Progressive Macromolecular Self-Assembly: From Biomimetic Chemistry to Bio-Inspired Materials
Macromolecular self‐assembly (MSA) has been an active and fruitful research field since the 1980s, especially in this new century, which is promoted by the remarkable developments in controlled radical polymerization in polymer chemistry, etc. and driven by the demands in bio‐related investigations...
Saved in:
Published in | Advanced materials (Weinheim) Vol. 25; no. 37; pp. 5215 - 5256 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
WILEY-VCH Verlag
04.10.2013
WILEY‐VCH Verlag |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Macromolecular self‐assembly (MSA) has been an active and fruitful research field since the 1980s, especially in this new century, which is promoted by the remarkable developments in controlled radical polymerization in polymer chemistry, etc. and driven by the demands in bio‐related investigations and applications. In this review, we try to summarize the trends and recent progress in MSA in relation to biomimetic chemistry and bio‐inspired materials. Our paper covers representative achievements in the fabrication of artificial building blocks for life, cell‐inspired biomimetic materials, and macromolecular assemblies mimicking the functions of natural materials and their applications. It is true that the current status of the deliberately designed and obtained nano‐objects based on MSA including a variety of micelles, multicompartment vesicles, and some hybrid and complex nano‐objects is at their very first stage to mimic nature, but significant and encouraging progress has been made in achieving a certain similarity in morphologies or properties to that of natural ones. Such achievements also demonstrate that MSA has played an important and irreplaceable role in the grand and long‐standing research of biomimetic and bio‐inspired materials, the future success of which depends on mutual and persistent efforts in polymer science, material science, supramolecular chemistry, and biology.
Expansion into life science and material science is one of the major trends and the most important long‐time goals of modern polymer science. Our paper tries to trace the most recent footsteps of macromolecular self‐assembly in this direction. It covers the representative achievements in the fabrication of artificial building blocks for life, cell‐inspired biomimetic materials, assemblies mimicking the functions of natural materials and their applications. |
---|---|
AbstractList | Macromolecular self‐assembly (MSA) has been an active and fruitful research field since the 1980s, especially in this new century, which is promoted by the remarkable developments in controlled radical polymerization in polymer chemistry, etc. and driven by the demands in bio‐related investigations and applications. In this review, we try to summarize the trends and recent progress in MSA in relation to biomimetic chemistry and bio‐inspired materials. Our paper covers representative achievements in the fabrication of artificial building blocks for life, cell‐inspired biomimetic materials, and macromolecular assemblies mimicking the functions of natural materials and their applications. It is true that the current status of the deliberately designed and obtained nano‐objects based on MSA including a variety of micelles, multicompartment vesicles, and some hybrid and complex nano‐objects is at their very first stage to mimic nature, but significant and encouraging progress has been made in achieving a certain similarity in morphologies or properties to that of natural ones. Such achievements also demonstrate that MSA has played an important and irreplaceable role in the grand and long‐standing research of biomimetic and bio‐inspired materials, the future success of which depends on mutual and persistent efforts in polymer science, material science, supramolecular chemistry, and biology. Macromolecular self-assembly (MSA) has been an active and fruitful research field since the 1980s, especially in this new century, which is promoted by the remarkable developments in controlled radical polymerization in polymer chemistry, etc. and driven by the demands in bio-related investigations and applications. In this review, we try to summarize the trends and recent progress in MSA in relation to biomimetic chemistry and bio-inspired materials. Our paper covers representative achievements in the fabrication of artificial building blocks for life, cell-inspired biomimetic materials, and macromolecular assemblies mimicking the functions of natural materials and their applications. It is true that the current status of the deliberately designed and obtained nano-objects based on MSA including a variety of micelles, multicompartment vesicles, and some hybrid and complex nano-objects is at their very first stage to mimic nature, but significant and encouraging progress has been made in achieving a certain similarity in morphologies or properties to that of natural ones. Such achievements also demonstrate that MSA has played an important and irreplaceable role in the grand and long-standing research of biomimetic and bio-inspired materials, the future success of which depends on mutual and persistent efforts in polymer science, material science, supramolecular chemistry, and biology.Macromolecular self-assembly (MSA) has been an active and fruitful research field since the 1980s, especially in this new century, which is promoted by the remarkable developments in controlled radical polymerization in polymer chemistry, etc. and driven by the demands in bio-related investigations and applications. In this review, we try to summarize the trends and recent progress in MSA in relation to biomimetic chemistry and bio-inspired materials. Our paper covers representative achievements in the fabrication of artificial building blocks for life, cell-inspired biomimetic materials, and macromolecular assemblies mimicking the functions of natural materials and their applications. It is true that the current status of the deliberately designed and obtained nano-objects based on MSA including a variety of micelles, multicompartment vesicles, and some hybrid and complex nano-objects is at their very first stage to mimic nature, but significant and encouraging progress has been made in achieving a certain similarity in morphologies or properties to that of natural ones. Such achievements also demonstrate that MSA has played an important and irreplaceable role in the grand and long-standing research of biomimetic and bio-inspired materials, the future success of which depends on mutual and persistent efforts in polymer science, material science, supramolecular chemistry, and biology. Macromolecular self-assembly (MSA) has been an active and fruitful research field since the 1980s, especially in this new century, which is promoted by the remarkable developments in controlled radical polymerization in polymer chemistry, etc. and driven by the demands in bio-related investigations and applications. In this review, we try to summarize the trends and recent progress in MSA in relation to biomimetic chemistry and bio-inspired materials. Our paper covers representative achievements in the fabrication of artificial building blocks for life, cell-inspired biomimetic materials, and macromolecular assemblies mimicking the functions of natural materials and their applications. It is true that the current status of the deliberately designed and obtained nano-objects based on MSA including a variety of micelles, multicompartment vesicles, and some hybrid and complex nano-objects is at their very first stage to mimic nature, but significant and encouraging progress has been made in achieving a certain similarity in morphologies or properties to that of natural ones. Such achievements also demonstrate that MSA has played an important and irreplaceable role in the grand and long-standing research of biomimetic and bio-inspired materials, the future success of which depends on mutual and persistent efforts in polymer science, material science, supramolecular chemistry, and biology. Expansion into life science and material science is one of the major trends and the most important long-time goals of modern polymer science. Our paper tries to trace the most recent footsteps of macromolecular self-assembly in this direction. It covers the representative achievements in the fabrication of artificial building blocks for life, cell-inspired biomimetic materials, assemblies mimicking the functions of natural materials and their applications. Macromolecular self‐assembly (MSA) has been an active and fruitful research field since the 1980s, especially in this new century, which is promoted by the remarkable developments in controlled radical polymerization in polymer chemistry, etc. and driven by the demands in bio‐related investigations and applications. In this review, we try to summarize the trends and recent progress in MSA in relation to biomimetic chemistry and bio‐inspired materials. Our paper covers representative achievements in the fabrication of artificial building blocks for life, cell‐inspired biomimetic materials, and macromolecular assemblies mimicking the functions of natural materials and their applications. It is true that the current status of the deliberately designed and obtained nano‐objects based on MSA including a variety of micelles, multicompartment vesicles, and some hybrid and complex nano‐objects is at their very first stage to mimic nature, but significant and encouraging progress has been made in achieving a certain similarity in morphologies or properties to that of natural ones. Such achievements also demonstrate that MSA has played an important and irreplaceable role in the grand and long‐standing research of biomimetic and bio‐inspired materials, the future success of which depends on mutual and persistent efforts in polymer science, material science, supramolecular chemistry, and biology. Expansion into life science and material science is one of the major trends and the most important long‐time goals of modern polymer science. Our paper tries to trace the most recent footsteps of macromolecular self‐assembly in this direction. It covers the representative achievements in the fabrication of artificial building blocks for life, cell‐inspired biomimetic materials, assemblies mimicking the functions of natural materials and their applications. |
Author | Zhao, Yu Wei, Kongchang Su, Lu Sakai, Fuji Liu, Yijiang Jiang, Ming Chen, Guosong |
Author_xml | – sequence: 1 givenname: Yu surname: Zhao fullname: Zhao, Yu organization: State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai, China – sequence: 2 givenname: Fuji surname: Sakai fullname: Sakai, Fuji organization: State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai, China – sequence: 3 givenname: Lu surname: Su fullname: Su, Lu organization: State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai, China – sequence: 4 givenname: Yijiang surname: Liu fullname: Liu, Yijiang organization: State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai, China – sequence: 5 givenname: Kongchang surname: Wei fullname: Wei, Kongchang organization: State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai, China – sequence: 6 givenname: Guosong surname: Chen fullname: Chen, Guosong email: guosong@fudan.edu.cn organization: State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai, China – sequence: 7 givenname: Ming surname: Jiang fullname: Jiang, Ming email: mjiang@fudan.edu.cn organization: State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24022921$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkUtvEzEURq2qqE0D2y6rWbKZ4PfE7EJKS0T6kFoEm8ryzNxpDZ5xsCct-fc4SogqJFRWV7LPuba-7wjtd74DhI4JHhGM6TtTt2ZEMWGYUiL20IAISnKOldhHA6yYyJXk40N0FON3jLGSWB6gQ8oTrigZoLvr4O8DxGgfIbswVfCtd1AtnQnZDbgmn8QIbelW77OzdJd9sL61LfS2yqYP0NrYh1XW-_V5Puviwgao054egjUuvkavmjTgzXYO0Zezj7fTT_n86nw2nczzio-pyMu6NpQoQmkppGCSF9xgSSgpDAMjmrESikuowQBTvGCyYbzmlFWlwlA1BRuit5u9i-B_LiH2Ov2sAudMB34ZNeF8XHCCxX-hjCnMUqRDdLJFl2ULtV4E25qw0n_SS8BoA6TYYgzQ7BCC9boeva5H7-pJAv9LqGxveuu7Phjr_q2pjfZkHaxeeERPTi8mz91846aq4NfONeGHlgUrhP56ea7l_JuYX36-0YT9BvgbslQ |
