Progressive Macromolecular Self-Assembly: From Biomimetic Chemistry to Bio-Inspired Materials

Macromolecular self‐assembly (MSA) has been an active and fruitful research field since the 1980s, especially in this new century, which is promoted by the remarkable developments in controlled radical polymerization in polymer chemistry, etc. and driven by the demands in bio‐related investigations...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 25; no. 37; pp. 5215 - 5256
Main Authors Zhao, Yu, Sakai, Fuji, Su, Lu, Liu, Yijiang, Wei, Kongchang, Chen, Guosong, Jiang, Ming
Format Journal Article
LanguageEnglish
Published Weinheim WILEY-VCH Verlag 04.10.2013
WILEY‐VCH Verlag
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Macromolecular self‐assembly (MSA) has been an active and fruitful research field since the 1980s, especially in this new century, which is promoted by the remarkable developments in controlled radical polymerization in polymer chemistry, etc. and driven by the demands in bio‐related investigations and applications. In this review, we try to summarize the trends and recent progress in MSA in relation to biomimetic chemistry and bio‐inspired materials. Our paper covers representative achievements in the fabrication of artificial building blocks for life, cell‐inspired biomimetic materials, and macromolecular assemblies mimicking the functions of natural materials and their applications. It is true that the current status of the deliberately designed and obtained nano‐objects based on MSA including a variety of micelles, multicompartment vesicles, and some hybrid and complex nano‐objects is at their very first stage to mimic nature, but significant and encouraging progress has been made in achieving a certain similarity in morphologies or properties to that of natural ones. Such achievements also demonstrate that MSA has played an important and irreplaceable role in the grand and long‐standing research of biomimetic and bio‐inspired materials, the future success of which depends on mutual and persistent efforts in polymer science, material science, supramolecular chemistry, and biology. Expansion into life science and material science is one of the major trends and the most important long‐time goals of modern polymer science. Our paper tries to trace the most recent footsteps of macromolecular self‐assembly in this direction. It covers the representative achievements in the fabrication of artificial building blocks for life, cell‐inspired biomimetic materials, assemblies mimicking the functions of natural materials and their applications.
AbstractList Macromolecular self‐assembly (MSA) has been an active and fruitful research field since the 1980s, especially in this new century, which is promoted by the remarkable developments in controlled radical polymerization in polymer chemistry, etc. and driven by the demands in bio‐related investigations and applications. In this review, we try to summarize the trends and recent progress in MSA in relation to biomimetic chemistry and bio‐inspired materials. Our paper covers representative achievements in the fabrication of artificial building blocks for life, cell‐inspired biomimetic materials, and macromolecular assemblies mimicking the functions of natural materials and their applications. It is true that the current status of the deliberately designed and obtained nano‐objects based on MSA including a variety of micelles, multicompartment vesicles, and some hybrid and complex nano‐objects is at their very first stage to mimic nature, but significant and encouraging progress has been made in achieving a certain similarity in morphologies or properties to that of natural ones. Such achievements also demonstrate that MSA has played an important and irreplaceable role in the grand and long‐standing research of biomimetic and bio‐inspired materials, the future success of which depends on mutual and persistent efforts in polymer science, material science, supramolecular chemistry, and biology.
Macromolecular self-assembly (MSA) has been an active and fruitful research field since the 1980s, especially in this new century, which is promoted by the remarkable developments in controlled radical polymerization in polymer chemistry, etc. and driven by the demands in bio-related investigations and applications. In this review, we try to summarize the trends and recent progress in MSA in relation to biomimetic chemistry and bio-inspired materials. Our paper covers representative achievements in the fabrication of artificial building blocks for life, cell-inspired biomimetic materials, and macromolecular assemblies mimicking the functions of natural materials and their applications. It is true that the current status of the deliberately designed and obtained nano-objects based on MSA including a variety of micelles, multicompartment vesicles, and some hybrid and complex nano-objects is at their very first stage to mimic nature, but significant and encouraging progress has been made in achieving a certain similarity in morphologies or properties to that of natural ones. Such achievements also demonstrate that MSA has played an important and irreplaceable role in the grand and long-standing research of biomimetic and bio-inspired materials, the future success of which depends on mutual and persistent efforts in polymer science, material science, supramolecular chemistry, and biology.Macromolecular self-assembly (MSA) has been an active and fruitful research field since the 1980s, especially in this new century, which is promoted by the remarkable developments in controlled radical polymerization in polymer chemistry, etc. and driven by the demands in bio-related investigations and applications. In this review, we try to summarize the trends and recent progress in MSA in relation to biomimetic chemistry and bio-inspired materials. Our paper covers representative achievements in the fabrication of artificial building blocks for life, cell-inspired biomimetic materials, and macromolecular assemblies mimicking the functions of natural materials and their applications. It is true that the current status of the deliberately designed and obtained nano-objects based on MSA including a variety of micelles, multicompartment vesicles, and some hybrid and complex nano-objects is at their very first stage to mimic nature, but significant and encouraging progress has been made in achieving a certain similarity in morphologies or properties to that of natural ones. Such achievements also demonstrate that MSA has played an important and irreplaceable role in the grand and long-standing research of biomimetic and bio-inspired materials, the future success of which depends on mutual and persistent efforts in polymer science, material science, supramolecular chemistry, and biology.
Macromolecular self-assembly (MSA) has been an active and fruitful research field since the 1980s, especially in this new century, which is promoted by the remarkable developments in controlled radical polymerization in polymer chemistry, etc. and driven by the demands in bio-related investigations and applications. In this review, we try to summarize the trends and recent progress in MSA in relation to biomimetic chemistry and bio-inspired materials. Our paper covers representative achievements in the fabrication of artificial building blocks for life, cell-inspired biomimetic materials, and macromolecular assemblies mimicking the functions of natural materials and their applications. It is true that the current status of the deliberately designed and obtained nano-objects based on MSA including a variety of micelles, multicompartment vesicles, and some hybrid and complex nano-objects is at their very first stage to mimic nature, but significant and encouraging progress has been made in achieving a certain similarity in morphologies or properties to that of natural ones. Such achievements also demonstrate that MSA has played an important and irreplaceable role in the grand and long-standing research of biomimetic and bio-inspired materials, the future success of which depends on mutual and persistent efforts in polymer science, material science, supramolecular chemistry, and biology. Expansion into life science and material science is one of the major trends and the most important long-time goals of modern polymer science. Our paper tries to trace the most recent footsteps of macromolecular self-assembly in this direction. It covers the representative achievements in the fabrication of artificial building blocks for life, cell-inspired biomimetic materials, assemblies mimicking the functions of natural materials and their applications.
Macromolecular self‐assembly (MSA) has been an active and fruitful research field since the 1980s, especially in this new century, which is promoted by the remarkable developments in controlled radical polymerization in polymer chemistry, etc. and driven by the demands in bio‐related investigations and applications. In this review, we try to summarize the trends and recent progress in MSA in relation to biomimetic chemistry and bio‐inspired materials. Our paper covers representative achievements in the fabrication of artificial building blocks for life, cell‐inspired biomimetic materials, and macromolecular assemblies mimicking the functions of natural materials and their applications. It is true that the current status of the deliberately designed and obtained nano‐objects based on MSA including a variety of micelles, multicompartment vesicles, and some hybrid and complex nano‐objects is at their very first stage to mimic nature, but significant and encouraging progress has been made in achieving a certain similarity in morphologies or properties to that of natural ones. Such achievements also demonstrate that MSA has played an important and irreplaceable role in the grand and long‐standing research of biomimetic and bio‐inspired materials, the future success of which depends on mutual and persistent efforts in polymer science, material science, supramolecular chemistry, and biology. Expansion into life science and material science is one of the major trends and the most important long‐time goals of modern polymer science. Our paper tries to trace the most recent footsteps of macromolecular self‐assembly in this direction. It covers the representative achievements in the fabrication of artificial building blocks for life, cell‐inspired biomimetic materials, assemblies mimicking the functions of natural materials and their applications.
Author Zhao, Yu
Wei, Kongchang
Su, Lu
Sakai, Fuji
Liu, Yijiang
Jiang, Ming
Chen, Guosong
Author_xml – sequence: 1
  givenname: Yu
  surname: Zhao
  fullname: Zhao, Yu
  organization: State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai, China
– sequence: 2
  givenname: Fuji
  surname: Sakai
  fullname: Sakai, Fuji
  organization: State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai, China
– sequence: 3
  givenname: Lu
  surname: Su
  fullname: Su, Lu
  organization: State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai, China
– sequence: 4
  givenname: Yijiang
  surname: Liu
  fullname: Liu, Yijiang
  organization: State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai, China
– sequence: 5
  givenname: Kongchang
  surname: Wei
  fullname: Wei, Kongchang
  organization: State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai, China
– sequence: 6
  givenname: Guosong
  surname: Chen
  fullname: Chen, Guosong
  email: guosong@fudan.edu.cn
  organization: State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai, China
– sequence: 7
  givenname: Ming
  surname: Jiang
  fullname: Jiang, Ming
  email: mjiang@fudan.edu.cn
  organization: State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24022921$$D View this record in MEDLINE/PubMed
BookMark eNqNkUtvEzEURq2qqE0D2y6rWbKZ4PfE7EJKS0T6kFoEm8ryzNxpDZ5xsCct-fc4SogqJFRWV7LPuba-7wjtd74DhI4JHhGM6TtTt2ZEMWGYUiL20IAISnKOldhHA6yYyJXk40N0FON3jLGSWB6gQ8oTrigZoLvr4O8DxGgfIbswVfCtd1AtnQnZDbgmn8QIbelW77OzdJd9sL61LfS2yqYP0NrYh1XW-_V5Puviwgao054egjUuvkavmjTgzXYO0Zezj7fTT_n86nw2nczzio-pyMu6NpQoQmkppGCSF9xgSSgpDAMjmrESikuowQBTvGCyYbzmlFWlwlA1BRuit5u9i-B_LiH2Ov2sAudMB34ZNeF8XHCCxX-hjCnMUqRDdLJFl2ULtV4E25qw0n_SS8BoA6TYYgzQ7BCC9boeva5H7-pJAv9LqGxveuu7Phjr_q2pjfZkHaxeeERPTi8mz91846aq4NfONeGHlgUrhP56ea7l_JuYX36-0YT9BvgbslQ
CitedBy_id crossref_primary_10_3390_biomimetics8010062
crossref_primary_10_1002_pola_27789
crossref_primary_10_1002_chem_201404961
crossref_primary_10_1007_s10118_018_2069_z
crossref_primary_10_1039_C8PY00085A
crossref_primary_10_1016_j_cej_2016_05_112
crossref_primary_10_1016_j_porgcoat_2015_08_008
crossref_primary_10_1002_smll_201501871
crossref_primary_10_3762_bjoc_11_85
crossref_primary_10_1002_adtp_201800090
crossref_primary_10_1016_j_dyepig_2016_10_028
crossref_primary_10_1021_acsami_5b08970
crossref_primary_10_1002_adma_201600065
crossref_primary_10_1039_C8CS00806J
crossref_primary_10_1016_j_ccr_2018_06_001
crossref_primary_10_1002_adma_201405166
crossref_primary_10_1021_acs_inorgchem_5b02464
crossref_primary_10_1039_C5RA23066G
crossref_primary_10_1039_C6NR04835H
crossref_primary_10_1021_cr500392w
crossref_primary_10_3390_bioengineering10030279
crossref_primary_10_1039_C5CC00262A
crossref_primary_10_1039_C9TC05758G
crossref_primary_10_1016_j_carbpol_2019_115557
crossref_primary_10_1038_pj_2017_35
crossref_primary_10_1002_adma_201805985
crossref_primary_10_1039_C5SM01354B
crossref_primary_10_1021_acs_macromol_3c01451
crossref_primary_10_1039_C7SM01540B
crossref_primary_10_3390_polym16152097
crossref_primary_10_1039_C7PY01817G
crossref_primary_10_1016_j_envres_2023_117007
crossref_primary_10_1002_chem_201803564
crossref_primary_10_1016_j_molliq_2023_123774
crossref_primary_10_1021_acsnano_7b03375
crossref_primary_10_1039_C7PY00214A
crossref_primary_10_1039_d0pp00103a
crossref_primary_10_1039_D0PY01035A
crossref_primary_10_1002_agt2_128
crossref_primary_10_1039_C6CC05449H
crossref_primary_10_1002_cssc_201701489
crossref_primary_10_1021_acsapm_1c00271
crossref_primary_10_1007_s13233_017_5133_6
crossref_primary_10_1088_1748_3190_aba444
crossref_primary_10_1039_C5PY00170F
crossref_primary_10_1021_acsami_8b06175
crossref_primary_10_3390_bios14110542
crossref_primary_10_1002_ange_202105103
crossref_primary_10_1021_cr5005315
crossref_primary_10_3390_polym15092020
crossref_primary_10_3389_fmats_2021_518886
crossref_primary_10_1039_C4RA06415A
crossref_primary_10_1021_ar5002445
crossref_primary_10_1021_ar5000264
crossref_primary_10_1039_C8QM00314A
crossref_primary_10_1016_j_addr_2019_09_002
crossref_primary_10_1016_j_nanoms_2019_09_011
crossref_primary_10_1021_acs_macromol_0c01361
crossref_primary_10_1002_anie_202105103
crossref_primary_10_1021_acs_macromol_5b00168
crossref_primary_10_1002_chin_201348262
crossref_primary_10_1039_C5TB00694E
crossref_primary_10_1039_C9BM00630C
crossref_primary_10_1002_adma_201504564
crossref_primary_10_1002_chem_202301076
crossref_primary_10_1021_acs_biomac_6b01716
crossref_primary_10_1080_00914037_2022_2075871
crossref_primary_10_1039_C5SM00370A
crossref_primary_10_1021_jacs_2c10882
crossref_primary_10_1002_adfm_201502049
crossref_primary_10_1111_cbdd_12825
crossref_primary_10_1002_adma_201504697
crossref_primary_10_1073_pnas_1712827114
crossref_primary_10_1038_ncomms15546
crossref_primary_10_1039_C8CC02460J
crossref_primary_10_1002_cnma_201700208
crossref_primary_10_1002_advs_201902701
crossref_primary_10_1016_j_bios_2017_09_020
crossref_primary_10_1021_nl503761y
crossref_primary_10_1039_C4TB00319E
crossref_primary_10_1038_s41428_019_0274_4
crossref_primary_10_1021_acs_jpcc_9b10870
crossref_primary_10_1039_C7RA11022G
crossref_primary_10_1039_C9CC01430F
crossref_primary_10_1039_C8PY00245B
crossref_primary_10_1039_C6TA09677H
crossref_primary_10_1016_j_molliq_2020_114499
crossref_primary_10_1016_j_polymer_2016_04_034
crossref_primary_10_1039_D4SM01403K
crossref_primary_10_1021_bm501051t
crossref_primary_10_31635_ccschem_019_20180036
crossref_primary_10_1021_acs_macromol_7b02434
crossref_primary_10_1039_C4CC03155E
crossref_primary_10_1063_5_0024410
crossref_primary_10_1021_acs_biomac_5b00975
crossref_primary_10_1016_j_carbpol_2020_117199
crossref_primary_10_1021_la501936a
crossref_primary_10_1039_c4cc00463a
crossref_primary_10_1021_acs_macromol_6b01347
crossref_primary_10_1002_mabi_201700282
crossref_primary_10_1039_D0CP03981K
crossref_primary_10_1002_mabi_201600189
crossref_primary_10_1039_C7CC03024J
crossref_primary_10_1021_acs_biomac_9b01341
crossref_primary_10_1002_cphc_202000482
crossref_primary_10_1016_j_giant_2020_100026
crossref_primary_10_1002_chem_201405410
crossref_primary_10_1021_ja500939m
crossref_primary_10_1039_C5RA19123H
crossref_primary_10_1021_acsanm_2c00530
crossref_primary_10_1021_ma501110p
crossref_primary_10_1039_C8QM00345A
crossref_primary_10_1002_adma_201502583
crossref_primary_10_1039_C4NJ01517G
crossref_primary_10_1021_acscatal_6b00106
crossref_primary_10_1021_mz500211v
crossref_primary_10_1021_acs_biomac_6b00427
crossref_primary_10_1039_D1GC04509A
crossref_primary_10_1002_mnfr_201800646
crossref_primary_10_1039_D0TB01814G
crossref_primary_10_1021_acs_macromol_2c01627
crossref_primary_10_1021_acs_langmuir_6b03550
crossref_primary_10_1002_slct_201600226
crossref_primary_10_1007_s10118_015_1618_y
crossref_primary_10_1039_D0PY00245C
crossref_primary_10_1002_smll_201402970
crossref_primary_10_1021_ja500634u
crossref_primary_10_1039_C4NR07615J
crossref_primary_10_1002_pola_29223
crossref_primary_10_1002_adhm_201501000
crossref_primary_10_1039_C5RA23625H
crossref_primary_10_3389_fchem_2019_00179
crossref_primary_10_1016_j_eurpolymj_2015_09_002
crossref_primary_10_3389_fbioe_2021_652384
crossref_primary_10_1039_C7MH00420F
crossref_primary_10_1021_acs_macromol_0c00374
crossref_primary_10_1039_C4CC03119A
crossref_primary_10_1039_D0PY01358G
crossref_primary_10_1002_pi_6269
