Magnetoencephalographic gamma power reduction in patients with schizophrenia during resting condition
Objective: The “default network” represents a baseline condition of brain function and is of interest in schizophrenia research because its component brain regions are believed to be aberrant in the disorder. We hypothesized that magnetoencephalographic (MEG) source localization analysis would revea...
Saved in:
Published in | Human brain mapping Vol. 30; no. 10; pp. 3254 - 3264 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc., A Wiley Company
01.10.2009
Wiley-Liss |
Subjects | |
Online Access | Get full text |
ISSN | 1065-9471 1097-0193 1097-0193 |
DOI | 10.1002/hbm.20746 |
Cover
Abstract | Objective: The “default network” represents a baseline condition of brain function and is of interest in schizophrenia research because its component brain regions are believed to be aberrant in the disorder. We hypothesized that magnetoencephalographic (MEG) source localization analysis would reveal abnormal resting activity within particular frequency bands in schizophrenia. Experimental Design: Eyes‐closed resting state MEG signals were collected for two comparison groups. Patients with schizophrenia (N = 38) were age‐gender matched with healthy control subjects (N = 38), and with a group of unmedicated unaffected siblings of patients with schizophrenia (N = 38). To localize 3D‐brain regional differences, synthetic aperture magnetometry was calculated across established frequency bands as follows: delta (0.9–4 Hz), theta (4–8 Hz), alpha (8–14 Hz), beta (14–30 Hz), gamma (30–80 Hz), and super‐gamma (80–150 Hz). Principle Observations: Patients with schizophrenia showed significantly reduced activation in the gamma frequency band in the posterior region of the medial parietal cortex. As a group, unaffected siblings of schizophrenia patients also showed significantly reduced activation in the gamma bandwidth across similar brain regions. Moreover, using the significant region for the patients and examining the gamma band power gave an odds ratio of 6:1 for reductions of two standard deviations from the mean. This suggests that the measure might be the basis of an intermediate phenotype. Conclusions: MEG resting state analysis adds to the evidence that schizophrenic patients experience this condition very differently than healthy controls. Whether this baseline difference relates to network abnormalities remains to be seen. Hum Brain Mapp, 2009. © 2009 Wiley‐Liss, Inc. |
---|---|
AbstractList | The "default network" represents a baseline condition of brain function and is of interest in schizophrenia research because its component brain regions are believed to be aberrant in the disorder. We hypothesized that magnetoencephalographic (MEG) source localization analysis would reveal abnormal resting activity within particular frequency bands in schizophrenia.
Eyes-closed resting state MEG signals were collected for two comparison groups. Patients with schizophrenia (N = 38) were age-gender matched with healthy control subjects (N = 38), and with a group of unmedicated unaffected siblings of patients with schizophrenia (N = 38). To localize 3D-brain regional differences, synthetic aperture magnetometry was calculated across established frequency bands as follows: delta (0.9-4 Hz), theta (4-8 Hz), alpha (8-14 Hz), beta (14-30 Hz), gamma (30-80 Hz), and super-gamma (80-150 Hz). PRINCIPLE OBSERVATIONS: Patients with schizophrenia showed significantly reduced activation in the gamma frequency band in the posterior region of the medial parietal cortex. As a group, unaffected siblings of schizophrenia patients also showed significantly reduced activation in the gamma bandwidth across similar brain regions. Moreover, using the significant region for the patients and examining the gamma band power gave an odds ratio of 6:1 for reductions of two standard deviations from the mean. This suggests that the measure might be the basis of an intermediate phenotype.
MEG resting state analysis adds to the evidence that schizophrenic patients experience this condition very differently than healthy controls. Whether this baseline difference relates to network abnormalities remains to be seen. Objective: The “default network” represents a baseline condition of brain function and is of interest in schizophrenia research because its component brain regions are believed to be aberrant in the disorder. We hypothesized that magnetoencephalographic (MEG) source localization analysis would reveal abnormal resting activity within particular frequency bands in schizophrenia. Experimental Design: Eyes‐closed resting state MEG signals were collected for two comparison groups. Patients with schizophrenia (N = 38) were age‐gender matched with healthy control subjects (N = 38), and with a group of unmedicated unaffected siblings of patients with schizophrenia (N = 38). To localize 3D‐brain regional differences, synthetic aperture magnetometry was calculated across established frequency bands as follows: delta (0.9–4 Hz), theta (4–8 Hz), alpha (8–14 Hz), beta (14–30 Hz), gamma (30–80 Hz), and super‐gamma (80–150 Hz). Principle Observations: Patients with schizophrenia showed significantly reduced activation in the gamma frequency band in the posterior region of the medial parietal cortex. As a group, unaffected siblings of schizophrenia patients also showed significantly reduced activation in the gamma bandwidth across similar brain regions. Moreover, using the significant region for the patients and examining the gamma band power gave an odds ratio of 6:1 for reductions of two standard deviations from the mean. This suggests that the measure might be the basis of an intermediate phenotype. Conclusions: MEG resting state analysis adds to the evidence that schizophrenic patients experience this condition very differently than healthy controls. Whether this baseline difference relates to network abnormalities remains to be seen. Hum Brain Mapp, 2009. © 2009 Wiley‐Liss, Inc. Objective: The “default network” represents a baseline condition of brain function and is of interest in schizophrenia research because its component brain regions are believed to be aberrant in the disorder. We hypothesized that magnetoencephalographic (MEG) source localization analysis would reveal abnormal resting activity within particular frequency bands in schizophrenia. Experimental Design: Eyes‐closed resting state MEG signals were collected for two comparison groups. Patients with schizophrenia ( N = 38) were age‐gender matched with healthy control subjects ( N = 38), and with a group of unmedicated unaffected siblings of patients with schizophrenia ( N = 38). To localize 3D‐brain regional differences, synthetic aperture magnetometry was calculated across established frequency bands as follows: delta (0.9–4 Hz), theta (4–8 Hz), alpha (8–14 Hz), beta (14–30 Hz), gamma (30–80 Hz), and super‐gamma (80–150 Hz). Principle Observations: Patients with schizophrenia showed significantly reduced activation in the gamma frequency band in the posterior region of the medial parietal cortex. As a group, unaffected siblings of schizophrenia patients also showed significantly reduced activation in the gamma bandwidth across similar brain regions. Moreover, using the significant region for the patients and examining the gamma band power gave an odds ratio of 6:1 for reductions of two standard deviations from the mean. This suggests that the measure might be the basis of an intermediate phenotype. Conclusions: MEG resting state analysis adds to the evidence that schizophrenic patients experience this condition very differently than healthy controls. Whether this baseline difference relates to network abnormalities remains to be seen. Hum Brain Mapp, 2009. © 2009 Wiley‐Liss, Inc. The "default network" represents a baseline condition of brain function and is of interest in schizophrenia research because its component brain regions are believed to be aberrant in the disorder. We hypothesized that magnetoencephalographic (MEG) source localization