The mycorrhizal symbiosis: research frontiers in genomics, ecology, and agricultural application

Summary Mycorrhizal symbioses between plants and fungi are vital for the soil structure, nutrient cycling, plant diversity, and ecosystem sustainability. More than 250 000 plant species are associated with mycorrhizal fungi. Recent advances in genomics and related approaches have revolutionized our...

Full description

Saved in:
Bibliographic Details
Published inThe New phytologist Vol. 242; no. 4; pp. 1486 - 1506
Main Authors Martin, Francis M., Heijden, Marcel G. A.
Format Journal Article
LanguageEnglish
Published England Wiley Subscription Services, Inc 01.05.2024
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Summary Mycorrhizal symbioses between plants and fungi are vital for the soil structure, nutrient cycling, plant diversity, and ecosystem sustainability. More than 250 000 plant species are associated with mycorrhizal fungi. Recent advances in genomics and related approaches have revolutionized our understanding of the biology and ecology of mycorrhizal associations. The genomes of 250+ mycorrhizal fungi have been released and hundreds of genes that play pivotal roles in regulating symbiosis development and metabolism have been characterized. rDNA metabarcoding and metatranscriptomics provide novel insights into the ecological cues driving mycorrhizal communities and functions expressed by these associations, linking genes to ecological traits such as nutrient acquisition and soil organic matter decomposition. Here, we review genomic studies that have revealed genes involved in nutrient uptake and symbiosis development, and discuss adaptations that are fundamental to the evolution of mycorrhizal lifestyles. We also evaluated the ecosystem services provided by mycorrhizal networks and discuss how mycorrhizal symbioses hold promise for sustainable agriculture and forestry by enhancing nutrient acquisition and stress tolerance. Overall, unraveling the intricate dynamics of mycorrhizal symbioses is paramount for promoting ecological sustainability and addressing current pressing environmental concerns. This review ends with major frontiers for further research.
AbstractList Summary Mycorrhizal symbioses between plants and fungi are vital for the soil structure, nutrient cycling, plant diversity, and ecosystem sustainability. More than 250 000 plant species are associated with mycorrhizal fungi. Recent advances in genomics and related approaches have revolutionized our understanding of the biology and ecology of mycorrhizal associations. The genomes of 250+ mycorrhizal fungi have been released and hundreds of genes that play pivotal roles in regulating symbiosis development and metabolism have been characterized. rDNA metabarcoding and metatranscriptomics provide novel insights into the ecological cues driving mycorrhizal communities and functions expressed by these associations, linking genes to ecological traits such as nutrient acquisition and soil organic matter decomposition. Here, we review genomic studies that have revealed genes involved in nutrient uptake and symbiosis development, and discuss adaptations that are fundamental to the evolution of mycorrhizal lifestyles. We also evaluated the ecosystem services provided by mycorrhizal networks and discuss how mycorrhizal symbioses hold promise for sustainable agriculture and forestry by enhancing nutrient acquisition and stress tolerance. Overall, unraveling the intricate dynamics of mycorrhizal symbioses is paramount for promoting ecological sustainability and addressing current pressing environmental concerns. This review ends with major frontiers for further research.
Mycorrhizal symbioses between plants and fungi are vital for the soil structure, nutrient cycling, plant diversity, and ecosystem sustainability. More than 250 000 plant species are associated with mycorrhizal fungi. Recent advances in genomics and related approaches have revolutionized our understanding of the biology and ecology of mycorrhizal associations. The genomes of 250+ mycorrhizal fungi have been released and hundreds of genes that play pivotal roles in regulating symbiosis development and metabolism have been characterized. rDNA metabarcoding and metatranscriptomics provide novel insights into the ecological cues driving mycorrhizal communities and functions expressed by these associations, linking genes to ecological traits such as nutrient acquisition and soil organic matter decomposition. Here, we review genomic studies that have revealed genes involved in nutrient uptake and symbiosis development, and discuss adaptations that are fundamental to the evolution of mycorrhizal lifestyles. We also evaluated the ecosystem services provided by mycorrhizal networks and discuss how mycorrhizal symbioses hold promise for sustainable agriculture and forestry by enhancing nutrient acquisition and stress tolerance. Overall, unraveling the intricate dynamics of mycorrhizal symbioses is paramount for promoting ecological sustainability and addressing current pressing environmental concerns. This review ends with major frontiers for further research.
Mycorrhizal symbioses between plants and fungi are vital for the soil structure, nutrient cycling, plant diversity, and ecosystem sustainability. More than 250 000 plant species are associated with mycorrhizal fungi. Recent advances in genomics and related approaches have revolutionized our understanding of the biology and ecology of mycorrhizal associations. The genomes of 250+ mycorrhizal fungi have been released and hundreds of genes that play pivotal roles in regulating symbiosis development and metabolism have been characterized. rDNA metabarcoding and metatranscriptomics provide novel insights into the ecological cues driving mycorrhizal communities and functions expressed by these associations, linking genes to ecological traits such as nutrient acquisition and soil organic matter decomposition. Here, we review genomic studies that have revealed genes involved in nutrient uptake and symbiosis development, and discuss adaptations that are fundamental to the evolution of mycorrhizal lifestyles. We also evaluated the ecosystem services provided by mycorrhizal networks and discuss how mycorrhizal symbioses hold promise for sustainable agriculture and forestry by enhancing nutrient acquisition and stress tolerance. Overall, unraveling the intricate dynamics of mycorrhizal symbioses is paramount for promoting ecological sustainability and addressing current pressing environmental concerns. This review ends with major frontiers for further research.Mycorrhizal symbioses between plants and fungi are vital for the soil structure, nutrient cycling, plant diversity, and ecosystem sustainability. More than 250 000 plant species are associated with mycorrhizal fungi. Recent advances in genomics and related approaches have revolutionized our understanding of the biology and ecology of mycorrhizal associations. The genomes of 250+ mycorrhizal fungi have been released and hundreds of genes that play pivotal roles in regulating symbiosis development and metabolism have been characterized. rDNA metabarcoding and metatranscriptomics provide novel insights into the ecological cues driving mycorrhizal communities and functions expressed by these associations, linking genes to ecological traits such as nutrient acquisition and soil organic matter decomposition. Here, we review genomic studies that have revealed genes involved in nutrient uptake and symbiosis development, and discuss adaptations that are fundamental to the evolution of mycorrhizal lifestyles. We also evaluated the ecosystem services provided by mycorrhizal networks and discuss how mycorrhizal symbioses hold promise for sustainable agriculture and forestry by enhancing nutrient acquisition and stress tolerance. Overall, unraveling the intricate dynamics of mycorrhizal symbioses is paramount for promoting ecological sustainability and addressing current pressing environmental concerns. This review ends with major frontiers for further research.
Summary Mycorrhizal symbioses between plants and fungi are vital for the soil structure, nutrient cycling, plant diversity, and ecosystem sustainability. More than 250 000 plant species are associated with mycorrhizal fungi. Recent advances in genomics and related approaches have revolutionized our understanding of the biology and ecology of mycorrhizal associations. The genomes of 250+ mycorrhizal fungi have been released and hundreds of genes that play pivotal roles in regulating symbiosis development and metabolism have been characterized. rDNA metabarcoding and metatranscriptomics provide novel insights into the ecological cues driving mycorrhizal communities and functions expressed by these associations, linking genes to ecological traits such as nutrient acquisition and soil organic matter decomposition. Here, we review genomic studies that have revealed genes involved in nutrient uptake and symbiosis development, and discuss adaptations that are fundamental to the evolution of mycorrhizal lifestyles. We also evaluated the ecosystem services provided by mycorrhizal networks and discuss how mycorrhizal symbioses hold promise for sustainable agriculture and forestry by enhancing nutrient acquisition and stress tolerance. Overall, unraveling the intricate dynamics of mycorrhizal symbioses is paramount for promoting ecological sustainability and addressing current pressing environmental concerns. This review ends with major frontiers for further research.
Author Martin, Francis M.
Heijden, Marcel G. A.
Author_xml – sequence: 1
  givenname: Francis M.
  orcidid: 0000-0002-4737-3715
  surname: Martin
  fullname: Martin, Francis M.
  email: francis.martin@inrae.fr
  organization: Institute of Applied Mycology, College of Plant Science and Technology, Huazhong Agricultural University
– sequence: 2
  givenname: Marcel G. A.
  orcidid: 0000-0001-7040-1924
  surname: Heijden
  fullname: Heijden, Marcel G. A.
  email: marcel.vanderheijden@agroscope.admin.ch
  organization: University of Zürich
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38297461$$D View this record in MEDLINE/PubMed
https://hal.inrae.fr/hal-04593098$$DView record in HAL
https://www.osti.gov/biblio/2582727$$D View this record in Osti.gov
BookMark eNqF0k1rFDEYAOAgFbutHvwDMuhFodPmc5J4K0VdYVEPFbzFTJrZSckkYzKjrL_etLOtIIq5BMLzvuT9OAIHIQYLwFMET1E5Z2HsT5FkFD0AK0QbWQtE-AFYQYhF3dDmyyE4yvkaQihZgx-BQyKw5LRBK_D1srfVsDMxpd791L7Ku6F1Mbv8uko2W51MX3UphsnZlCsXqq0NcXAmn1TWRB-3u5NKh6tKb5Mzs5_mVJLocfTO6MnF8Bg87LTP9sn-Pgaf3765vFjXm4_v3l-cb2pDBUY1kZLJruWG0hZaSBi3HRVEdtw21EDWik4j3RIoKBEaIa5FazgysGkkh4KQY_B8yRvz5FQ2brKmNzEEayaFmcAc84JeLajXXo3JDTrtVNROrc836uYNUiYJlOI7KvblYscUv802T2pw2VjvdbBxzoogRko3Ecf_pVjiMqaGIlnoiz_odZxTKJ1RBFIqqGCMFfVsr-Z2sFf3X72bWwFnCzAp5pxsp0rBt_2eknZeIahuNkOVzVC3m_G79PuIu6R_s_vsP5y3u39D9eHTeon4Bf5DxOI
CitedBy_id crossref_primary_10_1111_nph_70016
crossref_primary_10_1007_s00253_024_13298_w
crossref_primary_10_1016_j_funeco_2024_101407
crossref_primary_10_3390_microorganisms12112372
crossref_primary_10_3390_biomass4040070
crossref_primary_10_3390_microorganisms12112296
crossref_primary_10_3389_fmicb_2024_1463326
crossref_primary_10_3389_fmicb_2025_1502977
crossref_primary_10_1016_j_pbi_2024_102627
crossref_primary_10_3897_imafungus_16_e142356
crossref_primary_10_5194_soil_10_425_2024
crossref_primary_10_1021_acs_jafc_4c01487
crossref_primary_10_18615_anadolu_1442118
crossref_primary_10_1016_j_chmed_2024_03_002
crossref_primary_10_1186_s12866_024_03453_8
crossref_primary_10_1111_nph_20195
crossref_primary_10_1016_j_pld_2025_02_004
crossref_primary_10_1111_ppl_14521
crossref_primary_10_3389_fpls_2024_1510941
crossref_primary_10_1007_s00572_024_01154_8
crossref_primary_10_1029_2024RG000836
crossref_primary_10_1038_s44358_025_00030_3
crossref_primary_10_3389_fmicb_2024_1491861
crossref_primary_10_1111_nph_20003
crossref_primary_10_3390_plants13091231
crossref_primary_10_1007_s00344_024_11422_8
crossref_primary_10_1016_j_scitotenv_2024_178147
crossref_primary_10_1007_s13199_024_01021_2
crossref_primary_10_1016_j_apsoil_2024_105799
crossref_primary_10_1111_nph_20304
crossref_primary_10_1002_ldr_5520
crossref_primary_10_1002_sae2_70029
crossref_primary_10_3390_jof10090598
crossref_primary_10_32439_ps_v7i5_55_61
crossref_primary_10_1007_s00572_025_01187_7
crossref_primary_10_1007_s13593_024_00991_3
crossref_primary_10_1111_nph_20183
crossref_primary_10_3390_agronomy15010108
crossref_primary_10_3390_d16090587
crossref_primary_10_1111_nph_19758
crossref_primary_10_1111_nph_19813
crossref_primary_10_3389_fmicb_2024_1470137
crossref_primary_10_3390_su17041676
crossref_primary_10_1007_s00572_024_01167_3
crossref_primary_10_3389_fpls_2025_1510196
Cites_doi 10.1038/s41559-023-01986-1
10.1016/j.cub.2021.01.035
10.1016/j.cub.2021.01.058
10.1111/j.1469-8137.2010.03334.x
10.1093/molbev/msad045
10.1111/j.1469-8137.2004.01188.x
10.1146/annurev.ecolsys.39.110707.173454
10.1038/ng.3149
10.3389/fmicb.2015.01278
10.1126/science.aay2832
10.1038/23932
10.1111/nph.19396
10.1093/jxb/50.330.9
10.1093/treephys/23.3.157
10.1111/nph.18773
10.1111/geb.12029
10.1038/s41597-020-0567-7
10.1126/science.aad4501
10.1038/41557
10.1111/mec.15351
10.1126/science.aax4851
10.1046/j.0028-646X.2001.00271.x
10.1111/j.1469-8137.2010.03353.x
10.3389/fpls.2021.626709
10.1073/pnas.2103527119
10.1126/science.aad6188
10.3389/fpls.2022.880600
10.1111/nph.17160
10.1016/j.fbr.2016.08.002
10.3389/fmicb.2018.02068
10.1016/j.cub.2011.05.033
10.3390/microorganisms10101897
10.1111/nph.17044
10.1111/nph.15687
10.1073/pnas.1313452110
10.3390/ijms24119125
10.1111/pbi.13676
10.1093/nar/gkab1045
10.1002/fes3.370
10.1038/s41396-021-01159-7
10.1128/mbio.00240-23
10.1111/nph.13234
10.1111/nph.18051
10.1002/ecy.3929
10.1186/1471-2164-14-306
10.1038/sdata.2016.28
10.1046/j.0028-646x.2001.00216.x
10.3390/agronomy9080471
10.1111/jbi.13866
10.1002/9781118951446.ch22
10.1111/nph.14974
10.1093/femsec/fiad037
10.1016/j.tplants.2015.03.004
10.1093/pcp/pcac113
10.1111/nph.19260
10.1111/nph.13288
10.1128/mSystems.00957-21
10.1038/s41559-021-01634-6
10.1007/s00572-023-01111-x
10.1111/nph.19394
10.1038/s41564-023-01520-w
10.1111/j.1365-2745.2009.01570.x
10.1016/j.fgb.2014.08.007
10.1016/S0038-0717(97)00207-1
10.1073/pnas.2118852119
10.1111/nph.19055
10.3389/fpls.2021.714393
10.1890/0012-9658(2006)87[816:NISFAP]2.0.CO;2
10.1111/j.1365-294X.2012.05515.x
10.1111/nph.18630
10.1111/j.1469-8137.2004.01236.x
10.1038/363067a0
10.1126/sciadv.aax5088
10.1111/j.1469-8137.2005.01490.x
10.1111/nph.16245
10.1111/nph.19178
10.1104/pp.104.056572
10.1111/j.1365-2745.2005.01000.x
10.1111/nph.17236
10.1038/ismej.2017.116
10.1007/BF01972080
10.1111/nph.17780
10.1016/j.tig.2010.10.005
10.1111/nph.16812
10.1007/s005720100097
10.1073/pnas.1322671111
10.1007/s11104-009-0073-3
10.1016/j.cub.2023.02.027
10.1038/s41467-023-36888-0
10.1890/10-0773.1
10.1186/s40168-023-01466-5
10.1111/j.1461-0248.2004.00577.x
10.1371/journal.pone.0012776
10.1111/boj.12170
10.1111/gcb.16609
10.1016/j.tplants.2020.09.006
10.1111/jbi.14563
10.1111/nph.13312
10.1111/j.1469-8137.1986.tb00603.x
10.1038/nature23897
10.1111/nph.12791
10.1038/s41396-022-01193-z
10.1038/nrmicro.2016.149
10.1111/1462-2920.14827
10.1111/nph.15602
10.1111/1462-2920.15320
10.1038/ng.3223
10.1016/S0169-5347(97)01230-5
10.1098/rspb.2015.1553
10.1139/b04-060
10.3389/fpls.2022.1018029
10.1038/s41586-021-03819-2
10.1021/acs.jproteome.6b00999
10.1126/science.1221748
10.1111/nph.12264
10.1111/nph.19338
10.1038/nature08867
10.1126/sciadv.aax8787
10.1111/ele.13735
10.1038/s41564-023-01495-8
10.1094/MPMI-10-15-0234-R
10.1111/j.1469-8137.1993.tb03812.x
10.1111/tpj.13908
10.1126/science.aap9516
10.1038/s41477-022-01127-9
10.1111/nph.18143
10.1890/0012-9658(1999)080[1187:MIPCSA]2.0.CO;2
10.1038/srep19029
10.1186/s12864-018-4853-0
10.1111/nph.18015
10.1111/nph.18935
10.1038/s41396-021-01112-8
10.1002/9781118951446.ch25
10.1007/s13199-012-0208-9
10.1111/1462-2920.14959
10.1111/nph.14962
10.1007/s00425-008-0877-z
10.1007/s00572-004-0302-9
10.5598/imafungus.2017.08.02.03
10.1016/j.mib.2023.102357
10.1093/ve/vead064
10.1099/mgen.0.000810
10.1186/s12864-020-06806-5
10.1105/tpc.18.00676
10.1016/j.cub.2011.06.044
10.1038/s41396-018-0331-6
10.1371/journal.pone.0039597
10.1111/nph.17661
10.1007/s00572-021-01042-5
10.1111/nph.15076
10.1038/s41586-018-0312-y
10.1038/s41396-020-0667-6
10.1101/2023.08.02.551648
10.1111/nph.13423
10.1111/j.1365-313X.2011.04810.x
10.1111/j.1469-8137.2008.02613.x
10.1111/nph.15257
10.3389/fmicb.2023.1180319
10.1371/journal.pgen.1007742
10.2307/2389702
10.1016/j.cub.2022.06.057
10.1038/s41467-020-18795-w
10.1126/sciadv.add4468
10.1038/s41586-018-0386-6
10.1046/j.1365-2540.2000.00668.x
10.3390/microorganisms9122612
10.1186/s40168-023-01650-7
10.4161/15592324.2014.977707
10.1111/nph.17842
10.1111/nph.19400
10.1007/s00572-009-0274-x
10.1111/nph.18016
10.1111/1365-2745.13521
10.1038/s41467-023-37937-4
10.1007/s11104-023-06045-z
10.1111/j.1469-8137.2009.03069.x
10.1111/1365-2435.12976
10.1111/nph.19471
10.1046/j.1469-8137.2001.00010.x
10.1038/s41396-021-00920-2
10.1016/j.tree.2007.10.008
10.1016/B978-0-12-804312-7.00023-1
10.1094/MPMI-01-19-0007-R
10.1111/nph.17892
10.1111/tpj.15892
10.1146/annurev-ecolsys-012021-114902
10.1111/nph.15308
10.1111/nph.18281
10.1016/j.tplants.2021.10.008
10.1111/nph.15613
10.1038/s41564-022-01228-3
10.1111/nph.18914
10.1111/nph.19259
10.1038/s41396-018-0342-3
10.1038/nmicrobiol.2016.33
10.1126/science.adf2027
10.1038/s41579-023-00876-4
10.1038/s41467-019-13019-2
10.1111/nph.18642
10.1111/nph.17858
10.1016/j.tplants.2023.08.010
10.1002/9781118951446.ch12
10.1093/dnares/dsac053
10.1126/science.1256688
10.1093/nar/gkt1183
10.1038/ncomms12662
10.1038/s41558-023-01627-2
10.1038/s41396-018-0059-3
10.1111/j.1469-8137.2010.03277.x
10.1038/s41559-022-01799-8
10.1111/j.1461-0248.2009.01430.x
10.1111/j.1461-0248.2007.01139.x
10.3389/fpls.2019.01357
10.1038/nrmicro.2016.59
10.3852/16-042
10.1038/s41477-019-0469-x
10.1111/nph.14971
10.1111/j.1469-8137.2007.02058.x
10.1111/j.1469-8137.2011.03688.x
10.1073/pnas.1515426112
10.1038/s41559-018-0710-4
10.1111/j.1469-8137.2007.02191.x
10.1111/nph.18897
10.1111/ele.12115
10.1016/j.isci.2022.104636
10.1038/s41559-019-1084-y
10.1111/nph.14976
10.1111/nph.18996
10.1111/nph.14598
10.1038/s41467-023-37428-6
10.1126/science.aab1161
ContentType Journal Article
Copyright 2024 The Authors. © 2024 New Phytologist Foundation
2024 The Authors. New Phytologist © 2024 New Phytologist Foundation.
Copyright © 2024 New Phytologist Trust
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2024 The Authors. © 2024 New Phytologist Foundation
– notice: 2024 The Authors. New Phytologist © 2024 New Phytologist Foundation.
– notice: Copyright © 2024 New Phytologist Trust
– notice: Distributed under a Creative Commons Attribution 4.0 International License
CorporateAuthor Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). Advanced Light Source (ALS)
CorporateAuthor_xml – name: Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). Advanced Light Source (ALS)
DBID AAYXX
CITATION
NPM
7QO
7SN
8FD
C1K
F1W
FR3
H95
L.G
M7N
P64
RC3
7X8
7S9
L.6
1XC
OTOTI
DOI 10.1111/nph.19541
DatabaseName CrossRef
PubMed
Biotechnology Research Abstracts
Ecology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
Hyper Article en Ligne (HAL)
OSTI.GOV
DatabaseTitle CrossRef
PubMed
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Genetics Abstracts
Biotechnology Research Abstracts
Technology Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Ecology Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
Aquatic Science & Fisheries Abstracts (ASFA) Professional
MEDLINE - Academic


CrossRef
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Botany
Biology
Ecology
Forestry
EISSN 1469-8137
EndPage 1506
ExternalDocumentID 2582727
oai_HAL_hal_04593098v1
38297461
10_1111_nph_19541
NPH19541
Genre reviewArticle
Journal Article
Review
GrantInformation_xml – fundername: Agence Nationale de la Recherche
  funderid: ANR‐12‐LABX‐ARBRE‐01
– fundername: Huazhong Agricultural University
– fundername: Office of Science of the US Department of Energy
  funderid: DE‐AC02‐05CH11231
– fundername: Beijing Advanced Innovation Center for Tree Breeding by Molecular Design
– fundername: Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung
  funderid: 310030_188799; 40IN40_215832
– fundername: Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung
  grantid: 40IN40_215832
– fundername: Office of Science of the US Department of Energy
  grantid: DE-AC02-05CH11231
– fundername: Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung
  grantid: 310030_188799
– fundername: Agence Nationale de la Recherche
  grantid: ANR-12-LABX-ARBRE-01
GroupedDBID ---
-~X
.3N
.GA
.Y3
05W
0R~
10A
123
1OC
24P
29N
2WC
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5HH
5LA
5VS
66C
702
79B
7PT
8-0
8-1
8-3
8-4
8-5
85S
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AAHKG
AAHQN
AAISJ
AAKGQ
AAMNL
AANLZ
AAONW
AASGY
AASVR
AAXRX
AAYCA
AAZKR
ABBHK
ABCQN
ABCUV
ABEFU
ABEML
ABLJU
ABPLY
ABPVW
ABTLG
ABVKB
ABXSQ
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACHIC
ACNCT
ACPOU
ACQPF
ACSCC
ACSTJ
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADULT
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUPB
AEUQT
AEUYR
AFAZZ
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AHXOZ
AILXY
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
AQVQM
AS~
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BAWUL
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CAG
CBGCD
COF
CS3
CUYZI
D-E
D-F
DCZOG
DEVKO
DIK
DOOOF
DPXWK
DR2
DRFUL
DRSTM
E3Z
EBS
ECGQY
EJD
ESX
F00
F01
F04
F5P
FIJ
G-S
G.N
GODZA
GTFYD
H.T
H.X
HF~
HGD
HGLYW
HQ2
HTVGU
HZI
HZ~
IHE
IPNFZ
IPSME
IX1
J0M
JAAYA
JBMMH
JBS
JEB
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSODD
JST
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LPU
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NEJ
NF~
O66
O9-
OIG
OK1
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
R.K
RCA
RIG
ROL
RX1
SA0
SUPJJ
TN5
TR2
UB1
W8V
W99
WBKPD
WHG
WIH
WIK
WIN
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XOL
YNT
YQT
YXE
ZCG
ZZTAW
~02
~IA
~KM
~WT
AAMMB
AAYXX
ABGDZ
ABSQW
ADXHL
AEFGJ
AEYWJ
AGHNM
AGUYK
AGXDD
AGYGG
AIDQK
AIDYY
CITATION
NPM
7QO
7SN
8FD
C1K
F1W
FR3
H95
L.G
M7N
P64
RC3
7X8
7S9
L.6
1XC
OTOTI
ID FETCH-LOGICAL-c4821-39959fb7c44b0e0357ef4839f7e64c05b8fa1ab308438a117a8bc71c066970833
IEDL.DBID DR2
ISSN 0028-646X
1469-8137
IngestDate Mon Aug 25 02:21:18 EDT 2025
Sat Aug 23 06:31:12 EDT 2025
Fri Jul 11 18:33:51 EDT 2025
Fri Jul 11 07:25:13 EDT 2025
Wed Aug 27 12:53:55 EDT 2025
Mon Jul 21 05:56:48 EDT 2025
Wed Aug 27 16:27:54 EDT 2025
Thu Apr 24 23:09:24 EDT 2025
Wed Jan 22 17:19:22 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords population genetics
ericoid mycorrhizal fungi
biodiversity
plant-microbe interactions
arbuscular mycorrhizal fungi
ectomycorrhizal fungi
mutualism
orchid mycorrhizal fungi
Language English
License 2024 The Authors. New Phytologist © 2024 New Phytologist Foundation.
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4821-39959fb7c44b0e0357ef4839f7e64c05b8fa1ab308438a117a8bc71c066970833
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
USDOE
AC02-05CH11231
None
ORCID 0000-0001-7040-1924
0000-0002-4737-3715
0000000247373715
0000000170401924
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/nph.19541
PMID 38297461
PQID 3044848555
PQPubID 2026848
PageCount 21
ParticipantIDs osti_scitechconnect_2582727
hal_primary_oai_HAL_hal_04593098v1
proquest_miscellaneous_3153562172
proquest_miscellaneous_2921116419
proquest_journals_3044848555
pubmed_primary_38297461
crossref_citationtrail_10_1111_nph_19541
crossref_primary_10_1111_nph_19541
wiley_primary_10_1111_nph_19541_NPH19541
PublicationCentury 2000
PublicationDate May 2024
PublicationDateYYYYMMDD 2024-05-01
PublicationDate_xml – month: 05
  year: 2024
  text: May 2024
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Lancaster
– name: United States
PublicationTitle The New phytologist
PublicationTitleAlternate New Phytol
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Wiley
Publisher_xml – name: Wiley Subscription Services, Inc
– name: Wiley
References 2018; 560
2023; 75
2019b; 366
2004; 164
2018; 561
2010; 13
2019; 10
2019; 13
2004; 7
2010; 464
2010; 187
2010; 188
2010; 185
2023; 104
2016; 30
2022; 25
2020; 14
2020; 13
2011; 190
2020; 11
1993; 124
1998; 396
1993; 363
2022; 27
2001; 149
1997; 388
2018; 9
2010; 20
1986; 103
2018; 2
2009; 97
2018; 218
2018; 217
2007; 176
2013; 199
2008; 23
2022; 32
2013; 110
1999; 50
2018; 32
2010; 5
2012; 21
2024; 29
1998; 13
2022; 111
2022; 233
2018; 220
2019; 9
2019; 5
2010; 327
2019; 32
2002; 417
2022; 119
2021; 52
2022; 236
2016; 14
2019; 222
2022; 234
2014; 42
2022; 235
2017; 549
2023; 40
2016; 6
2016; 7
2001; 151
2016; 1
2016; 3
2001; 152
2018; 359
2022; 6
2022; 7
2019a; 222
2015; 112
2022; 8
2011; 92
2022; 13
2000; 84
2022; 10
2020; 22
2018; 94
2020; 21
2022; 11
2018; 12
2005; 15
2016; 29
2009; 229
2022; 16
2023; 50
2018; 14
2003; 23
2020; 29
2021; 24
2017; 8
2023; 30
2021; 26
2023; 380
2009; 40
2023; 33
2021; 23
2013; 22
2016; 108
2023; 7
2023; 8
2023; 9
2005; 137
2019; 366
2022; 63
2023a
2015; 349
2012; 58
1999; 80
2017; 356
2014; 175
2023; 21
2020; 6
2015; 47
2023; 24
2020; 4
2013; 14
2021; 31
1991; 47
2013; 16
2021; 596
2023; 29
2020; 47
2016; 352
2011; 21
2021; 230
2021; 232
2001; 11
2014; 9
2012; 69
2011; 27
2012; 336
2014; 203
2021; 9
2023b; 238
2021; 109
2015; 282
2015; 6
2023; 13
2023; 14
2023; 11
2023; 99
2004; 82
2023; 241
2022; 50
2021; 229
2020; 225
2020; 228
2023; 489
2015; 208
2008; 11
2015; 207
2015; 206
2015; 205
2014; 111
1988; 2
2008; 180
2021; 15
2018; 2018
2021; 12
2023
2005; 165
2006; 87
2017; 16
2005; 168
2015; 20
2017; 11
2021; 19
2023; 238
2017
2016
2023; 239
1998; 30
2008; 452
2012; 7
2014; 72
2014; 346
e_1_2_13_120_1
e_1_2_13_143_1
e_1_2_13_166_1
e_1_2_13_189_1
e_1_2_13_20_1
e_1_2_13_66_1
e_1_2_13_43_1
e_1_2_13_181_1
e_1_2_13_226_1
e_1_2_13_8_1
e_1_2_13_81_1
e_1_2_13_92_1
e_1_2_13_117_1
e_1_2_13_214_1
e_1_2_13_17_1
e_1_2_13_154_1
e_1_2_13_131_1
e_1_2_13_32_1
e_1_2_13_55_1
e_1_2_13_78_1
e_1_2_13_177_1
e_1_2_13_215_1
e_1_2_13_192_1
e_1_2_13_70_1
e_1_2_13_203_1
e_1_2_13_105_1
e_1_2_13_88_1
e_1_2_13_128_1
e_1_2_13_29_1
e_1_2_13_165_1
e_1_2_13_142_1
e_1_2_13_21_1
e_1_2_13_44_1
e_1_2_13_67_1
e_1_2_13_104_1
e_1_2_13_188_1
e_1_2_13_9_1
e_1_2_13_82_1
e_1_2_13_180_1
e_1_2_13_91_1
Zhang C (e_1_2_13_230_1) 2023
e_1_2_13_116_1
e_1_2_13_213_1
e_1_2_13_99_1
e_1_2_13_139_1
e_1_2_13_18_1
e_1_2_13_130_1
e_1_2_13_153_1
e_1_2_13_79_1
e_1_2_13_10_1
e_1_2_13_56_1
e_1_2_13_115_1
e_1_2_13_176_1
e_1_2_13_199_1
e_1_2_13_33_1
e_1_2_13_71_1
e_1_2_13_191_1
e_1_2_13_225_1
e_1_2_13_202_1
e_1_2_13_127_1
e_1_2_13_122_1
e_1_2_13_68_1
e_1_2_13_45_1
e_1_2_13_145_1
e_1_2_13_168_1
e_1_2_13_205_1
e_1_2_13_22_1
e_1_2_13_60_1
e_1_2_13_83_1
e_1_2_13_183_1
e_1_2_13_228_1
e_1_2_13_6_1
e_1_2_13_160_1
e_1_2_13_90_1
e_1_2_13_231_1
e_1_2_13_98_1
e_1_2_13_119_1
e_1_2_13_19_1
e_1_2_13_133_1
e_1_2_13_179_1
e_1_2_13_57_1
e_1_2_13_110_1
e_1_2_13_217_1
e_1_2_13_11_1
e_1_2_13_34_1
e_1_2_13_156_1
e_1_2_13_171_1
e_1_2_13_72_1
e_1_2_13_194_1
e_1_2_13_220_1
e_1_2_13_107_1
e_1_2_13_121_1
e_1_2_13_144_1
e_1_2_13_46_1
e_1_2_13_69_1
e_1_2_13_23_1
e_1_2_13_167_1
e_1_2_13_204_1
e_1_2_13_84_1
e_1_2_13_182_1
e_1_2_13_227_1
e_1_2_13_7_1
e_1_2_13_61_1
e_1_2_13_97_1
e_1_2_13_118_1
e_1_2_13_132_1
e_1_2_13_155_1
e_1_2_13_178_1
e_1_2_13_35_1
e_1_2_13_58_1
e_1_2_13_216_1
e_1_2_13_12_1
e_1_2_13_170_1
e_1_2_13_193_1
e_1_2_13_73_1
e_1_2_13_50_1
e_1_2_13_106_1
e_1_2_13_129_1
e_1_2_13_24_1
e_1_2_13_47_1
e_1_2_13_185_1
e_1_2_13_207_1
e_1_2_13_101_1
e_1_2_13_147_1
e_1_2_13_124_1
e_1_2_13_85_1
e_1_2_13_62_1
e_1_2_13_162_1
e_1_2_13_233_1
e_1_2_13_96_1
e_1_2_13_210_1
e_1_2_13_13_1
e_1_2_13_36_1
e_1_2_13_59_1
e_1_2_13_219_1
e_1_2_13_112_1
e_1_2_13_158_1
e_1_2_13_196_1
e_1_2_13_135_1
e_1_2_13_51_1
e_1_2_13_74_1
e_1_2_13_173_1
e_1_2_13_150_1
e_1_2_13_222_1
e_1_2_13_4_1
e_1_2_13_109_1
e_1_2_13_25_1
e_1_2_13_48_1
e_1_2_13_100_1
e_1_2_13_169_1
e_1_2_13_206_1
e_1_2_13_123_1
e_1_2_13_86_1
e_1_2_13_146_1
e_1_2_13_40_1
e_1_2_13_63_1
e_1_2_13_184_1
e_1_2_13_229_1
e_1_2_13_161_1
e_1_2_13_232_1
e_1_2_13_95_1
e_1_2_13_14_1
e_1_2_13_111_1
e_1_2_13_37_1
e_1_2_13_218_1
e_1_2_13_134_1
e_1_2_13_157_1
e_1_2_13_75_1
e_1_2_13_52_1
e_1_2_13_172_1
e_1_2_13_195_1
e_1_2_13_221_1
e_1_2_13_5_1
e_1_2_13_108_1
e_1_2_13_49_1
e_1_2_13_141_1
e_1_2_13_164_1
e_1_2_13_209_1
e_1_2_13_26_1
e_1_2_13_126_1
e_1_2_13_87_1
e_1_2_13_187_1
e_1_2_13_64_1
e_1_2_13_103_1
e_1_2_13_41_1
e_1_2_13_94_1
e_1_2_13_138_1
e_1_2_13_212_1
e_1_2_13_15_1
e_1_2_13_38_1
e_1_2_13_152_1
e_1_2_13_137_1
e_1_2_13_175_1
e_1_2_13_53_1
e_1_2_13_76_1
e_1_2_13_114_1
e_1_2_13_198_1
e_1_2_13_30_1
e_1_2_13_190_1
e_1_2_13_224_1
e_1_2_13_2_1
e_1_2_13_201_1
e_1_2_13_149_1
e_1_2_13_27_1
e_1_2_13_163_1
e_1_2_13_208_1
e_1_2_13_102_1
e_1_2_13_125_1
e_1_2_13_148_1
e_1_2_13_186_1
e_1_2_13_42_1
e_1_2_13_65_1
e_1_2_13_80_1
e_1_2_13_140_1
e_1_2_13_93_1
e_1_2_13_234_1
e_1_2_13_211_1
e_1_2_13_39_1
e_1_2_13_16_1
e_1_2_13_113_1
e_1_2_13_159_1
e_1_2_13_174_1
e_1_2_13_197_1
e_1_2_13_31_1
e_1_2_13_77_1
Merckx V (e_1_2_13_136_1) 2023
e_1_2_13_54_1
e_1_2_13_151_1
e_1_2_13_223_1
e_1_2_13_3_1
e_1_2_13_89_1
e_1_2_13_200_1
e_1_2_13_28_1
References_xml – volume: 359
  start-page: 320
  year: 2018
  end-page: 325
  article-title: A global atlas of the dominant bacteria found in soil
  publication-title: Science
– start-page: 405
  year: 2016
  end-page: 419
– volume: 12
  start-page: 1775
  year: 2021
  article-title: Transcriptome profiling reveals differential gene expression of secreted proteases and highly specific gene repertoires involved in symbioses
  publication-title: Frontiers in Plant Science
– volume: 180
  start-page: 296
  year: 2008
  end-page: 310
  article-title: The genome: a symbiont blueprint decoded
  publication-title: New Phytologist
– volume: 238
  start-page: 2607
  year: 2023
  end-page: 2620
  article-title: Effects of nitrogen deposition on carbon and nutrient cycling along a natural soil acidity gradient as revealed by metagenomics
  publication-title: New Phytologist
– volume: 222
  start-page: 1584
  year: 2019
  end-page: 1598
  article-title: Comparative genomics of , , and highlights specific genetic features in Glomeromycotina
  publication-title: New Phytologist
– volume: 16
  start-page: 2174
  year: 2017
  end-page: 2187
  article-title: iTRAQ and RNA‐seq analyses provide new insights into regulation mechanism of symbiotic germination of seeds (Orchidaceae)
  publication-title: Journal of Proteome Research
– volume: 80
  start-page: 1187
  year: 1999
  end-page: 1195
  article-title: Mycorrhizae influence plant community structure and diversity in tallgrass prairie
  publication-title: Ecology
– volume: 11
  start-page: 217
  year: 2023
  article-title: Stable functional structure despite high taxonomic variability across fungal communities in soils of old‐growth montane forests
  publication-title: Microbiome
– volume: 14
  start-page: 2046
  year: 2020
  end-page: 2059
  article-title: Uncovering the hidden diversity of litter‐decomposition mechanisms in mushroom‐forming fungi
  publication-title: ISME Journal
– volume: 380
  start-page: 835
  year: 2023
  end-page: 840
  article-title: Shifting microbial communities can enhance tree tolerance to changing climates
  publication-title: Science
– volume: 10
  year: 2019
  article-title: Seed coating: a tool for delivering beneficial microbes to agricultural crops
  publication-title: Frontiers in Plant Science
– volume: 103
  start-page: 143
  year: 1986
  end-page: 156
  article-title: The structure and function of the vegetative mycelium of ectomycorrhizal plants
  publication-title: New Phytologist
– volume: 109
  start-page: 3171
  year: 2021
  end-page: 3181
  article-title: Symbiotic soil fungi enhance resistance and resilience of an experimental grassland to drought and nitrogen deposition
  publication-title: Journal of Ecology
– volume: 15
  start-page: 87
  year: 2005
  end-page: 91
  article-title: Genetic analysis of phenotypic variation for ectomycorrhiza formation in an interspecific F1 poplar full‐sib family
  publication-title: Mycorrhiza
– volume: 69
  start-page: 510
  year: 2012
  end-page: 528
  article-title: Arbuscule‐containing and non‐colonized cortical cells of mycorrhizal roots undergo extensive and specific reprogramming during arbuscular mycorrhizal development
  publication-title: The Plant Journal
– volume: 8
  start-page: 373
  year: 2022
  end-page: 388
  article-title: Genomes of leafy and leafless orchids illuminate the evolution of mycoheterotrophy
  publication-title: Nature Plants
– volume: 363
  start-page: 67
  year: 1993
  end-page: 69
  article-title: Origin and diversification of endomycorrhizal fungi and coincidence with vascular land plants
  publication-title: Nature
– volume: 119
  year: 2022
  article-title: The ectomycorrhizal fungus encodes a microRNA involved in cross‐kingdom gene silencing during symbiosis
  publication-title: Proceedings of the National Academy of Sciences, USA
– volume: 29
  start-page: 2050
  year: 2023
  end-page: 2066
  article-title: Environmental microbiome engineering for the mitigation of climate change
  publication-title: Global Change Biology
– volume: 23
  start-page: 2004
  year: 2021
  end-page: 2020
  article-title: Intra‐species genetic variability drives carbon metabolism and symbiotic host interactions in the ectomycorrhizal fungus
  publication-title: Environmental Microbiology
– volume: 15
  start-page: 2276
  year: 2021
  end-page: 2288
  article-title: Conserved and reproducible bacterial communities associate with extraradical hyphae of arbuscular mycorrhizal fungi
  publication-title: ISME Journal
– volume: 32
  start-page: 126
  year: 2018
  end-page: 135
  article-title: Fungal inoculants in the field: is the reward greater than the risk?
  publication-title: Functional Ecology
– volume: 238
  start-page: 859
  year: 2023b
  end-page: 873
  article-title: A core microbiome in the hyphosphere of arbuscular mycorrhizal fungi has functional significance in organic phosphorus mineralization
  publication-title: New Phytologist
– volume: 10
  start-page: 2386
  year: 2019
  end-page: 2410
  article-title: The ectomycorrhizal fungus produces lipochitooligosaccharides and uses the common symbiosis pathway to colonize roots
  publication-title: Plant Cell
– volume: 239
  start-page: 19
  year: 2023
  end-page: 28
  article-title: Re‐examining the evidence for the mother tree hypothesis–resource sharing among trees via ectomycorrhizal networks
  publication-title: New Phytologist
– volume: 5
  year: 2010
  article-title: Inferring regulatory networks from expression data using treebased methods
  publication-title: PLoS ONE
– volume: 236
  start-page: 210
  year: 2022
  end-page: 221
  article-title: Routes to roots: direct evidence of water transport by arbuscular mycorrhizal fungi to host plants
  publication-title: New Phytologist
– volume: 25
  start-page: 7
  year: 2022
  article-title: Establishing a quality management framework for commercial inoculants containing arbuscular mycorrhizal fungi
  publication-title: iScience
– volume: 9
  start-page: 2612
  year: 2021
  article-title: A transcriptomic atlas of the ectomycorrhizal fungus
  publication-title: Microorganisms
– volume: 84
  start-page: 294
  year: 2000
  end-page: 302
  article-title: Population dynamics of the symbiotic mushroom : mycelial persistence and inbreeding
  publication-title: Heredity
– volume: 47
  start-page: 410
  year: 2015
  end-page: 415
  article-title: Convergent losses of decay mechanisms and rapid turnover of symbiosis genes in mycorrhizal mutualists
  publication-title: Nature Genetics
– volume: 220
  start-page: 1092
  year: 2018
  end-page: 1107
  article-title: Little evidence that farmers should consider abundance or diversity of arbuscular mycorrhizal fungi when managing crops
  publication-title: New Phytologist
– volume: 19
  start-page: 2501
  year: 2021
  end-page: 2516
  article-title: The genome of revealed the evolution of orchid traits
  publication-title: Plant Biotechnology Journal
– volume: 222
  start-page: 511
  year: 2019
  end-page: 525
  article-title: Phylogenomics of Endogonaceae and evolution of mycorrhizas within Mucoromycota
  publication-title: New Phytologist
– volume: 217
  start-page: 1213
  year: 2018
  end-page: 1229
  article-title: Comparative genomics and transcriptomics depict ericoid mycorrhizal fungi as versatile saprotrophs and plant mutualists
  publication-title: New Phytologist
– volume: 108
  start-page: 1028
  year: 2016
  end-page: 1046
  article-title: A phylum‐level phylogenetic classification of zygomycete fungi based on genome‐scale data
  publication-title: Mycologia
– volume: 50
  start-page: 715
  year: 2023
  end-page: 729
  article-title: The diversity of mycorrhiza‐associated fungi and trees shapes subtropical mountain forest ecosystem functioning
  publication-title: Journal of Biogeography
– volume: 366
  start-page: 480
  year: 2019
  end-page: 485
  article-title: Global distribution of earthworm diversity
  publication-title: Science
– volume: 9
  start-page: 471
  year: 2019
  article-title: Seed coating with arbuscular mycorrhizal fungi for improved field production of chickpea
  publication-title: Agronomy
– volume: 16
  start-page: 1420
  year: 2022
  end-page: 1429
  article-title: Ectomycorrhizal fungi mediate belowground carbon transfer between pines and oaks
  publication-title: ISME Journal
– volume: 6
  start-page: 19029
  year: 2016
  article-title: The  Lindl. genome sequence provides insights into polysaccharide synthase, floral development and adaptive evolution
  publication-title: Scientific Reports
– volume: 110
  start-page: 20117
  year: 2013
  end-page: 20122
  article-title: Genome of an arbuscular mycorrhizal fungus provides insight into the oldest plant symbiosis
  publication-title: Proceedings of the National Academy of Sciences, USA
– volume: 21
  start-page: 2116
  year: 2012
  end-page: 2129
  article-title: Beech roots are simultaneously colonized by multiple genets of the ectomycorrhizal fungus clustered in two genetic groups
  publication-title: Molecular Ecology
– volume: 199
  start-page: 176
  year: 2013
  end-page: 187
  article-title: Fine‐scale spatial genetic structure of the black truffle ( ) investigated with neutral microsatellites and functional mating type genes
  publication-title: New Phytologist
– volume: 13
  start-page: 15
  year: 1998
  end-page: 20
  article-title: The land flora: a phototroph‐fungus partnership?
  publication-title: Trends in Ecology & Evolution
– volume: 346
  start-page: 6213
  year: 2014
  article-title: Global diversity and geography of soil fungi
  publication-title: Science
– volume: 14
  start-page: 1706
  year: 2023
  article-title: Soil contamination in nearby natural areas mirrors that in urban greenspaces worldwide
  publication-title: Nature Communications
– volume: 24
  start-page: 9125
  year: 2023
  article-title: Characterization of arbuscular mycorrhizal effector proteins
  publication-title: International Journal of Molecular Sciences
– volume: 230
  start-page: 1142
  year: 2021
  end-page: 1155
  article-title: Nuclear‐targeted effector of interferes with histone 2B mono‐ubiquitination to promote arbuscular mycorrhization
  publication-title: New Phytologist
– volume: 21
  start-page: 1204
  year: 2011
  end-page: 1209
  article-title: A secreted fungal effector of promotes symbiotic biotrophy
  publication-title: Current Biology
– volume: 40
  start-page: 699
  year: 2009
  end-page: 715
  article-title: Mycorrhizal symbioses and plant invasions
  publication-title: Annual Review of Ecology, Evolution, and Systematics
– start-page: 356
  year: 2023
– volume: 111
  start-page: 1340
  year: 2022
  end-page: 1353
  article-title: Haplotype‐resolved genome assembly of to elucidate medicinal value
  publication-title: The Plant Journal
– volume: 352
  start-page: 342
  year: 2016
  end-page: 344
  article-title: Belowground carbon trade among tall trees in a temperate forest
  publication-title: Science
– volume: 6
  start-page: 1145
  year: 2022
  end-page: 1154
  article-title: Agricultural management and pesticide use reduce the functioning of beneficial plant symbionts
  publication-title: Nature Ecology & Evolution
– volume: 185
  start-page: 543
  year: 2010
  end-page: 553
  article-title: Architecture of the wood‐wide web: spp.genets link multiple Douglas‐fir cohorts
  publication-title: New Phytologist
– volume: 111
  start-page: 8299
  year: 2014
  end-page: 8304
  article-title: Effector MiSSP7 of the mutualistic fungus stabilizes the Populus JAZ6 protein and represses jasmonic acid‐responsive genes
  publication-title: Proceedings of the National Academy of Sciences, USA
– volume: 97
  start-page: 1139
  year: 2009
  end-page: 1150
  article-title: Socialism in soil? The importance of mycorrhizal fungal networks for facilitation in natural ecosystems
  publication-title: Journal of Ecology
– volume: 7
  year: 2022
  article-title: Transcriptional landscape of ectomycorrhizal fungi and their host provides insight into N uptake from forest soil
  publication-title: mSystems
– year: 2023
  article-title: Ectomycorrhizal fungi integrate nitrogen mobilisation and mineral weathering in boreal forest soil
  publication-title: New Phytologist
– volume: 31
  start-page: 559
  year: 2021
  end-page: 576
  article-title: Ancient lineages of arbuscular mycorrhizal fungi provide little plant benefit
  publication-title: Mycorrhiza
– volume: 24
  start-page: 1193
  year: 2021
  end-page: 1204
  article-title: A tipping point in carbon storage when forest expands into tundra is related to mycorrhizal recycling of nitrogen
  publication-title: Ecology Letters
– volume: 33
  start-page: R560
  year: 2023
  end-page: R573
  article-title: Mycorrhizal mycelium as a global carbon pool
  publication-title: Current Biology
– volume: 349
  start-page: 970
  year: 2015
  end-page: 973
  article-title: Fungal Symbionts. Global assessment of arbuscular mycorrhizal fungus diversity reveals very low endemism
  publication-title: Science
– volume: 21
  start-page: 399
  year: 2020
  article-title: Oak displays common local but specific distant gene regulation responses to different mycorrhizal fungi
  publication-title: BMC Genomics
– volume: 218
  start-page: 322
  year: 2018
  end-page: 334
  article-title: Impacts of domestication on the arbuscular mycorrhizal symbiosis of 27 crop species
  publication-title: New Phytologist
– volume: 205
  start-page: 1406
  year: 2015
  end-page: 1423
  article-title: Mycorrhizal ecology and evolution: the past, the present, and the future
  publication-title: New Phytologist
– volume: 230
  start-page: 774
  year: 2021
  end-page: 792
  article-title: Comparative genomics reveals dynamic genome evolution in host specialist ectomycorrhizal fungi
  publication-title: New Phytologist
– volume: 388
  start-page: 579
  year: 1997
  end-page: 582
  article-title: Net transfer of carbon between ectomycorrhizal tree species in the field
  publication-title: Nature
– volume: 99
  year: 2023
  article-title: Acquisition of host‐derived carbon in biomass of the ectomycorrhizal fungus is correlated to fungal carbon demand and plant defences
  publication-title: FEMS Microbiology Ecology
– volume: 47
  start-page: 1994
  year: 2020
  end-page: 2001
  article-title: Global mycorrhizal fungal range sizes vary within and among mycorrhizal guilds but are not correlated with dispersal traits
  publication-title: Journal of Biogeography
– volume: 14
  start-page: 434
  year: 2016
  end-page: 447
  article-title: Dimensions of biodiversity in the earth mycobiome
  publication-title: Nature Reviews Microbiology
– volume: 20
  start-page: 217
  year: 2010
  end-page: 263
  article-title: Ectomycorrhizal lifestyle in fungi: global diversity, distribution, and evolution of phylogenetic lineages
  publication-title: Mycorrhiza
– volume: 336
  start-page: 1715
  year: 2012
  end-page: 1719
  article-title: The Paleozoic origin of enzymatic lignin decomposition reconstructed from 31 fungal genomes
  publication-title: Science
– volume: 32
  start-page: 1291
  year: 2019
  end-page: 1302
  article-title: Protein arginine methyltransferase expression affects ectomycorrhizal symbiosis and the regulation of hormone signaling pathways
  publication-title: Molecular Plant–Microbe Interactions
– volume: 233
  start-page: 2294
  year: 2022
  end-page: 2309
  article-title: Evolutionary transition to the ectomycorrhizal habit in the genomes of a hyperdiverse lineage of mushroom‐forming fungi
  publication-title: New Phytologist
– volume: 187
  start-page: 475
  year: 2010
  end-page: 484
  article-title: Co‐invasion by and its mycorrhizal fungi
  publication-title: New Phytologist
– volume: 29
  start-page: 2321
  year: 2020
  end-page: 2333
  article-title: Share the wealth: trees with greater ectomycorrhizal species overlap share more carbon
  publication-title: Molecular Ecology
– volume: 29
  start-page: 20
  year: 2024
  end-page: 31
  article-title: Mother trees, altruistic fungi, and the perils of plant personification
  publication-title: Trends in Plant Sciences
– volume: 27
  start-page: 402
  year: 2022
  end-page: 411
  article-title: Arbuscular mycorrhizal fungi conducting the hyphosphere bacterial orchestra
  publication-title: Trends in Plant Science
– volume: 7
  start-page: 293
  year: 2004
  end-page: 303
  article-title: Arbuscular mycorrhizal fungi as support systems for seedling establishment in grassland
  publication-title: Ecology Letters
– volume: 13
  start-page: 394
  year: 2010
  end-page: 407
  article-title: A meta‐analysis of context‐dependency in plant response to inoculation with mycorrhizal fungi
  publication-title: Ecology Letters
– volume: 14
  start-page: 1377
  year: 2023
  article-title: Higher productivity in forests with mixed mycorrhizal strategies
  publication-title: Nature Communications
– volume: 5
  year: 2019
  article-title: Soil microbes drive phylogenetic diversity‐productivity relationships in a subtropical forest
  publication-title: Science Advances
– volume: 282
  year: 2015
  article-title: Orchid phylogenomics and multiple drivers of their extraordinary diversification
  publication-title: Proceedings of the Royal Society B: Biological Sciences
– volume: 233
  start-page: 1383
  year: 2022
  end-page: 1400
  article-title: Evolutionary innovations through gain and loss of genes in the ectomycorrhizal Boletales
  publication-title: New Phytologist
– year: 2023
  article-title: Modified source–sink dynamics govern resource exchange in ectomycorrhizal symbiosis
  publication-title: New Phytologist
– volume: 82
  start-page: 1016
  year: 2004
  end-page: 1045
  article-title: Networks of power and influence: the role of mycorrhizal mycelium in controlling plant communities and agroecosystem functioning
  publication-title: Canadian Journal of Botany
– volume: 13
  start-page: 228
  year: 2020
  article-title: GlobalFungi, a global database of fungal occurrences from high‐throughput‐sequencing metabarcoding studies
  publication-title: Scientific Data
– volume: 6
  year: 2015
  article-title: Comparative analysis of secretomes from ectomycorrhizal fungi with an emphasis on small‐secreted proteins
  publication-title: Frontiers in Microbiology
– volume: 218
  start-page: 335
  year: 2018
  end-page: 343
  article-title: Fenton reaction facilitates organic nitrogen acquisition by an ectomycorrhizal fungus
  publication-title: New Phytologist
– volume: 27
  start-page: 14
  year: 2011
  end-page: 22
  article-title: Blurred boundaries: lifestyle lessons from ectomycorrhizal fungal genomes
  publication-title: Trends in Genetics
– volume: 9
  year: 2014
  article-title: Plant and fungal gene expression in mycorrhizal protocorms of the orchid colonized by
  publication-title: Plant Signaling & Behavior
– volume: 31
  start-page: 1531
  year: 2021
  end-page: 1538
  article-title: Host identity influences nuclear dynamics in arbuscular mycorrhizal fungi
  publication-title: Current Biology
– volume: 32
  start-page: 3628
  year: 2022
  end-page: 3635
  article-title: Phylogenomic insights into the early diversification of fungi
  publication-title: Current Biology
– volume: 22
  start-page: 122
  year: 2020
  end-page: 141
  article-title: At the nexus of three kingdoms: the genome of the mycorrhizal fungus provides insights into plant, endobacterial and fungal interactions
  publication-title: Environmental Microbiology
– volume: 207
  start-page: 355
  year: 2015
  end-page: 367
  article-title: As old as the mountains: the radiations of the Ericaceae
  publication-title: New Phytologist
– volume: 14
  start-page: 306
  year: 2013
  article-title: A roadmap of cell‐type specific gene expression during sequential stages of the arbuscular mycorrhiza symbiosis
  publication-title: BMC Genomics
– volume: 7
  start-page: 501
  year: 2023
  end-page: 511
  article-title: Positive citation bias and overinterpreted results lead to misinformation on common mycorrhizal networks in forests
  publication-title: Nature Ecology & Evolution
– volume: 489
  start-page: 41
  year: 2023
  end-page: 88
  article-title: Arbuscular mycorrhiza: advances and retreats in our understanding of the ecological functioning of the mother of all root symbioses
  publication-title: Plant and Soil
– volume: 188
  start-page: 210
  year: 2010
  end-page: 222
  article-title: New insights into the mycorrhizal aggregate: spatial structure and co‐colonization of ectomycorrhizal and ericoid roots
  publication-title: New Phytologist
– volume: 112
  start-page: 13390
  year: 2015
  end-page: 13395
  article-title: Algal ancestor of land plants was preadapted for symbiosis
  publication-title: Proceedings of the National Academy of Sciences, USA
– year: 2023
  article-title: A tripartite bacterial‐fungal‐plant symbiosis in the mycorrhiza‐shaped microbiome drives plant growth and mycorrhization
  publication-title: Microbiome
– volume: 452
  start-page: 88
  year: 2008
  end-page: 92
  article-title: The genome of provides insights into mycorrhizal symbiosis
  publication-title: Nature
– volume: 12
  start-page: 1296
  year: 2018
  end-page: 1307
  article-title: Suppression of the activity of arbuscular mycorrhizal fungi by the soil microbiota
  publication-title: ISME Journal
– volume: 75
  year: 2023
  article-title: Lessons from arbuscular mycorrhizal fungal genomes
  publication-title: Current Opinion in Microbiology
– volume: 239
  start-page: 1127
  year: 2023
  end-page: 1139
  article-title: A pathogen effector FOLD diversified in symbiotic fungi
  publication-title: New Phytologist
– volume: 8
  year: 2022
  article-title: Early branching arbuscular mycorrhizal fungus carries a small and repeat‐poor genome compared to relatives in the Glomeromycotina
  publication-title: Microbial Genomics
– volume: 13
  start-page: 478
  year: 2023
  end-page: 483
  article-title: Increasing the number of stressors reduces soil ecosystem services worldwide
  publication-title: Nature Climate Change
– volume: 11
  start-page: 1
  year: 2023
  end-page: 18
  article-title: Mycorrhiza‐mediated recruitment of complete denitrifying reduces N O emissions from soil
  publication-title: Microbiome
– volume: 13
  year: 2022
  article-title: In‐depth analysis of genomes and functional genomics of orchid using cutting‐edge high‐throughput sequencing
  publication-title: Frontiers in Plant Science
– volume: 16
  start-page: 835
  year: 2013
  end-page: 843
  article-title: Underground signals carried through common mycelial networks warn neighbouring plants of aphid attack
  publication-title: Ecology Letters
– volume: 14
  year: 2018
  article-title: Metatranscriptomic study of common and host‐specific patterns of gene expression between pines and their symbiotic ectomycorrhizal fungi in the genus
  publication-title: PLoS Genetics
– volume: 9
  start-page: 2068
  year: 2018
  article-title: RiCRN1, a crinkler effector from the arbuscular mycorrhizal fungus , functions in arbuscule development
  publication-title: Frontiers in Microbiology
– volume: 137
  start-page: 1283
  year: 2005
  end-page: 1301
  article-title: Overlaps in the transcriptional profiles of roots inoculated with two different glomus fungi provide insights into the genetic program activated during arbuscular mycorrhiza
  publication-title: Plant Physiology
– volume: 190
  start-page: 818
  year: 2011
  end-page: 821
  article-title: Sequencing the fungal tree of life
  publication-title: New Phytologist
– volume: 47
  start-page: 376
  year: 1991
  end-page: 391
  article-title: Mycorrhizas in ecosystems
  publication-title: Experientia
– volume: 52
  start-page: 385
  year: 2021
  end-page: 404
  article-title: Evolution of the mode of nutrition in symbiotic and saprotrophic fungi in forest ecosystems
  publication-title: Annual Review of Ecology, Evolution, and Systematics
– volume: 233
  start-page: 1369
  year: 2022
  end-page: 1382
  article-title: Agricultural land‐use favours Mucoromycotinian, but not Glomeromycotinian, arbuscular mycorrhizal fungi across ten biomes
  publication-title: New Phytologist
– volume: 549
  start-page: 379
  year: 2017
  end-page: 383
  article-title: The genome and the evolution of orchids
  publication-title: Nature
– volume: 149
  start-page: 137
  year: 2001
  end-page: 146
  article-title: Can C‐labeled photosynthetic products move between seedlings linked by ectomycorrhizal mycelia?
  publication-title: New Phytologist
– volume: 11
  start-page: 296
  year: 2008
  end-page: 310
  article-title: The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems
  publication-title: Ecology Letters
– volume: 7
  year: 2012
  article-title: The irreversible loss of a decomposition pathway marks the single origin of an ectomycorrhizal symbiosis
  publication-title: PLoS ONE
– volume: 2
  start-page: 259
  year: 1988
  end-page: 262
  article-title: Relationship between mycorrhizal infection and diversity in vegetation: evidence from the Great Smoky Mountains
  publication-title: Functional Ecology
– volume: 203
  start-page: 245
  year: 2014
  end-page: 256
  article-title: Ectomycorrhizal species participate in enzymatic oxidation of humus in northern forest ecosystems
  publication-title: New Phytologist
– volume: 16
  start-page: 1327
  year: 2022
  end-page: 1336
  article-title: Forest tree growth is linked to mycorrhizal fungal composition and function across Europe
  publication-title: ISME Journal
– volume: 14
  year: 2023
  article-title: Isolation and identification of mycorrhizal helper bacteria of and their interaction with mycorrhizal fungi
  publication-title: Frontiers in Microbiology
– volume: 14
  year: 2023
  article-title: Structurally distinct mitoviruses: are they an ancestral lineage of the Mitoviridae exclusive to arbuscular mycorrhizal fungi (Glomeromycotina)?
  publication-title: MBio
– volume: 42
  start-page: D699
  year: 2014
  end-page: D704
  article-title: MycoCosm portal: gearing up for 1000 fungal genomes
  publication-title: Nucleic Acids Research
– volume: 1
  year: 2016
  article-title: Evidence for the sexual origin of heterokaryosis in arbuscular mycorrhizal fungi
  publication-title: Nature Microbiology
– volume: 58
  start-page: 29
  year: 2012
  end-page: 37
  article-title: Development of arbuscular mycorrhizal biotechnology and industry: current achievements and bottlenecks
  publication-title: Symbiosis
– volume: 175
  start-page: 313
  year: 2014
  end-page: 327
  article-title: Seedling mycorrhiza: a discussion of origin and evolution in Orchidaceae
  publication-title: Botanical Journal of the Linnean Society
– volume: 188
  start-page: 223
  year: 2010
  end-page: 241
  article-title: The online database MaarjAM reveals global and ecosystemic distribution patterns in arbuscular mycorrhizal fungi Glomeromycota
  publication-title: New Phytologist
– volume: 12
  year: 2021
  article-title: Potential effects of microplastic on arbuscular mycorrhizal fungi
  publication-title: Frontiers in Plant Science
– volume: 239
  start-page: 311
  year: 2023
  end-page: 324
  article-title: Trait‐based assembly of arbuscular mycorrhizal fungal communities determines soil carbon formation and retention
  publication-title: New Phytologist
– volume: 50
  start-page: D571
  year: 2022
  end-page: D577
  article-title: The carbohydrate‐active enzyme database: functions and literature
  publication-title: Nucleic Acids Research
– volume: 13
  start-page: 977
  year: 2019
  end-page: 988
  article-title: The soil organic matter decomposition mechanisms in ectomycorrhizal fungi are tuned for liberating soil organic nitrogen
  publication-title: ISME Journal
– volume: 7
  start-page: 12662
  year: 2016
  article-title: Ectomycorrhizal ecology is imprinted in the genome of the dominant symbiotic fungus
  publication-title: Nature Communications
– volume: 228
  start-page: 1939
  year: 2020
  end-page: 1952
  article-title: Metabolomic adjustments in the orchid mycorrhizal fungus during symbiosis with
  publication-title: New Phytologist
– year: 2023
  article-title: At the core of the endomycorrhizal symbioses: intracellular fungal structures in orchid and arbuscular mycorrhiza
  publication-title: New Phytologist
– volume: 26
  start-page: 111
  year: 2021
  end-page: 123
  article-title: Lineage‐specific genes and cryptic sex: parallels and differences between arbuscular mycorrhizal fungi and fungal pathogens
  publication-title: Trends in Plant Science
– volume: 3
  year: 2016
  article-title: MycoDB, a global database of plant response to mycorrhizal fungi
  publication-title: Scientific Data
– volume: 31
  start-page: 1570
  year: 2021
  end-page: 1577
  article-title: The genome of reveals ancestral traits linked to the emergence of the arbuscular mycorrhizal symbiosis
  publication-title: Current Biology
– volume: 16
  start-page: 676
  year: 2022
  end-page: 685
  article-title: Organic nitrogen utilisation by an arbuscular mycorrhizal fungus is mediated by specific soil bacteria and a protist
  publication-title: ISME Journal
– volume: 366
  start-page: 886
  year: 2019b
  end-page: 890
  article-title: The role of multiple global change factors in driving soil functions and microbial biodiversity
  publication-title: Science
– volume: 10
  start-page: 1897
  year: 2022
  article-title: The potential applications of commercial arbuscular mycorrhizal fungal inoculants and their ecological consequences
  publication-title: Microorganisms
– volume: 30
  start-page: 905
  year: 1998
  end-page: 916
  article-title: Contributions of interacting biological mechanisms to soil aggregate stabilization in restored prairie
  publication-title: Soil Biology and Biochemistry
– volume: 152
  start-page: 533
  year: 2001
  end-page: 542
  article-title: Populations of ectomycorrhizal and spp. show contrasting colonization patterns in a mixed forest
  publication-title: New Phytologist
– volume: 220
  start-page: 1047
  year: 2018
  end-page: 1058
  article-title: Nitrogen and phosphate metabolism in ectomycorrhizas
  publication-title: New Phytologist
– volume: 11
  start-page: 5125
  year: 2020
  article-title: Large‐scale genome sequencing of mycorrhizal fungi provides insights into the early evolution of symbiotic traits
  publication-title: Nature Communications
– volume: 20
  start-page: 283
  year: 2015
  end-page: 290
  article-title: The role of arbuscular mycorrhizas in reducing soil nutrient loss
  publication-title: Trends in Plant Science
– volume: 10
  start-page: 5077
  year: 2019
  article-title: Global mycorrhizal plant distribution linked to terrestrial carbon stocks
  publication-title: Nature Communications
– year: 2023
  article-title: A journey into the world of small RNAs in the arbuscular mycorrhizal symbiosis
  publication-title: New Phytologist
– volume: 356
  start-page: 819
  year: 2017
  article-title: Ancestral alliances: plant mutualistic symbioses with fungi and bacteria
  publication-title: Science
– volume: 164
  start-page: 527
  year: 2004
  end-page: 541
  article-title: Genet distribution of sporocarps and ectomycorrhizas of in a Japanese white pine plantation
  publication-title: New Phytologist
– volume: 94
  start-page: 411
  year: 2018
  end-page: 425
  article-title: Host‐ and stage‐dependent secretome of the arbuscular mycorrhizal fungus
  publication-title: The Plant Journal
– volume: 47
  start-page: 65
  year: 2015
  end-page: 72
  article-title: The genome sequence of the orchid
  publication-title: Nature Genetics
– volume: 222
  start-page: 1171
  year: 2019a
  end-page: 1175
  article-title: Why farmers should manage the arbuscular mycorrhizal symbiosis
  publication-title: New Phytologist
– volume: 9
  year: 2023
  article-title: Tree mycorrhizal association types control biodiversity‐productivity relationship in a subtropical forest
  publication-title: Science Advances
– volume: 8
  start-page: 2142
  year: 2023
  end-page: 2153
  article-title: Arbuscular mycorrhizal fungi heterokaryons have two nuclear populations with distinct roles in host–plant interactions
  publication-title: Nature Microbiology
– volume: 6
  year: 2020
  article-title: The global‐scale distributions of soil protists and their contributions to belowground systems.
  publication-title: Advances
– volume: 560
  start-page: 233
  year: 2018
  end-page: 237
  article-title: Structure and function of the global topsoil microbiome
  publication-title: Nature
– year: 2023
  article-title: Metatranscriptomics sheds light on the links between the functional traits of fungal guilds and ecological processes in forest soil ecosystems
  publication-title: New Phytologist
– volume: 208
  start-page: 79
  year: 2015
  end-page: 87
  article-title: Molecular signals required for the establishment and maintenance of ectomycorrhizal symbioses
  publication-title: New Phytologist
– volume: 151
  start-page: 717
  year: 2001
  end-page: 724
  article-title: The occurrence of anastomosis formation and nuclear exchange in intact arbuscular mycorrhizal networks
  publication-title: New Phytologist
– volume: 206
  start-page: 1196
  year: 2015
  end-page: 1206
  article-title: The importance of the microbiome of the plant holobiont
  publication-title: New Phytologist
– volume: 396
  start-page: 69
  year: 1998
  end-page: 72
  article-title: Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity
  publication-title: Nature
– volume: 4
  start-page: 210
  year: 2020
  end-page: 220
  article-title: Multiple elements of soil biodiversity drive ecosystem functions across biomes
  publication-title: Nature Ecology & Evolution
– volume: 9
  year: 2023
  article-title: A 1.5 Mb continuous endogenous viral region in the arbuscular mycorrhizal fungus,
  publication-title: Virus Evaluation
– volume: 217
  start-page: 68
  year: 2018
  end-page: 73
  article-title: Ectomycorrhizal fungi and the enzymatic liberation of nitrogen from soil organic matter: why evolutionary history matters
  publication-title: New Phytologist
– volume: 33
  start-page: 1
  year: 2023
  end-page: 14
  article-title: Niche differentiation of Mucoromycotinian and Glomeromycotinian arbuscular mycorrhizal fungi along a 2‐million‐year soil chronosequence
  publication-title: Mycorrhiza
– volume: 327
  start-page: 441
  year: 2010
  end-page: 453
  article-title: How does arbuscular mycorrhizal colonization vary with host plant genotype? An example based on maize ( ) germplasms
  publication-title: Plant and Soil
– volume: 92
  start-page: 296
  year: 2011
  end-page: 303
  article-title: Soil microbes drive the classic plant diversity–productivity pattern
  publication-title: Ecology
– volume: 238
  start-page: 70
  year: 2023
  end-page: 79
  article-title: Direct nitrogen, phosphorus and carbon exchanges between Mucoromycotina ‘fine root endophyte’ fungi and a flowering plant in novel monoxenic cultures
  publication-title: New Phytologist
– volume: 63
  start-page: 1356
  year: 2022
  end-page: 1365
  article-title: Functions of lipids in development and reproduction of arbuscular mycorrhizal fungi
  publication-title: Plant Cell Physiology
– volume: 13
  start-page: 1226
  year: 2019
  end-page: 1238
  article-title: Dual RNA‐seq reveals large‐scale non‐conserved genotype × genotype‐specific genetic reprograming and molecular crosstalk in the mycorrhizal symbiosis
  publication-title: ISME Journal
– volume: 119
  year: 2022
  article-title: Metatranscriptomics captures dynamic shifts in mycorrhizal coordination in boreal forests
  publication-title: Proceedings of the National Academy of Sciences, USA
– volume: 13
  year: 2022
  article-title: Comparative transcriptomics analysis of the symbiotic germination of (Orchidaceae) with emphasis on plant cell wall modification and cell wall‐degrading enzymes
  publication-title: Frontiers in Plant Science
– volume: 11
  start-page: 2666
  year: 2017
  end-page: 2676
  article-title: Role of plant‐fungal nutrient trading and host control in determining the competitive success of ectomycorrhizal fungi
  publication-title: ISME Journal
– volume: 561
  start-page: E42
  year: 2018
  article-title: Author correction: environment and host as large‐scale controls of ectomycorrhizal fungi
  publication-title: Nature
– volume: 29
  start-page: 277
  year: 2016
  end-page: 286
  article-title: Strigolactone‐induced putative secreted protein 1 is required for the establishment of symbiosis by the arbuscular mycorrhizal fungus
  publication-title: Molecular Plant–Microbe Interactions
– volume: 22
  start-page: 737
  year: 2013
  end-page: 749
  article-title: A global analysis of soil microbial biomass carbon, nitrogen and phosphorus in terrestrial ecosystems
  publication-title: Global Ecology and Biogeography
– volume: 50
  start-page: 9
  year: 1999
  end-page: 13
  article-title: The magnitude and control of carbon transfer between plants linked by a common mycorrhizal network
  publication-title: Journal of Experimental Botany
– volume: 2
  start-page: 1956
  year: 2018
  end-page: 1965
  article-title: Pezizomycetes genomes reveal the molecular basis of ectomycorrhizal truffle lifestyle
  publication-title: Nature Ecology & Evolution
– volume: 30
  start-page: 152
  year: 2016
  end-page: 162
  article-title: Vegetative incompatibility in fungi: from recognition to cell death, whatever does the trick
  publication-title: Fungal Biology Reviews
– volume: 40
  year: 2023
  article-title: Speciation underpinned by unexpected molecular diversity in the mycorrhizal fungal genus
  publication-title: Molecular Biology and Evolution
– volume: 87
  start-page: 816
  year: 2006
  end-page: 822
  article-title: N in symbiotic fungi and plants estimates nitrogen and carbon flux rates in Arctic tundra
  publication-title: Ecology
– volume: 235
  start-page: 306
  year: 2022
  end-page: 319
  article-title: Comparative genomics reveals a dynamic genome evolution in the ectomycorrhizal milk‐cap ( ) mushrooms
  publication-title: New Phytologist
– volume: 30
  year: 2023
  article-title: The genome of provides insight into the initial evolution of ectomycorrhizal fungal genomes
  publication-title: DNA Research
– volume: 14
  start-page: 3311
  year: 2023
  article-title: Patterns in soil microbial diversity across Europe
  publication-title: Nature Communications
– volume: 234
  start-page: 1919
  year: 2022
  end-page: 1928
  article-title: Plant–microbe eco‐evolutionary dynamics in a changing world
  publication-title: New Phytologist
– volume: 23
  start-page: 157
  year: 2003
  end-page: 167
  article-title: Growth and nutrient uptake of ectomycorrhizal seedlings treated with elevated Al concentrations
  publication-title: Tree Physiology
– volume: 72
  start-page: 168
  year: 2014
  end-page: 181
  article-title: Genomic and transcriptomic analysis of CAZome reveals insights into polysaccharides remodeling during symbiosis establishment
  publication-title: Fungal Genetics and Biology
– volume: 232
  start-page: 1399
  year: 2021
  end-page: 1413
  article-title: Lower relative abundance of ectomycorrhizal fungi under a warmer and drier climate is linked to enhanced soil organic matter decomposition
  publication-title: New Phytologist
– volume: 8
  start-page: 2277
  year: 2023
  end-page: 2289
  article-title: Soil microbiome indicators can predict crop growth response to large‐scale inoculation with arbuscular mycorrhizal fungi
  publication-title: Nature Microbiology
– volume: 14
  start-page: 760
  year: 2016
  end-page: 773
  article-title: Unearthing the roots of ectomycorrhizal symbioses
  publication-title: Nature Reviews Microbiology
– volume: 5
  start-page: 676
  year: 2019
  end-page: 680
  article-title: Mediation of plant‐mycorrhizal interaction by a lectin receptor‐like kinase
  publication-title: Nature Plants
– volume: 234
  start-page: 1987
  year: 2022
  end-page: 2002
  article-title: Embracing mountain microbiome and ecosystem functions under global change
  publication-title: New Phytologist
– volume: 241
  start-page: 444
  year: 2023
  end-page: 460
  article-title: The evolution of ectomycorrhizal symbiosis in the Late Cretaceous is a key driver of explosive diversification in Agaricomycetes
  publication-title: New Phytologist
– volume: 8
  start-page: 245
  year: 2017
  end-page: 257
  article-title: Multigene phylogeny of Endogonales, an early diverging lineage of fungi associated with plants
  publication-title: IMA Fungus
– volume: 22
  start-page: 1435
  year: 2020
  end-page: 1446
  article-title: The small secreted effector protein MiSSP7.6 of is required for the establishment of ectomycorrhizal symbiosis
  publication-title: Environmental Microbiology
– volume: 23
  start-page: 95
  year: 2008
  end-page: 103
  article-title: Plant nutrient‐acquisition strategies change with soil age
  publication-title: Trends in Ecology & Evolution
– volume: 168
  start-page: 189
  year: 2005
  end-page: 204
  article-title: Is plant performance limited by abundance of arbuscular mycorrhizal fungi? A meta‐analysis of studies published between 1988 and 2003
  publication-title: New Phytologist
– volume: 11
  year: 2022
  article-title: Variation in mycorrhizal growth response among a spring wheat mapping population shows potential to breed for symbiotic benefit
  publication-title: Food and Energy Security
– volume: 7
  start-page: 1717
  year: 2022
  end-page: 1725
  article-title: Defending Earth's terrestrial microbiome
  publication-title: Nature Microbiology
– start-page: 197
  year: 2016
  end-page: 216
  article-title: Phosphorus metabolism and transport in arbuscular mycorrhizal symbiosis
  publication-title: Molecular mycorrhizal symbiosis
– volume: 234
  start-page: 1951
  year: 2022
  end-page: 1959
  article-title: Plant–microbiome interactions under a changing world: responses, consequences and perspectives
  publication-title: New Phytologist
– volume: 21
  start-page: 487
  year: 2023
  end-page: 501
  article-title: Forest microbiome and global change
  publication-title: Nature Reviews Microbiology
– volume: 220
  start-page: 1108
  year: 2018
  end-page: 1115
  article-title: Evolutionary history of mycorrhizal symbioses and global host plant diversity
  publication-title: New Phytologist
– volume: 176
  start-page: 22
  year: 2007
  end-page: 36
  article-title: The mycorrhiza helper bacteria revisited
  publication-title: New Phytologist
– year: 2023
  article-title: Fungal metabolism and free amino acid content may predict nitrogen transfer to the host plant in the ectomycorrhizal relationship between Pisolithus spp. and Eucalyptus grandis
  publication-title: New Phytologist
– year: 2023
  article-title: Soil organic matter dynamics mediated by arbuscular mycorrhizal fungi – an updated conceptual framework
  publication-title: New Phytologist
– volume: 233
  start-page: 1097
  year: 2022
  end-page: 1107
  article-title: Long reads and Hi‐C sequencing illuminate the two‐compartment genome of the model arbuscular mycorrhizal symbiont Rhizophagus irregularis
  publication-title: New Phytologist
– volume: 596
  start-page: 583
  year: 2021
  end-page: 589
  article-title: Highly accurate protein structure prediction with AlphaFold
  publication-title: Nature
– volume: 11
  start-page: 3
  year: 2001
  end-page: 42
  article-title: Water relations, drought and vesicular‐arbuscular mycorrhizal symbiosis
  publication-title: Mycorrhiza
– start-page: 451
  year: 2016
  end-page: 471
  article-title: Mixotrophy in mycorrhizal plants: extracting carbon from mycorrhizal networks
  publication-title: Molecular mycorrhizal symbiosis
– volume: 6
  start-page: 370
  year: 2022
  end-page: 374
  article-title: Mycorrhizal dominance reduces local tree species diversity across US forests
  publication-title: Nature Ecology & Evolution
– start-page: 413
  year: 2017
  end-page: 440
– year: 2023a
  article-title: Concepts and consequences of the hyphosphere core microbiome for arbuscular mycorrhizal fungal fitness and function
  publication-title: New Phytologist
– volume: 220
  start-page: 1012
  year: 2018
  end-page: 1030
  article-title: The origin and evolution of mycorrhizal symbioses: from palaeomycology to phylogenomics
  publication-title: New Phytologist
– volume: 165
  start-page: 261
  year: 2005
  end-page: 271
  article-title: Arbuscular mycorrhizal fungi reveal distinct patterns of anastomosis formation and hyphal healing mechanisms between different phylogenic groups
  publication-title: New Phytologist
– volume: 104
  year: 2023
  article-title: Differences in soil organic matter between EcM‐and AM‐dominated forests depend on tree and fungal identity
  publication-title: Ecology
– volume: 229
  start-page: 2917
  year: 2021
  end-page: 2932
  article-title: Desert truffle genomes reveal their reproductive modes and new insights into plant–fungal interaction and ectendomycorrhizal lifestyle
  publication-title: New Phytologist
– volume: 225
  start-page: 448
  year: 2020
  end-page: 460
  article-title: A lysin motif effector subverts chitin‐triggered immunity to facilitate arbuscular mycorrhizal symbiosis
  publication-title: New Phytologist
– volume: 124
  start-page: 231
  year: 1993
  end-page: 242
  article-title: Nitrogen translocation between (L.) Gaertn. seedlings inoculated with sp. and Doug, ex Loud seedlings connected by a common ectomycorrhizal mycelium
  publication-title: New Phytologist
– volume: 229
  start-page: 1023
  year: 2009
  end-page: 1034
  article-title: Overlapping expression patterns and differential transcript levels of phosphate transporter genes in arbuscular mycorrhizal, Pi‐fertilised and phytohormone‐treated roots
  publication-title: Planta
– volume: 238
  start-page: 845
  year: 2023
  end-page: 858
  article-title: Functional genomics gives new insights into the ectomycorrhizal degradation of chitin
  publication-title: New Phytologist
– year: 2023
– volume: 464
  start-page: 1033
  year: 2010
  end-page: 1038
  article-title: Périgord black truffle genome uncovers evolutionary origins and mechanisms of symbiosis
  publication-title: Nature
– volume: 21
  start-page: 1197
  year: 2011
  end-page: 1203
  article-title: A secreted effector protein of is required for symbiosis development
  publication-title: Current Biology
– volume: 2018
  start-page: 465
  year: 2018
  article-title: The genome of HR1 reveals a common genetic basis for auxotrophy among arbuscular mycorrhizal fungi
  publication-title: BMC Genomics
– volume: 417
  start-page: 67
  year: 2002
  end-page: 70
  article-title: Feedback with soil biota contributes to plant rarity and invasiveness in communities
  publication-title: Nature
– ident: e_1_2_13_89_1
  doi: 10.1038/s41559-023-01986-1
– ident: e_1_2_13_97_1
  doi: 10.1016/j.cub.2021.01.035
– ident: e_1_2_13_123_1
  doi: 10.1016/j.cub.2021.01.058
– ident: e_1_2_13_147_1
  doi: 10.1111/j.1469-8137.2010.03334.x
– ident: e_1_2_13_158_1
  doi: 10.1093/molbev/msad045
– ident: e_1_2_13_72_1
  doi: 10.1111/j.1469-8137.2004.01188.x
– ident: e_1_2_13_162_1
  doi: 10.1146/annurev.ecolsys.39.110707.173454
– ident: e_1_2_13_24_1
  doi: 10.1038/ng.3149
– ident: e_1_2_13_150_1
  doi: 10.3389/fmicb.2015.01278
– ident: e_1_2_13_168_1
  doi: 10.1126/science.aay2832
– ident: e_1_2_13_68_1
  doi: 10.1038/23932
– ident: e_1_2_13_215_1
  doi: 10.1111/nph.19396
– ident: e_1_2_13_171_1
  doi: 10.1093/jxb/50.330.9
– ident: e_1_2_13_2_1
  doi: 10.1093/treephys/23.3.157
– ident: e_1_2_13_122_1
  doi: 10.1111/nph.18773
– ident: e_1_2_13_223_1
  doi: 10.1111/geb.12029
– ident: e_1_2_13_211_1
  doi: 10.1038/s41597-020-0567-7
– ident: e_1_2_13_131_1
  doi: 10.1126/science.aad4501
– ident: e_1_2_13_189_1
  doi: 10.1038/41557
– ident: e_1_2_13_174_1
  doi: 10.1111/mec.15351
– ident: e_1_2_13_154_1
  doi: 10.1126/science.aax4851
– ident: e_1_2_13_47_1
  doi: 10.1046/j.0028-646X.2001.00271.x
– ident: e_1_2_13_57_1
  doi: 10.1111/j.1469-8137.2010.03353.x
– ident: e_1_2_13_108_1
  doi: 10.3389/fpls.2021.626709
– ident: e_1_2_13_219_1
  doi: 10.1073/pnas.2103527119
– ident: e_1_2_13_91_1
  doi: 10.1126/science.aad6188
– ident: e_1_2_13_30_1
  doi: 10.3389/fpls.2022.880600
– ident: e_1_2_13_116_1
  doi: 10.1111/nph.17160
– ident: e_1_2_13_148_1
  doi: 10.1016/j.fbr.2016.08.002
– ident: e_1_2_13_213_1
  doi: 10.3389/fmicb.2018.02068
– ident: e_1_2_13_156_1
  doi: 10.1016/j.cub.2011.05.033
– ident: e_1_2_13_17_1
  doi: 10.3390/microorganisms10101897
– ident: e_1_2_13_125_1
  doi: 10.1111/nph.17044
– ident: e_1_2_13_138_1
  doi: 10.1111/nph.15687
– ident: e_1_2_13_205_1
  doi: 10.1073/pnas.1313452110
– ident: e_1_2_13_8_1
  doi: 10.3390/ijms24119125
– ident: e_1_2_13_224_1
  doi: 10.1111/pbi.13676
– ident: e_1_2_13_41_1
  doi: 10.1093/nar/gkab1045
– ident: e_1_2_13_204_1
  doi: 10.1002/fes3.370
– ident: e_1_2_13_7_1
  doi: 10.1038/s41396-021-01159-7
– ident: e_1_2_13_44_1
  doi: 10.1128/mbio.00240-23
– ident: e_1_2_13_184_1
  doi: 10.1111/nph.13234
– ident: e_1_2_13_214_1
  doi: 10.1111/nph.18051
– ident: e_1_2_13_71_1
  doi: 10.1002/ecy.3929
– ident: e_1_2_13_75_1
  doi: 10.1186/1471-2164-14-306
– ident: e_1_2_13_28_1
  doi: 10.1038/sdata.2016.28
– ident: e_1_2_13_54_1
  doi: 10.1046/j.0028-646x.2001.00216.x
– ident: e_1_2_13_144_1
  doi: 10.3390/agronomy9080471
– ident: e_1_2_13_90_1
  doi: 10.1111/jbi.13866
– ident: e_1_2_13_56_1
  doi: 10.1002/9781118951446.ch22
– ident: e_1_2_13_132_1
  doi: 10.1111/nph.14974
– ident: e_1_2_13_197_1
  doi: 10.1093/femsec/fiad037
– ident: e_1_2_13_26_1
  doi: 10.1016/j.tplants.2015.03.004
– ident: e_1_2_13_87_1
  doi: 10.1093/pcp/pcac113
– ident: e_1_2_13_121_1
  doi: 10.1111/nph.19260
– ident: e_1_2_13_69_1
  doi: 10.1111/nph.13288
– ident: e_1_2_13_170_1
  doi: 10.1128/mSystems.00957-21
– ident: e_1_2_13_25_1
  doi: 10.1038/s41559-021-01634-6
– ident: e_1_2_13_134_1
  doi: 10.1007/s00572-023-01111-x
– ident: e_1_2_13_107_1
  doi: 10.1111/nph.19394
– ident: e_1_2_13_120_1
  doi: 10.1038/s41564-023-01520-w
– ident: e_1_2_13_67_1
  doi: 10.1111/j.1365-2745.2009.01570.x
– ident: e_1_2_13_209_1
  doi: 10.1016/j.fgb.2014.08.007
– ident: e_1_2_13_82_1
  doi: 10.1016/S0038-0717(97)00207-1
– ident: e_1_2_13_103_1
  doi: 10.1073/pnas.2118852119
– ident: e_1_2_13_182_1
  doi: 10.1111/nph.19055
– ident: e_1_2_13_200_1
  doi: 10.3389/fpls.2021.714393
– ident: e_1_2_13_73_1
  doi: 10.1890/0012-9658(2006)87[816:NISFAP]2.0.CO;2
– ident: e_1_2_13_79_1
  doi: 10.1111/j.1365-294X.2012.05515.x
– ident: e_1_2_13_80_1
  doi: 10.1111/nph.18630
– ident: e_1_2_13_34_1
  doi: 10.1111/j.1469-8137.2004.01236.x
– ident: e_1_2_13_190_1
  doi: 10.1038/363067a0
– ident: e_1_2_13_112_1
  doi: 10.1126/sciadv.aax5088
– ident: e_1_2_13_109_1
  doi: 10.1111/j.1469-8137.2005.01490.x
– ident: e_1_2_13_229_1
  doi: 10.1111/nph.16245
– ident: e_1_2_13_222_1
  doi: 10.1111/nph.19178
– ident: e_1_2_13_76_1
  doi: 10.1104/pp.104.056572
– ident: e_1_2_13_92_1
  doi: 10.1111/j.1365-2745.2005.01000.x
– ident: e_1_2_13_217_1
  doi: 10.1111/nph.17236
– ident: e_1_2_13_78_1
  doi: 10.1038/ismej.2017.116
– ident: e_1_2_13_165_1
  doi: 10.1007/BF01972080
– ident: e_1_2_13_3_1
  doi: 10.1111/nph.17780
– ident: e_1_2_13_157_1
  doi: 10.1016/j.tig.2010.10.005
– ident: e_1_2_13_53_1
  doi: 10.1111/nph.16812
– ident: e_1_2_13_11_1
  doi: 10.1007/s005720100097
– ident: e_1_2_13_155_1
  doi: 10.1073/pnas.1322671111
– ident: e_1_2_13_5_1
  doi: 10.1007/s11104-009-0073-3
– ident: e_1_2_13_64_1
  doi: 10.1016/j.cub.2023.02.027
– ident: e_1_2_13_118_1
  doi: 10.1038/s41467-023-36888-0
– ident: e_1_2_13_183_1
  doi: 10.1890/10-0773.1
– ident: e_1_2_13_111_1
  doi: 10.1186/s40168-023-01466-5
– ident: e_1_2_13_65_1
  doi: 10.1111/j.1461-0248.2004.00577.x
– ident: e_1_2_13_81_1
  doi: 10.1371/journal.pone.0012776
– ident: e_1_2_13_164_1
  doi: 10.1111/boj.12170
– ident: e_1_2_13_188_1
  doi: 10.1111/gcb.16609
– ident: e_1_2_13_166_1
  doi: 10.1016/j.tplants.2020.09.006
– ident: e_1_2_13_119_1
  doi: 10.1111/jbi.14563
– ident: e_1_2_13_208_1
  doi: 10.1111/nph.13312
– ident: e_1_2_13_46_1
  doi: 10.1111/j.1469-8137.1986.tb00603.x
– ident: e_1_2_13_231_1
  doi: 10.1038/nature23897
– ident: e_1_2_13_19_1
  doi: 10.1111/nph.12791
– ident: e_1_2_13_23_1
  doi: 10.1038/s41396-022-01193-z
– ident: e_1_2_13_129_1
  doi: 10.1038/nrmicro.2016.149
– ident: e_1_2_13_210_1
  doi: 10.1111/1462-2920.14827
– ident: e_1_2_13_167_1
  doi: 10.1111/nph.15602
– ident: e_1_2_13_159_1
  doi: 10.1111/1462-2920.15320
– ident: e_1_2_13_96_1
  doi: 10.1038/ng.3223
– ident: e_1_2_13_186_1
  doi: 10.1016/S0169-5347(97)01230-5
– ident: e_1_2_13_55_1
  doi: 10.1098/rspb.2015.1553
– ident: e_1_2_13_104_1
  doi: 10.1139/b04-060
– ident: e_1_2_13_191_1
  doi: 10.3389/fpls.2022.1018029
– ident: e_1_2_13_85_1
  doi: 10.1038/s41586-021-03819-2
– ident: e_1_2_13_29_1
  doi: 10.1021/acs.jproteome.6b00999
– ident: e_1_2_13_49_1
  doi: 10.1126/science.1221748
– ident: e_1_2_13_140_1
  doi: 10.1111/nph.12264
– ident: e_1_2_13_152_1
  doi: 10.1111/nph.19338
– ident: e_1_2_13_128_1
  doi: 10.1038/nature08867
– ident: e_1_2_13_145_1
  doi: 10.1126/sciadv.aax8787
– ident: e_1_2_13_31_1
  doi: 10.1111/ele.13735
– ident: e_1_2_13_194_1
  doi: 10.1038/s41564-023-01495-8
– ident: e_1_2_13_207_1
  doi: 10.1094/MPMI-10-15-0234-R
– ident: e_1_2_13_9_1
  doi: 10.1111/j.1469-8137.1993.tb03812.x
– ident: e_1_2_13_228_1
  doi: 10.1111/tpj.13908
– ident: e_1_2_13_36_1
  doi: 10.1126/science.aap9516
– ident: e_1_2_13_110_1
  doi: 10.1038/s41477-022-01127-9
– ident: e_1_2_13_105_1
  doi: 10.1111/nph.18143
– ident: e_1_2_13_63_1
  doi: 10.1890/0012-9658(1999)080[1187:MIPCSA]2.0.CO;2
– ident: e_1_2_13_232_1
  doi: 10.1038/srep19029
– ident: e_1_2_13_94_1
  doi: 10.1186/s12864-018-4853-0
– ident: e_1_2_13_6_1
  doi: 10.1111/nph.18015
– ident: e_1_2_13_70_1
  doi: 10.1111/nph.18935
– ident: e_1_2_13_176_1
  doi: 10.1038/s41396-021-01112-8
– ident: e_1_2_13_185_1
  doi: 10.1002/9781118951446.ch25
– ident: e_1_2_13_212_1
  doi: 10.1007/s13199-012-0208-9
– ident: e_1_2_13_88_1
  doi: 10.1111/1462-2920.14959
– ident: e_1_2_13_133_1
  doi: 10.1111/nph.14962
– ident: e_1_2_13_59_1
  doi: 10.1007/s00425-008-0877-z
– ident: e_1_2_13_199_1
  doi: 10.1007/s00572-004-0302-9
– ident: e_1_2_13_39_1
  doi: 10.5598/imafungus.2017.08.02.03
– ident: e_1_2_13_102_1
  doi: 10.1016/j.mib.2023.102357
– ident: e_1_2_13_234_1
  doi: 10.1093/ve/vead064
– ident: e_1_2_13_124_1
  doi: 10.1099/mgen.0.000810
– ident: e_1_2_13_21_1
  doi: 10.1186/s12864-020-06806-5
– ident: e_1_2_13_32_1
  doi: 10.1105/tpc.18.00676
– ident: e_1_2_13_93_1
  doi: 10.1016/j.cub.2011.06.044
– ident: e_1_2_13_143_1
  doi: 10.1038/s41396-018-0331-6
– ident: e_1_2_13_218_1
  doi: 10.1371/journal.pone.0039597
– ident: e_1_2_13_163_1
  doi: 10.1111/nph.17661
– start-page: 356
  volume-title: Mycoheterotrophy. The biology of plants living on fungi
  year: 2023
  ident: e_1_2_13_136_1
– ident: e_1_2_13_180_1
  doi: 10.1007/s00572-021-01042-5
– ident: e_1_2_13_196_1
  doi: 10.1111/nph.15076
– ident: e_1_2_13_114_1
  doi: 10.1038/s41586-018-0312-y
– ident: e_1_2_13_48_1
  doi: 10.1038/s41396-020-0667-6
– ident: e_1_2_13_187_1
  doi: 10.1101/2023.08.02.551648
– ident: e_1_2_13_51_1
  doi: 10.1111/nph.13423
– ident: e_1_2_13_52_1
  doi: 10.1111/j.1365-313X.2011.04810.x
– ident: e_1_2_13_130_1
  doi: 10.1111/j.1469-8137.2008.02613.x
– ident: e_1_2_13_141_1
  doi: 10.1111/nph.15257
– ident: e_1_2_13_225_1
  doi: 10.3389/fmicb.2023.1180319
– ident: e_1_2_13_113_1
  doi: 10.1371/journal.pgen.1007742
– ident: e_1_2_13_142_1
  doi: 10.2307/2389702
– ident: e_1_2_13_195_1
  doi: 10.1016/j.cub.2022.06.057
– ident: e_1_2_13_137_1
  doi: 10.1038/s41467-020-18795-w
– ident: e_1_2_13_38_1
  doi: 10.1126/sciadv.add4468
– ident: e_1_2_13_14_1
  doi: 10.1038/s41586-018-0386-6
– ident: e_1_2_13_60_1
  doi: 10.1046/j.1365-2540.2000.00668.x
– ident: e_1_2_13_177_1
  doi: 10.3390/microorganisms9122612
– ident: e_1_2_13_227_1
  doi: 10.1186/s40168-023-01650-7
– ident: e_1_2_13_16_1
  doi: 10.4161/15592324.2014.977707
– ident: e_1_2_13_226_1
  doi: 10.1111/nph.17842
– ident: e_1_2_13_161_1
  doi: 10.1111/nph.19400
– ident: e_1_2_13_202_1
  doi: 10.1007/s00572-009-0274-x
– ident: e_1_2_13_206_1
  doi: 10.1111/nph.18016
– ident: e_1_2_13_83_1
  doi: 10.1111/1365-2745.13521
– ident: e_1_2_13_100_1
  doi: 10.1038/s41467-023-37937-4
– ident: e_1_2_13_98_1
  doi: 10.1007/s11104-023-06045-z
– ident: e_1_2_13_18_1
  doi: 10.1111/j.1469-8137.2009.03069.x
– ident: e_1_2_13_62_1
  doi: 10.1111/1365-2435.12976
– ident: e_1_2_13_10_1
  doi: 10.1111/nph.19471
– ident: e_1_2_13_220_1
  doi: 10.1046/j.1469-8137.2001.00010.x
– ident: e_1_2_13_43_1
  doi: 10.1038/s41396-021-00920-2
– ident: e_1_2_13_101_1
  doi: 10.1016/j.tree.2007.10.008
– ident: e_1_2_13_45_1
  doi: 10.1016/B978-0-12-804312-7.00023-1
– ident: e_1_2_13_160_1
  doi: 10.1094/MPMI-01-19-0007-R
– ident: e_1_2_13_117_1
  doi: 10.1111/nph.17892
– ident: e_1_2_13_84_1
  doi: 10.1111/tpj.15892
– ident: e_1_2_13_106_1
  doi: 10.1146/annurev-ecolsys-012021-114902
– ident: e_1_2_13_178_1
  doi: 10.1111/nph.15308
– ident: e_1_2_13_86_1
  doi: 10.1111/nph.18281
– ident: e_1_2_13_233_1
  doi: 10.1016/j.tplants.2021.10.008
– ident: e_1_2_13_27_1
  doi: 10.1111/nph.15613
– ident: e_1_2_13_12_1
  doi: 10.1038/s41564-022-01228-3
– ident: e_1_2_13_77_1
  doi: 10.1111/nph.18914
– ident: e_1_2_13_20_1
  doi: 10.1111/nph.19259
– ident: e_1_2_13_135_1
  doi: 10.1038/s41396-018-0342-3
– ident: e_1_2_13_175_1
  doi: 10.1038/nmicrobiol.2016.33
– ident: e_1_2_13_4_1
  doi: 10.1126/science.adf2027
– year: 2023
  ident: e_1_2_13_230_1
  article-title: A tripartite bacterial‐fungal‐plant symbiosis in the mycorrhiza‐shaped microbiome drives plant growth and mycorrhization
  publication-title: Microbiome
– ident: e_1_2_13_15_1
  doi: 10.1038/s41579-023-00876-4
– ident: e_1_2_13_192_1
  doi: 10.1038/s41467-019-13019-2
– ident: e_1_2_13_216_1
  doi: 10.1111/nph.18642
– ident: e_1_2_13_221_1
  doi: 10.1111/nph.17858
– ident: e_1_2_13_172_1
  doi: 10.1016/j.tplants.2023.08.010
– ident: e_1_2_13_179_1
  doi: 10.1002/9781118951446.ch12
– ident: e_1_2_13_95_1
  doi: 10.1093/dnares/dsac053
– ident: e_1_2_13_201_1
  doi: 10.1126/science.1256688
– ident: e_1_2_13_58_1
  doi: 10.1093/nar/gkt1183
– ident: e_1_2_13_153_1
  doi: 10.1038/ncomms12662
– ident: e_1_2_13_169_1
  doi: 10.1038/s41558-023-01627-2
– ident: e_1_2_13_198_1
  doi: 10.1038/s41396-018-0059-3
– ident: e_1_2_13_40_1
  doi: 10.1111/j.1469-8137.2010.03277.x
– ident: e_1_2_13_42_1
  doi: 10.1038/s41559-022-01799-8
– ident: e_1_2_13_74_1
  doi: 10.1111/j.1461-0248.2009.01430.x
– ident: e_1_2_13_66_1
  doi: 10.1111/j.1461-0248.2007.01139.x
– ident: e_1_2_13_173_1
  doi: 10.3389/fpls.2019.01357
– ident: e_1_2_13_149_1
  doi: 10.1038/nrmicro.2016.59
– ident: e_1_2_13_193_1
  doi: 10.3852/16-042
– ident: e_1_2_13_99_1
  doi: 10.1038/s41477-019-0469-x
– ident: e_1_2_13_146_1
  doi: 10.1111/nph.14971
– ident: e_1_2_13_126_1
  doi: 10.1111/j.1469-8137.2007.02058.x
– ident: e_1_2_13_127_1
  doi: 10.1111/j.1469-8137.2011.03688.x
– ident: e_1_2_13_35_1
  doi: 10.1073/pnas.1515426112
– ident: e_1_2_13_139_1
  doi: 10.1038/s41559-018-0710-4
– ident: e_1_2_13_50_1
  doi: 10.1111/j.1469-8137.2007.02191.x
– ident: e_1_2_13_61_1
  doi: 10.1111/nph.18897
– ident: e_1_2_13_13_1
  doi: 10.1111/ele.12115
– ident: e_1_2_13_181_1
  doi: 10.1016/j.isci.2022.104636
– ident: e_1_2_13_37_1
  doi: 10.1038/s41559-019-1084-y
– ident: e_1_2_13_22_1
  doi: 10.1111/nph.14976
– ident: e_1_2_13_203_1
  doi: 10.1111/nph.18996
– ident: e_1_2_13_151_1
  doi: 10.1111/nph.14598
– ident: e_1_2_13_115_1
  doi: 10.1038/s41467-023-37428-6
– ident: e_1_2_13_33_1
  doi: 10.1126/science.aab1161
SSID ssj0009562
Score 2.6606092
SecondaryResourceType review_article
Snippet Summary Mycorrhizal symbioses between plants and fungi are vital for the soil structure, nutrient cycling, plant diversity, and ecosystem sustainability. More...
Mycorrhizal symbioses between plants and fungi are vital for the soil structure, nutrient cycling, plant diversity, and ecosystem sustainability. More than 250...
Summary Mycorrhizal symbioses between plants and fungi are vital for the soil structure, nutrient cycling, plant diversity, and ecosystem sustainability. More...
SourceID osti
hal
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1486
SubjectTerms arbuscular mycorrhizal fungi
biodiversity
Biology
DNA barcoding
Ecology
Ecosystem services
ecosystems
ectomycorrhizal fungi
ericoid mycorrhizal fungi
forestry
Fungi
Genes
Genetics
genome
Genomes
Genomics
Life Sciences
Metabolism
mutualism
mycorrhizae
Nutrient cycles
Nutrient dynamics
Nutrient uptake
orchid mycorrhizal fungi
Organic matter
Plant diversity
Plant Sciences
Plant species
Plants genetics
plant–microbe interactions
population genetics
Soil organic matter
Soil structure
species diversity
stress tolerance
Sustainability
Sustainable agriculture
Sustainable ecosystems
Symbiosis
transcriptomics
Title The mycorrhizal symbiosis: research frontiers in genomics, ecology, and agricultural application
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fnph.19541
https://www.ncbi.nlm.nih.gov/pubmed/38297461
https://www.proquest.com/docview/3044848555
https://www.proquest.com/docview/2921116419
https://www.proquest.com/docview/3153562172
https://hal.inrae.fr/hal-04593098
https://www.osti.gov/biblio/2582727
Volume 242
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1Nb9QwEIatsuLABSifoaUyiEMPzSqxnTiGU1tRrRBUCFFpD0jG9jpsBJtUm12k7a9nJl_aolZC3KJ4IjnxTPxOMn5MyBvupbRmZsJUcUhQIJpCpXwcutzm4CLMyAY8_-k8nVyID9NkukPe9WthWj7E8MENI6N5X2OAG1tvBXl5OR8jrgxTH6zVQkH0hW0Bd1PWE5hTkU47qhBW8QxXXpuL7syxEnJUQWTdpDavi9dm9jl7QL71_W6LTn6O1ys7dld_IR3_88YekvudKqXHrRvtkh1fPiJ3TypQjpvH5Dv4El1sIE9dzosrsKs3C1tUdVG_pR0saE5zJCHgvtq0KCmSXxeFq4-ob6jYmyNqyhk1P5YD6oNu_Tp_Qi7O3n89nYTdzgyhExmLQ1wPq3IrnRA28hFPpM8FSK1c-lS4KLFZbmJjeZQJnpk4liazTsYO9I2SIPr4UzIqq9I_J9QoP7PCcRN5JVIH5qkVhvk45zMbxSYgh_0Yaddhy3H3jF-6T1_geenmeQXk9WB62bI6bjSCgR7aka49Of6o8RyoW8Ujlf0Goz30Aw0qBFG6DmuO3EqzJGOg9wKy37uH7iK-1jyCRBdJO0lAXg3NEKv4A8aUvlrXmilItyE_jdXtNhymIHBd0JUBeda63tBZjuugRQrdO2wc6Pa71OefJ83Bi3833SP3GCi2tppzn4xWy7V_CYprZQ-a0PoD1pQlEw
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1Z3dbtMwFMetrSDBDd-DsgEGgbSLpUpsN4mRuBiMqWNdhdAm9c6zXYdW0HRqWlD2TLwK78Q5-VKHNombXXAXJUeRE59j_09y_DMhr7mLIqNH2gslhwQFosmT0gWeTUwCLsJ0VIDnjwZh70R8GnaHa-RXvRam5EM0H9wwMorxGgMcP0ivRHl6Nu4gryyoSioPXf4TErbs3cEe9O4bxvY_Hn_oedWeAp4VMQs8XMkpExNZIYzvfN6NXCJAJCSRC4X1uyZOdKAN92PBYx0EkY6NjQILM7OMQK5wuO86uYE7iCOpf-8LW0H8hqxmPociHFYcI6wbapp6YfZbH2PtZWsGsXyZvr0ol4v5bv8u-V2_qbLM5VtnuTAde_4XRPJ_eZX3yJ1KeNPdMlLukzWXPiA3389AHOcPySmEC53mkIrPx5NzsMvyqZnMskn2llY8pDFNEPaAW4fTSUoRbjud2GyHugL8ne9QnY6o_jpvaCZ0pTrgETm5lqfbIK10lronhGrpRkZYrn0nRWjBPDRCMxckfGT8QLfJdu0UylZkdtwg5LuqMzToH1X0T5u8akzPShzJpUbgWc11BIj3dvsKz4GAl9yX8Q8w2kTHUyC0kBZssazKLhTrxgwkbZts1f6oqkEtU9yHXB5hQt02edlchuEI_zHp1M2WmWKSQVtCEcirbTjMshArIJ3b5HHp601jOS71FiE0b7vw2KufUg0-94qDp_9u-oLc6h0f9VX_YHC4SW4zEKhl8eoWaS3mS_cMBObCPC_impLT6_b-P2A7gDc
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFLa2ghAv3GFlAwwCaQ9LldiOEyPxMChVx0Y1ISb1zbNdh1ajSdW0oO4v8Vf4URznpg5tEi974C1KjiJfzmd_Jzn-DkKvqY0irUbK44JCgAJo8oSwgWcSnYCLEBUVwvOfB7x_wj4Nw-EG-lWfhSn1IZoPbg4ZxXrtAD4bJWsgT2fjjpMrC6qMykO7-gnxWv7uoAuT-4aQ3sevH_peVVLAMywmgecOcopER4Yx7VufhpFNGHCEJLKcGT_UcaICpakfMxqrIIhUrE0UGNiYRQRshcJ7N9ENxn3h6kR0v5A1hV9OaslnzviwkjFyaUNNUy9sfptjl3rZygDKl9Hbi2y52O56d9HveqDKLJezznKhO-b8Lw3J_2Qk76E7Fe3G-yVO7qMNmz5AN99nQI1XD9EpgAVPVxCIz8eTc7DLV1M9yfJJ_hZXakhjnDipB1c4HE9S7KRtpxOT72FbyH6v9rBKR1h9mzdaJngtN-AROrmW3j1GrTRL7RbCStiRZoYq3wrGDZhzzRSxQUJH2g9UG-3WPiFNpcvuyoN8l3V8BvMji_lpo1eN6awUI7nUCByree7kw_v7R9LdA_ouqC_iH2C07fxOAs1yWsHGJVWZhSRhTIDQttFO7Y6yWtJySX2I5J2UUNhGL5vHsBi5P0wqtdkyl0QQaAtngbjahsIeC1AB4txGT0pXbxpL3UFvxqF5u4XDXt1LOTjuFxdP_930Bbp13O3Jo4PB4Ta6TYCdlpmrO6i1mC_tM2CXC_28QDVGp9ft_H8AQ8J-5g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+mycorrhizal+symbiosis%3A+research+frontiers+in+genomics%2C+ecology%2C+and+agricultural+application&rft.jtitle=The+New+phytologist&rft.au=Martin%2C+Francis+M.&rft.au=van+der+Heijden%2C+Marcel+G.+A.&rft.date=2024-05-01&rft.issn=0028-646X&rft.eissn=1469-8137&rft.volume=242&rft.issue=4&rft.spage=1486&rft.epage=1506&rft_id=info:doi/10.1111%2Fnph.19541&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_nph_19541
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-646X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-646X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-646X&client=summon