Parametric regression models for continuous time removal and recapture studies

We use a class of parametric counting process regression models that are commonly employed in the analysis of failure time data to formulate the subject-specific capture probabilities for removal and recapture studies conducted in continuous time. We estimate the regression parameters by modifying t...

Full description

Saved in:
Bibliographic Details
Published inJournal of the Royal Statistical Society. Series B, Statistical methodology Vol. 61; no. 2; pp. 401 - 411
Main Authors Lin, D. Y., Yip, P. S. F.
Format Journal Article
LanguageEnglish
Published Oxford, UK and Boston, USA Blackwell Publishers Ltd 01.01.1999
Blackwell Publishers
Royal Statistical Society
SeriesJournal of the Royal Statistical Society Series B
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We use a class of parametric counting process regression models that are commonly employed in the analysis of failure time data to formulate the subject-specific capture probabilities for removal and recapture studies conducted in continuous time. We estimate the regression parameters by modifying the conventional likelihood score function for left-truncated and right-censored data to accommodate an unknown population size and missing covariates on uncaptured subjects, and we subsequently estimate the population size by a martingale-based estimating function. The resultant estimators for the regression parameters and population size are consistent and asymptotically normal under appropriate regularity conditions. We assess the small sample properties of the proposed estimators through Monte Carlo simulation and we present an application to a bird banding exercise.
AbstractList We use a class of parametric counting process regression models that are commonly employed in the analysis of failure time data to formulate the subject‐specific capture probabilities for removal and recapture studies conducted in continuous time. We estimate the regression parameters by modifying the conventional likelihood score function for left‐truncated and right‐censored data to accommodate an unknown population size and missing covariates on uncaptured subjects, and we subsequently estimate the population size by a martingale‐based estimating function. The resultant estimators for the regression parameters and population size are consistent and asymptotically normal under appropriate regularity conditions. We assess the small sample properties of the proposed estimators through Monte Carlo simulation and we present an application to a bird banding exercise.
Summary We use a class of parametric counting process regression models that are commonly employed in the analysis of failure time data to formulate the subject-specific capture probabilities for removal and recapture studies conducted in continuous time. We estimate the regression parameters by modifying the conventional likelihood score function for left-truncated and right-censored data to accommodate an unknown population size and missing covariates on uncaptured subjects, and we subsequently estimate the population size by a martingale-based estimating function. The resultant estimators for the regression parameters and population size are consistent and asymptotically normal under appropriate regularity conditions. We assess the small sample properties of the proposed estimators through Monte Carlo simulation and we present an application to a bird banding exercise.
Author Lin, D. Y.
Yip, P. S. F.
Author_xml – sequence: 1
  givenname: D. Y.
  surname: Lin
  fullname: Lin, D. Y.
  organization: University of Washington, Seattle, USA
– sequence: 2
  givenname: P. S. F.
  surname: Yip
  fullname: Yip, P. S. F.
  organization: University of Hong Kong, Hong Kong
BackLink http://econpapers.repec.org/article/blajorssb/v_3a61_3ay_3a1999_3ai_3a2_3ap_3a401-411.htm$$DView record in RePEc
BookMark eNqFUcFu1DAQjVCRaAtnLhxy4pbWjh3HPkIEpWhVaAviaHmdMXhJ4mA7pfv3zBK0Vyw9z8jz3nj8fFacTGGConhJyQXFdUm5aCslhbwghEr-pDg9npxgzoSqWk7rZ8VZSjuCS7TstLj5bKIZIUdvywjfI6Tkw1SOoYchlS7E0oYp-2kJSyqzHwFZY3gwQ2mmHnNr5rxEKFNeeg_pefHUmSHBi3_xvPj6_t2X7kO1-XR13b3ZVJbLmldmC445x7dOEGgk7ZWhRinHhFVSKUYbI_qm52CIbCzhqna9U9KKVlleq5qdF6_XvnMMvxZIWY8-WRgGMwFOqhm-uhFEIPFyJdoYUorg9Bz9aOJeU6IPvumDS_rgkv7rGyo-rooIM9gjfTuYXYgpbfWDZkZQ3PYIqpTC4BE1YkZwQjXHxj_yiM342uy3H2D_v7v13f3923WGV6tsl3KIR1ktJBFcYblayz5leDyWTfyp8VPbRn-7udK3XXenxG2nN-wPfIGkHw
CitedBy_id crossref_primary_10_1111_j_0006_341X_2002_00192_x
crossref_primary_10_1080_03610920500438697
crossref_primary_10_1080_03610926_2019_1609039
crossref_primary_10_1111_1467_9469_00357
crossref_primary_10_1007_s10255_016_0611_8
crossref_primary_10_1111_biom_13334
crossref_primary_10_1080_03610920802645395
crossref_primary_10_1111_biom_13662
crossref_primary_10_1111_rssb_12281
crossref_primary_10_1198_108571101750524670
crossref_primary_10_1198_108571102771
crossref_primary_10_1007_s10651_005_5694_y
crossref_primary_10_1111_j_1541_0420_2007_00773_x
crossref_primary_10_1016_S0378_3758_02_00093_9
crossref_primary_10_1081_STA_120029837
crossref_primary_10_1111_2041_210X_12196
crossref_primary_10_1111_j_1541_0420_2005_00379_x
ContentType Journal Article
Copyright Copyright 1999 The Royal Statistical Society
1999 Royal Statistical Society
Copyright_xml – notice: Copyright 1999 The Royal Statistical Society
– notice: 1999 Royal Statistical Society
DBID BSCLL
DKI
X2L
AAYXX
CITATION
8BJ
FQK
JBE
DOI 10.1111/1467-9868.00184
DatabaseName Istex
RePEc IDEAS
RePEc
CrossRef
International Bibliography of the Social Sciences (IBSS)
International Bibliography of the Social Sciences
International Bibliography of the Social Sciences
DatabaseTitle CrossRef
International Bibliography of the Social Sciences (IBSS)
DatabaseTitleList
CrossRef

Database_xml – sequence: 1
  dbid: DKI
  name: RePEc IDEAS
  url: http://ideas.repec.org/
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
EISSN 1467-9868
EndPage 411
ExternalDocumentID 10_1111_1467_9868_00184
blajorssb_v_3a61_3ay_3a1999_3ai_3a2_3ap_3a401_411_htm
RSSB184
2680649
ark_67375_WNG_QCCR96QC_L
Genre article
GroupedDBID -~X
.3N
.4S
.DC
.GA
.Y3
05W
10A
1OC
29L
2AX
3-9
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8UM
8VB
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AAONW
AARHZ
AASGY
AAUAY
AAXRX
AAZKR
ABBHK
ABCQN
ABCUV
ABEHJ
ABEML
ABFAN
ABIVO
ABLJU
ABPFR
ABPQH
ABPTD
ABPVW
ABWST
ABXSQ
ABYAD
ABYWD
ABZEH
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFRR
ACGFS
ACIWK
ACMTB
ACNCT
ACPOU
ACSCC
ACTMH
ACTWD
ACUBG
ACXBN
ACXQS
ADACV
ADBBV
ADEOM
ADIPN
ADIYS
ADIZJ
ADKYN
ADMGS
ADODI
ADOZA
ADQBN
ADRDM
ADULT
ADVEK
ADZMN
AEEZP
AEGXH
AEIMD
AELPN
AEMOZ
AEQDE
AEUPB
AEUQT
AFBPY
AFEBI
AFGKR
AFPWT
AFVYC
AFXHP
AFZJQ
AIURR
AIWBW
AJAOE
AJBDE
AJXKR
AKVCP
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ANFBD
ARCSS
ASPBG
AS~
ATGXG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BCRHZ
BDRZF
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CAG
CJ0
CO8
COF
CS3
D-E
DCZOG
DPXWK
DQDLB
DR2
DRFUL
DRSTM
DSRWC
EBA
EBO
EBR
EBS
EBU
ECEWR
EDO
EJD
EMK
F00
F5P
FEDTE
FVMVE
G-S
G.N
GODZA
H.T
H.X
H13
HF~
HGD
HQ6
HVGLF
HZI
HZ~
H~9
IHE
IPSME
IX1
J0M
JAAYA
JAS
JBMMH
JBZCM
JENOY
JHFFW
JKQEH
JLEZI
JLXEF
JMS
JPL
JSODD
JST
K1G
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
NHB
O66
O9-
OIG
OWPYF
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QWB
R.K
RJQFR
RNS
ROL
ROX
RX1
SA0
SUPJJ
TH9
TN5
TUS
UB1
UPT
W8V
W99
WBKPD
WH7
WIH
WIK
WOHZO
WQJ
WYISQ
XBAML
XG1
YQT
ZGI
ZL0
ZZTAW
~02
~IA
~KM
~WT
0R~
AAPXW
ABHUG
ACXME
ADAWD
ADDAD
AFVGU
AFXKK
AGJLS
AIHXQ
BFHJK
EFSUC
OJZSN
02
08R
0R
31
3N
4S
8RP
AS
DKI
GA
HZ
IA
IPNFZ
KM
MEWTI
NF
P4A
PQEST
RIG
WRC
WT
X
X2L
XHC
Y3
AAYXX
CITATION
8BJ
FQK
JBE
ID FETCH-LOGICAL-c4824-abef3ff4bf60e581d9a1a99f36c9899315a6d5d4ea085c0492fdf98c679c42923
IEDL.DBID DR2
ISSN 1369-7412
IngestDate Fri Oct 25 08:11:39 EDT 2024
Fri Aug 23 01:46:12 EDT 2024
Wed Aug 18 03:51:57 EDT 2021
Sat Aug 24 00:58:13 EDT 2024
Fri Feb 02 07:04:34 EST 2024
Wed Oct 30 09:52:40 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4824-abef3ff4bf60e581d9a1a99f36c9899315a6d5d4ea085c0492fdf98c679c42923
Notes ArticleID:RSSB184
ark:/67375/WNG-QCCR96QC-L
istex:F51A8B6A74EB006047D556ABD075B06D2A28A7F1
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
OpenAccessLink https://academic.oup.com/jrsssb/article-pdf/61/2/401/49590185/jrsssb_61_2_401.pdf
PQID 38685606
PQPubID 23473
PageCount 11
ParticipantIDs proquest_miscellaneous_38685606
crossref_primary_10_1111_1467_9868_00184
repec_primary_blajorssb_v_3a61_3ay_3a1999_3ai_3a2_3ap_3a401_411_htm
wiley_primary_10_1111_1467_9868_00184_RSSB184
jstor_primary_2680649
istex_primary_ark_67375_WNG_QCCR96QC_L
PublicationCentury 1900
PublicationDate 1999-01-01
PublicationDateYYYYMMDD 1999-01-01
PublicationDate_xml – month: 01
  year: 1999
  text: 1999-01-01
  day: 01
PublicationDecade 1990
PublicationPlace Oxford, UK and Boston, USA
PublicationPlace_xml – name: Oxford, UK and Boston, USA
PublicationSeriesTitle Journal of the Royal Statistical Society Series B
PublicationTitle Journal of the Royal Statistical Society. Series B, Statistical methodology
PublicationYear 1999
Publisher Blackwell Publishers Ltd
Blackwell Publishers
Royal Statistical Society
Publisher_xml – name: Blackwell Publishers Ltd
– name: Blackwell Publishers
– name: Royal Statistical Society
SSID ssj0000673
Score 1.6969613
Snippet We use a class of parametric counting process regression models that are commonly employed in the analysis of failure time data to formulate the...
Summary We use a class of parametric counting process regression models that are commonly employed in the analysis of failure time data to formulate the...
SourceID proquest
crossref
repec
wiley
jstor
istex
SourceType Aggregation Database
Index Database
Publisher
StartPage 401
SubjectTerms Animal abundance
Aviculture
Bird banding
Capture-recapture experiment
Consistent estimators
Counting process
Estimation
Estimation methods
Estimators
Heterogeneous capturability
Inference
Martingale
Monte Carlo simulation
Parametric models
Population estimates
Population size
Population size estimation
Regression analysis
Reliability testing
Standard error
Statistical analysis
Statistical models
Statistics
Title Parametric regression models for continuous time removal and recapture studies
URI https://api.istex.fr/ark:/67375/WNG-QCCR96QC-L/fulltext.pdf
https://www.jstor.org/stable/2680649
https://onlinelibrary.wiley.com/doi/abs/10.1111%2F1467-9868.00184
http://econpapers.repec.org/article/blajorssb/v_3a61_3ay_3a1999_3ai_3a2_3ap_3a401-411.htm
https://search.proquest.com/docview/38685606
Volume 61
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQe-mFZxHhUXJAiEuqjePY8ZGGlvJa0S0ruFl-llKaXSW7CPj1zDibVbcXhDjYyWGixDMe-5vkywwhz4SkIogyz6jzNGPVqMq0M0UWqBCCe8ZkrN7wYcyPp-ztl3JgE-K_MH1-iPULN_SMuF6jg2vTXXHy6OKy4siFhDAFVuG8EEjqejWhV9fiov_zSmawd9JVch_k8ly7fmNf2kYV_xwoihvgc7v1c283oWzci45uETOMoqegXOwvF2bf_r6W4PG_hnmb3Fwh1fRlP7XukBu-uUt2EJz2uZ3vkfFHjdQuzPGftv6sZ9Q2aSyu06WAhlMkwp83y9myS7GIPUhdzmBqp7pxcG71HL9fpF3PZdwl06PDT_VxtqrPkFlWUZZp40MRAjOBj3wJwFfqXEsZCm4lhHFFXmruSse8BlxnIRShwQVZWS6kxSpZxX2y1cwa_4CkEnDCyOZUj0C-Yl46QyGUCU4GXzHqEvJisI6a92k41BC-oIYUakhFDSXkebTeWk63F8heE6X6PH6tTup6IvlJrd4nZDeady1IeQUATSbk6WBuBb6GH1B040FTqoCbAELkCanjLFhfab7rb7O264z6oQrNc-h-QcMUD3A4h0ahzaFBOKsYPPTXxWVCsmj4vw1ITU5PD-D48B_lH5GdPscEvi96TLYW7dI_AQS1MHvgJO_e7EVXgf7wYPoH5wsQrQ
link.rule.ids 315,783,787,1378,4016,27936,27937,46306,46730
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED_B-sBe-BxaxsfygBAvmVrHceJHCIwCXcW6TezNchwbxra0SloE_PXcOU3V7gUhHpxU1SWt73z275xf7gBepJKlLk0GESsti3jWzyJdFnHkWJqmwnIuffWGo7EYnvGP58n52rswbX6I1YYbeYafr8nBaUN6zcu9j8tMEBkS45Tb0MMvYirf8HbC1mfjuH33Ska4erJleh9i89y4wcbK1CMl_-xIihvws1fbmTWbYNavRof3wHT9aEkolweLeXFgft9I8fh_Hb0Pd5dgNXzdjq4HcMtWD2Gb8Gmb3vkRjD9rYndRmv-wtl9bUm0V-vo6TYiAOCQu_EW1mC6akOrYo9T1FEd3qKsSPxs9o0cYYdPSGXfg7PDdaT6MliUaIsMzxiNdWBc7xwsn-jZB7Cv1QEvpYmEkRnLxINGiTEpuNUI7g9EIc6WTmRGpNFQoK34MW9W0srsQSoQKfTNguo_yGbeyLBhGM66UzmaclQG86syjZm0mDtVFMKQhRRpSXkMBvPTmW8np-pIIbGmivozfq-M8n0hxnKtRADvevitBJjLEaDKA_c7eCt2NnqHoyqKmVIw_giBRBJD7YbC6srjS36d10xTqh4q1GODhFzbK8oCnC2wM2wwbRrSK45_-Nr8OIPKW_1uH1OTk5A2e9_5Rfh_uDE-PRmr0YfzpCWy3KSdo--gpbM3rhX2GgGpePPce8wcNZxLP
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BV0K98CxqeDUHhLik2jiOEx8hsBQoq3ZLBTfLiW0opdko2UXAr2fG2ay6vSDEwUkOk4dnPPE3zpcZgKeZZJnL0jhixrKI5-M80qZMIseyLBOWc-mrN3yYioNT_u5zOrAJ6V-YPj_EesGNPMO_r8nBG-MuObl3cZkL4kJimHIdRlwg_iVcNGOXX8ZJ_-uVjHDyZKvsPkTmuXKBjYlpRDr-OXAUN9DnqLWNrTaxrJ-MJregHLrRc1DO95eLcr_6fSXD43_18zbcXEHV8EU_tu7ANVvfhW1Cp31y53swPdLE7aIk_2Frv_SU2jr01XW6EOFwSEz4s3o5X3YhVbFHqYs5ju1Q1waPK93QB4yw68mMO3A6ef2xOIhWBRqiiueMR7q0LnGOl06MbYrIV-pYS-kSUUmM45I41cKkhluNwK7CWIQ542ReiUxWVCYruQ9b9by2uxBKBArjKmZ6jPI5t9KUDGMZZ6SzOWcmgOeDdVTT5-FQQ_xCGlKkIeU1FMAzb721nG7Pib6WperT9I06LoqZFMeFOgxgx5t3LchEjghNBrA3mFuhs9EXFF1b1JRK8CYIEUUAhR8F6zPL7_rbvO26Uv1QiRYxbn5hoxwPuDvDxrA12DCeVRwf-uviIoDIG_5vHVKzk5OXuH_wj_J7cOPo1UQdvp2-fwjbfb4JWjt6BFuLdmkfI5palE-8v_wBu-sRfg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Parametric+regression+models+for+continuous+time+removal+and+recapture+studies&rft.jtitle=Journal+of+the+Royal+Statistical+Society.+Series+B%2C+Statistical+methodology&rft.au=Lin%2C+D.+Y.&rft.au=Yip%2C+P.+S.+F.&rft.date=1999-01-01&rft.pub=Blackwell+Publishers+Ltd&rft.issn=1369-7412&rft.eissn=1467-9868&rft.volume=61&rft.issue=2&rft.spage=401&rft.epage=411&rft_id=info:doi/10.1111%2F1467-9868.00184&rft.externalDBID=10.1111%252F1467-9868.00184&rft.externalDocID=RSSB184
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1369-7412&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1369-7412&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1369-7412&client=summon