analysis would reveal abnormal resting activity within particular frequency bands in schizophrenia.OBJECTIVEThe "default network" represents a baseline condition of brain function and is of interest in schizophrenia research because its component brain regions are believed to be aberrant in the disorder. We hypothesized that magnetoencephalographic (MEG) source localization analysis would reveal abnormal resting activity within particular frequency bands in schizophrenia.Eyes-closed resting state MEG signals were collected for two comparison groups. Patients with schizophrenia (N = 38) were age-gender matched with healthy control subjects (N = 38), and with a group of unmedicated unaffected siblings of patients with schizophrenia (N = 38). To localize 3D-brain regional differences, synthetic aperture magnetometry was calculated across established frequency bands as follows: delta (0.9-4 Hz), theta (4-8 Hz), alpha (8-14 Hz), beta (14-30 Hz), gamma (30-80 Hz), and super-gamma (80-150 Hz). PRINCIPLE OBSERVATIONS: Patients with schizophrenia showed significantly reduced activation in the gamma frequency band in the posterior region of the medial parietal cortex. As a group, unaffected siblings of schizophrenia patients also showed significantly reduced activation in the gamma bandwidth across similar brain regions. Moreover, using the significant region for the patients and examining the gamma band power gave an odds ratio of 6:1 for reductions of two standard deviations from the mean. This suggests that the measure might be the basis of an intermediate phenotype.EXPERIMENTAL DESIGNEyes-closed resting state MEG signals were collected for two comparison groups. Patients with schizophrenia (N = 38) were age-gender matched with healthy control subjects (N = 38), and with a group of unmedicated unaffected siblings of patients with schizophrenia (N = 38). To localize 3D-brain regional differences, synthetic aperture magnetometry was calculated across established frequency bands as follows: delta (0.9-4 Hz), theta (4-8 Hz), alpha (8-14 Hz), beta (14-30 Hz), gamma (30-80 Hz), and super-gamma (80-150 Hz). PRINCIPLE OBSERVATIONS: Patients with schizophrenia showed significantly reduced activation in the gamma frequency band in the posterior region of the medial parietal cortex. As a group, unaffected siblings of schizophrenia patients also showed significantly reduced activation in the gamma bandwidth across similar brain regions. Moreover, using the significant region for the patients and examining the gamma band power gave an odds ratio of 6:1 for reductions of two standard deviations from the mean. This suggests that the measure might be the basis of an intermediate phenotype.MEG resting state analysis adds to the evidence that schizophrenic patients experience this condition very differently than healthy controls. Whether this baseline difference relates to network abnormalities remains to be seen.CONCLUSIONSMEG resting state analysis adds to the evidence that schizophrenic patients experience this condition very differently than healthy controls. Whether this baseline difference relates to network abnormalities remains to be seen. |
Author | Coppola, Richard Apud, Jose Rutter, Lindsay Holroyd, Tom Carver, Frederick W. Nadar, Sreenivasan Rajamoni Mitchell-Francis, Judy Weinberger, Daniel R. |
AuthorAffiliation | 2 Clinical Brain Disorders Branch, NIMH, Bethesda, Maryland 1 MEG Core Facility, National Institute of Mental Health, Bethesda, Maryland |
AuthorAffiliation_xml | – name: 2 Clinical Brain Disorders Branch, NIMH, Bethesda, Maryland – name: 1 MEG Core Facility, National Institute of Mental Health, Bethesda, Maryland |
Author_xml | – sequence: 1 givenname: Lindsay surname: Rutter fullname: Rutter, Lindsay organization: MEG Core Facility, National Institute of Mental Health, Bethesda, Maryland – sequence: 2 givenname: Frederick W. surname: Carver fullname: Carver, Frederick W. organization: MEG Core Facility, National Institute of Mental Health, Bethesda, Maryland – sequence: 3 givenname: Tom surname: Holroyd fullname: Holroyd, Tom organization: MEG Core Facility, National Institute of Mental Health, Bethesda, Maryland – sequence: 4 givenname: Sreenivasan Rajamoni surname: Nadar fullname: Nadar, Sreenivasan Rajamoni organization: MEG Core Facility, National Institute of Mental Health, Bethesda, Maryland – sequence: 5 givenname: Judy surname: Mitchell-Francis fullname: Mitchell-Francis, Judy organization: MEG Core Facility, National Institute of Mental Health, Bethesda, Maryland – sequence: 6 givenname: Jose surname: Apud fullname: Apud, Jose organization: Clinical Brain Disorders Branch, NIMH, Bethesda, Maryland – sequence: 7 givenname: Daniel R. surname: Weinberger fullname: Weinberger, Daniel R. organization: Clinical Brain Disorders Branch, NIMH, Bethesda, Maryland – sequence: 8 givenname: Richard surname: Coppola fullname: Coppola, Richard email: coppolar@mail.nih.gov organization: MEG Core Facility, National Institute of Mental Health, Bethesda, Maryland |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21985476$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/19288463$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kUtv1DAUhSNURB-w4A-gbBBikdav2PEGqUyhRW1BSCDYWXccZ2JI7GAnDOXX4zDT4SHB6lryd859nMNsz3lnsuwhRscYIXLSLvtjggTjd7IDjKQoEJZ0b37zspBM4P3sMMZPCGFcInwv28eSVBXj9CAz17ByZvTGaTO00PlVgKG1Ol9B30M--LUJeTD1pEfrXW5dPsBojRtjvrZjm0fd2u9-aINxFvJ6CtatEh_HuWrvajvr7md3G-iiebCtR9n7ly_eLS6KqzfnrxanV4VmFeFFTURJiNRLjgAhLjmpSmRMQ4EjyUog2DSoqTiUTCKgJeOC4kpgTKQggCg9yp5tfIdp2ZtapzkDdGoItodwozxY9eePs61a-a-KCFZhxpLBk61B8F-mtIbqbdSm68AZP0UlKENpRI4T-ej3Vrset6dNwOMtAFFD1wRw2sYdR7CsSiZ44p5uOB18jME0v6yQmuNVKV71M97EnvzFajvCfOG0je3-p1jbztz821pdPL--VRQbhY2j-bZTQPis0rlFqT68PldvL8_O6OVHphb0B_DpxjI |
CitedBy_id | crossref_primary_10_3348_kjr_2012_13_3_265 crossref_primary_10_1038_s41537_025_00596_z crossref_primary_10_1111_nyas_12745 crossref_primary_10_1016_j_neubiorev_2015_04_014 crossref_primary_10_1016_j_neuroscience_2014_12_050 crossref_primary_10_1093_cercor_bhy344 crossref_primary_10_1016_j_psychres_2012_09_006 crossref_primary_10_3389_fnins_2014_00168 crossref_primary_10_1016_j_tins_2017_04_003 crossref_primary_10_1038_mp_2013_49 crossref_primary_10_3390_life14050578 crossref_primary_10_1016_j_schres_2020_03_066 crossref_primary_10_1097_YCO_0b013e328338621d crossref_primary_10_3389_fphar_2016_00348 crossref_primary_10_1186_1752_0509_7_30 crossref_primary_10_1016_j_biopsych_2012_03_029 crossref_primary_10_1038_npp_2014_228 crossref_primary_10_4236_jbbs_2015_51001 crossref_primary_10_1152_jn_00590_2018 crossref_primary_10_1016_j_biopsych_2015_07_005 crossref_primary_10_1016_j_neuroimage_2018_10_056 crossref_primary_10_1186_1471_2202_15_104 crossref_primary_10_1016_j_schres_2010_11_009 crossref_primary_10_1016_j_brainres_2011_06_065 crossref_primary_10_1016_j_conb_2012_11_004 crossref_primary_10_1017_S0033291712002103 crossref_primary_10_3389_fpsyt_2024_1358726 crossref_primary_10_1177_0269881114562093 crossref_primary_10_1016_j_neubiorev_2018_09_004 crossref_primary_10_1016_j_neuroimage_2012_03_010 crossref_primary_10_1016_j_plrev_2025_03_008 crossref_primary_10_1016_j_neuroscience_2014_02_038 crossref_primary_10_1371_journal_pone_0029341 crossref_primary_10_18632_aging_103956 crossref_primary_10_2174_2666082216999201209130117 crossref_primary_10_3389_fnins_2018_00365 crossref_primary_10_1093_schbul_sbu121 crossref_primary_10_1111_eip_12327 crossref_primary_10_1177_0269881114565805 crossref_primary_10_1016_j_biopsych_2014_11_019 crossref_primary_10_1027_0269_8803_a000153 crossref_primary_10_1093_schbul_sbv051 crossref_primary_10_1371_journal_pone_0039051 crossref_primary_10_3389_fnins_2021_810431 crossref_primary_10_1016_j_clinph_2017_06_246 crossref_primary_10_1016_j_neuropharm_2011_02_007 crossref_primary_10_1016_j_conb_2014_08_009 crossref_primary_10_1093_schbul_sbae090 crossref_primary_10_1152_jn_00061_2017 crossref_primary_10_1016_j_bbr_2013_12_031 crossref_primary_10_1038_s41598_020_60702_2 crossref_primary_10_1016_j_schres_2019_10_023 crossref_primary_10_1016_j_neubiorev_2021_02_005 crossref_primary_10_1016_j_biopsych_2011_06_029 crossref_primary_10_1002_mp_16406 crossref_primary_10_17116_jnevro20151151166_74 crossref_primary_10_3390_brainsci11070910 crossref_primary_10_1038_s41537_020_00109_0 crossref_primary_10_4306_pi_2014_11_4_467 crossref_primary_10_1007_s00406_018_0889_z crossref_primary_10_1093_schbul_sbz066 crossref_primary_10_3389_fpsyt_2020_00863 crossref_primary_10_1038_nrn2774 crossref_primary_10_3389_fncir_2024_1286111 crossref_primary_10_1097_WNP_0b013e3182121843 crossref_primary_10_1097_HRP_0000000000000110 crossref_primary_10_1016_j_neubiorev_2018_04_006 crossref_primary_10_1016_j_schres_2011_06_003 crossref_primary_10_1111_ejn_13800 crossref_primary_10_3389_fphar_2017_00399 crossref_primary_10_1093_schbul_sbac178 crossref_primary_10_31887_DCNS_2013_15_3_puhlhaas crossref_primary_10_1016_j_neuroscience_2015_11_011 crossref_primary_10_1016_j_clinph_2014_12_031 crossref_primary_10_1097_WNR_0000000000001350 crossref_primary_10_7554_eLife_37799 crossref_primary_10_1136_gpsych_2021_100712 crossref_primary_10_1016_j_chaos_2013_05_001 |