CitedBy_id | crossref_primary_10_3390_biomimetics8010062 crossref_primary_10_1002_pola_27789 crossref_primary_10_1002_chem_201404961 crossref_primary_10_1007_s10118_018_2069_z crossref_primary_10_1039_C8PY00085A crossref_primary_10_1016_j_cej_2016_05_112 crossref_primary_10_1016_j_porgcoat_2015_08_008 crossref_primary_10_1002_smll_201501871 crossref_primary_10_3762_bjoc_11_85 crossref_primary_10_1002_adtp_201800090 crossref_primary_10_1016_j_dyepig_2016_10_028 crossref_primary_10_1021_acsami_5b08970 crossref_primary_10_1002_adma_201600065 crossref_primary_10_1039_C8CS00806J crossref_primary_10_1016_j_ccr_2018_06_001 crossref_primary_10_1002_adma_201405166 crossref_primary_10_1021_acs_inorgchem_5b02464 crossref_primary_10_1039_C5RA23066G crossref_primary_10_1039_C6NR04835H crossref_primary_10_1021_cr500392w crossref_primary_10_3390_bioengineering10030279 crossref_primary_10_1039_C5CC00262A crossref_primary_10_1039_C9TC05758G crossref_primary_10_1016_j_carbpol_2019_115557 crossref_primary_10_1038_pj_2017_35 crossref_primary_10_1002_adma_201805985 crossref_primary_10_1039_C5SM01354B crossref_primary_10_1021_acs_macromol_3c01451 crossref_primary_10_1039_C7SM01540B crossref_primary_10_3390_polym16152097 crossref_primary_10_1039_C7PY01817G crossref_primary_10_1016_j_envres_2023_117007 crossref_primary_10_1002_chem_201803564 crossref_primary_10_1016_j_molliq_2023_123774 crossref_primary_10_1021_acsnano_7b03375 crossref_primary_10_1039_C7PY00214A crossref_primary_10_1039_d0pp00103a crossref_primary_10_1039_D0PY01035A crossref_primary_10_1002_agt2_128 crossref_primary_10_1039_C6CC05449H crossref_primary_10_1002_cssc_201701489 crossref_primary_10_1021_acsapm_1c00271 crossref_primary_10_1007_s13233_017_5133_6 crossref_primary_10_1088_1748_3190_aba444 crossref_primary_10_1039_C5PY00170F crossref_primary_10_1021_acsami_8b06175 crossref_primary_10_3390_bios14110542 crossref_primary_10_1002_ange_202105103 crossref_primary_10_1021_cr5005315 crossref_primary_10_3390_polym15092020 crossref_primary_10_3389_fmats_2021_518886 crossref_primary_10_1039_C4RA06415A crossref_primary_10_1021_ar5002445 crossref_primary_10_1021_ar5000264 crossref_primary_10_1039_C8QM00314A crossref_primary_10_1016_j_addr_2019_09_002 crossref_primary_10_1016_j_nanoms_2019_09_011 crossref_primary_10_1021_acs_macromol_0c01361 crossref_primary_10_1002_anie_202105103 crossref_primary_10_1021_acs_macromol_5b00168 crossref_primary_10_1002_chin_201348262 crossref_primary_10_1039_C5TB00694E crossref_primary_10_1039_C9BM00630C crossref_primary_10_1002_adma_201504564 crossref_primary_10_1002_chem_202301076 crossref_primary_10_1021_acs_biomac_6b01716 crossref_primary_10_1080_00914037_2022_2075871 crossref_primary_10_1039_C5SM00370A crossref_primary_10_1021_jacs_2c10882 crossref_primary_10_1002_adfm_201502049 crossref_primary_10_1111_cbdd_12825 crossref_primary_10_1002_adma_201504697 crossref_primary_10_1073_pnas_1712827114 crossref_primary_10_1038_ncomms15546 crossref_primary_10_1039_C8CC02460J crossref_primary_10_1002_cnma_201700208 crossref_primary_10_1002_advs_201902701 crossref_primary_10_1016_j_bios_2017_09_020 crossref_primary_10_1021_nl503761y crossref_primary_10_1039_C4TB00319E crossref_primary_10_1038_s41428_019_0274_4 crossref_primary_10_1021_acs_jpcc_9b10870 crossref_primary_10_1039_C7RA11022G crossref_primary_10_1039_C9CC01430F crossref_primary_10_1039_C8PY00245B crossref_primary_10_1039_C6TA09677H crossref_primary_10_1016_j_molliq_2020_114499 crossref_primary_10_1016_j_polymer_2016_04_034 crossref_primary_10_1039_D4SM01403K crossref_primary_10_1021_bm501051t crossref_primary_10_31635_ccschem_019_20180036 crossref_primary_10_1021_acs_macromol_7b02434 crossref_primary_10_1039_C4CC03155E crossref_primary_10_1063_5_0024410 crossref_primary_10_1021_acs_biomac_5b00975 crossref_primary_10_1016_j_carbpol_2020_117199 crossref_primary_10_1021_la501936a crossref_primary_10_1039_c4cc00463a crossref_primary_10_1021_acs_macromol_6b01347 crossref_primary_10_1002_mabi_201700282 crossref_primary_10_1039_D0CP03981K crossref_primary_10_1002_mabi_201600189 crossref_primary_10_1039_C7CC03024J crossref_primary_10_1021_acs_biomac_9b01341 crossref_primary_10_1002_cphc_202000482 crossref_primary_10_1016_j_giant_2020_100026 crossref_primary_10_1002_chem_201405410 crossref_primary_10_1021_ja500939m crossref_primary_10_1039_C5RA19123H crossref_primary_10_1021_acsanm_2c00530 crossref_primary_10_1021_ma501110p crossref_primary_10_1039_C8QM00345A crossref_primary_10_1002_adma_201502583 crossref_primary_10_1039_C4NJ01517G crossref_primary_10_1021_acscatal_6b00106 crossref_primary_10_1021_mz500211v crossref_primary_10_1021_acs_biomac_6b00427 crossref_primary_10_1039_D1GC04509A crossref_primary_10_1002_mnfr_201800646 crossref_primary_10_1039_D0TB01814G crossref_primary_10_1021_acs_macromol_2c01627 crossref_primary_10_1021_acs_langmuir_6b03550 crossref_primary_10_1002_slct_201600226 crossref_primary_10_1007_s10118_015_1618_y crossref_primary_10_1039_D0PY00245C crossref_primary_10_1002_smll_201402970 crossref_primary_10_1021_ja500634u crossref_primary_10_1039_C4NR07615J crossref_primary_10_1002_pola_29223 crossref_primary_10_1002_adhm_201501000 crossref_primary_10_1039_C5RA23625H crossref_primary_10_3389_fchem_2019_00179 crossref_primary_10_1016_j_eurpolymj_2015_09_002 crossref_primary_10_3389_fbioe_2021_652384 crossref_primary_10_1039_C7MH00420F crossref_primary_10_1021_acs_macromol_0c00374 crossref_primary_10_1039_C4CC03119A crossref_primary_10_1039_D0PY01358G crossref_primary_10_1002_pi_6269 crossref_primary_10_1021_jacs_5b05060 crossref_primary_10_1039_C7PY01638G crossref_primary_10_1002_app_51374 crossref_primary_10_1039_C4SM00871E crossref_primary_10_1002_anie_201406953 crossref_primary_10_1016_j_polymer_2025_128046 crossref_primary_10_1021_acs_langmuir_6b03691 crossref_primary_10_1039_C5TC03321G crossref_primary_10_1039_C6TB01163B crossref_primary_10_1021_la503872h crossref_primary_10_1002_ange_201406953 crossref_primary_10_1002_app_46503 crossref_primary_10_3390_ma9120980 crossref_primary_10_1021_acs_macromol_1c00361 crossref_primary_10_1039_C4CS00390J crossref_primary_10_3390_nano10102006 crossref_primary_10_1039_D0NR06661C crossref_primary_10_1007_s11426_015_0516_2 crossref_primary_10_1039_C7CP03792A crossref_primary_10_1002_slct_202202843 crossref_primary_10_1039_D1PY00221J crossref_primary_10_1039_C4TB01546K crossref_primary_10_1039_D2CP00617K crossref_primary_10_1002_smll_201403838 crossref_primary_10_1002_eom2_12181 crossref_primary_10_1021_acsnano_5b01832 crossref_primary_10_1039_C4EE02123A crossref_primary_10_1002_aoc_4334 crossref_primary_10_1016_j_progpolymsci_2019_101167 crossref_primary_10_1038_s41467_019_14234_7 crossref_primary_10_1021_acs_langmuir_6b04559 crossref_primary_10_1038_ncomms5634 crossref_primary_10_1007_s11705_017_1683_6 crossref_primary_10_1002_tcr_202300126 crossref_primary_10_1016_j_jcomc_2025_100578 crossref_primary_10_1021_acs_analchem_7b00320 crossref_primary_10_1038_ncomms14057 crossref_primary_10_1021_acs_macromol_9b01051 crossref_primary_10_1016_j_apmt_2019_100463 crossref_primary_10_1039_C4CC03978E crossref_primary_10_1002_smtd_202101076 crossref_primary_10_1039_D0PY00972E crossref_primary_10_1016_j_nantod_2017_04_006 crossref_primary_10_1021_ja5131534 crossref_primary_10_1155_2021_5175473 crossref_primary_10_1016_j_cis_2015_09_001 crossref_primary_10_1021_acs_macromol_6b00789 crossref_primary_10_1021_acsami_8b05170 crossref_primary_10_1016_j_colsurfa_2015_01_024 crossref_primary_10_1039_C3PY01767B crossref_primary_10_1007_s10118_017_1907_8 crossref_primary_10_1002_advs_202001379 crossref_primary_10_1021_acs_biomac_6b01653 crossref_primary_10_1016_j_bpc_2021_106728 crossref_primary_10_1039_C7PY00832E crossref_primary_10_1039_C9PY00278B crossref_primary_10_3390_molecules201019620 crossref_primary_10_1016_j_matt_2020_11_002 crossref_primary_10_1021_acsami_3c06170 crossref_primary_10_3390_biomedicines11030967 crossref_primary_10_1021_acsami_8b08558 crossref_primary_10_1021_acsbiomaterials_7b00372 |
Cites_doi | 10.1039/C1CS15240H 10.1039/b924631b 10.1002/anie.201206362 10.1021/bc200214g 10.1002/anie.201106410 10.1002/1521-3773(20020402)41:7<1098::AID-ANIE1098>3.0.CO;2-9 10.1016/S0167-7799(98)01222-0 10.1021/mz300081d 10.1002/anie.199518121 10.1016/j.febslet.2012.05.033 10.1039/c0cs00153h 10.1021/bi015829k 10.1016/j.polymer.2011.06.005 10.1038/371578a0 10.1016/j.biomaterials.2012.09.077 10.1021/ja9031314 10.1021/ja056514l 10.1002/macp.200290073 10.1039/c2cc35170f 10.1021/ma800142j 10.1021/ja808075h 10.1016/j.jcis.2007.07.015 10.1002/macp.1981.021820240 10.1021/bm049860o 10.1016/0168-3659(93)90172-2 10.1021/ma202672y 10.1002/anie.201204959 10.1073/pnas.0708762104 10.1021/ja102148f 10.1021/la203857s 10.1038/nmat1339 10.1002/anie.201203483 10.1002/anie.200701125 10.1021/ja902869q 10.1038/nchem.1281 10.1021/ja104154t 10.1021/cm102963k 10.1021/ja035636f 10.1039/C0CC02160A 10.1126/science.1059820 10.1002/marc.200700077 10.1039/b107833j 10.1039/c2cs35207a 10.1038/nnano.2012.192 10.1039/c2sm06934b 10.1039/b820887e 10.1021/la900213a 10.1002/pola.22106 10.1016/j.progpolymsci.2010.12.003 10.1021/ja310397j 10.1021/ja0451160 10.1021/ma60038a001 10.1038/nchem.1314 10.1074/jbc.271.7.3478 10.1002/anie.200460325 10.1021/la053158b 10.1021/ja0372715 10.1021/jp991365c 10.1039/c1sm06495a 10.1021/ja067613h 10.1021/mz200195n 10.1021/la103428g 10.1021/bm301844u 10.1371/journal.pone.0043248 10.1021/ja0711967 10.1021/bc9801272 10.1007/s12033-012-9598-4 10.1002/(SICI)1521-3773(19981102)37:20<2754::AID-ANIE2754>3.0.CO;2-3 10.1016/j.tet.2004.05.055 10.1039/c2sc20389h 10.1021/ar200313h 10.1016/j.jcis.2010.04.056 10.1039/B919678C 10.1039/b004280n 10.1021/ja401075s 10.1038/nchem.296 10.1039/b806858e 10.1002/anie.201100708 10.1021/cr100357h 10.1021/ja205687k 10.1002/cbic.201100586 10.1021/ma800279w 10.1098/rsif.2006.0127 10.1021/ja028913b 10.1039/c1sm90064a 10.1021/ja8035465 10.1021/cr970011j 10.1002/ange.200901735 10.1021/ja0505696 10.1021/ar200036k 10.1002/anie.200903507 10.1021/ma971419l 10.1039/c2sm25178g 10.1039/C0JM03122D 10.1021/bm200423f 10.1055/s-2001-16770 10.1021/nn901843j 10.1038/42408 10.1021/ja00707a062 10.1038/nature06669 10.1021/ar00056a001 10.1007/s00396-005-1323-4 10.1021/ja058364k 10.1039/c3nr00178d 10.1021/mz300660t 10.1016/j.progpolymsci.2008.02.001 10.1021/ma902585w 10.1039/b814560c 10.1021/nn101447m 10.1021/la1004837 10.1038/nchem.1127 10.1021/ma062650e 10.1039/B613890J 10.1038/35057232 10.1002/adma.201000369 10.1021/bi961638j 10.1021/mz300338d 10.1002/anie.201106080 10.1016/j.progpolymsci.2005.06.002 10.1039/B616752G 10.1039/B922289H 10.1002/anie.200805895 10.1021/mz400036t 10.1002/mabi.200800248 10.1002/anie.200390204 10.1021/nl0619305 10.1021/ma052222t 10.1021/ja109262h 10.1021/nn202493w 10.1126/science.1074972 10.1201/9781420018271 10.1021/ja3085803 10.1209/epl/i2003-00264-2 10.1073/pnas.94.21.11156 10.1016/j.vetimm.2012.04.026 10.1039/b924617g 10.1021/ja300065f 10.1021/ja800230k 10.1021/nn102455z 10.1146/annurev.bi.57.070188.004033 10.1002/anie.201204840 10.1002/anie.200462622 10.1140/epje/i2004-10049-5 10.1016/j.bios.2006.01.036 10.1039/C2SC00803C 10.1021/ja043600x 10.1007/12_2011_129 10.1002/smll.200900186 10.1002/adfm.200900076 10.1039/c1sm05725a 10.1002/smll.200901186 10.1002/chem.200802114 10.1002/anie.200352724 10.1073/pnas.1112828109 10.1021/ja104446r 10.1038/ncomms1617 10.1039/b414350g 10.1021/ja00113a036 10.1016/j.cbpa.2007.05.002 10.1021/ma052272y 10.1021/ma902348r 10.1021/ma0210675 10.1039/b910648k 10.1038/nmat2512 10.1021/la0104370 10.1016/j.copbio.2004.10.002 10.1021/ja8052688 10.1021/ma202461e 10.1016/S0021-9258(18)42214-4 10.1016/j.progpolymsci.2012.04.001 10.1021/cr800529d 10.1126/science.1090763 10.1021/bm300986j 10.1016/S0169-409X(02)00017-0 10.1038/nmat2818 10.1021/ma9022197 10.1016/j.polymer.2012.10.015 10.1021/ja8062875 10.1039/c0cc03971c 10.1021/la802336k 10.1002/marc.201200675 10.1021/ja025895p 10.1002/anie.201107797 10.1039/c2cs35108k 10.1073/pnas.062654499 10.1021/ja206644d 10.1021/cr000418f 10.1140/epje/i2011-11014-y 10.1038/nature09963 10.1002/anie.201207123 10.1039/b805242e 10.1016/S0006-3495(03)74639-6 10.1038/ncomms1707 10.1002/anie.200250254 10.1002/tcr.201000008 10.1002/mabi.201000179 10.1126/science.1065879 10.1016/S1074-5521(98)90138-7 10.1039/c1cs15253j 10.1002/ange.200702805 10.1039/c2sm07188f 10.1039/C0SM00795A 10.1021/ja010037z 10.1021/ma060314s 10.1126/science.1207438 10.1021/mz200108a 10.1021/ma050665r 10.1002/anie.200801098 10.1021/ma102462y 10.1021/la063419x 10.1016/j.ccr.2010.04.014 10.1126/science.1103350 10.1074/jbc.X800011200 10.1039/c2py20265d 10.1002/adfm.200400378 10.1039/b817773b 10.1083/jcb.32.1.27 10.1039/B809333B 10.1039/cs9720100553 10.1021/ar040113d 10.1002/marc.200900355 10.1002/anie.200704078 10.1038/ncomms1841 10.1002/anie.200390257 10.1016/j.progpolymsci.2009.10.006 10.1002/anie.200502794 10.1039/B713953P 10.1002/anie.201102167 10.1021/la204018w 10.1016/j.jconrel.2004.10.014 10.1021/la060711w 10.1103/PhysRevLett.95.228101 10.1039/b915028e 10.1021/ja028151k 10.1039/b717177c 10.1002/1521-3773(20010618)40:12<2257::AID-ANIE2257>3.0.CO;2-S 10.1021/ja903988c 10.1002/anie.201002655 10.1038/nchem.893 10.1021/ja056775v 10.1021/ja042172s 10.1002/cbic.201000536 10.1038/nchem.257 10.1039/C1CS15258K 10.1021/la201843z 10.1039/C1CC13185K 10.1039/C2CS35312A 10.1016/j.addr.2012.01.005 10.1002/macp.200900515 10.1002/adma.200801701 10.1021/ma1003776 10.1016/j.biomaterials.2009.07.040 10.1002/macp.201100559 10.1021/ja01867a018 10.1002/ddr.20062 10.1021/mp100225y 10.1021/ma200398y 10.1038/nchem.1331 10.1039/b608383h 10.1021/ja209126a 10.1039/B813556H 10.1021/bm050156x 10.1021/ja101444j 10.1021/la702815h 10.1002/chem.201200016 10.1021/ja809613n 10.1038/nrd1775 10.1021/ja900786z 10.1021/la026187k 10.1038/361645a0 10.1016/S0169-409X(01)00213-7 10.3390/ijms14011541 10.1002/marc.200800475 10.1021/ja064560v 10.1146/annurev-matsci-070909-104532 10.1021/ja8013456 10.1039/c2py20110k 10.1021/ja0379666 10.1021/ma901276c 10.1039/B803553A 10.1016/j.cbpa.2004.09.008 10.1021/ma070550i 10.1073/pnas.1016410108 10.1021/bm9007953 10.1021/mz4000943 10.1002/anie.198801131 10.1039/B913307K |
ContentType | Journal Article |
Copyright | Copyright © 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
Copyright_xml | – notice: Copyright © 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7SR 8BQ 8FD JG9 |
DOI | 10.1002/adma.201302215 |
DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX |
DatabaseTitleList | CrossRef MEDLINE - Academic Materials Research Database MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
EndPage | 5256 |
ExternalDocumentID | 24022921 10_1002_adma_201302215 ADMA201302215 ark_67375_WNG_6LX5LNKS_1 |
Genre | reviewArticle Research Support, Non-U.S. Gov't Journal Article Review |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT AAHQN AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AFWVQ ALVPJ AAYXX ADMLS AEYWJ AGQPQ AGYGG CITATION CGR CUY CVF ECM EIF NPM 7X8 AAMMB AEFGJ AGXDD AIDQK AIDYY 7SR 8BQ 8FD JG9 |
ID | FETCH-LOGICAL-c4825-bdda219122b56536474a061217a3ea5f895946edeae394736f34d423cb90ecf73 |
IEDL.DBID | DR2 |
ISSN | 0935-9648 1521-4095 |
IngestDate | Fri Jul 11 15:22:52 EDT 2025 Thu Jul 10 19:17:13 EDT 2025 Thu Apr 03 06:56:13 EDT 2025 Tue Jul 01 00:44:08 EDT 2025 Thu Apr 24 23:07:49 EDT 2025 Wed Jan 22 16:21:35 EST 2025 Wed Oct 30 09:49:39 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 37 |
Keywords | macromolecular assembly self-assembly biomaterials biomimetics |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4825-bdda219122b56536474a061217a3ea5f895946edeae394736f34d423cb90ecf73 |
Notes | Dedicated to the 20 Anniversary of Department of Macromolecular Science of Fudan University ark:/67375/WNG-6LX5LNKS-1 ArticleID:ADMA201302215 istex:679044F67CB602096204DC367824D9E483B40CCB ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
PMID | 24022921 |
PQID | 1443390301 |
PQPubID | 23479 |
PageCount | 42 |
ParticipantIDs | proquest_miscellaneous_1448741057 proquest_miscellaneous_1443390301 pubmed_primary_24022921 crossref_primary_10_1002_adma_201302215 crossref_citationtrail_10_1002_adma_201302215 wiley_primary_10_1002_adma_201302215_ADMA201302215 istex_primary_ark_67375_WNG_6LX5LNKS_1 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | October 4, 2013 |
PublicationDateYYYYMMDD | 2013-10-04 |
PublicationDate_xml | – month: 10 year: 2013 text: October 4, 2013 day: 04 |