crossref_primary_10_1021_jacs_5b05060
crossref_primary_10_1039_C7PY01638G
crossref_primary_10_1002_app_51374
crossref_primary_10_1039_C4SM00871E
crossref_primary_10_1002_anie_201406953
crossref_primary_10_1016_j_polymer_2025_128046
crossref_primary_10_1021_acs_langmuir_6b03691
crossref_primary_10_1039_C5TC03321G
crossref_primary_10_1039_C6TB01163B
crossref_primary_10_1021_la503872h
crossref_primary_10_1002_ange_201406953
crossref_primary_10_1002_app_46503
crossref_primary_10_3390_ma9120980
crossref_primary_10_1021_acs_macromol_1c00361
crossref_primary_10_1039_C4CS00390J
crossref_primary_10_3390_nano10102006
crossref_primary_10_1039_D0NR06661C
crossref_primary_10_1007_s11426_015_0516_2
crossref_primary_10_1039_C7CP03792A
crossref_primary_10_1002_slct_202202843
crossref_primary_10_1039_D1PY00221J
crossref_primary_10_1039_C4TB01546K
crossref_primary_10_1039_D2CP00617K
crossref_primary_10_1002_smll_201403838
crossref_primary_10_1002_eom2_12181
crossref_primary_10_1021_acsnano_5b01832
crossref_primary_10_1039_C4EE02123A
crossref_primary_10_1002_aoc_4334
crossref_primary_10_1016_j_progpolymsci_2019_101167
crossref_primary_10_1038_s41467_019_14234_7
crossref_primary_10_1021_acs_langmuir_6b04559
crossref_primary_10_1038_ncomms5634
crossref_primary_10_1007_s11705_017_1683_6
crossref_primary_10_1002_tcr_202300126
crossref_primary_10_1016_j_jcomc_2025_100578
crossref_primary_10_1021_acs_analchem_7b00320
crossref_primary_10_1038_ncomms14057
crossref_primary_10_1021_acs_macromol_9b01051
crossref_primary_10_1016_j_apmt_2019_100463
crossref_primary_10_1039_C4CC03978E
crossref_primary_10_1002_smtd_202101076
crossref_primary_10_1039_D0PY00972E
crossref_primary_10_1016_j_nantod_2017_04_006
crossref_primary_10_1021_ja5131534
crossref_primary_10_1155_2021_5175473
crossref_primary_10_1016_j_cis_2015_09_001
crossref_primary_10_1021_acs_macromol_6b00789
crossref_primary_10_1021_acsami_8b05170
crossref_primary_10_1016_j_colsurfa_2015_01_024
crossref_primary_10_1039_C3PY01767B
crossref_primary_10_1007_s10118_017_1907_8
crossref_primary_10_1002_advs_202001379
crossref_primary_10_1021_acs_biomac_6b01653
crossref_primary_10_1016_j_bpc_2021_106728
crossref_primary_10_1039_C7PY00832E
crossref_primary_10_1039_C9PY00278B
crossref_primary_10_3390_molecules201019620
crossref_primary_10_1016_j_matt_2020_11_002
crossref_primary_10_1021_acsami_3c06170
crossref_primary_10_3390_biomedicines11030967
crossref_primary_10_1021_acsami_8b08558
crossref_primary_10_1021_acsbiomaterials_7b00372
Cites_doi 10.1039/C1CS15240H
10.1039/b924631b
10.1002/anie.201206362
10.1021/bc200214g
10.1002/anie.201106410
10.1002/1521-3773(20020402)41:7<1098::AID-ANIE1098>3.0.CO;2-9
10.1016/S0167-7799(98)01222-0
10.1021/mz300081d
10.1002/anie.199518121
10.1016/j.febslet.2012.05.033
10.1039/c0cs00153h
10.1021/bi015829k
10.1016/j.polymer.2011.06.005
10.1038/371578a0
10.1016/j.biomaterials.2012.09.077
10.1021/ja9031314
10.1021/ja056514l
10.1002/macp.200290073
10.1039/c2cc35170f
10.1021/ma800142j
10.1021/ja808075h
10.1016/j.jcis.2007.07.015
10.1002/macp.1981.021820240
10.1021/bm049860o
10.1016/0168-3659(93)90172-2
10.1021/ma202672y
10.1002/anie.201204959
10.1073/pnas.0708762104
10.1021/ja102148f
10.1021/la203857s
10.1038/nmat1339
10.1002/anie.201203483
10.1002/anie.200701125
10.1021/ja902869q
10.1038/nchem.1281
10.1021/ja104154t
10.1021/cm102963k
10.1021/ja035636f
10.1039/C0CC02160A
10.1126/science.1059820
10.1002/marc.200700077
10.1039/b107833j
10.1039/c2cs35207a
10.1038/nnano.2012.192
10.1039/c2sm06934b
10.1039/b820887e
10.1021/la900213a
10.1002/pola.22106
10.1016/j.progpolymsci.2010.12.003
10.1021/ja310397j
10.1021/ja0451160
10.1021/ma60038a001
10.1038/nchem.1314
10.1074/jbc.271.7.3478
10.1002/anie.200460325
10.1021/la053158b
10.1021/ja0372715
10.1021/jp991365c
10.1039/c1sm06495a
10.1021/ja067613h
10.1021/mz200195n
10.1021/la103428g
10.1021/bm301844u
10.1371/journal.pone.0043248
10.1021/ja0711967
10.1021/bc9801272
10.1007/s12033-012-9598-4
10.1002/(SICI)1521-3773(19981102)37:20<2754::AID-ANIE2754>3.0.CO;2-3
10.1016/j.tet.2004.05.055
10.1039/c2sc20389h
10.1021/ar200313h
10.1016/j.jcis.2010.04.056
10.1039/B919678C
10.1039/b004280n
10.1021/ja401075s
10.1038/nchem.296
10.1039/b806858e
10.1002/anie.201100708
10.1021/cr100357h
10.1021/ja205687k
10.1002/cbic.201100586
10.1021/ma800279w
10.1098/rsif.2006.0127
10.1021/ja028913b
10.1039/c1sm90064a
10.1021/ja8035465
10.1021/cr970011j
10.1002/ange.200901735
10.1021/ja0505696
10.1021/ar200036k
10.1002/anie.200903507
10.1021/ma971419l
10.1039/c2sm25178g
10.1039/C0JM03122D
10.1021/bm200423f
10.1055/s-2001-16770
10.1021/nn901843j
10.1038/42408
10.1021/ja00707a062
10.1038/nature06669
10.1021/ar00056a001
10.1007/s00396-005-1323-4
10.1021/ja058364k
10.1039/c3nr00178d
10.1021/mz300660t
10.1016/j.progpolymsci.2008.02.001
10.1021/ma902585w
10.1039/b814560c
10.1021/nn101447m
10.1021/la1004837
10.1038/nchem.1127
10.1021/ma062650e
10.1039/B613890J
10.1038/35057232
10.1002/adma.201000369
10.1021/bi961638j
10.1021/mz300338d
10.1002/anie.201106080
10.1016/j.progpolymsci.2005.06.002
10.1039/B616752G
10.1039/B922289H
10.1002/anie.200805895
10.1021/mz400036t
10.1002/mabi.200800248
10.1002/anie.200390204
10.1021/nl0619305
10.1021/ma052222t
10.1021/ja109262h
10.1021/nn202493w
10.1126/science.1074972
10.1201/9781420018271
10.1021/ja3085803
10.1209/epl/i2003-00264-2
10.1073/pnas.94.21.11156
10.1016/j.vetimm.2012.04.026
10.1039/b924617g
10.1021/ja300065f
10.1021/ja800230k
10.1021/nn102455z
10.1146/annurev.bi.57.070188.004033
10.1002/anie.201204840
10.1002/anie.200462622
10.1140/epje/i2004-10049-5
10.1016/j.bios.2006.01.036
10.1039/C2SC00803C
10.1021/ja043600x
10.1007/12_2011_129
10.1002/smll.200900186
10.1002/adfm.200900076
10.1039/c1sm05725a
10.1002/smll.200901186
10.1002/chem.200802114
10.1002/anie.200352724
10.1073/pnas.1112828109
10.1021/ja104446r
10.1038/ncomms1617
10.1039/b414350g
10.1021/ja00113a036
10.1016/j.cbpa.2007.05.002
10.1021/ma052272y
10.1021/ma902348r
10.1021/ma0210675
10.1039/b910648k
10.1038/nmat2512
10.1021/la0104370
10.1016/j.copbio.2004.10.002
10.1021/ja8052688
10.1021/ma202461e
10.1016/S0021-9258(18)42214-4
10.1016/j.progpolymsci.2012.04.001
10.1021/cr800529d
10.1126/science.1090763
10.1021/bm300986j
10.1016/S0169-409X(02)00017-0
10.1038/nmat2818
10.1021/ma9022197
10.1016/j.polymer.2012.10.015
10.1021/ja8062875
10.1039/c0cc03971c
10.1021/la802336k
10.1002/marc.201200675
10.1021/ja025895p
10.1002/anie.201107797
10.1039/c2cs35108k
10.1073/pnas.062654499
10.1021/ja206644d
10.1021/cr000418f
10.1140/epje/i2011-11014-y
10.1038/nature09963
10.1002/anie.201207123
10.1039/b805242e
10.1016/S0006-3495(03)74639-6
10.1038/ncomms1707
10.1002/anie.200250254
10.1002/tcr.201000008
10.1002/mabi.201000179
10.1126/science.1065879
10.1016/S1074-5521(98)90138-7
10.1039/c1cs15253j
10.1002/ange.200702805
10.1039/c2sm07188f
10.1039/C0SM00795A
10.1021/ja010037z
10.1021/ma060314s
10.1126/science.1207438
10.1021/mz200108a
10.1021/ma050665r
10.1002/anie.200801098
10.1021/ma102462y
10.1021/la063419x
10.1016/j.ccr.2010.04.014
10.1126/science.1103350
10.1074/jbc.X800011200
10.1039/c2py20265d
10.1002/adfm.200400378
10.1039/b817773b
10.1083/jcb.32.1.27
10.1039/B809333B
10.1039/cs9720100553
10.1021/ar040113d
10.1002/marc.200900355
10.1002/anie.200704078
10.1038/ncomms1841
10.1002/anie.200390257
10.1016/j.progpolymsci.2009.10.006
10.1002/anie.200502794
10.1039/B713953P
10.1002/anie.201102167
10.1021/la204018w
10.1016/j.jconrel.2004.10.014
10.1021/la060711w
10.1103/PhysRevLett.95.228101
10.1039/b915028e
10.1021/ja028151k
10.1039/b717177c
10.1002/1521-3773(20010618)40:12<2257::AID-ANIE2257>3.0.CO;2-S
10.1021/ja903988c
10.1002/anie.201002655
10.1038/nchem.893
10.1021/ja056775v
10.1021/ja042172s
10.1002/cbic.201000536
10.1038/nchem.257
10.1039/C1CS15258K
10.1021/la201843z
10.1039/C1CC13185K
10.1039/C2CS35312A
10.1016/j.addr.2012.01.005
10.1002/macp.200900515
10.1002/adma.200801701
10.1021/ma1003776
10.1016/j.biomaterials.2009.07.040
10.1002/macp.201100559
10.1021/ja01867a018
10.1002/ddr.20062
10.1021/mp100225y
10.1021/ma200398y
10.1038/nchem.1331
10.1039/b608383h
10.1021/ja209126a
10.1039/B813556H
10.1021/bm050156x
10.1021/ja101444j
10.1021/la702815h
10.1002/chem.201200016
10.1021/ja809613n
10.1038/nrd1775
10.1021/ja900786z
10.1021/la026187k
10.1038/361645a0
10.1016/S0169-409X(01)00213-7
10.3390/ijms14011541
10.1002/marc.200800475
10.1021/ja064560v
10.1146/annurev-matsci-070909-104532
10.1021/ja8013456
10.1039/c2py20110k
10.1021/ja0379666
10.1021/ma901276c
10.1039/B803553A
10.1016/j.cbpa.2004.09.008
10.1021/ma070550i
10.1073/pnas.1016410108
10.1021/bm9007953
10.1021/mz4000943
10.1002/anie.198801131
10.1039/B913307K
ContentType Journal Article
Copyright Copyright © 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright_xml – notice: Copyright © 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7SR
8BQ
8FD
JG9
DOI 10.1002/adma.201302215
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
DatabaseTitleList CrossRef
MEDLINE - Academic
Materials Research Database

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage 5256
ExternalDocumentID 24022921
10_1002_adma_201302215
ADMA201302215
ark_67375_WNG_6LX5LNKS_1
Genre reviewArticle
Research Support, Non-U.S. Gov't
Journal Article
Review
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
AAHQN
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AFWVQ
ALVPJ
AAYXX
ADMLS
AEYWJ
AGQPQ
AGYGG
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
7SR
8BQ
8FD
JG9
ID FETCH-LOGICAL-c4825-bdda219122b56536474a061217a3ea5f895946edeae394736f34d423cb90ecf73
IEDL.DBID DR2
ISSN 0935-9648
1521-4095
IngestDate Fri Jul 11 15:22:52 EDT 2025
Thu Jul 10 19:17:13 EDT 2025
Thu Apr 03 06:56:13 EDT 2025
Tue Jul 01 00:44:08 EDT 2025
Thu Apr 24 23:07:49 EDT 2025
Wed Jan 22 16:21:35 EST 2025
Wed Oct 30 09:49:39 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 37
Keywords macromolecular assembly
self-assembly
biomaterials
biomimetics
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4825-bdda219122b56536474a061217a3ea5f895946edeae394736f34d423cb90ecf73
Notes Dedicated to the 20 Anniversary of Department of Macromolecular Science of Fudan University
ark:/67375/WNG-6LX5LNKS-1
ArticleID:ADMA201302215
istex:679044F67CB602096204DC367824D9E483B40CCB
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
PMID 24022921
PQID 1443390301
PQPubID 23479
PageCount 42
ParticipantIDs proquest_miscellaneous_1448741057
proquest_miscellaneous_1443390301
pubmed_primary_24022921
crossref_primary_10_1002_adma_201302215
crossref_citationtrail_10_1002_adma_201302215
wiley_primary_10_1002_adma_201302215_ADMA201302215
istex_primary_ark_67375_WNG_6LX5LNKS_1
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 4, 2013
PublicationDateYYYYMMDD 2013-10-04
PublicationDate_xml – month: 10
  year: 2013
  text: October 4, 2013
  day: 04
PublicationDecade 2010
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
– name: Germany
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv. Mater
PublicationYear 2013
Publisher WILEY-VCH Verlag
WILEY‐VCH Verlag
Publisher_xml – name: WILEY-VCH Verlag
– name: WILEY‐VCH Verlag
References K. Simons, E. Ikonen, Nature 1997, 387, 569.
K. Yoshimatsu, B. K. Lesel, Y. Yonamine, J. M. Beierle, Y. Hoshino, K. J. Shea, Angew. Chem. Int. Ed. 2012, 51, 2405.
a) R. Breslow, L. E. Overman, J. Am. Chem. Soc. 1970, 92, 1075
T. Mes, M. M. E. Koenigs, V. F. Scalfani, T. S. Bailey, E. W. Meijer, A. R. A. Palmans, ACS Macro Lett. 2012, 1, 105.
b) M. Guo, M. Jiang, Soft Matter 2009, 5, 495
M. Comellas-Aragonès, A. de la Escosura, A. T. J. Dirks, A. van der Ham, A. Fusté-Cuñé, J. J. L. M. Cornelissen, R. J. M. Nolte, Biomacromolecules 2009, 10, 3141.
B. C. Ng, S. T. Chan, J. Lin, S. H. Tolbert, ACS Nano 2011, 5, 7730.
b) K. Miyata, N. Nishiyama, K. Kataoka, Chem. Soc. Rev. 2012, 41, 2562.
a) H. Torii, M. Nakadai, K. Ishihara, S. Saito, H. Yamamoto, Angew. Chem. Int. Ed. 2004, 43, 1983
M. Ramirez, D. Guan, V. Ugaz, Z. Chen, J. Am. Chem. Soc. 2013, 135, 5290.
P. C. Hiemenz, T. P. Lodge, Polymer Chemistry, CRC Press, 2007.
c) M. Surin, P. G. A. Janssen, R. Lazzaroni, P. Leclère, E. W. Meijer, A. P. H. J. Schenning, Adv. Mater. 2009, 21, 1126
b) G. Deng, F. Li, H. Yu, F. Liu, C. Liu, W. Sun, H. Jiang, Y. Chen, ACS Macro Lett. 2012, 1, 275
b) N. R. Cameron, S. G. Spain, J. A. Kingham, S. Weck, L. Albertin, C. A. Barker, G. Battaglia, T. Smart, A. Blanazs, Faraday Discuss 2008, 139, 359
M. Burnworth, L. Tang, J. R. Kumpfer, A. J. Duncan, F. L. Beyer, G. L. Fiore, S. J. Rowan, C. Weder, Nature 2011, 472, 334.
B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, P. Walter, Molecular Biology of the Cell, 5th ed. Garland Sci. 2008.
S. Ganguli, K. Yoshimoto, S. Tomita, H. Sakuma, T. Matsuoka, K. Shiraki, Y. Nagasaki, J. Am. Chem. Soc. 2009, 131, 6549.
R. A. Koevoets, R. M. Versteegen, H. Kooijman, A. L. Spek, R. P. Sijbesma, E. W. Meijer, J. Am. Chem. Soc. 2005, 127, 2999.
G. Pasparakis, C. Alexander, Angew. Chem. Int. Ed. 2008, 47, 4847.
K. Braig, Z. Otwinowski, R. Hegde, D. C. Boisvert, A. Joachimiak, A. L. Horwich, P. B. Sigler, Nature 1994, 371, 578.
g) X. Xu, H. Yuan, J. Chang, B. He, Z. Gu, Angew. Chem. Int. Ed. 2012, 51, 3130.
G. M. L. van Gemert, J. W. Peeters, S. H. M. Söntjens, H. M. Janssen, A. W. Bosman, Macromol. Chem. Phys. 2012, 213, 234.
K. Kurihara, M. Tamura, K. Shohda, T. Toyota, K. Suzuki, T. Sugawara, Nat. Chem. 2011, 3, 775.
c) T. Sugimoto, T. Suzuki, S. Shinkai, K. Sada, J. Am. Chem. Soc. 2007, 129, 270.
L. Bui, S. Abbou, E. Ibarboure, N. Guidolin, C. Staedel, J. J. Toulmé, S. Lecommandoux, C. Schatz, J. Am. Chem. Soc. 2012, 134, 20189.
C. Sanson, J. F. Le Meins, C. Schatz, A. Soum, S. Lecommandoux, Soft Matter 2010, 6, 1722.
a) J. M. de la Fuente, A. G. Barrientos, T. C. Rojas, J. Rojo, J. Cañada, A. Fernández, S. Penadés, Angew. Chem. Int. Ed. 2001, 40, 2257
b) C. Liu, M. A. Hillmyer, T. P. Lodge, Langmuir 2008, 24, 12001.
c) S. Burattini, B. W. Greenland, D. H. Merino, W. Weng, J. Seppala, H. M. Colquhoun, W. Hayes, M. E. Mackay, I. W. Hamley, S. J. Rowan, J. Am. Chem. Soc. 2010, 132, 12051.
a) G. Zuber, E. Dauty, M. Nothisen, P. Belguise, J. P. Behr, Adv. Drug Delivery Rev. 2001, 52, 245
M. Kumar, M. Grzelakowski, J. Zilles, M. Clark, W. Meier, Proc. Natl. Acad. Sci. USA 2007, 104, 20719.
J. Wang, M. Kuang, H. Duan, D. Chen, M. Jiang, Eur. Phys. J. E 2004, 15, 211.
a) R. Dong, B. Zhu, Y. Zhou, D. Yan, X. Zhu, Angew. Chem. Int. Ed. 2012, 51, 11633
T. K. Dam, R. Roy, D. Pagé, C. F. Brewer, Biochemistry 2002, 41, 1359.
b) S. Yu, J. Hu, X. Pan, P. Yao, M. Jiang, Langmuir 2006, 22, 2754.
Y. Takezawa, M. Shionoya, Acc. Chem. Res. 2012, 45, 2066.
b) Y. Ma, R. J. M. Nolte, J. J. L. M. Cornelissen, Adv. Drug Delivery Rev. 2012, 64, 811
K. Wei, J. Li, G. Chen, M. Jiang, ACS Macro Lett. 2013, 2, 278.
K. Akiyoshi, Y. Sasaki, J. Sunamoto, Bioconjugate Chem. 1999, 10, 321.
b) K. P. Nair, J. M. Pollino, M. Weck, Macromolecules 2006, 39, 931
A. J. Kim, M. S. Kaucher, K. P. Davis, M. Peterca, M. R. Imam, N. A. Christian, D. H. Levine, F. S. Bates, V. Percec, D. A. Hammer, Adv. Funct. Mater. 2009, 19, 2930.
A. O. Moughton, R. K. O'Reilly, J. Am. Chem. Soc. 2008, 130, 8714.
a) P. G. A. Janssen, S. Jabbari-Farouji, M. Surin, X. Vila, J. C. Gielen, T. F. A. de Greef, M. R. J. Vos, P. H. H. Bomans, N. A. J. M. Sommerdijk, P. C. M. Christianen, P. Leclère, R. Lazzaroni, P. van der Schoot, E. W. Meijer, A. P. H. J. Schenning, J. Am. Chem. Soc. 2009, 131, 1222
B. Städler, R. Chandrawati, K. Goldie, F. Caruso, Langmuir 2009, 25, 6725.
D. C. Tuncaboylu, A. Argun, M. Sahin, M. Sari, O. Okay, Polymer 2012, 53, 5513.
a) N. Hadjichristidis, S. Pispas, G. Floudas, Block Copolymers: Synthetic Strategies, Physical Properties, and Applications, Wiley-Interscience 2003
C. K. McLaughlin, G. D. Hamblin, H. F. Sleiman, Chem. Soc. Rev. 2011, 40, 5647.
X. Zhang, C. Wang, Chem. Soc. Rev. 2011, 40, 94.
a) M. M. Safont-Sempere, G. Fernández, F. Würthner, Chem. Rev. 2011, 111, 5784
J. W. Steed, J. L. Atwood, Supramolecular Chemistry WILEY, 2000.
b) T. W. Johnson, I. M. Klotz, Macromolecules 1974, 7, 149
a) J. Zou, F. Tao, M. Jiang, Langmuir 2007, 23, 12791
a) G. Pasparakis, N. Krasnogor, L. Cronin, B. G. Davis, C. Alexander, Chem. Soc. Rev. 2010, 39, 286
d) K. P. Nair, Victor Breedveld, M. Weck, Macromolecules 2011, 44, 3346.
d) D. W. Pack, A. S. Hoffman, S. Pun, P. S. Stayton, Nat. Rev. Drug Discov. 2005, 4, 581
e) K. Kataoka, G. S. Kwon, M. Yokoyama, T. Okano, Y. Sakurai, J. Controlled Release 1993, 24, 119
A. Wu, L. Isaacs, J. Am. Chem. Soc. 2003, 125, 4831.
b) J. Hu, H. Yu, L. H. Gan, X. Hu, Soft Matter 2011, 7, 11345.
a) K. Matyjaszewski, N. V. Tsarevsky, Nat. Chem. 2009, 1, 276
a) R. Iwaura, F. J. M. Hoeben, M. Masuda, A. P. H. J. Schenning, E. W. Meijer, T. Shimizu, J. Am. Chem. Soc. 2006, 128, 13298
N. E. Botterhuis, S. Karthikeyan, A. J. H. Spiering, R. P. Sijbesma, Macromolecules 2010, 43, 745.
b) Y. Li, Y. Deng, X. Tong, X. Wang, Macromolecules 2006, 39, 1108
S. A. Meeuwissen, K. T. Kim, Y. Chen, D. J. Pochan, J. C. M. van Hest, Angew. Chem. Int. Ed. 2011, 50, 7070.
J. Lin, M. Surin, D. Beljonne, X. Lou, J. L. J. van Dongen, A. P. H. J. Schenning, Chem. Sci. 2012, 3, 2732.
d) J.-F. Le Meins, O. Sandre, S. Lecommandoux, Eur. Phys. J. E 2011, 34, 14
R. J. R. W. Peters, I. Louzao, J. C. M. van Hest, Chem. Sci. 2012, 3, 335.
G. Vlatakis, L. I. Andersson, R. Müller, K. Mosbach, Nature 1993, 361, 645.
H. Wei, J. G. Schellinger, D. S. H. Chu, S. H. Pun, J. Am. Chem. Soc. 2012, 134, 16554.
Y. Zhou, D. Yan, J. Am. Chem. Soc. 2005, 127, 10468.
V. Pata, N. Dan, Biophys. J. 2003, 85, 2111.
a) D. M. Vriezema, P. M. L. Garcia, N. S. Oltra, N. S. Hatzakis, S. M. Kuiper, R. J. M. Nolte, A. E. Rowan, J. C. M. van Hest, Angew. Chem. Int. Ed. 2007, 46, 7378
K. Sakthivel, W. Notz, T. Bui, C. F. Barbas III, J. Am. Chem. Soc. 2001, 123, 5260.
a) P. Du, J. Liu, G. Chen, M. Jiang, Langmuir 2011, 27, 9602
b) S. G. Spain, L. Albertin, N. R. Cameron, Chem. Commun. 2006, 4198.
M. De, V. M. Rotello, Chem. Commun. 2008, 44, 3504.
a) R. Akiyama, S. Kobayashi, Chem. Rev. 2009, 109, 594
N. Morimoto, T. Endo, Y. Iwasaki, K. Akiyoshi, Biomacromolecules 2005, 6, 1829.
b) R. Arshady, K. Mosbach, Makromol. Chem. 1981, 182, 687.
a) A. Harada, R. Kobayashi, Y. Takashima, A. Hashidzume, H. Yamaguchi, Nat. Chem. 2011, 3, 34
Z. Ge, D. Xie, D. Chen, X. Jiang, Y. Zhang, H. Liu, S. Liu, Macromolecules 2007, 40, 3538.
a) Z. Dong, Q. Luo, J. Liu, Chem. Soc. Rev. 2012, 41, 7890
H. Yamaguchi, Y. Kobayashi, R. Kobayashi, Y. Takashima, A. Hashidzume, A. Harada, Nat. Commun. 2012, 3, 603.
A. O. Moughton, J. P. Patterson, R. K. O'Reilly, Chem. Commun. 2011, 47, 355.
T. P. Smart, C. Fernyhough, A. J. Ryan, G. Battaglia, Macromol. Rapid Commun. 2008, 29, 1855.
Y. Yin, X. Huang, C. Lv, L. Wang, S. Yu, Q. Luo, J. Xu, J. Liu, Macromol. Biosci. 2010, 10, 1505.
Z. Cheng, D. R. Elias, N. P. Kamat, E. Johnston, A. Poloukhtine, V. Popik, D. A. Hammer, A. Tsourkas, Bioconjugate Chem. 2011, 22, 2021.
J. Du, R. K. O'Reilly, Chem. Soc. Rev. 2011, 40, 2402.
b) S. R. White, N. R. Sottos, P. H. Geubelle, J. S. Moore, M. R. Kessler, S. R. Sriram, E. N. Brown, S. Vlswanathan, Nature 2001, 409, 794.
b) E. Crisci, J. Bárcena, M. Montoya, Veter. Immunol. Immunopath. 2012, 148, 211
Y. Hoshino, T. Kodama, Y. Okahata, K. J. Shea, J. Am. Chem. Soc. 2008, 130, 15242.
N. Gouda, K. Miyata, R. J. Christie, T. Suma, A. Kishimura, S. Fukushima, T. Nomoto, X. Liu, N. Nishiyama, K. Kataoka, Biomaterials 2013, 34, 562.
a) D. Y. Wu, S. Meure, D. Solomon, Prog. Polym. Sci. 2008, 33, 479
b) Y. Hoshino, H. Koide, T. Urakami, H. Kanazawa, T. Kodama, N. Oku, K. J. Shea, J. Am. Chem. Soc. 2010, 132, 6644
a) M. Ambrosi, N. R. Cameron, B. G. Davis, Org. Biomol. Chem. 2005, 3, 1593
G. H. Clever, M. Shionoya, Coord. Chem. Rev. 2010, 254, 2391.
a) M. Mammen, S.-K. Choi, G. M. Whitesides, Angew. Chem. Int. Ed. 1998, 37, 2755
b) R. Breslow, S. D. Dong, Chem. Rev. 1998, 98, 1997.
S. Dong, X. Yan, B. Zheng, J. Chen, X. Ding, Y. Yu, D. Xu, M. Zhang, F. Huang, Chem. Eur. J. 2012, 18, 4195.
M. Osaki, Y. Takashima, H. Yamaguchi, A. Harada, Macromolecules 2007, 40, 3154.
R. Chandrawati, L. Hosta-Rigau, D. Vanderstraaten, S. A. Lokuliyana, B. Städler, F. Albericio, F. Caruso, ACS Nano 2010, 4, 1351.
E. Huerta, P. J. M. Stals, E. W. Meijer, A. R. A. Palmans, Angew. Chem. Int. Ed. 2013, 52, 2906.
V. Ladmiral, G. Mantovani, G. J. Clarkson, S. Cauet, J. L. Irwin, D. M. Haddleton, J. Am. Chem. Soc. 2006, 128, 4823.
b) H. Li, M. A. Cortez, H. R. Phillips, Y. Wu, T. M. Reineke, ACS Macro Lett. 2013, 2, 230.
H. Bermúdez, H. Aranda-Espinoza, D. A. Hammer, D. E. Discher, Europhys. Lett. 2003, 64, 550.
a) A. Taubert, A. Napoli, W. Meier, Current Opinion in Chemical Biology 2004, 8, 598
M. Marguet, L. Edembe, S. Lecommandoux, Angew. Chem. Int. Ed. 2012, 51, 1173.
K. Yu, A. Eisenberg, Macromolecules 1998, 31, 3509.
M. Ambrosi, A. S. Batsanov, N. R. Cameron, B. G. Davis, J. A. K. Howard, R. Hunter, J. Chem. Soc., Perkin Trans. 1 2002, 45.
b) P. G. A. Janssen, A. Ruiz-Carretero, D. González-Rodríguez, E. W. Meijer, A. P. H. J. Schenning, Angew. Chem. Int. Ed. 2009, 48, 8103
Y. Zhou, D. Yan, Chem. Commun. 2009, 45, 1172.
a) B. J. Blaiszik, S. L. B. Kramer, S. C
2001 2006; 40
2007; 104
2010; 10
2012 2013; 1 2
2013; 2
2002 2003; 295 36
2005 2008 2012; 283 139 134
1995 1996 1996; 117 271 35
2011 2011 2012; 12 12 7
2005 2012; 127 28
1994; 371
2002; 99
2011; 52
1993; 361
2004; 5
2012; 18
2012; 13
2012 2011; 51 7
2013; 5
2001 1974 2002; 7 124
2011; 472
2009; 11
2010; 26
2009; 10
2012; 134
1995; 28
2006; 22
2005; 102
1972 1998 2009; 5 284
2008; 29
2005 2006 2008 2010; 38 39 41 351
1970 1998; 92 98
1997; 387
2013; 52
2007; 5
2012; 28
2009 2010 2011; 5 132 21
2009; 19
2010; 4
2003; 42
2010; 6
2009; 15
2010; 9
2012 2012; 41 37
2004; 303
2010 2001; 40 409
2011 2013; 111 14
1992; 267
2011 2012; 27 55
2006 2007; 128
2006 2003 2007; 128 42 129
2011; 3
2011; 5
2011; 133
2011; 7
2010 2012 2011; 39 586 7
2012; 109
2005 2007; 30 36
2009 2003; 48 125
2010; 43
2007; 315
2010; 46
2012 2008 2012; 3 451 7
2006; 45
1967; 32
2007 2009; 23 42
2002; 124
1988; 27
2002 2012; 54 41
2005; 127
2005; 95
2008; 47
2009 2009 2009 2010; 131 48 21 6
2005; 6
1995 1981; 34 182
2008; 44
2004 2004; 43 11
2012; 48
2004 2012 2011 2013; 15 148 8 53
2012; 45
2004 2009 2011 2011 2012; 8 9 44 34 41
2008; 130
2012; 41
2009; 45
2008 2010 2008; 33 35 18
2004; 126
2010 2011; 43 133
1998 2002; 37 102
2007 2010; 46 49
2010 2012 2012; 43 1 45
2011; 12
2003; 19
2003 2003; 204
2009 2008; 131 130
2012; 53
2012; 51
1997; 94
2013; 14
2004 2008 2011 2011; 60 41 7 44
2002; 41
2001
2000
2009 2010 2010; 1 39 211
2011; 22
1999; 10
2001; 17
2005 2007; 3 11
2012; 213
2011; 27
2003; 125
2010 2005 2004 2006; 4 3
2006; 128
2003; 85
1940; 62
2004 2006 2006; 126 39 39
2005 2009 2009; 38 5 30
2009; 25
2011; 333
2009 2011 2010; 23 132
2001; 123
2007; 129
2002; 297
2011; 40
2006 1998; 21 16
2013; 42
2011 2011; 3 44
2009
2008
2007
2001 2012 2006 2005 1993 2012 2012; 52 64 67 4 24 249 51
1988; 57
2006; 6
2005
2009 2013; 109
2009; 131
2002
2011; 36
2005; 44
2007 2006; 23 22
2009; 30
2012; 2
2012; 3
2007; 119
2011; 108
2012; 1
2004 2008; 306 24
2004 2010; 43 22
2013; 34
2007 2013; 28
2004; 15
2011; 50
2010; 132
2010; 254
2009; 8
2013; 135
2009; 7
1999 2003 2005 2005; 103 42 15 127
2007; 40
2011; 47
2013
2009; 1
2012; 4
1998; 31
2007; 45
2009; 38
2003; 64
2012; 8
e_1_2_8_49_2
e_1_2_8_26_2
e_1_2_8_9_2
e_1_2_8_203_2
e_1_2_8_1_3
e_1_2_8_1_2
e_1_2_8_132_2
e_1_2_8_178_2
e_1_2_8_1_4
e_1_2_8_87_3
e_1_2_8_41_2
e_1_2_8_87_2
e_1_2_8_170_2
Chen Y. (e_1_2_8_183_2) 2013
e_1_2_8_64_2
e_1_2_8_117_2
e_1_2_8_193_2
e_1_2_8_155_2
e_1_2_8_38_2
Liu X. (e_1_2_8_74_2) 2013
e_1_2_8_76_5
e_1_2_8_15_2
e_1_2_8_76_4
e_1_2_8_215_2
e_1_2_8_91_2
e_1_2_8_189_2
e_1_2_8_189_3
e_1_2_8_120_2
e_1_2_8_189_4
e_1_2_8_99_2
e_1_2_8_76_3
e_1_2_8_30_2
e_1_2_8_76_2
e_1_2_8_105_2
e_1_2_8_181_2
e_1_2_8_128_3
e_1_2_8_53_2
e_1_2_8_128_2
e_1_2_8_166_3
e_1_2_8_166_2
Hadjichristidis N. (e_1_2_8_6_2) 2003
e_1_2_8_25_2
e_1_2_8_48_2
Alberts B. (e_1_2_8_52_2) 2008
e_1_2_8_204_2
e_1_2_8_2_2
e_1_2_8_2_4
e_1_2_8_110_2
e_1_2_8_179_2
e_1_2_8_2_3
e_1_2_8_86_4
e_1_2_8_86_3
e_1_2_8_63_2
e_1_2_8_86_2
e_1_2_8_118_2
e_1_2_8_194_2
e_1_2_8_40_2
e_1_2_8_156_2
e_1_2_8_37_4
e_1_2_8_37_3
e_1_2_8_75_8
e_1_2_8_75_7
e_1_2_8_14_2
e_1_2_8_37_2
e_1_2_8_75_6
e_1_2_8_14_3
e_1_2_8_75_5
e_1_2_8_216_2
e_1_2_8_90_2
e_1_2_8_121_2
e_1_2_8_98_2
e_1_2_8_75_4
e_1_2_8_75_3
e_1_2_8_75_2
e_1_2_8_106_2
e_1_2_8_129_2
e_1_2_8_182_2
e_1_2_8_167_3
Lu A. (e_1_2_8_213_3) 2013
e_1_2_8_144_2
e_1_2_8_167_2
e_1_2_8_28_2
e_1_2_8_119_2
e_1_2_8_89_2
Yan X. (e_1_2_8_176_2) 2013
e_1_2_8_205_2
e_1_2_8_7_2
e_1_2_8_20_2
e_1_2_8_66_2
e_1_2_8_43_2
e_1_2_8_172_2
e_1_2_8_111_2
e_1_2_8_157_2
e_1_2_8_195_2
e_1_2_8_81_2
e_1_2_8_17_2
e_1_2_8_55_3
e_1_2_8_78_2
e_1_2_8_217_2
e_1_2_8_160_2
e_1_2_8_55_2
e_1_2_8_107_2
e_1_2_8_145_3
e_1_2_8_168_3
e_1_2_8_93_3
e_1_2_8_122_2
e_1_2_8_145_4
e_1_2_8_168_2
e_1_2_8_93_2
e_1_2_8_70_2
e_1_2_8_145_2
e_1_2_8_27_2
e_1_2_8_65_4
e_1_2_8_8_4
e_1_2_8_8_3
e_1_2_8_8_5
e_1_2_8_206_2
e_1_2_8_80_2
e_1_2_8_206_3
e_1_2_8_150_2
Steed J. W. (e_1_2_8_32_2) 2000
e_1_2_8_8_2
e_1_2_8_42_2
e_1_2_8_65_2
e_1_2_8_88_2
e_1_2_8_65_3
e_1_2_8_112_2
e_1_2_8_135_2
e_1_2_8_158_2
e_1_2_8_173_2
e_1_2_8_196_2
e_1_2_8_173_3
e_1_2_8_173_4
Kumar C. (e_1_2_8_5_2) 2010
e_1_2_8_196_3
e_1_2_8_16_2
e_1_2_8_39_2
Alberts B. (e_1_2_8_134_2) 2008
e_1_2_8_108_2
e_1_2_8_210_2
e_1_2_8_218_2
e_1_2_8_161_2
e_1_2_8_31_2
e_1_2_8_54_2
e_1_2_8_77_2
e_1_2_8_54_3
e_1_2_8_169_4
e_1_2_8_169_3
e_1_2_8_100_2
e_1_2_8_123_2
e_1_2_8_146_2
e_1_2_8_169_2
e_1_2_8_184_2
e_1_2_8_146_3
e_1_2_8_92_3
e_1_2_8_92_2
e_1_2_8_45_3
e_1_2_8_45_2
e_1_2_8_45_4
e_1_2_8_68_2
e_1_2_8_159_6
Ambrosi M. (e_1_2_8_143_2) 2002
e_1_2_8_151_2
e_1_2_8_207_2
e_1_2_8_5_3
e_1_2_8_5_5
e_1_2_8_5_4
e_1_2_8_159_5
e_1_2_8_159_4
e_1_2_8_136_3
e_1_2_8_159_3
e_1_2_8_22_2
e_1_2_8_159_2
e_1_2_8_83_2
e_1_2_8_136_2
e_1_2_8_174_2
e_1_2_8_60_2
e_1_2_8_113_2
e_1_2_8_197_2
e_1_2_8_19_2
e_1_2_8_11_3
e_1_2_8_109_2
e_1_2_8_34_2
e_1_2_8_57_2
e_1_2_8_19_3
e_1_2_8_219_2
e_1_2_8_95_2
e_1_2_8_162_2
e_1_2_8_11_2
e_1_2_8_72_2
e_1_2_8_101_2
e_1_2_8_147_2
e_1_2_8_185_2
e_1_2_8_124_2
e_1_2_8_29_2
e_1_2_8_29_3
Karp G. (e_1_2_8_127_2) 2005
e_1_2_8_67_2
e_1_2_8_200_2
e_1_2_8_175_4
e_1_2_8_152_2
e_1_2_8_208_2
Varki A. (e_1_2_8_133_2) 2009
e_1_2_8_6_3
e_1_2_8_114_4
e_1_2_8_190_3
e_1_2_8_114_3
e_1_2_8_190_4
e_1_2_8_21_2
e_1_2_8_44_2
e_1_2_8_137_2
e_1_2_8_190_5
e_1_2_8_114_5
e_1_2_8_82_2
e_1_2_8_114_2
e_1_2_8_175_2
e_1_2_8_198_2
e_1_2_8_175_3
e_1_2_8_18_2
e_1_2_8_33_3
e_1_2_8_56_2
e_1_2_8_79_2
e_1_2_8_212_2
e_1_2_8_94_2
e_1_2_8_140_2
e_1_2_8_163_2
e_1_2_8_10_2
e_1_2_8_33_2
e_1_2_8_148_2
e_1_2_8_71_2
e_1_2_8_102_2
e_1_2_8_125_2
e_1_2_8_186_2
e_1_2_8_186_3
e_1_2_8_47_5
e_1_2_8_47_4
e_1_2_8_24_2
e_1_2_8_47_3
e_1_2_8_47_2
e_1_2_8_201_2
Cotanda P. (e_1_2_8_211_2) 2012; 2
e_1_2_8_153_2
e_1_2_8_199_2
e_1_2_8_209_2
e_1_2_8_3_2
e_1_2_8_130_2
e_1_2_8_138_3
e_1_2_8_191_2
e_1_2_8_115_2
e_1_2_8_85_2
e_1_2_8_138_2
e_1_2_8_62_2
e_1_2_8_13_2
e_1_2_8_59_2
e_1_2_8_36_2
e_1_2_8_190_2
Wang J. (e_1_2_8_17_3) 2007
e_1_2_8_213_2
e_1_2_8_187_3
e_1_2_8_164_2
e_1_2_8_141_2
Nyberg A. I. (e_1_2_8_215_3) 2004; 11
e_1_2_8_97_2
e_1_2_8_126_2
e_1_2_8_149_2
e_1_2_8_51_2
e_1_2_8_103_2
e_1_2_8_187_2
e_1_2_8_23_2
e_1_2_8_46_2
e_1_2_8_69_2
e_1_2_8_202_2
Chen K. (e_1_2_8_124_3) 2013
e_1_2_8_131_2
e_1_2_8_154_2
e_1_2_8_177_2
e_1_2_8_4_2
e_1_2_8_4_4
Pepels M. (e_1_2_8_171_2) 2013
e_1_2_8_4_3
Du P. (e_1_2_8_22_3) 2012; 55
e_1_2_8_116_2
e_1_2_8_139_2
e_1_2_8_192_2
e_1_2_8_116_3
e_1_2_8_61_2
e_1_2_8_84_2
e_1_2_8_58_4
e_1_2_8_12_2
e_1_2_8_35_2
e_1_2_8_58_2
e_1_2_8_12_3
e_1_2_8_58_3
e_1_2_8_12_4
e_1_2_8_35_3
e_1_2_8_214_2
e_1_2_8_142_2
e_1_2_8_165_2
e_1_2_8_188_2
e_1_2_8_96_2
e_1_2_8_104_2
e_1_2_8_180_2
e_1_2_8_180_3
e_1_2_8_50_2
e_1_2_8_73_2
e_1_2_8_165_4
e_1_2_8_165_3
References_xml – reference: C. Sanson, J. F. Le Meins, C. Schatz, A. Soum, S. Lecommandoux, Soft Matter 2010, 6, 1722.
– reference: F. Herbst, D. Döhler, P. Michael, W. H. Binder, Macromol. Rapid Commun. 2013, 34, 203.
– reference: X. Li, Y. Liu, L. Wang, M. Deng, H. Liang, Phys. Chem. Chem. Phys. 2009, 11, 4051.
– reference: a) D. Y. Wu, S. Meure, D. Solomon, Prog. Polym. Sci. 2008, 33, 479;
– reference: Y. Zhang, L. Tao, S. Li, Y. Wei, Biomacromol. 2011, 12, 2894.
– reference: d) J. F. V. Vincent, O. A. Bogatyreva, N. R. Bogatyrev, A. Bowyer, A.-K. Pahl, J. R. Soc. Interface 2006, 3, 471.
– reference: B. Städler, R. Chandrawati, K. Goldie, F. Caruso, Langmuir 2009, 25, 6725.
– reference: M. Kwak, I. J. Minten, D. M. Anaya, A. J. Musser, M. Brasch, R. J. M. Nolte, K. Müllen, J. J. L. M. Cornelissen, A. Herrmann, J. Am. Chem. Soc. 2010, 132, 7834.
– reference: a) N. Tomimasu, A. Kanaya, Y. Takashima, H. Yamaguchi, A. Harada, J. Am. Chem. Soc. 2009, 131, 12339;
– reference: A. Varki, R. D. Cummings, J. D. Esko, H. H. Freeze, P. Stanley, C. R. Bertozzi, G. W. Hart, M. E. Etzler, Essentials of Glycobiology 2nd Ed. Cold Spring Harbor (NY), 2009.
– reference: a) C. M. Dong, E. L. Chaikof, Colloid Polym. Sci. 2005, 283, 1366;
– reference: b) K. Miyata, N. Nishiyama, K. Kataoka, Chem. Soc. Rev. 2012, 41, 2562.
– reference: a) Z. Li, E. Kesselman, Y. Talmon, M. A. Hillmyer, T. P. Lodge, Science 2004, 306, 98;
– reference: d) D. W. Pack, A. S. Hoffman, S. Pun, P. S. Stayton, Nat. Rev. Drug Discov. 2005, 4, 581;
– reference: D. Yan, Y. Zhou, J. Hou, Science 2004, 303, 65.
– reference: R. Breslow, Y. Huang, X. Zhang, J. Yang, Proc. Natl. Acad. Sci. USA 1997, 94, 11156.
– reference: T. W. Rademacher, R. B. Parekh, R. A. Dwek, Ann. Rev. Biochem. 1988, 57, 785.
– reference: R. A. Koevoets, R. M. Versteegen, H. Kooijman, A. L. Spek, R. P. Sijbesma, E. W. Meijer, J. Am. Chem. Soc. 2005, 127, 2999.
– reference: c) Y. Zhang, M. Jiang, J. Zhao, X. Ren, D. Chen, G. Zhang, Adv. Funct. Mater. 2005, 15, 695;
– reference: f) Y. Lee, K. Kataoka, Adv. Polym. Sci. 2012, 249, 95;
– reference: S. H. Kim, H. C. Shum, J. W. Kim, J. C. Cho, D. A. Weitz, J. Am. Chem. Soc. 2011, 133, 15165.
– reference: V. Pata, N. Dan, Biophys. J. 2003, 85, 2111.
– reference: b) J. Cortese, C. Soulié-Ziakovic, M. Cloitre, S. Tencé-Girault, L. Leibler, J. Am. Chem. Soc. 2011, 133, 19672.
– reference: c) R. Sharma, A. Ghasparian, J. A. Robinson, K. C. McCullough, Plos One 2012, 7, e43248.
– reference: P. M. Gardner, K. Winzer, B. G. Davis, Nat. Chem. 2009, 1, 377.
– reference: a) C. Schatz, S. Louguet, J. F. Le Meins, S. Lecommandoux, Angew. Chem. Int. Ed. 2009, 48, 2572;
– reference: Y. Zhou, D. Yan, J. Am. Chem. Soc. 2005, 127, 10468.
– reference: b) K. Haupt, K. Mosbach, Trends Biotechnol. 1998, 16, 468.
– reference: e) K. Kataoka, G. S. Kwon, M. Yokoyama, T. Okano, Y. Sakurai, J. Controlled Release 1993, 24, 119;
– reference: b) K. Chen, G. Xue, G. Shen, J. Cai, G. Zou, Y. Li, Q. Zhang, RSC Adv. 2013, doi: 10.1039/C3RA40396C.
– reference: b) C. Rest, M. J. Mayoral, G. Fernández, Int. J. Mol. Sci. 2013, 14, 1541.
– reference: G. Chen, M. Jiang, Chem. Soc. Rev. 2011, 40, 2254.
– reference: M. De, V. M. Rotello, Chem. Commun. 2008, 44, 3504.
– reference: K. Miyata, Y. Kakizawa, N. Nishiyama, A. Harada, Y. Yamasaki, H. Koyama, K. Kataoka, J. Am. Chem. Soc. 2004, 126, 2355.
– reference: a) H. Shen, A. Eisenberg, J. Phys. Chem. B 1999, 103, 9473;
– reference: Z. Ge, D. Xie, D. Chen, X. Jiang, Y. Zhang, H. Liu, S. Liu, Macromolecules 2007, 40, 3538.
– reference: L. Pauling, J. Am. Chem. Soc. 1940, 62, 2643.
– reference: b) K. P. Nair, J. M. Pollino, M. Weck, Macromolecules 2006, 39, 931;
– reference: a) A. Harada, R. Kobayashi, Y. Takashima, A. Hashidzume, H. Yamaguchi, Nat. Chem. 2011, 3, 34;
– reference: H. Cai, P. Yao, Nanoscale 2013, 5, 2892.
– reference: A. A. Zinchenko, K. Yoshikawa, D. Baigl, Phys. Rev. Lett. 2005, 95, 228101.
– reference: a) D. Rozema, S. H. Gellman, J. Am. Chem. Soc. 1995, 117, 2373;
– reference: b) Y. Ma, R. J. M. Nolte, J. J. L. M. Cornelissen, Adv. Drug Delivery Rev. 2012, 64, 811;
– reference: a) D. M. Vriezema, P. M. L. Garcia, N. S. Oltra, N. S. Hatzakis, S. M. Kuiper, R. J. M. Nolte, A. E. Rowan, J. C. M. van Hest, Angew. Chem. Int. Ed. 2007, 46, 7378;
– reference: J. W. Steed, J. L. Atwood, Supramolecular Chemistry WILEY, 2000.
– reference: F. D. Sikkema, M. Comellas-Aragonès, R. G. Fokkink, B. J. M. Verduin, J. J. L. M. Cornelissen, R. J. M. Nolte, Org. Biomol. Chem. 2007, 5, 54.
– reference: L. Su, Y. Zhao, G. Chen, M. Jiang, Polym. Chem. 2012, 3, 1560.
– reference: a) M. Mammen, S.-K. Choi, G. M. Whitesides, Angew. Chem. Int. Ed. 1998, 37, 2755;
– reference: b) Y. Li, Y. Deng, X. Tong, X. Wang, Macromolecules 2006, 39, 1108;
– reference: b) Y. Hoshino, H. Koide, T. Urakami, H. Kanazawa, T. Kodama, N. Oku, K. J. Shea, J. Am. Chem. Soc. 2010, 132, 6644;
– reference: Z. Cheng, D. R. Elias, N. P. Kamat, E. Johnston, A. Poloukhtine, V. Popik, D. A. Hammer, A. Tsourkas, Bioconjugate Chem. 2011, 22, 2021.
– reference: b) J. Hu, H. Yu, L. H. Gan, X. Hu, Soft Matter 2011, 7, 11345.
– reference: c) S. Burattini, B. W. Greenland, D. H. Merino, W. Weng, J. Seppala, H. M. Colquhoun, W. Hayes, M. E. Mackay, I. W. Hamley, S. J. Rowan, J. Am. Chem. Soc. 2010, 132, 12051.
– reference: L. Liu, R. Breslow, J. Am. Chem. Soc. 2002, 124, 4978.
– reference: S. Ganguli, K. Yoshimoto, S. Tomita, H. Sakuma, T. Matsuoka, K. Shiraki, Y. Nagasaki, J. Am. Chem. Soc. 2009, 131, 6549.
– reference: b) J. M. Lehn, Chem. Soc. Rev. 2007, 36, 151.
– reference: K. Simons, E. Ikonen, Nature 1997, 387, 569.
– reference: M. Marguet, C. Bonduelle, S. Lecommandoux, Chem. Soc. Rev. 2013, 42, 512.
– reference: H. A. Zayas, A. Lu, D. Valade, F. Amir, Z. Jia, R. K. O'Reilly, M. J. Monteiro, ACS Macro Lett. 2013, 2, 327.
– reference: N. E. Botterhuis, S. Karthikeyan, A. J. H. Spiering, R. P. Sijbesma, Macromolecules 2010, 43, 745.
– reference: b) J. Zou, B. Guan, X. Liao, M. Jiang, Macromolecules 2009, 42, 7465.
– reference: D. A. Wilson, R. J. M. Nolte, J. C. M. van Hest, Nat. Chem. 2012, 4, 268.
– reference: b) C. Sanchez, H. Arribart, M. M. G. Guille, Nat. Mater. 2005, 4, 277;
– reference: H. C. Chiu, Y. W. Lin, Y. F. Huang, C. K. Chuang, C. S. Chern, Angew. Chem. Int. Ed. 2008, 47, 1875.
– reference: b) N. R. Cameron, S. G. Spain, J. A. Kingham, S. Weck, L. Albertin, C. A. Barker, G. Battaglia, T. Smart, A. Blanazs, Faraday Discuss 2008, 139, 359;
– reference: b) H. Yamaguchi, R. Kobayashi, Y. Takashima, A. Hashidzume, A. Harada, Macromolecules 2011, 44, 2395.
– reference: K. Akiyoshi, Y. Sasaki, J. Sunamoto, Bioconjugate Chem. 1999, 10, 321.
– reference: G. M. L. van Gemert, J. W. Peeters, S. H. M. Söntjens, H. M. Janssen, A. W. Bosman, Macromol. Chem. Phys. 2012, 213, 234.
– reference: Y. Zhou, D. Yan, Angew. Chem. Int. Ed. 2005, 44, 3223.
– reference: Y. Zheng, A. Hashidzume, Y. Takashima, H. Yamaguchi, A. Harada, ACS Macro Lett. 2012, 1, 1083.
– reference: S. Ida, T. Terashima, M. Ouchi, M. Sawamoto, J. Am. Chem. Soc. 2009, 131, 10808.
– reference: L. Bui, S. Abbou, E. Ibarboure, N. Guidolin, C. Staedel, J. J. Toulmé, S. Lecommandoux, C. Schatz, J. Am. Chem. Soc. 2012, 134, 20189.
– reference: a) K. E. Feldman, M. J. Kade, E. W. Meijer, C. J. Hawker, E. J. Kramer, Macromolecules 2010, 43, 5121;
– reference: D. A. Christian, A. Tian, W. G. Ellenbroek, I. Levental, K. Rajagopal, P. A. Janmey, A. J. Liu, T. Baumgart, D. E. Discher, Nat. Mater. 2009, 8, 843.
– reference: S. Dong, X. Yan, B. Zheng, J. Chen, X. Ding, Y. Yu, D. Xu, M. Zhang, F. Huang, Chem. Eur. J. 2012, 18, 4195.
– reference: b) M. Guo, M. Jiang, Soft Matter 2009, 5, 495;
– reference: c) R. Breslow, J. Biol. Chem. 2009, 284, 1337.
– reference: b) R. Iwanra, K. Yoshida, M. Masuda, M. Ohnishi-Kameyama, M. Yoshida, T. Shimizu, Angew. Chem. Int. Ed. 2003, 42, 1009;
– reference: S. G. Spain, M. I. Gibson, N. R. Cameron, J. Polym. Sci. Part A: Polym. Chem. 2007, 45, 2059.
– reference: X. Pan, P. Yao, M. Jiang, J. Colloid Interface Sci. 2007, 315, 456.
– reference: b) T. W. Johnson, I. M. Klotz, Macromolecules 1974, 7, 149;
– reference: b) S. R. White, N. R. Sottos, P. H. Geubelle, J. S. Moore, M. R. Kessler, S. R. Sriram, E. N. Brown, S. Vlswanathan, Nature 2001, 409, 794.
– reference: K. Wei, L. Su, G. Chen, M. Jiang, Polymer 2011, 52, 3647.
– reference: M. Brasch, J. J. L. M. Cornelissen, Chem. Commun. 2012, 48, 1446.
– reference: C. Nardin, S. Thoeni, J. Widmer, M. Winterhalter, W. Meier, Chem. Commun. 2000, 1433.
– reference: c) B. C. K. Tee, C. Wang, R. Allen, Z. Bao, Nat. Nanotechnol. 2012, 7, 825.
– reference: c) M. Surin, P. G. A. Janssen, R. Lazzaroni, P. Leclère, E. W. Meijer, A. P. H. J. Schenning, Adv. Mater. 2009, 21, 1126;
– reference: Y. Chen, Z. Guan, Polym. Chem. 2013, DOI: 10.1039/C3PY00078H.
– reference: E. Huerta, P. J. M. Stals, E. W. Meijer, A. R. A. Palmans, Angew. Chem. Int. Ed. 2013, 52, 2906.
– reference: a) A. Taubert, A. Napoli, W. Meier, Current Opinion in Chemical Biology 2004, 8, 598;
– reference: b) R. Arshady, K. Mosbach, Makromol. Chem. 1981, 182, 687.
– reference: G. Vlatakis, L. I. Andersson, R. Müller, K. Mosbach, Nature 1993, 361, 645.
– reference: Y. Yonamine, Y Hoshino, K. J. Shea, Biomacromolecules 2012, 13, 2952.
– reference: D. L. Richmond, E. M. Schmid, S. Martens, J. C. Stachowiak, N. Liska, D. A. Fletcher, Proc. Natl. Acad. Sci. USA 2011, 108, 9431.
– reference: b) H. Li, M. A. Cortez, H. R. Phillips, Y. Wu, T. M. Reineke, ACS Macro Lett. 2013, 2, 230.
– reference: d) K. P. Nair, Victor Breedveld, M. Weck, Macromolecules 2011, 44, 3346.
– reference: c) C. R. South, K. C.-F. Leung, D. Lanari, J. F. Stoddart, M. Weck, Macromolecules 2006, 39, 3738.
– reference: c) Y. Hoshino, K. J. Shea, J. Mater. Chem. 2011, 21, 3517.
– reference: K. Sakthivel, W. Notz, T. Bui, C. F. Barbas III, J. Am. Chem. Soc. 2001, 123, 5260.
– reference: M. Osaki, Y. Takashima, H. Yamaguchi, A. Harada, Macromolecules 2007, 40, 3154.
– reference: I. J. Minten, Y. Ma, M. A Hempenius, G. J. Vancso, R. J. M. Nolte, J. J. L. M. Cornelissen, Org. Biomol. Chem. 2009, 7, 4685.
– reference: D. M. Vriezema, J. Hoogboom, K. Velonia, K. Takazawa, P. C. M. Christianen, J. C. Maan, A. E. Rowan, R. J. M. Nolte, Angew. Chem. Int. Ed. 2003, 42, 772.
– reference: A. A. Choucair, A. H. Kycia, A. Eisenberg, Langmuir 2003, 19, 1001.
– reference: Y. Chen, A. M. Kushner, G. A. Williams, Z. Guan, Nat. Chem. 2012, 4, 467.
– reference: N. Gouda, K. Miyata, R. J. Christie, T. Suma, A. Kishimura, S. Fukushima, T. Nomoto, X. Liu, N. Nishiyama, K. Kataoka, Biomaterials 2013, 34, 562.
– reference: Y. Cai, K. B. Aubrecht, R. B. Grubbs, J. Am. Chem. Soc. 2011, 133, 1058.
– reference: T. P. Smart, C. Fernyhough, A. J. Ryan, G. Battaglia, Macromol. Rapid Commun. 2008, 29, 1855.
– reference: c) S. D. Bergman, F. Wudl, J. Mater. Chem. 2008, 18, 41.
– reference: a) G. Wülff, Angew. Chem. Int. ed. Engl. 1995, 34, 1812;
– reference: L. Luo, A. Eisenberg, Langmuir 2001, 17, 6804.
– reference: G. Pasparakis, C. Alexander, Angew. Chem. Int. Ed. 2008, 47, 4847.
– reference: M. Chemin, P. M. Brun, S. Lecommandoux, O. Sandre, J.-F. Le Meins, Soft Matter 2012, 8, 2867.
– reference: Y. Chi, S. T. Scroggins, J. M. J. Fréchet, J. Am. Chem. Soc. 2008, 130, 6322.
– reference: H. Bermúdez, H. Aranda-Espinoza, D. A. Hammer, D. E. Discher, Europhys. Lett. 2003, 64, 550.
– reference: a) J. M. de la Fuente, A. G. Barrientos, T. C. Rojas, J. Rojo, J. Cañada, A. Fernández, S. Penadés, Angew. Chem. Int. Ed. 2001, 40, 2257;
– reference: b) C. Liu, M. A. Hillmyer, T. P. Lodge, Langmuir 2008, 24, 12001.
– reference: K. Haupt, Nat. Mater. 2010, 9, 612.
– reference: R. Chandrawati, L. Hosta-Rigau, D. Vanderstraaten, S. A. Lokuliyana, B. Städler, F. Albericio, F. Caruso, ACS Nano 2010, 4, 1351.
– reference: A. Graff, M. Sauer, P. van Gelder, W. Meier, Proc. Natl. Acad. Sci. USA 2002, 99, 5064.
– reference: a) J. Zou, F. Tao, M. Jiang, Langmuir 2007, 23, 12791;
– reference: c) F. Ahmed, P. J. Photos, D. E. Discher, Drug Dev. Res. 2006, 67, 4;
– reference: b) J. Wang, M. Jiang, Acta. Polym. Sin. 2007, 979.
– reference: b) P. Cordier, F. Tournilhac, C. Soulié-Ziakovic, L. Leibler, Nature 2008, 451, 977;
– reference: a) Z. Dong, Q. Luo, J. Liu, Chem. Soc. Rev. 2012, 41, 7890;
– reference: b) S. Burattini, B. W. Greenland, W. Hayes, M. E. Mackay, S. J. Rowan, H. M. Colquhoun, Chem. Mater. 2011, 23, 6;
– reference: S. A. Meeuwissen, K. T. Kim, Y. Chen, D. J. Pochan, J. C. M. van Hest, Angew. Chem. Int. Ed. 2011, 50, 7070.
– reference: b) G. Deng, F. Li, H. Yu, F. Liu, C. Liu, W. Sun, H. Jiang, Y. Chen, ACS Macro Lett. 2012, 1, 275;
– reference: Y. Liu, Y. Wang, Y. Wang, J. Lu, V. Piñón III, M. Weck, J. Am. Chem. Soc. 2011, 133, 14260.
– reference: M. Marguet, O. Sandre, S. Lecommandoux, Langmuir 2012, 28, 2035.
– reference: J. L. Cleland, C. Hedgepeth, D. I. Wang, J. Biol. Chem. 1992, 267, 13327.
– reference: a) J. Wang, M. Jiang, J. Am. Chem. Soc. 2006, 128, 3703;
– reference: b) S. Yu, J. Hu, X. Pan, P. Yao, M. Jiang, Langmuir 2006, 22, 2754.
– reference: a) J. Hu, S. Yu, P. Yao, Langmuir 2007, 23, 6358;
– reference: b) T. Riedel, A. Ghasparia, K. Moehle, P. Rusert, A. Trkola, J. A. Robinson, ChemBioChem 2011, 12, 2829;
– reference: Y. Zhou, D. Yan, Chem. Commun. 2009, 45, 1172.
– reference: J. Hentschel, A. M. Kushner, J. Ziller, Z. Guan, Angew. Chem. Int. Ed. 2012, 51, 10561.
– reference: d) X. Liu, C. Yi, Y. Zhu, Y. Yang, J. Jiang, Z. Cui, M. Jiang, Colloid Interface Sci. 2010, 351, 315.
– reference: D. C. Tuncaboylu, M. Sahin, A. Argun, W. Oppermann, O. Okay, Macromolecules 2012, 45, 1991.
– reference: D. C. Tuncaboylu, A. Argun, M. Sahin, M. Sari, O. Okay, Polymer 2012, 53, 5513.
– reference: d) A. Zeltins, Mol. Biotechnol. 2013, 53, 92.
– reference: d) P. G. A. Janssen, N. J. M. Brankaert, X. Vila, A. P. H. J. Schenning, Soft Matter 2010, 6, 1494.
– reference: b) T. P. Lodge, Macromolecular Chem. Phys. 2003, 204, 265.
– reference: P. Broz, S. Driamov, J. Ziegler, N. Ben-Haim, S. Marsch, W. Meier, P. Hunziker, Nano Lett. 2006, 6, 2349.
– reference: c) D. Rozema, S. H. Gellman, Biochemistry 1996, 35, 15760.
– reference: a) J. M. Pollino, K. P. Nair, L. P. Stubbs, J. Adams, M. Weck, Tetrahedron 2004, 60, 7205;
– reference: A. O. Moughton, R. K. O'Reilly, J. Am. Chem. Soc. 2008, 130, 8714.
– reference: a) W. Su, Y. Luo, Q. Yan, S. Wu, K. Han, Q. Zhang, Y. Gu, Y. Li, Macromol. Rapid Commun. 2007, 28, 1251;
– reference: b) E. B. Murphy, F. Wudl, Prog. Poly. Sci. 2010, 35, 223;
– reference: a) Y. Zhou, D. Yan, Angew. Chem. Int. Ed. 2004, 43, 4896;
– reference: M. Pepels, I. Filot, B. Klumperman, H. Goossens, Polym. Chem. 2013, DOI: 10.1039/C1033PY00087G.
– reference: a) B. J. Blaiszik, S. L. B. Kramer, S. C. Olugebefola, J. S. Moore, N. R. Sottos, S. R. White, Annu. Rev. Mater. Res. 2010, 40, 179;
– reference: M. Schulz, S. Werner, K. Bacia, W. H. Binder, Angew. Chem. Int. Ed. 2013, 52, 1829.
– reference: a) X. Chen, M. A. Dam, K. Ono, A. Mal, H. Shen, S. R. Nutt, K. Sheran, F. Wudl, Science 2002, 295, 1698;
– reference: g) X. Xu, H. Yuan, J. Chang, B. He, Z. Gu, Angew. Chem. Int. Ed. 2012, 51, 3130.
– reference: c) N. Lefèvre, C. A. Fustin, J. F. Gohy, Macromol. Rapid Commu. 2009, 30, 1871.
– reference: K. T. Kim, J. Zhu, S. A. Meeuwissen, J. J. L. M. Cornelissen, D. J. Pochan, R. J. M. Nolte, J. C. M. van Hest, J. Am. Chem. Soc. 2010, 132, 12522.
– reference: a) A. Ghasparian, T. Riedel, J. Koomullil, K. Moehle, C. Gorba, D. I. Svergun, A. W. Perriman, S. Mann, M. Tamborrini, G. Pluschke, J. A. Robinson, ChemBioChem 2011, 12, 100;
– reference: Y. Lu, M. Ballauff, Prog. Polym. Sci. 2011, 36, 767.
– reference: b) S. F. M. van Dongen, W. P. R. Verdurmen, R. J. R. W. Peters, R. J. M. Nolte, R. Brock, J. C. M. van Hest, Angew. Chem. Int. Ed. 2010, 49, 7213.
– reference: c) K. P. Nair, V. Breedveld, M. Weck, Soft Matter 2011, 7, 553;
– reference: b) R. Breslow, Chem. Biol. 1998, 5, R27;
– reference: c) D. Pati, N. Kalva, S. Das, G. Kumaraswamy, S. Sen Gupta, A. V. Ambade, J. Am. Chem. Soc. 2012, 134, 7796.
– reference: P. G. A. Janssen, N. Meeuwenoord, G. van der Marel, S. Jabbari-Farouji, P. van der Schoot, M. Surin, Ž. Tomović, E. W. Meijer, A. P. H. J. Schenning, Chem. Commun. 2010, 46, 109.
– reference: Y. Sasaki, K. Akiyoshi, The Chemical Record 2010, 10, 366.
– reference: a) D. J. Buckwalter, A. Sizovs, N. P. Ingle, T. M. Reineke, ACS Macro Lett. 2012, 1, 609;
– reference: b) R. Breslow, S. D. Dong, Chem. Rev. 1998, 98, 1997.
– reference: a) P. G. A. Janssen, S. Jabbari-Farouji, M. Surin, X. Vila, J. C. Gielen, T. F. A. de Greef, M. R. J. Vos, P. H. H. Bomans, N. A. J. M. Sommerdijk, P. C. M. Christianen, P. Leclère, R. Lazzaroni, P. van der Schoot, E. W. Meijer, A. P. H. J. Schenning, J. Am. Chem. Soc. 2009, 131, 1222;
– reference: A. Lu, P. Cotanda, J. P. Patterson, D. A. Longbottom, R. K. O'Reilly, Chem. Commun. 2012, 48, 9699.
– reference: S. F. M. van Dongen, M. Nallani, J. J. L. M. Cornelissen, R. J. M. Nolte, J. C. M. van Hest, Chem. Eur. J. 2009, 15, 1107.
– reference: P. C. Hiemenz, T. P. Lodge, Polymer Chemistry, CRC Press, 2007.
– reference: B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, P. Walter, Molecular Biology of the Cell, 5th ed. Garland Sci. 2008.
– reference: H. Takahashi, S.-i. Sawada, K. Akiyoshi, ACS Nano 2011, 5, 337.
– reference: P. G. A. Janssen, J. Vandenbergh, J. L. J. van Dongen, E. W. Meijer, A. P. H. J. Schenning, J. Am. Chem. Soc. 2007, 129, 6078.
– reference: A. O. Moughton, J. P. Patterson, R. K. O'Reilly, Chem. Commun. 2011, 47, 355.
– reference: a) J. Suh, Synlett 2001, 1343;
– reference: b) K. T. Pilobello, L. K. Mahal, Curr. Opin. Chem. Biol. 2007, 11, 300.
– reference: F. Boato, R. M. Thomas, A. Ghasparian, A. Freund-Renard, K. Moehle, J. A. Robinson, Angew. Chem. Int. Ed. 2007, 119, 9173.
– reference: b) S. G. Spain, L. Albertin, N. R. Cameron, Chem. Commun. 2006, 4198.
– reference: b) F. Wang, C. Han, C. He, Q. Zhou, J. Zhang, C. Wang, N. Li, F. Huang, J. Am. Chem. Soc. 2008, 130, 11254.
– reference: Y. Zheng, A. Hashidzume, Y. Takashima, H. Yamaguchi, A. Harada, Nat. Commun. 2012, 3, 831.
– reference: c) L. Liu, M. Rozenman, R. Breslow, J. Am. Chem. Soc. 2002, 124, 12660.
– reference: b) V. Malinova, M. Nallani, W. P. Meier, E. K. Sinner, FEBS Lett 2012, 586, 2146;
– reference: P. Cotanda, N. Petzetakis, R. K. O'Reilly, Macrmol. Rapid Commun. 2012, 2, 119.
– reference: b) Y. Zhou, W. Huang, J. Liu, X. Zhu, D. Yan, Adv. Mater. 2010, 22, 4567.
– reference: a) R. Iwaura, F. J. M. Hoeben, M. Masuda, A. P. H. J. Schenning, E. W. Meijer, T. Shimizu, J. Am. Chem. Soc. 2006, 128, 13298;
– reference: D. E. Discher, A. Eisenberg, Science 2002, 297, 967.
– reference: V. Ladmiral, G. Mantovani, G. J. Clarkson, S. Cauet, J. L. Irwin, D. M. Haddleton, J. Am. Chem. Soc. 2006, 128, 4823.
– reference: b) E. Crisci, J. Bárcena, M. Montoya, Veter. Immunol. Immunopath. 2012, 148, 211;
– reference: b) T. Nakai, T. Kanamori, S. Sando, Y. Aoyama, J. Am. Chem. Soc. 2003, 125, 8465.
– reference: K. Kurihara, M. Tamura, K. Shohda, T. Toyota, K. Suzuki, T. Sugawara, Nat. Chem. 2011, 3, 775.
– reference: A. Wu, L. Isaacs, J. Am. Chem. Soc. 2003, 125, 4831.
– reference: H.-P. M. de Hoog, M. Nallani, M. Tomczak, Soft Matter 2012, 8, 4552.
– reference: a) N. Hadjichristidis, S. Pispas, G. Floudas, Block Copolymers: Synthetic Strategies, Physical Properties, and Applications, Wiley-Interscience 2003;
– reference: X. Liu, Y. Liu, Z. Zhang, F. Huang, Q. Tao, R. Ma, Y. An, L. Shi, Chem. Eur. J. 2013, DOI: 10.1002/chem.201300634.
– reference: Z. Liu, J. Qiao, Z. Niu, Q. Wang, Chem. Soc. Rev. 2012, 41, 6178.
– reference: a) H. K. Lee, K. M. Park, Y. J. Jeon, D. Kim, D. H. Oh, H. S. Kim, C. K. Park, K. Kim, J. Am. Chem. Soc. 2005, 127, 5006;
– reference: T. Mes, M. M. E. Koenigs, V. F. Scalfani, T. S. Bailey, E. W. Meijer, A. R. A. Palmans, ACS Macro Lett. 2012, 1, 105.
– reference: M. Schulz, D. Glatte, A. Meister, P. Scholtysek, A. Kerth, A. Blume, K. Bacia, W. H. Binder, Soft Matter 2011, 7, 8100.
– reference: b) O. Onaca, R. Enea, D. W. Hughes, W. Meier, Macromol. Biosci. 2009, 9, 129;
– reference: K. Yu, A. Eisenberg, Macromolecules 1998, 31, 3509.
– reference: b) D. Rozema, S. H. Gellman, J. Biol. Chem. 1996, 271, 3478;
– reference: a) R. L. Garcea, L. Gissmann, Curr. Opin. Biotechnol. 2004, 15, 513;
– reference: S. Walter, J. Buchner, Angew. Chem. Int. Ed. Engl. 2002, 41, 1098.
– reference: a) M. M. Safont-Sempere, G. Fernández, F. Würthner, Chem. Rev. 2011, 111, 5784;
– reference: Y. C. Lee, R. T. Lee, Acc. Chem. Res. 1995, 28, 321.
– reference: A. H. Gröschel, F. H. Schacher, H. Schmalz, O. V. Borisov, E. B. Zhulina, A. Walther, A. H. E. Müller, Nat. Commun. 2012, 3, 710.
– reference: A. W. Perriman, D. S. Williams, A. J. Jackson, I. Grillo, J. M. Koomullil, A. Ghasparian, J. A. Robinson, S. Mann, Small 2010, 6, 1191.
– reference: L. L. Kiessling, J. E. Gestwicki, L. E. Strong, Angew. Chem. Int. Ed. 2006, 45, 2348.
– reference: a) Y. Kakizawa, K. Kataoka, Adv. Drug Delivery Rev. 2002, 54, 203;
– reference: a) M. Ambrosi, N. R. Cameron, B. G. Davis, Org. Biomol. Chem. 2005, 3, 1593;
– reference: M. Burnworth, L. Tang, J. R. Kumpfer, A. J. Duncan, F. L. Beyer, G. L. Fiore, S. J. Rowan, C. Weder, Nature 2011, 472, 334.
– reference: R. Chandrawati, B. Städler, A. Postma, L. A. Connal, S. F. Chong, A. N. Zelikin, F. Caruso, Biomaterials 2009, 30, 5988.
– reference: a) X. Liu, J. Kim, J. Wu, A. Eisenberg, Macromolecules 2005, 38, 6749;
– reference: D. Haldar, C. Schmuck, Chem. Soc. Rev. 2009, 38, 363.
– reference: P. C. Pang, P. C. N. Chiu, C. L. Lee, L. Y. Chang, M. Panico, H. R. Morris, S. M. Haslam, K. H. Khoo, G. F. Clark, W. S. B. Yeung, A. Dell, Science 2011, 333, 1761.
– reference: K. Braig, Z. Otwinowski, R. Hegde, D. C. Boisvert, A. Joachimiak, A. L. Horwich, P. B. Sigler, Nature 1994, 371, 578.
– reference: c) I. W. Hamley, Soft Matter 2011, 7, 9533.
– reference: a) S. Burattini, H. M. Colquhoun, J. D. Fox, D. Friedmann, B. W. Greenland, P. J. F. Harris, W. Hayes, M. E. Mackay, S. J. Rowan, Chem. Commun. 2009, 6717;
– reference: J. Zheng, K. Shi, Y. Zhang, X. Sun, B. Zhang, Chem. Commun. 2008, 44, 3753.
– reference: J. Lin, M. Surin, D. Beljonne, X. Lou, J. L. J. van Dongen, A. P. H. J. Schenning, Chem. Sci. 2012, 3, 2732.
– reference: c) J. K. Pokorski, N. F. Steinmetz, Mol. Pharm. 2011, 8, 29;
– reference: P. Brož, S. M. Benito, C. Saw, P. Burger, H. Heider, M. Pfisterer, S. Marsch, W. Meier, P Hunziker, J. Controlled Release 2005, 102, 475.
– reference: b) A. I. Nyberg, A. Usano, P. M. Pihko, Syn. Lett 2004, 11, 1891.
– reference: J. Nam, P. A. Beales, T. K. Vanderlick, Langmuir 2011, 27, 1.
– reference: a) M. Boopathi, M. V. S. Suryanarayana, A. K. Nigam, P. Pandey, K. Ganesan, B. Singh, K. Sekhar, Biosens. Bioelectron. 2006, 21, 2339;
– reference: X. Zhang, C. Wang, Chem. Soc. Rev. 2011, 40, 94.
– reference: J. Wang, M. Kuang, H. Duan, D. Chen, M. Jiang, Eur. Phys. J. E 2004, 15, 211.
– reference: M. Ambrosi, A. S. Batsanov, N. R. Cameron, B. G. Davis, J. A. K. Howard, R. Hunter, J. Chem. Soc., Perkin Trans. 1 2002, 45.
– reference: a) R. Breslow, Chem. Soc. Rev. 1972, 553;
– reference: H. Ringdorf, B. Schlarb, J. Venzmer, Angew. Chem. Int. Ed. Engl. 1988, 27, 113.
– reference: c) P. Tanner, P. Baumann, R. Enea, O. Onaca, C. Palivan, W. Meier, Acc. Chem. Res. 2011, 44, 1039;
– reference: H. Yamaguchi, Y. Kobayashi, R. Kobayashi, Y. Takashima, A. Hashidzume, A. Harada, Nat. Commun. 2012, 3, 603.
– reference: M. Sauer, T. Haefele, A. Graff, C. Nardin, W. Meier, Chem. Commun. 2001, 2452.
– reference: M. Krogsgaard, M. A. Behrens, J. S. Pedersen, H. Birkedal, Biomacromol. 2013, 14, 297.
– reference: C. R. Bertozzi, L. L. Kiessling, Science 2001, 2357.
– reference: a) C. Kumar, Biomimetic and bioinspired nanomaterials WILEY-VCH, 2010;
– reference: b) P. G. A. Janssen, A. Ruiz-Carretero, D. González-Rodríguez, E. W. Meijer, A. P. H. J. Schenning, Angew. Chem. Int. Ed. 2009, 48, 8103;
– reference: Y. Yin, X. Huang, C. Lv, L. Wang, S. Yu, Q. Luo, J. Xu, J. Liu, Macromol. Biosci. 2010, 10, 1505.
– reference: R. J. R. W. Peters, I. Louzao, J. C. M. van Hest, Chem. Sci. 2012, 3, 335.
– reference: A. O. Moughton, R. K. O'Reilly, Chem. Commun. 2010, 46, 1091.
– reference: N. Morimoto, T. Endo, Y. Iwasaki, K. Akiyoshi, Biomacromolecules 2005, 6, 1829.
– reference: P. K. Lo, H. F. Sleiman, J. Am. Chem. Soc. 2009, 131, 4182.
– reference: Q. Yan, R. Zhou, C. Fu, H. Zhang, Y. Yin, J. Yuan, Angew. Chem. Int. Ed. 2011, 50, 4923.
– reference: K. Wei, J. Li, G. Chen, M. Jiang, ACS Macro Lett. 2013, 2, 278.
– reference: B. C. Ng, S. T. Chan, J. Lin, S. H. Tolbert, ACS Nano 2011, 5, 7730.
– reference: A. Rambourg, C. P. Leblond, J. Cell Biol. 1967, 32, 27.
– reference: Y. Hoshino, T. Kodama, Y. Okahata, K. J. Shea, J. Am. Chem. Soc. 2008, 130, 15242.
– reference: b) H. Jin, Y. Liu, Y. Zheng, W. Huang, Y. Zhou, D. Yan, Langmuir 2012, 28, 2066.
– reference: b) P. Du, G. Chen, M. Jiang, Science China - Chem. 2012, 55, 835.
– reference: C. LoPresti, M. Massignani, C. Fernyhough, A. Blanazs, A. J. Ryan, J. Madsen, N. J. Warren, S. P. Armes, A. L. Lewis, S. Chirasatitsin, A. J. Engler, G. Battaglia, ACS Nano 2011, 5, 1775.
– reference: G. H. Clever, M. Shionoya, Coord. Chem. Rev. 2010, 254, 2391.
– reference: a) R. Dong, B. Zhu, Y. Zhou, D. Yan, X. Zhu, Angew. Chem. Int. Ed. 2012, 51, 11633;
– reference: b) X. Chen, F. Wudl, A. K. Mal, H. Shen, S. R. Nutt, Macromolecules 2003, 36, 1802.
– reference: Y. Wang, H. Xu, N. Ma, Z. Wang, X. Zhang, J. Liu, J. Shen, Langmuir 2006, 22, 5552.
– reference: T. K. Dam, R. Roy, D. Pagé, C. F. Brewer, Biochemistry 2002, 41, 1359.
– reference: a) K. Matyjaszewski, N. V. Tsarevsky, Nat. Chem. 2009, 1, 276;
– reference: a) G. Pasparakis, N. Krasnogor, L. Cronin, B. G. Davis, C. Alexander, Chem. Soc. Rev. 2010, 39, 286;
– reference: K. Zhang, M. Jiang, D. Chen, Angew. Chem. Int. Ed. 2012, 51, 8744.
– reference: M. Marguet, L. Edembe, S. Lecommandoux, Angew. Chem. Int. Ed. 2012, 51, 1173.
– reference: a) G. Deng, C. Tang, F. Li, H. Jiang, Y. Chen, Macromolecules 2010, 43, 1191;
– reference: c) M. Antonietti, P. Fratzl, Macromol. Chem. Phys. 2010, 211, 166.
– reference: c) T. Sugimoto, T. Suzuki, S. Shinkai, K. Sada, J. Am. Chem. Soc. 2007, 129, 270.
– reference: G. Karp, Cell and molecular biology: concept and experiments, 4th ed. Wiley 2005.
– reference: d) J.-F. Le Meins, O. Sandre, S. Lecommandoux, Eur. Phys. J. E 2011, 34, 14;
– reference: T. Hirakura, Y. Nomura, Y. Aoyama, K. Akiyoshi, Biomacromolecules 2004, 5, 1804.
– reference: b) H. Dou, M. Jiang, H. Peng, D. Chen, Y. Hong, Angew. Chem. Int. Ed. 2003, 42, 1516;
– reference: b) J. J. Lundquist, E. J. Toone, Chem. Rev. 2002, 102, 555.
– reference: A. J. Kim, M. S. Kaucher, K. P. Davis, M. Peterca, M. R. Imam, N. A. Christian, D. H. Levine, F. S. Bates, V. Percec, D. A. Hammer, Adv. Funct. Mater. 2009, 19, 2930.
– reference: b) Y. Yin, Z. Dong, Q. Luo, J. Liu, Prog. Polym. Sci. 2012, 37, 1476.
– reference: M. Ramirez, D. Guan, V. Ugaz, Z. Chen, J. Am. Chem. Soc. 2013, 135, 5290.
– reference: H. Schlaad, L. You, R. Sigel, B. Smarsly, M. Heydenreich, A. Mantion, A. Mašić, Chem. Commun. 2009, 45, 1478.
– reference: a) R. Akiyama, S. Kobayashi, Chem. Rev. 2009, 109, 594;
– reference: S. Yu, T. Azzam, I. Rouiller, A. Eisenberg, J. Am. Chem. Soc. 2009, 131, 10557.
– reference: a) D. Chen, M. Jiang, Acc. Chem. Res. 2005, 38, 494;
– reference: K. Yoshimatsu, B. K. Lesel, Y. Yonamine, J. M. Beierle, Y. Hoshino, K. J. Shea, Angew. Chem. Int. Ed. 2012, 51, 2405.
– reference: e) C. G. Palivan, O. Fischer-Onaca, M. Delcea, F. Itel, W. Meier, Chem. Soc. Rev. 2012, 41, 2800.
– reference: d) J. Du, Y. Tang, A. Lewis, S. Armes, J. Am. Chem. Soc. 2005, 127, 17982.
– reference: a) J. M. Lehn, Prog. Polym. Sci. 2005, 30, 814;
– reference: Y. Hoshino, H. Koide, K. Furuya, W. W. Haberaecker III, S.-H. Lee, T. Kodama, H. Kanazawa, N. Oku, K. J. Shea, Proc. Natl. Acad. Sci. USA 2012, 109, 33.
– reference: b) K. P. Nair, V. Breedveld, M. Weck, Macromolecules 2008, 41, 3429;
– reference: R. McHale, J. P. Patterson, P. B. Zetterlund, R. K. O'Reilly, Nat. Chem. 2012, 4, 491.
– reference: M. J. Monteiro, Macromolecules 2010, 43, 1159.
– reference: T. Azzam, A. Eisenberg, Langmuir 2010, 26, 10513.
– reference: M. Kumar, M. Grzelakowski, J. Zilles, M. Clark, W. Meier, Proc. Natl. Acad. Sci. USA 2007, 104, 20719.
– reference: a) Y. Hoshino, T. Urakami, T. Kodama, H. Koide, N. Oku, Y. Okahata, K. J. Shea, Small 2009, 5, 1562;
– reference: a) G. Zuber, E. Dauty, M. Nothisen, P. Belguise, J. P. Behr, Adv. Drug Delivery Rev. 2001, 52, 245;
– reference: K. Wei, J. Li, J. Liu, G. Chen, M. Jiang, Soft Matter 2012, 8, 3300.
– reference: A. Sundararaman, T. Stephan, R. B. Grubbs, J. Am. Chem. Soc. 2008, 130, 12264.
– reference: X. Yan, D. Xu, J. Chen, M. Zhang, B. Hu, Y. Yu, F. Huang, Polym. Chem. 2013, DOI: 10.1039/C1033PY00283G.
– reference: C. K. McLaughlin, G. D. Hamblin, H. F. Sleiman, Chem. Soc. Rev. 2011, 40, 5647.
– reference: a) H. Torii, M. Nakadai, K. Ishihara, S. Saito, H. Yamamoto, Angew. Chem. Int. Ed. 2004, 43, 1983;
– reference: a) R. Breslow, L. E. Overman, J. Am. Chem. Soc. 1970, 92, 1075;
– reference: M. Comellas-Aragonès, A. de la Escosura, A. T. J. Dirks, A. van der Ham, A. Fusté-Cuñé, J. J. L. M. Cornelissen, R. J. M. Nolte, Biomacromolecules 2009, 10, 3141.
– reference: a) J. M. Pollino, L. P. Stubbs, M. Weck, J. Am. Chem. Soc. 2004, 126, 563;
– reference: Z. Fu, M. A. Ochsner, H. P. M. de Hoog, N. Tomczak, M. Nallani, Chem. Commun. 2011, 47, 2862.
– reference: c) F. Liu, F. Li, G. Deng, Y. Chen, B. Zhang, J. Zhang, C. Y. Liu, Macromolecules 2012, 45, 1636.
– reference: T. Ruysschaert, A. F. P. Sonnen, T. Haefele, W. Meier, M. Winterhalter, D. Fournier, J. Am. Chem. Soc. 2005, 127, 6242.
– reference: a) F. Herbst, S. Seiffert, W. H. Binder, Polym. Chem. 2012, 3, 3084;
– reference: Y. Takezawa, M. Shionoya, Acc. Chem. Res. 2012, 45, 2066.
– reference: c) F. Tian, Y. Yu, C. Wang, S. Yang, Macromolecules 2008, 41, 3385;
– reference: b) G. Pasparakis, N. Krasnogor, L. Cronin, B. G. Davis, C. Alexander, Chem. Soc. Rev. 2010, 39, 286;
– reference: H. Wei, J. G. Schellinger, D. S. H. Chu, S. H. Pun, J. Am. Chem. Soc. 2012, 134, 16554.
– reference: a) P. Du, J. Liu, G. Chen, M. Jiang, Langmuir 2011, 27, 9602;
– reference: b) A. Lu, R. K. O'Reilly, Curr. Opin. Biotechnol. 2013, DOI: j.copbio.2012.11.013.
– reference: J. Du, R. K. O'Reilly, Chem. Soc. Rev. 2011, 40, 2402.
– volume: 11
  start-page: 4051
  year: 2009
  publication-title: Phys. Chem. Chem. Phys.
– volume: 13
  start-page: 2952
  year: 2012
  publication-title: Biomacromolecules
– volume: 92 98
  start-page: 1075 1997
  year: 1970 1998
  publication-title: J. Am. Chem. Soc. Chem. Rev.
– volume: 40
  start-page: 3154
  year: 2007
  publication-title: Macromolecules
– volume: 254
  start-page: 2391
  year: 2010
  publication-title: Coord. Chem. Rev.
– volume: 131
  start-page: 10808
  year: 2009
  publication-title: J. Am. Chem. Soc.
– volume: 28
  start-page: 1251
  year: 2007 2013
  publication-title: Macromol. Rapid Commun. RSC Adv.
– volume: 43 1 45
  start-page: 1191 275 1636
  year: 2010 2012 2012
  publication-title: Macromolecules ACS Macro Lett. Macromolecules
– volume: 43
  start-page: 745
  year: 2010
  publication-title: Macromolecules
– volume: 41
  start-page: 6178
  year: 2012
  publication-title: Chem. Soc. Rev.
– start-page: 45
  year: 2002
  publication-title: J. Chem. Soc., Perkin Trans. 1
– start-page: 1433
  year: 2000
  publication-title: Chem. Commun.
– volume: 131
  start-page: 10557
  year: 2009
  publication-title: J. Am. Chem. Soc.
– volume: 60 41 7 44
  start-page: 7205 3429 553 3346
  year: 2004 2008 2011 2011
  publication-title: Tetrahedron Macromolecules Soft Matter Macromolecules
– volume: 50
  start-page: 7070
  year: 2011
  publication-title: Angew. Chem. Int. Ed.
– volume: 43
  start-page: 1159
  year: 2010
  publication-title: Macromolecules
– volume: 1
  start-page: 377
  year: 2009
  publication-title: Nat. Chem.
– volume: 38 5 30
  start-page: 494 495 1871
  year: 2005 2009 2009
  publication-title: Acc. Chem. Res. Soft Matter Macromol. Rapid Commu.
– volume: 6
  start-page: 1191
  year: 2010
  publication-title: Small
– volume: 5 284
  start-page: 553 R27 1337
  year: 1972 1998 2009
  publication-title: Chem. Soc. Rev. Chem. Biol. J. Biol. Chem.
– year: 2008
– volume: 94
  start-page: 11156
  year: 1997
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 47
  start-page: 4847
  year: 2008
  publication-title: Angew. Chem. Int. Ed.
– volume: 19
  start-page: 1001
  year: 2003
  publication-title: Langmuir
– volume: 6
  start-page: 1722
  year: 2010
  publication-title: Soft Matter
– volume: 3
  start-page: 335
  year: 2012
  publication-title: Chem. Sci.
– volume: 44
  start-page: 3504
  year: 2008
  publication-title: Chem. Commun.
– volume: 62
  start-page: 2643
  year: 1940
  publication-title: J. Am. Chem. Soc.
– volume: 15
  start-page: 211
  year: 2004
  publication-title: Eur. Phys. J. E
– volume: 47
  start-page: 2862
  year: 2011
  publication-title: Chem. Commun.
– volume: 2
  start-page: 119
  year: 2012
  publication-title: Macrmol. Rapid Commun.
– volume: 40 409
  start-page: 179 794
  year: 2010 2001
  publication-title: Annu. Rev. Mater. Res. Nature
– volume: 12 12 7
  start-page: 100 2829 e43248
  year: 2011 2011 2012
  publication-title: ChemBioChem ChemBioChem Plos One
– volume: 8
  start-page: 2867
  year: 2012
  publication-title: Soft Matter
– year: 2007
– volume: 54 41
  start-page: 203 2562
  year: 2002 2012
  publication-title: Adv. Drug Delivery Rev. Chem. Soc. Rev.
– volume: 127
  start-page: 6242
  year: 2005
  publication-title: J. Am. Chem. Soc.
– volume: 34 182
  start-page: 1812 687
  year: 1995 1981
  publication-title: Angew. Chem. Int. ed. Engl. Makromol. Chem.
– volume: 41
  start-page: 1098
  year: 2002
  publication-title: Angew. Chem. Int. Ed. Engl.
– volume: 315
  start-page: 456
  year: 2007
  publication-title: J. Colloid Interface Sci.
– volume: 85
  start-page: 2111
  year: 2003
  publication-title: Biophys. J.
– volume: 64
  start-page: 550
  year: 2003
  publication-title: Europhys. Lett.
– volume: 12
  start-page: 2894
  year: 2011
  publication-title: Biomacromol.
– volume: 4
  start-page: 491
  year: 2012
  publication-title: Nat. Chem.
– volume: 10
  start-page: 321
  year: 1999
  publication-title: Bioconjugate Chem.
– volume: 30
  start-page: 5988
  year: 2009
  publication-title: Biomaterials
– volume: 128 42 129
  start-page: 13298 1009 270
  year: 2006 2003 2007
  publication-title: J. Am. Chem. Soc. Angew. Chem. Int. Ed. J. Am. Chem. Soc.
– volume: 109
  start-page: 594
  year: 2009 2013
  publication-title: Chem. Rev. Curr. Opin. Biotechnol.
– volume: 23 42
  start-page: 12791 7465
  year: 2007 2009
  publication-title: Langmuir Macromolecules
– volume: 306 24
  start-page: 98 12001
  year: 2004 2008
  publication-title: Science Langmuir
– volume: 29
  start-page: 1855
  year: 2008
  publication-title: Macromol. Rapid Commun.
– volume: 18
  start-page: 4195
  year: 2012
  publication-title: Chem. Eur. J.
– volume: 48
  start-page: 1446
  year: 2012
  publication-title: Chem. Commun.
– volume: 19
  start-page: 2930
  year: 2009
  publication-title: Adv. Funct. Mater.
– volume: 7
  start-page: 8100
  year: 2011
  publication-title: Soft Matter
– volume: 42
  start-page: 772
  year: 2003
  publication-title: Angew. Chem. Int. Ed.
– volume: 283 139 134
  start-page: 1366 359 7796
  year: 2005 2008 2012
  publication-title: Colloid Polym. Sci. Faraday Discuss J. Am. Chem. Soc.
– volume: 45
  start-page: 2059
  year: 2007
  publication-title: J. Polym. Sci. Part A: Polym. Chem.
– volume: 51
  start-page: 2405
  year: 2012
  publication-title: Angew. Chem. Int. Ed.
– volume: 3
  start-page: 1560
  year: 2012
  publication-title: Polym. Chem.
– year: 2009
– volume: 14
  start-page: 297
  year: 2013
  publication-title: Biomacromol.
– volume: 135
  start-page: 5290
  year: 2013
  publication-title: J. Am. Chem. Soc.
– volume: 46
  start-page: 1091
  year: 2010
  publication-title: Chem. Commun.
– volume: 132
  start-page: 7834
  year: 2010
  publication-title: J. Am. Chem. Soc.
– volume: 25
  start-page: 6725
  year: 2009
  publication-title: Langmuir
– volume: 45
  start-page: 1172
  year: 2009
  publication-title: Chem. Commun.
– volume: 103 42 15 127
  start-page: 9473 1516 695 17982
  year: 1999 2003 2005 2005
  publication-title: J. Phys. Chem. B Angew. Chem. Int. Ed. Adv. Funct. Mater. J. Am. Chem. Soc.
– volume: 44
  start-page: 3223
  year: 2005
  publication-title: Angew. Chem. Int. Ed.
– volume: 31
  start-page: 3509
  year: 1998
  publication-title: Macromolecules
– volume: 28
  start-page: 2035
  year: 2012
  publication-title: Langmuir
– volume: 46
  start-page: 109
  year: 2010
  publication-title: Chem. Commun.
– year: 2008
  publication-title: Molecular Biology of the Cell, 5th ed. Garland Sci.
– volume: 3 11
  start-page: 1593 300
  year: 2005 2007
  publication-title: Org. Biomol. Chem. Curr. Opin. Chem. Biol.
– volume: 131 130
  start-page: 12339 11254
  year: 2009 2008
  publication-title: J. Am. Chem. Soc. J. Am. Chem. Soc.
– start-page: 2357
  year: 2001
  publication-title: Science
– volume: 52 64 67 4 24 249 51
  start-page: 245 811 4 581 119 95 3130
  year: 2001 2012 2006 2005 1993 2012 2012
  publication-title: Adv. Drug Delivery Rev. Adv. Drug Delivery Rev. Drug Dev. Res. Nat. Rev. Drug Discov. J. Controlled Release Adv. Polym. Sci. Angew. Chem. Int. Ed.
– volume: 47
  start-page: 1875
  year: 2008
  publication-title: Angew. Chem. Int. Ed.
– volume: 132
  start-page: 12522
  year: 2010
  publication-title: J. Am. Chem. Soc.
– volume: 3 451 7
  start-page: 3084 977 825
  year: 2012 2008 2012
  publication-title: Polym. Chem. Nature Nat. Nanotechnol.
– volume: 26
  start-page: 10513
  year: 2010
  publication-title: Langmuir
– volume: 5
  start-page: 1804
  year: 2004
  publication-title: Biomacromolecules
– volume: 43 22
  start-page: 4896 4567
  year: 2004 2010
  publication-title: Angew. Chem. Int. Ed. Adv. Mater.
– volume: 130
  start-page: 6322
  year: 2008
  publication-title: J. Am. Chem. Soc.
– volume: 38
  start-page: 363
  year: 2009
  publication-title: Chem. Soc. Rev.
– volume: 4
  start-page: 467
  year: 2012
  publication-title: Nat. Chem.
– volume: 131 48 21 6
  start-page: 1222 8103 1126 1494
  year: 2009 2009 2009 2010
  publication-title: J. Am. Chem. Soc. Angew. Chem. Int. Ed. Adv. Mater. Soft Matter
– volume: 124
  start-page: 4978
  year: 2002
  publication-title: J. Am. Chem. Soc.
– volume: 43 133
  start-page: 5121 19672
  year: 2010 2011
  publication-title: Macromolecules J. Am. Chem. Soc.
– volume: 126 39 39
  start-page: 563 931 3738
  year: 2004 2006 2006
  publication-title: J. Am. Chem. Soc. Macromolecules Macromolecules
– volume: 3 44
  start-page: 34 2395
  year: 2011 2011
  publication-title: Nat. Chem. Macromolecules
– volume: 41 37
  start-page: 7890 1476
  year: 2012 2012
  publication-title: Chem. Soc. Rev. Prog. Polym. Sci.
– volume: 34
  start-page: 203
  year: 2013
  publication-title: Macromol. Rapid Commun.
– volume: 52
  start-page: 3647
  year: 2011
  publication-title: Polymer
– volume: 51
  start-page: 8744
  year: 2012
  publication-title: Angew. Chem. Int. Ed.
– volume: 1 39 211
  start-page: 276 286 166
  year: 2009 2010 2010
  publication-title: Nat. Chem. Chem. Soc. Rev. Macromol. Chem. Phys.
– volume: 51
  start-page: 10561
  year: 2012
  publication-title: Angew. Chem. Int. Ed.
– volume: 1
  start-page: 1083
  year: 2012
  publication-title: ACS Macro Lett.
– volume: 23 22
  start-page: 6358 2754
  year: 2007 2006
  publication-title: Langmuir Langmuir
– volume: 123
  start-page: 5260
  year: 2001
  publication-title: J. Am. Chem. Soc.
– volume: 52
  start-page: 2906
  year: 2013
  publication-title: Angew. Chem. Int. Ed.
– volume: 131
  start-page: 4182
  year: 2009
  publication-title: J. Am. Chem. Soc.
– volume: 131
  start-page: 6549
  year: 2009
  publication-title: J. Am. Chem. Soc.
– volume: 4
  start-page: 268
  year: 2012
  publication-title: Nat. Chem.
– volume: 10
  start-page: 1505
  year: 2010
  publication-title: Macromol. Biosci.
– volume: 99
  start-page: 5064
  year: 2002
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 213
  start-page: 234
  year: 2012
  publication-title: Macromol. Chem. Phys.
– volume: 267
  start-page: 13327
  year: 1992
  publication-title: J. Biol. Chem.
– volume: 119
  start-page: 9173
  year: 2007
  publication-title: Angew. Chem. Int. Ed.
– volume: 4
  start-page: 1351
  year: 2010
  publication-title: ACS Nano
– volume: 387
  start-page: 569
  year: 1997
  publication-title: Nature
– volume: 127
  start-page: 10468
  year: 2005
  publication-title: J. Am. Chem. Soc.
– volume: 3
  start-page: 775
  year: 2011
  publication-title: Nat. Chem.
– volume: 57
  start-page: 785
  year: 1988
  publication-title: Ann. Rev. Biochem.
– volume: 128
  start-page: 4823
  year: 2006
  publication-title: J. Am. Chem. Soc.
– volume: 134
  start-page: 20189
  year: 2012
  publication-title: J. Am. Chem. Soc.
– volume: 472
  start-page: 334
  year: 2011
  publication-title: Nature
– volume: 297
  start-page: 967
  year: 2002
  publication-title: Science
– volume: 130
  start-page: 12264
  year: 2008
  publication-title: J. Am. Chem. Soc.
– volume: 32
  start-page: 27
  year: 1967
  publication-title: J. Cell Biol.
– volume: 5 132 21
  start-page: 1562 6644 3517
  year: 2009 2010 2011
  publication-title: Small J. Am. Chem. Soc. J. Mater. Chem.
– volume: 47
  start-page: 355
  year: 2011
  publication-title: Chem. Commun.
– volume: 128
  start-page: 3703 979
  year: 2006 2007
  publication-title: J. Am. Chem. Soc. Acta. Polym. Sin.
– year: 2005
– volume: 5
  start-page: 7730
  year: 2011
  publication-title: ACS Nano
– volume: 8
  start-page: 4552
  year: 2012
  publication-title: Soft Matter
– volume: 42
  start-page: 512
  year: 2013
  publication-title: Chem. Soc. Rev.
– volume: 2
  start-page: 278
  year: 2013
  publication-title: ACS Macro Lett.
– volume: 333
  start-page: 1761
  year: 2011
  publication-title: Science
– volume: 52
  start-page: 1829
  year: 2013
  publication-title: Angew. Chem. Int. Ed.
– volume: 27
  start-page: 113
  year: 1988
  publication-title: Angew. Chem. Int. Ed. Engl.
– volume: 8
  start-page: 843
  year: 2009
  publication-title: Nat. Mater.
– volume: 108
  start-page: 9431
  year: 2011
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 126
  start-page: 2355
  year: 2004
  publication-title: J. Am. Chem. Soc.
– volume: 3
  start-page: 603
  year: 2012
  publication-title: Nat. Commun.
– volume: 22
  start-page: 5552
  year: 2006
  publication-title: Langmuir
– year: 2013
  publication-title: Chem. Eur. J.
– volume: 40
  start-page: 2254
  year: 2011
  publication-title: Chem. Soc. Rev.
– volume: 95
  start-page: 228101
  year: 2005
  publication-title: Phys. Rev. Lett.
– volume: 33 35 18
  start-page: 479 223 41
  year: 2008 2010 2008
  publication-title: Prog. Polym. Sci. Prog. Poly. Sci. J. Mater. Chem.
– volume: 40
  start-page: 2402
  year: 2011
  publication-title: Chem. Soc. Rev.
– volume: 7 124
  start-page: 1343 149 12660
  year: 2001 1974 2002
  publication-title: Synlett Macromolecules J. Am. Chem. Soc.
– volume: 127
  start-page: 2999
  year: 2005
  publication-title: J. Am. Chem. Soc.
– volume: 15
  start-page: 1107
  year: 2009
  publication-title: Chem. Eur. J.
– volume: 1 2
  start-page: 609 230
  year: 2012 2013
  publication-title: ACS Macro Lett. ACS Macro Lett.
– volume: 39 586 7
  start-page: 286 2146 9533
  year: 2010 2012 2011
  publication-title: Chem. Soc. Rev. FEBS Lett Soft Matter
– volume: 48
  start-page: 9699
  year: 2012
  publication-title: Chem. Commun.
– volume: 43 11
  start-page: 1983 1891
  year: 2004 2004
  publication-title: Angew. Chem. Int. Ed. Syn. Lett
– volume: 10
  start-page: 3141
  year: 2009
  publication-title: Biomacromolecules
– volume: 41
  start-page: 1359
  year: 2002
  publication-title: Biochemistry
– volume: 6
  start-page: 2349
  year: 2006
  publication-title: Nano Lett.
– volume: 48 125
  start-page: 2572 8465
  year: 2009 2003
  publication-title: Angew. Chem. Int. Ed. J. Am. Chem. Soc.
– volume: 109
  start-page: 33
  year: 2012
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 204
  start-page: 265
  year: 2003 2003
  publication-title: Macromolecular Chem. Phys.
– volume: 5
  start-page: 54
  year: 2007
  publication-title: Org. Biomol. Chem.
– volume: 30 36
  start-page: 814 151
  year: 2005 2007
  publication-title: Prog. Polym. Sci. Chem. Soc. Rev.
– volume: 15 148 8 53
  start-page: 513 211 29 92
  year: 2004 2012 2011 2013
  publication-title: Curr. Opin. Biotechnol. Veter. Immunol. Immunopath. Mol. Pharm. Mol. Biotechnol.
– volume: 23 132
  start-page: 6717 6 12051
  year: 2009 2011 2010
  publication-title: Chem. Commun. Chem. Mater. J. Am. Chem. Soc.
– volume: 37 102
  start-page: 2755 555
  year: 1998 2002
  publication-title: Angew. Chem. Int. Ed. Chem. Rev.
– volume: 130
  start-page: 15242
  year: 2008
  publication-title: J. Am. Chem. Soc.
– volume: 8 9 44 34 41
  start-page: 598 129 1039 14 2800
  year: 2004 2009 2011 2011 2012
  publication-title: Current Opinion in Chemical Biology Macromol. Biosci. Acc. Chem. Res. Eur. Phys. J. E Chem. Soc. Rev.
– year: 2013
  publication-title: Polym. Chem.
– volume: 40
  start-page: 94
  year: 2011
  publication-title: Chem. Soc. Rev.
– volume: 27
  start-page: 1
  year: 2011
  publication-title: Langmuir
– volume: 117 271 35
  start-page: 2373 3478 15760
  year: 1995 1996 1996
  publication-title: J. Am. Chem. Soc. J. Biol. Chem. Biochemistry
– volume: 111 14
  start-page: 5784 1541
  year: 2011 2013
  publication-title: Chem. Rev. Int. J. Mol. Sci.
– volume: 51
  start-page: 1173
  year: 2012
  publication-title: Angew. Chem. Int. Ed.
– volume: 5
  start-page: 2892
  year: 2013
  publication-title: Nanoscale
– volume: 303
  start-page: 65
  year: 2004
  publication-title: Science
– volume: 21 16
  start-page: 2339 468
  year: 2006 1998
  publication-title: Biosens. Bioelectron. Trends Biotechnol.
– volume: 38 39 41 351
  start-page: 6749 1108 3385 315
  year: 2005 2006 2008 2010
  publication-title: Macromolecules Macromolecules Macromolecules Colloid Interface Sci.
– volume: 45
  start-page: 2066
  year: 2012
  publication-title: Acc. Chem. Res.
– volume: 125
  start-page: 4831
  year: 2003
  publication-title: J. Am. Chem. Soc.
– volume: 17
  start-page: 6804
  year: 2001
  publication-title: Langmuir
– volume: 127 28
  start-page: 5006 2066
  year: 2005 2012
  publication-title: J. Am. Chem. Soc. Langmuir
– volume: 3
  start-page: 2732
  year: 2012
  publication-title: Chem. Sci.
– volume: 1
  start-page: 105
  year: 2012
  publication-title: ACS Macro Lett.
– volume: 36
  start-page: 767
  year: 2011
  publication-title: Prog. Polym. Sci.
– volume: 104
  start-page: 20719
  year: 2007
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 9
  start-page: 612
  year: 2010
  publication-title: Nat. Mater.
– volume: 44
  start-page: 3753
  year: 2008
  publication-title: Chem. Commun.
– volume: 6
  start-page: 1829
  year: 2005
  publication-title: Biomacromolecules
– start-page: 2452
  year: 2001
  publication-title: Chem. Commun.
– volume: 51 7
  start-page: 11633 11345
  year: 2012 2011
  publication-title: Angew. Chem. Int. Ed. Soft Matter
– volume: 45
  start-page: 1478
  year: 2009
  publication-title: Chem. Commun.
– volume: 34
  start-page: 562
  year: 2013
  publication-title: Biomaterials
– volume: 5
  start-page: 1775
  year: 2011
  publication-title: ACS Nano
– volume: 53
  start-page: 5513
  year: 2012
  publication-title: Polymer
– volume: 40
  start-page: 2257 4198
  year: 2001 2006
  publication-title: Angew. Chem. Int. Ed. Chem. Commun.
– volume: 4 3
  start-page: 277 287 471
  year: 2010 2005 2004 2006
  article-title: Dekker Encyclopedia of Nanoscience and Nanotechnology
  publication-title: Nat. Mater. J. R. Soc. Interface
– volume: 45
  start-page: 2348
  year: 2006
  publication-title: Angew. Chem. Int. Ed.
– volume: 133
  start-page: 14260
  year: 2011
  publication-title: J. Am. Chem. Soc.
– volume: 2
  start-page: 327
  year: 2013
  publication-title: ACS Macro Lett.
– volume: 129
  start-page: 6078
  year: 2007
  publication-title: J. Am. Chem. Soc.
– volume: 5
  start-page: 337
  year: 2011
  publication-title: ACS Nano
– volume: 27 55
  start-page: 9602 835
  year: 2011 2012
  publication-title: Langmuir Science China ‐ Chem.
– volume: 28
  start-page: 321
  year: 1995
  publication-title: Acc. Chem. Res.
– volume: 133
  start-page: 1058
  year: 2011
  publication-title: J. Am. Chem. Soc.
– volume: 40
  start-page: 3538
  year: 2007
  publication-title: Macromolecules
– volume: 46 49
  start-page: 7378 7213
  year: 2007 2010
  publication-title: Angew. Chem. Int. Ed. Angew. Chem. Int. Ed.
– volume: 102
  start-page: 475
  year: 2005
  publication-title: J. Controlled Release
– year: 2000
– volume: 8
  start-page: 3300
  year: 2012
  publication-title: Soft Matter
– volume: 3
  start-page: 710
  year: 2012
  publication-title: Nat. Commun.
– volume: 371
  start-page: 578
  year: 1994
  publication-title: Nature
– volume: 22
  start-page: 2021
  year: 2011
  publication-title: Bioconjugate Chem.
– volume: 10
  start-page: 366
  year: 2010
  publication-title: The Chemical Record
– volume: 133
  start-page: 15165
  year: 2011
  publication-title: J. Am. Chem. Soc.
– volume: 130
  start-page: 8714
  year: 2008
  publication-title: J. Am. Chem. Soc.
– volume: 361
  start-page: 645
  year: 1993
  publication-title: Nature
– volume: 3
  start-page: 831
  year: 2012
  publication-title: Nat. Commun.
– volume: 295 36
  start-page: 1698 1802
  year: 2002 2003
  publication-title: Science Macromolecules
– volume: 7
  start-page: 4685
  year: 2009
  publication-title: Org. Biomol. Chem.
– volume: 134
  start-page: 16554
  year: 2012
  publication-title: J. Am. Chem. Soc.
– volume: 50
  start-page: 4923
  year: 2011
  publication-title: Angew. Chem. Int. Ed.
– volume: 40
  start-page: 5647
  year: 2011
  publication-title: Chem. Soc. Rev.
– volume: 45
  start-page: 1991
  year: 2012
  publication-title: Macromolecules
– ident: e_1_2_8_159_6
  doi: 10.1039/C1CS15240H
– ident: e_1_2_8_47_5
  doi: 10.1039/b924631b
– ident: e_1_2_8_116_2
  doi: 10.1002/anie.201206362
– ident: e_1_2_8_155_2
  doi: 10.1021/bc200214g
– ident: e_1_2_8_106_2
  doi: 10.1002/anie.201106410
– ident: e_1_2_8_64_2
  doi: 10.1002/1521-3773(20020402)41:7<1098::AID-ANIE1098>3.0.CO;2-9
– year: 2013
  ident: e_1_2_8_176_2
  publication-title: Polym. Chem.
– ident: e_1_2_8_54_3
  doi: 10.1016/S0167-7799(98)01222-0
– ident: e_1_2_8_93_2
  doi: 10.1021/mz300081d
– ident: e_1_2_8_55_2
  doi: 10.1002/anie.199518121
– volume-title: Biomimetic and bioinspired nanomaterials
  year: 2010
  ident: e_1_2_8_5_2
– ident: e_1_2_8_4_3
  doi: 10.1016/j.febslet.2012.05.033
– ident: e_1_2_8_21_2
  doi: 10.1039/c0cs00153h
– ident: e_1_2_8_139_2
  doi: 10.1021/bi015829k
– ident: e_1_2_8_27_2
  doi: 10.1016/j.polymer.2011.06.005
– ident: e_1_2_8_63_2
  doi: 10.1038/371578a0
– ident: e_1_2_8_90_2
  doi: 10.1016/j.biomaterials.2012.09.077
– ident: e_1_2_8_201_2
  doi: 10.1021/ja9031314
– ident: e_1_2_8_114_5
  doi: 10.1021/ja056514l
– ident: e_1_2_8_6_3
  doi: 10.1002/macp.200290073
– ident: e_1_2_8_216_2
  doi: 10.1039/c2cc35170f
– ident: e_1_2_8_8_4
  doi: 10.1021/ma800142j
– ident: e_1_2_8_47_2
  doi: 10.1021/ja808075h
– ident: e_1_2_8_15_2
  doi: 10.1016/j.jcis.2007.07.015
– ident: e_1_2_8_55_3
  doi: 10.1002/macp.1981.021820240
– ident: e_1_2_8_69_2
  doi: 10.1021/bm049860o
– ident: e_1_2_8_75_6
  doi: 10.1016/0168-3659(93)90172-2
– ident: e_1_2_8_179_2
  doi: 10.1021/ma202672y
– ident: e_1_2_8_158_2
  doi: 10.1002/anie.201204959
– ident: e_1_2_8_163_2
  doi: 10.1073/pnas.0708762104
– ident: e_1_2_8_58_3
  doi: 10.1021/ja102148f
– ident: e_1_2_8_128_3
  doi: 10.1021/la203857s
– ident: e_1_2_8_5_3
  doi: 10.1038/nmat1339
– ident: e_1_2_8_51_2
  doi: 10.1002/anie.201203483
– ident: e_1_2_8_206_2
  doi: 10.1002/anie.200701125
– ident: e_1_2_8_115_2
  doi: 10.1021/ja902869q
– ident: e_1_2_8_112_2
  doi: 10.1038/nchem.1281
– ident: e_1_2_8_111_2
  doi: 10.1021/ja104154t
– ident: e_1_2_8_175_3
  doi: 10.1021/cm102963k
– ident: e_1_2_8_92_3
  doi: 10.1021/ja035636f
– ident: e_1_2_8_25_2
  doi: 10.1039/C0CC02160A
– ident: e_1_2_8_140_2
  doi: 10.1126/science.1059820
– ident: e_1_2_8_124_2
  doi: 10.1002/marc.200700077
– ident: e_1_2_8_207_2
  doi: 10.1039/b107833j
– ident: e_1_2_8_33_2
  doi: 10.1039/c2cs35207a
– ident: e_1_2_8_173_4
  doi: 10.1038/nnano.2012.192
– ident: e_1_2_8_100_2
  doi: 10.1039/c2sm06934b
– ident: e_1_2_8_148_2
  doi: 10.1039/b820887e
– ident: e_1_2_8_102_2
  doi: 10.1021/la900213a
– ident: e_1_2_8_141_2
  doi: 10.1002/pola.22106
– ident: e_1_2_8_209_2
  doi: 10.1016/j.progpolymsci.2010.12.003
– ident: e_1_2_8_91_2
  doi: 10.1021/ja310397j
– ident: e_1_2_8_193_2
  doi: 10.1021/ja0451160
– ident: e_1_2_8_37_3
  doi: 10.1021/ma60038a001
– ident: e_1_2_8_182_2
  doi: 10.1038/nchem.1314
– ident: e_1_2_8_65_3
  doi: 10.1074/jbc.271.7.3478
– ident: e_1_2_8_11_2
  doi: 10.1002/anie.200460325
– ident: e_1_2_8_14_3
  doi: 10.1021/la053158b
– ident: e_1_2_8_189_2
  doi: 10.1021/ja0372715
– ident: e_1_2_8_114_2
  doi: 10.1021/jp991365c
– ident: e_1_2_8_116_3
  doi: 10.1039/c1sm06495a
– ident: e_1_2_8_45_4
  doi: 10.1021/ja067613h
– ident: e_1_2_8_169_3
  doi: 10.1021/mz200195n
– ident: e_1_2_8_154_2
  doi: 10.1021/la103428g
– ident: e_1_2_8_174_2
  doi: 10.1021/bm301844u
– volume: 55
  start-page: 835
  year: 2012
  ident: e_1_2_8_22_3
  publication-title: Science China ‐ Chem.
– ident: e_1_2_8_86_4
  doi: 10.1371/journal.pone.0043248
– ident: e_1_2_8_46_2
  doi: 10.1021/ja0711967
– ident: e_1_2_8_67_2
  doi: 10.1021/bc9801272
– ident: e_1_2_8_76_5
  doi: 10.1007/s12033-012-9598-4
– ident: e_1_2_8_138_2
  doi: 10.1002/(SICI)1521-3773(19981102)37:20<2754::AID-ANIE2754>3.0.CO;2-3
– ident: e_1_2_8_190_2
  doi: 10.1016/j.tet.2004.05.055
– ident: e_1_2_8_49_2
  doi: 10.1039/c2sc20389h
– ident: e_1_2_8_41_2
  doi: 10.1021/ar200313h
– ident: e_1_2_8_8_5
  doi: 10.1016/j.jcis.2010.04.056
– ident: e_1_2_8_20_2
  doi: 10.1039/B919678C
– ident: e_1_2_8_160_2
  doi: 10.1039/b004280n
– ident: e_1_2_8_192_2
  doi: 10.1021/ja401075s
– ident: e_1_2_8_96_2
  doi: 10.1038/nchem.296
– ident: e_1_2_8_18_2
  doi: 10.1039/b806858e
– ident: e_1_2_8_113_2
  doi: 10.1002/anie.201100708
– ident: e_1_2_8_186_2
  doi: 10.1021/cr100357h
– ident: e_1_2_8_105_2
  doi: 10.1021/ja205687k
– ident: e_1_2_8_86_3
  doi: 10.1002/cbic.201100586
– ident: e_1_2_8_190_3
  doi: 10.1021/ma800279w
– volume-title: Block Copolymers: Synthetic Strategies, Physical Properties, and Applications
  year: 2003
  ident: e_1_2_8_6_2
– ident: e_1_2_8_5_5
  doi: 10.1098/rsif.2006.0127
– ident: e_1_2_8_185_2
  doi: 10.1021/ja028913b
– ident: e_1_2_8_4_4
  doi: 10.1039/c1sm90064a
– ident: e_1_2_8_187_3
  doi: 10.1021/ja8035465
– ident: e_1_2_8_35_3
  doi: 10.1021/cr970011j
– ident: e_1_2_8_30_2
  doi: 10.1002/ange.200901735
– ident: e_1_2_8_122_2
  doi: 10.1021/ja0505696
– ident: e_1_2_8_159_4
  doi: 10.1021/ar200036k
– ident: e_1_2_8_47_3
  doi: 10.1002/anie.200903507
– ident: e_1_2_8_107_2
  doi: 10.1021/ma971419l
– ident: e_1_2_8_28_2
  doi: 10.1039/c2sm25178g
– ident: e_1_2_8_58_4
  doi: 10.1039/C0JM03122D
– ident: e_1_2_8_170_2
  doi: 10.1021/bm200423f
– ident: e_1_2_8_37_2
  doi: 10.1055/s-2001-16770
– ident: e_1_2_8_103_2
  doi: 10.1021/nn901843j
– ident: e_1_2_8_150_2
  doi: 10.1038/42408
– ident: e_1_2_8_35_2
  doi: 10.1021/ja00707a062
– ident: e_1_2_8_173_3
  doi: 10.1038/nature06669
– ident: e_1_2_8_137_2
  doi: 10.1021/ar00056a001
– ident: e_1_2_8_145_2
  doi: 10.1007/s00396-005-1323-4
– ident: e_1_2_8_144_2
  doi: 10.1021/ja058364k
– ident: e_1_2_8_16_2
  doi: 10.1039/c3nr00178d
– ident: e_1_2_8_93_3
  doi: 10.1021/mz300660t
– ident: e_1_2_8_165_2
  doi: 10.1016/j.progpolymsci.2008.02.001
– ident: e_1_2_8_194_2
  doi: 10.1021/ma902585w
– ident: e_1_2_8_10_2
  doi: 10.1039/b814560c
– ident: e_1_2_8_73_2
  doi: 10.1021/nn101447m
– ident: e_1_2_8_109_2
  doi: 10.1021/la1004837
– ident: e_1_2_8_94_2
  doi: 10.1038/nchem.1127
– ident: e_1_2_8_200_2
  doi: 10.1021/ma062650e
– ident: e_1_2_8_78_2
  doi: 10.1039/B613890J
– ident: e_1_2_8_166_3
  doi: 10.1038/35057232
– ident: e_1_2_8_11_3
  doi: 10.1002/adma.201000369
– ident: e_1_2_8_65_4
  doi: 10.1021/bi961638j
– ident: e_1_2_8_197_2
  doi: 10.1021/mz300338d
– ident: e_1_2_8_75_8
  doi: 10.1002/anie.201106080
– ident: e_1_2_8_168_2
  doi: 10.1016/j.progpolymsci.2005.06.002
– ident: e_1_2_8_168_3
  doi: 10.1039/B616752G
– ident: e_1_2_8_24_2
  doi: 10.1039/B922289H
– ident: e_1_2_8_92_2
  doi: 10.1002/anie.200805895
– volume-title: Supramolecular Chemistry
  year: 2000
  ident: e_1_2_8_32_2
– ident: e_1_2_8_191_2
  doi: 10.1021/mz400036t
– start-page: 979
  year: 2007
  ident: e_1_2_8_17_3
  publication-title: Acta. Polym. Sin.
– ident: e_1_2_8_159_3
  doi: 10.1002/mabi.200800248
– ident: e_1_2_8_205_2
  doi: 10.1002/anie.200390204
– volume: 11
  start-page: 1891
  year: 2004
  ident: e_1_2_8_215_3
  publication-title: Syn. Lett
– ident: e_1_2_8_162_2
  doi: 10.1021/nl0619305
– ident: e_1_2_8_189_3
  doi: 10.1021/ma052222t
– ident: e_1_2_8_26_2
  doi: 10.1021/ja109262h
– ident: e_1_2_8_82_2
  doi: 10.1021/nn202493w
– ident: e_1_2_8_120_2
  doi: 10.1126/science.1074972
– ident: e_1_2_8_7_2
  doi: 10.1201/9781420018271
– ident: e_1_2_8_89_2
  doi: 10.1021/ja3085803
– ident: e_1_2_8_117_2
  doi: 10.1209/epl/i2003-00264-2
– ident: e_1_2_8_34_2
  doi: 10.1073/pnas.94.21.11156
– ident: e_1_2_8_76_3
  doi: 10.1016/j.vetimm.2012.04.026
– ident: e_1_2_8_126_2
  doi: 10.1039/b924617g
– ident: e_1_2_8_145_4
  doi: 10.1021/ja300065f
– ident: e_1_2_8_13_2
  doi: 10.1021/ja800230k
– ident: e_1_2_8_152_2
  doi: 10.1021/nn102455z
– volume-title: Essentials of Glycobiology
  year: 2009
  ident: e_1_2_8_133_2
– ident: e_1_2_8_135_2
  doi: 10.1146/annurev.bi.57.070188.004033
– year: 2013
  ident: e_1_2_8_213_3
  publication-title: Curr. Opin. Biotechnol.
– ident: e_1_2_8_184_2
  doi: 10.1002/anie.201204840
– ident: e_1_2_8_123_2
  doi: 10.1002/anie.200462622
– ident: e_1_2_8_108_2
  doi: 10.1140/epje/i2004-10049-5
– ident: e_1_2_8_54_2
  doi: 10.1016/j.bios.2006.01.036
– ident: e_1_2_8_208_2
  doi: 10.1039/C2SC00803C
– ident: e_1_2_8_153_2
  doi: 10.1021/ja043600x
– ident: e_1_2_8_75_7
  doi: 10.1007/12_2011_129
– ident: e_1_2_8_58_2
  doi: 10.1002/smll.200900186
– ident: e_1_2_8_164_2
  doi: 10.1002/adfm.200900076
– ident: e_1_2_8_157_2
  doi: 10.1039/c1sm05725a
– ident: e_1_2_8_85_2
  doi: 10.1002/smll.200901186
– ident: e_1_2_8_204_2
  doi: 10.1002/chem.200802114
– ident: e_1_2_8_215_2
  doi: 10.1002/anie.200352724
– ident: e_1_2_8_61_2
  doi: 10.1073/pnas.1112828109
– ident: e_1_2_8_175_4
  doi: 10.1021/ja104446r
– ident: e_1_2_8_199_2
  doi: 10.1038/ncomms1617
– ident: e_1_2_8_136_2
  doi: 10.1039/b414350g
– ident: e_1_2_8_65_2
  doi: 10.1021/ja00113a036
– ident: e_1_2_8_136_3
  doi: 10.1016/j.cbpa.2007.05.002
– ident: e_1_2_8_8_3
  doi: 10.1021/ma052272y
– ident: e_1_2_8_210_2
  doi: 10.1021/ma902348r
– ident: e_1_2_8_167_3
  doi: 10.1021/ma0210675
– ident: e_1_2_8_175_2
  doi: 10.1039/b910648k
– ident: e_1_2_8_151_2
  doi: 10.1038/nmat2512
– ident: e_1_2_8_119_2
  doi: 10.1021/la0104370
– ident: e_1_2_8_76_2
  doi: 10.1016/j.copbio.2004.10.002
– ident: e_1_2_8_23_2
  doi: 10.1021/ja8052688
– ident: e_1_2_8_169_4
  doi: 10.1021/ma202461e
– ident: e_1_2_8_66_2
  doi: 10.1016/S0021-9258(18)42214-4
– ident: e_1_2_8_33_3
  doi: 10.1016/j.progpolymsci.2012.04.001
– year: 2013
  ident: e_1_2_8_171_2
  publication-title: Polym. Chem.
– ident: e_1_2_8_213_2
  doi: 10.1021/cr800529d
– ident: e_1_2_8_9_2
  doi: 10.1126/science.1090763
– ident: e_1_2_8_60_2
  doi: 10.1021/bm300986j
– ident: e_1_2_8_87_2
  doi: 10.1016/S0169-409X(02)00017-0
– ident: e_1_2_8_56_2
  doi: 10.1038/nmat2818
– ident: e_1_2_8_169_2
  doi: 10.1021/ma9022197
– ident: e_1_2_8_178_2
  doi: 10.1016/j.polymer.2012.10.015
– ident: e_1_2_8_59_2
  doi: 10.1021/ja8062875
– volume-title: Cell and molecular biology: concept and experiments
  year: 2005
  ident: e_1_2_8_127_2
– ident: e_1_2_8_101_2
  doi: 10.1039/c0cc03971c
– ident: e_1_2_8_29_3
  doi: 10.1021/la802336k
– ident: e_1_2_8_177_2
  doi: 10.1002/marc.201200675
– ident: e_1_2_8_36_2
  doi: 10.1021/ja025895p
– ident: e_1_2_8_62_2
  doi: 10.1002/anie.201107797
– year: 2013
  ident: e_1_2_8_74_2
  publication-title: Chem. Eur. J.
– ident: e_1_2_8_77_2
  doi: 10.1039/c2cs35108k
– ident: e_1_2_8_129_2
  doi: 10.1073/pnas.062654499
– ident: e_1_2_8_219_2
  doi: 10.1021/ja206644d
– ident: e_1_2_8_138_3
  doi: 10.1021/cr000418f
– ident: e_1_2_8_159_5
  doi: 10.1140/epje/i2011-11014-y
– ident: e_1_2_8_181_2
  doi: 10.1038/nature09963
– ident: e_1_2_8_218_2
  doi: 10.1002/anie.201207123
– ident: e_1_2_8_72_2
  doi: 10.1039/b805242e
– ident: e_1_2_8_161_2
  doi: 10.1016/S0006-3495(03)74639-6
– ident: e_1_2_8_31_2
  doi: 10.1038/ncomms1707
– ident: e_1_2_8_114_3
  doi: 10.1002/anie.200250254
– year: 2008
  ident: e_1_2_8_134_2
  publication-title: Molecular Biology of the Cell, 5th ed. Garland Sci.
– ident: e_1_2_8_68_2
  doi: 10.1002/tcr.201000008
– year: 2013
  ident: e_1_2_8_124_3
  publication-title: RSC Adv.
– start-page: 45
  year: 2002
  ident: e_1_2_8_143_2
  publication-title: J. Chem. Soc., Perkin Trans. 1
– ident: e_1_2_8_40_2
  doi: 10.1002/mabi.201000179
– ident: e_1_2_8_167_2
  doi: 10.1126/science.1065879
– ident: e_1_2_8_1_3
  doi: 10.1016/S1074-5521(98)90138-7
– ident: e_1_2_8_42_2
  doi: 10.1039/c1cs15253j
– ident: e_1_2_8_84_2
  doi: 10.1002/ange.200702805
– ident: e_1_2_8_156_2
  doi: 10.1039/c2sm07188f
– ident: e_1_2_8_190_4
  doi: 10.1039/C0SM00795A
– ident: e_1_2_8_214_2
  doi: 10.1021/ja010037z
– ident: e_1_2_8_189_4
  doi: 10.1021/ma060314s
– ident: e_1_2_8_132_2
  doi: 10.1126/science.1207438
– ident: e_1_2_8_195_2
  doi: 10.1021/mz200108a
– ident: e_1_2_8_8_2
  doi: 10.1021/ma050665r
– ident: e_1_2_8_149_2
  doi: 10.1002/anie.200801098
– ident: e_1_2_8_190_5
  doi: 10.1021/ma102462y
– ident: e_1_2_8_14_2
  doi: 10.1021/la063419x
– ident: e_1_2_8_43_2
  doi: 10.1016/j.ccr.2010.04.014
– ident: e_1_2_8_29_2
  doi: 10.1126/science.1103350
– ident: e_1_2_8_1_4
  doi: 10.1074/jbc.X800011200
– ident: e_1_2_8_173_2
  doi: 10.1039/c2py20265d
– ident: e_1_2_8_114_4
  doi: 10.1002/adfm.200400378
– ident: e_1_2_8_118_2
  doi: 10.1039/b817773b
– ident: e_1_2_8_131_2
  doi: 10.1083/jcb.32.1.27
– ident: e_1_2_8_2_3
  doi: 10.1039/B809333B
– ident: e_1_2_8_1_2
  doi: 10.1039/cs9720100553
– ident: e_1_2_8_5_4
– ident: e_1_2_8_12_2
  doi: 10.1021/ar040113d
– ident: e_1_2_8_12_4
  doi: 10.1002/marc.200900355
– ident: e_1_2_8_98_2
  doi: 10.1002/anie.200704078
– ident: e_1_2_8_198_2
  doi: 10.1038/ncomms1841
– ident: e_1_2_8_4_2
  doi: 10.1039/B809333B
– ident: e_1_2_8_45_3
  doi: 10.1002/anie.200390257
– ident: e_1_2_8_165_3
  doi: 10.1016/j.progpolymsci.2009.10.006
– ident: e_1_2_8_142_2
  doi: 10.1002/anie.200502794
– ident: e_1_2_8_165_4
  doi: 10.1039/B713953P
– ident: e_1_2_8_110_2
  doi: 10.1002/anie.201102167
– ident: e_1_2_8_97_2
  doi: 10.1021/la204018w
– ident: e_1_2_8_130_2
  doi: 10.1016/j.jconrel.2004.10.014
– ident: e_1_2_8_39_2
  doi: 10.1021/la060711w
– ident: e_1_2_8_50_2
  doi: 10.1103/PhysRevLett.95.228101
– ident: e_1_2_8_80_2
  doi: 10.1039/b915028e
– ident: e_1_2_8_37_4
  doi: 10.1021/ja028151k
– ident: e_1_2_8_145_3
  doi: 10.1039/b717177c
– ident: e_1_2_8_146_2
  doi: 10.1002/1521-3773(20010618)40:12<2257::AID-ANIE2257>3.0.CO;2-S
– ident: e_1_2_8_187_2
  doi: 10.1021/ja903988c
– ident: e_1_2_8_206_3
  doi: 10.1002/anie.201002655
– ident: e_1_2_8_196_2
  doi: 10.1038/nchem.893
– volume: 2
  start-page: 119
  year: 2012
  ident: e_1_2_8_211_2
  publication-title: Macrmol. Rapid Commun.
– ident: e_1_2_8_17_2
  doi: 10.1021/ja056775v
– ident: e_1_2_8_128_2
  doi: 10.1021/ja042172s
– ident: e_1_2_8_86_2
  doi: 10.1002/cbic.201000536
– ident: e_1_2_8_2_2
  doi: 10.1038/nchem.257
– ident: e_1_2_8_87_3
  doi: 10.1039/C1CS15258K
– ident: e_1_2_8_22_2
  doi: 10.1021/la201843z
– ident: e_1_2_8_83_2
  doi: 10.1039/C1CC13185K
– ident: e_1_2_8_99_2
  doi: 10.1039/C2CS35312A
– ident: e_1_2_8_75_3
  doi: 10.1016/j.addr.2012.01.005
– ident: e_1_2_8_2_4
  doi: 10.1002/macp.200900515
– ident: e_1_2_8_47_4
  doi: 10.1002/adma.200801701
– ident: e_1_2_8_180_2
  doi: 10.1021/ma1003776
– ident: e_1_2_8_104_2
  doi: 10.1016/j.biomaterials.2009.07.040
– ident: e_1_2_8_172_2
  doi: 10.1002/macp.201100559
– ident: e_1_2_8_53_2
  doi: 10.1021/ja01867a018
– ident: e_1_2_8_75_4
  doi: 10.1002/ddr.20062
– ident: e_1_2_8_76_4
  doi: 10.1021/mp100225y
– ident: e_1_2_8_196_3
  doi: 10.1021/ma200398y
– ident: e_1_2_8_203_2
  doi: 10.1038/nchem.1331
– ident: e_1_2_8_146_3
  doi: 10.1039/b608383h
– ident: e_1_2_8_180_3
  doi: 10.1021/ja209126a
– ident: e_1_2_8_12_3
  doi: 10.1039/B813556H
– ident: e_1_2_8_70_2
  doi: 10.1021/bm050156x
– ident: e_1_2_8_81_2
  doi: 10.1021/ja101444j
– ident: e_1_2_8_19_2
  doi: 10.1021/la702815h
– ident: e_1_2_8_188_2
  doi: 10.1002/chem.201200016
– ident: e_1_2_8_202_2
  doi: 10.1021/ja809613n
– ident: e_1_2_8_75_5
  doi: 10.1038/nrd1775
– ident: e_1_2_8_71_2
  doi: 10.1021/ja900786z
– ident: e_1_2_8_121_2
  doi: 10.1021/la026187k
– year: 2013
  ident: e_1_2_8_183_2
  publication-title: Polym. Chem.
– ident: e_1_2_8_57_2
  doi: 10.1038/361645a0
– ident: e_1_2_8_75_2
  doi: 10.1016/S0169-409X(01)00213-7
– ident: e_1_2_8_186_3
  doi: 10.3390/ijms14011541
– ident: e_1_2_8_125_2
  doi: 10.1002/marc.200800475
– ident: e_1_2_8_45_2
  doi: 10.1021/ja064560v
– volume-title: Molecular Biology of the Cell
  year: 2008
  ident: e_1_2_8_52_2
– ident: e_1_2_8_166_2
  doi: 10.1146/annurev-matsci-070909-104532
– ident: e_1_2_8_38_2
  doi: 10.1021/ja8013456
– ident: e_1_2_8_147_2
  doi: 10.1039/c2py20110k
– ident: e_1_2_8_88_2
  doi: 10.1021/ja0379666
– ident: e_1_2_8_19_3
  doi: 10.1021/ma901276c
– ident: e_1_2_8_44_2
  doi: 10.1039/B803553A
– ident: e_1_2_8_159_2
  doi: 10.1016/j.cbpa.2004.09.008
– ident: e_1_2_8_212_2
  doi: 10.1021/ma070550i
– ident: e_1_2_8_95_2
  doi: 10.1073/pnas.1016410108
– ident: e_1_2_8_79_2
  doi: 10.1021/bm9007953
– ident: e_1_2_8_217_2
  doi: 10.1021/mz4000943
– ident: e_1_2_8_3_2
  doi: 10.1002/anie.198801131
– ident: e_1_2_8_48_2
  doi: 10.1039/B913307K
SSID ssj0009606
Score 2.5358505
SecondaryResourceType review_article
Snippet Macromolecular self‐assembly (MSA) has been an active and fruitful research field since the 1980s, especially in this new century, which is promoted by the...
Macromolecular self-assembly (MSA) has been an active and fruitful research field since the 1980s, especially in this new century, which is promoted by the...
SourceID proquest
pubmed
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 5215
SubjectTerms Animals
Assemblies
Biological Products - chemistry
biomaterials
Biomimetic materials
Biomimetic Materials - chemistry
Biomimetic Materials - metabolism
Biomimetics
Biomimetics - methods
Cells - metabolism
Humans
macromolecular assembly
Macromolecular Substances - chemistry
Macromolecular Substances - metabolism
Materials science
Nanocomposites
Nanomaterials
Nanostructure
Self assembly
Title Progressive Macromolecular Self-Assembly: From Biomimetic Chemistry to Bio-Inspired Materials
URI https://api.istex.fr/ark:/67375/WNG-6LX5LNKS-1/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201302215
https://www.ncbi.nlm.nih.gov/pubmed/24022921
https://www.proquest.com/docview/1443390301
https://www.proquest.com/docview/1448741057
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bT9swFLYmeIGHDRiDjouCNMFToPUtzd7KpePWCsHQ-mbZsS1VtCmCFDGe-An8Rn4JPk4TKGKbxN7i5Dhxjn3i7-Qcf0boG9c1axLmLE0rHlLDaVinRoYwFRDOmCaep7vV5vvn9LDDOi9W8ef8EOUPN7AM_70GA5fqeuuZNFRqzxsEgTfsV5lDwhagotNn_iiA555sj7Aw5rResDZW8dZ49bFZaRIUfPsW5BxHsH4Kan5Csmh8nnlysTnM1GZy94rX8X_ebgZ9HOHToJEPqFn0waRzaPoFa-FnJE8gpwvSZ29M0JI-oW-0x25wZnr28f4BQsl91fv9PWi6q8F2d9Dv9mG5ZLBTbDAXZAM474QPUoj2G-3uleX2MI_Om3s_d_bD0U4NYUKdixkqraX79NUwVg4gAiU9lYCdapEkRjJbj1lMudFGGhLTiHBLqHZALlFx1SQ2Il_QRDpIzSIKsFRWW-cYOT-SVq0rWWIYURGjyoG7uILCoqdEMqIxh900eiInYMYCVCdK1VXQRil_mRN4_FFy3Xd8KSavLiDtLWLiV_uH4Mcddtw-OhO1ClorRoZwKoMIi0zNYHjt_ChKSAxe5l9l6hEk10YVtJAPq_KJEOrCMXa1sR8c_2ixaOy2GmXp63sqLaEpOPbpiXQZTWRXQ7PiYFamVr0pPQHA3R5V
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB6h9kA5QKGlpLyMhMrJbbIvx9xCIaQ0iao-1N5Wu95dqWriVMVB0FN_Qn8jv4SddeySiocER9uz9no94_1mZ_YbgNfCtJzNuLc0o0XMrGBxm1kV41RABeeGBp7uwVD0jtinE15lE-JemJIfol5wQ8sI_2s0cFyQ3rphDVUmEAdh5I3gNvNFLOsdvKr9GwYpBOiBbo_yOBWsXfE2NsnWfPu5eWkRh_jrr0DnPIYNk1D3Aeiq-2XuydnmtNCb2eUtZsf_er9luD-DqFGn1KmHcMfmj-DeT8SFK6D2MK0LM2i_2GigQk7frMxudGBH7vvVNUaTx3r07W3U9Vejd6eT8ekYd0xG21WNuaiY4HkvvJNjwN8af6-iNIlVOOp-ONzuxbNiDXHGvJcZa2OU__u1CNEeIyIrPVMIn1qJolZx1055yoQ1VlmasoQKR5nxWC7TadNmLqGPYSGf5PYJRERpZ5z3jbwryZrOHzlqOdUJZ9rju7QBcfWpZDZjMseCGiNZcjATiUMn66FrwJta_rzk8Pit5Eb48rWYujjDzLeEy-PhRyn6J7w_3D2QrQa8qlRD-iHDIIvK7WT62btSjNIUHc0_yrQTzK9NGrBW6lX9RIx2kZT41iRox196LDvvB536aP1fGr2Eu73DQV_2d4a7T2EJz4dsRfYMFoqLqX3uUVehXwS7-gGaMCJw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFD5Cm4TYA-M2KNcgIXjK1vqWhLeyUjbWVhNjom-WHdvStDadthQBT_wEfiO_BB-nyVbERdoe4xwnjn2O_Z2c488AL4TpOJtzb2lGi5hZweKUWRXjUkAF54YGnu7hSOwcsvdjPr6wi7_ih2h-uKFlhPkaDfzEuK1z0lBlAm8QBt4I7jJfZaKdol73PpwTSCE-D2x7lMeZYGlN29gmW8v1l5alVezhL3_CnMsQNqxB_XVQdeur1JPjzXmpN_NvvxE7XuXzbsHNBUCNupVG3YZrtrgDaxdoC--C2sekLsyf_WyjoQoZfYtDdqMDO3E_v__AWPJUT76-jvr-bvTmaDY9muJ-yWi7PmEuKmdY7oV3Cwz3W-OfVVYGcQ8O-28_bu_Ei6Ma4px5HzPWxig_93UI0R4hIic9UwieOomiVnGXZjxjwhqrLM1YQoWjzHgkl-usbXOX0A1YKWaFfQARUdoZ5z0j70iytvNXjlpOdcKZ9ugua0Fcj5TMFzzmeJzGRFYMzERi18mm61rwqpE_qRg8_ir5Mgx8I6ZOjzHvLeHy0-idFIMxH4z2DmSnBc9rzZC-yzDEogo7m595R4pRmqGb-U-ZNMHs2qQF9yu1at6IsS6SEV-bBOX4T4tltzfsNlcPL1PpGVzf7_XlYHe09whuYHFIVWSPYaU8ndsnHnKV-mmwql8v0iEo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Progressive+Macromolecular+Self-Assembly%3A+From+Biomimetic+Chemistry+to+Bio-Inspired+Materials&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Zhao%2C+Yu&rft.au=Sakai%2C+Fuji&rft.au=Su%2C+Lu&rft.au=Liu%2C+Yijiang&rft.date=2013-10-04&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=25&rft.issue=37&rft.spage=5215&rft.epage=5256&rft_id=info:doi/10.1002%2Fadma.201302215&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon