health, Bethesda, Maryland
– sequence: 6
  givenname: Jose
  surname: Apud
  fullname: Apud, Jose
  organization: Clinical Brain Disorders Branch, NIMH, Bethesda, Maryland
– sequence: 7
  givenname: Daniel R.
  surname: Weinberger
  fullname: Weinberger, Daniel R.
  organization: Clinical Brain Disorders Branch, NIMH, Bethesda, Maryland
– sequence: 8
  givenname: Richard
  surname: Coppola
  fullname: Coppola, Richard
  email: coppolar@mail.nih.gov
  organization: MEG Core Facility, National Institute of Mental Health, Bethesda, Maryland
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21985476$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/19288463$$D View this record in MEDLINE/PubMed
BookMark eNp9kUtv1DAUhSNURB-w4A-gbBBikdav2PEGqUyhRW1BSCDYWXccZ2JI7GAnDOXX4zDT4SHB6lryd859nMNsz3lnsuwhRscYIXLSLvtjggTjd7IDjKQoEJZ0b37zspBM4P3sMMZPCGFcInwv28eSVBXj9CAz17ByZvTGaTO00PlVgKG1Ol9B30M--LUJeTD1pEfrXW5dPsBojRtjvrZjm0fd2u9-aINxFvJ6CtatEh_HuWrvajvr7md3G-iiebCtR9n7ly_eLS6KqzfnrxanV4VmFeFFTURJiNRLjgAhLjmpSmRMQ4EjyUog2DSoqTiUTCKgJeOC4kpgTKQggCg9yp5tfIdp2ZtapzkDdGoItodwozxY9eePs61a-a-KCFZhxpLBk61B8F-mtIbqbdSm68AZP0UlKENpRI4T-ej3Vrset6dNwOMtAFFD1wRw2sYdR7CsSiZ44p5uOB18jME0v6yQmuNVKV71M97EnvzFajvCfOG0je3-p1jbztz821pdPL--VRQbhY2j-bZTQPis0rlFqT68PldvL8_O6OVHphb0B_DpxjI
CitedBy_id crossref_primary_10_3348_kjr_2012_13_3_265
crossref_primary_10_1038_s41537_025_00596_z
crossref_primary_10_1111_nyas_12745
crossref_primary_10_1016_j_neubiorev_2015_04_014
crossref_primary_10_1016_j_neuroscience_2014_12_050
crossref_primary_10_1093_cercor_bhy344
crossref_primary_10_1016_j_psychres_2012_09_006
crossref_primary_10_3389_fnins_2014_00168
crossref_primary_10_1016_j_tins_2017_04_003
crossref_primary_10_1038_mp_2013_49
crossref_primary_10_3390_life14050578
crossref_primary_10_1016_j_schres_2020_03_066
crossref_primary_10_1097_YCO_0b013e328338621d
crossref_primary_10_3389_fphar_2016_00348
crossref_primary_10_1186_1752_0509_7_30
crossref_primary_10_1016_j_biopsych_2012_03_029
crossref_primary_10_1038_npp_2014_228
crossref_primary_10_4236_jbbs_2015_51001
crossref_primary_10_1152_jn_00590_2018
crossref_primary_10_1016_j_biopsych_2015_07_005
crossref_primary_10_1016_j_neuroimage_2018_10_056
crossref_primary_10_1186_1471_2202_15_104
crossref_primary_10_1016_j_schres_2010_11_009
crossref_primary_10_1016_j_brainres_2011_06_065
crossref_primary_10_1016_j_conb_2012_11_004
crossref_primary_10_1017_S0033291712002103
crossref_primary_10_3389_fpsyt_2024_1358726
crossref_primary_10_1177_0269881114562093
crossref_primary_10_1016_j_neubiorev_2018_09_004
crossref_primary_10_1016_j_neuroimage_2012_03_010
crossref_primary_10_1016_j_plrev_2025_03_008
crossref_primary_10_1016_j_neuroscience_2014_02_038
crossref_primary_10_1371_journal_pone_0029341
crossref_primary_10_18632_aging_103956
crossref_primary_10_2174_2666082216999201209130117
crossref_primary_10_3389_fnins_2018_00365
crossref_primary_10_1093_schbul_sbu121
crossref_primary_10_1111_eip_12327
crossref_primary_10_1177_0269881114565805
crossref_primary_10_1016_j_biopsych_2014_11_019
crossref_primary_10_1027_0269_8803_a000153
crossref_primary_10_1093_schbul_sbv051
crossref_primary_10_1371_journal_pone_0039051
crossref_primary_10_3389_fnins_2021_810431
crossref_primary_10_1016_j_clinph_2017_06_246
crossref_primary_10_1016_j_neuropharm_2011_02_007
crossref_primary_10_1016_j_conb_2014_08_009
crossref_primary_10_1093_schbul_sbae090
crossref_primary_10_1152_jn_00061_2017
crossref_primary_10_1016_j_bbr_2013_12_031
crossref_primary_10_1038_s41598_020_60702_2
crossref_primary_10_1016_j_schres_2019_10_023
crossref_primary_10_1016_j_neubiorev_2021_02_005
crossref_primary_10_1016_j_biopsych_2011_06_029
crossref_primary_10_1002_mp_16406
crossref_primary_10_17116_jnevro20151151166_74
crossref_primary_10_3390_brainsci11070910
crossref_primary_10_1038_s41537_020_00109_0
crossref_primary_10_4306_pi_2014_11_4_467
crossref_primary_10_1007_s00406_018_0889_z
crossref_primary_10_1093_schbul_sbz066
crossref_primary_10_3389_fpsyt_2020_00863
crossref_primary_10_1038_nrn2774
crossref_primary_10_3389_fncir_2024_1286111
crossref_primary_10_1097_WNP_0b013e3182121843
crossref_primary_10_1097_HRP_0000000000000110
crossref_primary_10_1016_j_neubiorev_2018_04_006
crossref_primary_10_1016_j_schres_2011_06_003
crossref_primary_10_1111_ejn_13800
crossref_primary_10_3389_fphar_2017_00399
crossref_primary_10_1093_schbul_sbac178
crossref_primary_10_31887_DCNS_2013_15_3_puhlhaas
crossref_primary_10_1016_j_neuroscience_2015_11_011
crossref_primary_10_1016_j_clinph_2014_12_031
crossref_primary_10_1097_WNR_0000000000001350
crossref_primary_10_7554_eLife_37799
crossref_primary_10_1136_gpsych_2021_100712
crossref_primary_10_1016_j_chaos_2013_05_001
Cites_doi 10.1176/ajp.2007.164.3.450
10.1073/pnas.1831638100
10.1017/S0033291702006335
10.1006/meth.2001.1238
10.1073/pnas.0504136102
10.1016/S0140-6736(95)91441-2
10.1126/science.1099745
10.1002/hbm.20160
10.1016/j.clinph.2006.06.720
10.1001/archpsyc.1992.01820120063009
10.1073/pnas.0135058100
10.1016/j.schres.2006.12.027
10.1073/pnas.98.2.676
10.1016/0028-3932(71)90067-4
10.1162/089892903770007416
10.1016/S0920-9964(97)00037-6
10.1038/nn1727
10.1093/brain/awl004
10.1192/bjp.187.3.221
10.1006/cbmr.1996.0014
10.1093/brain/awh166
10.1001/archpsyc.60.11.1158
10.1097/01.wnr.0000198434.06518.b8
10.1093/schbul/sbm052
10.1016/S0361-9230(00)00437-8
10.1002/9780470987353.ch10
10.1109/10.930901
10.1016/j.schres.2007.05.029
10.1073/pnas.0308627101
10.1016/j.brainresbull.2006.06.012
10.1038/35094500
10.1016/j.neulet.2007.02.081
10.1016/S0006-3223(96)00263-6
10.1002/ana.410420114
10.1016/j.schres.2003.09.008
10.1162/0898929042568532
10.1001/archpsyc.56.7.639
10.1093/brain/awn018
10.1016/j.neuroimage.2006.05.033
10.1212/WNL.50.6.1563
10.1162/089892903321593117
10.1001/archpsyc.57.9.907
10.1088/1741-2560/4/4/001
10.1016/j.neuroimage.2006.09.013
10.1016/S0006-3223(98)00264-9
10.1016/j.schres.2004.02.011
10.1073/pnas.071043098
10.1001/archpsyc.58.12.1118
10.1016/j.biopsych.2004.09.013
10.1191/0962280203sm341ra
10.1006/nimg.2001.1037
10.1016/S0959-4388(00)00068-4
10.1097/00001756-200005150-00029
10.1176/appi.ajp.157.8.1309
10.1016/j.biopsych.2005.03.043
10.1162/jocn.1997.9.5.648
10.1006/nimg.2001.1050
ContentType Journal Article
Copyright Copyright © 2009 Wiley‐Liss, Inc.
2009 INIST-CNRS
Copyright_xml – notice: Copyright © 2009 Wiley‐Liss, Inc.
– notice: 2009 INIST-CNRS
DBID BSCLL
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1002/hbm.20746
DatabaseName Istex
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE

CrossRef

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
DocumentTitleAlternate Magnetoencephalographic Gamma Power Reduction
EISSN 1097-0193
EndPage 3264
ExternalDocumentID PMC2748144
19288463
21985476
10_1002_hbm_20746
HBM20746
ark_67375_WNG_QKDD3KX4_C
Genre article
Journal Article
Research Support, N.I.H., Intramural
GrantInformation_xml – fundername: NIMH Intramural Research Program
– fundername: Intramural NIH HHS
  grantid: Z01 MH002889
– fundername: Intramural NIH HHS
  grantid: Z01 MH002890
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
702
7PT
7X7
8-0
8-1
8-3
8-4
8-5
8FI
8FJ
8UM
930
A03
AAESR
AAEVG
AAHHS
AAONW
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABIVO
ABJNI
ABPVW
ABUWG
ACBWZ
ACCFJ
ACGFS
ACIWK
ACPOU
ACPRK
ACSCC
ACXQS
ADBBV
ADEOM
ADIZJ
ADMGS
ADPDF
ADXAS
ADZOD
AEEZP
AEIMD
AENEX
AEQDE
AEUQT
AFBPY
AFGKR
AFKRA
AFPWT
AFRAH
AFZJQ
AHMBA
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BENPR
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
C45
CCPQU
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
FYUFA
G-S
G.N
GAKWD
GNP
GODZA
GROUPED_DOAJ
H.T
H.X
HBH
HF~
HHY
HHZ
HMCUK
HVGLF
HZ~
IAO
IHR
ITC
IX1
J0M
JPC
KQQ
L7B
LAW
LC2
LC3
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M6M
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OK1
OVD
OVEED
P2P
P2W
P2X
P4D
PALCI
PIMPY
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RPM
RWD
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
UB1
UKHRP
V2E
W8V
W99
WBKPD
WIB
WIH
WIK
WIN
WJL
WNSPC
WOHZO
WQJ
WRC
WUP
WXSBR
WYISQ
XG1
XSW
XV2
ZZTAW
~IA
~WT
AANHP
AAYCA
ACCMX
ACRPL
ACYXJ
ADNMO
AAFWJ
AAYXX
AFPKN
AGQPQ
CITATION
PHGZM
PHGZT
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c4826-d275229cb60a006962850eef3a60945a21ef0f86a5490a354673187112972a033
IEDL.DBID DR2
ISSN 1065-9471
1097-0193
IngestDate Thu Aug 21 14:09:51 EDT 2025
Fri Sep 05 06:06:23 EDT 2025
Mon Jul 21 05:29:05 EDT 2025
Mon Jul 21 09:14:21 EDT 2025
Thu Apr 24 23:09:58 EDT 2025
Tue Jul 01 04:25:56 EDT 2025
Wed Jan 22 16:28:36 EST 2025
Wed Oct 30 09:51:17 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords Human
default mode
Nervous system diseases
Radiodiagnosis
Magnetoencephalography
Schizophrenia
unaffected siblings
Sibling
baseline
default network
Psychosis
synthetic aperture magnetometry
Magnetometry
cuneus
precuneus
SAM
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4826-d275229cb60a006962850eef3a60945a21ef0f86a5490a354673187112972a033
Notes istex:3145A33D2046EB3CF0A371E614BDF126C19CA781
NIMH Intramural Research Program
ark:/67375/WNG-QKDD3KX4-C
ArticleID:HBM20746
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink http://doi.org/10.1002/hbm.20746
PMID 19288463
PQID 734052261
PQPubID 23479
PageCount 11
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_2748144
proquest_miscellaneous_734052261
pubmed_primary_19288463
pascalfrancis_primary_21985476
crossref_primary_10_1002_hbm_20746
crossref_citationtrail_10_1002_hbm_20746
wiley_primary_10_1002_hbm_20746_HBM20746
istex_primary_ark_67375_WNG_QKDD3KX4_C
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 2009
PublicationDateYYYYMMDD 2009-10-01
PublicationDate_xml – month: 10
  year: 2009
  text: October 2009
PublicationDecade 2000
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
– name: New York, NY
– name: United States
PublicationTitle Human brain mapping
PublicationTitleAlternate Hum. Brain Mapp
PublicationYear 2009
Publisher Wiley Subscription Services, Inc., A Wiley Company
Wiley-Liss
Publisher_xml – name: Wiley Subscription Services, Inc., A Wiley Company
– name: Wiley-Liss
References Harrison BJ,Yucel M,Pujol J,Pantelis C ( 2007): Task-induced deactivation of midline cortical regions in schizophrenia assessed with fMRI. Schizophr Res 91: 82-86.
Hulshoff HE,Schnack HG,Mandl RCW,van Haren NEM,Koning H,Collins L,Evans AC,Kahn RS ( 2001): Focal gray matter density changes in schizophrenia. Arch Gen Psychiatry 58: 1118-1125.
Gusnard DA,Raichle ME ( 2001): Searching for a baseline: Functional imaging and the resting human brain. Nat Rev Neurosci 2: 685-694.
Bosboom JL,Stoffers D,Stam CJ,van Dijk BW,Verbunt J,Berendse HW,Wolters ECH ( 2006): Resting state oscillatory brain dynamics in Parkinson's disease: An MEG study. Clin Neurophys 117: 2521-2531.
Narr KL,Toga AW,Szeszko P,Thompson PM,Woods RP,Robinson D,Sevy S,Wang Y,Schrock K,Bilder RM ( 2005): Cortical thinning in cingulate and occipital cortices in first episode schizophrenia. Biol Psychiatry 58: 32-40.
Buzsaki G,Draguhn A ( 2004): Neuronal oscillations in cortical networks. Science 304: 1926-1929.
Greicius MD,Menon V ( 2004): Default-mode activity during a passive sensory task: Uncoupled from deactivation but impacting activation. J Cogn Neurosci 16: 1484-1492.
McKiernan KA,Kaufman JN,Kucera-Thompson J,Binder JR ( 2003): A parametric manipulation of factors affecting task-induced deactivation in functional neuroimaging. J Cogn Neurosci 15: 394-408.
Cox RW ( 1996): AFNI: Software for analysis and visualization of functional magnetic resonance neuroimages. Comput Biomed Res 29: 162-173.
Danion JM,Rizzo L,Bruant A ( 1999): Functional mechanisms underlying impaired recognition memory and conscious awareness in patients with schizophrenia. Arch Gen Psychiatry 56: 639-644.
Vrba J,Robinson SE ( 2001): Signal processing in magnetoencephalography. Methods 25: 249-271.
Kuperberg G,Heckers S ( 2000): Schizophrenia and cognitive function. Curr Opin Neurobiol 10: 205-210.
Weickert TW,Goldberg TE,Gold JM,Bigelow LB,Egan MF,Weinberger DR ( 2000): Cognitive impairments in patients with schizophrenia displaying preserved and compromised intellect. Arc Gen Psychiatry 57: 907-913.
Winterer G,Egan MF,Raedler T,Sanchez C,Jones DW,Coppola R,Weinberger DR ( 2003): P300 and genetic risk for schizophrenia. Arch Gen Psychiatry 60: 1158-1167.
Morcom AM,Fletcher PC ( 2006): Does the brain have a baseline? Why we should be resisting a rest. Neuroimage 37: 1073-1082.
Johnson KA,Jones K,Holman BL,Becker JA,Spiers PA,Satlin A,Albert MS ( 1998): Preclinical prediction of Alzheimer's disease using SPECT. Neurology 50: 1563-1572.