PublicationDecade | 2010 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim – name: Germany |
PublicationTitle | Advanced materials (Weinheim) |
PublicationTitleAlternate | Adv. Mater |
PublicationYear | 2013 |
Publisher | WILEY-VCH Verlag WILEY‐VCH Verlag |
Publisher_xml | – name: WILEY-VCH Verlag – name: WILEY‐VCH Verlag |
References | K. Simons, E. Ikonen, Nature 1997, 387, 569. K. Yoshimatsu, B. K. Lesel, Y. Yonamine, J. M. Beierle, Y. Hoshino, K. J. Shea, Angew. Chem. Int. Ed. 2012, 51, 2405. a) R. Breslow, L. E. Overman, J. Am. Chem. Soc. 1970, 92, 1075 T. Mes, M. M. E. Koenigs, V. F. Scalfani, T. S. Bailey, E. W. Meijer, A. R. A. Palmans, ACS Macro Lett. 2012, 1, 105. b) M. Guo, M. Jiang, Soft Matter 2009, 5, 495 M. Comellas-Aragonès, A. de la Escosura, A. T. J. Dirks, A. van der Ham, A. Fusté-Cuñé, J. J. L. M. Cornelissen, R. J. M. Nolte, Biomacromolecules 2009, 10, 3141. B. C. Ng, S. T. Chan, J. Lin, S. H. Tolbert, ACS Nano 2011, 5, 7730. b) K. Miyata, N. Nishiyama, K. Kataoka, Chem. Soc. Rev. 2012, 41, 2562. a) H. Torii, M. Nakadai, K. Ishihara, S. Saito, H. Yamamoto, Angew. Chem. Int. Ed. 2004, 43, 1983 M. Ramirez, D. Guan, V. Ugaz, Z. Chen, J. Am. Chem. Soc. 2013, 135, 5290. P. C. Hiemenz, T. P. Lodge, Polymer Chemistry, CRC Press, 2007. c) M. Surin, P. G. A. Janssen, R. Lazzaroni, P. Leclère, E. W. Meijer, A. P. H. J. Schenning, Adv. Mater. 2009, 21, 1126 b) G. Deng, F. Li, H. Yu, F. Liu, C. Liu, W. Sun, H. Jiang, Y. Chen, ACS Macro Lett. 2012, 1, 275 b) N. R. Cameron, S. G. Spain, J. A. Kingham, S. Weck, L. Albertin, C. A. Barker, G. Battaglia, T. Smart, A. Blanazs, Faraday Discuss 2008, 139, 359 M. Burnworth, L. Tang, J. R. Kumpfer, A. J. Duncan, F. L. Beyer, G. L. Fiore, S. J. Rowan, C. Weder, Nature 2011, 472, 334. B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, P. Walter, Molecular Biology of the Cell, 5th ed. Garland Sci. 2008. S. Ganguli, K. Yoshimoto, S. Tomita, H. Sakuma, T. Matsuoka, K. Shiraki, Y. Nagasaki, J. Am. Chem. Soc. 2009, 131, 6549. R. A. Koevoets, R. M. Versteegen, H. Kooijman, A. L. Spek, R. P. Sijbesma, E. W. Meijer, J. Am. Chem. Soc. 2005, 127, 2999. G. Pasparakis, C. Alexander, Angew. Chem. Int. Ed. 2008, 47, 4847. K. Braig, Z. Otwinowski, R. Hegde, D. C. Boisvert, A. Joachimiak, A. L. Horwich, P. B. Sigler, Nature 1994, 371, 578. g) X. Xu, H. Yuan, J. Chang, B. He, Z. Gu, Angew. Chem. Int. Ed. 2012, 51, 3130. G. M. L. van Gemert, J. W. Peeters, S. H. M. Söntjens, H. M. Janssen, A. W. Bosman, Macromol. Chem. Phys. 2012, 213, 234. K. Kurihara, M. Tamura, K. Shohda, T. Toyota, K. Suzuki, T. Sugawara, Nat. Chem. 2011, 3, 775. c) T. Sugimoto, T. Suzuki, S. Shinkai, K. Sada, J. Am. Chem. Soc. 2007, 129, 270. L. Bui, S. Abbou, E. Ibarboure, N. Guidolin, C. Staedel, J. J. Toulmé, S. Lecommandoux, C. Schatz, J. Am. Chem. Soc. 2012, 134, 20189. C. Sanson, J. F. Le Meins, C. Schatz, A. Soum, S. Lecommandoux, Soft Matter 2010, 6, 1722. a) J. M. de la Fuente, A. G. Barrientos, T. C. Rojas, J. Rojo, J. Cañada, A. Fernández, S. Penadés, Angew. Chem. Int. Ed. 2001, 40, 2257 b) C. Liu, M. A. Hillmyer, T. P. Lodge, Langmuir 2008, 24, 12001. c) S. Burattini, B. W. Greenland, D. H. Merino, W. Weng, J. Seppala, H. M. Colquhoun, W. Hayes, M. E. Mackay, I. W. Hamley, S. J. Rowan, J. Am. Chem. Soc. 2010, 132, 12051. a) G. Zuber, E. Dauty, M. Nothisen, P. Belguise, J. P. Behr, Adv. Drug Delivery Rev. 2001, 52, 245 M. Kumar, M. Grzelakowski, J. Zilles, M. Clark, W. Meier, Proc. Natl. Acad. Sci. USA 2007, 104, 20719. J. Wang, M. Kuang, H. Duan, D. Chen, M. Jiang, Eur. Phys. J. E 2004, 15, 211. a) R. Dong, B. Zhu, Y. Zhou, D. Yan, X. Zhu, Angew. Chem. Int. Ed. 2012, 51, 11633 T. K. Dam, R. Roy, D. Pagé, C. F. Brewer, Biochemistry 2002, 41, 1359. b) S. Yu, J. Hu, X. Pan, P. Yao, M. Jiang, Langmuir 2006, 22, 2754. Y. Takezawa, M. Shionoya, Acc. Chem. Res. 2012, 45, 2066. b) Y. Ma, R. J. M. Nolte, J. J. L. M. Cornelissen, Adv. Drug Delivery Rev. 2012, 64, 811 K. Wei, J. Li, G. Chen, M. Jiang, ACS Macro Lett. 2013, 2, 278. K. Akiyoshi, Y. Sasaki, J. Sunamoto, Bioconjugate Chem. 1999, 10, 321. b) K. P. Nair, J. M. Pollino, M. Weck, Macromolecules 2006, 39, 931 A. J. Kim, M. S. Kaucher, K. P. Davis, M. Peterca, M. R. Imam, N. A. Christian, D. H. Levine, F. S. Bates, V. Percec, D. A. Hammer, Adv. Funct. Mater. 2009, 19, 2930. A. O. Moughton, R. K. O'Reilly, J. Am. Chem. Soc. 2008, 130, 8714. a) P. G. A. Janssen, S. Jabbari-Farouji, M. Surin, X. Vila, J. C. Gielen, T. F. A. de Greef, M. R. J. Vos, P. H. H. Bomans, N. A. J. M. Sommerdijk, P. C. M. Christianen, P. Leclère, R. Lazzaroni, P. van der Schoot, E. W. Meijer, A. P. H. J. Schenning, J. Am. Chem. Soc. 2009, 131, 1222 B. Städler, R. Chandrawati, K. Goldie, F. Caruso, Langmuir 2009, 25, 6725. D. C. Tuncaboylu, A. Argun, M. Sahin, M. Sari, O. Okay, Polymer 2012, 53, 5513. a) N. Hadjichristidis, S. Pispas, G. Floudas, Block Copolymers: Synthetic Strategies, Physical Properties, and Applications, Wiley-Interscience 2003 C. K. McLaughlin, G. D. Hamblin, H. F. Sleiman, Chem. Soc. Rev. 2011, 40, 5647. X. Zhang, C. Wang, Chem. Soc. Rev. 2011, 40, 94. a) M. M. Safont-Sempere, G. Fernández, F. Würthner, Chem. Rev. 2011, 111, 5784 J. W. Steed, J. L. Atwood, Supramolecular Chemistry WILEY, 2000. b) T. W. Johnson, I. M. Klotz, Macromolecules 1974, 7, 149 a) J. Zou, F. Tao, M. Jiang, Langmuir 2007, 23, 12791 a) G. Pasparakis, N. Krasnogor, L. Cronin, B. G. Davis, C. Alexander, Chem. Soc. Rev. 2010, 39, 286 d) K. P. Nair, Victor Breedveld, M. Weck, Macromolecules 2011, 44, 3346. d) D. W. Pack, A. S. Hoffman, S. Pun, P. S. Stayton, Nat. Rev. Drug Discov. 2005, 4, 581 e) K. Kataoka, G. S. Kwon, M. Yokoyama, T. Okano, Y. Sakurai, J. Controlled Release 1993, 24, 119 A. Wu, L. Isaacs, J. Am. Chem. Soc. 2003, 125, 4831. b) J. Hu, H. Yu, L. H. Gan, X. Hu, Soft Matter 2011, 7, 11345. a) K. Matyjaszewski, N. V. Tsarevsky, Nat. Chem. 2009, 1, 276 a) R. Iwaura, F. J. M. Hoeben, M. Masuda, A. P. H. J. Schenning, E. W. Meijer, T. Shimizu, J. Am. Chem. Soc. 2006, 128, 13298 N. E. Botterhuis, S. Karthikeyan, A. J. H. Spiering, R. P. Sijbesma, Macromolecules 2010, 43, 745. b) Y. Li, Y. Deng, X. Tong, X. Wang, Macromolecules 2006, 39, 1108 S. A. Meeuwissen, K. T. Kim, Y. Chen, D. J. Pochan, J. C. M. van Hest, Angew. Chem. Int. Ed. 2011, 50, 7070. J. Lin, M. Surin, D. Beljonne, X. Lou, J. L. J. van Dongen, A. P. H. J. Schenning, Chem. Sci. 2012, 3, 2732. d) J.-F. Le Meins, O. Sandre, S. Lecommandoux, Eur. Phys. J. E 2011, 34, 14 R. J. R. W. Peters, I. Louzao, J. C. M. van Hest, Chem. Sci. 2012, 3, 335. G. Vlatakis, L. I. Andersson, R. Müller, K. Mosbach, Nature 1993, 361, 645. H. Wei, J. G. Schellinger, D. S. H. Chu, S. H. Pun, J. Am. Chem. Soc. 2012, 134, 16554. Y. Zhou, D. Yan, J. Am. Chem. Soc. 2005, 127, 10468. V. Pata, N. Dan, Biophys. J. 2003, 85, 2111. a) D. M. Vriezema, P. M. L. Garcia, N. S. Oltra, N. S. Hatzakis, S. M. Kuiper, R. J. M. Nolte, A. E. Rowan, J. C. M. van Hest, Angew. Chem. Int. Ed. 2007, 46, 7378 K. Sakthivel, W. Notz, T. Bui, C. F. Barbas III, J. Am. Chem. Soc. 2001, 123, 5260. a) P. Du, J. Liu, G. Chen, M. Jiang, Langmuir 2011, 27, 9602 b) S. G. Spain, L. Albertin, N. R. Cameron, Chem. Commun. 2006, 4198. M. De, V. M. Rotello, Chem. Commun. 2008, 44, 3504. a) R. Akiyama, S. Kobayashi, Chem. Rev. 2009, 109, 594 N. Morimoto, T. Endo, Y. Iwasaki, K. Akiyoshi, Biomacromolecules 2005, 6, 1829. b) R. Arshady, K. Mosbach, Makromol. Chem. 1981, 182, 687. a) A. Harada, R. Kobayashi, Y. Takashima, A. Hashidzume, H. Yamaguchi, Nat. Chem. 2011, 3, 34 Z. Ge, D. Xie, D. Chen, X. Jiang, Y. Zhang, H. Liu, S. Liu, Macromolecules 2007, 40, 3538. a) Z. Dong, Q. Luo, J. Liu, Chem. Soc. Rev. 2012, 41, 7890 H. Yamaguchi, Y. Kobayashi, R. Kobayashi, Y. Takashima, A. Hashidzume, A. Harada, Nat. Commun. 2012, 3, 603. A. O. Moughton, J. P. Patterson, R. K. O'Reilly, Chem. Commun. 2011, 47, 355. T. P. Smart, C. Fernyhough, A. J. Ryan, G. Battaglia, Macromol. Rapid Commun. 2008, 29, 1855. Y. Yin, X. Huang, C. Lv, L. Wang, S. Yu, Q. Luo, J. Xu, J. Liu, Macromol. Biosci. 2010, 10, 1505. Z. Cheng, D. R. Elias, N. P. Kamat, E. Johnston, A. Poloukhtine, V. Popik, D. A. Hammer, A. Tsourkas, Bioconjugate Chem. 2011, 22, 2021. J. Du, R. K. O'Reilly, Chem. Soc. Rev. 2011, 40, 2402. b) S. R. White, N. R. Sottos, P. H. Geubelle, J. S. Moore, M. R. Kessler, S. R. Sriram, E. N. Brown, S. Vlswanathan, Nature 2001, 409, 794. b) E. Crisci, J. Bárcena, M. Montoya, Veter. Immunol. Immunopath. 2012, 148, 211 Y. Hoshino, T. Kodama, Y. Okahata, K. J. Shea, J. Am. Chem. Soc. 2008, 130, 15242. N. Gouda, K. Miyata, R. J. Christie, T. Suma, A. Kishimura, S. Fukushima, T. Nomoto, X. Liu, N. Nishiyama, K. Kataoka, Biomaterials 2013, 34, 562. a) D. Y. Wu, S. Meure, D. Solomon, Prog. Polym. Sci. 2008, 33, 479 b) Y. Hoshino, H. Koide, T. Urakami, H. Kanazawa, T. Kodama, N. Oku, K. J. Shea, J. Am. Chem. Soc. 2010, 132, 6644 a) M. Ambrosi, N. R. Cameron, B. G. Davis, Org. Biomol. Chem. 2005, 3, 1593 G. H. Clever, M. Shionoya, Coord. Chem. Rev. 2010, 254, 2391. a) M. Mammen, S.-K. Choi, G. M. Whitesides, Angew. Chem. Int. Ed. 1998, 37, 2755 b) R. Breslow, S. D. Dong, Chem. Rev. 1998, 98, 1997. S. Dong, X. Yan, B. Zheng, J. Chen, X. Ding, Y. Yu, D. Xu, M. Zhang, F. Huang, Chem. Eur. J. 2012, 18, 4195. M. Osaki, Y. Takashima, H. Yamaguchi, A. Harada, Macromolecules 2007, 40, 3154. R. Chandrawati, L. Hosta-Rigau, D. Vanderstraaten, S. A. Lokuliyana, B. Städler, F. Albericio, F. Caruso, ACS Nano 2010, 4, 1351. E. Huerta, P. J. M. Stals, E. W. Meijer, A. R. A. Palmans, Angew. Chem. Int. Ed. 2013, 52, 2906. V. Ladmiral, G. Mantovani, G. J. Clarkson, S. Cauet, J. L. Irwin, D. M. Haddleton, J. Am. Chem. Soc. 2006, 128, 4823. b) H. Li, M. A. Cortez, H. R. Phillips, Y. Wu, T. M. Reineke, ACS Macro Lett. 2013, 2, 230. H. Bermúdez, H. Aranda-Espinoza, D. A. Hammer, D. E. Discher, Europhys. Lett. 2003, 64, 550. a) A. Taubert, A. Napoli, W. Meier, Current Opinion in Chemical Biology 2004, 8, 598 M. Marguet, L. Edembe, S. Lecommandoux, Angew. Chem. Int. Ed. 2012, 51, 1173. K. Yu, A. Eisenberg, Macromolecules 1998, 31, 3509. M. Ambrosi, A. S. Batsanov, N. R. Cameron, B. G. Davis, J. A. K. Howard, R. Hunter, J. Chem. Soc., Perkin Trans. 1 2002, 45. b) P. G. A. Janssen, A. Ruiz-Carretero, D. González-Rodríguez, E. W. Meijer, A. P. H. J. Schenning, Angew. Chem. Int. Ed. 2009, 48, 8103 Y. Zhou, D. Yan, Chem. Commun. 2009, 45, 1172. a) B. J. Blaiszik, S. L. B. Kramer, S. C 2001 2006; 40 2007; 104 2010; 10 2012 2013; 1 2 2013; 2 2002 2003; 295 36 2005 2008 2012; 283 139 134 1995 1996 1996; 117 271 35 2011 2011 2012; 12 12 7 2005 2012; 127 28 1994; 371 2002; 99 2011; 52 1993; 361 2004; 5 2012; 18 2012; 13 2012 2011; 51 7 2013; 5 2001 1974 2002; 7 124 2011; 472 2009; 11 2010; 26 2009; 10 2012; 134 1995; 28 2006; 22 2005; 102 1972 1998 2009; 5 284 2008; 29 2005 2006 2008 2010; 38 39 41 351 1970 1998; 92 98 1997; 387 2013; 52 2007; 5 2012; 28 2009 2010 2011; 5 132 21 2009; 19 2010; 4 2003; 42 2010; 6 2009; 15 2010; 9 2012 2012; 41 37 2004; 303 2010 2001; 40 409 2011 2013; 111 14 1992; 267 2011 2012; 27 55 2006 2007; 128 2006 2003 2007; 128 42 129 2011; 3 2011; 5 2011; 133 2011; 7 2010 2012 2011; 39 586 7 2012; 109 2005 2007; 30 36 2009 2003; 48 125 2010; 43 2007; 315 2010; 46 2012 2008 2012; 3 451 7 2006; 45 1967; 32 2007 2009; 23 42 2002; 124 1988; 27 2002 2012; 54 41 2005; 127 2005; 95 2008; 47 2009 2009 2009 2010; 131 48 21 6 2005; 6 1995 1981; 34 182 2008; 44 2004 2004; 43 11 2012; 48 2004 2012 2011 2013; 15 148 8 53 2012; 45 2004 2009 2011 2011 2012; 8 9 44 34 41 2008; 130 2012; 41 2009; 45 2008 2010 2008; 33 35 18 2004; 126 2010 2011; 43 133 1998 2002; 37 102 2007 2010; 46 49 2010 2012 2012; 43 1 45 2011; 12 2003; 19 2003 2003; 204 2009 2008; 131 130 2012; 53 2012; 51 1997; 94 2013; 14 2004 2008 2011 2011; 60 41 7 44 2002; 41 2001 2000 2009 2010 2010; 1 39 211 2011; 22 1999; 10 2001; 17 2005 2007; 3 11 2012; 213 2011; 27 2003; 125 2010 2005 2004 2006; 4 3 2006; 128 2003; 85 1940; 62 2004 2006 2006; 126 39 39 2005 2009 2009; 38 5 30 2009; 25 2011; 333 2009 2011 2010; 23 132 2001; 123 2007; 129 2002; 297 2011; 40 2006 1998; 21 16 2013; 42 2011 2011; 3 44 2009 2008 2007 2001 2012 2006 2005 1993 2012 2012; 52 64 67 4 24 249 51 1988; 57 2006; 6 2005 2009 2013; 109 2009; 131 2002 2011; 36 2005; 44 2007 2006; 23 22 2009; 30 2012; 2 2012; 3 2007; 119 2011; 108 2012; 1 2004 2008; 306 24 2004 2010; 43 22 2013; 34 2007 2013; 28 2004; 15 2011; 50 2010; 132 2010; 254 2009; 8 2013; 135 2009; 7 1999 2003 2005 2005; 103 42 15 127 2007; 40 2011; 47 2013 2009; 1 2012; 4 1998; 31 2007; 45 2009; 38 2003; 64 2012; 8 e_1_2_8_49_2 e_1_2_8_26_2 e_1_2_8_9_2 e_1_2_8_203_2 e_1_2_8_1_3 e_1_2_8_1_2 e_1_2_8_132_2 e_1_2_8_178_2 e_1_2_8_1_4 e_1_2_8_87_3 e_1_2_8_41_2 e_1_2_8_87_2 e_1_2_8_170_2 Chen Y. (e_1_2_8_183_2) 2013 e_1_2_8_64_2 e_1_2_8_117_2 e_1_2_8_193_2 e_1_2_8_155_2 e_1_2_8_38_2 Liu X. (e_1_2_8_74_2) 2013 e_1_2_8_76_5 e_1_2_8_15_2 e_1_2_8_76_4 e_1_2_8_215_2 e_1_2_8_91_2 e_1_2_8_189_2 e_1_2_8_189_3 e_1_2_8_120_2 e_1_2_8_189_4 e_1_2_8_99_2 e_1_2_8_76_3 e_1_2_8_30_2 e_1_2_8_76_2 e_1_2_8_105_2 e_1_2_8_181_2 e_1_2_8_128_3 e_1_2_8_53_2 e_1_2_8_128_2 e_1_2_8_166_3 e_1_2_8_166_2 Hadjichristidis N. (e_1_2_8_6_2) 2003 e_1_2_8_25_2 e_1_2_8_48_2 Alberts B. (e_1_2_8_52_2) 2008 e_1_2_8_204_2 e_1_2_8_2_2 e_1_2_8_2_4 e_1_2_8_110_2 e_1_2_8_179_2 e_1_2_8_2_3 e_1_2_8_86_4 e_1_2_8_86_3 e_1_2_8_63_2 e_1_2_8_86_2 e_1_2_8_118_2 e_1_2_8_194_2 e_1_2_8_40_2 e_1_2_8_156_2 e_1_2_8_37_4 e_1_2_8_37_3 e_1_2_8_75_8 e_1_2_8_75_7 e_1_2_8_14_2 e_1_2_8_37_2 e_1_2_8_75_6 e_1_2_8_14_3 e_1_2_8_75_5 e_1_2_8_216_2 e_1_2_8_90_2 e_1_2_8_121_2 e_1_2_8_98_2 e_1_2_8_75_4 e_1_2_8_75_3 e_1_2_8_75_2 e_1_2_8_106_2 e_1_2_8_129_2 e_1_2_8_182_2 e_1_2_8_167_3 Lu A. (e_1_2_8_213_3) 2013 e_1_2_8_144_2 e_1_2_8_167_2 e_1_2_8_28_2 e_1_2_8_119_2 e_1_2_8_89_2 Yan X. (e_1_2_8_176_2) 2013 e_1_2_8_205_2 e_1_2_8_7_2 e_1_2_8_20_2 e_1_2_8_66_2 e_1_2_8_43_2 e_1_2_8_172_2 e_1_2_8_111_2 e_1_2_8_157_2 e_1_2_8_195_2 e_1_2_8_81_2 e_1_2_8_17_2 e_1_2_8_55_3 e_1_2_8_78_2 e_1_2_8_217_2 e_1_2_8_160_2 e_1_2_8_55_2 e_1_2_8_107_2 e_1_2_8_145_3 e_1_2_8_168_3 e_1_2_8_93_3 e_1_2_8_122_2 e_1_2_8_145_4 e_1_2_8_168_2 e_1_2_8_93_2 e_1_2_8_70_2 e_1_2_8_145_2 e_1_2_8_27_2 e_1_2_8_65_4 e_1_2_8_8_4 e_1_2_8_8_3 e_1_2_8_8_5 e_1_2_8_206_2 e_1_2_8_80_2 e_1_2_8_206_3 