The mycorrhizal symbiosis: research frontiers in genomics, ecology, and agricultural application
Summary Mycorrhizal symbioses between plants and fungi are vital for the soil structure, nutrient cycling, plant diversity, and ecosystem sustainability. More than 250 000 plant species are associated with mycorrhizal fungi. Recent advances in genomics and related approaches have revolutionized our...
Saved in:
Published in | The New phytologist Vol. 242; no. 4; pp. 1486 - 1506 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
England
Wiley Subscription Services, Inc
01.05.2024
Wiley |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Summary
Mycorrhizal symbioses between plants and fungi are vital for the soil structure, nutrient cycling, plant diversity, and ecosystem sustainability. More than 250 000 plant species are associated with mycorrhizal fungi. Recent advances in genomics and related approaches have revolutionized our understanding of the biology and ecology of mycorrhizal associations. The genomes of 250+ mycorrhizal fungi have been released and hundreds of genes that play pivotal roles in regulating symbiosis development and metabolism have been characterized. rDNA metabarcoding and metatranscriptomics provide novel insights into the ecological cues driving mycorrhizal communities and functions expressed by these associations, linking genes to ecological traits such as nutrient acquisition and soil organic matter decomposition. Here, we review genomic studies that have revealed genes involved in nutrient uptake and symbiosis development, and discuss adaptations that are fundamental to the evolution of mycorrhizal lifestyles. We also evaluated the ecosystem services provided by mycorrhizal networks and discuss how mycorrhizal symbioses hold promise for sustainable agriculture and forestry by enhancing nutrient acquisition and stress tolerance. Overall, unraveling the intricate dynamics of mycorrhizal symbioses is paramount for promoting ecological sustainability and addressing current pressing environmental concerns. This review ends with major frontiers for further research. |
---|---|
AbstractList | Summary
Mycorrhizal symbioses between plants and fungi are vital for the soil structure, nutrient cycling, plant diversity, and ecosystem sustainability. More than 250 000 plant species are associated with mycorrhizal fungi. Recent advances in genomics and related approaches have revolutionized our understanding of the biology and ecology of mycorrhizal associations. The genomes of 250+ mycorrhizal fungi have been released and hundreds of genes that play pivotal roles in regulating symbiosis development and metabolism have been characterized. rDNA metabarcoding and metatranscriptomics provide novel insights into the ecological cues driving mycorrhizal communities and functions expressed by these associations, linking genes to ecological traits such as nutrient acquisition and soil organic matter decomposition. Here, we review genomic studies that have revealed genes involved in nutrient uptake and symbiosis development, and discuss adaptations that are fundamental to the evolution of mycorrhizal lifestyles. We also evaluated the ecosystem services provided by mycorrhizal networks and discuss how mycorrhizal symbioses hold promise for sustainable agriculture and forestry by enhancing nutrient acquisition and stress tolerance. Overall, unraveling the intricate dynamics of mycorrhizal symbioses is paramount for promoting ecological sustainability and addressing current pressing environmental concerns. This review ends with major frontiers for further research. Mycorrhizal symbioses between plants and fungi are vital for the soil structure, nutrient cycling, plant diversity, and ecosystem sustainability. More than 250 000 plant species are associated with mycorrhizal fungi. Recent advances in genomics and related approaches have revolutionized our understanding of the biology and ecology of mycorrhizal associations. The genomes of 250+ mycorrhizal fungi have been released and hundreds of genes that play pivotal roles in regulating symbiosis development and metabolism have been characterized. rDNA metabarcoding and metatranscriptomics provide novel insights into the ecological cues driving mycorrhizal communities and functions expressed by these associations, linking genes to ecological traits such as nutrient acquisition and soil organic matter decomposition. Here, we review genomic studies that have revealed genes involved in nutrient uptake and symbiosis development, and discuss adaptations that are fundamental to the evolution of mycorrhizal lifestyles. We also evaluated the ecosystem services provided by mycorrhizal networks and discuss how mycorrhizal symbioses hold promise for sustainable agriculture and forestry by enhancing nutrient acquisition and stress tolerance. Overall, unraveling the intricate dynamics of mycorrhizal symbioses is paramount for promoting ecological sustainability and addressing current pressing environmental concerns. This review ends with major frontiers for further research. Mycorrhizal symbioses between plants and fungi are vital for the soil structure, nutrient cycling, plant diversity, and ecosystem sustainability. More than 250 000 plant species are associated with mycorrhizal fungi. Recent advances in genomics and related approaches have revolutionized our understanding of the biology and ecology of mycorrhizal associations. The genomes of 250+ mycorrhizal fungi have been released and hundreds of genes that play pivotal roles in regulating symbiosis development and metabolism have been characterized. rDNA metabarcoding and metatranscriptomics provide novel insights into the ecological cues driving mycorrhizal communities and functions expressed by these associations, linking genes to ecological traits such as nutrient acquisition and soil organic matter decomposition. Here, we review genomic studies that have revealed genes involved in nutrient uptake and symbiosis development, and discuss adaptations that are fundamental to the evolution of mycorrhizal lifestyles. We also evaluated the ecosystem services provided by mycorrhizal networks and discuss how mycorrhizal symbioses hold promise for sustainable agriculture and forestry by enhancing nutrient acquisition and stress tolerance. Overall, unraveling the intricate dynamics of mycorrhizal symbioses is paramount for promoting ecological sustainability and addressing current pressing environmental concerns. This review ends with major frontiers for further research.Mycorrhizal symbioses between plants and fungi are vital for the soil structure, nutrient cycling, plant diversity, and ecosystem sustainability. More than 250 000 plant species are associated with mycorrhizal fungi. Recent advances in genomics and related approaches have revolutionized our understanding of the biology and ecology of mycorrhizal associations. The genomes of 250+ mycorrhizal fungi have been released and hundreds of genes that play pivotal roles in regulating symbiosis development and metabolism have been characterized. rDNA metabarcoding and metatranscriptomics provide novel insights into the ecological cues driving mycorrhizal communities and functions expressed by these associations, linking genes to ecological traits such as nutrient acquisition and soil organic matter decomposition. Here, we review genomic studies that have revealed genes involved in nutrient uptake and symbiosis development, and discuss adaptations that are fundamental to the evolution of mycorrhizal lifestyles. We also evaluated the ecosystem services provided by mycorrhizal networks and discuss how mycorrhizal symbioses hold promise for sustainable agriculture and forestry by enhancing nutrient acquisition and stress tolerance. Overall, unraveling the intricate dynamics of mycorrhizal symbioses is paramount for promoting ecological sustainability and addressing current pressing environmental concerns. This review ends with major frontiers for further research. Summary Mycorrhizal symbioses between plants and fungi are vital for the soil structure, nutrient cycling, plant diversity, and ecosystem sustainability. More than 250 000 plant species are associated with mycorrhizal fungi. Recent advances in genomics and related approaches have revolutionized our understanding of the biology and ecology of mycorrhizal associations. The genomes of 250+ mycorrhizal fungi have been released and hundreds of genes that play pivotal roles in regulating symbiosis development and metabolism have been characterized. rDNA metabarcoding and metatranscriptomics provide novel insights into the ecological cues driving mycorrhizal communities and functions expressed by these associations, linking genes to ecological traits such as nutrient acquisition and soil organic matter decomposition. Here, we review genomic studies that have revealed genes involved in nutrient uptake and symbiosis development, and discuss adaptations that are fundamental to the evolution of mycorrhizal lifestyles. We also evaluated the ecosystem services provided by mycorrhizal networks and discuss how mycorrhizal symbioses hold promise for sustainable agriculture and forestry by enhancing nutrient acquisition and stress tolerance. Overall, unraveling the intricate dynamics of mycorrhizal symbioses is paramount for promoting ecological sustainability and addressing current pressing environmental concerns. This review ends with major frontiers for further research. |
Author | Martin, Francis M. Heijden, Marcel G. A. |
Author_xml | – sequence: 1 givenname: Francis M. orcidid: 0000-0002-4737-3715 surname: Martin fullname: Martin, Francis M. email: francis.martin@inrae.fr organization: Institute of Applied Mycology, College of Plant Science and Technology, Huazhong Agricultural University – sequence: 2 givenname: Marcel G. A. orcidid: 0000-0001-7040-1924 surname: Heijden fullname: Heijden, Marcel G. A. email: marcel.vanderheijden@agroscope.admin.ch organization: University of Zürich |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38297461$$D View this record in MEDLINE/PubMed https://hal.inrae.fr/hal-04593098$$DView record in HAL https://www.osti.gov/biblio/2582727$$D View this record in Osti.gov |
BookMark | eNqF0k1rFDEYAOAgFbutHvwDMuhFodPmc5J4K0VdYVEPFbzFTJrZSckkYzKjrL_etLOtIIq5BMLzvuT9OAIHIQYLwFMET1E5Z2HsT5FkFD0AK0QbWQtE-AFYQYhF3dDmyyE4yvkaQihZgx-BQyKw5LRBK_D1srfVsDMxpd791L7Ku6F1Mbv8uko2W51MX3UphsnZlCsXqq0NcXAmn1TWRB-3u5NKh6tKb5Mzs5_mVJLocfTO6MnF8Bg87LTP9sn-Pgaf3765vFjXm4_v3l-cb2pDBUY1kZLJruWG0hZaSBi3HRVEdtw21EDWik4j3RIoKBEaIa5FazgysGkkh4KQY_B8yRvz5FQ2brKmNzEEayaFmcAc84JeLajXXo3JDTrtVNROrc836uYNUiYJlOI7KvblYscUv802T2pw2VjvdbBxzoogRko3Ecf_pVjiMqaGIlnoiz_odZxTKJ1RBFIqqGCMFfVsr-Z2sFf3X72bWwFnCzAp5pxsp0rBt_2eknZeIahuNkOVzVC3m_G79PuIu6R_s_vsP5y3u39D9eHTeon4Bf5DxOI |
CitedBy_id | crossref_primary_10_1111_nph_70016 crossref_primary_10_1007_s00253_024_13298_w crossref_primary_10_1016_j_funeco_2024_101407 crossref_primary_10_3390_microorganisms12112372 crossref_primary_10_3390_biomass4040070 crossref_primary_10_3390_microorganisms12112296 crossref_primary_10_3389_fmicb_2024_1463326 crossref_primary_10_3389_fmicb_2025_1502977 crossref_primary_10_1016_j_pbi_2024_102627 crossref_primary_10_3897_imafungus_16_e142356 crossref_primary_10_5194_soil_10_425_2024 crossref_primary_10_1021_acs_jafc_4c01487 crossref_primary_10_18615_anadolu_1442118 crossref_primary_10_1016_j_chmed_2024_03_002 crossref_primary_10_1186_s12866_024_03453_8 crossref_primary_10_1111_nph_20195 crossref_primary_10_1016_j_pld_2025_02_004 crossref_primary_10_1111_ppl_14521 crossref_primary_10_3389_fpls_2024_1510941 crossref_primary_10_1007_s00572_024_01154_8 crossref_primary_10_1029_2024RG000836 crossref_primary_10_1038_s44358_025_00030_3 crossref_primary_10_3389_fmicb_2024_1491861 crossref_primary_10_1111_nph_20003 crossref_primary_10_3390_plants13091231 crossref_primary_10_1007_s00344_024_11422_8 crossref_primary_10_1016_j_scitotenv_2024_178147 crossref_primary_10_1007_s13199_024_01021_2 crossref_primary_10_1016_j_apsoil_2024_105799 crossref_primary_10_1111_nph_20304 crossref_primary_10_1002_ldr_5520 crossref_primary_10_1002_sae2_70029 crossref_primary_10_3390_jof10090598 crossref_primary_10_32439_ps_v7i5_55_61 crossref_primary_10_1007_s00572_025_01187_7 crossref_primary_10_1007_s13593_024_00991_3 crossref_primary_10_1111_nph_20183 crossref_primary_10_3390_agronomy15010108 crossref_primary_10_3390_d16090587 crossref_primary_10_1111_nph_19758 crossref_primary_10_1111_nph_19813 crossref_primary_10_3389_fmicb_2024_1470137 crossref_primary_10_3390_su17041676 crossref_primary_10_1007_s00572_024_01167_3 crossref_primary_10_3389_fpls_2025_1510196 |
Cites_doi | 10.1038/s41559-023-01986-1 10.1016/j.cub.2021.01.035 10.1016/j.cub.2021.01.058 10.1111/j.1469-8137.2010.03334.x 10.1093/molbev/msad045 10.1111/j.1469-8137.2004.01188.x 10.1146/annurev.ecolsys.39.110707.173454 10.1038/ng.3149 10.3389/fmicb.2015.01278 10.1126/science.aay2832 10.1038/23932 10.1111/nph.19396 10.1093/jxb/50.330.9 10.1093/treephys/23.3.157 10.1111/nph.18773 10.1111/geb.12029 10.1038/s41597-020-0567-7 10.1126/science.aad4501 10.1038/41557 10.1111/mec.15351 10.1126/science.aax4851 10.1046/j.0028-646X.2001.00271.x 10.1111/j.1469-8137.2010.03353.x 10.3389/fpls.2021.626709 10.1073/pnas.2103527119 10.1126/science.aad6188 10.3389/fpls.2022.880600 10.1111/nph.17160 10.1016/j.fbr.2016.08.002 10.3389/fmicb.2018.02068 10.1016/j.cub.2011.05.033 10.3390/microorganisms10101897 10.1111/nph.17044 10.1111/nph.15687 10.1073/pnas.1313452110 10.3390/ijms24119125 10.1111/pbi.13676 10.1093/nar/gkab1045 10.1002/fes3.370 10.1038/s41396-021-01159-7 10.1128/mbio.00240-23 10.1111/nph.13234 10.1111/nph.18051 10.1002/ecy.3929 10.1186/1471-2164-14-306 10.1038/sdata.2016.28 10.1046/j.0028-646x.2001.00216.x 10.3390/agronomy9080471 10.1111/jbi.13866 10.1002/9781118951446.ch22 10.1111/nph.14974 10.1093/femsec/fiad037 10.1016/j.tplants.2015.03.004 10.1093/pcp/pcac113 10.1111/nph.19260 10.1111/nph.13288 10.1128/mSystems.00957-21 10.1038/s41559-021-01634-6 10.1007/s00572-023-01111-x 10.1111/nph.19394 10.1038/s41564-023-01520-w 10.1111/j.1365-2745.2009.01570.x 10.1016/j.fgb.2014.08.007 10.1016/S0038-0717(97)00207-1 10.1073/pnas.2118852119 10.1111/nph.19055 10.3389/fpls.2021.714393 10.1890/0012-9658(2006)87[816:NISFAP]2.0.CO;2 10.1111/j.1365-294X.2012.05515.x 10.1111/nph.18630 10.1111/j.1469-8137.2004.01236.x 10.1038/363067a0 10.1126/sciadv.aax5088 10.1111/j.1469-8137.2005.01490.x 10.1111/nph.16245 10.1111/nph.19178 10.1104/pp.104.056572 10.1111/j.1365-2745.2005.01000.x 10.1111/nph.17236 10.1038/ismej.2017.116 10.1007/BF01972080 10.1111/nph.17780 10.1016/j.tig.2010.10.005 10.1111/nph.16812 10.1007/s005720100097 10.1073/pnas.1322671111 10.1007/s11104-009-0073-3 10.1016/j.cub.2023.02.027 10.1038/s41467-023-36888-0 10.1890/10-0773.1 10.1186/s40168-023-01466-5 10.1111/j.1461-0248.2004.00577.x 10.1371/journal.pone.0012776 10.1111/boj.12170 10.1111/gcb.16609 10.1016/j.tplants.2020.09.006 10.1111/jbi.14563 10.1111/nph.13312 10.1111/j.1469-8137.1986.tb00603.x 10.1038/nature23897 10.1111/nph.12791 10.1038/s41396-022-01193-z 10.1038/nrmicro.2016.149 10.1111/1462-2920.14827 10.1111/nph.15602 10.1111/1462-2920.15320 10.1038/ng.3223 10.1016/S0169-5347(97)01230-5 10.1098/rspb.2015.1553 10.1139/b04-060 10.3389/fpls.2022.1018029 10.1038/s41586-021-03819-2 10.1021/acs.jproteome.6b00999 10.1126/science.1221748 10.1111/nph.12264 10.1111/nph.19338 10.1038/nature08867 10.1126/sciadv.aax8787 10.1111/ele.13735 10.1038/s41564-023-01495-8 10.1094/MPMI-10-15-0234-R 10.1111/j.1469-8137.1993.tb03812.x 10.1111/tpj.13908 10.1126/science.aap9516 10.1038/s41477-022-01127-9 10.1111/nph.18143 10.1890/0012-9658(1999)080[1187:MIPCSA]2.0.CO;2 10.1038/srep19029 10.1186/s12864-018-4853-0 10.1111/nph.18015 10.1111/nph.18935 10.1038/s41396-021-01112-8 10.1002/9781118951446.ch25 10.1007/s13199-012-0208-9 10.1111/1462-2920.14959 10.1111/nph.14962 10.1007/s00425-008-0877-z 10.1007/s00572-004-0302-9 10.5598/imafungus.2017.08.02.03 10.1016/j.mib.2023.102357 10.1093/ve/vead064 10.1099/mgen.0.000810 10.1186/s12864-020-06806-5 10.1105/tpc.18.00676 10.1016/j.cub.2011.06.044 10.1038/s41396-018-0331-6 10.1371/journal.pone.0039597 10.1111/nph.17661 10.1007/s00572-021-01042-5 10.1111/nph.15076 10.1038/s41586-018-0312-y 10.1038/s41396-020-0667-6 10.1101/2023.08.02.551648 10.1111/nph.13423 10.1111/j.1365-313X.2011.04810.x 10.1111/j.1469-8137.2008.02613.x 10.1111/nph.15257 10.3389/fmicb.2023.1180319 10.1371/journal.pgen.1007742 10.2307/2389702 10.1016/j.cub.2022.06.057 10.1038/s41467-020-18795-w 10.1126/sciadv.add4468 10.1038/s41586-018-0386-6 10.1046/j.1365-2540.2000.00668.x 10.3390/microorganisms9122612 10.1186/s40168-023-01650-7 10.4161/15592324.2014.977707 10.1111/nph.17842 10.1111/nph.19400 10.1007/s00572-009-0274-x 10.1111/nph.18016 10.1111/1365-2745.13521 10.1038/s41467-023-37937-4 10.1007/s11104-023-06045-z 10.1111/j.1469-8137.2009.03069.x 10.1111/1365-2435.12976 10.1111/nph.19471 10.1046/j.1469-8137.2001.00010.x 10.1038/s41396-021-00920-2 10.1016/j.tree.2007.10.008 10.1016/B978-0-12-804312-7.00023-1 10.1094/MPMI-01-19-0007-R 10.1111/nph.17892 10.1111/tpj.15892 10.1146/annurev-ecolsys-012021-114902 10.1111/nph.15308 10.1111/nph.18281 10.1016/j.tplants.2021.10.008 10.1111/nph.15613 10.1038/s41564-022-01228-3 10.1111/nph.18914 10.1111/nph.19259 10.1038/s41396-018-0342-3 10.1038/nmicrobiol.2016.33 10.1126/science.adf2027 10.1038/s41579-023-00876-4 10.1038/s41467-019-13019-2 10.1111/nph.18642 10.1111/nph.17858 10.1016/j.tplants.2023.08.010 10.1002/9781118951446.ch12 10.1093/dnares/dsac053 10.1126/science.1256688 10.1093/nar/gkt1183 10.1038/ncomms12662 10.1038/s41558-023-01627-2 10.1038/s41396-018-0059-3 10.1111/j.1469-8137.2010.03277.x 10.1038/s41559-022-01799-8 10.1111/j.1461-0248.2009.01430.x 10.1111/j.1461-0248.2007.01139.x 10.3389/fpls.2019.01357 10.1038/nrmicro.2016.59 10.3852/16-042 10.1038/s41477-019-0469-x 10.1111/nph.14971 10.1111/j.1469-8137.2007.02058.x 10.1111/j.1469-8137.2011.03688.x 10.1073/pnas.1515426112 10.1038/s41559-018-0710-4 10.1111/j.1469-8137.2007.02191.x 10.1111/nph.18897 10.1111/ele.12115 10.1016/j.isci.2022.104636 10.1038/s41559-019-1084-y 10.1111/nph.14976 10.1111/nph.18996 10.1111/nph.14598 10.1038/s41467-023-37428-6 10.1126/science.aab1161 |
ContentType | Journal Article |
Copyright | 2024 The Authors. © 2024 New Phytologist Foundation 2024 The Authors. New Phytologist © 2024 New Phytologist Foundation. Copyright © 2024 New Phytologist Trust Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: 2024 The Authors. © 2024 New Phytologist Foundation – notice: 2024 The Authors. New Phytologist © 2024 New Phytologist Foundation. – notice: Copyright © 2024 New Phytologist Trust – notice: Distributed under a Creative Commons Attribution 4.0 International License |
CorporateAuthor | Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). Advanced Light Source (ALS) |
CorporateAuthor_xml | – name: Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). Advanced Light Source (ALS) |
DBID | AAYXX CITATION NPM 7QO 7SN 8FD C1K F1W FR3 H95 L.G M7N P64 RC3 7X8 7S9 L.6 1XC OTOTI |
DOI | 10.1111/nph.19541 |
DatabaseName | CrossRef PubMed Biotechnology Research Abstracts Ecology Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic Hyper Article en Ligne (HAL) OSTI.GOV |
DatabaseTitle | CrossRef PubMed Aquatic Science & Fisheries Abstracts (ASFA) Professional Genetics Abstracts Biotechnology Research Abstracts Technology Research Database Algology Mycology and Protozoology Abstracts (Microbiology C) ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Ecology Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA Aquatic Science & Fisheries Abstracts (ASFA) Professional MEDLINE - Academic CrossRef PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany Biology Ecology Forestry |
EISSN | 1469-8137 |
EndPage | 1506 |
ExternalDocumentID | 2582727 oai_HAL_hal_04593098v1 38297461 10_1111_nph_19541 NPH19541 |
Genre | reviewArticle Journal Article Review |
GrantInformation_xml | – fundername: Agence Nationale de la Recherche funderid: ANR‐12‐LABX‐ARBRE‐01 – fundername: Huazhong Agricultural University – fundername: Office of Science of the US Department of Energy funderid: DE‐AC02‐05CH11231 – fundername: Beijing Advanced Innovation Center for Tree Breeding by Molecular Design – fundername: Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung funderid: 310030_188799; 40IN40_215832 – fundername: Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung grantid: 40IN40_215832 – fundername: Office of Science of the US Department of Energy grantid: DE-AC02-05CH11231 – fundername: Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung grantid: 310030_188799 – fundername: Agence Nationale de la Recherche grantid: ANR-12-LABX-ARBRE-01 |
GroupedDBID | --- -~X .3N .GA .Y3 05W 0R~ 10A 123 1OC 24P 29N 2WC 31~ 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5HH 5LA 5VS 66C 702 79B 7PT 8-0 8-1 8-3 8-4 8-5 85S 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AAHKG AAHQN AAISJ AAKGQ AAMNL AANLZ AAONW AASGY AASVR AAXRX AAYCA AAZKR ABBHK ABCQN ABCUV ABEFU ABEML ABLJU ABPLY ABPVW ABTLG ABVKB ABXSQ ACAHQ ACCFJ ACCZN ACFBH ACGFS ACHIC ACNCT ACPOU ACQPF ACSCC ACSTJ ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADULT ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUPB AEUQT AEUYR AFAZZ AFBPY AFEBI AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AHXOZ AILXY AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB AQVQM AS~ ATUGU AUFTA AZBYB AZVAB BAFTC BAWUL BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CAG CBGCD COF CS3 CUYZI D-E D-F DCZOG DEVKO DIK DOOOF DPXWK DR2 DRFUL DRSTM E3Z EBS ECGQY EJD ESX F00 F01 F04 F5P FIJ G-S G.N GODZA GTFYD H.T H.X HF~ HGD HGLYW HQ2 HTVGU HZI HZ~ IHE IPNFZ IPSME IX1 J0M JAAYA JBMMH JBS JEB JENOY JHFFW JKQEH JLS JLXEF JPM JSODD JST K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LPU LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NEJ NF~ O66 O9- OIG OK1 P2P P2W P2X P4D Q.N Q11 QB0 R.K RCA RIG ROL RX1 SA0 SUPJJ TN5 TR2 UB1 W8V W99 WBKPD WHG WIH WIK WIN WNSPC WOHZO WQJ WRC WXSBR WYISQ XG1 XOL YNT YQT YXE ZCG ZZTAW ~02 ~IA ~KM ~WT AAMMB AAYXX ABGDZ ABSQW ADXHL AEFGJ AEYWJ AGHNM AGUYK AGXDD AGYGG AIDQK AIDYY CITATION NPM 7QO 7SN 8FD C1K F1W FR3 H95 L.G M7N P64 RC3 7X8 7S9 L.6 1XC OTOTI |
ID | FETCH-LOGICAL-c4821-39959fb7c44b0e0357ef4839f7e64c05b8fa1ab308438a117a8bc71c066970833 |
IEDL.DBID | DR2 |
ISSN | 0028-646X 1469-8137 |
IngestDate | Mon Aug 25 02:21:18 EDT 2025 Sat Aug 23 06:31:12 EDT 2025 Fri Jul 11 18:33:51 EDT 2025 Fri Jul 11 07:25:13 EDT 2025 Wed Aug 27 12:53:55 EDT 2025 Mon Jul 21 05:56:48 EDT 2025 Wed Aug 27 16:27:54 EDT 2025 Thu Apr 24 23:09:24 EDT 2025 Wed Jan 22 17:19:22 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | population genetics ericoid mycorrhizal fungi biodiversity plant-microbe interactions arbuscular mycorrhizal fungi ectomycorrhizal fungi mutualism orchid mycorrhizal fungi |
Language | English |
License | 2024 The Authors. New Phytologist © 2024 New Phytologist Foundation. Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4821-39959fb7c44b0e0357ef4839f7e64c05b8fa1ab308438a117a8bc71c066970833 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 USDOE AC02-05CH11231 None |
ORCID | 0000-0001-7040-1924 0000-0002-4737-3715 0000000247373715 0000000170401924 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/nph.19541 |
PMID | 38297461 |
PQID | 3044848555 |
PQPubID | 2026848 |
PageCount | 21 |
ParticipantIDs | osti_scitechconnect_2582727 hal_primary_oai_HAL_hal_04593098v1 proquest_miscellaneous_3153562172 proquest_miscellaneous_2921116419 proquest_journals_3044848555 pubmed_primary_38297461 crossref_citationtrail_10_1111_nph_19541 crossref_primary_10_1111_nph_19541 wiley_primary_10_1111_nph_19541_NPH19541 |
PublicationCentury | 2000 |
PublicationDate | May 2024 |
PublicationDateYYYYMMDD | 2024-05-01 |
PublicationDate_xml | – month: 05 year: 2024 text: May 2024 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Lancaster – name: United States |
PublicationTitle | The New phytologist |
PublicationTitleAlternate | New Phytol |
PublicationYear | 2024 |
Publisher | Wiley Subscription Services, Inc Wiley |
Publisher_xml | – name: Wiley Subscription Services, Inc – name: Wiley |
References | 2018; 560 2023; 75 2019b; 366 2004; 164 2018; 561 2010; 13 2019; 10 2019; 13 2004; 7 2010; 464 2010; 187 2010; 188 2010; 185 2023; 104 2016; 30 2022; 25 2020; 14 2020; 13 2011; 190 2020; 11 1993; 124 1998; 396 1993; 363 2022; 27 2001; 149 1997; 388 2018; 9 2010; 20 1986; 103 2018; 2 2009; 97 2018; 218 2018; 217 2007; 176 2013; 199 2008; 23 2022; 32 2013; 110 1999; 50 2018; 32 2010; 5 2012; 21 2024; 29 1998; 13 2022; 111 2022; 233 2018; 220 2019; 9 2019; 5 2010; 327 2019; 32 2002; 417 2022; 119 2021; 52 2022; 236 2016; 14 2019; 222 2022; 234 2014; 42 2022; 235 2017; 549 2023; 40 2016; 6 2016; 7 2001; 151 2016; 1 2016; 3 2001; 152 2018; 359 2022; 6 2022; 7 2019a; 222 2015; 112 2022; 8 2011; 92 2022; 13 2000; 84 2022; 10 2020; 22 2018; 94 2020; 21 2022; 11 2018; 12 2005; 15 2016; 29 2009; 229 2022; 16 2023; 50 2018; 14 2003; 23 2020; 29 2021; 24 2017; 8 2023; 30 2021; 26 2023; 380 2009; 40 2023; 33 2021; 23 2013; 22 2016; 108 2023; 7 2023; 8 2023; 9 2005; 137 2019; 366 2022; 63 2023a 2015; 349 2012; 58 1999; 80 2017; 356 2014; 175 2023; 21 2020; 6 2015; 47 2023; 24 2020; 4 2013; 14 2021; 31 1991; 47 2013; 16 2021; 596 2023; 29 2020; 47 2016; 352 2011; 21 2021; 230 2021; 232 2001; 11 2014; 9 2012; 69 2011; 27 2012; 336 2014; 203 2021; 9 2023b; 238 2021; 109 2015; 282 2015; 6 2023; 13 2023; 14 2023; 11 2023; 99 2004; 82 2023; 241 2022; 50 2021; 229 2020; 225 2020; 228 2023; 489 2015; 208 2008; 11 2015; 207 2015; 206 2015; 205 2014; 111 1988; 2 2008; 180 2021; 15 2018; 2018 2021; 12 2023 2005; 165 2006; 87 2017; 16 2005; 168 2015; 20 2017; 11 2021; 19 2023; 238 2017 2016 2023; 239 1998; 30 2008; 452 2012; 7 2014; 72 2014; 346 e_1_2_13_120_1 e_1_2_13_143_1 e_1_2_13_166_1 e_1_2_13_189_1 e_1_2_13_20_1 e_1_2_13_66_1 e_1_2_13_43_1 e_1_2_13_181_1 e_1_2_13_226_1 e_1_2_13_8_1 e_1_2_13_81_1 e_1_2_13_92_1 e_1_2_13_117_1 e_1_2_13_214_1 e_1_2_13_17_1 e_1_2_13_154_1 e_1_2_13_131_1 e_1_2_13_32_1 e_1_2_13_55_1 e_1_2_13_78_1 e_1_2_13_177_1 e_1_2_13_215_1 e_1_2_13_192_1 e_1_2_13_70_1 e_1_2_13_203_1 e_1_2_13_105_1 e_1_2_13_88_1 e_1_2_13_128_1 e_1_2_13_29_1 e_1_2_13_165_1 e_1_2_13_142_1 e_1_2_13_21_1 e_1_2_13_44_1 e_1_2_13_67_1 e_1_2_13_104_1 e_1_2_13_188_1 e_1_2_13_9_1 e_1_2_13_82_1 e_1_2_13_180_1 e_1_2_13_91_1 Zhang C (e_1_2_13_230_1) 2023 e_1_2_13_116_1 e_1_2_13_213_1 e_1_2_13_99_1 e_1_2_13_139_1 e_1_2_13_18_1 e_1_2_13_130_1 e_1_2_13_153_1 e_1_2_13_79_1 e_1_2_13_10_1 e_1_2_13_56_1 e_1_2_13_115_1 e_1_2_13_176_1 e_1_2_13_199_1 e_1_2_13_33_1 e_1_2_13_71_1 e_1_2_13_191_1 e_1_2_13_225_1 e_1_2_13_202_1 e_1_2_13_127_1 e_1_2_13_122_1 e_1_2_13_68_1 e_1_2_13_45_1 e_1_2_13_145_1 e_1_2_13_168_1 e_1_2_13_205_1 e_1_2_13_22_1 e_1_2_13_60_1 e_1_2_13_83_1 e_1_2_13_183_1 e_1_2_13_228_1 e_1_2_13_6_1 e_1_2_13_160_1 e_1_2_13_90_1 e_1_2_13_231_1 e_1_2_13_98_1 e_1_2_13_119_1 e_1_2_13_19_1 e_1_2_13_133_1 e_1_2_13_179_1 e_1_2_13_57_1 e_1_2_13_110_1 e_1_2_13_217_1 e_1_2_13_11_1 e_1_2_13_34_1 e_1_2_13_156_1 e_1_2_13_171_1 e_1_2_13_72_1 e_1_2_13_194_1 e_1_2_13_220_1 e_1_2_13_107_1 e_1_2_13_121_1 e_1_2_13_144_1 e_1_2_13_46_1 e_1_2_13_69_1 e_1_2_13_23_1 e_1_2_13_167_1 e_1_2_13_204_1 e_1_2_13_84_1 e_1_2_13_182_1 e_1_2_13_227_1 e_1_2_13_7_1 e_1_2_13_61_1 e_1_2_13_97_1 e_1_2_13_118_1 e_1_2_13_132_1 e_1_2_13_155_1 e_1_2_13_178_1 e_1_2_13_35_1 e_1_2_13_58_1 e_1_2_13_216_1 e_1_2_13_12_1 e_1_2_13_170_1 e_1_2_13_193_1 e_1_2_13_73_1 e_1_2_13_50_1 e_1_2_13_106_1 e_1_2_13_129_1 e_1_2_13_24_1 e_1_2_13_47_1 e_1_2_13_185_1 e_1_2_13_207_1 e_1_2_13_101_1 e_1_2_13_147_1 e_1_2_13_124_1 e_1_2_13_85_1 e_1_2_13_62_1 e_1_2_13_162_1 e_1_2_13_233_1 e_1_2_13_96_1 e_1_2_13_210_1 e_1_2_13_13_1 e_1_2_13_36_1 e_1_2_13_59_1 e_1_2_13_219_1 e_1_2_13_112_1 e_1_2_13_158_1 e_1_2_13_196_1 e_1_2_13_135_1 e_1_2_13_51_1 e_1_2_13_74_1 e_1_2_13_173_1 e_1_2_13_150_1 e_1_2_13_222_1 e_1_2_13_4_1 e_1_2_13_109_1 e_1_2_13_25_1 e_1_2_13_48_1 e_1_2_13_100_1 e_1_2_13_169_1 e_1_2_13_206_1 e_1_2_13_123_1 e_1_2_13_86_1 e_1_2_13_146_1 e_1_2_13_40_1 e_1_2_13_63_1 e_1_2_13_184_1 e_1_2_13_229_1 e_1_2_13_161_1 e_1_2_13_232_1 e_1_2_13_95_1 e_1_2_13_14_1 e_1_2_13_111_1 e_1_2_13_37_1 e_1_2_13_218_1 e_1_2_13_134_1 e_1_2_13_157_1 e_1_2_13_75_1 e_1_2_13_52_1 e_1_2_13_172_1 e_1_2_13_195_1 e_1_2_13_221_1 e_1_2_13_5_1 e_1_2_13_108_1 e_1_2_13_49_1 e_1_2_13_141_1 e_1_2_13_164_1 e_1_2_13_209_1 e_1_2_13_26_1 e_1_2_13_126_1 e_1_2_13_87_1 e_1_2_13_187_1 e_1_2_13_64_1 e_1_2_13_103_1 e_1_2_13_41_1 e_1_2_13_94_1 e_1_2_13_138_1 e_1_2_13_212_1 e_1_2_13_15_1 e_1_2_13_38_1 e_1_2_13_152_1 e_1_2_13_137_1 e_1_2_13_175_1 e_1_2_13_53_1 e_1_2_13_76_1 e_1_2_13_114_1 e_1_2_13_198_1 e_1_2_13_30_1 e_1_2_13_190_1 e_1_2_13_224_1 e_1_2_13_2_1 e_1_2_13_201_1 e_1_2_13_149_1 e_1_2_13_27_1 e_1_2_13_163_1 e_1_2_13_208_1 e_1_2_13_102_1 e_1_2_13_125_1 e_1_2_13_148_1 e_1_2_13_186_1 e_1_2_13_42_1 e_1_2_13_65_1 e_1_2_13_80_1 e_1_2_13_140_1 e_1_2_13_93_1 e_1_2_13_234_1 e_1_2_13_211_1 e_1_2_13_39_1 e_1_2_13_16_1 e_1_2_13_113_1 e_1_2_13_159_1 e_1_2_13_174_1 e_1_2_13_197_1 e_1_2_13_31_1 e_1_2_13_77_1 Merckx V (e_1_2_13_136_1) 2023 e_1_2_13_54_1 e_1_2_13_151_1 e_1_2_13_223_1 e_1_2_13_3_1 e_1_2_13_89_1 e_1_2_13_200_1 e_1_2_13_28_1 |
References_xml | – volume: 359 start-page: 320 year: 2018 end-page: 325 article-title: A global atlas of the dominant bacteria found in soil publication-title: Science – start-page: 405 year: 2016 end-page: 419 – volume: 12 start-page: 1775 year: 2021 article-title: Transcriptome profiling reveals differential gene expression of secreted proteases and highly specific gene repertoires involved in symbioses publication-title: Frontiers in Plant Science – volume: 180 start-page: 296 year: 2008 end-page: 310 article-title: The genome: a symbiont blueprint decoded publication-title: New Phytologist – volume: 238 start-page: 2607 year: 2023 end-page: 2620 article-title: Effects of nitrogen deposition on carbon and nutrient cycling along a natural soil acidity gradient as revealed by metagenomics publication-title: New Phytologist – volume: 222 start-page: 1584 year: 2019 end-page: 1598 article-title: Comparative genomics of , , and highlights specific genetic features in Glomeromycotina publication-title: New Phytologist – volume: 16 start-page: 2174 year: 2017 end-page: 2187 article-title: iTRAQ and RNA‐seq analyses provide new insights into regulation mechanism of symbiotic germination of seeds (Orchidaceae) publication-title: Journal of Proteome Research – volume: 80 start-page: 1187 year: 1999 end-page: 1195 article-title: Mycorrhizae influence plant community structure and diversity in tallgrass prairie publication-title: Ecology – volume: 11 start-page: 217 year: 2023 article-title: Stable functional structure despite high taxonomic variability across fungal communities in soils of old‐growth montane forests publication-title: Microbiome – volume: 14 start-page: 2046 year: 2020 end-page: 2059 article-title: Uncovering the hidden diversity of litter‐decomposition mechanisms in mushroom‐forming fungi publication-title: ISME Journal – volume: 380 start-page: 835 year: 2023 end-page: 840 article-title: Shifting microbial communities can enhance tree tolerance to changing climates publication-title: Science – volume: 10 year: 2019 article-title: Seed coating: a tool for delivering beneficial microbes to agricultural crops publication-title: Frontiers in Plant Science – volume: 103 start-page: 143 year: 1986 end-page: 156 article-title: The structure and function of the vegetative mycelium of ectomycorrhizal plants publication-title: New Phytologist – volume: 109 start-page: 3171 year: 2021 end-page: 3181 article-title: Symbiotic soil fungi enhance resistance and resilience of an experimental grassland to drought and nitrogen deposition publication-title: Journal of Ecology – volume: 15 start-page: 87 year: 2005 end-page: 91 article-title: Genetic analysis of phenotypic variation for ectomycorrhiza formation in an interspecific F1 poplar full‐sib family publication-title: Mycorrhiza – volume: 69 start-page: 510 year: 2012 end-page: 528 article-title: Arbuscule‐containing and non‐colonized cortical cells of mycorrhizal roots undergo extensive and specific reprogramming during arbuscular mycorrhizal development publication-title: The Plant Journal – volume: 8 start-page: 373 year: 2022 end-page: 388 article-title: Genomes of leafy and leafless orchids illuminate the evolution of mycoheterotrophy publication-title: Nature Plants – volume: 363 start-page: 67 year: 1993 end-page: 69 article-title: Origin and diversification of endomycorrhizal fungi and coincidence with vascular land plants publication-title: Nature – volume: 119 year: 2022 article-title: The ectomycorrhizal fungus encodes a microRNA involved in cross‐kingdom gene silencing during symbiosis publication-title: Proceedings of the National Academy of Sciences, USA – volume: 29 start-page: 2050 year: 2023 end-page: 2066 article-title: Environmental microbiome engineering for the mitigation of climate change publication-title: Global Change Biology – volume: 23 start-page: 2004 year: 2021 end-page: 2020 article-title: Intra‐species genetic variability drives carbon metabolism and symbiotic host interactions in the ectomycorrhizal fungus publication-title: Environmental Microbiology – volume: 15 start-page: 2276 year: 2021 end-page: 2288 article-title: Conserved and reproducible bacterial communities associate with extraradical hyphae of arbuscular mycorrhizal fungi publication-title: ISME Journal – volume: 32 start-page: 126 year: 2018 end-page: 135 article-title: Fungal inoculants in the field: is the reward greater than the risk? publication-title: Functional Ecology – volume: 238 start-page: 859 year: 2023b end-page: 873 article-title: A core microbiome in the hyphosphere of arbuscular mycorrhizal fungi has functional significance in organic phosphorus mineralization publication-title: New Phytologist – volume: 10 start-page: 2386 year: 2019 end-page: 2410 article-title: The ectomycorrhizal fungus produces lipochitooligosaccharides and uses the common symbiosis pathway to colonize roots publication-title: Plant Cell – volume: 239 start-page: 19 year: 2023 end-page: 28 article-title: Re‐examining the evidence for the mother tree hypothesis–resource sharing among trees via ectomycorrhizal networks publication-title: New Phytologist – volume: 5 year: 2010 article-title: Inferring regulatory networks from expression data using treebased methods publication-title: PLoS ONE – volume: 236 start-page: 210 year: 2022 end-page: 221 article-title: Routes to roots: direct evidence of water transport by arbuscular mycorrhizal fungi to host plants publication-title: New Phytologist – volume: 25 start-page: 7 year: 2022 article-title: Establishing a quality management framework for commercial inoculants containing arbuscular mycorrhizal fungi publication-title: iScience – volume: 9 start-page: 2612 year: 2021 article-title: A transcriptomic atlas of the ectomycorrhizal fungus publication-title: Microorganisms – volume: 84 start-page: 294 year: 2000 end-page: 302 article-title: Population dynamics of the symbiotic mushroom : mycelial persistence and inbreeding publication-title: Heredity – volume: 47 start-page: 410 year: 2015 end-page: 415 article-title: Convergent losses of decay mechanisms and rapid turnover of symbiosis genes in mycorrhizal mutualists publication-title: Nature Genetics – volume: 220 start-page: 1092 year: 2018 end-page: 1107 article-title: Little evidence that farmers should consider abundance or diversity of arbuscular mycorrhizal fungi when managing crops publication-title: New Phytologist – volume: 19 start-page: 2501 year: 2021 end-page: 2516 article-title: The genome of revealed the evolution of orchid traits publication-title: Plant Biotechnology Journal – volume: 222 start-page: 511 year: 2019 end-page: 525 article-title: Phylogenomics of Endogonaceae and evolution of mycorrhizas within Mucoromycota publication-title: New Phytologist – volume: 217 start-page: 1213 year: 2018 end-page: 1229 article-title: Comparative genomics and transcriptomics depict ericoid mycorrhizal fungi as versatile saprotrophs and plant mutualists publication-title: New Phytologist – volume: 108 start-page: 1028 year: 2016 end-page: 1046 article-title: A phylum‐level phylogenetic classification of zygomycete fungi based on genome‐scale data publication-title: Mycologia – volume: 50 start-page: 715 year: 2023 end-page: 729 article-title: The diversity of mycorrhiza‐associated fungi and trees shapes subtropical mountain forest ecosystem functioning publication-title: Journal of Biogeography – volume: 366 start-page: 480 year: 2019 end-page: 485 article-title: Global distribution of earthworm diversity publication-title: Science – volume: 9 start-page: 471 year: 2019 article-title: Seed coating with arbuscular mycorrhizal fungi for improved field production of chickpea publication-title: Agronomy – volume: 16 start-page: 1420 year: 2022 end-page: 1429 article-title: Ectomycorrhizal fungi mediate belowground carbon transfer between pines and oaks publication-title: ISME Journal – volume: 6 start-page: 19029 year: 2016 article-title: The Lindl. genome sequence provides insights into polysaccharide synthase, floral development and adaptive evolution publication-title: Scientific Reports – volume: 110 start-page: 20117 year: 2013 end-page: 20122 article-title: Genome of an arbuscular mycorrhizal fungus provides insight into the oldest plant symbiosis publication-title: Proceedings of the National Academy of Sciences, USA – volume: 21 start-page: 2116 year: 2012 end-page: 2129 article-title: Beech roots are simultaneously colonized by multiple genets of the ectomycorrhizal fungus clustered in two genetic groups publication-title: Molecular Ecology – volume: 199 start-page: 176 year: 2013 end-page: 187 article-title: Fine‐scale spatial genetic structure of the black truffle ( ) investigated with neutral microsatellites and functional mating type genes publication-title: New Phytologist – volume: 13 start-page: 15 year: 1998 end-page: 20 article-title: The land flora: a phototroph‐fungus partnership? publication-title: Trends in Ecology & Evolution – volume: 346 start-page: 6213 year: 2014 article-title: Global diversity and geography of soil fungi publication-title: Science – volume: 14 start-page: 1706 year: 2023 article-title: Soil contamination in nearby natural areas mirrors that in urban greenspaces worldwide publication-title: Nature Communications – volume: 24 start-page: 9125 year: 2023 article-title: Characterization of arbuscular mycorrhizal effector proteins publication-title: International Journal of Molecular Sciences – volume: 230 start-page: 1142 year: 2021 end-page: 1155 article-title: Nuclear‐targeted effector of interferes with histone 2B mono‐ubiquitination to promote arbuscular mycorrhization publication-title: New Phytologist – volume: 21 start-page: 1204 year: 2011 end-page: 1209 article-title: A secreted fungal effector of promotes symbiotic biotrophy publication-title: Current Biology – volume: 40 start-page: 699 year: 2009 end-page: 715 article-title: Mycorrhizal symbioses and plant invasions publication-title: Annual Review of Ecology, Evolution, and Systematics – start-page: 356 year: 2023 – volume: 111 start-page: 1340 year: 2022 end-page: 1353 article-title: Haplotype‐resolved genome assembly of to elucidate medicinal value publication-title: The Plant Journal – volume: 352 start-page: 342 year: 2016 end-page: 344 article-title: Belowground carbon trade among tall trees in a temperate forest publication-title: Science – volume: 6 start-page: 1145 year: 2022 end-page: 1154 article-title: Agricultural management and pesticide use reduce the functioning of beneficial plant symbionts publication-title: Nature Ecology & Evolution – volume: 185 start-page: 543 year: 2010 end-page: 553 article-title: Architecture of the wood‐wide web: spp.genets link multiple Douglas‐fir cohorts publication-title: New Phytologist – volume: 111 start-page: 8299 year: 2014 end-page: 8304 article-title: Effector MiSSP7 of the mutualistic fungus stabilizes the Populus JAZ6 protein and represses jasmonic acid‐responsive genes publication-title: Proceedings of the National Academy of Sciences, USA – volume: 97 start-page: 1139 year: 2009 end-page: 1150 article-title: Socialism in soil? The importance of mycorrhizal fungal networks for facilitation in natural ecosystems publication-title: Journal of Ecology – volume: 7 year: 2022 article-title: Transcriptional landscape of ectomycorrhizal fungi and their host provides insight into N uptake from forest soil publication-title: mSystems – year: 2023 article-title: Ectomycorrhizal fungi integrate nitrogen mobilisation and mineral weathering in boreal forest soil publication-title: New Phytologist – volume: 31 start-page: 559 year: 2021 end-page: 576 article-title: Ancient lineages of arbuscular mycorrhizal fungi provide little plant benefit publication-title: Mycorrhiza – volume: 24 start-page: 1193 year: 2021 end-page: 1204 article-title: A tipping point in carbon storage when forest expands into tundra is related to mycorrhizal recycling of nitrogen publication-title: Ecology Letters – volume: 33 start-page: R560 year: 2023 end-page: R573 article-title: Mycorrhizal mycelium as a global carbon pool publication-title: Current Biology – volume: 349 start-page: 970 year: 2015 end-page: 973 article-title: Fungal Symbionts. Global assessment of arbuscular mycorrhizal fungus diversity reveals very low endemism publication-title: Science – volume: 21 start-page: 399 year: 2020 article-title: Oak displays common local but specific distant gene regulation responses to different mycorrhizal fungi publication-title: BMC Genomics – volume: 218 start-page: 322 year: 2018 end-page: 334 article-title: Impacts of domestication on the arbuscular mycorrhizal symbiosis of 27 crop species publication-title: New Phytologist – volume: 205 start-page: 1406 year: 2015 end-page: 1423 article-title: Mycorrhizal ecology and evolution: the past, the present, and the future publication-title: New Phytologist – volume: 230 start-page: 774 year: 2021 end-page: 792 article-title: Comparative genomics reveals dynamic genome evolution in host specialist ectomycorrhizal fungi publication-title: New Phytologist – volume: 388 start-page: 579 year: 1997 end-page: 582 article-title: Net transfer of carbon between ectomycorrhizal tree species in the field publication-title: Nature – volume: 99 year: 2023 article-title: Acquisition of host‐derived carbon in biomass of the ectomycorrhizal fungus is correlated to fungal carbon demand and plant defences publication-title: FEMS Microbiology Ecology – volume: 47 start-page: 1994 year: 2020 end-page: 2001 article-title: Global mycorrhizal fungal range sizes vary within and among mycorrhizal guilds but are not correlated with dispersal traits publication-title: Journal of Biogeography – volume: 14 start-page: 434 year: 2016 end-page: 447 article-title: Dimensions of biodiversity in the earth mycobiome publication-title: Nature Reviews Microbiology – volume: 20 start-page: 217 year: 2010 end-page: 263 article-title: Ectomycorrhizal lifestyle in fungi: global diversity, distribution, and evolution of phylogenetic lineages publication-title: Mycorrhiza – volume: 336 start-page: 1715 year: 2012 end-page: 1719 article-title: The Paleozoic origin of enzymatic lignin decomposition reconstructed from 31 fungal genomes publication-title: Science – volume: 32 start-page: 1291 year: 2019 end-page: 1302 article-title: Protein arginine methyltransferase expression affects ectomycorrhizal symbiosis and the regulation of hormone signaling pathways publication-title: Molecular Plant–Microbe Interactions – volume: 233 start-page: 2294 year: 2022 end-page: 2309 article-title: Evolutionary transition to the ectomycorrhizal habit in the genomes of a hyperdiverse lineage of mushroom‐forming fungi publication-title: New Phytologist – volume: 187 start-page: 475 year: 2010 end-page: 484 article-title: Co‐invasion by and its mycorrhizal fungi publication-title: New Phytologist – volume: 29 start-page: 2321 year: 2020 end-page: 2333 article-title: Share the wealth: trees with greater ectomycorrhizal species overlap share more carbon publication-title: Molecular Ecology – volume: 29 start-page: 20 year: 2024 end-page: 31 article-title: Mother trees, altruistic fungi, and the perils of plant personification publication-title: Trends in Plant Sciences – volume: 27 start-page: 402 year: 2022 end-page: 411 article-title: Arbuscular mycorrhizal fungi conducting the hyphosphere bacterial orchestra publication-title: Trends in Plant Science – volume: 7 start-page: 293 year: 2004 end-page: 303 article-title: Arbuscular mycorrhizal fungi as support systems for seedling establishment in grassland publication-title: Ecology Letters – volume: 13 start-page: 394 year: 2010 end-page: 407 article-title: A meta‐analysis of context‐dependency in plant response to inoculation with mycorrhizal fungi publication-title: Ecology Letters – volume: 14 start-page: 1377 year: 2023 article-title: Higher productivity in forests with mixed mycorrhizal strategies publication-title: Nature Communications – volume: 5 year: 2019 article-title: Soil microbes drive phylogenetic diversity‐productivity relationships in a subtropical forest publication-title: Science Advances – volume: 282 year: 2015 article-title: Orchid phylogenomics and multiple drivers of their extraordinary diversification publication-title: Proceedings of the Royal Society B: Biological Sciences – volume: 233 start-page: 1383 year: 2022 end-page: 1400 article-title: Evolutionary innovations through gain and loss of genes in the ectomycorrhizal Boletales publication-title: New Phytologist – year: 2023 article-title: Modified source–sink dynamics govern resource exchange in ectomycorrhizal symbiosis publication-title: New Phytologist – volume: 82 start-page: 1016 year: 2004 end-page: 1045 article-title: Networks of power and influence: the role of mycorrhizal mycelium in controlling plant communities and agroecosystem functioning publication-title: Canadian Journal of Botany – volume: 13 start-page: 228 year: 2020 article-title: GlobalFungi, a global database of fungal occurrences from high‐throughput‐sequencing metabarcoding studies publication-title: Scientific Data – volume: 6 year: 2015 article-title: Comparative analysis of secretomes from ectomycorrhizal fungi with an emphasis on small‐secreted proteins publication-title: Frontiers in Microbiology – volume: 218 start-page: 335 year: 2018 end-page: 343 article-title: Fenton reaction facilitates organic nitrogen acquisition by an ectomycorrhizal fungus publication-title: New Phytologist – volume: 27 start-page: 14 year: 2011 end-page: 22 article-title: Blurred boundaries: lifestyle lessons from ectomycorrhizal fungal genomes publication-title: Trends in Genetics – volume: 9 year: 2014 article-title: Plant and fungal gene expression in mycorrhizal protocorms of the orchid colonized by publication-title: Plant Signaling & Behavior – volume: 31 start-page: 1531 year: 2021 end-page: 1538 article-title: Host identity influences nuclear dynamics in arbuscular mycorrhizal fungi publication-title: Current Biology – volume: 32 start-page: 3628 year: 2022 end-page: 3635 article-title: Phylogenomic insights into the early diversification of fungi publication-title: Current Biology – volume: 22 start-page: 122 year: 2020 end-page: 141 article-title: At the nexus of three kingdoms: the genome of the mycorrhizal fungus provides insights into plant, endobacterial and fungal interactions publication-title: Environmental Microbiology – volume: 207 start-page: 355 year: 2015 end-page: 367 article-title: As old as the mountains: the radiations of the Ericaceae publication-title: New Phytologist – volume: 14 start-page: 306 year: 2013 article-title: A roadmap of cell‐type specific gene expression during sequential stages of the arbuscular mycorrhiza symbiosis publication-title: BMC Genomics – volume: 7 start-page: 501 year: 2023 end-page: 511 article-title: Positive citation bias and overinterpreted results lead to misinformation on common mycorrhizal networks in forests publication-title: Nature Ecology & Evolution – volume: 489 start-page: 41 year: 2023 end-page: 88 article-title: Arbuscular mycorrhiza: advances and retreats in our understanding of the ecological functioning of the mother of all root symbioses publication-title: Plant and Soil – volume: 188 start-page: 210 year: 2010 end-page: 222 article-title: New insights into the mycorrhizal aggregate: spatial structure and co‐colonization of ectomycorrhizal and ericoid roots publication-title: New Phytologist – volume: 112 start-page: 13390 year: 2015 end-page: 13395 article-title: Algal ancestor of land plants was preadapted for symbiosis publication-title: Proceedings of the National Academy of Sciences, USA – year: 2023 article-title: A tripartite bacterial‐fungal‐plant symbiosis in the mycorrhiza‐shaped microbiome drives plant growth and mycorrhization publication-title: Microbiome – volume: 452 start-page: 88 year: 2008 end-page: 92 article-title: The genome of provides insights into mycorrhizal symbiosis publication-title: Nature – volume: 12 start-page: 1296 year: 2018 end-page: 1307 article-title: Suppression of the activity of arbuscular mycorrhizal fungi by the soil microbiota publication-title: ISME Journal – volume: 75 year: 2023 article-title: Lessons from arbuscular mycorrhizal fungal genomes publication-title: Current Opinion in Microbiology – volume: 239 start-page: 1127 year: 2023 end-page: 1139 article-title: A pathogen effector FOLD diversified in symbiotic fungi publication-title: New Phytologist – volume: 8 year: 2022 article-title: Early branching arbuscular mycorrhizal fungus carries a small and repeat‐poor genome compared to relatives in the Glomeromycotina publication-title: Microbial Genomics – volume: 13 start-page: 478 year: 2023 end-page: 483 article-title: Increasing the number of stressors reduces soil ecosystem services worldwide publication-title: Nature Climate Change – volume: 11 start-page: 1 year: 2023 end-page: 18 article-title: Mycorrhiza‐mediated recruitment of complete denitrifying reduces N O emissions from soil publication-title: Microbiome – volume: 13 year: 2022 article-title: In‐depth analysis of genomes and functional genomics of orchid using cutting‐edge high‐throughput sequencing publication-title: Frontiers in Plant Science – volume: 16 start-page: 835 year: 2013 end-page: 843 article-title: Underground signals carried through common mycelial networks warn neighbouring plants of aphid attack publication-title: Ecology Letters – volume: 14 year: 2018 article-title: Metatranscriptomic study of common and host‐specific patterns of gene expression between pines and their symbiotic ectomycorrhizal fungi in the genus publication-title: PLoS Genetics – volume: 9 start-page: 2068 year: 2018 article-title: RiCRN1, a crinkler effector from the arbuscular mycorrhizal fungus , functions in arbuscule development publication-title: Frontiers in Microbiology – volume: 137 start-page: 1283 year: 2005 end-page: 1301 article-title: Overlaps in the transcriptional profiles of roots inoculated with two different glomus fungi provide insights into the genetic program activated during arbuscular mycorrhiza publication-title: Plant Physiology – volume: 190 start-page: 818 year: 2011 end-page: 821 article-title: Sequencing the fungal tree of life publication-title: New Phytologist – volume: 47 start-page: 376 year: 1991 end-page: 391 article-title: Mycorrhizas in ecosystems publication-title: Experientia – volume: 52 start-page: 385 year: 2021 end-page: 404 article-title: Evolution of the mode of nutrition in symbiotic and saprotrophic fungi in forest ecosystems publication-title: Annual Review of Ecology, Evolution, and Systematics – volume: 233 start-page: 1369 year: 2022 end-page: 1382 article-title: Agricultural land‐use favours Mucoromycotinian, but not Glomeromycotinian, arbuscular mycorrhizal fungi across ten biomes publication-title: New Phytologist – volume: 549 start-page: 379 year: 2017 end-page: 383 article-title: The genome and the evolution of orchids publication-title: Nature – volume: 149 start-page: 137 year: 2001 end-page: 146 article-title: Can C‐labeled photosynthetic products move between seedlings linked by ectomycorrhizal mycelia? publication-title: New Phytologist – volume: 11 start-page: 296 year: 2008 end-page: 310 article-title: The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems publication-title: Ecology Letters – volume: 7 year: 2012 article-title: The irreversible loss of a decomposition pathway marks the single origin of an ectomycorrhizal symbiosis publication-title: PLoS ONE – volume: 2 start-page: 259 year: 1988 end-page: 262 article-title: Relationship between mycorrhizal infection and diversity in vegetation: evidence from the Great Smoky Mountains publication-title: Functional Ecology – volume: 203 start-page: 245 year: 2014 end-page: 256 article-title: Ectomycorrhizal species participate in enzymatic oxidation of humus in northern forest ecosystems publication-title: New Phytologist – volume: 16 start-page: 1327 year: 2022 end-page: 1336 article-title: Forest tree growth is linked to mycorrhizal fungal composition and function across Europe publication-title: ISME Journal – volume: 14 year: 2023 article-title: Isolation and identification of mycorrhizal helper bacteria of and their interaction with mycorrhizal fungi publication-title: Frontiers in Microbiology – volume: 14 year: 2023 article-title: Structurally distinct mitoviruses: are they an ancestral lineage of the Mitoviridae exclusive to arbuscular mycorrhizal fungi (Glomeromycotina)? publication-title: MBio – volume: 42 start-page: D699 year: 2014 end-page: D704 article-title: MycoCosm portal: gearing up for 1000 fungal genomes publication-title: Nucleic Acids Research – volume: 1 year: 2016 article-title: Evidence for the sexual origin of heterokaryosis in arbuscular mycorrhizal fungi publication-title: Nature Microbiology – volume: 58 start-page: 29 year: 2012 end-page: 37 article-title: Development of arbuscular mycorrhizal biotechnology and industry: current achievements and bottlenecks publication-title: Symbiosis – volume: 175 start-page: 313 year: 2014 end-page: 327 article-title: Seedling mycorrhiza: a discussion of origin and evolution in Orchidaceae publication-title: Botanical Journal of the Linnean Society – volume: 188 start-page: 223 year: 2010 end-page: 241 article-title: The online database MaarjAM reveals global and ecosystemic distribution patterns in arbuscular mycorrhizal fungi Glomeromycota publication-title: New Phytologist – volume: 12 year: 2021 article-title: Potential effects of microplastic on arbuscular mycorrhizal fungi publication-title: Frontiers in Plant Science – volume: 239 start-page: 311 year: 2023 end-page: 324 article-title: Trait‐based assembly of arbuscular mycorrhizal fungal communities determines soil carbon formation and retention publication-title: New Phytologist – volume: 50 start-page: D571 year: 2022 end-page: D577 article-title: The carbohydrate‐active enzyme database: functions and literature publication-title: Nucleic Acids Research – volume: 13 start-page: 977 year: 2019 end-page: 988 article-title: The soil organic matter decomposition mechanisms in ectomycorrhizal fungi are tuned for liberating soil organic nitrogen publication-title: ISME Journal – volume: 7 start-page: 12662 year: 2016 article-title: Ectomycorrhizal ecology is imprinted in the genome of the dominant symbiotic fungus publication-title: Nature Communications – volume: 228 start-page: 1939 year: 2020 end-page: 1952 article-title: Metabolomic adjustments in the orchid mycorrhizal fungus during symbiosis with publication-title: New Phytologist – year: 2023 article-title: At the core of the endomycorrhizal symbioses: intracellular fungal structures in orchid and arbuscular mycorrhiza publication-title: New Phytologist – volume: 26 start-page: 111 year: 2021 end-page: 123 article-title: Lineage‐specific genes and cryptic sex: parallels and differences between arbuscular mycorrhizal fungi and fungal pathogens publication-title: Trends in Plant Science – volume: 3 year: 2016 article-title: MycoDB, a global database of plant response to mycorrhizal fungi publication-title: Scientific Data – volume: 31 start-page: 1570 year: 2021 end-page: 1577 article-title: The genome of reveals ancestral traits linked to the emergence of the arbuscular mycorrhizal symbiosis publication-title: Current Biology – volume: 16 start-page: 676 year: 2022 end-page: 685 article-title: Organic nitrogen utilisation by an arbuscular mycorrhizal fungus is mediated by specific soil bacteria and a protist publication-title: ISME Journal – volume: 366 start-page: 886 year: 2019b end-page: 890 article-title: The role of multiple global change factors in driving soil functions and microbial biodiversity publication-title: Science – volume: 10 start-page: 1897 year: 2022 article-title: The potential applications of commercial arbuscular mycorrhizal fungal inoculants and their ecological consequences publication-title: Microorganisms – volume: 30 start-page: 905 year: 1998 end-page: 916 article-title: Contributions of interacting biological mechanisms to soil aggregate stabilization in restored prairie publication-title: Soil Biology and Biochemistry – volume: 152 start-page: 533 year: 2001 end-page: 542 article-title: Populations of ectomycorrhizal and spp. show contrasting colonization patterns in a mixed forest publication-title: New Phytologist – volume: 220 start-page: 1047 year: 2018 end-page: 1058 article-title: Nitrogen and phosphate metabolism in ectomycorrhizas publication-title: New Phytologist – volume: 11 start-page: 5125 year: 2020 article-title: Large‐scale genome sequencing of mycorrhizal fungi provides insights into the early evolution of symbiotic traits publication-title: Nature Communications – volume: 20 start-page: 283 year: 2015 end-page: 290 article-title: The role of arbuscular mycorrhizas in reducing soil nutrient loss publication-title: Trends in Plant Science – volume: 10 start-page: 5077 year: 2019 article-title: Global mycorrhizal plant distribution linked to terrestrial carbon stocks publication-title: Nature Communications – year: 2023 article-title: A journey into the world of small RNAs in the arbuscular mycorrhizal symbiosis publication-title: New Phytologist – volume: 356 start-page: 819 year: 2017 article-title: Ancestral alliances: plant mutualistic symbioses with fungi and bacteria publication-title: Science – volume: 164 start-page: 527 year: 2004 end-page: 541 article-title: Genet distribution of sporocarps and ectomycorrhizas of in a Japanese white pine plantation publication-title: New Phytologist – volume: 94 start-page: 411 year: 2018 end-page: 425 article-title: Host‐ and stage‐dependent secretome of the arbuscular mycorrhizal fungus publication-title: The Plant Journal – volume: 47 start-page: 65 year: 2015 end-page: 72 article-title: The genome sequence of the orchid publication-title: Nature Genetics – volume: 222 start-page: 1171 year: 2019a end-page: 1175 article-title: Why farmers should manage the arbuscular mycorrhizal symbiosis publication-title: New Phytologist – volume: 9 year: 2023 article-title: Tree mycorrhizal association types control biodiversity‐productivity relationship in a subtropical forest publication-title: Science Advances – volume: 8 start-page: 2142 year: 2023 end-page: 2153 article-title: Arbuscular mycorrhizal fungi heterokaryons have two nuclear populations with distinct roles in host–plant interactions publication-title: Nature Microbiology – volume: 6 year: 2020 article-title: The global‐scale distributions of soil protists and their contributions to belowground systems. publication-title: Advances – volume: 560 start-page: 233 year: 2018 end-page: 237 article-title: Structure and function of the global topsoil microbiome publication-title: Nature – year: 2023 article-title: Metatranscriptomics sheds light on the links between the functional traits of fungal guilds and ecological processes in forest soil ecosystems publication-title: New Phytologist – volume: 208 start-page: 79 year: 2015 end-page: 87 article-title: Molecular signals required for the establishment and maintenance of ectomycorrhizal symbioses publication-title: New Phytologist – volume: 151 start-page: 717 year: 2001 end-page: 724 article-title: The occurrence of anastomosis formation and nuclear exchange in intact arbuscular mycorrhizal networks publication-title: New Phytologist – volume: 206 start-page: 1196 year: 2015 end-page: 1206 article-title: The importance of the microbiome of the plant holobiont publication-title: New Phytologist – volume: 396 start-page: 69 year: 1998 end-page: 72 article-title: Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity publication-title: Nature – volume: 4 start-page: 210 year: 2020 end-page: 220 article-title: Multiple elements of soil biodiversity drive ecosystem functions across biomes publication-title: Nature Ecology & Evolution – volume: 9 year: 2023 article-title: A 1.5 Mb continuous endogenous viral region in the arbuscular mycorrhizal fungus, publication-title: Virus Evaluation – volume: 217 start-page: 68 year: 2018 end-page: 73 article-title: Ectomycorrhizal fungi and the enzymatic liberation of nitrogen from soil organic matter: why evolutionary history matters publication-title: New Phytologist – volume: 33 start-page: 1 year: 2023 end-page: 14 article-title: Niche differentiation of Mucoromycotinian and Glomeromycotinian arbuscular mycorrhizal fungi along a 2‐million‐year soil chronosequence publication-title: Mycorrhiza – volume: 327 start-page: 441 year: 2010 end-page: 453 article-title: How does arbuscular mycorrhizal colonization vary with host plant genotype? An example based on maize ( ) germplasms publication-title: Plant and Soil – volume: 92 start-page: 296 year: 2011 end-page: 303 article-title: Soil microbes drive the classic plant diversity–productivity pattern publication-title: Ecology – volume: 238 start-page: 70 year: 2023 end-page: 79 article-title: Direct nitrogen, phosphorus and carbon exchanges between Mucoromycotina ‘fine root endophyte’ fungi and a flowering plant in novel monoxenic cultures publication-title: New Phytologist – volume: 63 start-page: 1356 year: 2022 end-page: 1365 article-title: Functions of lipids in development and reproduction of arbuscular mycorrhizal fungi publication-title: Plant Cell Physiology – volume: 13 start-page: 1226 year: 2019 end-page: 1238 article-title: Dual RNA‐seq reveals large‐scale non‐conserved genotype × genotype‐specific genetic reprograming and molecular crosstalk in the mycorrhizal symbiosis publication-title: ISME Journal – volume: 119 year: 2022 article-title: Metatranscriptomics captures dynamic shifts in mycorrhizal coordination in boreal forests publication-title: Proceedings of the National Academy of Sciences, USA – volume: 13 year: 2022 article-title: Comparative transcriptomics analysis of the symbiotic germination of (Orchidaceae) with emphasis on plant cell wall modification and cell wall‐degrading enzymes publication-title: Frontiers in Plant Science – volume: 11 start-page: 2666 year: 2017 end-page: 2676 article-title: Role of plant‐fungal nutrient trading and host control in determining the competitive success of ectomycorrhizal fungi publication-title: ISME Journal – volume: 561 start-page: E42 year: 2018 article-title: Author correction: environment and host as large‐scale controls of ectomycorrhizal fungi publication-title: Nature – volume: 29 start-page: 277 year: 2016 end-page: 286 article-title: Strigolactone‐induced putative secreted protein 1 is required for the establishment of symbiosis by the arbuscular mycorrhizal fungus publication-title: Molecular Plant–Microbe Interactions – volume: 22 start-page: 737 year: 2013 end-page: 749 article-title: A global analysis of soil microbial biomass carbon, nitrogen and phosphorus in terrestrial ecosystems publication-title: Global Ecology and Biogeography – volume: 50 start-page: 9 year: 1999 end-page: 13 article-title: The magnitude and control of carbon transfer between plants linked by a common mycorrhizal network publication-title: Journal of Experimental Botany – volume: 2 start-page: 1956 year: 2018 end-page: 1965 article-title: Pezizomycetes genomes reveal the molecular basis of ectomycorrhizal truffle lifestyle publication-title: Nature Ecology & Evolution – volume: 30 start-page: 152 year: 2016 end-page: 162 article-title: Vegetative incompatibility in fungi: from recognition to cell death, whatever does the trick publication-title: Fungal Biology Reviews – volume: 40 year: 2023 article-title: Speciation underpinned by unexpected molecular diversity in the mycorrhizal fungal genus publication-title: Molecular Biology and Evolution – volume: 87 start-page: 816 year: 2006 end-page: 822 article-title: N in symbiotic fungi and plants estimates nitrogen and carbon flux rates in Arctic tundra publication-title: Ecology – volume: 235 start-page: 306 year: 2022 end-page: 319 article-title: Comparative genomics reveals a dynamic genome evolution in the ectomycorrhizal milk‐cap ( ) mushrooms publication-title: New Phytologist – volume: 30 year: 2023 article-title: The genome of provides insight into the initial evolution of ectomycorrhizal fungal genomes publication-title: DNA Research – volume: 14 start-page: 3311 year: 2023 article-title: Patterns in soil microbial diversity across Europe publication-title: Nature Communications – volume: 234 start-page: 1919 year: 2022 end-page: 1928 article-title: Plant–microbe eco‐evolutionary dynamics in a changing world publication-title: New Phytologist – volume: 23 start-page: 157 year: 2003 end-page: 167 article-title: Growth and nutrient uptake of ectomycorrhizal seedlings treated with elevated Al concentrations publication-title: Tree Physiology – volume: 72 start-page: 168 year: 2014 end-page: 181 article-title: Genomic and transcriptomic analysis of CAZome reveals insights into polysaccharides remodeling during symbiosis establishment publication-title: Fungal Genetics and Biology – volume: 232 start-page: 1399 year: 2021 end-page: 1413 article-title: Lower relative abundance of ectomycorrhizal fungi under a warmer and drier climate is linked to enhanced soil organic matter decomposition publication-title: New Phytologist – volume: 8 start-page: 2277 year: 2023 end-page: 2289 article-title: Soil microbiome indicators can predict crop growth response to large‐scale inoculation with arbuscular mycorrhizal fungi publication-title: Nature Microbiology – volume: 14 start-page: 760 year: 2016 end-page: 773 article-title: Unearthing the roots of ectomycorrhizal symbioses publication-title: Nature Reviews Microbiology – volume: 5 start-page: 676 year: 2019 end-page: 680 article-title: Mediation of plant‐mycorrhizal interaction by a lectin receptor‐like kinase publication-title: Nature Plants – volume: 234 start-page: 1987 year: 2022 end-page: 2002 article-title: Embracing mountain microbiome and ecosystem functions under global change publication-title: New Phytologist – volume: 241 start-page: 444 year: 2023 end-page: 460 article-title: The evolution of ectomycorrhizal symbiosis in the Late Cretaceous is a key driver of explosive diversification in Agaricomycetes publication-title: New Phytologist – volume: 8 start-page: 245 year: 2017 end-page: 257 article-title: Multigene phylogeny of Endogonales, an early diverging lineage of fungi associated with plants publication-title: IMA Fungus – volume: 22 start-page: 1435 year: 2020 end-page: 1446 article-title: The small secreted effector protein MiSSP7.6 of is required for the establishment of ectomycorrhizal symbiosis publication-title: Environmental Microbiology – volume: 23 start-page: 95 year: 2008 end-page: 103 article-title: Plant nutrient‐acquisition strategies change with soil age publication-title: Trends in Ecology & Evolution – volume: 168 start-page: 189 year: 2005 end-page: 204 article-title: Is plant performance limited by abundance of arbuscular mycorrhizal fungi? A meta‐analysis of studies published between 1988 and 2003 publication-title: New Phytologist – volume: 11 year: 2022 article-title: Variation in mycorrhizal growth response among a spring wheat mapping population shows potential to breed for symbiotic benefit publication-title: Food and Energy Security – volume: 7 start-page: 1717 year: 2022 end-page: 1725 article-title: Defending Earth's terrestrial microbiome publication-title: Nature Microbiology – start-page: 197 year: 2016 end-page: 216 article-title: Phosphorus metabolism and transport in arbuscular mycorrhizal symbiosis publication-title: Molecular mycorrhizal symbiosis – volume: 234 start-page: 1951 year: 2022 end-page: 1959 article-title: Plant–microbiome interactions under a changing world: responses, consequences and perspectives publication-title: New Phytologist – volume: 21 start-page: 487 year: 2023 end-page: 501 article-title: Forest microbiome and global change publication-title: Nature Reviews Microbiology – volume: 220 start-page: 1108 year: 2018 end-page: 1115 article-title: Evolutionary history of mycorrhizal symbioses and global host plant diversity publication-title: New Phytologist – volume: 176 start-page: 22 year: 2007 end-page: 36 article-title: The mycorrhiza helper bacteria revisited publication-title: New Phytologist – year: 2023 article-title: Fungal metabolism and free amino acid content may predict nitrogen transfer to the host plant in the ectomycorrhizal relationship between Pisolithus spp. and Eucalyptus grandis publication-title: New Phytologist – year: 2023 article-title: Soil organic matter dynamics mediated by arbuscular mycorrhizal fungi – an updated conceptual framework publication-title: New Phytologist – volume: 233 start-page: 1097 year: 2022 end-page: 1107 article-title: Long reads and Hi‐C sequencing illuminate the two‐compartment genome of the model arbuscular mycorrhizal symbiont Rhizophagus irregularis publication-title: New Phytologist – volume: 596 start-page: 583 year: 2021 end-page: 589 article-title: Highly accurate protein structure prediction with AlphaFold publication-title: Nature – volume: 11 start-page: 3 year: 2001 end-page: 42 article-title: Water relations, drought and vesicular‐arbuscular mycorrhizal symbiosis publication-title: Mycorrhiza – start-page: 451 year: 2016 end-page: 471 article-title: Mixotrophy in mycorrhizal plants: extracting carbon from mycorrhizal networks publication-title: Molecular mycorrhizal symbiosis – volume: 6 start-page: 370 year: 2022 end-page: 374 article-title: Mycorrhizal dominance reduces local tree species diversity across US forests publication-title: Nature Ecology & Evolution – start-page: 413 year: 2017 end-page: 440 – year: 2023a article-title: Concepts and consequences of the hyphosphere core microbiome for arbuscular mycorrhizal fungal fitness and function publication-title: New Phytologist – volume: 220 start-page: 1012 year: 2018 end-page: 1030 article-title: The origin and evolution of mycorrhizal symbioses: from palaeomycology to phylogenomics publication-title: New Phytologist – volume: 165 start-page: 261 year: 2005 end-page: 271 article-title: Arbuscular mycorrhizal fungi reveal distinct patterns of anastomosis formation and hyphal healing mechanisms between different phylogenic groups publication-title: New Phytologist – volume: 104 year: 2023 article-title: Differences in soil organic matter between EcM‐and AM‐dominated forests depend on tree and fungal identity publication-title: Ecology – volume: 229 start-page: 2917 year: 2021 end-page: 2932 article-title: Desert truffle genomes reveal their reproductive modes and new insights into plant–fungal interaction and ectendomycorrhizal lifestyle publication-title: New Phytologist – volume: 225 start-page: 448 year: 2020 end-page: 460 article-title: A lysin motif effector subverts chitin‐triggered immunity to facilitate arbuscular mycorrhizal symbiosis publication-title: New Phytologist – volume: 124 start-page: 231 year: 1993 end-page: 242 article-title: Nitrogen translocation between (L.) Gaertn. seedlings inoculated with sp. and Doug, ex Loud seedlings connected by a common ectomycorrhizal mycelium publication-title: New Phytologist – volume: 229 start-page: 1023 year: 2009 end-page: 1034 article-title: Overlapping expression patterns and differential transcript levels of phosphate transporter genes in arbuscular mycorrhizal, Pi‐fertilised and phytohormone‐treated roots publication-title: Planta – volume: 238 start-page: 845 year: 2023 end-page: 858 article-title: Functional genomics gives new insights into the ectomycorrhizal degradation of chitin publication-title: New Phytologist – year: 2023 – volume: 464 start-page: 1033 year: 2010 end-page: 1038 article-title: Périgord black truffle genome uncovers evolutionary origins and mechanisms of symbiosis publication-title: Nature – volume: 21 start-page: 1197 year: 2011 end-page: 1203 article-title: A secreted effector protein of is required for symbiosis development publication-title: Current Biology – volume: 2018 start-page: 465 year: 2018 article-title: The genome of HR1 reveals a common genetic basis for auxotrophy among arbuscular mycorrhizal fungi publication-title: BMC Genomics – volume: 417 start-page: 67 year: 2002 end-page: 70 article-title: Feedback with soil biota contributes to plant rarity and invasiveness in communities publication-title: Nature – ident: e_1_2_13_89_1 doi: 10.1038/s41559-023-01986-1 – ident: e_1_2_13_97_1 doi: 10.1016/j.cub.2021.01.035 – ident: e_1_2_13_123_1 doi: 10.1016/j.cub.2021.01.058 – ident: e_1_2_13_147_1 doi: 10.1111/j.1469-8137.2010.03334.x – ident: e_1_2_13_158_1 doi: 10.1093/molbev/msad045 – ident: e_1_2_13_72_1 doi: 10.1111/j.1469-8137.2004.01188.x – ident: e_1_2_13_162_1 doi: 10.1146/annurev.ecolsys.39.110707.173454 – ident: e_1_2_13_24_1 doi: 10.1038/ng.3149 – ident: e_1_2_13_150_1 doi: 10.3389/fmicb.2015.01278 – ident: e_1_2_13_168_1 doi: 10.1126/science.aay2832 – ident: e_1_2_13_68_1 doi: 10.1038/23932 – ident: e_1_2_13_215_1 doi: 10.1111/nph.19396 – ident: e_1_2_13_171_1 doi: 10.1093/jxb/50.330.9 – ident: e_1_2_13_2_1 doi: 10.1093/treephys/23.3.157 – ident: e_1_2_13_122_1 doi: 10.1111/nph.18773 – ident: e_1_2_13_223_1 doi: 10.1111/geb.12029 – ident: e_1_2_13_211_1 doi: 10.1038/s41597-020-0567-7 – ident: e_1_2_13_131_1 doi: 10.1126/science.aad4501 – ident: e_1_2_13_189_1 doi: 10.1038/41557 – ident: e_1_2_13_174_1 doi: 10.1111/mec.15351 – ident: e_1_2_13_154_1 doi: 10.1126/science.aax4851 – ident: e_1_2_13_47_1 doi: 10.1046/j.0028-646X.2001.00271.x – ident: e_1_2_13_57_1 doi: 10.1111/j.1469-8137.2010.03353.x – ident: e_1_2_13_108_1 doi: 10.3389/fpls.2021.626709 – ident: e_1_2_13_219_1 doi: 10.1073/pnas.2103527119 – ident: e_1_2_13_91_1 doi: 10.1126/science.aad6188 – ident: e_1_2_13_30_1 doi: 10.3389/fpls.2022.880600 – ident: e_1_2_13_116_1 doi: 10.1111/nph.17160 – ident: e_1_2_13_148_1 doi: 10.1016/j.fbr.2016.08.002 – ident: e_1_2_13_213_1 doi: 10.3389/fmicb.2018.02068 – ident: e_1_2_13_156_1 doi: 10.1016/j.cub.2011.05.033 – ident: e_1_2_13_17_1 doi: 10.3390/microorganisms10101897 – ident: e_1_2_13_125_1 doi: 10.1111/nph.17044 – ident: e_1_2_13_138_1 doi: 10.1111/nph.15687 – ident: e_1_2_13_205_1 doi: 10.1073/pnas.1313452110 – ident: e_1_2_13_8_1 doi: 10.3390/ijms24119125 – ident: e_1_2_13_224_1 doi: 10.1111/pbi.13676 – ident: e_1_2_13_41_1 doi: 10.1093/nar/gkab1045 – ident: e_1_2_13_204_1 doi: 10.1002/fes3.370 – ident: e_1_2_13_7_1 doi: 10.1038/s41396-021-01159-7 – ident: e_1_2_13_44_1 doi: 10.1128/mbio.00240-23 – ident: e_1_2_13_184_1 doi: 10.1111/nph.13234 – ident: e_1_2_13_214_1 doi: 10.1111/nph.18051 – ident: e_1_2_13_71_1 doi: 10.1002/ecy.3929 – ident: e_1_2_13_75_1 doi: 10.1186/1471-2164-14-306 – ident: e_1_2_13_28_1 doi: 10.1038/sdata.2016.28 – ident: e_1_2_13_54_1 doi: 10.1046/j.0028-646x.2001.00216.x – ident: e_1_2_13_144_1 doi: 10.3390/agronomy9080471 – ident: e_1_2_13_90_1 doi: 10.1111/jbi.13866 – ident: e_1_2_13_56_1 doi: 10.1002/9781118951446.ch22 – ident: e_1_2_13_132_1 doi: 10.1111/nph.14974 – ident: e_1_2_13_197_1 doi: 10.1093/femsec/fiad037 – ident: e_1_2_13_26_1 doi: 10.1016/j.tplants.2015.03.004 – ident: e_1_2_13_87_1 doi: 10.1093/pcp/pcac113 – ident: e_1_2_13_121_1 doi: 10.1111/nph.19260 – ident: e_1_2_13_69_1 doi: 10.1111/nph.13288 – ident: e_1_2_13_170_1 doi: 10.1128/mSystems.00957-21 – ident: e_1_2_13_25_1 doi: 10.1038/s41559-021-01634-6 – ident: e_1_2_13_134_1 doi: 10.1007/s00572-023-01111-x – ident: e_1_2_13_107_1 doi: 10.1111/nph.19394 – ident: e_1_2_13_120_1 doi: 10.1038/s41564-023-01520-w – ident: e_1_2_13_67_1 doi: 10.1111/j.1365-2745.2009.01570.x – ident: e_1_2_13_209_1 doi: 10.1016/j.fgb.2014.08.007 – ident: e_1_2_13_82_1 doi: 10.1016/S0038-0717(97)00207-1 – ident: e_1_2_13_103_1 doi: 10.1073/pnas.2118852119 – ident: e_1_2_13_182_1 doi: 10.1111/nph.19055 – ident: e_1_2_13_200_1 doi: 10.3389/fpls.2021.714393 – ident: e_1_2_13_73_1 doi: 10.1890/0012-9658(2006)87[816:NISFAP]2.0.CO;2 – ident: e_1_2_13_79_1 doi: 10.1111/j.1365-294X.2012.05515.x – ident: e_1_2_13_80_1 doi: 10.1111/nph.18630 – ident: e_1_2_13_34_1 doi: 10.1111/j.1469-8137.2004.01236.x – ident: e_1_2_13_190_1 doi: 10.1038/363067a0 – ident: e_1_2_13_112_1 doi: 10.1126/sciadv.aax5088 – ident: e_1_2_13_109_1 doi: 10.1111/j.1469-8137.2005.01490.x – ident: e_1_2_13_229_1 doi: 10.1111/nph.16245 – ident: e_1_2_13_222_1 doi: 10.1111/nph.19178 – ident: e_1_2_13_76_1 doi: 10.1104/pp.104.056572 – ident: e_1_2_13_92_1 doi: 10.1111/j.1365-2745.2005.01000.x – ident: e_1_2_13_217_1 doi: 10.1111/nph.17236 – ident: e_1_2_13_78_1 doi: 10.1038/ismej.2017.116 – ident: e_1_2_13_165_1 doi: 10.1007/BF01972080 – ident: e_1_2_13_3_1 doi: 10.1111/nph.17780 – ident: e_1_2_13_157_1 doi: 10.1016/j.tig.2010.10.005 – ident: e_1_2_13_53_1 doi: 10.1111/nph.16812 – ident: e_1_2_13_11_1 doi: 10.1007/s005720100097 – ident: e_1_2_13_155_1 doi: 10.1073/pnas.1322671111 – ident: e_1_2_13_5_1 doi: 10.1007/s11104-009-0073-3 – ident: e_1_2_13_64_1 doi: 10.1016/j.cub.2023.02.027 – ident: e_1_2_13_118_1 doi: 10.1038/s41467-023-36888-0 – ident: e_1_2_13_183_1 doi: 10.1890/10-0773.1 – ident: e_1_2_13_111_1 doi: 10.1186/s40168-023-01466-5 – ident: e_1_2_13_65_1 doi: 10.1111/j.1461-0248.2004.00577.x – ident: e_1_2_13_81_1 doi: 10.1371/journal.pone.0012776 – ident: e_1_2_13_164_1 doi: 10.1111/boj.12170 – ident: e_1_2_13_188_1 doi: 10.1111/gcb.16609 – ident: e_1_2_13_166_1 doi: 10.1016/j.tplants.2020.09.006 – ident: e_1_2_13_119_1 doi: 10.1111/jbi.14563 – ident: e_1_2_13_208_1 doi: 10.1111/nph.13312 – ident: e_1_2_13_46_1 doi: 10.1111/j.1469-8137.1986.tb00603.x – ident: e_1_2_13_231_1 doi: 10.1038/nature23897 – ident: e_1_2_13_19_1 doi: 10.1111/nph.12791 – ident: e_1_2_13_23_1 doi: 10.1038/s41396-022-01193-z – ident: e_1_2_13_129_1 doi: 10.1038/nrmicro.2016.149 – ident: e_1_2_13_210_1 doi: 10.1111/1462-2920.14827 – ident: e_1_2_13_167_1 doi: 10.1111/nph.15602 – ident: e_1_2_13_159_1 doi: 10.1111/1462-2920.15320 – ident: e_1_2_13_96_1 doi: 10.1038/ng.3223 – ident: e_1_2_13_186_1 doi: 10.1016/S0169-5347(97)01230-5 – ident: e_1_2_13_55_1 doi: 10.1098/rspb.2015.1553 – ident: e_1_2_13_104_1 doi: 10.1139/b04-060 – ident: e_1_2_13_191_1 doi: 10.3389/fpls.2022.1018029 – ident: e_1_2_13_85_1 doi: 10.1038/s41586-021-03819-2 – ident: e_1_2_13_29_1 doi: 10.1021/acs.jproteome.6b00999 – ident: e_1_2_13_49_1 doi: 10.1126/science.1221748 – ident: e_1_2_13_140_1 doi: 10.1111/nph.12264 – ident: e_1_2_13_152_1 doi: 10.1111/nph.19338 – ident: e_1_2_13_128_1 doi: 10.1038/nature08867 – ident: e_1_2_13_145_1 doi: 10.1126/sciadv.aax8787 – ident: e_1_2_13_31_1 doi: 10.1111/ele.13735 – ident: e_1_2_13_194_1 doi: 10.1038/s41564-023-01495-8 – ident: e_1_2_13_207_1 doi: 10.1094/MPMI-10-15-0234-R – ident: e_1_2_13_9_1 doi: 10.1111/j.1469-8137.1993.tb03812.x – ident: e_1_2_13_228_1 doi: 10.1111/tpj.13908 – ident: e_1_2_13_36_1 doi: 10.1126/science.aap9516 – ident: e_1_2_13_110_1 doi: 10.1038/s41477-022-01127-9 – ident: e_1_2_13_105_1 doi: 10.1111/nph.18143 – ident: e_1_2_13_63_1 doi: 10.1890/0012-9658(1999)080[1187:MIPCSA]2.0.CO;2 – ident: e_1_2_13_232_1 doi: 10.1038/srep19029 – ident: e_1_2_13_94_1 doi: 10.1186/s12864-018-4853-0 – ident: e_1_2_13_6_1 doi: 10.1111/nph.18015 – ident: e_1_2_13_70_1 doi: 10.1111/nph.18935 – ident: e_1_2_13_176_1 doi: 10.1038/s41396-021-01112-8 – ident: e_1_2_13_185_1 doi: 10.1002/9781118951446.ch25 – ident: e_1_2_13_212_1 doi: 10.1007/s13199-012-0208-9 – ident: e_1_2_13_88_1 doi: 10.1111/1462-2920.14959 – ident: e_1_2_13_133_1 doi: 10.1111/nph.14962 – ident: e_1_2_13_59_1 doi: 10.1007/s00425-008-0877-z – ident: e_1_2_13_199_1 doi: 10.1007/s00572-004-0302-9 – ident: e_1_2_13_39_1 doi: 10.5598/imafungus.2017.08.02.03 – ident: e_1_2_13_102_1 doi: 10.1016/j.mib.2023.102357 – ident: e_1_2_13_234_1 doi: 10.1093/ve/vead064 – ident: e_1_2_13_124_1 doi: 10.1099/mgen.0.000810 – ident: e_1_2_13_21_1 doi: 10.1186/s12864-020-06806-5 – ident: e_1_2_13_32_1 doi: 10.1105/tpc.18.00676 – ident: e_1_2_13_93_1 doi: 10.1016/j.cub.2011.06.044 – ident: e_1_2_13_143_1 doi: 10.1038/s41396-018-0331-6 – ident: e_1_2_13_218_1 doi: 10.1371/journal.pone.0039597 – ident: e_1_2_13_163_1 doi: 10.1111/nph.17661 – start-page: 356 volume-title: Mycoheterotrophy. The biology of plants living on fungi year: 2023 ident: e_1_2_13_136_1 – ident: e_1_2_13_180_1 doi: 10.1007/s00572-021-01042-5 – ident: e_1_2_13_196_1 doi: 10.1111/nph.15076 – ident: e_1_2_13_114_1 doi: 10.1038/s41586-018-0312-y – ident: e_1_2_13_48_1 doi: 10.1038/s41396-020-0667-6 – ident: e_1_2_13_187_1 doi: 10.1101/2023.08.02.551648 – ident: e_1_2_13_51_1 doi: 10.1111/nph.13423 – ident: e_1_2_13_52_1 doi: 10.1111/j.1365-313X.2011.04810.x – ident: e_1_2_13_130_1 doi: 10.1111/j.1469-8137.2008.02613.x – ident: e_1_2_13_141_1 doi: 10.1111/nph.15257 – ident: e_1_2_13_225_1 doi: 10.3389/fmicb.2023.1180319 – ident: e_1_2_13_113_1 doi: 10.1371/journal.pgen.1007742 – ident: e_1_2_13_142_1 doi: 10.2307/2389702 – ident: e_1_2_13_195_1 doi: 10.1016/j.cub.2022.06.057 – ident: e_1_2_13_137_1 doi: 10.1038/s41467-020-18795-w – ident: e_1_2_13_38_1 doi: 10.1126/sciadv.add4468 – ident: e_1_2_13_14_1 doi: 10.1038/s41586-018-0386-6 – ident: e_1_2_13_60_1 doi: 10.1046/j.1365-2540.2000.00668.x – ident: e_1_2_13_177_1 doi: 10.3390/microorganisms9122612 – ident: e_1_2_13_227_1 doi: 10.1186/s40168-023-01650-7 – ident: e_1_2_13_16_1 doi: 10.4161/15592324.2014.977707 – ident: e_1_2_13_226_1 doi: 10.1111/nph.17842 – ident: e_1_2_13_161_1 doi: 10.1111/nph.19400 – ident: e_1_2_13_202_1 doi: 10.1007/s00572-009-0274-x – ident: e_1_2_13_206_1 doi: 10.1111/nph.18016 – ident: e_1_2_13_83_1 doi: 10.1111/1365-2745.13521 – ident: e_1_2_13_100_1 doi: 10.1038/s41467-023-37937-4 – ident: e_1_2_13_98_1 doi: 10.1007/s11104-023-06045-z – ident: e_1_2_13_18_1 doi: 10.1111/j.1469-8137.2009.03069.x – ident: e_1_2_13_62_1 doi: 10.1111/1365-2435.12976 – ident: e_1_2_13_10_1 doi: 10.1111/nph.19471 – ident: e_1_2_13_220_1 doi: 10.1046/j.1469-8137.2001.00010.x – ident: e_1_2_13_43_1 doi: 10.1038/s41396-021-00920-2 – ident: e_1_2_13_101_1 doi: 10.1016/j.tree.2007.10.008 – ident: e_1_2_13_45_1 doi: 10.1016/B978-0-12-804312-7.00023-1 – ident: e_1_2_13_160_1 doi: 10.1094/MPMI-01-19-0007-R – ident: e_1_2_13_117_1 doi: 10.1111/nph.17892 – ident: e_1_2_13_84_1 doi: 10.1111/tpj.15892 – ident: e_1_2_13_106_1 doi: 10.1146/annurev-ecolsys-012021-114902 – ident: e_1_2_13_178_1 doi: 10.1111/nph.15308 – ident: e_1_2_13_86_1 doi: 10.1111/nph.18281 – ident: e_1_2_13_233_1 doi: 10.1016/j.tplants.2021.10.008 – ident: e_1_2_13_27_1 doi: 10.1111/nph.15613 – ident: e_1_2_13_12_1 doi: 10.1038/s41564-022-01228-3 – ident: e_1_2_13_77_1 doi: 10.1111/nph.18914 – ident: e_1_2_13_20_1 doi: 10.1111/nph.19259 – ident: e_1_2_13_135_1 doi: 10.1038/s41396-018-0342-3 – ident: e_1_2_13_175_1 doi: 10.1038/nmicrobiol.2016.33 – ident: e_1_2_13_4_1 doi: 10.1126/science.adf2027 – year: 2023 ident: e_1_2_13_230_1 article-title: A tripartite bacterial‐fungal‐plant symbiosis in the mycorrhiza‐shaped microbiome drives plant growth and mycorrhization publication-title: Microbiome – ident: e_1_2_13_15_1 doi: 10.1038/s41579-023-00876-4 – ident: e_1_2_13_192_1 doi: 10.1038/s41467-019-13019-2 – ident: e_1_2_13_216_1 doi: 10.1111/nph.18642 – ident: e_1_2_13_221_1 doi: 10.1111/nph.17858 – ident: e_1_2_13_172_1 doi: 10.1016/j.tplants.2023.08.010 – ident: e_1_2_13_179_1 doi: 10.1002/9781118951446.ch12 – ident: e_1_2_13_95_1 doi: 10.1093/dnares/dsac053 – ident: e_1_2_13_201_1 doi: 10.1126/science.1256688 – ident: e_1_2_13_58_1 doi: 10.1093/nar/gkt1183 – ident: e_1_2_13_153_1 doi: 10.1038/ncomms12662 – ident: e_1_2_13_169_1 doi: 10.1038/s41558-023-01627-2 – ident: e_1_2_13_198_1 doi: 10.1038/s41396-018-0059-3 – ident: e_1_2_13_40_1 doi: 10.1111/j.1469-8137.2010.03277.x – ident: e_1_2_13_42_1 doi: 10.1038/s41559-022-01799-8 – ident: e_1_2_13_74_1 doi: 10.1111/j.1461-0248.2009.01430.x – ident: e_1_2_13_66_1 doi: 10.1111/j.1461-0248.2007.01139.x – ident: e_1_2_13_173_1 doi: 10.3389/fpls.2019.01357 – ident: e_1_2_13_149_1 doi: 10.1038/nrmicro.2016.59 – ident: e_1_2_13_193_1 doi: 10.3852/16-042 – ident: e_1_2_13_99_1 doi: 10.1038/s41477-019-0469-x – ident: e_1_2_13_146_1 doi: 10.1111/nph.14971 – ident: e_1_2_13_126_1 doi: 10.1111/j.1469-8137.2007.02058.x – ident: e_1_2_13_127_1 doi: 10.1111/j.1469-8137.2011.03688.x – ident: e_1_2_13_35_1 doi: 10.1073/pnas.1515426112 – ident: e_1_2_13_139_1 doi: 10.1038/s41559-018-0710-4 – ident: e_1_2_13_50_1 doi: 10.1111/j.1469-8137.2007.02191.x – ident: e_1_2_13_61_1 doi: 10.1111/nph.18897 – ident: e_1_2_13_13_1 doi: 10.1111/ele.12115 – ident: e_1_2_13_181_1 doi: 10.1016/j.isci.2022.104636 – ident: e_1_2_13_37_1 doi: 10.1038/s41559-019-1084-y – ident: e_1_2_13_22_1 doi: 10.1111/nph.14976 – ident: e_1_2_13_203_1 doi: 10.1111/nph.18996 – ident: e_1_2_13_151_1 doi: 10.1111/nph.14598 – ident: e_1_2_13_115_1 doi: 10.1038/s41467-023-37428-6 – ident: e_1_2_13_33_1 doi: 10.1126/science.aab1161 |
SSID | ssj0009562 |
Score | 2.6606092 |
SecondaryResourceType | review_article |
Snippet | Summary
Mycorrhizal symbioses between plants and fungi are vital for the soil structure, nutrient cycling, plant diversity, and ecosystem sustainability. More... Mycorrhizal symbioses between plants and fungi are vital for the soil structure, nutrient cycling, plant diversity, and ecosystem sustainability. More than 250... Summary Mycorrhizal symbioses between plants and fungi are vital for the soil structure, nutrient cycling, plant diversity, and ecosystem sustainability. More... |
SourceID | osti hal proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1486 |
SubjectTerms | arbuscular mycorrhizal fungi biodiversity Biology DNA barcoding Ecology Ecosystem services ecosystems ectomycorrhizal fungi ericoid mycorrhizal fungi forestry Fungi Genes Genetics genome Genomes Genomics Life Sciences Metabolism mutualism mycorrhizae Nutrient cycles Nutrient dynamics Nutrient uptake orchid mycorrhizal fungi Organic matter Plant diversity Plant Sciences Plant species Plants genetics plant–microbe interactions population genetics Soil organic matter Soil structure species diversity stress tolerance Sustainability Sustainable agriculture Sustainable ecosystems Symbiosis transcriptomics |
Title | The mycorrhizal symbiosis: research frontiers in genomics, ecology, and agricultural application |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fnph.19541 https://www.ncbi.nlm.nih.gov/pubmed/38297461 https://www.proquest.com/docview/3044848555 https://www.proquest.com/docview/2921116419 https://www.proquest.com/docview/3153562172 https://hal.inrae.fr/hal-04593098 https://www.osti.gov/biblio/2582727 |
Volume | 242 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1Nb9QwEIatsuLABSifoaUyiEMPzSqxnTiGU1tRrRBUCFFpD0jG9jpsBJtUm12k7a9nJl_aolZC3KJ4IjnxTPxOMn5MyBvupbRmZsJUcUhQIJpCpXwcutzm4CLMyAY8_-k8nVyID9NkukPe9WthWj7E8MENI6N5X2OAG1tvBXl5OR8jrgxTH6zVQkH0hW0Bd1PWE5hTkU47qhBW8QxXXpuL7syxEnJUQWTdpDavi9dm9jl7QL71_W6LTn6O1ys7dld_IR3_88YekvudKqXHrRvtkh1fPiJ3TypQjpvH5Dv4El1sIE9dzosrsKs3C1tUdVG_pR0saE5zJCHgvtq0KCmSXxeFq4-ob6jYmyNqyhk1P5YD6oNu_Tp_Qi7O3n89nYTdzgyhExmLQ1wPq3IrnRA28hFPpM8FSK1c-lS4KLFZbmJjeZQJnpk4liazTsYO9I2SIPr4UzIqq9I_J9QoP7PCcRN5JVIH5qkVhvk45zMbxSYgh_0Yaddhy3H3jF-6T1_geenmeQXk9WB62bI6bjSCgR7aka49Of6o8RyoW8Ujlf0Goz30Aw0qBFG6DmuO3EqzJGOg9wKy37uH7iK-1jyCRBdJO0lAXg3NEKv4A8aUvlrXmilItyE_jdXtNhymIHBd0JUBeda63tBZjuugRQrdO2wc6Pa71OefJ83Bi3833SP3GCi2tppzn4xWy7V_CYprZQ-a0PoD1pQlEw |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1Z3dbtMwFMetrSDBDd-DsgEGgbSLpUpsN4mRuBiMqWNdhdAm9c6zXYdW0HRqWlD2TLwK78Q5-VKHNombXXAXJUeRE59j_09y_DMhr7mLIqNH2gslhwQFosmT0gWeTUwCLsJ0VIDnjwZh70R8GnaHa-RXvRam5EM0H9wwMorxGgMcP0ivRHl6Nu4gryyoSioPXf4TErbs3cEe9O4bxvY_Hn_oedWeAp4VMQs8XMkpExNZIYzvfN6NXCJAJCSRC4X1uyZOdKAN92PBYx0EkY6NjQILM7OMQK5wuO86uYE7iCOpf-8LW0H8hqxmPociHFYcI6wbapp6YfZbH2PtZWsGsXyZvr0ol4v5bv8u-V2_qbLM5VtnuTAde_4XRPJ_eZX3yJ1KeNPdMlLukzWXPiA3389AHOcPySmEC53mkIrPx5NzsMvyqZnMskn2llY8pDFNEPaAW4fTSUoRbjud2GyHugL8ne9QnY6o_jpvaCZ0pTrgETm5lqfbIK10lronhGrpRkZYrn0nRWjBPDRCMxckfGT8QLfJdu0UylZkdtwg5LuqMzToH1X0T5u8akzPShzJpUbgWc11BIj3dvsKz4GAl9yX8Q8w2kTHUyC0kBZssazKLhTrxgwkbZts1f6oqkEtU9yHXB5hQt02edlchuEI_zHp1M2WmWKSQVtCEcirbTjMshArIJ3b5HHp601jOS71FiE0b7vw2KufUg0-94qDp_9u-oLc6h0f9VX_YHC4SW4zEKhl8eoWaS3mS_cMBObCPC_impLT6_b-P2A7gDc |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFLa2ghAv3GFlAwwCaQ9LldiOEyPxMChVx0Y1ISb1zbNdh1ajSdW0oO4v8Vf4URznpg5tEi974C1KjiJfzmd_Jzn-DkKvqY0irUbK44JCgAJo8oSwgWcSnYCLEBUVwvOfB7x_wj4Nw-EG-lWfhSn1IZoPbg4ZxXrtAD4bJWsgT2fjjpMrC6qMykO7-gnxWv7uoAuT-4aQ3sevH_peVVLAMywmgecOcopER4Yx7VufhpFNGHCEJLKcGT_UcaICpakfMxqrIIhUrE0UGNiYRQRshcJ7N9ENxn3h6kR0v5A1hV9OaslnzviwkjFyaUNNUy9sfptjl3rZygDKl9Hbi2y52O56d9HveqDKLJezznKhO-b8Lw3J_2Qk76E7Fe3G-yVO7qMNmz5AN99nQI1XD9EpgAVPVxCIz8eTc7DLV1M9yfJJ_hZXakhjnDipB1c4HE9S7KRtpxOT72FbyH6v9rBKR1h9mzdaJngtN-AROrmW3j1GrTRL7RbCStiRZoYq3wrGDZhzzRSxQUJH2g9UG-3WPiFNpcvuyoN8l3V8BvMji_lpo1eN6awUI7nUCByree7kw_v7R9LdA_ouqC_iH2C07fxOAs1yWsHGJVWZhSRhTIDQttFO7Y6yWtJySX2I5J2UUNhGL5vHsBi5P0wqtdkyl0QQaAtngbjahsIeC1AB4txGT0pXbxpL3UFvxqF5u4XDXt1LOTjuFxdP_930Bbp13O3Jo4PB4Ta6TYCdlpmrO6i1mC_tM2CXC_28QDVGp9ft_H8AQ8J-5g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+mycorrhizal+symbiosis%3A+research+frontiers+in+genomics%2C+ecology%2C+and+agricultural+application&rft.jtitle=The+New+phytologist&rft.au=Martin%2C+Francis+M.&rft.au=van+der+Heijden%2C+Marcel+G.+A.&rft.date=2024-05-01&rft.issn=0028-646X&rft.eissn=1469-8137&rft.volume=242&rft.issue=4&rft.spage=1486&rft.epage=1506&rft_id=info:doi/10.1111%2Fnph.19541&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_nph_19541 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-646X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-646X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-646X&client=summon |