Genovese CR,Lazar NA,Nichols T ( 2001): Thresholding of statistical maps in functional neuroimaging using the false discovery rate. Neuroimage 15: 870-878.
Cavanna AE,Trimble MR ( 2006): The precuneus: A review of its functional anatomy and behavioural correlates. Brain 129: 564-583.
Park S,Holzman PS ( 1992): Schizophrenics show spatial working memory deficits. Arch Gen Psychiatry 49: 975-982.
Bluhm RL,Miller J,Lanius RA,Osuch EA,Boksman K,Neufeld RWJ,Theberge J,Schaefer B,Williamson P ( 2007): Spontaneous low-frequency fluctuations in the bold signal in schizophrenic patients: Anomalies in the default network. Schizophr Bull 33: 1004-1012.
Frith C ( 1995): Functional imaging and cognitive abnormalities. Lancet 346: 615-620.
Egan MF,Goldberg TE,Gscheidle T,Weirich M,Bigelow LB,Weinberger DR ( 2000): Relative risk of attention defecits in siblings of patients with schizophrenia. Am J Psychiatry 157: 1309-1316.
Greicius MD,Krasnow B,Reiss AL,Menon V ( 2003): Functional connectivity in the resting brain: A network analysis of the default mode hypothesis. Proc Natl Acad Sci USA 100: 253-258.
Eustache F,Piolino P,Giffard B,Viader F,De La Sayette V,Baron J,Desgranges B ( 2004): 'In the course of time': A PET study of the cerebral substrates of autobiographical amnesia in Alzheimer's disease. Brain 127: 1549-1560.
Oldfield RC ( 1971): The assessment and analysis of handedness: The Edinburgh handedness inventory. Neuropsychologia 9: 97-113.
Tendolkar I,Ruhrmann S,Brockhaus A,Pukrop R,Klosterkotter J ( 2002): Remembering or knowing: Electrophysiological evidence for an episodic memory deficit in schizophrenia. Psychol Med 32: 1261-1271.
Zhou Y,Liang M,Tian L,Wang K,Hao Y,Liu H,Liu Z,Jiang T ( 2007b) Functional disintegration in paranoid schizophrenia using resting-state fMRI. Schizophr Res 97: 194-205.
Fox MD,Snyder AZ,Vincent JL,Corbetta M,Van Essen DC,Raichle ME ( 2005): The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc Natl Acad Sci USA 102: 9673-9678.
Singh KD,Barnes GR,Hillebrand A,Forde EME,Williams AL ( 2002): Task-related changes in cortical synchronization are spatially coincident with the hemodynamic response. Neuroimage 16: 103-114.
Liu Y,Liang M,Zhou Y,He Y,Hao Y,Song M,Yu C,Liu H,Liu Z,Jiang T ( 2008): Disrupted small-world networks in schizophrenia. Brain 131: 945-961.
Benjamini Y,Hochberg Y ( 1995): Controlling the false discovery rate: A practical and powerful approach to multiple testing. J Roy Stat Soc 57: 289-300.
Weissman DH,Roberts KC,Visscher KM,Woldorff MG ( 2006): The neural bases of momentary lapses in attention. Nat Neurosci 9: 971-978.
Lawrence NS,Ross TJ,Hoffmann R ( 2003): Multiple neuronal networks mediate sustained attention. J Cogn Neurosci 15: 1028-1038.
Rombouts SARB,Barkhof F,Goekoop R,Stam CJ,Scheltens P ( 2005): Altered resting state networks in mild cognitive impairment and mild Alzheimer's disease: An fMRI study. Hum Brain Mapp 26: 231-239.
Garrity AG,Pearlson GD,McKiernan K,Lloyd D,Kiehl KA,Calhoun VD ( 2007): Aberrant "default mode" functional connectivity of schizophrenia. Am J Psychiatry 164: 450-457.
Callicott JH,Egan MF,Bertolino A,Mattay VS,Langheim FJP,Frank JA,Weinberger DR ( 1998): Hippocampal N-acetyl aspartate in unaffected siblings of patients with schizophrenia: A possible intermediate neurobiological phenotype. Biol Psychiatry 44: 941-950.
Simpson JRJr,Drevets WC,Snyder AZ,Gusnard DA,Raichle ME ( 2001): Emotion-induced changes in human medial prefrontal cortex: II. During anticipatory anxiety. Neurobiology 98: 688-693.
Georgopoulos AP,Karageorgiou E,Leuthold AC,Lewis SM,Lynch JK,Alonso AA,Aslam Z,Carpenter AF,Georgopoulos A,Hemmy LS,Koutlas IG,Langheim FJP,McCarten JP,McPherson SE,Pardo JV,Pardo PJ,Parry GJ,Rottunda SJ,Segal BM,Sponheim SR,Stanwyck JJ,Stephane M,Westermeyer JJ ( 2007): Synchronous neural interactions assessed by magnetoencephalography: A functional biomarker for brain disorders. J Neural Eng 4: 349-355.
Mitelman SA,Shihabuddin L,Brickman AM,Hazlett EA,Buchsbaum MS ( 2004): Volume of the cingulate and outcome in schizophrenia. Schizophr Res 72: 91-108.
Nichols T,Hayasaka S ( 2003): Controlling the familywise error rate in functional neuroimaging: A comparative review. Stat Methods Med Res 12: 419-446.
Allen PP,Johns LC,Fu CHY,Broome MR,Vythelingum GN,McGuire PK ( 2004): Misattribution of external speech in patients with hallucinations and delusions. Schizophr Res 69: 277-287.
Greicius MD,Srivastava G,Reiss AL,Menon V ( 2004): Default-mode network activity distinguishes Alzheimer's disease from healthy aging: Evidence from functional MRI. Proc Natl Acad Sci USA 101: 4637-4642.
Malaspina D,Harkavy-Friedman J,Corcoran C,Mujica-Parodi L,Printz D,Gorman JM,Heertum RV ( 2004): Resting neural activity distinguishes subgroups of schizophrenia patients. Biol Psychiatry 56: 931-937.
Dragovic M,Hammond G,Badcock JC,Jablensky A ( 2005): Laterality phenotypes in patients with schizophrenia, their siblings and controls: Associations with clinical and cognitive variables. Br J Psychiatry 187: 221-228.
Fleming K,Goldberg TE,Binks S,Randolph C,Gold JM,Weinberger DR ( 1997): Visuospatial working memory in patients with schizophrenia. Biol Psychiatry 41: 43-49.
Bruns A,Eckhorn R,Jokeit H,Ebner A ( 2000): Amplitude envelope correlation detects coupling among incoherent brain signals. Neuroreport 11: 1509-1514.
Stam CJ,Jones BF,Manshanden I,van Cappellen van Walsum AM,Montez T,Verbunt JP,de Munck JC,van Dijk BW,Berendsea HW,Scheltens P ( 2006): Magnetoencephalographic evaluation of resting-state functional connectivity in Alzheimer's disease. Neuroimage 32: 1335-1344.
Gusnard DA,Akbudak E,Shulman GL,Raichle ME ( 2001): Medial prefrontal cortex and self-referential mental activity: Relation to a default mode of brain function. Proc Natl Acad Sci USA 98: 4259-4264.
Liang M,Zhou Y,Jiang T,Liu Z,Tian L,Liu H,Hao Y ( 2006): Widespread functional disconnectivity in schizophrenia with resting-state functional magnetic resonance imaging. Neuroreport 17: 209-213.
Keefe RSE,Lees-Roitman SE,Dupre RL ( 1997): Performance of patients with schizophrenia on a pen and paper visuospatial working memory task with short delay. Schizophr Res 26: 9-14.
Raichle ME,MacLeod AM,Snyder AZ,Powers WJ,Gusnard DA,Shulman GL ( 2001): A default mode of brain function. Proc Natl Acad Sci USA 98: 676-672.
Laufs H,Krakow K,Sterzer P,Eger E,Beyerle A,Salek-Haddadi A,Kleinschmidt A ( 2003): Electroencephalographic signatures of attentional and cognitive default modes in spontaneous brain activity fluctuations at rest. Proc Natl Acad Sci USA 100: 11053-11058.
Esposito F,Bertolino A,Scarabino T,Latorre V,Blasi G,Popolizio T,Tedeschi G,Cirillo S,Goebel R,Di Salle F ( 2006): Independent component model of the default-mode brain function: assessing the impact of active thinking. Brain Res Bull 70: 263-269.
Minoshima S,Giordani B,Berent S,Frey KA,Foster NL,Kuhl DE ( 1997): Metabolic reduction in the posterior cingulate cortex in very early Alzheimer's disease. Ann Neurol 42: 85-94.
Sekihara K,Nagarajan SS,Poeppel D,Marantz A,Miyashita Y ( 2001): Reconstructing spatio-temporal activities of neural sources using an MEG vector beamformer technique. IEEE Trans Biomed Eng 48: 760-771.
Zhou Y,Liang M,Jiang T,Tian L,Liu Y,Liu Z,Liu H,Kuang F ( 2007a) Functional dysconnectivity of the dorsolateral prefrontal cortex in first-episode schizophrenia using resting-state fMRI. Neurosci Lett 417: 297-302.
Shulman GL,Fiez JA,Corbetta M,Buckner RL,Miezin FM,Raichle ME,Peter
2006; 70
2002; 16
2004; 127
2007a; 417
1997; 42
2006; 32
1997; 41
2004; 69
2006; 37
2003; 15
2001; 48
2005; 26
2007; 33
1997; 9
1998; 44
2003; 12
1971; 9
1996; 29
2004; 72
2005; 187
2005; 102
2000; 57
2000; 10
2000; 11
1999; 56
2001; 15
2007; 4
1998; 50
1992; 49
2006; 129
2001; 58
2001; 98
2001; 54
2004; 101
2000; 157
1995; 57
1997; 26
2006; 17
2002; 32
2006; 9
2007; 164
2007; 91
2003
2006; 117
2004; 304
2001; 25
2004; 16
2004; 56
1995; 346
2001; 2
2003; 60
2008; 131
2003; 100
2007b; 97
2005; 58
e_1_2_6_53_1
e_1_2_6_32_1
e_1_2_6_30_1
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_59_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_17_1
e_1_2_6_55_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_57_1
Benjamini Y (e_1_2_6_3_1) 1995; 57
e_1_2_6_43_1
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_60_1
e_1_2_6_9_1
e_1_2_6_5_1
e_1_2_6_7_1
e_1_2_6_24_1
e_1_2_6_49_1
e_1_2_6_22_1
e_1_2_6_28_1
e_1_2_6_45_1
e_1_2_6_26_1
e_1_2_6_47_1
e_1_2_6_52_1
e_1_2_6_54_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_50_1
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_56_1
e_1_2_6_16_1
e_1_2_6_37_1
Simpson JR (e_1_2_6_51_1) 2001; 98
e_1_2_6_58_1
e_1_2_6_42_1
e_1_2_6_21_1
e_1_2_6_40_1
e_1_2_6_8_1
e_1_2_6_4_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_48_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_27_1
e_1_2_6_46_1
References_xml – reference: Fox MD,Snyder AZ,Vincent JL,Corbetta M,Van Essen DC,Raichle ME ( 2005): The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc Natl Acad Sci USA 102: 9673-9678.
– reference: Cox RW ( 1996): AFNI: Software for analysis and visualization of functional magnetic resonance neuroimages. Comput Biomed Res 29: 162-173.
– reference: Singh KD,Barnes GR,Hillebrand A,Forde EME,Williams AL ( 2002): Task-related changes in cortical synchronization are spatially coincident with the hemodynamic response. Neuroimage 16: 103-114.
– reference: Weickert TW,Goldberg TE,Gold JM,Bigelow LB,Egan MF,Weinberger DR ( 2000): Cognitive impairments in patients with schizophrenia displaying preserved and compromised intellect. Arc Gen Psychiatry 57: 907-913.
– reference: Harrison BJ,Yucel M,Pujol J,Pantelis C ( 2007): Task-induced deactivation of midline cortical regions in schizophrenia assessed with fMRI. Schizophr Res 91: 82-86.
– reference: Cavanna AE,Trimble MR ( 2006): The precuneus: A review of its functional anatomy and behavioural correlates. Brain 129: 564-583.
– reference: Greicius MD,Krasnow B,Reiss AL,Menon V ( 2003): Functional connectivity in the resting brain: A network analysis of the default mode hypothesis. Proc Natl Acad Sci USA 100: 253-258.
– reference: Bruns A,Eckhorn R,Jokeit H,Ebner A ( 2000): Amplitude envelope correlation detects coupling among incoherent brain signals. Neuroreport 11: 1509-1514.
– reference: Raichle ME,MacLeod AM,Snyder AZ,Powers WJ,Gusnard DA,Shulman GL ( 2001): A default mode of brain function. Proc Natl Acad Sci USA 98: 676-672.
– reference: Esposito F,Bertolino A,Scarabino T,Latorre V,Blasi G,Popolizio T,Tedeschi G,Cirillo S,Goebel R,Di Salle F ( 2006): Independent component model of the default-mode brain function: assessing the impact of active thinking. Brain Res Bull 70: 263-269.
– reference: Malaspina D,Harkavy-Friedman J,Corcoran C,Mujica-Parodi L,Printz D,Gorman JM,Heertum RV ( 2004): Resting neural activity distinguishes subgroups of schizophrenia patients. Biol Psychiatry 56: 931-937.
– reference: Buzsaki G,Draguhn A ( 2004): Neuronal oscillations in cortical networks. Science 304: 1926-1929.
– reference: Eustache F,Piolino P,Giffard B,Viader F,De La Sayette V,Baron J,Desgranges B ( 2004): 'In the course of time': A PET study of the cerebral substrates of autobiographical amnesia in Alzheimer's disease. Brain 127: 1549-1560.
– reference: Greicius MD,Srivastava G,Reiss AL,Menon V ( 2004): Default-mode network activity distinguishes Alzheimer's disease from healthy aging: Evidence from functional MRI. Proc Natl Acad Sci USA 101: 4637-4642.
– reference: Narr KL,Toga AW,Szeszko P,Thompson PM,Woods RP,Robinson D,Sevy S,Wang Y,Schrock K,Bilder RM ( 2005): Cortical thinning in cingulate and occipital cortices in first episode schizophrenia. Biol Psychiatry 58: 32-40.
– reference: Frith C ( 1995): Functional imaging and cognitive abnormalities. Lancet 346: 615-620.
– reference: Zhou Y,Liang M,Jiang T,Tian L,Liu Y,Liu Z,Liu H,Kuang F ( 2007a) Functional dysconnectivity of the dorsolateral prefrontal cortex in first-episode schizophrenia using resting-state fMRI. Neurosci Lett 417: 297-302.
– reference: Vrba J,Robinson SE ( 2001): Signal processing in magnetoencephalography. Methods 25: 249-271.
– reference: Allen PP,Johns LC,Fu CHY,Broome MR,Vythelingum GN,McGuire PK ( 2004): Misattribution of external speech in patients with hallucinations and delusions. Schizophr Res 69: 277-287.
– reference: Laufs H,Krakow K,Sterzer P,Eger E,Beyerle A,Salek-Haddadi A,Kleinschmidt A ( 2003): Electroencephalographic signatures of attentional and cognitive default modes in spontaneous brain activity fluctuations at rest. Proc Natl Acad Sci USA 100: 11053-11058.
– reference: Danion JM,Rizzo L,Bruant A ( 1999): Functional mechanisms underlying impaired recognition memory and conscious awareness in patients with schizophrenia. Arch Gen Psychiatry 56: 639-644.
– reference: Hulshoff HE,Schnack HG,Mandl RCW,van Haren NEM,Koning H,Collins L,Evans AC,Kahn RS ( 2001): Focal gray matter density changes in schizophrenia. Arch Gen Psychiatry 58: 1118-1125.
– reference: Tendolkar I,Ruhrmann S,Brockhaus A,Pukrop R,Klosterkotter J ( 2002): Remembering or knowing: Electrophysiological evidence for an episodic memory deficit in schizophrenia. Psychol Med 32: 1261-1271.
– reference: Shulman GL,Fiez JA,Corbetta M,Buckner RL,Miezin FM,Raichle ME,Petersen SE ( 1997): Common blood flow changes across visual tasks: II. Decreases in cerebral cortex. J Cogn Neurosci 9: 648-663.
– reference: Lawrence NS,Ross TJ,Hoffmann R ( 2003): Multiple neuronal networks mediate sustained attention. J Cogn Neurosci 15: 1028-1038.
– reference: McKiernan KA,Kaufman JN,Kucera-Thompson J,Binder JR ( 2003): A parametric manipulation of factors affecting task-induced deactivation in functional neuroimaging. J Cogn Neurosci 15: 394-408.
– reference: Benjamini Y,Hochberg Y ( 1995): Controlling the false discovery rate: A practical and powerful approach to multiple testing. J Roy Stat Soc 57: 289-300.
– reference: Oldfield RC ( 1971): The assessment and analysis of handedness: The Edinburgh handedness inventory. Neuropsychologia 9: 97-113.
– reference: Mazoyer B,Zago L,Mellet E,Bricogne S,Etard O,Houde O,Crivello F,Joliot M,Petit L,Tzourion-Mazoyer N ( 2001): Cortical networks for working memory and executive functions sustain the conscious resting state in man. Brain Res Bull 54: 287-298.
– reference: Dragovic M,Hammond G,Badcock JC,Jablensky A ( 2005): Laterality phenotypes in patients with schizophrenia, their siblings and controls: Associations with clinical and cognitive variables. Br J Psychiatry 187: 221-228.
– reference: Rombouts SARB,Barkhof F,Goekoop R,Stam CJ,Scheltens P ( 2005): Altered resting state networks in mild cognitive impairment and mild Alzheimer's disease: An fMRI study. Hum Brain Mapp 26: 231-239.
– reference: Greicius MD,Menon V ( 2004): Default-mode activity during a passive sensory task: Uncoupled from deactivation but impacting activation. J Cogn Neurosci 16: 1484-1492.
– reference: Stam CJ,Jones BF,Manshanden I,van Cappellen van Walsum AM,Montez T,Verbunt JP,de Munck JC,van Dijk BW,Berendsea HW,Scheltens P ( 2006): Magnetoencephalographic evaluation of resting-state functional connectivity in Alzheimer's disease. Neuroimage 32: 1335-1344.
– reference: Bosboom JL,Stoffers D,Stam CJ,van Dijk BW,Verbunt J,Berendse HW,Wolters ECH ( 2006): Resting state oscillatory brain dynamics in Parkinson's disease: An MEG study. Clin Neurophys 117: 2521-2531.
– reference: Genovese CR,Lazar NA,Nichols T ( 2001): Thresholding of statistical maps in functional neuroimaging using the false discovery rate. Neuroimage 15: 870-878.
– reference: Park S,Holzman PS ( 1992): Schizophrenics show spatial working memory deficits. Arch Gen Psychiatry 49: 975-982.
– reference: Simpson JRJr,Drevets WC,Snyder AZ,Gusnard DA,Raichle ME ( 2001): Emotion-induced changes in human medial prefrontal cortex: II. During anticipatory anxiety. Neurobiology 98: 688-693.
– reference: Winterer G,Egan MF,Raedler T,Sanchez C,Jones DW,Coppola R,Weinberger DR ( 2003): P300 and genetic risk for schizophrenia. Arch Gen Psychiatry 60: 1158-1167.
– reference: Liu Y,Liang M,Zhou Y,He Y,Hao Y,Song M,Yu C,Liu H,Liu Z,Jiang T ( 2008): Disrupted small-world networks in schizophrenia. Brain 131: 945-961.
– reference: Georgopoulos AP,Karageorgiou E,Leuthold AC,Lewis SM,Lynch JK,Alonso AA,Aslam Z,Carpenter AF,Georgopoulos A,Hemmy LS,Koutlas IG,Langheim FJP,McCarten JP,McPherson SE,Pardo JV,Pardo PJ,Parry GJ,Rottunda SJ,Segal BM,Sponheim SR,Stanwyck JJ,Stephane M,Westermeyer JJ ( 2007): Synchronous neural interactions assessed by magnetoencephalography: A functional biomarker for brain disorders. J Neural Eng 4: 349-355.
– reference: Weissman DH,Roberts KC,Visscher KM,Woldorff MG ( 2006): The neural bases of momentary lapses in attention. Nat Neurosci 9: 971-978.
– reference: Gusnard DA,Raichle ME ( 2001): Searching for a baseline: Functional imaging and the resting human brain. Nat Rev Neurosci 2: 685-694.
– reference: Fleming K,Goldberg TE,Binks S,Randolph C,Gold JM,Weinberger DR ( 1997): Visuospatial working memory in patients with schizophrenia. Biol Psychiatry 41: 43-49.
– reference: Johnson KA,Jones K,Holman BL,Becker JA,Spiers PA,Satlin A,Albert MS ( 1998): Preclinical prediction of Alzheimer's disease using SPECT. Neurology 50: 1563-1572.
– reference: Zhou Y,Liang M,Tian L,Wang K,Hao Y,Liu H,Liu Z,Jiang T ( 2007b) Functional disintegration in paranoid schizophrenia using resting-state fMRI. Schizophr Res 97: 194-205.
– reference: Minoshima S,Giordani B,Berent S,Frey KA,Foster NL,Kuhl DE ( 1997): Metabolic reduction in the posterior cingulate cortex in very early Alzheimer's disease. Ann Neurol 42: 85-94.
– reference: Liang M,Zhou Y,Jiang T,Liu Z,Tian L,Liu H,Hao Y ( 2006): Widespread functional disconnectivity in schizophrenia with resting-state functional magnetic resonance imaging. Neuroreport 17: 209-213.
– reference: Callicott JH,Egan MF,Bertolino A,Mattay VS,Langheim FJP,Frank JA,Weinberger DR ( 1998): Hippocampal N-acetyl aspartate in unaffected siblings of patients with schizophrenia: A possible intermediate neurobiological phenotype. Biol Psychiatry 44: 941-950.
– reference: Morcom AM,Fletcher PC ( 2006): Does the brain have a baseline? Why we should be resisting a rest. Neuroimage 37: 1073-1082.
– reference: Gusnard DA,Akbudak E,Shulman GL,Raichle ME ( 2001): Medial prefrontal cortex and self-referential mental activity: Relation to a default mode of brain function. Proc Natl Acad Sci USA 98: 4259-4264.
– reference: Kuperberg G,Heckers S ( 2000): Schizophrenia and cognitive function. Curr Opin Neurobiol 10: 205-210.
– reference: Sekihara K,Nagarajan SS,Poeppel D,Marantz A,Miyashita Y ( 2001): Reconstructing spatio-temporal activities of neural sources using an MEG vector beamformer technique. IEEE Trans Biomed Eng 48: 760-771.
– reference: Nichols T,Hayasaka S ( 2003): Controlling the familywise error rate in functional neuroimaging: A comparative review. Stat Methods Med Res 12: 419-446.
– reference: Bluhm RL,Miller J,Lanius RA,Osuch EA,Boksman K,Neufeld RWJ,Theberge J,Schaefer B,Williamson P ( 2007): Spontaneous low-frequency fluctuations in the bold signal in schizophrenic patients: Anomalies in the default network. Schizophr Bull 33: 1004-1012.
– reference: Garrity AG,Pearlson GD,McKiernan K,Lloyd D,Kiehl KA,Calhoun VD ( 2007): Aberrant "default mode" functional connectivity of schizophrenia. Am J Psychiatry 164: 450-457.
– reference: Egan MF,Goldberg TE,Gscheidle T,Weirich M,Bigelow LB,Weinberger DR ( 2000): Relative risk of attention defecits in siblings of patients with schizophrenia. Am J Psychiatry 157: 1309-1316.
– reference: Keefe RSE,Lees-Roitman SE,Dupre RL ( 1997): Performance of patients with schizophrenia on a pen and paper visuospatial working memory task with short delay. Schizophr Res 26: 9-14.
– reference: Mitelman SA,Shihabuddin L,Brickman AM,Hazlett EA,Buchsbaum MS ( 2004): Volume of the cingulate and outcome in schizophrenia. Schizophr Res 72: 91-108.
– volume: 60
  start-page: 1158
  year: 2003
  end-page: 1167
  article-title: P300 and genetic risk for schizophrenia
  publication-title: Arch Gen Psychiatry
– volume: 2
  start-page: 685
  year: 2001
  end-page: 694
  article-title: Searching for a baseline: Functional imaging and the resting human brain
  publication-title: Nat Rev Neurosci
– volume: 48
  start-page: 760
  year: 2001
  end-page: 771
  article-title: Reconstructing spatio‐temporal activities of neural sources using an MEG vector beamformer technique
  publication-title: IEEE Trans Biomed Eng
– volume: 56
  start-page: 639
  year: 1999
  end-page: 644
  article-title: Functional mechanisms underlying impaired recognition memory and conscious awareness in patients with schizophrenia
  publication-title: Arch Gen Psychiatry
– volume: 157
  start-page: 1309
  year: 2000
  end-page: 1316
  article-title: Relative risk of attention defecits in siblings of patients with schizophrenia
  publication-title: Am J Psychiatry
– volume: 9
  start-page: 97
  year: 1971
  end-page: 113
  article-title: The assessment and analysis of handedness: The Edinburgh handedness inventory
  publication-title: Neuropsychologia
– volume: 70
  start-page: 263
  year: 2006
  end-page: 269
  article-title: Independent component model of the default‐mode brain function: assessing the impact of active thinking
  publication-title: Brain Res Bull
– volume: 49
  start-page: 975
  year: 1992
  end-page: 982
  article-title: Schizophrenics show spatial working memory deficits
  publication-title: Arch Gen Psychiatry
– volume: 304
  start-page: 1926
  year: 2004
  end-page: 1929
  article-title: Neuronal oscillations in cortical networks
  publication-title: Science
– volume: 44
  start-page: 941
  year: 1998
  end-page: 950
  article-title: Hippocampal N‐acetyl aspartate in unaffected siblings of patients with schizophrenia: A possible intermediate neurobiological phenotype
  publication-title: Biol Psychiatry
– volume: 4
  start-page: 349
  year: 2007
  end-page: 355
  article-title: Synchronous neural interactions assessed by magnetoencephalography: A functional biomarker for brain disorders
  publication-title: J Neural Eng
– volume: 26
  start-page: 9
  year: 1997
  end-page: 14
  article-title: Performance of patients with schizophrenia on a pen and paper visuospatial working memory task with short delay
  publication-title: Schizophr Res
– volume: 29
  start-page: 162
  year: 1996
  end-page: 173
  article-title: AFNI: Software for analysis and visualization of functional magnetic resonance neuroimages
  publication-title: Comput Biomed Res
– volume: 102
  start-page: 9673
  year: 2005
  end-page: 9678
  article-title: The human brain is intrinsically organized into dynamic, anticorrelated functional networks
  publication-title: Proc Natl Acad Sci USA
– volume: 15
  start-page: 1028
  year: 2003
  end-page: 1038
  article-title: Multiple neuronal networks mediate sustained attention
  publication-title: J Cogn Neurosci
– volume: 98
  start-page: 688
  year: 2001
  end-page: 693
  article-title: Emotion‐induced changes in human medial prefrontal cortex: II. During anticipatory anxiety
  publication-title: Neurobiology
– volume: 10
  start-page: 205
  year: 2000
  end-page: 210
  article-title: Schizophrenia and cognitive function
  publication-title: Curr Opin Neurobiol
– volume: 127
  start-page: 1549
  year: 2004
  end-page: 1560
  article-title: ‘In the course of time’: A PET study of the cerebral substrates of autobiographical amnesia in Alzheimer's disease
  publication-title: Brain
– volume: 15
  start-page: 870
  year: 2001
  end-page: 878
  article-title: Thresholding of statistical maps in functional neuroimaging using the false discovery rate
  publication-title: Neuroimage
– volume: 187
  start-page: 221
  year: 2005
  end-page: 228
  article-title: Laterality phenotypes in patients with schizophrenia, their siblings and controls: Associations with clinical and cognitive variables
  publication-title: Br J Psychiatry
– volume: 164
  start-page: 450
  year: 2007
  end-page: 457
  article-title: Aberrant “default mode” functional connectivity of schizophrenia
  publication-title: Am J Psychiatry
– volume: 100
  start-page: 11053
  year: 2003
  end-page: 11058
  article-title: Electroencephalographic signatures of attentional and cognitive default modes in spontaneous brain activity fluctuations at rest
  publication-title: Proc Natl Acad Sci USA
– start-page: 168
  year: 2003
  end-page: 184
– volume: 57
  start-page: 907
  year: 2000
  end-page: 913
  article-title: Cognitive impairments in patients with schizophrenia displaying preserved and compromised intellect
  publication-title: Arc Gen Psychiatry
– volume: 26
  start-page: 231
  year: 2005
  end-page: 239
  article-title: Altered resting state networks in mild cognitive impairment and mild Alzheimer's disease: An fMRI study
  publication-title: Hum Brain Mapp
– volume: 417
  start-page: 297
  year: 2007a
  end-page: 302
  article-title: Functional dysconnectivity of the dorsolateral prefrontal cortex in first‐episode schizophrenia using resting‐state fMRI
  publication-title: Neurosci Lett
– volume: 17
  start-page: 209
  year: 2006
  end-page: 213
  article-title: Widespread functional disconnectivity in schizophrenia with resting‐state functional magnetic resonance imaging
  publication-title: Neuroreport
– volume: 101
  start-page: 4637
  year: 2004
  end-page: 4642
  article-title: Default‐mode network activity distinguishes Alzheimer's disease from healthy aging: Evidence from functional MRI
  publication-title: Proc Natl Acad Sci USA
– volume: 129
  start-page: 564
  year: 2006
  end-page: 583
  article-title: The precuneus: A review of its functional anatomy and behavioural correlates
  publication-title: Brain
– volume: 91
  start-page: 82
  year: 2007
  end-page: 86
  article-title: Task‐induced deactivation of midline cortical regions in schizophrenia assessed with fMRI
  publication-title: Schizophr Res
– volume: 98
  start-page: 676
  year: 2001
  end-page: 672
  article-title: A default mode of brain function
  publication-title: Proc Natl Acad Sci USA
– volume: 346
  start-page: 615
  year: 1995
  end-page: 620
  article-title: Functional imaging and cognitive abnormalities
  publication-title: Lancet
– volume: 32
  start-page: 1335
  year: 2006
  end-page: 1344
  article-title: Magnetoencephalographic evaluation of resting‐state functional connectivity in Alzheimer's disease
  publication-title: Neuroimage
– volume: 98
  start-page: 4259
  year: 2001
  end-page: 4264
  article-title: Medial prefrontal cortex and self‐referential mental activity: Relation to a default mode of brain function
  publication-title: Proc Natl Acad Sci USA
– volume: 72
  start-page: 91
  year: 2004
  end-page: 108
  article-title: Volume of the cingulate and outcome in schizophrenia
  publication-title: Schizophr Res
– volume: 117
  start-page: 2521
  year: 2006
  end-page: 2531
  article-title: Resting state oscillatory brain dynamics in Parkinson's disease: An MEG study
  publication-title: Clin Neurophys
– volume: 100
  start-page: 253
  year: 2003
  end-page: 258
  article-title: Functional connectivity in the resting brain: A network analysis of the default mode hypothesis
  publication-title: Proc Natl Acad Sci USA
– volume: 33
  start-page: 1004
  year: 2007
  end-page: 1012
  article-title: Spontaneous low‐frequency fluctuations in the bold signal in schizophrenic patients: Anomalies in the default network
  publication-title: Schizophr Bull
– volume: 11
  start-page: 1509
  year: 2000
  end-page: 1514
  article-title: Amplitude envelope correlation detects coupling among incoherent brain signals
  publication-title: Neuroreport
– volume: 69
  start-page: 277
  year: 2004
  end-page: 287
  article-title: Misattribution of external speech in patients with hallucinations and delusions
  publication-title: Schizophr Res
– volume: 42
  start-page: 85
  year: 1997
  end-page: 94
  article-title: Metabolic reduction in the posterior cingulate cortex in very early Alzheimer's disease
  publication-title: Ann Neurol
– volume: 16
  start-page: 103
  year: 2002
  end-page: 114
  article-title: Task‐related changes in cortical synchronization are spatially coincident with the hemodynamic response
  publication-title: Neuroimage
– volume: 25
  start-page: 249
  year: 2001
  end-page: 271
  article-title: Signal processing in magnetoencephalography
  publication-title: Methods
– volume: 57
  start-page: 289
  year: 1995
  end-page: 300
  article-title: Controlling the false discovery rate: A practical and powerful approach to multiple testing
  publication-title: J Roy Stat Soc
– volume: 131
  start-page: 945
  year: 2008
  end-page: 961
  article-title: Disrupted small‐world networks in schizophrenia
  publication-title: Brain
– volume: 15
  start-page: 394
  year: 2003
  end-page: 408
  article-title: A parametric manipulation of factors affecting task‐induced deactivation in functional neuroimaging
  publication-title: J Cogn Neurosci
– volume: 32
  start-page: 1261
  year: 2002
  end-page: 1271
  article-title: Remembering or knowing: Electrophysiological evidence for an episodic memory deficit in schizophrenia
  publication-title: Psychol Med
– volume: 97
  start-page: 194
  year: 2007b
  end-page: 205
  article-title: Functional disintegration in paranoid schizophrenia using resting‐state fMRI
  publication-title: Schizophr Res
– volume: 58
  start-page: 1118
  year: 2001
  end-page: 1125
  article-title: Focal gray matter density changes in schizophrenia
  publication-title: Arch Gen Psychiatry
– volume: 9
  start-page: 971
  year: 2006
  end-page: 978
  article-title: The neural bases of momentary lapses in attention
  publication-title: Nat Neurosci
– volume: 56
  start-page: 931
  year: 2004
  end-page: 937
  article-title: Resting neural activity distinguishes subgroups of schizophrenia patients
  publication-title: Biol Psychiatry
– volume: 12
  start-page: 419
  year: 2003
  end-page: 446
  article-title: Controlling the familywise error rate in functional neuroimaging: A comparative review
  publication-title: Stat Methods Med Res
– volume: 9
  start-page: 648
  year: 1997
  end-page: 663
  article-title: Common blood flow changes across visual tasks: II. Decreases in cerebral cortex
  publication-title: J Cogn Neurosci
– volume: 50
  start-page: 1563
  year: 1998
  end-page: 1572
  article-title: Preclinical prediction of Alzheimer's disease using SPECT
  publication-title: Neurology
– volume: 16
  start-page: 1484
  year: 2004
  end-page: 1492
  article-title: Default‐mode activity during a passive sensory task: Uncoupled from deactivation but impacting activation
  publication-title: J Cogn Neurosci
– volume: 41
  start-page: 43
  year: 1997
  end-page: 49
  article-title: Visuospatial working memory in patients with schizophrenia
  publication-title: Biol Psychiatry
– volume: 58
  start-page: 32
  year: 2005
  end-page: 40
  article-title: Cortical thinning in cingulate and occipital cortices in first episode schizophrenia
  publication-title: Biol Psychiatry
– volume: 37
  start-page: 1073
  year: 2006
  end-page: 1082
  article-title: Does the brain have a baseline? Why we should be resisting a rest
  publication-title: Neuroimage
– volume: 54
  start-page: 287
  year: 2001
  end-page: 298
  article-title: Cortical networks for working memory and executive functions sustain the conscious resting state in man
  publication-title: Brain Res Bull
– ident: e_1_2_6_19_1
  doi: 10.1176/ajp.2007.164.3.450
– ident: e_1_2_6_33_1
  doi: 10.1073/pnas.1831638100
– ident: e_1_2_6_54_1
  doi: 10.1017/S0033291702006335
– ident: e_1_2_6_55_1
  doi: 10.1006/meth.2001.1238
– ident: e_1_2_6_17_1
  doi: 10.1073/pnas.0504136102
– ident: e_1_2_6_18_1
  doi: 10.1016/S0140-6736(95)91441-2
– ident: e_1_2_6_7_1
  doi: 10.1126/science.1099745
– ident: e_1_2_6_48_1
  doi: 10.1002/hbm.20160
– ident: e_1_2_6_5_1
  doi: 10.1016/j.clinph.2006.06.720
– ident: e_1_2_6_46_1
  doi: 10.1001/archpsyc.1992.01820120063009
– ident: e_1_2_6_24_1
  doi: 10.1073/pnas.0135058100
– ident: e_1_2_6_28_1
  doi: 10.1016/j.schres.2006.12.027
– ident: e_1_2_6_47_1
  doi: 10.1073/pnas.98.2.676
– ident: e_1_2_6_45_1
  doi: 10.1016/0028-3932(71)90067-4
– ident: e_1_2_6_34_1
  doi: 10.1162/089892903770007416
– ident: e_1_2_6_31_1
  doi: 10.1016/S0920-9964(97)00037-6
– ident: e_1_2_6_57_1
  doi: 10.1038/nn1727
– ident: e_1_2_6_9_1
  doi: 10.1093/brain/awl004
– ident: e_1_2_6_12_1
  doi: 10.1192/bjp.187.3.221
– ident: e_1_2_6_10_1
  doi: 10.1006/cbmr.1996.0014
– ident: e_1_2_6_15_1
  doi: 10.1093/brain/awh166
– volume: 57
  start-page: 289
  year: 1995
  ident: e_1_2_6_3_1
  article-title: Controlling the false discovery rate: A practical and powerful approach to multiple testing
  publication-title: J Roy Stat Soc
– ident: e_1_2_6_58_1
  doi: 10.1001/archpsyc.60.11.1158
– ident: e_1_2_6_35_1
  doi: 10.1097/01.wnr.0000198434.06518.b8
– ident: e_1_2_6_4_1
  doi: 10.1093/schbul/sbm052
– ident: e_1_2_6_38_1
  doi: 10.1016/S0361-9230(00)00437-8
– ident: e_1_2_6_22_1
  doi: 10.1002/9780470987353.ch10
– ident: e_1_2_6_49_1
  doi: 10.1109/10.930901
– ident: e_1_2_6_60_1
  doi: 10.1016/j.schres.2007.05.029
– ident: e_1_2_6_25_1
  doi: 10.1073/pnas.0308627101
– ident: e_1_2_6_14_1
  doi: 10.1016/j.brainresbull.2006.06.012
– ident: e_1_2_6_26_1
  doi: 10.1038/35094500
– ident: e_1_2_6_59_1
  doi: 10.1016/j.neulet.2007.02.081
– ident: e_1_2_6_16_1
  doi: 10.1016/S0006-3223(96)00263-6
– ident: e_1_2_6_40_1
  doi: 10.1002/ana.410420114
– ident: e_1_2_6_2_1
  doi: 10.1016/j.schres.2003.09.008
– ident: e_1_2_6_23_1
  doi: 10.1162/0898929042568532
– ident: e_1_2_6_11_1
  doi: 10.1001/archpsyc.56.7.639
– ident: e_1_2_6_36_1
  doi: 10.1093/brain/awn018
– ident: e_1_2_6_53_1
  doi: 10.1016/j.neuroimage.2006.05.033
– ident: e_1_2_6_30_1
  doi: 10.1212/WNL.50.6.1563
– ident: e_1_2_6_39_1
  doi: 10.1162/089892903321593117
– ident: e_1_2_6_56_1
  doi: 10.1001/archpsyc.57.9.907
– ident: e_1_2_6_21_1
  doi: 10.1088/1741-2560/4/4/001
– ident: e_1_2_6_42_1
  doi: 10.1016/j.neuroimage.2006.09.013
– ident: e_1_2_6_8_1
  doi: 10.1016/S0006-3223(98)00264-9
– ident: e_1_2_6_41_1
  doi: 10.1016/j.schres.2004.02.011
– ident: e_1_2_6_27_1
  doi: 10.1073/pnas.071043098
– ident: e_1_2_6_29_1
  doi: 10.1001/archpsyc.58.12.1118
– ident: e_1_2_6_37_1
  doi: 10.1016/j.biopsych.2004.09.013
– ident: e_1_2_6_44_1
  doi: 10.1191/0962280203sm341ra
– ident: e_1_2_6_20_1
  doi: 10.1006/nimg.2001.1037
– ident: e_1_2_6_32_1
  doi: 10.1016/S0959-4388(00)00068-4
– volume: 98
  start-page: 688
  year: 2001
  ident: e_1_2_6_51_1
  article-title: Emotion‐induced changes in human medial prefrontal cortex: II. During anticipatory anxiety
  publication-title: Neurobiology
– ident: e_1_2_6_6_1
  doi: 10.1097/00001756-200005150-00029
– ident: e_1_2_6_13_1
  doi: 10.1176/appi.ajp.157.8.1309
– ident: e_1_2_6_43_1
  doi: 10.1016/j.biopsych.2005.03.043
– ident: e_1_2_6_50_1
  doi: 10.1162/jocn.1997.9.5.648
– ident: e_1_2_6_52_1
  doi: 10.1006/nimg.2001.1050
SSID ssj0011501
Score 2.2783058
Snippet Objective: The “default network” represents a baseline condition of brain function and is of interest in schizophrenia research because its component brain...
Objective: The “default network” represents a baseline condition of brain function and is of interest in schizophrenia research because its component brain...
The "default network" represents a baseline condition of brain function and is of interest in schizophrenia research because its component brain regions are...
SourceID pubmedcentral
proquest
pubmed
pascalfrancis
crossref
wiley
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3254
SubjectTerms Adult
baseline
Biological and medical sciences
Brain - pathology
Brain - physiopathology
Brain Mapping
Case-Control Studies
cuneus
default mode
default network
Ear, auditive nerve, cochleovestibular tract, facial nerve: diseases, semeiology
Female
Humans
Imaging, Three-Dimensional - methods
Investigative techniques, diagnostic techniques (general aspects)
magnetoencephalography
Magnetoencephalography - methods
Male
Medical sciences
Nervous system
Non tumoral diseases
Otorhinolaryngology. Stomatology
precuneus
Radiodiagnosis. Nmr imagery. Nmr spectrometry
Rest - physiology
SAM
Schizophrenia - physiopathology
synthetic aperture magnetometry
unaffected siblings
Title Magnetoencephalographic gamma power reduction in patients with schizophrenia during resting condition
URI https://api.istex.fr/ark:/67375/WNG-QKDD3KX4-C/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhbm.20746
https://www.ncbi.nlm.nih.gov/pubmed/19288463
https://www.proquest.com/docview/734052261
https://pubmed.ncbi.nlm.nih.gov/PMC2748144
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEB9KBfHFj1Zt_CiLSPEl7SabZBN8qj3rYbmCYvEehGU32XhHvdxxuQP1r3dm89GeVhCfLnCTkJ3Mzvxmd_Y3AC8zmXNtBPdDk4V-FJSpr02g_SLCcFPqwGZuHXJ0ngwvovfjeLwFr7uzMA0_RL_gRjPD-Wua4NrUR1ekoRNDB8llRHTbgUiIN3_wsaeOIqDjki0MsX6GHrhjFeLhUX_nRiy6RWr9TrWRukb1lE1fi5uA55_1k9dxrQtMp_fgSzekph7l8nC9Mof5z9_YHv9zzPfhbgtY2XFjYQ9gy1Y7sHtcYbI--8EOmCshdWvzO3B71O7U7wIxV1d2NSfHsZjolhl7mrOvejbTbEHN2diSeGPJMti0Yi3Da81oaZjV14sBWXOYklEfEfrFHL5wpWYP4eL07aeTod-2dPBz_PiJX4QSAV-Wm4RrIkmmA5zc2lLoBPPMWIeBLXmZJhrTVq5FjG4cnY4kUChDzYV4BNvVvLJ7wKwsOS_zIo8SEdkiNkmiS2tTmRVBXgjjwavu46q85TunthvfVMPUHCrUpnLa9OBFL7poSD5uEjpwFtJL6OUlVcXJWH0-f6c-nA0G4mwcqRMP9jdMqL8Bg0MaRxKfxDqbUjiZaYdGV3a-rpUUiJ8REAcePG5M7Op9sjBFrCg8kBvG1wsQT_jmP9V04vjCQxmlmDejQpxt_X2Iavhm5C6e_LvoU7jjNthcfeMz2F4t1_Y54rSV2XcT8hdZfTq_
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9NAEB6VVgJeOFoOc5QVQhUvbtf22mtLvJSGEkgTCdSKvFSrtb0mUYkT5ZCAX8_M-mgDRUI8xVLGlnc8O_vN7Ow3AK8SmXGdBtz108R3hVfErk497eYCl5tCeyaxecj-IOqeiY_DcLgBb5qzMBU_RJtwo5lh_TVNcEpIH1yyho5SOkkuRXQDtgQCDQq9Op9b8iiCOjbcwkXWTdAHN7xC3D9ob11bjbZIsd-pOlIvUEFF1dniOuj5ZwXlVWRrl6bju3DeDKqqSLnYXy3T_eznb3yP_zvqe3CnxqzssDKy-7Bhym3YOSwxXp_8YHvMVpHa9Pw23OzXm_U7QOTVpVlOyXfMRromxx5n7KueTDSbUX82NifqWDIONi5ZTfK6YJQdZour9YCsOk_JqJUI_WIYn9tqswdwdvzu9Kjr1l0d3Ay_f-TmvkTMl2RpxDXxJNMZTm5MEegIQ81Q-54peBFHGiNXroMQPTn6HUm4UPqaB8FD2CynpXkMzMiC8yLLMxEFwuRhGkW6MCaWSe5leZA68Lr5uiqrKc-p88Y3VZE1-wq1qaw2HXjZis4qno_rhPasibQSen5BhXEyVF8G79WnXqcT9IZCHTmwu2ZD7Q24PsShkPgk1hiVwvlMmzS6NNPVQskAITRiYs-BR5WNXb5P4scIFwMH5Jr1tQJEFb7-TzkeWcpwX4oYQ2dUiDWuvw9Rdd_27cWTfxd9Abe6p_0TdfJh0HsKt-1-my13fAaby_nKPEfYtkx37ez8BeIoPt4
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9NAEB6VVqp44Wg5zFFWCFW8uLW9a68tnkpDCIREgKjIA9Jqba9JVOJEOSTg1zOzPtpAkRBPsZSx5R3PznyzO_sNwLNEZp5OuecGaRK4wi9iV6e-dnOB4abQvknsOuRgGPXOxNtRONqCF81ZmIofol1wo5lh_TVN8HleHF-Qho5TOkguRXQNdkSESIIQ0ceWO4qQjs22MMa6CbrghlbIC47bWzeC0Q7p9TsVR-ol6qeoGltchTz_LKC8DGxtZOrehC_NmKqClPOj9So9yn7-Rvf4n4O-BTdqxMpOKhO7DVum3IP9kxKz9ekPdshsDaldnN-D3UG9Vb8PRF1dmtWMPMd8rGtq7EnGvurpVLM5dWdjCyKOJdNgk5LVFK9LRmvDbHm5GpBVpykZNRKhX0zic1trdgfOuq8-nfbcuqeDm-HXj9w8kIj4kiyNPE0syXSC0zOm4DrCRDPUgW8Kr4gjjXmrp3mIfhy9jiRUKAPtcX4XtstZae4DM7LwvCLLMxFxYfIwjSJdGBPLJPeznKcOPG8-rspqwnPqu_FNVVTNgUJtKqtNB562ovOK5eMqoUNrIa2EXpxTWZwM1efha_Wh3-nw_kioUwcONkyovQGjQxwKiU9ijU0pnM20RaNLM1svleQIoBER-w7cq0zs4n2SIEawyB2QG8bXChBR-OY_5WRsCcMDKWJMnFEh1rb-PkTVezmwFw_-XfQJ7L7vdNW7N8P-Q7huN9tsreMj2F4t1uYxYrZVemDn5i8AST2N
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Magnetoencephalographic+gamma+power+reduction+in+patients+with+schizophrenia+during+resting+condition&rft.jtitle=Human+brain+mapping&rft.au=Rutter%2C+Lindsay&rft.au=Carver%2C+Frederick+W.&rft.au=Holroyd%2C+Tom&rft.au=Nadar%2C+Sreenivasan+Rajamoni&rft.date=2009-10-01&rft.pub=Wiley+Subscription+Services%2C+Inc.%2C+A+Wiley+Company&rft.issn=1065-9471&rft.eissn=1097-0193&rft.volume=30&rft.issue=10&rft.spage=3254&rft.epage=3264&rft_id=info:doi/10.1002%2Fhbm.20746&rft_id=info%3Apmid%2F19288463&rft.externalDocID=PMC2748144
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1065-9471&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1065-9471&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1065-9471&client=summon