e_1_2_8_150_2 Steed J. W. (e_1_2_8_32_2) 2000 e_1_2_8_8_2 e_1_2_8_42_2 e_1_2_8_65_2 e_1_2_8_88_2 e_1_2_8_65_3 e_1_2_8_112_2 e_1_2_8_135_2 e_1_2_8_158_2 e_1_2_8_173_2 e_1_2_8_196_2 e_1_2_8_173_3 e_1_2_8_173_4 Kumar C. (e_1_2_8_5_2) 2010 e_1_2_8_196_3 e_1_2_8_16_2 e_1_2_8_39_2 Alberts B. (e_1_2_8_134_2) 2008 e_1_2_8_108_2 e_1_2_8_210_2 e_1_2_8_218_2 e_1_2_8_161_2 e_1_2_8_31_2 e_1_2_8_54_2 e_1_2_8_77_2 e_1_2_8_54_3 e_1_2_8_169_4 e_1_2_8_169_3 e_1_2_8_100_2 e_1_2_8_123_2 e_1_2_8_146_2 e_1_2_8_169_2 e_1_2_8_184_2 e_1_2_8_146_3 e_1_2_8_92_3 e_1_2_8_92_2 e_1_2_8_45_3 e_1_2_8_45_2 e_1_2_8_45_4 e_1_2_8_68_2 e_1_2_8_159_6 Ambrosi M. (e_1_2_8_143_2) 2002 e_1_2_8_151_2 e_1_2_8_207_2 e_1_2_8_5_3 e_1_2_8_5_5 e_1_2_8_5_4 e_1_2_8_159_5 e_1_2_8_159_4 e_1_2_8_136_3 e_1_2_8_159_3 e_1_2_8_22_2 e_1_2_8_159_2 e_1_2_8_83_2 e_1_2_8_136_2 e_1_2_8_174_2 e_1_2_8_60_2 e_1_2_8_113_2 e_1_2_8_197_2 e_1_2_8_19_2 e_1_2_8_11_3 e_1_2_8_109_2 e_1_2_8_34_2 e_1_2_8_57_2 e_1_2_8_19_3 e_1_2_8_219_2 e_1_2_8_95_2 e_1_2_8_162_2 e_1_2_8_11_2 e_1_2_8_72_2 e_1_2_8_101_2 e_1_2_8_147_2 e_1_2_8_185_2 e_1_2_8_124_2 e_1_2_8_29_2 e_1_2_8_29_3 Karp G. (e_1_2_8_127_2) 2005 e_1_2_8_67_2 e_1_2_8_200_2 e_1_2_8_175_4 e_1_2_8_152_2 e_1_2_8_208_2 Varki A. (e_1_2_8_133_2) 2009 e_1_2_8_6_3 e_1_2_8_114_4 e_1_2_8_190_3 e_1_2_8_114_3 e_1_2_8_190_4 e_1_2_8_21_2 e_1_2_8_44_2 e_1_2_8_137_2 e_1_2_8_190_5 e_1_2_8_114_5 e_1_2_8_82_2 e_1_2_8_114_2 e_1_2_8_175_2 e_1_2_8_198_2 e_1_2_8_175_3 e_1_2_8_18_2 e_1_2_8_33_3 e_1_2_8_56_2 e_1_2_8_79_2 e_1_2_8_212_2 e_1_2_8_94_2 e_1_2_8_140_2 e_1_2_8_163_2 e_1_2_8_10_2 e_1_2_8_33_2 e_1_2_8_148_2 e_1_2_8_71_2 e_1_2_8_102_2 e_1_2_8_125_2 e_1_2_8_186_2 e_1_2_8_186_3 e_1_2_8_47_5 e_1_2_8_47_4 e_1_2_8_24_2 e_1_2_8_47_3 e_1_2_8_47_2 e_1_2_8_201_2 Cotanda P. (e_1_2_8_211_2) 2012; 2 e_1_2_8_153_2 e_1_2_8_199_2 e_1_2_8_209_2 e_1_2_8_3_2 e_1_2_8_130_2 e_1_2_8_138_3 e_1_2_8_191_2 e_1_2_8_115_2 e_1_2_8_85_2 e_1_2_8_138_2 e_1_2_8_62_2 e_1_2_8_13_2 e_1_2_8_59_2 e_1_2_8_36_2 e_1_2_8_190_2 Wang J. (e_1_2_8_17_3) 2007 e_1_2_8_213_2 e_1_2_8_187_3 e_1_2_8_164_2 e_1_2_8_141_2 Nyberg A. I. (e_1_2_8_215_3) 2004; 11 e_1_2_8_97_2 e_1_2_8_126_2 e_1_2_8_149_2 e_1_2_8_51_2 e_1_2_8_103_2 e_1_2_8_187_2 e_1_2_8_23_2 e_1_2_8_46_2 e_1_2_8_69_2 e_1_2_8_202_2 Chen K. (e_1_2_8_124_3) 2013 e_1_2_8_131_2 e_1_2_8_154_2 e_1_2_8_177_2 e_1_2_8_4_2 e_1_2_8_4_4 Pepels M. (e_1_2_8_171_2) 2013 e_1_2_8_4_3 Du P. (e_1_2_8_22_3) 2012; 55 e_1_2_8_116_2 e_1_2_8_139_2 e_1_2_8_192_2 e_1_2_8_116_3 e_1_2_8_61_2 e_1_2_8_84_2 e_1_2_8_58_4 e_1_2_8_12_2 e_1_2_8_35_2 e_1_2_8_58_2 e_1_2_8_12_3 e_1_2_8_58_3 e_1_2_8_12_4 e_1_2_8_35_3 e_1_2_8_214_2 e_1_2_8_142_2 e_1_2_8_165_2 e_1_2_8_188_2 e_1_2_8_96_2 e_1_2_8_104_2 e_1_2_8_180_2 e_1_2_8_180_3 e_1_2_8_50_2 e_1_2_8_73_2 e_1_2_8_165_4 e_1_2_8_165_3 |
References_xml | – reference: C. Sanson, J. F. Le Meins, C. Schatz, A. Soum, S. Lecommandoux, Soft Matter 2010, 6, 1722. – reference: F. Herbst, D. Döhler, P. Michael, W. H. Binder, Macromol. Rapid Commun. 2013, 34, 203. – reference: X. Li, Y. Liu, L. Wang, M. Deng, H. Liang, Phys. Chem. Chem. Phys. 2009, 11, 4051. – reference: a) D. Y. Wu, S. Meure, D. Solomon, Prog. Polym. Sci. 2008, 33, 479; – reference: Y. Zhang, L. Tao, S. Li, Y. Wei, Biomacromol. 2011, 12, 2894. – reference: d) J. F. V. Vincent, O. A. Bogatyreva, N. R. Bogatyrev, A. Bowyer, A.-K. Pahl, J. R. Soc. Interface 2006, 3, 471. – reference: B. Städler, R. Chandrawati, K. Goldie, F. Caruso, Langmuir 2009, 25, 6725. – reference: M. Kwak, I. J. Minten, D. M. Anaya, A. J. Musser, M. Brasch, R. J. M. Nolte, K. Müllen, J. J. L. M. Cornelissen, A. Herrmann, J. Am. Chem. Soc. 2010, 132, 7834. – reference: a) N. Tomimasu, A. Kanaya, Y. Takashima, H. Yamaguchi, A. Harada, J. Am. Chem. Soc. 2009, 131, 12339; – reference: A. Varki, R. D. Cummings, J. D. Esko, H. H. Freeze, P. Stanley, C. R. Bertozzi, G. W. Hart, M. E. Etzler, Essentials of Glycobiology 2nd Ed. Cold Spring Harbor (NY), 2009. – reference: a) C. M. Dong, E. L. Chaikof, Colloid Polym. Sci. 2005, 283, 1366; – reference: b) K. Miyata, N. Nishiyama, K. Kataoka, Chem. Soc. Rev. 2012, 41, 2562. – reference: a) Z. Li, E. Kesselman, Y. Talmon, M. A. Hillmyer, T. P. Lodge, Science 2004, 306, 98; – reference: d) D. W. Pack, A. S. Hoffman, S. Pun, P. S. Stayton, Nat. Rev. Drug Discov. 2005, 4, 581; – reference: D. Yan, Y. Zhou, J. Hou, Science 2004, 303, 65. – reference: R. Breslow, Y. Huang, X. Zhang, J. Yang, Proc. Natl. Acad. Sci. USA 1997, 94, 11156. – reference: T. W. Rademacher, R. B. Parekh, R. A. Dwek, Ann. Rev. Biochem. 1988, 57, 785. – reference: R. A. Koevoets, R. M. Versteegen, H. Kooijman, A. L. Spek, R. P. Sijbesma, E. W. Meijer, J. Am. Chem. Soc. 2005, 127, 2999. – reference: c) Y. Zhang, M. Jiang, J. Zhao, X. Ren, D. Chen, G. Zhang, Adv. Funct. Mater. 2005, 15, 695; – reference: f) Y. Lee, K. Kataoka, Adv. Polym. Sci. 2012, 249, 95; – reference: S. H. Kim, H. C. Shum, J. W. Kim, J. C. Cho, D. A. Weitz, J. Am. Chem. Soc. 2011, 133, 15165. – reference: V. Pata, N. Dan, Biophys. J. 2003, 85, 2111. – reference: b) J. Cortese, C. Soulié-Ziakovic, M. Cloitre, S. Tencé-Girault, L. Leibler, J. Am. Chem. Soc. 2011, 133, 19672. – reference: c) R. Sharma, A. Ghasparian, J. A. Robinson, K. C. McCullough, Plos One 2012, 7, e43248. – reference: P. M. Gardner, K. Winzer, B. G. Davis, Nat. Chem. 2009, 1, 377. – reference: a) C. Schatz, S. Louguet, J. F. Le Meins, S. Lecommandoux, Angew. Chem. Int. Ed. 2009, 48, 2572; – reference: Y. Zhou, D. Yan, J. Am. Chem. Soc. 2005, 127, 10468. – reference: b) K. Haupt, K. Mosbach, Trends Biotechnol. 1998, 16, 468. – reference: e) K. Kataoka, G. S. Kwon, M. Yokoyama, T. Okano, Y. Sakurai, J. Controlled Release 1993, 24, 119; – reference: b) K. Chen, G. Xue, G. Shen, J. Cai, G. Zou, Y. Li, Q. Zhang, RSC Adv. 2013, doi: 10.1039/C3RA40396C. – reference: b) C. Rest, M. J. Mayoral, G. Fernández, Int. J. Mol. Sci. 2013, 14, 1541. – reference: G. Chen, M. Jiang, Chem. Soc. Rev. 2011, 40, 2254. – reference: M. De, V. M. Rotello, Chem. Commun. 2008, 44, 3504. – reference: K. Miyata, Y. Kakizawa, N. Nishiyama, A. Harada, Y. Yamasaki, H. Koyama, K. Kataoka, J. Am. Chem. Soc. 2004, 126, 2355. – reference: a) H. Shen, A. Eisenberg, J. Phys. Chem. B 1999, 103, 9473; – reference: Z. Ge, D. Xie, D. Chen, X. Jiang, Y. Zhang, H. Liu, S. Liu, Macromolecules 2007, 40, 3538. – reference: L. Pauling, J. Am. Chem. Soc. 1940, 62, 2643. – reference: b) K. P. Nair, J. M. Pollino, M. Weck, Macromolecules 2006, 39, 931; – reference: a) A. Harada, R. Kobayashi, Y. Takashima, A. Hashidzume, H. Yamaguchi, Nat. Chem. 2011, 3, 34; – reference: H. Cai, P. Yao, Nanoscale 2013, 5, 2892. – reference: A. A. Zinchenko, K. Yoshikawa, D. Baigl, Phys. Rev. Lett. 2005, 95, 228101. – reference: a) D. Rozema, S. H. Gellman, J. Am. Chem. Soc. 1995, 117, 2373; – reference: b) Y. Ma, R. J. M. Nolte, J. J. L. M. Cornelissen, Adv. Drug Delivery Rev. 2012, 64, 811; – reference: a) D. M. Vriezema, P. M. L. Garcia, N. S. Oltra, N. S. Hatzakis, S. M. Kuiper, R. J. M. Nolte, A. E. Rowan, J. C. M. van Hest, Angew. Chem. Int. Ed. 2007, 46, 7378; – reference: J. W. Steed, J. L. Atwood, Supramolecular Chemistry WILEY, 2000. – reference: F. D. Sikkema, M. Comellas-Aragonès, R. G. Fokkink, B. J. M. Verduin, J. J. L. M. Cornelissen, R. J. M. Nolte, Org. Biomol. Chem. 2007, 5, 54. – reference: L. Su, Y. Zhao, G. Chen, M. Jiang, Polym. Chem. 2012, 3, 1560. – reference: a) M. Mammen, S.-K. Choi, G. M. Whitesides, Angew. Chem. Int. Ed. 1998, 37, 2755; – reference: b) Y. Li, Y. Deng, X. Tong, X. Wang, Macromolecules 2006, 39, 1108; – reference: b) Y. Hoshino, H. Koide, T. Urakami, H. Kanazawa, T. Kodama, N. Oku, K. J. Shea, J. Am. Chem. Soc. 2010, 132, 6644; – reference: Z. Cheng, D. R. Elias, N. P. Kamat, E. Johnston, A. Poloukhtine, V. Popik, D. A. Hammer, A. Tsourkas, Bioconjugate Chem. 2011, 22, 2021. – reference: b) J. Hu, H. Yu, L. H. Gan, X. Hu, Soft Matter 2011, 7, 11345. – reference: c) S. Burattini, B. W. Greenland, D. H. Merino, W. Weng, J. Seppala, H. M. Colquhoun, W. Hayes, M. E. Mackay, I. W. Hamley, S. J. Rowan, J. Am. Chem. Soc. 2010, 132, 12051. – reference: L. Liu, R. Breslow, J. Am. Chem. Soc. 2002, 124, 4978. – reference: S. Ganguli, K. Yoshimoto, S. Tomita, H. Sakuma, T. Matsuoka, K. Shiraki, Y. Nagasaki, J. Am. Chem. Soc. 2009, 131, 6549. – reference: b) J. M. Lehn, Chem. Soc. Rev. 2007, 36, 151. – reference: K. Simons, E. Ikonen, Nature 1997, 387, 569. – reference: M. Marguet, C. Bonduelle, S. Lecommandoux, Chem. Soc. Rev. 2013, 42, 512. – reference: H. A. Zayas, A. Lu, D. Valade, F. Amir, Z. Jia, R. K. O'Reilly, M. J. Monteiro, ACS Macro Lett. 2013, 2, 327. – reference: N. E. Botterhuis, S. Karthikeyan, A. J. H. Spiering, R. P. Sijbesma, Macromolecules 2010, 43, 745. – reference: b) J. Zou, B. Guan, X. Liao, M. Jiang, Macromolecules 2009, 42, 7465. – reference: D. A. Wilson, R. J. M. Nolte, J. C. M. van Hest, Nat. Chem. 2012, 4, 268. – reference: b) C. Sanchez, H. Arribart, M. M. G. Guille, Nat. Mater. 2005, 4, 277; – reference: H. C. Chiu, Y. W. Lin, Y. F. Huang, C. K. Chuang, C. S. Chern, Angew. Chem. Int. Ed. 2008, 47, 1875. – reference: b) N. R. Cameron, S. G. Spain, J. A. Kingham, S. Weck, L. Albertin, C. A. Barker, G. Battaglia, T. Smart, A. Blanazs, Faraday Discuss 2008, 139, 359; – reference: b) H. Yamaguchi, R. Kobayashi, Y. Takashima, A. Hashidzume, A. Harada, Macromolecules 2011, 44, 2395. – reference: K. Akiyoshi, Y. Sasaki, J. Sunamoto, Bioconjugate Chem. 1999, 10, 321. – reference: G. M. L. van Gemert, J. W. Peeters, S. H. M. Söntjens, H. M. Janssen, A. W. Bosman, Macromol. Chem. Phys. 2012, 213, 234. – reference: Y. Zhou, D. Yan, Angew. Chem. Int. Ed. 2005, 44, 3223. – reference: Y. Zheng, A. Hashidzume, Y. Takashima, H. Yamaguchi, A. Harada, ACS Macro Lett. 2012, 1, 1083. – reference: S. Ida, T. Terashima, M. Ouchi, M. Sawamoto, J. Am. Chem. Soc. 2009, 131, 10808. – reference: L. Bui, S. Abbou, E. Ibarboure, N. Guidolin, C. Staedel, J. J. Toulmé, S. Lecommandoux, C. Schatz, J. Am. Chem. Soc. 2012, 134, 20189. – reference: a) K. E. Feldman, M. J. Kade, E. W. Meijer, C. J. Hawker, E. J. Kramer, Macromolecules 2010, 43, 5121; – reference: D. A. Christian, A. Tian, W. G. Ellenbroek, I. Levental, K. Rajagopal, P. A. Janmey, A. J. Liu, T. Baumgart, D. E. Discher, Nat. Mater. 2009, 8, 843. – reference: S. Dong, X. Yan, B. Zheng, J. Chen, X. Ding, Y. Yu, D. Xu, M. Zhang, F. Huang, Chem. Eur. J. 2012, 18, 4195. – reference: b) M. Guo, M. Jiang, Soft Matter 2009, 5, 495; – reference: c) R. Breslow, J. Biol. Chem. 2009, 284, 1337. – reference: b) R. Iwanra, K. Yoshida, M. Masuda, M. Ohnishi-Kameyama, M. Yoshida, T. Shimizu, Angew. Chem. Int. Ed. 2003, 42, 1009; – reference: S. G. Spain, M. I. Gibson, N. R. Cameron, J. Polym. Sci. Part A: Polym. Chem. 2007, 45, 2059. – reference: X. Pan, P. Yao, M. Jiang, J. Colloid Interface Sci. 2007, 315, 456. – reference: b) T. W. Johnson, I. M. Klotz, Macromolecules 1974, 7, 149; – reference: b) S. R. White, N. R. Sottos, P. H. Geubelle, J. S. Moore, M. R. Kessler, S. R. Sriram, E. N. Brown, S. Vlswanathan, Nature 2001, 409, 794. – reference: K. Wei, L. Su, G. Chen, M. Jiang, Polymer 2011, 52, 3647. – reference: M. Brasch, J. J. L. M. Cornelissen, Chem. Commun. 2012, 48, 1446. – reference: C. Nardin, S. Thoeni, J. Widmer, M. Winterhalter, W. Meier, Chem. Commun. 2000, 1433. – reference: c) B. C. K. Tee, C. Wang, R. Allen, Z. Bao, Nat. Nanotechnol. 2012, 7, 825. – reference: c) M. Surin, P. G. A. Janssen, R. Lazzaroni, P. Leclère, E. W. Meijer, A. P. H. J. Schenning, Adv. Mater. 2009, 21, 1126; – reference: Y. Chen, Z. Guan, Polym. Chem. 2013, DOI: 10.1039/C3PY00078H. – reference: E. Huerta, P. J. M. Stals, E. W. Meijer, A. R. A. Palmans, Angew. Chem. Int. Ed. 2013, 52, 2906. – reference: a) A. Taubert, A. Napoli, W. Meier, Current Opinion in Chemical Biology 2004, 8, 598; – reference: b) R. Arshady, K. Mosbach, Makromol. Chem. 1981, 182, 687. – reference: G. Vlatakis, L. I. Andersson, R. Müller, K. Mosbach, Nature 1993, 361, 645. – reference: Y. Yonamine, Y Hoshino, K. J. Shea, Biomacromolecules 2012, 13, 2952. – reference: D. L. Richmond, E. M. Schmid, S. Martens, J. C. Stachowiak, N. Liska, D. A. Fletcher, Proc. Natl. Acad. Sci. USA 2011, 108, 9431. – reference: b) H. Li, M. A. Cortez, H. R. Phillips, Y. Wu, T. M. Reineke, ACS Macro Lett. 2013, 2, 230. – reference: d) K. P. Nair, Victor Breedveld, M. Weck, Macromolecules 2011, 44, 3346. – reference: c) C. R. South, K. C.-F. Leung, D. Lanari, J. F. Stoddart, M. Weck, Macromolecules 2006, 39, 3738. – reference: c) Y. Hoshino, K. J. Shea, J. Mater. Chem. 2011, 21, 3517. – reference: K. Sakthivel, W. Notz, T. Bui, C. F. Barbas III, J. Am. Chem. Soc. 2001, 123, 5260. – reference: M. Osaki, Y. Takashima, H. Yamaguchi, A. Harada, Macromolecules 2007, 40, 3154. – reference: I. J. Minten, Y. Ma, M. A Hempenius, G. J. Vancso, R. J. M. Nolte, J. J. L. M. Cornelissen, Org. Biomol. Chem. 2009, 7, 4685. – reference: D. M. Vriezema, J. Hoogboom, K. Velonia, K. Takazawa, P. C. M. Christianen, J. C. Maan, A. E. Rowan, R. J. M. Nolte, Angew. Chem. Int. Ed. 2003, 42, 772. – reference: A. A. Choucair, A. H. Kycia, A. Eisenberg, Langmuir 2003, 19, 1001. – reference: Y. Chen, A. M. Kushner, G. A. Williams, Z. Guan, Nat. Chem. 2012, 4, 467. – reference: N. Gouda, K. Miyata, R. J. Christie, T. Suma, A. Kishimura, S. Fukushima, T. Nomoto, X. Liu, N. Nishiyama, K. Kataoka, Biomaterials 2013, 34, 562. – reference: Y. Cai, K. B. Aubrecht, R. B. Grubbs, J. Am. Chem. Soc. 2011, 133, 1058. – reference: T. P. Smart, C. Fernyhough, A. J. Ryan, G. Battaglia, Macromol. Rapid Commun. 2008, 29, 1855. – reference: c) S. D. Bergman, F. Wudl, J. Mater. Chem. 2008, 18, 41. – reference: a) G. Wülff, Angew. Chem. Int. ed. Engl. 1995, 34, 1812; – reference: L. Luo, A. Eisenberg, Langmuir 2001, 17, 6804. – reference: G. Pasparakis, C. Alexander, Angew. Chem. Int. Ed. 2008, 47, 4847. – reference: M. Chemin, P. M. Brun, S. Lecommandoux, O. Sandre, J.-F. Le Meins, Soft Matter 2012, 8, 2867. – reference: Y. Chi, S. T. Scroggins, J. M. J. Fréchet, J. Am. Chem. Soc. 2008, 130, 6322. – reference: H. Bermúdez, H. Aranda-Espinoza, D. A. Hammer, D. E. Discher, Europhys. Lett. 2003, 64, 550. – reference: a) J. M. de la Fuente, A. G. Barrientos, T. C. Rojas, J. Rojo, J. Cañada, A. Fernández, S. Penadés, Angew. Chem. Int. Ed. 2001, 40, 2257; – reference: b) C. Liu, M. A. Hillmyer, T. P. Lodge, Langmuir 2008, 24, 12001. – reference: K. Haupt, Nat. Mater. 2010, 9, 612. – reference: R. Chandrawati, L. Hosta-Rigau, D. Vanderstraaten, S. A. Lokuliyana, B. Städler, F. Albericio, F. Caruso, ACS Nano 2010, 4, 1351. – reference: A. Graff, M. Sauer, P. van Gelder, W. Meier, Proc. Natl. Acad. Sci. USA 2002, 99, 5064. – reference: a) J. Zou, F. Tao, M. Jiang, Langmuir 2007, 23, 12791; – reference: c) F. Ahmed, P. J. Photos, D. E. Discher, Drug Dev. Res. 2006, 67, 4; – reference: b) J. Wang, M. Jiang, Acta. Polym. Sin. 2007, 979. – reference: b) P. Cordier, F. Tournilhac, C. Soulié-Ziakovic, L. Leibler, Nature 2008, 451, 977; – reference: a) Z. Dong, Q. Luo, J. Liu, Chem. Soc. Rev. 2012, 41, 7890; – reference: b) S. Burattini, B. W. Greenland, W. Hayes, M. E. Mackay, S. J. Rowan, H. M. Colquhoun, Chem. Mater. 2011, 23, 6; – reference: S. A. Meeuwissen, K. T. Kim, Y. Chen, D. J. Pochan, J. C. M. van Hest, Angew. Chem. Int. Ed. 2011, 50, 7070. – reference: b) G. Deng, F. Li, H. Yu, F. Liu, C. Liu, W. Sun, H. Jiang, Y. Chen, ACS Macro Lett. 2012, 1, 275; – reference: Y. Liu, Y. Wang, Y. Wang, J. Lu, V. Piñón III, M. Weck, J. Am. Chem. Soc. 2011, 133, 14260. – reference: M. Marguet, O. Sandre, S. Lecommandoux, Langmuir 2012, 28, 2035. – reference: J. L. Cleland, C. Hedgepeth, D. I. Wang, J. Biol. Chem. 1992, 267, 13327. – reference: a) J. Wang, M. Jiang, J. Am. Chem. Soc. 2006, 128, 3703; – reference: b) S. Yu, J. Hu, X. Pan, P. Yao, M. Jiang, Langmuir 2006, 22, 2754. – reference: a) J. Hu, S. Yu, P. Yao, Langmuir 2007, 23, 6358; – reference: b) T. Riedel, A. Ghasparia, K. Moehle, P. Rusert, A. Trkola, J. A. Robinson, ChemBioChem 2011, 12, 2829; – reference: Y. Zhou, D. Yan, Chem. Commun. 2009, 45, 1172. – reference: J. Hentschel, A. M. Kushner, J. Ziller, Z. Guan, Angew. Chem. Int. Ed. 2012, 51, 10561. – reference: d) X. Liu, C. Yi, Y. Zhu, Y. Yang, J. Jiang, Z. Cui, M. Jiang, Colloid Interface Sci. 2010, 351, 315. – reference: D. C. Tuncaboylu, M. Sahin, A. Argun, W. Oppermann, O. Okay, Macromolecules 2012, 45, 1991. – reference: D. C. Tuncaboylu, A. Argun, M. Sahin, M. Sari, O. Okay, Polymer 2012, 53, 5513. – reference: d) A. Zeltins, Mol. Biotechnol. 2013, 53, 92. – reference: d) P. G. A. Janssen, N. J. M. Brankaert, X. Vila, A. P. H. J. Schenning, Soft Matter 2010, 6, 1494. – reference: b) T. P. Lodge, Macromolecular Chem. Phys. 2003, 204, 265. – reference: P. Broz, S. Driamov, J. Ziegler, N. Ben-Haim, S. Marsch, W. Meier, P. Hunziker, Nano Lett. 2006, 6, 2349. – reference: c) D. Rozema, S. H. Gellman, Biochemistry 1996, 35, 15760. – reference: a) J. M. Pollino, K. P. Nair, L. P. Stubbs, J. Adams, M. Weck, Tetrahedron 2004, 60, 7205; – reference: A. O. Moughton, R. K. O'Reilly, J. Am. Chem. Soc. 2008, 130, 8714. – reference: a) W. Su, Y. Luo, Q. Yan, S. Wu, K. Han, Q. Zhang, Y. Gu, Y. Li, Macromol. Rapid Commun. 2007, 28, 1251; – reference: b) E. B. Murphy, F. Wudl, Prog. Poly. Sci. 2010, 35, 223; – reference: a) Y. Zhou, D. Yan, Angew. Chem. Int. Ed. 2004, 43, 4896; – reference: M. Pepels, I. Filot, B. Klumperman, H. Goossens, Polym. Chem. 2013, DOI: 10.1039/C1033PY00087G. – reference: a) B. J. Blaiszik, S. L. B. Kramer, S. C. Olugebefola, J. S. Moore, N. R. Sottos, S. R. White, Annu. Rev. Mater. Res. 2010, 40, 179; – reference: M. Schulz, S. Werner, K. Bacia, W. H. Binder, Angew. Chem. Int. Ed. 2013, 52, 1829. – reference: a) X. Chen, M. A. Dam, K. Ono, A. Mal, H. Shen, S. R. Nutt, K. Sheran, F. Wudl, Science 2002, 295, 1698; – reference: g) X. Xu, H. Yuan, J. Chang, B. He, Z. Gu, Angew. Chem. Int. Ed. 2012, 51, 3130. – reference: c) N. Lefèvre, C. A. Fustin, J. F. Gohy, Macromol. Rapid Commu. 2009, 30, 1871. – reference: K. T. Kim, J. Zhu, S. A. Meeuwissen, J. J. L. M. Cornelissen, D. J. Pochan, R. J. M. Nolte, J. C. M. van Hest, J. Am. Chem. Soc. 2010, 132, 12522. – reference: a) A. Ghasparian, T. Riedel, J. Koomullil, K. Moehle, C. Gorba, D. I. Svergun, A. W. Perriman, S. Mann, M. Tamborrini, G. Pluschke, J. A. Robinson, ChemBioChem 2011, 12, 100; – reference: Y. Lu, M. Ballauff, Prog. Polym. Sci. 2011, 36, 767. – reference: b) S. F. M. van Dongen, W. P. R. Verdurmen, R. J. R. W. Peters, R. J. M. Nolte, R. Brock, J. C. M. van Hest, Angew. Chem. Int. Ed. 2010, 49, 7213. – reference: c) K. P. Nair, V. Breedveld, M. Weck, Soft Matter 2011, 7, 553; – reference: b) R. Breslow, Chem. Biol. 1998, 5, R27; – reference: c) D. Pati, N. Kalva, S. Das, G. Kumaraswamy, S. Sen Gupta, A. V. Ambade, J. Am. Chem. Soc. 2012, 134, 7796. – reference: P. G. A. Janssen, N. Meeuwenoord, G. van der Marel, S. Jabbari-Farouji, P. van der Schoot, M. Surin, Ž. Tomović, E. W. Meijer, A. P. H. J. Schenning, Chem. Commun. 2010, 46, 109. – reference: Y. Sasaki, K. Akiyoshi, The Chemical Record 2010, 10, 366. – reference: a) D. J. Buckwalter, A. Sizovs, N. P. Ingle, T. M. Reineke, ACS Macro Lett. 2012, 1, 609; – reference: b) R. Breslow, S. D. Dong, Chem. Rev. 1998, 98, 1997. – reference: a) P. G. A. Janssen, S. Jabbari-Farouji, M. Surin, X. Vila, J. C. Gielen, T. F. A. de Greef, M. R. J. Vos, P. H. H. Bomans, N. A. J. M. Sommerdijk, P. C. M. Christianen, P. Leclère, R. Lazzaroni, P. van der Schoot, E. W. Meijer, A. P. H. J. Schenning, J. Am. Chem. Soc. 2009, 131, 1222; – reference: A. Lu, P. Cotanda, J. P. Patterson, D. A. Longbottom, R. K. O'Reilly, Chem. Commun. 2012, 48, 9699. – reference: S. F. M. van Dongen, M. Nallani, J. J. L. M. Cornelissen, R. J. M. Nolte, J. C. M. van Hest, Chem. Eur. J. 2009, 15, 1107. – reference: P. C. Hiemenz, T. P. Lodge, Polymer Chemistry, CRC Press, 2007. – reference: B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, P. Walter, Molecular Biology of the Cell, 5th ed. Garland Sci. 2008. – reference: H. Takahashi, S.-i. Sawada, K. Akiyoshi, ACS Nano 2011, 5, 337. – reference: P. G. A. Janssen, J. Vandenbergh, J. L. J. van Dongen, E. W. Meijer, A. P. H. J. Schenning, J. Am. Chem. Soc. 2007, 129, 6078. – reference: A. O. Moughton, J. P. Patterson, R. K. O'Reilly, Chem. Commun. 2011, 47, 355. – reference: a) J. Suh, Synlett 2001, 1343; – reference: b) K. T. Pilobello, L. K. Mahal, Curr. Opin. Chem. Biol. 2007, 11, 300. – reference: F. Boato, R. M. Thomas, A. Ghasparian, A. Freund-Renard, K. Moehle, J. A. Robinson, Angew. Chem. Int. Ed. 2007, 119, 9173. – reference: b) S. G. Spain, L. Albertin, N. R. Cameron, Chem. Commun. 2006, 4198. – reference: b) F. Wang, C. Han, C. He, Q. Zhou, J. Zhang, C. Wang, N. Li, F. Huang, J. Am. Chem. Soc. 2008, 130, 11254. – reference: Y. Zheng, A. Hashidzume, Y. Takashima, H. Yamaguchi, A. Harada, Nat. Commun. 2012, 3, 831. – reference: c) L. Liu, M. Rozenman, R. Breslow, J. Am. Chem. Soc. 2002, 124, 12660. – reference: b) V. Malinova, M. Nallani, W. P. Meier, E. K. Sinner, FEBS Lett 2012, 586, 2146; – reference: P. Cotanda, N. Petzetakis, R. K. O'Reilly, Macrmol. Rapid Commun. 2012, 2, 119. – reference: b) Y. Zhou, W. Huang, J. Liu, X. Zhu, D. Yan, Adv. Mater. 2010, 22, 4567. – reference: a) R. Iwaura, F. J. M. Hoeben, M. Masuda, A. P. H. J. Schenning, E. W. Meijer, T. Shimizu, J. Am. Chem. Soc. 2006, 128, 13298; – reference: D. E. Discher, A. Eisenberg, Science 2002, 297, 967. – reference: V. Ladmiral, G. Mantovani, G. J. Clarkson, S. Cauet, J. L. Irwin, D. M. Haddleton, J. Am. Chem. Soc. 2006, 128, 4823. – reference: b) E. Crisci, J. Bárcena, M. Montoya, Veter. Immunol. Immunopath. 2012, 148, 211; – reference: b) T. Nakai, T. Kanamori, S. Sando, Y. Aoyama, J. Am. Chem. Soc. 2003, 125, 8465. – reference: K. Kurihara, M. Tamura, K. Shohda, T. Toyota, K. Suzuki, T. Sugawara, Nat. Chem. 2011, 3, 775. – reference: A. Wu, L. Isaacs, J. Am. Chem. Soc. 2003, 125, 4831. – reference: H.-P. M. de Hoog, M. Nallani, M. Tomczak, Soft Matter 2012, 8, 4552. – reference: a) N. Hadjichristidis, S. Pispas, G. Floudas, Block Copolymers: Synthetic Strategies, Physical Properties, and Applications, Wiley-Interscience 2003; – reference: X. Liu, Y. Liu, Z. Zhang, F. Huang, Q. Tao, R. Ma, Y. An, L. Shi, Chem. Eur. J. 2013, DOI: 10.1002/chem.201300634. – reference: Z. Liu, J. Qiao, Z. Niu, Q. Wang, Chem. Soc. Rev. 2012, 41, 6178. – reference: a) H. K. Lee, K. M. Park, Y. J. Jeon, D. Kim, D. H. Oh, H. S. Kim, C. K. Park, K. Kim, J. Am. Chem. Soc. 2005, 127, 5006; – reference: T. Mes, M. M. E. Koenigs, V. F. Scalfani, T. S. Bailey, E. W. Meijer, A. R. A. Palmans, ACS Macro Lett. 2012, 1, 105. – reference: M. Schulz, D. Glatte, A. Meister, P. Scholtysek, A. Kerth, A. Blume, K. Bacia, W. H. Binder, Soft Matter 2011, 7, 8100. – reference: b) O. Onaca, R. Enea, D. W. Hughes, W. Meier, Macromol. Biosci. 2009, 9, 129; – reference: K. Yu, A. Eisenberg, Macromolecules 1998, 31, 3509. – reference: b) D. Rozema, S. H. Gellman, J. Biol. Chem. 1996, 271, 3478; – reference: a) R. L. Garcea, L. Gissmann, Curr. Opin. Biotechnol. 2004, 15, 513; – reference: S. Walter, J. Buchner, Angew. Chem. Int. Ed. Engl. 2002, 41, 1098. – reference: a) M. M. Safont-Sempere, G. Fernández, F. Würthner, Chem. Rev. 2011, 111, 5784; – reference: Y. C. Lee, R. T. Lee, Acc. Chem. Res. 1995, 28, 321. – reference: A. H. Gröschel, F. H. Schacher, H. Schmalz, O. V. Borisov, E. B. Zhulina, A. Walther, A. H. E. Müller, Nat. Commun. 2012, 3, 710. – reference: A. W. Perriman, D. S. Williams, A. J. Jackson, I. Grillo, J. M. Koomullil, A. Ghasparian, J. A. Robinson, S. Mann, Small 2010, 6, 1191. – reference: L. L. Kiessling, J. E. Gestwicki, L. E. Strong, Angew. Chem. Int. Ed. 2006, 45, 2348. – reference: a) Y. Kakizawa, K. Kataoka, Adv. Drug Delivery Rev. 2002, 54, 203; – reference: a) M. Ambrosi, N. R. Cameron, B. G. Davis, Org. Biomol. Chem. 2005, 3, 1593; – reference: M. Burnworth, L. Tang, J. R. Kumpfer, A. J. Duncan, F. L. Beyer, G. L. Fiore, S. J. Rowan, C. Weder, Nature 2011, 472, 334. – reference: R. Chandrawati, B. Städler, A. Postma, L. A. Connal, S. F. Chong, A. N. Zelikin, F. Caruso, Biomaterials 2009, 30, 5988. – reference: a) X. Liu, J. Kim, J. Wu, A. Eisenberg, Macromolecules 2005, 38, 6749; – reference: D. Haldar, C. Schmuck, Chem. Soc. Rev. 2009, 38, 363. – reference: P. C. Pang, P. C. N. Chiu, C. L. Lee, L. Y. Chang, M. Panico, H. R. Morris, S. M. Haslam, K. H. Khoo, G. F. Clark, W. S. B. Yeung, A. Dell, Science 2011, 333, 1761. – reference: K. Braig, Z. Otwinowski, R. Hegde, D. C. Boisvert, A. Joachimiak, A. L. Horwich, P. B. Sigler, Nature 1994, 371, 578. – reference: c) I. W. Hamley, Soft Matter 2011, 7, 9533. – reference: a) S. Burattini, H. M. Colquhoun, J. D. Fox, D. Friedmann, B. W. Greenland, P. J. F. Harris, W. Hayes, M. E. Mackay, S. J. Rowan, Chem. Commun. 2009, 6717; – reference: J. Zheng, K. Shi, Y. Zhang, X. Sun, B. Zhang, Chem. Commun. 2008, 44, 3753. – reference: J. Lin, M. Surin, D. Beljonne, X. Lou, J. L. J. van Dongen, A. P. H. J. Schenning, Chem. Sci. 2012, 3, 2732. – reference: c) J. K. Pokorski, N. F. Steinmetz, Mol. Pharm. 2011, 8, 29; – reference: P. Brož, S. M. Benito, C. Saw, P. Burger, H. Heider, M. Pfisterer, S. Marsch, W. Meier, P Hunziker, J. Controlled Release 2005, 102, 475. – reference: b) A. I. Nyberg, A. Usano, P. M. Pihko, Syn. Lett 2004, 11, 1891. – reference: J. Nam, P. A. Beales, T. K. Vanderlick, Langmuir 2011, 27, 1. – reference: a) M. Boopathi, M. V. S. Suryanarayana, A. K. Nigam, P. Pandey, K. Ganesan, B. Singh, K. Sekhar, Biosens. Bioelectron. 2006, 21, 2339; – reference: X. Zhang, C. Wang, Chem. Soc. Rev. 2011, 40, 94. – reference: J. Wang, M. Kuang, H. Duan, D. Chen, M. Jiang, Eur. Phys. J. E 2004, 15, 211. – reference: M. Ambrosi, A. S. Batsanov, N. R. Cameron, B. G. Davis, J. A. K. Howard, R. Hunter, J. Chem. Soc., Perkin Trans. 1 2002, 45. – reference: a) R. Breslow, Chem. Soc. Rev. 1972, 553; – reference: H. Ringdorf, B. Schlarb, J. Venzmer, Angew. Chem. Int. Ed. Engl. 1988, 27, 113. – reference: c) P. Tanner, P. Baumann, R. Enea, O. Onaca, C. Palivan, W. Meier, Acc. Chem. Res. 2011, 44, 1039; – reference: H. Yamaguchi, Y. Kobayashi, R. Kobayashi, Y. Takashima, A. Hashidzume, A. Harada, Nat. Commun. 2012, 3, 603. – reference: M. Sauer, T. Haefele, A. Graff, C. Nardin, W. Meier, Chem. Commun. 2001, 2452. – reference: M. Krogsgaard, M. A. Behrens, J. S. Pedersen, H. Birkedal, Biomacromol. 2013, 14, 297. – reference: C. R. Bertozzi, L. L. Kiessling, Science 2001, 2357. – reference: a) C. Kumar, Biomimetic and bioinspired nanomaterials WILEY-VCH, 2010; – reference: b) P. G. A. Janssen, A. Ruiz-Carretero, D. González-Rodríguez, E. W. Meijer, A. P. H. J. Schenning, Angew. Chem. Int. Ed. 2009, 48, 8103; – reference: Y. Yin, X. Huang, C. Lv, L. Wang, S. Yu, Q. Luo, J. Xu, J. Liu, Macromol. Biosci. 2010, 10, 1505. – reference: R. J. R. W. Peters, I. Louzao, J. C. M. van Hest, Chem. Sci. 2012, 3, 335. – reference: A. O. Moughton, R. K. O'Reilly, Chem. Commun. 2010, 46, 1091. – reference: N. Morimoto, T. Endo, Y. Iwasaki, K. Akiyoshi, Biomacromolecules 2005, 6, 1829. – reference: P. K. Lo, H. F. Sleiman, J. Am. Chem. Soc. 2009, 131, 4182. – reference: Q. Yan, R. Zhou, C. Fu, H. Zhang, Y. Yin, J. Yuan, Angew. Chem. Int. Ed. 2011, 50, 4923. – reference: K. Wei, J. Li, G. Chen, M. Jiang, ACS Macro Lett. 2013, 2, 278. – reference: B. C. Ng, S. T. Chan, J. Lin, S. H. Tolbert, ACS Nano 2011, 5, 7730. – reference: A. Rambourg, C. P. Leblond, J. Cell Biol. 1967, 32, 27. – reference: Y. Hoshino, T. Kodama, Y. Okahata, K. J. Shea, J. Am. Chem. Soc. 2008, 130, 15242. – reference: b) H. Jin, Y. Liu, Y. Zheng, W. Huang, Y. Zhou, D. Yan, Langmuir 2012, 28, 2066. – reference: b) P. Du, G. Chen, M. Jiang, Science China - Chem. 2012, 55, 835. – reference: C. LoPresti, M. Massignani, C. Fernyhough, A. Blanazs, A. J. Ryan, J. Madsen, N. J. Warren, S. P. Armes, A. L. Lewis, S. Chirasatitsin, A. J. Engler, G. Battaglia, ACS Nano 2011, 5, 1775. – reference: G. H. Clever, M. Shionoya, Coord. Chem. Rev. 2010, 254, 2391. – reference: a) R. Dong, B. Zhu, Y. Zhou, D. Yan, X. Zhu, Angew. Chem. Int. Ed. 2012, 51, 11633; – reference: b) X. Chen, F. Wudl, A. K. Mal, H. Shen, S. R. Nutt, Macromolecules 2003, 36, 1802. – reference: Y. Wang, H. Xu, N. Ma, Z. Wang, X. Zhang, J. Liu, J. Shen, Langmuir 2006, 22, 5552. – reference: T. K. Dam, R. Roy, D. Pagé, C. F. Brewer, Biochemistry 2002, 41, 1359. – reference: a) K. Matyjaszewski, N. V. Tsarevsky, Nat. Chem. 2009, 1, 276; – reference: a) G. Pasparakis, N. Krasnogor, L. Cronin, B. G. Davis, C. Alexander, Chem. Soc. Rev. 2010, 39, 286; – reference: K. Zhang, M. Jiang, D. Chen, Angew. Chem. Int. Ed. 2012, 51, 8744. – reference: M. Marguet, L. Edembe, S. Lecommandoux, Angew. Chem. Int. Ed. 2012, 51, 1173. – reference: a) G. Deng, C. Tang, F. Li, H. Jiang, Y. Chen, Macromolecules 2010, 43, 1191; – reference: c) M. Antonietti, P. Fratzl, Macromol. Chem. Phys. 2010, 211, 166. – reference: c) T. Sugimoto, T. Suzuki, S. Shinkai, K. Sada, J. Am. Chem. Soc. 2007, 129, 270. – reference: G. Karp, Cell and molecular biology: concept and experiments, 4th ed. Wiley 2005. – reference: d) J.