Cites_doi | 10.1176/ajp.2007.164.3.450 10.1073/pnas.1831638100 10.1017/S0033291702006335 10.1006/meth.2001.1238 10.1073/pnas.0504136102 10.1016/S0140-6736(95)91441-2 10.1126/science.1099745 10.1002/hbm.20160 10.1016/j.clinph.2006.06.720 10.1001/archpsyc.1992.01820120063009 10.1073/pnas.0135058100 10.1016/j.schres.2006.12.027 10.1073/pnas.98.2.676 10.1016/0028-3932(71)90067-4 10.1162/089892903770007416 10.1016/S0920-9964(97)00037-6 10.1038/nn1727 10.1093/brain/awl004 10.1192/bjp.187.3.221 10.1006/cbmr.1996.0014 10.1093/brain/awh166 10.1001/archpsyc.60.11.1158 10.1097/01.wnr.0000198434.06518.b8 10.1093/schbul/sbm052 10.1016/S0361-9230(00)00437-8 10.1002/9780470987353.ch10 10.1109/10.930901 10.1016/j.schres.2007.05.029 10.1073/pnas.0308627101 10.1016/j.brainresbull.2006.06.012 10.1038/35094500 10.1016/j.neulet.2007.02.081 10.1016/S0006-3223(96)00263-6 10.1002/ana.410420114 10.1016/j.schres.2003.09.008 10.1162/0898929042568532 10.1001/archpsyc.56.7.639 10.1093/brain/awn018 10.1016/j.neuroimage.2006.05.033 10.1212/WNL.50.6.1563 10.1162/089892903321593117 10.1001/archpsyc.57.9.907 10.1088/1741-2560/4/4/001 10.1016/j.neuroimage.2006.09.013 10.1016/S0006-3223(98)00264-9 10.1016/j.schres.2004.02.011 10.1073/pnas.071043098 10.1001/archpsyc.58.12.1118 10.1016/j.biopsych.2004.09.013 10.1191/0962280203sm341ra 10.1006/nimg.2001.1037 10.1016/S0959-4388(00)00068-4 10.1097/00001756-200005150-00029 10.1176/appi.ajp.157.8.1309 10.1016/j.biopsych.2005.03.043 10.1162/jocn.1997.9.5.648 10.1006/nimg.2001.1050 |
ContentType | Journal Article |
Copyright | Copyright © 2009 Wiley‐Liss, Inc. 2009 INIST-CNRS |
Copyright_xml | – notice: Copyright © 2009 Wiley‐Liss, Inc. – notice: 2009 INIST-CNRS |
DBID | BSCLL AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1002/hbm.20746 |
DatabaseName | Istex CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Anatomy & Physiology |
DocumentTitleAlternate | Magnetoencephalographic Gamma Power Reduction |
EISSN | 1097-0193 |
EndPage | 3264 |
ExternalDocumentID | PMC2748144 19288463 21985476 10_1002_hbm_20746 HBM20746 ark_67375_WNG_QKDD3KX4_C |
Genre | article Journal Article Research Support, N.I.H., Intramural |
GrantInformation_xml | – fundername: NIMH Intramural Research Program – fundername: Intramural NIH HHS grantid: Z01 MH002889 – fundername: Intramural NIH HHS grantid: Z01 MH002890 |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 24P 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 702 7PT 7X7 8-0 8-1 8-3 8-4 8-5 8FI 8FJ 8UM 930 A03 AAESR AAEVG AAHHS AAONW AAZKR ABCQN ABCUV ABEML ABIJN ABIVO ABJNI ABPVW ABUWG ACBWZ ACCFJ ACGFS ACIWK ACPOU ACPRK ACSCC ACXQS ADBBV ADEOM ADIZJ ADMGS ADPDF ADXAS ADZOD AEEZP AEIMD AENEX AEQDE AEUQT AFBPY AFGKR AFKRA AFPWT AFRAH AFZJQ AHMBA AIURR AIWBW AJBDE AJXKR ALAGY ALIPV ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BENPR BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 C45 CCPQU CS3 D-E D-F DCZOG DPXWK DR1 DR2 DU5 EBD EBS EJD EMOBN F00 F01 F04 F5P FEDTE FYUFA G-S G.N GAKWD GNP GODZA GROUPED_DOAJ H.T H.X HBH HF~ HHY HHZ HMCUK HVGLF HZ~ IAO IHR ITC IX1 J0M JPC KQQ L7B LAW LC2 LC3 LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M6M MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OK1 OVD OVEED P2P P2W P2X P4D PALCI PIMPY PQQKQ Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RPM RWD RWI RX1 RYL SAMSI SUPJJ SV3 TEORI UB1 UKHRP V2E W8V W99 WBKPD WIB WIH WIK WIN WJL WNSPC WOHZO WQJ WRC WUP WXSBR WYISQ XG1 XSW XV2 ZZTAW ~IA ~WT AANHP AAYCA ACCMX ACRPL ACYXJ ADNMO AAFWJ AAYXX AFPKN AGQPQ CITATION PHGZM PHGZT AAMMB AEFGJ AGXDD AIDQK AIDYY IQODW CGR CUY CVF ECM EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c4826-d275229cb60a006962850eef3a60945a21ef0f86a5490a354673187112972a033 |
IEDL.DBID | DR2 |
ISSN | 1065-9471 1097-0193 |
IngestDate | Thu Aug 21 14:09:51 EDT 2025 Fri Sep 05 06:06:23 EDT 2025 Mon Jul 21 05:29:05 EDT 2025 Mon Jul 21 09:14:21 EDT 2025 Thu Apr 24 23:09:58 EDT 2025 Tue Jul 01 04:25:56 EDT 2025 Wed Jan 22 16:28:36 EST 2025 Wed Oct 30 09:51:17 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Keywords | Human default mode Nervous system diseases Radiodiagnosis Magnetoencephalography Schizophrenia unaffected siblings Sibling baseline default network Psychosis synthetic aperture magnetometry Magnetometry cuneus precuneus SAM |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4826-d275229cb60a006962850eef3a60945a21ef0f86a5490a354673187112972a033 |
Notes | istex:3145A33D2046EB3CF0A371E614BDF126C19CA781 NIMH Intramural Research Program ark:/67375/WNG-QKDD3KX4-C ArticleID:HBM20746 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | http://doi.org/10.1002/hbm.20746 |
PMID | 19288463 |
PQID | 734052261 |
PQPubID | 23479 |
PageCount | 11 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_2748144 proquest_miscellaneous_734052261 pubmed_primary_19288463 pascalfrancis_primary_21985476 crossref_primary_10_1002_hbm_20746 crossref_citationtrail_10_1002_hbm_20746 wiley_primary_10_1002_hbm_20746_HBM20746 istex_primary_ark_67375_WNG_QKDD3KX4_C |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | October 2009 |
PublicationDateYYYYMMDD | 2009-10-01 |
PublicationDate_xml | – month: 10 year: 2009 text: October 2009 |
PublicationDecade | 2000 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken – name: New York, NY – name: United States |
PublicationTitle | Human brain mapping |
PublicationTitleAlternate | Hum. Brain Mapp |
PublicationYear | 2009 |
Publisher | Wiley Subscription Services, Inc., A Wiley Company Wiley-Liss |
Publisher_xml | – name: Wiley Subscription Services, Inc., A Wiley Company – name: Wiley-Liss |
References | Harrison BJ,Yucel M,Pujol J,Pantelis C ( 2007): Task-induced deactivation of midline cortical regions in schizophrenia assessed with fMRI. Schizophr Res 91: 82-86. Hulshoff HE,Schnack HG,Mandl RCW,van Haren NEM,Koning H,Collins L,Evans AC,Kahn RS ( 2001): Focal gray matter density changes in schizophrenia. Arch Gen Psychiatry 58: 1118-1125. Gusnard DA,Raichle ME ( 2001): Searching for a baseline: Functional imaging and the resting human brain. Nat Rev Neurosci 2: 685-694. Bosboom JL,Stoffers D,Stam CJ,van Dijk BW,Verbunt J,Berendse HW,Wolters ECH ( 2006): Resting state oscillatory brain dynamics in Parkinson's disease: An MEG study. Clin Neurophys 117: 2521-2531. Narr KL,Toga AW,Szeszko P,Thompson PM,Woods RP,Robinson D,Sevy S,Wang Y,Schrock K,Bilder RM ( 2005): Cortical thinning in cingulate and occipital cortices in first episode schizophrenia. Biol Psychiatry 58: 32-40. Buzsaki G,Draguhn A ( 2004): Neuronal oscillations in cortical networks. Science 304: 1926-1929. Greicius MD,Menon V ( 2004): Default-mode activity during a passive sensory task: Uncoupled from deactivation but impacting activation. J Cogn Neurosci 16: 1484-1492. McKiernan KA,Kaufman JN,Kucera-Thompson J,Binder JR ( 2003): A parametric manipulation of factors affecting task-induced deactivation in functional neuroimaging. J Cogn Neurosci 15: 394-408. Cox RW ( 1996): AFNI: Software for analysis and visualization of functional magnetic resonance neuroimages. Comput Biomed Res 29: 162-173. Danion JM,Rizzo L,Bruant A ( 1999): Functional mechanisms underlying impaired recognition memory and conscious awareness in patients with schizophrenia. Arch Gen Psychiatry 56: 639-644. Vrba J,Robinson SE ( 2001): Signal processing in magnetoencephalography. Methods 25: 249-271. Kuperberg G,Heckers S ( 2000): Schizophrenia and cognitive function. Curr Opin Neurobiol 10: 205-210. Weickert TW,Goldberg TE,Gold JM,Bigelow LB,Egan MF,Weinberger DR ( 2000): Cognitive impairments in patients with schizophrenia displaying preserved and compromised intellect. Arc Gen Psychiatry 57: 907-913. Winterer G,Egan MF,Raedler T,Sanchez C,Jones DW,Coppola R,Weinberger DR ( 2003): P300 and genetic risk for schizophrenia. Arch Gen Psychiatry 60: 1158-1167. Morcom AM,Fletcher PC ( 2006): Does the brain have a baseline? Why we should be resisting a rest. Neuroimage 37: 1073-1082. Johnson KA,Jones K,Holman BL,Becker JA,Spiers PA,Satlin A,Albert MS ( 1998): Preclinical prediction of Alzheimer's disease using SPECT. Neurology 50: 1563-1572. Genovese CR,Lazar NA,Nichols T ( 2001): Thresholding of statistical maps in functional neuroimaging using the false discovery rate. Neuroimage 15: 870-878. Cavanna AE,Trimble MR ( 2006): The precuneus: A review of its functional anatomy and behavioural correlates. Brain 129: 564-583. Park S,Holzman PS ( 1992): Schizophrenics show spatial working memory deficits. Arch Gen Psychiatry 49: 975-982. Bluhm RL,Miller J,Lanius RA,Osuch EA,Boksman K,Neufeld RWJ,Theberge J,Schaefer B,Williamson P ( 2007): Spontaneous low-frequency fluctuations in the bold signal in schizophrenic patients: Anomalies in the default network. Schizophr Bull 33: 1004-1012. Frith C ( 1995): Functional imaging and cognitive abnormalities. Lancet 346: 615-620. Egan MF,Goldberg TE,Gscheidle T,Weirich M,Bigelow LB,Weinberger DR ( 2000): Relative risk of attention defecits in siblings of patients with schizophrenia. Am J Psychiatry 157: 1309-1316. Greicius MD,Krasnow B,Reiss AL,Menon V ( 2003): Functional connectivity in the resting brain: A network analysis of the default mode hypothesis. Proc Natl Acad Sci USA 100: 253-258. Eustache F,Piolino P,Giffard B,Viader F,De La Sayette V,Baron J,Desgranges B ( 2004): 'In the course of time': A PET study of the cerebral substrates of autobiographical amnesia in Alzheimer's disease. Brain 127: 1549-1560. Oldfield RC ( 1971): The assessment and analysis of handedness: The Edinburgh handedness inventory. Neuropsychologia 9: 97-113. Tendolkar I,Ruhrmann S,Brockhaus A,Pukrop R,Klosterkotter J ( 2002): Remembering or knowing: Electrophysiological evidence for an episodic memory deficit in schizophrenia. Psychol Med 32: 1261-1271. Zhou Y,Liang M,Tian L,Wang K,Hao Y,Liu H,Liu Z,Jiang T ( 2007b) Functional disintegration in paranoid schizophrenia using resting-state fMRI. Schizophr Res 97: 194-205. Fox MD,Snyder AZ,Vincent JL,Corbetta M,Van Essen DC,Raichle ME ( 2005): The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc Natl Acad Sci USA 102: 9673-9678. Singh KD,Barnes GR,Hillebrand A,Forde EME,Williams AL ( 2002): Task-related changes in cortical synchronization are spatially coincident with the hemodynamic response. Neuroimage 16: 103-114. Liu Y,Liang M,Zhou Y,He Y,Hao Y,Song M,Yu C,Liu H,Liu Z,Jiang T ( 2008): Disrupted small-world networks in schizophrenia. Brain 131: 945-961. Benjamini Y,Hochberg Y ( 1995): Controlling the false discovery rate: A practical and powerful approach to multiple testing. J Roy Stat Soc 57: 289-300. Weissman DH,Roberts KC,Visscher KM,Woldorff MG ( 2006): The neural bases of momentary lapses in attention. Nat Neurosci 9: 971-978. Lawrence NS,Ross TJ,Hoffmann R ( 2003): Multiple neuronal networks mediate sustained attention. J Cogn Neurosci 15: 1028-1038. Rombouts SARB,Barkhof F,Goekoop R,Stam CJ,Scheltens P ( 2005): Altered resting state networks in mild cognitive impairment and mild Alzheimer's disease: An fMRI study. Hum Brain Mapp 26: 231-239. Garrity AG,Pearlson GD,McKiernan K,Lloyd D,Kiehl KA,Calhoun VD ( 2007): Aberrant "default mode" functional connectivity of schizophrenia. Am J Psychiatry 164: 450-457. Callicott JH,Egan MF,Bertolino A,Mattay VS,Langheim FJP,Frank JA,Weinberger DR ( 1998): Hippocampal N-acetyl aspartate in unaffected siblings of patients with schizophrenia: A possible intermediate neurobiological phenotype. Biol Psychiatry 44: 941-950. Simpson JRJr,Drevets WC,Snyder AZ,Gusnard DA,Raichle ME ( 2001): Emotion-induced changes in human medial prefrontal cortex: II. During anticipatory anxiety. Neurobiology 98: 688-693. Georgopoulos AP,Karageorgiou E,Leuthold AC,Lewis SM,Lynch JK,Alonso AA,Aslam Z,Carpenter AF,Georgopoulos A,Hemmy LS,Koutlas IG,Langheim FJP,McCarten JP,McPherson SE,Pardo JV,Pardo PJ,Parry GJ,Rottunda SJ,Segal BM,Sponheim SR,Stanwyck JJ,Stephane M,Westermeyer JJ ( 2007): Synchronous neural interactions assessed by magnetoencephalography: A functional biomarker for brain disorders. J Neural Eng 4: 349-355. Mitelman SA,Shihabuddin L,Brickman AM,Hazlett EA,Buchsbaum MS ( 2004): Volume of the cingulate and outcome in schizophrenia. Schizophr Res 72: 91-108. Nichols T,Hayasaka S ( 2003): Controlling the familywise error rate in functional neuroimaging: A comparative review. Stat Methods Med Res 12: 419-446. Allen PP,Johns LC,Fu CHY,Broome MR,Vythelingum GN,McGuire PK ( 2004): Misattribution of external speech in patients with hallucinations and delusions. Schizophr Res 69: 277-287. Greicius MD,Srivastava G,Reiss AL,Menon V ( 2004): Default-mode network activity distinguishes Alzheimer's disease from healthy aging: Evidence from functional MRI. Proc Natl Acad Sci USA 101: 4637-4642. Malaspina D,Harkavy-Friedman J,Corcoran C,Mujica-Parodi L,Printz D,Gorman JM,Heertum RV ( 2004): Resting neural activity distinguishes subgroups of schizophrenia patients. Biol Psychiatry 56: 931-937. Dragovic M,Hammond G,Badcock JC,Jablensky A ( 2005): Laterality phenotypes in patients with schizophrenia, their siblings and controls: Associations with clinical and cognitive variables. Br J Psychiatry 187: 221-228. Fleming K,Goldberg TE,Binks S,Randolph C,Gold JM,Weinberger DR ( 1997): Visuospatial working memory in patients with schizophrenia. Biol Psychiatry 41: 43-49. Bruns A,Eckhorn R,Jokeit H,Ebner A ( 2000): Amplitude envelope correlation detects coupling among incoherent brain signals. Neuroreport 11: 1509-1514. Stam CJ,Jones BF,Manshanden I,van Cappellen van Walsum AM,Montez T,Verbunt JP,de Munck JC,van Dijk BW,Berendsea HW,Scheltens P ( 2006): Magnetoencephalographic evaluation of resting-state functional connectivity in Alzheimer's disease. Neuroimage 32: 1335-1344. Gusnard DA,Akbudak E,Shulman GL,Raichle ME ( 2001): Medial prefrontal cortex and self-referential mental activity: Relation to a default mode of brain function. Proc Natl Acad Sci USA 98: 4259-4264. Liang M,Zhou Y,Jiang T,Liu Z,Tian L,Liu H,Hao Y ( 2006): Widespread functional disconnectivity in schizophrenia with resting-state functional magnetic resonance imaging. Neuroreport 17: 209-213. Keefe RSE,Lees-Roitman SE,Dupre RL ( 1997): Performance of patients with schizophrenia on a pen and paper visuospatial working memory task with short delay. Schizophr Res 26: 9-14. Raichle ME,MacLeod AM,Snyder AZ,Powers WJ,Gusnard DA,Shulman GL ( 2001): A default mode of brain function. Proc Natl Acad Sci USA 98: 676-672. Laufs H,Krakow K,Sterzer P,Eger E,Beyerle A,Salek-Haddadi A,Kleinschmidt A ( 2003): Electroencephalographic signatures of attentional and cognitive default modes in spontaneous brain activity fluctuations at rest. Proc Natl Acad Sci USA 100: 11053-11058. Esposito F,Bertolino A,Scarabino T,Latorre V,Blasi G,Popolizio T,Tedeschi G,Cirillo S,Goebel R,Di Salle F ( 2006): Independent component model of the default-mode brain function: assessing the impact of active thinking. Brain Res Bull 70: 263-269. Minoshima S,Giordani B,Berent S,Frey KA,Foster NL,Kuhl DE ( 1997): Metabolic reduction in the posterior cingulate cortex in very early Alzheimer's disease. Ann Neurol 42: 85-94. Sekihara K,Nagarajan SS,Poeppel D,Marantz A,Miyashita Y ( 2001): Reconstructing spatio-temporal activities of neural sources using an MEG vector beamformer technique. IEEE Trans Biomed Eng 48: 760-771. Zhou Y,Liang M,Jiang T,Tian L,Liu Y,Liu Z,Liu H,Kuang F ( 2007a) Functional dysconnectivity of the dorsolateral prefrontal cortex in first-episode schizophrenia using resting-state fMRI. Neurosci Lett 417: 297-302. Shulman GL,Fiez JA,Corbetta M,Buckner RL,Miezin FM,Raichle ME,Peter 2006; 70 2002; 16 2004; 127 2007a; 417 1997; 42 2006; 32 1997; 41 2004; 69 2006; 37 2003; 15 2001; 48 2005; 26 2007; 33 1997; 9 1998; 44 2003; 12 1971; 9 1996; 29 2004; 72 2005; 187 2005; 102 2000; 57 2000; 10 2000; 11 1999; 56 2001; 15 2007; 4 1998; 50 1992; 49 2006; 129 2001; 58 2001; 98 2001; 54 2004; 101 2000; 157 1995; 57 1997; 26 2006; 17 2002; 32 2006; 9 2007; 164 2007; 91 2003 2006; 117 2004; 304 2001; 25 2004; 16 2004; 56 1995; 346 2001; 2 2003; 60 2008; 131 2003; 100 2007b; 97 2005; 58 e_1_2_6_53_1 e_1_2_6_32_1 e_1_2_6_30_1 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_59_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_17_1 e_1_2_6_55_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_57_1 Benjamini Y (e_1_2_6_3_1) 1995; 57 e_1_2_6_43_1 e_1_2_6_20_1 e_1_2_6_41_1 e_1_2_6_60_1 e_1_2_6_9_1 e_1_2_6_5_1 e_1_2_6_7_1 e_1_2_6_24_1 e_1_2_6_49_1 e_1_2_6_22_1 e_1_2_6_28_1 e_1_2_6_45_1 e_1_2_6_26_1 e_1_2_6_47_1 e_1_2_6_52_1 e_1_2_6_54_1 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_50_1 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_56_1 e_1_2_6_16_1 e_1_2_6_37_1 Simpson JR (e_1_2_6_51_1) 2001; 98 e_1_2_6_58_1 e_1_2_6_42_1 e_1_2_6_21_1 e_1_2_6_40_1 e_1_2_6_8_1 e_1_2_6_4_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_48_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_27_1 e_1_2_6_46_1 |
References_xml | – reference: Fox MD,Snyder AZ,Vincent JL,Corbetta M,Van Essen DC,Raichle ME ( 2005): The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc Natl Acad Sci USA 102: 9673-9678. – reference: Cox RW ( 1996): AFNI: Software for analysis and visualization of functional magnetic resonance neuroimages. Comput Biomed Res 29: 162-173. – reference: Singh KD,Barnes GR,Hillebrand A,Forde EME,Williams AL ( 2002): Task-related changes in cortical synchronization are spatially coincident with the hemodynamic response. Neuroimage 16: 103-114. – reference: Weickert TW,Goldberg TE,Gold JM,Bigelow LB,Egan MF,Weinberger DR ( 2000): Cognitive impairments in patients with schizophrenia displaying preserved and compromised intellect. Arc Gen Psychiatry 57: 907-913. – reference: Harrison BJ,Yucel M,Pujol J,Pantelis C ( 2007): Task-induced deactivation of midline cortical regions in schizophrenia assessed with fMRI. Schizophr Res 91: 82-86. – reference: Cavanna AE,Trimble MR ( 2006): The precuneus: A review of its functional anatomy and behavioural correlates. Brain 129: 564-583. – reference: Greicius MD,Krasnow B,Reiss AL,Menon V ( 2003): Functional connectivity in the resting brain: A network analysis of the default mode hypothesis. Proc Natl Acad Sci USA 100: 253-258. – reference: Bruns A,Eckhorn R,Jokeit H,Ebner A ( 2000): Amplitude envelope correlation detects coupling among incoherent brain signals. Neuroreport 11: 1509-1514. – reference: Raichle ME,MacLeod AM,Snyder AZ,Powers WJ,Gusnard DA,Shulman GL ( 2001): A default mode of brain function. Proc Natl Acad Sci USA 98: 676-672. – reference: Esposito F,Bertolino A,Scarabino T,Latorre V,Blasi G,Popolizio T,Tedeschi G,Cirillo S,Goebel R,Di Salle F ( 2006): Independent component model of the default-mode brain function: assessing the impact of active thinking. Brain Res Bull 70: 263-269. – reference: Malaspina D,Harkavy-Friedman J,Corcoran C,Mujica-Parodi L,Printz D,Gorman JM,Heertum RV ( 2004): Resting neural activity distinguishes subgroups of schizophrenia patients. Biol Psychiatry 56: 931-937. – reference: Buzsaki G,Draguhn A ( 2004): Neuronal oscillations in cortical networks. Science 304: 1926-1929. – reference: Eustache F,Piolino P,Giffard B,Viader F,De La Sayette V,Baron J,Desgranges B ( 2004): 'In the course of time': A PET study of the cerebral substrates of autobiographical amnesia in Alzheimer's disease. Brain 127: 1549-1560. – reference: Greicius MD,Srivastava G,Reiss AL,Menon V ( 2004): Default-mode network activity distinguishes Alzheimer's disease from healthy aging: Evidence from functional MRI. Proc Natl Acad Sci USA 101: 4637-4642. – reference: Narr KL,Toga AW,Szeszko P,Thompson PM,Woods RP,Robinson D,Sevy S,Wang Y,Schrock K,Bilder RM ( 2005): Cortical thinning in cingulate and occipital cortices in first episode schizophrenia. Biol Psychiatry 58: 32-40. – reference: Frith C ( 1995): Functional imaging and cognitive abnormalities. Lancet 346: 615-620. – reference: Zhou Y,Liang M,Jiang T,Tian L,Liu Y,Liu Z,Liu H,Kuang F ( 2007a) Functional dysconnectivity of the dorsolateral prefrontal cortex in first-episode schizophrenia using resting-state fMRI. Neurosci Lett 417: 297-302. – reference: Vrba J,Robinson SE ( 2001): Signal processing in magnetoencephalography. Methods 25: 249-271. – reference: Allen PP,Johns LC,Fu CHY,Broome MR,Vythelingum GN,McGuire PK ( 2004): Misattribution of external speech in patients with hallucinations and delusions. Schizophr Res 69: 277-287. – reference: Laufs H,Krakow K,Sterzer P,Eger E,Beyerle A,Salek-Haddadi A,Kleinschmidt A ( 2003): Electroencephalographic signatures of attentional and cognitive default modes in spontaneous brain activity fluctuations at rest. Proc Natl Acad Sci USA 100: 11053-11058. – reference: Danion JM,Rizzo L,Bruant A ( 1999): Functional mechanisms underlying impaired recognition memory and conscious awareness in patients with schizophrenia. Arch Gen Psychiatry 56: 639-644. – reference: Hulshoff HE,Schnack HG,Mandl RCW,van Haren NEM,Koning H,Collins L,Evans AC,Kahn RS ( 2001): Focal gray matter density changes in schizophrenia. Arch Gen Psychiatry 58: 1118-1125. – reference: Tendolkar I,Ruhrmann S,Brockhaus A,Pukrop R,Klosterkotter J ( 2002): Remembering or knowing: Electrophysiological evidence for an episodic memory deficit in schizophrenia. Psychol Med 32: 1261-1271. – reference: Shulman GL,Fiez JA,Corbetta M,Buckner RL,Miezin FM,Raichle ME,Petersen SE ( 1997): Common blood flow changes across visual tasks: II. Decreases in cerebral cortex. J Cogn Neurosci 9: 648-663. – reference: Lawrence NS,Ross TJ,Hoffmann R ( 2003): Multiple neuronal networks mediate sustained attention. J Cogn Neurosci 15: 1028-1038. – reference: McKiernan KA,Kaufman JN,Kucera-Thompson J,Binder JR ( 2003): A parametric manipulation of factors affecting task-induced deactivation in functional neuroimaging. J Cogn Neurosci 15: 394-408. – reference: Benjamini Y,Hochberg Y ( 1995): Controlling the false discovery rate: A practical and powerful approach to multiple testing. J Roy Stat Soc 57: 289-300. – reference: Oldfield RC ( 1971): The assessment and analysis of handedness: The Edinburgh handedness inventory. Neuropsychologia 9: 97-113. – reference: Mazoyer B,Zago L,Mellet E,Bricogne S,Etard O,Houde O,Crivello F,Joliot M,Petit L,Tzourion-Mazoyer N ( 2001): Cortical networks for working memory and executive functions sustain the conscious resting state in man. Brain Res Bull 54: 287-298. – reference: Dragovic M,Hammond G,Badcock JC,Jablensky A ( 2005): Laterality phenotypes in patients with schizophrenia, their siblings and controls: Associations with clinical and cognitive variables. Br J Psychiatry 187: 221-228. – reference: Rombouts SARB,Barkhof F,Goekoop R,Stam CJ,Scheltens P ( 2005): Altered resting state networks in mild cognitive impairment and mild Alzheimer's disease: An fMRI study. Hum Brain Mapp 26: 231-239. – reference: Greicius MD,Menon V ( 2004): Default-mode activity during a passive sensory task: Uncoupled from deactivation but impacting activation. J Cogn Neurosci 16: 1484-1492. – reference: Stam CJ,Jones BF,Manshanden I,van Cappellen van Walsum AM,Montez T,Verbunt JP,de Munck JC,van Dijk BW,Berendsea HW,Scheltens P ( 2006): Magnetoencephalographic evaluation of resting-state functional connectivity in Alzheimer's disease. Neuroimage 32: 1335-1344. – reference: Bosboom JL,Stoffers D,Stam CJ,van Dijk BW,Verbunt J,Berendse HW,Wolters ECH ( 2006): Resting state oscillatory brain dynamics in Parkinson's disease: An MEG study. Clin Neurophys 117: 2521-2531. – reference: Genovese CR,Lazar NA,Nichols T ( 2001): Thresholding of statistical maps in functional neuroimaging using the false discovery rate. Neuroimage 15: 870-878. – reference: Park S,Holzman PS ( 1992): Schizophrenics show spatial working memory deficits. Arch Gen Psychiatry 49: 975-982. – reference: Simpson JRJr,Drevets WC,Snyder AZ,Gusnard DA,Raichle ME ( 2001): Emotion-induced changes in human medial prefrontal cortex: II. During anticipatory anxiety. Neurobiology 98: 688-693. – reference: Winterer G,Egan MF,Raedler T,Sanchez C,Jones DW,Coppola R,Weinberger DR ( 2003): P300 and genetic risk for schizophrenia. Arch Gen Psychiatry 60: 1158-1167. – reference: Liu Y,Liang M,Zhou Y,He Y,Hao Y,Song M,Yu C,Liu H,Liu Z,Jiang T ( 2008): Disrupted small-world networks in schizophrenia. Brain 131: 945-961. – reference: Georgopoulos AP,Karageorgiou E,Leuthold AC,Lewis SM,Lynch JK,Alonso AA,Aslam Z,Carpenter AF,Georgopoulos A,Hemmy LS,Koutlas IG,Langheim FJP,McCarten JP,McPherson SE,Pardo JV,Pardo PJ,Parry GJ,Rottunda SJ,Segal BM,Sponheim SR,Stanwyck JJ,Stephane M,Westermeyer JJ ( 2007): Synchronous neural interactions assessed by magnetoencephalography: A functional biomarker for brain disorders. J Neural Eng 4: 349-355. – reference: Weissman DH,Roberts KC,Visscher KM,Woldorff MG ( 2006): The neural bases of momentary lapses in attention. Nat Neurosci 9: 971-978. – reference: Gusnard DA,Raichle ME ( 2001): Searching for a baseline: Functional imaging and the resting human brain. Nat Rev Neurosci 2: 685-694. – reference: Fleming K,Goldberg TE,Binks S,Randolph C,Gold JM,Weinberger DR ( 1997): Visuospatial working memory in patients with schizophrenia. Biol Psychiatry 41: 43-49. – reference: Johnson KA,Jones K,Holman BL,Becker JA,Spiers PA,Satlin A,Albert MS ( 1998): Preclinical prediction of Alzheimer's disease using SPECT. Neurology 50: 1563-1572. – reference: Zhou Y,Liang M,Tian L,Wang K,Hao Y,Liu H,Liu Z,Jiang T ( 2007b) Functional disintegration in paranoid schizophrenia using resting-state fMRI. Schizophr Res 97: 194-205. – reference: Minoshima S,Giordani B,Berent S,Frey KA,Foster NL,Kuhl DE ( 1997): Metabolic reduction in the posterior cingulate cortex in very early Alzheimer's disease. Ann Neurol 42: 85-94. – reference: Liang M,Zhou Y,Jiang T,Liu Z,Tian L,Liu H,Hao Y ( 2006): Widespread functional disconnectivity in schizophrenia with resting-state functional magnetic resonance imaging. Neuroreport 17: 209-213. – reference: Callicott JH,Egan MF,Bertolino A,Mattay VS,Langheim FJP,Frank JA,Weinberger DR ( 1998): Hippocampal N-acetyl aspartate in unaffected siblings of patients with schizophrenia: A possible intermediate neurobiological phenotype. Biol Psychiatry 44: 941-950. – reference: Morcom AM,Fletcher PC ( 2006): Does the brain have a baseline? Why we should be resisting a rest. Neuroimage 37: 1073-1082. – reference: Gusnard DA,Akbudak E,Shulman GL,Raichle ME ( 2001): Medial prefrontal cortex and self-referential mental activity: Relation to a default mode of brain function. Proc Natl Acad Sci USA 98: 4259-4264. – reference: Kuperberg G,Heckers S ( 2000): Schizophrenia and cognitive function. Curr Opin Neurobiol 10: 205-210. – reference: Sekihara K,Nagarajan SS,Poeppel D,Marantz A,Miyashita Y ( 2001): Reconstructing spatio-temporal activities of neural sources using an MEG vector beamformer technique. IEEE Trans Biomed Eng 48: 760-771. – reference: Nichols T,Hayasaka S ( 2003): Controlling the familywise error rate in functional neuroimaging: A comparative review. Stat Methods Med Res 12: 419-446. – reference: Bluhm RL,Miller J,Lanius RA,Osuch EA,Boksman K,Neufeld RWJ,Theberge J,Schaefer B,Williamson P ( 2007): Spontaneous low-frequency fluctuations in the bold signal in schizophrenic patients: Anomalies in the default network. Schizophr Bull 33: 1004-1012. – reference: Garrity AG,Pearlson GD,McKiernan K,Lloyd D,Kiehl KA,Calhoun VD ( 2007): Aberrant "default mode" functional connectivity of schizophrenia. Am J Psychiatry 164: 450-457. – reference: Egan MF,Goldberg TE,Gscheidle T,Weirich M,Bigelow LB,Weinberger DR ( 2000): Relative risk of attention defecits in siblings of patients with schizophrenia. Am J Psychiatry 157: 1309-1316. – reference: Keefe RSE,Lees-Roitman SE,Dupre RL ( 1997): Performance of patients with schizophrenia on a pen and paper visuospatial working memory task with short delay. Schizophr Res 26: 9-14. – reference: Mitelman SA,Shihabuddin L,Brickman AM,Hazlett EA,Buchsbaum MS ( 2004): Volume of the cingulate and outcome in schizophrenia. Schizophr Res 72: 91-108. – volume: 60 start-page: 1158 year: 2003 end-page: 1167 article-title: P300 and genetic risk for schizophrenia publication-title: Arch Gen Psychiatry – volume: 2 start-page: 685 year: 2001 end-page: 694 article-title: Searching for a baseline: Functional imaging and the resting human brain publication-title: Nat Rev Neurosci – volume: 48 start-page: 760 year: 2001 end-page: 771 article-title: Reconstructing spatio‐temporal activities of neural sources using an MEG vector beamformer technique publication-title: IEEE Trans Biomed Eng – volume: 56 start-page: 639 year: 1999 end-page: 644 article-title: Functional mechanisms underlying impaired recognition memory and conscious awareness in patients with schizophrenia publication-title: Arch Gen Psychiatry – volume: 157 start-page: 1309 year: 2000 end-page: 1316 article-title: Relative risk of attention defecits in siblings of patients with schizophrenia publication-title: Am J Psychiatry – volume: 9 start-page: 97 year: 1971 end-page: 113 article-title: The assessment and analysis of handedness: The Edinburgh handedness inventory publication-title: Neuropsychologia – volume: 70 start-page: 263 year: 2006 end-page: 269 article-title: Independent component model of the default‐mode brain function: assessing the impact of active thinking publication-title: Brain Res Bull – volume: 49 start-page: 975 year: 1992 end-page: 982 article-title: Schizophrenics show spatial working memory deficits publication-title: Arch Gen Psychiatry – volume: 304 start-page: 1926 year: 2004 end-page: 1929 article-title: Neuronal oscillations in cortical networks publication-title: Science – volume: 44 start-page: 941 year: 1998 end-page: 950 article-title: Hippocampal N‐acetyl aspartate in unaffected siblings of patients with schizophrenia: A possible intermediate neurobiological phenotype publication-title: Biol Psychiatry – volume: 4 start-page: 349 year: 2007 end-page: 355 article-title: Synchronous neural interactions assessed by magnetoencephalography: A functional biomarker for brain disorders publication-title: J Neural Eng – volume: 26 start-page: 9 year: 1997 end-page: 14 article-title: Performance of patients with schizophrenia on a pen and paper visuospatial working memory task with short delay publication-title: Schizophr Res – volume: 29 start-page: 162 year: 1996 end-page: 173 article-title: AFNI: Software for analysis and visualization of functional magnetic resonance neuroimages publication-title: Comput Biomed Res – volume: 102 start-page: 9673 year: 2005 end-page: 9678 article-title: The human brain is intrinsically organized into dynamic, anticorrelated functional networks publication-title: Proc Natl Acad Sci USA – volume: 15 start-page: 1028 year: 2003 end-page: 1038 article-title: Multiple neuronal networks mediate sustained attention publication-title: J Cogn Neurosci – volume: 98 start-page: 688 year: 2001 end-page: 693 article-title: Emotion‐induced changes in human medial prefrontal cortex: II. During anticipatory anxiety publication-title: Neurobiology – volume: 10 start-page: 205 year: 2000 end-page: 210 article-title: Schizophrenia and cognitive function publication-title: Curr Opin Neurobiol – volume: 127 start-page: 1549 year: 2004 end-page: 1560 article-title: ‘In the course of time’: A PET study of the cerebral substrates of autobiographical amnesia in Alzheimer's disease publication-title: Brain – volume: 15 start-page: 870 year: 2001 end-page: 878 article-title: Thresholding of statistical maps in functional neuroimaging using the false discovery rate publication-title: Neuroimage – volume: 187 start-page: 221 year: 2005 end-page: 228 article-title: Laterality phenotypes in patients with schizophrenia, their siblings and controls: Associations with clinical and cognitive variables publication-title: Br J Psychiatry – volume: 164 start-page: 450 year: 2007 end-page: 457 article-title: Aberrant “default mode” functional connectivity of schizophrenia publication-title: Am J Psychiatry – volume: 100 start-page: 11053 year: 2003 end-page: 11058 article-title: Electroencephalographic signatures of attentional and cognitive default modes in spontaneous brain activity fluctuations at rest publication-title: Proc Natl Acad Sci USA – start-page: 168 year: 2003 end-page: 184 – volume: 57 start-page: 907 year: 2000 end-page: 913 article-title: Cognitive impairments in patients with schizophrenia displaying preserved and compromised intellect publication-title: Arc Gen Psychiatry – volume: 26 start-page: 231 year: 2005 end-page: 239 article-title: Altered resting state networks in mild cognitive impairment and mild Alzheimer's disease: An fMRI study publication-title: Hum Brain Mapp – volume: 417 start-page: 297 year: 2007a end-page: 302 article-title: Functional dysconnectivity of the dorsolateral prefrontal cortex in first‐episode schizophrenia using resting‐state fMRI publication-title: Neurosci Lett – volume: 17 start-page: 209 year: 2006 end-page: 213 article-title: Widespread functional disconnectivity in schizophrenia with resting‐state functional magnetic resonance imaging publication-title: Neuroreport – volume: 101 start-page: 4637 year: 2004 end-page: 4642 article-title: Default‐mode network activity distinguishes Alzheimer's disease from healthy aging: Evidence from functional MRI publication-title: Proc Natl Acad Sci USA – volume: 129 start-page: 564 year: 2006 end-page: 583 article-title: The precuneus: A review of its functional anatomy and behavioural correlates publication-title: Brain – volume: 91 start-page: 82 year: 2007 end-page: 86 article-title: Task‐induced deactivation of midline cortical regions in schizophrenia assessed with fMRI publication-title: Schizophr Res – volume: 98 start-page: 676 year: 2001 end-page: 672 article-title: A default mode of brain function publication-title: Proc Natl Acad Sci USA – volume: 346 start-page: 615 year: 1995 end-page: 620 article-title: Functional imaging and cognitive abnormalities publication-title: Lancet – volume: 32 start-page: 1335 year: 2006 end-page: 1344 article-title: Magnetoencephalographic evaluation of resting‐state functional connectivity in Alzheimer's disease publication-title: Neuroimage – volume: 98 start-page: 4259 year: 2001 end-page: 4264 article-title: Medial prefrontal cortex and self‐referential mental activity: Relation to a default mode of brain function publication-title: Proc Natl Acad Sci USA – volume: 72 start-page: 91 year: 2004 end-page: 108 article-title: Volume of the cingulate and outcome in schizophrenia publication-title: Schizophr Res – volume: 117 start-page: 2521 year: 2006 end-page: 2531 article-title: Resting state oscillatory brain dynamics in Parkinson's disease: An MEG study publication-title: Clin Neurophys – volume: 100 start-page: 253 year: 2003 end-page: 258 article-title: Functional connectivity in the resting brain: A network analysis of the default mode hypothesis publication-title: Proc Natl Acad Sci USA – volume: 33 start-page: 1004 year: 2007 end-page: 1012 article-title: Spontaneous low‐frequency fluctuations in the bold signal in schizophrenic patients: Anomalies in the default network publication-title: Schizophr Bull – volume: 11 start-page: 1509 year: 2000 end-page: 1514 article-title: Amplitude envelope correlation detects coupling among incoherent brain signals publication-title: Neuroreport – volume: 69 start-page: 277 year: 2004 end-page: 287 article-title: Misattribution of external speech in patients with hallucinations and delusions publication-title: Schizophr Res – volume: 42 start-page: 85 year: 1997 end-page: 94 article-title: Metabolic reduction in the posterior cingulate cortex in very early Alzheimer's disease publication-title: Ann Neurol – volume: 16 start-page: 103 year: 2002 end-page: 114 article-title: Task‐related changes in cortical synchronization are spatially coincident with the hemodynamic response publication-title: Neuroimage – volume: 25 start-page: 249 year: 2001 end-page: 271 article-title: Signal processing in magnetoencephalography publication-title: Methods – volume: 57 start-page: 289 year: 1995 end-page: 300 article-title: Controlling the false discovery rate: A practical and powerful approach to multiple testing publication-title: J Roy Stat Soc – volume: 131 start-page: 945 year: 2008 end-page: 961 article-title: Disrupted small‐world networks in schizophrenia publication-title: Brain – volume: 15 start-page: 394 year: 2003 end-page: 408 article-title: A parametric manipulation of factors affecting task‐induced deactivation in functional neuroimaging publication-title: J Cogn Neurosci – volume: 32 start-page: 1261 year: 2002 end-page: 1271 article-title: Remembering or knowing: Electrophysiological evidence for an episodic memory deficit in schizophrenia publication-title: Psychol Med – volume: 97 start-page: 194 year: 2007b end-page: 205 article-title: Functional disintegration in paranoid schizophrenia using resting‐state fMRI publication-title: Schizophr Res – volume: 58 start-page: 1118 year: 2001 end-page: 1125 article-title: Focal gray matter density changes in schizophrenia publication-title: Arch Gen Psychiatry – volume: 9 start-page: 971 year: 2006 end-page: 978 article-title: The neural bases of momentary lapses in attention publication-title: Nat Neurosci – volume: 56 start-page: 931 year: 2004 end-page: 937 article-title: Resting neural activity distinguishes subgroups of schizophrenia patients publication-title: Biol Psychiatry – volume: 12 start-page: 419 year: 2003 end-page: 446 article-title: Controlling the familywise error rate in functional neuroimaging: A comparative review publication-title: Stat Methods Med Res – volume: 9 start-page: 648 year: 1997 end-page: 663 article-title: Common blood flow changes across visual tasks: II. Decreases in cerebral cortex publication-title: J Cogn Neurosci – volume: 50 start-page: 1563 year: 1998 end-page: 1572 article-title: Preclinical prediction of Alzheimer's disease using SPECT publication-title: Neurology – volume: 16 start-page: 1484 year: 2004 end-page: 1492 article-title: Default‐mode activity during a passive sensory task: Uncoupled from deactivation but impacting activation publication-title: J Cogn Neurosci – volume: 41 start-page: 43 year: 1997 end-page: 49 article-title: Visuospatial working memory in patients with schizophrenia publication-title: Biol Psychiatry – volume: 58 start-page: 32 year: 2005 end-page: 40 article-title: Cortical thinning in cingulate and occipital cortices in first episode schizophrenia publication-title: Biol Psychiatry – volume: 37 start-page: 1073 year: 2006 end-page: 1082 article-title: Does the brain have a baseline? Why we should be resisting a rest publication-title: Neuroimage – volume: 54 start-page: 287 year: 2001 end-page: 298 article-title: Cortical networks for working memory and executive functions sustain the conscious resting state in man publication-title: Brain Res Bull – ident: e_1_2_6_19_1 doi: 10.1176/ajp.2007.164.3.450 – ident: e_1_2_6_33_1 doi: 10.1073/pnas.1831638100 – ident: e_1_2_6_54_1 doi: 10.1017/S0033291702006335 – ident: e_1_2_6_55_1 doi: 10.1006/meth.2001.1238 – ident: e_1_2_6_17_1 doi: 10.1073/pnas.0504136102 – ident: e_1_2_6_18_1 doi: 10.1016/S0140-6736(95)91441-2 – ident: e_1_2_6_7_1 doi: 10.1126/science.1099745 – ident: e_1_2_6_48_1 doi: 10.1002/hbm.20160 – ident: e_1_2_6_5_1 doi: 10.1016/j.clinph.2006.06.720 – ident: e_1_2_6_46_1 doi: 10.1001/archpsyc.1992.01820120063009 – ident: e_1_2_6_24_1 doi: 10.1073/pnas.0135058100 – ident: e_1_2_6_28_1 doi: 10.1016/j.schres.2006.12.027 – ident: e_1_2_6_47_1 doi: 10.1073/pnas.98.2.676 – ident: e_1_2_6_45_1 doi: 10.1016/0028-3932(71)90067-4 – ident: e_1_2_6_34_1 doi: 10.1162/089892903770007416 – ident: e_1_2_6_31_1 doi: 10.1016/S0920-9964(97)00037-6 – ident: e_1_2_6_57_1 doi: 10.1038/nn1727 – ident: e_1_2_6_9_1 doi: 10.1093/brain/awl004 – ident: e_1_2_6_12_1 doi: 10.1192/bjp.187.3.221 – ident: e_1_2_6_10_1 doi: 10.1006/cbmr.1996.0014 – ident: e_1_2_6_15_1 doi: 10.1093/brain/awh166 – volume: 57 start-page: 289 year: 1995 ident: e_1_2_6_3_1 article-title: Controlling the false discovery rate: A practical and powerful approach to multiple testing publication-title: J Roy Stat Soc – ident: e_1_2_6_58_1 doi: 10.1001/archpsyc.60.11.1158 – ident: e_1_2_6_35_1 doi: 10.1097/01.wnr.0000198434.06518.b8 – ident: e_1_2_6_4_1 doi: 10.1093/schbul/sbm052 – ident: e_1_2_6_38_1 doi: 10.1016/S0361-9230(00)00437-8 – ident: e_1_2_6_22_1 doi: 10.1002/9780470987353.ch10 – ident: e_1_2_6_49_1 doi: 10.1109/10.930901 – ident: e_1_2_6_60_1 doi: 10.1016/j.schres.2007.05.029 – ident: e_1_2_6_25_1 doi: 10.1073/pnas.0308627101 – ident: e_1_2_6_14_1 doi: 10.1016/j.brainresbull.2006.06.012 – ident: e_1_2_6_26_1 doi: 10.1038/35094500 – ident: e_1_2_6_59_1 doi: 10.1016/j.neulet.2007.02.081 – ident: e_1_2_6_16_1 doi: 10.1016/S0006-3223(96)00263-6 – ident: e_1_2_6_40_1 doi: 10.1002/ana.410420114 – ident: e_1_2_6_2_1 doi: 10.1016/j.schres.2003.09.008 – ident: e_1_2_6_23_1 doi: 10.1162/0898929042568532 – ident: e_1_2_6_11_1 doi: 10.1001/archpsyc.56.7.639 – ident: e_1_2_6_36_1 doi: 10.1093/brain/awn018 – ident: e_1_2_6_53_1 doi: 10.1016/j.neuroimage.2006.05.033 – ident: e_1_2_6_30_1 doi: 10.1212/WNL.50.6.1563 – ident: e_1_2_6_39_1 doi: 10.1162/089892903321593117 – ident: e_1_2_6_56_1 doi: 10.1001/archpsyc.57.9.907 – ident: e_1_2_6_21_1 doi: 10.1088/1741-2560/4/4/001 – ident: e_1_2_6_42_1 doi: 10.1016/j.neuroimage.2006.09.013 – ident: e_1_2_6_8_1 doi: 10.1016/S0006-3223(98)00264-9 – ident: e_1_2_6_41_1 doi: 10.1016/j.schres.2004.02.011 – ident: e_1_2_6_27_1 doi: 10.1073/pnas.071043098 – ident: e_1_2_6_29_1 doi: 10.1001/archpsyc.58.12.1118 – ident: e_1_2_6_37_1 doi: 10.1016/j.biopsych.2004.09.013 – ident: e_1_2_6_44_1 doi: 10.1191/0962280203sm341ra – ident: e_1_2_6_20_1 doi: 10.1006/nimg.2001.1037 – ident: e_1_2_6_32_1 doi: 10.1016/S0959-4388(00)00068-4 – volume: 98 start-page: 688 year: 2001 ident: e_1_2_6_51_1 article-title: Emotion‐induced changes in human medial prefrontal cortex: II. During anticipatory anxiety publication-title: Neurobiology – ident: e_1_2_6_6_1 doi: 10.1097/00001756-200005150-00029 – ident: e_1_2_6_13_1 doi: 10.1176/appi.ajp.157.8.1309 – ident: e_1_2_6_43_1 doi: 10.1016/j.biopsych.2005.03.043 – ident: e_1_2_6_50_1 doi: 10.1162/jocn.1997.9.5.648 – ident: e_1_2_6_52_1 doi: 10.1006/nimg.2001.1050 |
SSID | ssj0011501 |
Score | 2.2783058 |
Snippet | Objective: The “default network” represents a baseline condition of brain function and is of interest in schizophrenia research because its component brain... Objective: The “default network” represents a baseline condition of brain function and is of interest in schizophrenia research because its component brain... The "default network" represents a baseline condition of brain function and is of interest in schizophrenia research because its component brain regions are... |
SourceID | pubmedcentral proquest pubmed pascalfrancis crossref wiley istex |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 3254 |
SubjectTerms | Adult baseline Biological and medical sciences Brain - pathology Brain - physiopathology Brain Mapping Case-Control Studies cuneus default mode default network Ear, auditive nerve, cochleovestibular tract, facial nerve: diseases, semeiology Female Humans Imaging, Three-Dimensional - methods Investigative techniques, diagnostic techniques (general aspects) magnetoencephalography Magnetoencephalography - methods Male Medical sciences Nervous system Non tumoral diseases Otorhinolaryngology. Stomatology precuneus Radiodiagnosis. Nmr imagery. Nmr spectrometry Rest - physiology SAM Schizophrenia - physiopathology synthetic aperture magnetometry unaffected siblings |
Title | Magnetoencephalographic gamma power reduction in patients with schizophrenia during resting condition |
URI | https://api.istex.fr/ark:/67375/WNG-QKDD3KX4-C/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhbm.20746 https://www.ncbi.nlm.nih.gov/pubmed/19288463 https://www.proquest.com/docview/734052261 https://pubmed.ncbi.nlm.nih.gov/PMC2748144 |
Volume | 30 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEB9KBfHFj1Zt_CiLSPEl7SabZBN8qj3rYbmCYvEehGU32XhHvdxxuQP1r3dm89GeVhCfLnCTkJ3Mzvxmd_Y3AC8zmXNtBPdDk4V-FJSpr02g_SLCcFPqwGZuHXJ0ngwvovfjeLwFr7uzMA0_RL_gRjPD-Wua4NrUR1ekoRNDB8llRHTbgUiIN3_wsaeOIqDjki0MsX6GHrhjFeLhUX_nRiy6RWr9TrWRukb1lE1fi5uA55_1k9dxrQtMp_fgSzekph7l8nC9Mof5z9_YHv9zzPfhbgtY2XFjYQ9gy1Y7sHtcYbI--8EOmCshdWvzO3B71O7U7wIxV1d2NSfHsZjolhl7mrOvejbTbEHN2diSeGPJMti0Yi3Da81oaZjV14sBWXOYklEfEfrFHL5wpWYP4eL07aeTod-2dPBz_PiJX4QSAV-Wm4RrIkmmA5zc2lLoBPPMWIeBLXmZJhrTVq5FjG4cnY4kUChDzYV4BNvVvLJ7wKwsOS_zIo8SEdkiNkmiS2tTmRVBXgjjwavu46q85TunthvfVMPUHCrUpnLa9OBFL7poSD5uEjpwFtJL6OUlVcXJWH0-f6c-nA0G4mwcqRMP9jdMqL8Bg0MaRxKfxDqbUjiZaYdGV3a-rpUUiJ8REAcePG5M7Op9sjBFrCg8kBvG1wsQT_jmP9V04vjCQxmlmDejQpxt_X2Iavhm5C6e_LvoU7jjNthcfeMz2F4t1_Y54rSV2XcT8hdZfTq_ |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9NAEB6VVgJeOFoOc5QVQhUvbtf22mtLvJSGEkgTCdSKvFSrtb0mUYkT5ZCAX8_M-mgDRUI8xVLGlnc8O_vN7Ow3AK8SmXGdBtz108R3hVfErk497eYCl5tCeyaxecj-IOqeiY_DcLgBb5qzMBU_RJtwo5lh_TVNcEpIH1yyho5SOkkuRXQDtgQCDQq9Op9b8iiCOjbcwkXWTdAHN7xC3D9ob11bjbZIsd-pOlIvUEFF1dniOuj5ZwXlVWRrl6bju3DeDKqqSLnYXy3T_eznb3yP_zvqe3CnxqzssDKy-7Bhym3YOSwxXp_8YHvMVpHa9Pw23OzXm_U7QOTVpVlOyXfMRromxx5n7KueTDSbUX82NifqWDIONi5ZTfK6YJQdZour9YCsOk_JqJUI_WIYn9tqswdwdvzu9Kjr1l0d3Ay_f-TmvkTMl2RpxDXxJNMZTm5MEegIQ81Q-54peBFHGiNXroMQPTn6HUm4UPqaB8FD2CynpXkMzMiC8yLLMxEFwuRhGkW6MCaWSe5leZA68Lr5uiqrKc-p88Y3VZE1-wq1qaw2HXjZis4qno_rhPasibQSen5BhXEyVF8G79WnXqcT9IZCHTmwu2ZD7Q24PsShkPgk1hiVwvlMmzS6NNPVQskAITRiYs-BR5WNXb5P4scIFwMH5Jr1tQJEFb7-TzkeWcpwX4oYQ2dUiDWuvw9Rdd_27cWTfxd9Abe6p_0TdfJh0HsKt-1-my13fAaby_nKPEfYtkx37ez8BeIoPt4 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9NAEB6VVqp44Wg5zFFWCFW8uLW9a68tnkpDCIREgKjIA9Jqba9JVOJEOSTg1zOzPtpAkRBPsZSx5R3PznyzO_sNwLNEZp5OuecGaRK4wi9iV6e-dnOB4abQvknsOuRgGPXOxNtRONqCF81ZmIofol1wo5lh_TVN8HleHF-Qho5TOkguRXQNdkSESIIQ0ceWO4qQjs22MMa6CbrghlbIC47bWzeC0Q7p9TsVR-ol6qeoGltchTz_LKC8DGxtZOrehC_NmKqClPOj9So9yn7-Rvf4n4O-BTdqxMpOKhO7DVum3IP9kxKz9ekPdshsDaldnN-D3UG9Vb8PRF1dmtWMPMd8rGtq7EnGvurpVLM5dWdjCyKOJdNgk5LVFK9LRmvDbHm5GpBVpykZNRKhX0zic1trdgfOuq8-nfbcuqeDm-HXj9w8kIj4kiyNPE0syXSC0zOm4DrCRDPUgW8Kr4gjjXmrp3mIfhy9jiRUKAPtcX4XtstZae4DM7LwvCLLMxFxYfIwjSJdGBPLJPeznKcOPG8-rspqwnPqu_FNVVTNgUJtKqtNB562ovOK5eMqoUNrIa2EXpxTWZwM1efha_Wh3-nw_kioUwcONkyovQGjQxwKiU9ijU0pnM20RaNLM1svleQIoBER-w7cq0zs4n2SIEawyB2QG8bXChBR-OY_5WRsCcMDKWJMnFEh1rb-PkTVezmwFw_-XfQJ7L7vdNW7N8P-Q7huN9tsreMj2F4t1uYxYrZVemDn5i8AST2N |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Magnetoencephalographic+gamma+power+reduction+in+patients+with+schizophrenia+during+resting+condition&rft.jtitle=Human+brain+mapping&rft.au=Rutter%2C+Lindsay&rft.au=Carver%2C+Frederick+W.&rft.au=Holroyd%2C+Tom&rft.au=Nadar%2C+Sreenivasan+Rajamoni&rft.date=2009-10-01&rft.pub=Wiley+Subscription+Services%2C+Inc.%2C+A+Wiley+Company&rft.issn=1065-9471&rft.eissn=1097-0193&rft.volume=30&rft.issue=10&rft.spage=3254&rft.epage=3264&rft_id=info:doi/10.1002%2Fhbm.20746&rft_id=info%3Apmid%2F19288463&rft.externalDocID=PMC2748144 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1065-9471&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1065-9471&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1065-9471&client=summon |