-F. Le Meins, O. Sandre, S. Lecommandoux, Eur. Phys. J. E 2011, 34, 14; – reference: T. Hirakura, Y. Nomura, Y. Aoyama, K. Akiyoshi, Biomacromolecules 2004, 5, 1804. – reference: b) H. Dou, M. Jiang, H. Peng, D. Chen, Y. Hong, Angew. Chem. Int. Ed. 2003, 42, 1516; – reference: b) J. J. Lundquist, E. J. Toone, Chem. Rev. 2002, 102, 555. – reference: A. J. Kim, M. S. Kaucher, K. P. Davis, M. Peterca, M. R. Imam, N. A. Christian, D. H. Levine, F. S. Bates, V. Percec, D. A. Hammer, Adv. Funct. Mater. 2009, 19, 2930. – reference: b) Y. Yin, Z. Dong, Q. Luo, J. Liu, Prog. Polym. Sci. 2012, 37, 1476. – reference: M. Ramirez, D. Guan, V. Ugaz, Z. Chen, J. Am. Chem. Soc. 2013, 135, 5290. – reference: H. Schlaad, L. You, R. Sigel, B. Smarsly, M. Heydenreich, A. Mantion, A. Mašić, Chem. Commun. 2009, 45, 1478. – reference: a) R. Akiyama, S. Kobayashi, Chem. Rev. 2009, 109, 594; – reference: S. Yu, T. Azzam, I. Rouiller, A. Eisenberg, J. Am. Chem. Soc. 2009, 131, 10557. – reference: a) D. Chen, M. Jiang, Acc. Chem. Res. 2005, 38, 494; – reference: K. Yoshimatsu, B. K. Lesel, Y. Yonamine, J. M. Beierle, Y. Hoshino, K. J. Shea, Angew. Chem. Int. Ed. 2012, 51, 2405. – reference: e) C. G. Palivan, O. Fischer-Onaca, M. Delcea, F. Itel, W. Meier, Chem. Soc. Rev. 2012, 41, 2800. – reference: d) J. Du, Y. Tang, A. Lewis, S. Armes, J. Am. Chem. Soc. 2005, 127, 17982. – reference: a) J. M. Lehn, Prog. Polym. Sci. 2005, 30, 814; – reference: Y. Hoshino, H. Koide, K. Furuya, W. W. Haberaecker III, S.-H. Lee, T. Kodama, H. Kanazawa, N. Oku, K. J. Shea, Proc. Natl. Acad. Sci. USA 2012, 109, 33. – reference: b) K. P. Nair, V. Breedveld, M. Weck, Macromolecules 2008, 41, 3429; – reference: R. McHale, J. P. Patterson, P. B. Zetterlund, R. K. O'Reilly, Nat. Chem. 2012, 4, 491. – reference: M. J. Monteiro, Macromolecules 2010, 43, 1159. – reference: T. Azzam, A. Eisenberg, Langmuir 2010, 26, 10513. – reference: M. Kumar, M. Grzelakowski, J. Zilles, M. Clark, W. Meier, Proc. Natl. Acad. Sci. USA 2007, 104, 20719. – reference: a) Y. Hoshino, T. Urakami, T. Kodama, H. Koide, N. Oku, Y. Okahata, K. J. Shea, Small 2009, 5, 1562; – reference: a) G. Zuber, E. Dauty, M. Nothisen, P. Belguise, J. P. Behr, Adv. Drug Delivery Rev. 2001, 52, 245; – reference: K. Wei, J. Li, J. Liu, G. Chen, M. Jiang, Soft Matter 2012, 8, 3300. – reference: A. Sundararaman, T. Stephan, R. B. Grubbs, J. Am. Chem. Soc. 2008, 130, 12264. – reference: X. Yan, D. Xu, J. Chen, M. Zhang, B. Hu, Y. Yu, F. Huang, Polym. Chem. 2013, DOI: 10.1039/C1033PY00283G. – reference: C. K. McLaughlin, G. D. Hamblin, H. F. Sleiman, Chem. Soc. Rev. 2011, 40, 5647. – reference: a) H. Torii, M. Nakadai, K. Ishihara, S. Saito, H. Yamamoto, Angew. Chem. Int. Ed. 2004, 43, 1983; – reference: a) R. Breslow, L. E. Overman, J. Am. Chem. Soc. 1970, 92, 1075; – reference: M. Comellas-Aragonès, A. de la Escosura, A. T. J. Dirks, A. van der Ham, A. Fusté-Cuñé, J. J. L. M. Cornelissen, R. J. M. Nolte, Biomacromolecules 2009, 10, 3141. – reference: a) J. M. Pollino, L. P. Stubbs, M. Weck, J. Am. Chem. Soc. 2004, 126, 563; – reference: Z. Fu, M. A. Ochsner, H. P. M. de Hoog, N. Tomczak, M. Nallani, Chem. Commun. 2011, 47, 2862. – reference: c) F. Liu, F. Li, G. Deng, Y. Chen, B. Zhang, J. Zhang, C. Y. Liu, Macromolecules 2012, 45, 1636. – reference: T. Ruysschaert, A. F. P. Sonnen, T. Haefele, W. Meier, M. Winterhalter, D. Fournier, J. Am. Chem. Soc. 2005, 127, 6242. – reference: a) F. Herbst, S. Seiffert, W. H. Binder, Polym. Chem. 2012, 3, 3084; – reference: Y. Takezawa, M. Shionoya, Acc. Chem. Res. 2012, 45, 2066. – reference: c) F. Tian, Y. Yu, C. Wang, S. Yang, Macromolecules 2008, 41, 3385; – reference: b) G. Pasparakis, N. Krasnogor, L. Cronin, B. G. Davis, C. Alexander, Chem. Soc. Rev. 2010, 39, 286; – reference: H. Wei, J. G. Schellinger, D. S. H. Chu, S. H. Pun, J. Am. Chem. Soc. 2012, 134, 16554. – reference: a) P. Du, J. Liu, G. Chen, M. Jiang, Langmuir 2011, 27, 9602; – reference: b) A. Lu, R. K. O'Reilly, Curr. Opin. Biotechnol. 2013, DOI: j.copbio.2012.11.013. – reference: J. Du, R. K. O'Reilly, Chem. Soc. Rev. 2011, 40, 2402. – volume: 11 start-page: 4051 year: 2009 publication-title: Phys. Chem. Chem. Phys. – volume: 13 start-page: 2952 year: 2012 publication-title: Biomacromolecules – volume: 92 98 start-page: 1075 1997 year: 1970 1998 publication-title: J. Am. Chem. Soc. Chem. Rev. – volume: 40 start-page: 3154 year: 2007 publication-title: Macromolecules – volume: 254 start-page: 2391 year: 2010 publication-title: Coord. Chem. Rev. – volume: 131 start-page: 10808 year: 2009 publication-title: J. Am. Chem. Soc. – volume: 28 start-page: 1251 year: 2007 2013 publication-title: Macromol. Rapid Commun. RSC Adv. – volume: 43 1 45 start-page: 1191 275 1636 year: 2010 2012 2012 publication-title: Macromolecules ACS Macro Lett. Macromolecules – volume: 43 start-page: 745 year: 2010 publication-title: Macromolecules – volume: 41 start-page: 6178 year: 2012 publication-title: Chem. Soc. Rev. – start-page: 45 year: 2002 publication-title: J. Chem. Soc., Perkin Trans. 1 – start-page: 1433 year: 2000 publication-title: Chem. Commun. – volume: 131 start-page: 10557 year: 2009 publication-title: J. Am. Chem. Soc. – volume: 60 41 7 44 start-page: 7205 3429 553 3346 year: 2004 2008 2011 2011 publication-title: Tetrahedron Macromolecules Soft Matter Macromolecules – volume: 50 start-page: 7070 year: 2011 publication-title: Angew. Chem. Int. Ed. – volume: 43 start-page: 1159 year: 2010 publication-title: Macromolecules – volume: 1 start-page: 377 year: 2009 publication-title: Nat. Chem. – volume: 38 5 30 start-page: 494 495 1871 year: 2005 2009 2009 publication-title: Acc. Chem. Res. Soft Matter Macromol. Rapid Commu. – volume: 6 start-page: 1191 year: 2010 publication-title: Small – volume: 5 284 start-page: 553 R27 1337 year: 1972 1998 2009 publication-title: Chem. Soc. Rev. Chem. Biol. J. Biol. Chem. – year: 2008 – volume: 94 start-page: 11156 year: 1997 publication-title: Proc. Natl. Acad. Sci. USA – volume: 47 start-page: 4847 year: 2008 publication-title: Angew. Chem. Int. Ed. – volume: 19 start-page: 1001 year: 2003 publication-title: Langmuir – volume: 6 start-page: 1722 year: 2010 publication-title: Soft Matter – volume: 3 start-page: 335 year: 2012 publication-title: Chem. Sci. – volume: 44 start-page: 3504 year: 2008 publication-title: Chem. Commun. – volume: 62 start-page: 2643 year: 1940 publication-title: J. Am. Chem. Soc. – volume: 15 start-page: 211 year: 2004 publication-title: Eur. Phys. J. E – volume: 47 start-page: 2862 year: 2011 publication-title: Chem. Commun. – volume: 2 start-page: 119 year: 2012 publication-title: Macrmol. Rapid Commun. – volume: 40 409 start-page: 179 794 year: 2010 2001 publication-title: Annu. Rev. Mater. Res. Nature – volume: 12 12 7 start-page: 100 2829 e43248 year: 2011 2011 2012 publication-title: ChemBioChem ChemBioChem Plos One – volume: 8 start-page: 2867 year: 2012 publication-title: Soft Matter – year: 2007 – volume: 54 41 start-page: 203 2562 year: 2002 2012 publication-title: Adv. Drug Delivery Rev. Chem. Soc. Rev. – volume: 127 start-page: 6242 year: 2005 publication-title: J. Am. Chem. Soc. – volume: 34 182 start-page: 1812 687 year: 1995 1981 publication-title: Angew. Chem. Int. ed. Engl. Makromol. Chem. – volume: 41 start-page: 1098 year: 2002 publication-title: Angew. Chem. Int. Ed. Engl. – volume: 315 start-page: 456 year: 2007 publication-title: J. Colloid Interface Sci. – volume: 85 start-page: 2111 year: 2003 publication-title: Biophys. J. – volume: 64 start-page: 550 year: 2003 publication-title: Europhys. Lett. – volume: 12 start-page: 2894 year: 2011 publication-title: Biomacromol. – volume: 4 start-page: 491 year: 2012 publication-title: Nat. Chem. – volume: 10 start-page: 321 year: 1999 publication-title: Bioconjugate Chem. – volume: 30 start-page: 5988 year: 2009 publication-title: Biomaterials – volume: 128 42 129 start-page: 13298 1009 270 year: 2006 2003 2007 publication-title: J. Am. Chem. Soc. Angew. Chem. Int. Ed. J. Am. Chem. Soc. – volume: 109 start-page: 594 year: 2009 2013 publication-title: Chem. Rev. Curr. Opin. Biotechnol. – volume: 23 42 start-page: 12791 7465 year: 2007 2009 publication-title: Langmuir Macromolecules – volume: 306 24 start-page: 98 12001 year: 2004 2008 publication-title: Science Langmuir – volume: 29 start-page: 1855 year: 2008 publication-title: Macromol. Rapid Commun. – volume: 18 start-page: 4195 year: 2012 publication-title: Chem. Eur. J. – volume: 48 start-page: 1446 year: 2012 publication-title: Chem. Commun. – volume: 19 start-page: 2930 year: 2009 publication-title: Adv. Funct. Mater. – volume: 7 start-page: 8100 year: 2011 publication-title: Soft Matter – volume: 42 start-page: 772 year: 2003 publication-title: Angew. Chem. Int. Ed. – volume: 283 139 134 start-page: 1366 359 7796 year: 2005 2008 2012 publication-title: Colloid Polym. Sci. Faraday Discuss J. Am. Chem. Soc. – volume: 45 start-page: 2059 year: 2007 publication-title: J. Polym. Sci. Part A: Polym. Chem. – volume: 51 start-page: 2405 year: 2012 publication-title: Angew. Chem. Int. Ed. – volume: 3 start-page: 1560 year: 2012 publication-title: Polym. Chem. – year: 2009 – volume: 14 start-page: 297 year: 2013 publication-title: Biomacromol. – volume: 135 start-page: 5290 year: 2013 publication-title: J. Am. Chem. Soc. – volume: 46 start-page: 1091 year: 2010 publication-title: Chem. Commun. – volume: 132 start-page: 7834 year: 2010 publication-title: J. Am. Chem. Soc. – volume: 25 start-page: 6725 year: 2009 publication-title: Langmuir – volume: 45 start-page: 1172 year: 2009 publication-title: Chem. Commun. – volume: 103 42 15 127 start-page: 9473 1516 695 17982 year: 1999 2003 2005 2005 publication-title: J. Phys. Chem. B Angew. Chem. Int. Ed. Adv. Funct. Mater. J. Am. Chem. Soc. – volume: 44 start-page: 3223 year: 2005 publication-title: Angew. Chem. Int. Ed. – volume: 31 start-page: 3509 year: 1998 publication-title: Macromolecules – volume: 28 start-page: 2035 year: 2012 publication-title: Langmuir – volume: 46 start-page: 109 year: 2010 publication-title: Chem. Commun. – year: 2008 publication-title: Molecular Biology of the Cell, 5th ed. Garland Sci. – volume: 3 11 start-page: 1593 300 year: 2005 2007 publication-title: Org. Biomol. Chem. Curr. Opin. Chem. Biol. – volume: 131 130 start-page: 12339 11254 year: 2009 2008 publication-title: J. Am. Chem. Soc. J. Am. Chem. Soc. – start-page: 2357 year: 2001 publication-title: Science – volume: 52 64 67 4 24 249 51 start-page: 245 811 4 581 119 95 3130 year: 2001 2012 2006 2005 1993 2012 2012 publication-title: Adv. Drug Delivery Rev. Adv. Drug Delivery Rev. Drug Dev. Res. Nat. Rev. Drug Discov. J. Controlled Release Adv. Polym. Sci. Angew. Chem. Int. Ed. – volume: 47 start-page: 1875 year: 2008 publication-title: Angew. Chem. Int. Ed. – volume: 132 start-page: 12522 year: 2010 publication-title: J. Am. Chem. Soc. – volume: 3 451 7 start-page: 3084 977 825 year: 2012 2008 2012 publication-title: Polym. Chem. Nature Nat. Nanotechnol. – volume: 26 start-page: 10513 year: 2010 publication-title: Langmuir – volume: 5 start-page: 1804 year: 2004 publication-title: Biomacromolecules – volume: 43 22 start-page: 4896 4567 year: 2004 2010 publication-title: Angew. Chem. Int. Ed. Adv. Mater. – volume: 130 start-page: 6322 year: 2008 publication-title: J. Am. Chem. Soc. – volume: 38 start-page: 363 year: 2009 publication-title: Chem. Soc. Rev. – volume: 4 start-page: 467 year: 2012 publication-title: Nat. Chem. – volume: 131 48 21 6 start-page: 1222 8103 1126 1494 year: 2009 2009 2009 2010 publication-title: J. Am. Chem. Soc. Angew. Chem. Int. Ed. Adv. Mater. Soft Matter – volume: 124 start-page: 4978 year: 2002 publication-title: J. Am. Chem. Soc. – volume: 43 133 start-page: 5121 19672 year: 2010 2011 publication-title: Macromolecules J. Am. Chem. Soc. – volume: 126 39 39 start-page: 563 931 3738 year: 2004 2006 2006 publication-title: J. Am. Chem. Soc. Macromolecules Macromolecules – volume: 3 44 start-page: 34 2395 year: 2011 2011 publication-title: Nat. Chem. Macromolecules – volume: 41 37 start-page: 7890 1476 year: 2012 2012 publication-title: Chem. Soc. Rev. Prog. Polym. Sci. – volume: 34 start-page: 203 year: 2013 publication-title: Macromol. Rapid Commun. – volume: 52 start-page: 3647 year: 2011 publication-title: Polymer – volume: 51 start-page: 8744 year: 2012 publication-title: Angew. Chem. Int. Ed. – volume: 1 39 211 start-page: 276 286 166 year: 2009 2010 2010 publication-title: Nat. Chem. Chem. Soc. Rev. Macromol. Chem. Phys. – volume: 51 start-page: 10561 year: 2012 publication-title: Angew. Chem. Int. Ed. – volume: 1 start-page: 1083 year: 2012 publication-title: ACS Macro Lett. – volume: 23 22 start-page: 6358 2754 year: 2007 2006 publication-title: Langmuir Langmuir – volume: 123 start-page: 5260 year: 2001 publication-title: J. Am. Chem. Soc. – volume: 52 start-page: 2906 year: 2013 publication-title: Angew. Chem. Int. Ed. – volume: 131 start-page: 4182 year: 2009 publication-title: J. Am. Chem. Soc. – volume: 131 start-page: 6549 year: 2009 publication-title: J. Am. Chem. Soc. – volume: 4 start-page: 268 year: 2012 publication-title: Nat. Chem. – volume: 10 start-page: 1505 year: 2010 publication-title: Macromol. Biosci. – volume: 99 start-page: 5064 year: 2002 publication-title: Proc. Natl. Acad. Sci. USA – volume: 213 start-page: 234 year: 2012 publication-title: Macromol. Chem. Phys. – volume: 267 start-page: 13327 year: 1992 publication-title: J. Biol. Chem. – volume: 119 start-page: 9173 year: 2007 publication-title: Angew. Chem. Int. Ed. – volume: 4 start-page: 1351 year: 2010 publication-title: ACS Nano – volume: 387 start-page: 569 year: 1997 publication-title: Nature – volume: 127 start-page: 10468 year: 2005 publication-title: J. Am. Chem. Soc. – volume: 3 start-page: 775 year: 2011 publication-title: Nat. Chem. – volume: 57 start-page: 785 year: 1988 publication-title: Ann. Rev. Biochem. – volume: 128 start-page: 4823 year: 2006 publication-title: J. Am. Chem. Soc. – volume: 134 start-page: 20189 year: 2012 publication-title: J. Am. Chem. Soc. – volume: 472 start-page: 334 year: 2011 publication-title: Nature – volume: 297 start-page: 967 year: 2002 publication-title: Science – volume: 130 start-page: 12264 year: 2008 publication-title: J. Am. Chem. Soc. – volume: 32 start-page: 27 year: 1967 publication-title: J. Cell Biol. – volume: 5 132 21 start-page: 1562 6644 3517 year: 2009 2010 2011 publication-title: Small J. Am. Chem. Soc. J. Mater. Chem. – volume: 47 start-page: 355 year: 2011 publication-title: Chem. Commun. – volume: 128 start-page: 3703 979 year: 2006 2007 publication-title: J. Am. Chem. Soc. Acta. Polym. Sin. – year: 2005 – volume: 5 start-page: 7730 year: 2011 publication-title: ACS Nano – volume: 8 start-page: 4552 year: 2012 publication-title: Soft Matter – volume: 42 start-page: 512 year: 2013 publication-title: Chem. Soc. Rev. – volume: 2 start-page: 278 year: 2013 publication-title: ACS Macro Lett. – volume: 333 start-page: 1761 year: 2011 publication-title: Science – volume: 52 start-page: 1829 year: 2013 publication-title: Angew. Chem. Int. Ed. – volume: 27 start-page: 113 year: 1988 publication-title: Angew. Chem. Int. Ed. Engl. – volume: 8 start-page: 843 year: 2009 publication-title: Nat. Mater. – volume: 108 start-page: 9431 year: 2011 publication-title: Proc. Natl. Acad. Sci. USA – volume: 126 start-page: 2355 year: 2004 publication-title: J. Am. Chem. Soc. – volume: 3 start-page: 603 year: 2012 publication-title: Nat. Commun. – volume: 22 start-page: 5552 year: 2006 publication-title: Langmuir – year: 2013 publication-title: Chem. Eur. J. – volume: 40 start-page: 2254 year: 2011 publication-title: Chem. Soc. Rev. – volume: 95 start-page: 228101 year: 2005 publication-title: Phys. Rev. Lett. – volume: 33 35 18 start-page: 479 223 41 year: 2008 2010 2008 publication-title: Prog. Polym. Sci. Prog. Poly. Sci. J. Mater. Chem. – volume: 40 start-page: 2402 year: 2011 publication-title: Chem. Soc. Rev. – volume: 7 124 start-page: 1343 149 12660 year: 2001 1974 2002 publication-title: Synlett Macromolecules J. Am. Chem. Soc. – volume: 127 start-page: 2999 year: 2005 publication-title: J. Am. Chem. Soc. – volume: 15 start-page: 1107 year: 2009 publication-title: Chem. Eur. J. – volume: 1 2 start-page: 609 230 year: 2012 2013 publication-title: ACS Macro Lett. ACS Macro Lett. – volume: 39 586 7 start-page: 286 2146 9533 year: 2010 2012 2011 publication-title: Chem. Soc. Rev. FEBS Lett Soft Matter – volume: 48 start-page: 9699 year: 2012 publication-title: Chem. Commun. – volume: 43 11 start-page: 1983 1891 year: 2004 2004 publication-title: Angew. Chem. Int. Ed. Syn. Lett – volume: 10 start-page: 3141 year: 2009 publication-title: Biomacromolecules – volume: 41 start-page: 1359 year: 2002 publication-title: Biochemistry – volume: 6 start-page: 2349 year: 2006 publication-title: Nano Lett. – volume: 48 125 start-page: 2572 8465 year: 2009 2003 publication-title: Angew. Chem. Int. Ed. J. Am. Chem. Soc. – volume: 109 start-page: 33 year: 2012 publication-title: Proc. Natl. Acad. Sci. USA – volume: 204 start-page: 265 year: 2003 2003 publication-title: Macromolecular Chem. Phys. – volume: 5 start-page: 54 year: 2007 publication-title: Org. Biomol. Chem. – volume: 30 36 start-page: 814 151 year: 2005 2007 publication-title: Prog. Polym. Sci. Chem. Soc. Rev. – volume: 15 148 8 53 start-page: 513 211 29 92 year: 2004 2012 2011 2013 publication-title: Curr. Opin. Biotechnol. Veter. Immunol. Immunopath. Mol. Pharm. Mol. Biotechnol. – volume: 23 132 start-page: 6717 6 12051 year: 2009 2011 2010 publication-title: Chem. Commun. Chem. Mater. J. Am. Chem. Soc. – volume: 37 102 start-page: 2755 555 year: 1998 2002 publication-title: Angew. Chem. Int. Ed. Chem. Rev. – volume: 130 start-page: 15242 year: 2008 publication-title: J. Am. Chem. Soc. – volume: 8 9 44 34 41 start-page: 598 129 1039 14 2800 year: 2004 2009 2011 2011 2012 publication-title: Current Opinion in Chemical Biology Macromol. Biosci. Acc. Chem. Res. Eur. Phys. J. E Chem. Soc. Rev. – year: 2013 publication-title: Polym. Chem. – volume: 40 start-page: 94 year: 2011 publication-title: Chem. Soc. Rev. – volume: 27 start-page: 1 year: 2011 publication-title: Langmuir – volume: 117 271 35 start-page: 2373 3478 15760 year: 1995 1996 1996 publication-title: J. Am. Chem. Soc. J. Biol. Chem. Biochemistry – volume: 111 14 start-page: 5784 1541 year: 2011 2013 publication-title: Chem. Rev. Int. J. Mol. Sci. – volume: 51 start-page: 1173 year: 2012 publication-title: Angew. Chem. Int. Ed. – volume: 5 start-page: 2892 year: 2013 publication-title: Nanoscale – volume: 303 start-page: 65 year: 2004 publication-title: Science – volume: 21 16 start-page: 2339 468 year: 2006 1998 publication-title: Biosens. Bioelectron. Trends Biotechnol. – volume: 38 39 41 351 start-page: 6749 1108 3385 315 year: 2005 2006 2008 2010 publication-title: Macromolecules Macromolecules Macromolecules Colloid Interface Sci. – volume: 45 start-page: 2066 year: 2012 publication-title: Acc. Chem. Res. – volume: 125 start-page: 4831 year: 2003 publication-title: J. Am. Chem. Soc. – volume: 17 start-page: 6804 year: 2001 publication-title: Langmuir – volume: 127 28 start-page: 5006 2066 year: 2005 2012 publication-title: J. Am. Chem. Soc. Langmuir – volume: 3 start-page: 2732 year: 2012 publication-title: Chem. Sci. – volume: 1 start-page: 105 year: 2012 publication-title: ACS Macro Lett. – volume: 36 start-page: 767 year: 2011 publication-title: Prog. Polym. Sci. – volume: 104 start-page: 20719 year: 2007 publication-title: Proc. Natl. Acad. Sci. USA – volume: 9 start-page: 612 year: 2010 publication-title: Nat. Mater. – volume: 44 start-page: 3753 year: 2008 publication-title: Chem. Commun. – volume: 6 start-page: 1829 year: 2005 publication-title: Biomacromolecules – start-page: 2452 year: 2001 publication-title: Chem. Commun. – volume: 51 7 start-page: 11633 11345 year: 2012 2011 publication-title: Angew. Chem. Int. Ed. Soft Matter – volume: 45 start-page: 1478 year: 2009 publication-title: Chem. Commun. – volume: 34 start-page: 562 year: 2013 publication-title: Biomaterials – volume: 5 start-page: 1775 year: 2011 publication-title: ACS Nano – volume: 53 start-page: 5513 year: 2012 publication-title: Polymer – volume: 40 start-page: 2257 4198 year: 2001 2006 publication-title: Angew. Chem. Int. Ed. Chem. Commun. – volume: 4 3 start-page: 277 287 471 year: 2010 2005 2004 2006 article-title: Dekker Encyclopedia of Nanoscience and Nanotechnology publication-title: Nat. Mater. J. R. Soc. Interface – volume: 45 start-page: 2348 year: 2006 publication-title: Angew. Chem. Int. Ed. – volume: 133 start-page: 14260 year: 2011 publication-title: J. Am. Chem. Soc. – volume: 2 start-page: 327 year: 2013 publication-title: ACS Macro Lett. – volume: 129 start-page: 6078 year: 2007 publication-title: J. Am. Chem. Soc. – volume: 5 start-page: 337 year: 2011 publication-title: ACS Nano – volume: 27 55 start-page: 9602 835 year: 2011 2012 publication-title: Langmuir Science China ‐ Chem. – volume: 28 start-page: 321 year: 1995 publication-title: Acc. Chem. Res. – volume: 133 start-page: 1058 year: 2011 publication-title: J. Am. Chem. Soc. – volume: 40 start-page: 3538 year: 2007 publication-title: Macromolecules – volume: 46 49 start-page: 7378 7213 year: 2007 2010 publication-title: Angew. Chem. Int. Ed. Angew. Chem. Int. Ed. – volume: 102 start-page: 475 year: 2005 publication-title: J. Controlled Release – year: 2000 – volume: 8 start-page: 3300 year: 2012 publication-title: Soft Matter – volume: 3 start-page: 710 year: 2012 publication-title: Nat. Commun. – volume: 371 start-page: 578 year: 1994 publication-title: Nature – volume: 22 start-page: 2021 year: 2011 publication-title: Bioconjugate Chem. – volume: 10 start-page: 366 year: 2010 publication-title: The Chemical Record – volume: 133 start-page: 15165 year: 2011 publication-title: J. Am. Chem. Soc. – volume: 130 start-page: 8714 year: 2008 publication-title: J. Am. Chem. Soc. – volume: 361 start-page: 645 year: 1993 publication-title: Nature – volume: 3 start-page: 831 year: 2012 publication-title: Nat. Commun. – volume: 295 36 start-page: 1698 1802 year: 2002 2003 publication-title: Science Macromolecules – volume: 7 start-page: 4685 year: 2009 publication-title: Org. Biomol. Chem. – volume: 134 start-page: 16554 year: 2012 publication-title: J. Am. Chem. Soc. – volume: 50 start-page: 4923 year: 2011 publication-title: Angew. Chem. Int. Ed. – volume: 40 start-page: 5647 year: 2011 publication-title: Chem. Soc. Rev. – volume: 45 start-page: 1991 year: 2012 publication-title: Macromolecules – ident: e_1_2_8_159_6 doi: 10.1039/C1CS15240H – ident: e_1_2_8_47_5 doi: 10.1039/b924631b – ident: e_1_2_8_116_2 doi: 10.1002/anie.201206362 – ident: e_1_2_8_155_2 doi: 10.1021/bc200214g – ident: e_1_2_8_106_2 doi: 10.1002/anie.201106410 – ident: e_1_2_8_64_2 doi: 10.1002/1521-3773(20020402)41:7<1098::AID-ANIE1098>3.0.CO;2-9 – year: 2013 ident: e_1_2_8_176_2 publication-title: Polym. Chem. – ident: e_1_2_8_54_3 doi: 10.1016/S0167-7799(98)01222-0 – ident: e_1_2_8_93_2 doi: 10.1021/mz300081d – ident: e_1_2_8_55_2 doi: 10.1002/anie.199518121 – volume-title: Biomimetic and bioinspired nanomaterials year: 2010 ident: e_1_2_8_5_2 – ident: e_1_2_8_4_3 doi: 10.1016/j.febslet.2012.05.033 – ident: e_1_2_8_21_2 doi: 10.1039/c0cs00153h – ident: e_1_2_8_139_2 doi: 10.1021/bi015829k – ident: e_1_2_8_27_2 doi: 10.1016/j.polymer.2011.06.005 – ident: e_1_2_8_63_2 doi: 10.1038/371578a0 – ident: e_1_2_8_90_2 doi: 10.1016/j.biomaterials.2012.09.077 – ident: e_1_2_8_201_2 doi: 10.1021/ja9031314 – ident: e_1_2_8_114_5 doi: 10.1021/ja056514l – ident: e_1_2_8_6_3 doi: 10.1002/macp.200290073 – ident: e_1_2_8_216_2 doi: 10.1039/c2cc35170f – ident: e_1_2_8_8_4 doi: 10.1021/ma800142j – ident: e_1_2_8_47_2 doi: 10.1021/ja808075h – ident: e_1_2_8_15_2 doi: 10.1016/j.jcis.2007.07.015 – ident: e_1_2_8_55_3 doi: 10.1002/macp.1981.021820240 – ident: e_1_2_8_69_2 doi: 10.1021/bm049860o – ident: e_1_2_8_75_6 doi: 10.1016/0168-3659(93)90172-2 – ident: e_1_2_8_179_2 doi: 10.1021/ma202672y – ident: e_1_2_8_158_2 doi: 10.1002/anie.201204959 – ident: e_1_2_8_163_2 doi: 10.1073/pnas.0708762104 – ident: e_1_2_8_58_3 doi: 10.1021/ja102148f – ident: e_1_2_8_128_3 doi: 10.1021/la203857s – ident: e_1_2_8_5_3 doi: 10.1038/nmat1339 – ident: e_1_2_8_51_2 doi: 10.1002/anie.201203483 – ident: e_1_2_8_206_2 doi: 10.1002/anie.200701125 – ident: e_1_2_8_115_2 doi: 10.1021/ja902869q – ident: e_1_2_8_112_2 doi: 10.1038/nchem.1281 – ident: e_1_2_8_111_2 doi: 10.1021/ja104154t – ident: e_1_2_8_175_3 doi: 10.1021/cm102963k – ident: e_1_2_8_92_3 doi: 10.1021/ja035636f – ident: e_1_2_8_25_2 doi: 10.1039/C0CC02160A – ident: e_1_2_8_140_2 doi: 10.1126/science.1059820 – ident: e_1_2_8_124_2 doi: 10.1002/marc.200700077 – ident: e_1_2_8_207_2 doi: 10.1039/b107833j – ident: e_1_2_8_33_2 doi: 10.1039/c2cs35207a – ident: e_1_2_8_173_4 doi: 10.1038/nnano.2012.192 – ident: e_1_2_8_100_2 doi: 10.1039/c2sm06934b – ident: e_1_2_8_148_2 doi: 10.1039/b820887e – ident: e_1_2_8_102_2 doi: 10.1021/la900213a – ident: e_1_2_8_141_2 doi: 10.1002/pola.22106 – ident: e_1_2_8_209_2 doi: 10.1016/j.progpolymsci.2010.12.003 – ident: e_1_2_8_91_2 doi: 10.1021/ja310397j – ident: e_1_2_8_193_2 doi: 10.1021/ja0451160 – ident: e_1_2_8_37_3 doi: 10.1021/ma60038a001 – ident: e_1_2_8_182_2 doi: 10.1038/nchem.1314 – ident: e_1_2_8_65_3 doi: 10.1074/jbc.271.7.3478 – ident: e_1_2_8_11_2 doi: 10.1002/anie.200460325 – ident: e_1_2_8_14_3 doi: 10.1021/la053158b – ident: e_1_2_8_189_2 doi: 10.1021/ja0372715 – ident: e_1_2_8_114_2 doi: 10.1021/jp991365c – ident: e_1_2_8_116_3 doi: 10.1039/c1sm06495a – ident: e_1_2_8_45_4 doi: 10.1021/ja067613h – ident: e_1_2_8_169_3 doi: 10.1021/mz200195n – ident: e_1_2_8_154_2 doi: 10.1021/la103428g – ident: e_1_2_8_174_2 doi: 10.1021/bm301844u – volume: 55 start-page: 835 year: 2012 ident: e_1_2_8_22_3 publication-title: Science China ‐ Chem. – ident: e_1_2_8_86_4 doi: 10.1371/journal.pone.0043248 – ident: e_1_2_8_46_2 doi: 10.1021/ja0711967 – ident: e_1_2_8_67_2 doi: 10.1021/bc9801272 – ident: e_1_2_8_76_5 doi: 10.1007/s12033-012-9598-4 – ident: e_1_2_8_138_2 doi: 10.1002/(SICI)1521-3773(19981102)37:20<2754::AID-ANIE2754>3.0.CO;2-3 – ident: e_1_2_8_190_2 doi: 10.1016/j.tet.2004.05.055 – ident: e_1_2_8_49_2 doi: 10.1039/c2sc20389h – ident: e_1_2_8_41_2 doi: 10.1021/ar200313h – ident: e_1_2_8_8_5 doi: 10.1016/j.jcis.2010.04.056 – ident: e_1_2_8_20_2 doi: 10.1039/B919678C – ident: e_1_2_8_160_2 doi: 10.1039/b004280n – ident: e_1_2_8_192_2 doi: 10.1021/ja401075s – ident: e_1_2_8_96_2 doi: 10.1038/nchem.296 – ident: e_1_2_8_18_2 doi: 10.1039/b806858e – ident: e_1_2_8_113_2 doi: 10.1002/anie.201100708 – ident: e_1_2_8_186_2 doi: 10.1021/cr100357h – ident: e_1_2_8_105_2 doi: 10.1021/ja205687k – ident: e_1_2_8_86_3 doi: 10.1002/cbic.201100586 – ident: e_1_2_8_190_3 doi: 10.1021/ma800279w – volume-title: Block Copolymers: Synthetic Strategies, Physical Properties, and Applications year: 2003 ident: e_1_2_8_6_2 – ident: e_1_2_8_5_5 doi: 10.1098/rsif.2006.0127 – ident: e_1_2_8_185_2 doi: 10.1021/ja028913b – ident: e_1_2_8_4_4 doi: 10.1039/c1sm90064a – ident: e_1_2_8_187_3 doi: 10.1021/ja8035465 – ident: e_1_2_8_35_3 doi: 10.1021/cr970011j – ident: e_1_2_8_30_2 doi: 10.1002/ange.200901735 – ident: e_1_2_8_122_2 doi: 10.1021/ja0505696 – ident: e_1_2_8_159_4 doi: 10.1021/ar200036k – ident: e_1_2_8_47_3 doi: 10.1002/anie.200903507 – ident: e_1_2_8_107_2 doi: 10.1021/ma971419l – ident: e_1_2_8_28_2 doi: 10.1039/c2sm25178g – ident: e_1_2_8_58_4 doi: 10.1039/C0JM03122D – ident: e_1_2_8_170_2 doi: 10.1021/bm200423f – ident: e_1_2_8_37_2 doi: 10.1055/s-2001-16770 – ident: e_1_2_8_103_2 doi: 10.1021/nn901843j – ident: e_1_2_8_150_2 doi: 10.1038/42408 – ident: e_1_2_8_35_2 doi: 10.1021/ja00707a062 – ident: e_1_2_8_173_3 doi: 10.1038/nature06669 – ident: e_1_2_8_137_2 doi: 10.1021/ar00056a001 – ident: e_1_2_8_145_2 doi: 10.1007/s00396-005-1323-4 – ident: e_1_2_8_144_2 doi: 10.1021/ja058364k – ident: e_1_2_8_16_2 doi: 10.1039/c3nr00178d – ident: e_1_2_8_93_3 doi: 10.1021/mz300660t – ident: e_1_2_8_165_2 doi: 10.1016/j.progpolymsci.2008.02.001 – ident: e_1_2_8_194_2 doi: 10.1021/ma902585w – ident: e_1_2_8_10_2 doi: 10.1039/b814560c – ident: e_1_2_8_73_2 doi: 10.1021/nn101447m – ident: e_1_2_8_109_2 doi: 10.1021/la1004837 – ident: e_1_2_8_94_2 doi: 10.1038/nchem.1127 – ident: e_1_2_8_200_2 doi: 10.1021/ma062650e – ident: e_1_2_8_78_2 doi: 10.1039/B613890J – ident: e_1_2_8_166_3 doi: 10.1038/35057232 – ident: e_1_2_8_11_3 doi: 10.1002/adma.201000369 – ident: e_1_2_8_65_4 doi: 10.1021/bi961638j – ident: e_1_2_8_197_2 doi: 10.1021/mz300338d – ident: e_1_2_8_75_8 doi: 10.1002/anie.201106080 – ident: e_1_2_8_168_2 doi: 10.1016/j.progpolymsci.2005.06.002 – ident: e_1_2_8_168_3 doi: 10.1039/B616752G – ident: e_1_2_8_24_2 doi: 10.1039/B922289H – ident: e_1_2_8_92_2 doi: 10.1002/anie.200805895 – volume-title: Supramolecular Chemistry year: 2000 ident: e_1_2_8_32_2 – ident: e_1_2_8_191_2 doi: 10.1021/mz400036t – start-page: 979 year: 2007 ident: e_1_2_8_17_3 publication-title: Acta. Polym. Sin. – ident: e_1_2_8_159_3 doi: 10.1002/mabi.200800248 – ident: e_1_2_8_205_2 doi: 10.1002/anie.200390204 – volume: 11 start-page: 1891 year: 2004 ident: e_1_2_8_215_3 publication-title: Syn. Lett – ident: e_1_2_8_162_2 doi: 10.1021/nl0619305 – ident: e_1_2_8_189_3 doi: 10.1021/ma052222t – ident: e_1_2_8_26_2 doi: 10.1021/ja109262h – ident: e_1_2_8_82_2 doi: 10.1021/nn202493w – ident: e_1_2_8_120_2 doi: 10.1126/science.1074972 – ident: e_1_2_8_7_2 doi: 10.1201/9781420018271 – ident: e_1_2_8_89_2 doi: 10.1021/ja3085803 – ident: e_1_2_8_117_2 doi: 10.1209/epl/i2003-00264-2 – ident: e_1_2_8_34_2 doi: 10.1073/pnas.94.21.11156 – ident: e_1_2_8_76_3 doi: 10.1016/j.vetimm.2012.04.026 – ident: e_1_2_8_126_2 doi: 10.1039/b924617g – ident: e_1_2_8_145_4 doi: 10.1021/ja300065f – ident: e_1_2_8_13_2 doi: 10.1021/ja800230k – ident: e_1_2_8_152_2 doi: 10.1021/nn102455z – volume-title: Essentials of Glycobiology year: 2009 ident: e_1_2_8_133_2 – ident: e_1_2_8_135_2 doi: 10.1146/annurev.bi.57.070188.004033 – year: 2013 ident: e_1_2_8_213_3 publication-title: Curr. Opin. Biotechnol. – ident: e_1_2_8_184_2 doi: 10.1002/anie.201204840 – ident: e_1_2_8_123_2 doi: 10.1002/anie.200462622 – ident: e_1_2_8_108_2 doi: 10.1140/epje/i2004-10049-5 – ident: e_1_2_8_54_2 doi: 10.1016/j.bios.2006.01.036 – ident: e_1_2_8_208_2 doi: 10.1039/C2SC00803C – ident: e_1_2_8_153_2 doi: 10.1021/ja043600x – ident: e_1_2_8_75_7 doi: 10.1007/12_2011_129 – ident: e_1_2_8_58_2 doi: 10.1002/smll.200900186 – ident: e_1_2_8_164_2 doi: 10.1002/adfm.200900076 – ident: e_1_2_8_157_2 doi: 10.1039/c1sm05725a – ident: e_1_2_8_85_2 doi: 10.1002/smll.200901186 – ident: e_1_2_8_204_2 doi: 10.1002/chem.200802114 – ident: e_1_2_8_215_2 doi: 10.1002/anie.200352724 – ident: e_1_2_8_61_2 doi: 10.1073/pnas.1112828109 – ident: e_1_2_8_175_4 doi: 10.1021/ja104446r – ident: e_1_2_8_199_2 doi: 10.1038/ncomms1617 – ident: e_1_2_8_136_2 doi: 10.1039/b414350g – ident: e_1_2_8_65_2 doi: 10.1021/ja00113a036 – ident: e_1_2_8_136_3 doi: 10.1016/j.cbpa.2007.05.002 – ident: e_1_2_8_8_3 doi: 10.1021/ma052272y – ident: e_1_2_8_210_2 doi: 10.1021/ma902348r – ident: e_1_2_8_167_3 doi: 10.1021/ma0210675 – ident: e_1_2_8_175_2 doi: 10.1039/b910648k – ident: e_1_2_8_151_2 doi: 10.1038/nmat2512 – ident: e_1_2_8_119_2 doi: 10.1021/la0104370 – ident: e_1_2_8_76_2 doi: 10.1016/j.copbio.2004.10.002 – ident: e_1_2_8_23_2 doi: 10.1021/ja8052688 – ident: e_1_2_8_169_4 doi: 10.1021/ma202461e – ident: e_1_2_8_66_2 doi: 10.1016/S0021-9258(18)42214-4 – ident: e_1_2_8_33_3 doi: 10.1016/j.progpolymsci.2012.04.001 – year: 2013 ident: e_1_2_8_171_2 publication-title: Polym. Chem. – ident: e_1_2_8_213_2 doi: 10.1021/cr800529d – ident: e_1_2_8_9_2 doi: 10.1126/science.1090763 – ident: e_1_2_8_60_2 doi: 10.1021/bm300986j – ident: e_1_2_8_87_2 doi: 10.1016/S0169-409X(02)00017-0 – ident: e_1_2_8_56_2 doi: 10.1038/nmat2818 – ident: e_1_2_8_169_2 doi: 10.1021/ma9022197 – ident: e_1_2_8_178_2 doi: 10.1016/j.polymer.2012.10.015 – ident: e_1_2_8_59_2 doi: 10.1021/ja8062875 – volume-title: Cell and molecular biology: concept and experiments year: 2005 ident: e_1_2_8_127_2 – ident: e_1_2_8_101_2 doi: 10.1039/c0cc03971c – ident: e_1_2_8_29_3 doi: 10.1021/la802336k – ident: e_1_2_8_177_2 doi: 10.1002/marc.201200675 – ident: e_1_2_8_36_2 doi: 10.1021/ja025895p – ident: e_1_2_8_62_2 doi: 10.1002/anie.201107797 – year: 2013 ident: e_1_2_8_74_2 publication-title: Chem. Eur. J. – ident: e_1_2_8_77_2 doi: 10.1039/c2cs35108k – ident: e_1_2_8_129_2 doi: 10.1073/pnas.062654499 – ident: e_1_2_8_219_2 doi: 10.1021/ja206644d – ident: e_1_2_8_138_3 doi: 10.1021/cr000418f – ident: e_1_2_8_159_5 doi: 10.1140/epje/i2011-11014-y – ident: e_1_2_8_181_2 doi: 10.1038/nature09963 – ident: e_1_2_8_218_2 doi: 10.1002/anie.201207123 – ident: e_1_2_8_72_2 doi: 10.1039/b805242e – ident: e_1_2_8_161_2 doi: 10.1016/S0006-3495(03)74639-6 – ident: e_1_2_8_31_2 doi: 10.1038/ncomms1707 – ident: e_1_2_8_114_3 doi: 10.1002/anie.200250254 – year: 2008 ident: e_1_2_8_134_2 publication-title: Molecular Biology of the Cell, 5th ed. Garland Sci. – ident: e_1_2_8_68_2 doi: 10.1002/tcr.201000008 – year: 2013 ident: e_1_2_8_124_3 publication-title: RSC Adv. – start-page: 45 year: 2002 ident: e_1_2_8_143_2 publication-title: J. Chem. Soc., Perkin Trans. 1 – ident: e_1_2_8_40_2 doi: 10.1002/mabi.201000179 – ident: e_1_2_8_167_2 doi: 10.1126/science.1065879 – ident: e_1_2_8_1_3 doi: 10.1016/S1074-5521(98)90138-7 – ident: e_1_2_8_42_2 doi: 10.1039/c1cs15253j – ident: e_1_2_8_84_2 doi: 10.1002/ange.200702805 – ident: e_1_2_8_156_2 doi: 10.1039/c2sm07188f – ident: e_1_2_8_190_4 doi: 10.1039/C0SM00795A – ident: e_1_2_8_214_2 doi: 10.1021/ja010037z – ident: e_1_2_8_189_4 doi: 10.1021/ma060314s – ident: e_1_2_8_132_2 doi: 10.1126/science.1207438 – ident: e_1_2_8_195_2 doi: 10.1021/mz200108a – ident: e_1_2_8_8_2 doi: 10.1021/ma050665r – ident: e_1_2_8_149_2 doi: 10.1002/anie.200801098 – ident: e_1_2_8_190_5 doi: 10.1021/ma102462y – ident: e_1_2_8_14_2 doi: 10.1021/la063419x – ident: e_1_2_8_43_2 doi: 10.1016/j.ccr.2010.04.014 – ident: e_1_2_8_29_2 doi: 10.1126/science.1103350 – ident: e_1_2_8_1_4 doi: 10.1074/jbc.X800011200 – ident: e_1_2_8_173_2 doi: 10.1039/c2py20265d – ident: e_1_2_8_114_4 doi: 10.1002/adfm.200400378 – ident: e_1_2_8_118_2 doi: 10.1039/b817773b – ident: e_1_2_8_131_2 doi: 10.1083/jcb.32.1.27 – ident: e_1_2_8_2_3 doi: 10.1039/B809333B – ident: e_1_2_8_1_2 doi: 10.1039/cs9720100553 – ident: e_1_2_8_5_4 – ident: e_1_2_8_12_2 doi: 10.1021/ar040113d – ident: e_1_2_8_12_4 doi: 10.1002/marc.200900355 – ident: e_1_2_8_98_2 doi: 10.1002/anie.200704078 – ident: e_1_2_8_198_2 doi: 10.1038/ncomms1841 – ident: e_1_2_8_4_2 doi: 10.1039/B809333B – ident: e_1_2_8_45_3 doi: 10.1002/anie.200390257 – ident: e_1_2_8_165_3 doi: 10.1016/j.progpolymsci.2009.10.006 – ident: e_1_2_8_142_2 doi: 10.1002/anie.200502794 – ident: e_1_2_8_165_4 doi: 10.1039/B713953P – ident: e_1_2_8_110_2 doi: 10.1002/anie.201102167 – ident: e_1_2_8_97_2 doi: 10.1021/la204018w – ident: e_1_2_8_130_2 doi: 10.1016/j.jconrel.2004.10.014 – ident: e_1_2_8_39_2 doi: 10.1021/la060711w – ident: e_1_2_8_50_2 doi: 10.1103/PhysRevLett.95.228101 – ident: e_1_2_8_80_2 doi: 10.1039/b915028e – ident: e_1_2_8_37_4 doi: 10.1021/ja028151k – ident: e_1_2_8_145_3 doi: 10.1039/b717177c – ident: e_1_2_8_146_2 doi: 10.1002/1521-3773(20010618)40:12<2257::AID-ANIE2257>3.0.CO;2-S – ident: e_1_2_8_187_2 doi: 10.1021/ja903988c – ident: e_1_2_8_206_3 doi: 10.1002/anie.201002655 – ident: e_1_2_8_196_2 doi: 10.1038/nchem.893 – volume: 2 start-page: 119 year: 2012 ident: e_1_2_8_211_2 publication-title: Macrmol. Rapid Commun. – ident: e_1_2_8_17_2 doi: 10.1021/ja056775v – ident: e_1_2_8_128_2 doi: 10.1021/ja042172s – ident: e_1_2_8_86_2 doi: 10.1002/cbic.201000536 – ident: e_1_2_8_2_2 doi: 10.1038/nchem.257 – ident: e_1_2_8_87_3 doi: 10.1039/C1CS15258K – ident: e_1_2_8_22_2 doi: 10.1021/la201843z – ident: e_1_2_8_83_2 doi: 10.1039/C1CC13185K – ident: e_1_2_8_99_2 doi: 10.1039/C2CS35312A – ident: e_1_2_8_75_3 doi: 10.1016/j.addr.2012.01.005 – ident: e_1_2_8_2_4 doi: 10.1002/macp.200900515 – ident: e_1_2_8_47_4 doi: 10.1002/adma.200801701 – ident: e_1_2_8_180_2 doi: 10.1021/ma1003776 – ident: e_1_2_8_104_2 doi: 10.1016/j.biomaterials.2009.07.040 – ident: e_1_2_8_172_2 doi: 10.1002/macp.201100559 – ident: e_1_2_8_53_2 doi: 10.1021/ja01867a018 – ident: e_1_2_8_75_4 doi: 10.1002/ddr.20062 – ident: e_1_2_8_76_4 doi: 10.1021/mp100225y – ident: e_1_2_8_196_3 doi: 10.1021/ma200398y – ident: e_1_2_8_203_2 doi: 10.1038/nchem.1331 – ident: e_1_2_8_146_3 doi: 10.1039/b608383h – ident: e_1_2_8_180_3 doi: 10.1021/ja209126a – ident: e_1_2_8_12_3 doi: 10.1039/B813556H – ident: e_1_2_8_70_2 doi: 10.1021/bm050156x – ident: e_1_2_8_81_2 doi: 10.1021/ja101444j – ident: e_1_2_8_19_2 doi: 10.1021/la702815h – ident: e_1_2_8_188_2 doi: 10.1002/chem.201200016 – ident: e_1_2_8_202_2 doi: 10.1021/ja809613n – ident: e_1_2_8_75_5 doi: 10.1038/nrd1775 – ident: e_1_2_8_71_2 doi: 10.1021/ja900786z – ident: e_1_2_8_121_2 doi: 10.1021/la026187k – year: 2013 ident: e_1_2_8_183_2 publication-title: Polym. Chem. – ident: e_1_2_8_57_2 doi: 10.1038/361645a0 – ident: e_1_2_8_75_2 doi: 10.1016/S0169-409X(01)00213-7 – ident: e_1_2_8_186_3 doi: 10.3390/ijms14011541 – ident: e_1_2_8_125_2 doi: 10.1002/marc.200800475 – ident: e_1_2_8_45_2 doi: 10.1021/ja064560v – volume-title: Molecular Biology of the Cell year: 2008 ident: e_1_2_8_52_2 – ident: e_1_2_8_166_2 doi: 10.1146/annurev-matsci-070909-104532 – ident: e_1_2_8_38_2 doi: 10.1021/ja8013456 – ident: e_1_2_8_147_2 doi: 10.1039/c2py20110k – ident: e_1_2_8_88_2 doi: 10.1021/ja0379666 – ident: e_1_2_8_19_3 doi: 10.1021/ma901276c – ident: e_1_2_8_44_2 doi: 10.1039/B803553A – ident: e_1_2_8_159_2 doi: 10.1016/j.cbpa.2004.09.008 – ident: e_1_2_8_212_2 doi: 10.1021/ma070550i – ident: e_1_2_8_95_2 doi: 10.1073/pnas.1016410108 – ident: e_1_2_8_79_2 doi: 10.1021/bm9007953 – ident: e_1_2_8_217_2 doi: 10.1021/mz4000943 – ident: e_1_2_8_3_2 doi: 10.1002/anie.198801131 – ident: e_1_2_8_48_2 doi: 10.1039/B913307K |
SSID | ssj0009606 |
Score | 2.5358505 |
SecondaryResourceType | review_article |
Snippet | Macromolecular self‐assembly (MSA) has been an active and fruitful research field since the 1980s, especially in this new century, which is promoted by the... Macromolecular self-assembly (MSA) has been an active and fruitful research field since the 1980s, especially in this new century, which is promoted by the... |
SourceID | proquest pubmed crossref wiley istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 5215 |
SubjectTerms | Animals Assemblies Biological Products - chemistry biomaterials Biomimetic materials Biomimetic Materials - chemistry Biomimetic Materials - metabolism Biomimetics Biomimetics - methods Cells - metabolism Humans macromolecular assembly Macromolecular Substances - chemistry Macromolecular Substances - metabolism Materials science Nanocomposites Nanomaterials Nanostructure Self assembly |
Title | Progressive Macromolecular Self-Assembly: From Biomimetic Chemistry to Bio-Inspired Materials |
URI | https://api.istex.fr/ark:/67375/WNG-6LX5LNKS-1/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201302215 https://www.ncbi.nlm.nih.gov/pubmed/24022921 https://www.proquest.com/docview/1443390301 https://www.proquest.com/docview/1448741057 |
Volume | 25 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bT9swFLYmeIGHDRiDjouCNMFToPUtzd7KpePWCsHQ-mbZsS1VtCmCFDGe-An8Rn4JPk4TKGKbxN7i5Dhxjn3i7-Qcf0boG9c1axLmLE0rHlLDaVinRoYwFRDOmCaep7vV5vvn9LDDOi9W8ef8EOUPN7AM_70GA5fqeuuZNFRqzxsEgTfsV5lDwhagotNn_iiA555sj7Aw5rResDZW8dZ49bFZaRIUfPsW5BxHsH4Kan5Csmh8nnlysTnM1GZy94rX8X_ebgZ9HOHToJEPqFn0waRzaPoFa-FnJE8gpwvSZ29M0JI-oW-0x25wZnr28f4BQsl91fv9PWi6q8F2d9Dv9mG5ZLBTbDAXZAM474QPUoj2G-3uleX2MI_Om3s_d_bD0U4NYUKdixkqraX79NUwVg4gAiU9lYCdapEkRjJbj1lMudFGGhLTiHBLqHZALlFx1SQ2Il_QRDpIzSIKsFRWW-cYOT-SVq0rWWIYURGjyoG7uILCoqdEMqIxh900eiInYMYCVCdK1VXQRil_mRN4_FFy3Xd8KSavLiDtLWLiV_uH4Mcddtw-OhO1ClorRoZwKoMIi0zNYHjt_ChKSAxe5l9l6hEk10YVtJAPq_KJEOrCMXa1sR8c_2ixaOy2GmXp63sqLaEpOPbpiXQZTWRXQ7PiYFamVr0pPQHA3R5V |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB6h9kA5QKGlpLyMhMrJbbIvx9xCIaQ0iao-1N5Wu95dqWriVMVB0FN_Qn8jv4SddeySiocER9uz9no94_1mZ_YbgNfCtJzNuLc0o0XMrGBxm1kV41RABeeGBp7uwVD0jtinE15lE-JemJIfol5wQ8sI_2s0cFyQ3rphDVUmEAdh5I3gNvNFLOsdvKr9GwYpBOiBbo_yOBWsXfE2NsnWfPu5eWkRh_jrr0DnPIYNk1D3Aeiq-2XuydnmtNCb2eUtZsf_er9luD-DqFGn1KmHcMfmj-DeT8SFK6D2MK0LM2i_2GigQk7frMxudGBH7vvVNUaTx3r07W3U9Vejd6eT8ekYd0xG21WNuaiY4HkvvJNjwN8af6-iNIlVOOp-ONzuxbNiDXHGvJcZa2OU__u1CNEeIyIrPVMIn1qJolZx1055yoQ1VlmasoQKR5nxWC7TadNmLqGPYSGf5PYJRERpZ5z3jbwryZrOHzlqOdUJZ9rju7QBcfWpZDZjMseCGiNZcjATiUMn66FrwJta_rzk8Pit5Eb48rWYujjDzLeEy-PhRyn6J7w_3D2QrQa8qlRD-iHDIIvK7WT62btSjNIUHc0_yrQTzK9NGrBW6lX9RIx2kZT41iRox196LDvvB536aP1fGr2Eu73DQV_2d4a7T2EJz4dsRfYMFoqLqX3uUVehXwS7-gGaMCJw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFD5Cm4TYA-M2KNcgIXjK1vqWhLeyUjbWVhNjom-WHdvStDadthQBT_wEfiO_BB-nyVbERdoe4xwnjn2O_Z2c488AL4TpOJtzb2lGi5hZweKUWRXjUkAF54YGnu7hSOwcsvdjPr6wi7_ih2h-uKFlhPkaDfzEuK1z0lBlAm8QBt4I7jJfZaKdol73PpwTSCE-D2x7lMeZYGlN29gmW8v1l5alVezhL3_CnMsQNqxB_XVQdeur1JPjzXmpN_NvvxE7XuXzbsHNBUCNupVG3YZrtrgDaxdoC--C2sekLsyf_WyjoQoZfYtDdqMDO3E_v__AWPJUT76-jvr-bvTmaDY9muJ-yWi7PmEuKmdY7oV3Cwz3W-OfVVYGcQ8O-28_bu_Ei6Ma4px5HzPWxig_93UI0R4hIic9UwieOomiVnGXZjxjwhqrLM1YQoWjzHgkl-usbXOX0A1YKWaFfQARUdoZ5z0j70iytvNXjlpOdcKZ9ugua0Fcj5TMFzzmeJzGRFYMzERi18mm61rwqpE_qRg8_ir5Mgx8I6ZOjzHvLeHy0-idFIMxH4z2DmSnBc9rzZC-yzDEogo7m595R4pRmqGb-U-ZNMHs2qQF9yu1at6IsS6SEV-bBOX4T4tltzfsNlcPL1PpGVzf7_XlYHe09whuYHFIVWSPYaU8ndsnHnKV-mmwql8v0iEo |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Progressive+Macromolecular+Self-Assembly%3A+From+Biomimetic+Chemistry+to+Bio-Inspired+Materials&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Zhao%2C+Yu&rft.au=Sakai%2C+Fuji&rft.au=Su%2C+Lu&rft.au=Liu%2C+Yijiang&rft.date=2013-10-04&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=25&rft.issue=37&rft.spage=5215&rft.epage=5256&rft_id=info:doi/10.1002%2Fadma.201302215&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |