TDP-43 mediates SREBF2-regulated gene expression required for oligodendrocyte myelination
Cholesterol metabolism operates autonomously within the central nervous system (CNS), where the majority of cholesterol resides in myelin. We demonstrate that TDP-43, the pathological signature protein for amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), influences cholesterol...
Saved in:
Published in | The Journal of cell biology Vol. 220; no. 9; p. 1 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Rockefeller University Press
06.09.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Cholesterol metabolism operates autonomously within the central nervous system (CNS), where the majority of cholesterol resides in myelin. We demonstrate that TDP-43, the pathological signature protein for amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), influences cholesterol metabolism in oligodendrocytes. TDP-43 binds directly to mRNA of SREBF2, the master transcription regulator for cholesterol metabolism, and multiple mRNAs encoding proteins responsible for cholesterol biosynthesis and uptake, including HMGCR, HMGCS1, and LDLR. TDP-43 depletion leads to reduced SREBF2 and LDLR expression, and cholesterol levels in vitro and in vivo. TDP-43–mediated changes in cholesterol levels can be restored by reintroducing SREBF2 or LDLR. Additionally, cholesterol supplementation rescues demyelination caused by TDP-43 deletion. Furthermore, oligodendrocytes harboring TDP-43 pathology from FTD patients show reduced HMGCR and HMGCS1, and coaggregation of LDLR and TDP-43. Collectively, our results indicate that TDP-43 plays a role in cholesterol homeostasis in oligodendrocytes, and cholesterol dysmetabolism may be implicated in TDP-43 proteinopathies–related diseases. |
---|---|
AbstractList | Ho et al. provide a novel insight on how loss of TDP-43 (a major disease protein) leads to SREBF2 (a key regulator)–dependent disruption of cholesterol metabolism, which in turn affects myelination. Their results further implicate that disturbance of cholesterol metabolism may be involved in ALS, FTD, and TDP-43 proteinopathies–related disease.
Cholesterol metabolism operates autonomously within the central nervous system (CNS), where the majority of cholesterol resides in myelin. We demonstrate that TDP-43, the pathological signature protein for amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), influences cholesterol metabolism in oligodendrocytes. TDP-43 binds directly to mRNA of SREBF2, the master transcription regulator for cholesterol metabolism, and multiple mRNAs encoding proteins responsible for cholesterol biosynthesis and uptake, including
HMGCR
,
HMGCS1
, and
LDLR
. TDP-43 depletion leads to reduced SREBF2 and LDLR expression, and cholesterol levels in vitro and in vivo. TDP-43–mediated changes in cholesterol levels can be restored by reintroducing SREBF2 or LDLR. Additionally, cholesterol supplementation rescues demyelination caused by TDP-43 deletion. Furthermore, oligodendrocytes harboring TDP-43 pathology from FTD patients show reduced HMGCR and HMGCS1, and coaggregation of LDLR and TDP-43. Collectively, our results indicate that TDP-43 plays a role in cholesterol homeostasis in oligodendrocytes, and cholesterol dysmetabolism may be implicated in TDP-43 proteinopathies–related diseases. Cholesterol metabolism operates autonomously within the central nervous system (CNS), where the majority of cholesterol resides in myelin. We demonstrate that TDP-43, the pathological signature protein for amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), influences cholesterol metabolism in oligodendrocytes. TDP-43 binds directly to mRNA of SREBF2, the master transcription regulator for cholesterol metabolism, and multiple mRNAs encoding proteins responsible for cholesterol biosynthesis and uptake, including HMGCR, HMGCS1, and LDLR. TDP-43 depletion leads to reduced SREBF2 and LDLR expression, and cholesterol levels in vitro and in vivo. TDP-43-mediated changes in cholesterol levels can be restored by reintroducing SREBF2 or LDLR. Additionally, cholesterol supplementation rescues demyelination caused by TDP-43 deletion. Furthermore, oligodendrocytes harboring TDP-43 pathology from FTD patients show reduced HMGCR and HMGCS1, and coaggregation of LDLR and TDP-43. Collectively, our results indicate that TDP-43 plays a role in cholesterol homeostasis in oligodendrocytes, and cholesterol dysmetabolism may be implicated in TDP-43 proteinopathies-related diseases. Cholesterol metabolism operates autonomously within the central nervous system (CNS), where the majority of cholesterol resides in myelin. We demonstrate that TDP-43, the pathological signature protein for amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), influences cholesterol metabolism in oligodendrocytes. TDP-43 binds directly to mRNA of SREBF2, the master transcription regulator for cholesterol metabolism, and multiple mRNAs encoding proteins responsible for cholesterol biosynthesis and uptake, including HMGCR, HMGCS1, and LDLR. TDP-43 depletion leads to reduced SREBF2 and LDLR expression, and cholesterol levels in vitro and in vivo. TDP-43-mediated changes in cholesterol levels can be restored by reintroducing SREBF2 or LDLR. Additionally, cholesterol supplementation rescues demyelination caused by TDP-43 deletion. Furthermore, oligodendrocytes harboring TDP-43 pathology from FTD patients show reduced HMGCR and HMGCS1, and coaggregation of LDLR and TDP-43. Collectively, our results indicate that TDP-43 plays a role in cholesterol homeostasis in oligodendrocytes, and cholesterol dysmetabolism may be implicated in TDP-43 proteinopathies-related diseases.Cholesterol metabolism operates autonomously within the central nervous system (CNS), where the majority of cholesterol resides in myelin. We demonstrate that TDP-43, the pathological signature protein for amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), influences cholesterol metabolism in oligodendrocytes. TDP-43 binds directly to mRNA of SREBF2, the master transcription regulator for cholesterol metabolism, and multiple mRNAs encoding proteins responsible for cholesterol biosynthesis and uptake, including HMGCR, HMGCS1, and LDLR. TDP-43 depletion leads to reduced SREBF2 and LDLR expression, and cholesterol levels in vitro and in vivo. TDP-43-mediated changes in cholesterol levels can be restored by reintroducing SREBF2 or LDLR. Additionally, cholesterol supplementation rescues demyelination caused by TDP-43 deletion. Furthermore, oligodendrocytes harboring TDP-43 pathology from FTD patients show reduced HMGCR and HMGCS1, and coaggregation of LDLR and TDP-43. Collectively, our results indicate that TDP-43 plays a role in cholesterol homeostasis in oligodendrocytes, and cholesterol dysmetabolism may be implicated in TDP-43 proteinopathies-related diseases. |
Author | Ong, Sarah J.M. Cazenave-Gassiot, Amaury Kim, Seung Hyun Agrawal, Ira Arogundade, Olubankole Aladesuyi Foo, Juat Chin Ravits, John Viera-Ortiz, Ashley Muralidharan, Sneha Tucker-Kellogg, Greg Ling, Shuo-Chien Ho, Wan Yun Hoon, Shawn Lee, Edward B. Nguyen, Aivi T. Rodriguez, Maria J. Wenk, Markus R. Hor, Jin Hui Lim, Kenneth Lim, Su Min Chang, Jer-Cherng Ng, Shi-Yan |
AuthorAffiliation | 13 Program in Neuroscience and Behavior Disorders, Duke–National University of Singapore Medical School, Singapore 3 Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 7 Molecular Engineering Laboratory, ASTAR Research Entities, Singapore 1 Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 9 Department of Neurology, and Biomedical Research Institute, Hanyang University College of Medicine, Seoul, South Korea 5 Translational Neuropathology Research Laboratory, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 2 Computational Biology Programme, Faculty of Science, National University of Singapore, Singapore 12 Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 8 Department of Neurosciences, University of California, San Diego, La Jolla, CA 10 Department of Neurology, Mass |
AuthorAffiliation_xml | – name: 6 Institute of Molecular and Cell Biology, ASTAR Research Entities, Singapore – name: 1 Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore – name: 9 Department of Neurology, and Biomedical Research Institute, Hanyang University College of Medicine, Seoul, South Korea – name: 3 Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore – name: 5 Translational Neuropathology Research Laboratory, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA – name: 2 Computational Biology Programme, Faculty of Science, National University of Singapore, Singapore – name: 10 Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA – name: 12 Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore – name: 11 Department of Biological Sciences, National University of Singapore, Singapore – name: 4 Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, Singapore – name: 7 Molecular Engineering Laboratory, ASTAR Research Entities, Singapore – name: 8 Department of Neurosciences, University of California, San Diego, La Jolla, CA – name: 13 Program in Neuroscience and Behavior Disorders, Duke–National University of Singapore Medical School, Singapore |
Author_xml | – sequence: 1 givenname: Wan Yun surname: Ho fullname: Ho, Wan Yun – sequence: 2 givenname: Jer-Cherng surname: Chang fullname: Chang, Jer-Cherng – sequence: 3 givenname: Kenneth surname: Lim fullname: Lim, Kenneth – sequence: 4 givenname: Amaury orcidid: 0000-0002-3050-634X surname: Cazenave-Gassiot fullname: Cazenave-Gassiot, Amaury – sequence: 5 givenname: Aivi T. orcidid: 0000-0003-1809-9451 surname: Nguyen fullname: Nguyen, Aivi T. – sequence: 6 givenname: Juat Chin surname: Foo fullname: Foo, Juat Chin – sequence: 7 givenname: Sneha orcidid: 0000-0001-6383-4289 surname: Muralidharan fullname: Muralidharan, Sneha – sequence: 8 givenname: Ashley orcidid: 0000-0003-4633-0622 surname: Viera-Ortiz fullname: Viera-Ortiz, Ashley – sequence: 9 givenname: Sarah J.M. surname: Ong fullname: Ong, Sarah J.M. – sequence: 10 givenname: Jin Hui surname: Hor fullname: Hor, Jin Hui – sequence: 11 givenname: Ira orcidid: 0000-0002-2195-6090 surname: Agrawal fullname: Agrawal, Ira – sequence: 12 givenname: Shawn surname: Hoon fullname: Hoon, Shawn – sequence: 13 givenname: Olubankole Aladesuyi surname: Arogundade fullname: Arogundade, Olubankole Aladesuyi – sequence: 14 givenname: Maria J. surname: Rodriguez fullname: Rodriguez, Maria J. – sequence: 15 givenname: Su Min orcidid: 0000-0002-5769-4854 surname: Lim fullname: Lim, Su Min – sequence: 16 givenname: Seung Hyun orcidid: 0000-0001-9644-9598 surname: Kim fullname: Kim, Seung Hyun – sequence: 17 givenname: John surname: Ravits fullname: Ravits, John – sequence: 18 givenname: Shi-Yan surname: Ng fullname: Ng, Shi-Yan – sequence: 19 givenname: Markus R. surname: Wenk fullname: Wenk, Markus R. – sequence: 20 givenname: Edward B. orcidid: 0000-0002-4589-1180 surname: Lee fullname: Lee, Edward B. – sequence: 21 givenname: Greg orcidid: 0000-0001-8407-9251 surname: Tucker-Kellogg fullname: Tucker-Kellogg, Greg – sequence: 22 givenname: Shuo-Chien orcidid: 0000-0002-0300-8812 surname: Ling fullname: Ling, Shuo-Chien |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34347016$$D View this record in MEDLINE/PubMed |
BookMark | eNptkc1P3DAQxa0KBAvlyBVF6oVL6PgjOL5UKhTaSkhULT30ZDnOeOtV1l7sBHX_e8ynCuI00sxvnt7M2yEbIQYkZJ_CEYWWf1zY7ogBVRQY5e_IjDYC6pYK2CAzKL1aNazZJjs5LwBASMG3yDYXXEigxzPy5-rLj1rwaom9NyPm6tfPs5NzViecT0Np9NUcA1b4b5UwZx9DlfB68qkMXExVHPw89hj6FO16xGq5xsEHMxbwPdl0Zsi491h3ye_zs6vTb_XF5dfvp58vaitaOtaudQocNFA8SyGU6jt0HTLLjFOogBlGnWXKWWp61YEAa6WUquOiVZJzvks-Peiupq5cYTGMyQx6lfzSpLWOxuuXk-D_6nm80W1R4PK4CBw-CqR4PWEe9dJni8NgAsYpa9Y0LShB-R364RW6iFMK5bxCSWBcKKoKdfC_o2crT18vAH8AbIo5J3Ta-vH-acWgHzQFfZetLtnq52zLVv1q60n4bf4WdHWlbg |
CitedBy_id | crossref_primary_10_1002_glia_24622 crossref_primary_10_1016_j_nbd_2022_105874 crossref_primary_10_3389_fnmol_2024_1375330 crossref_primary_10_1007_s00401_023_02666_x crossref_primary_10_1007_s00415_023_11630_4 crossref_primary_10_1007_s12035_024_04007_9 crossref_primary_10_1016_j_jocn_2024_04_019 crossref_primary_10_3389_fnmol_2022_1043127 crossref_primary_10_1111_febs_16175 crossref_primary_10_1186_s40478_024_01893_x crossref_primary_10_1111_bpa_13277 crossref_primary_10_1186_s40035_022_00322_0 crossref_primary_10_3390_cimb44070222 crossref_primary_10_1111_jnc_16005 crossref_primary_10_1002_iub_2662 crossref_primary_10_1016_j_neuint_2023_105501 crossref_primary_10_1186_s12940_023_01041_3 crossref_primary_10_1016_j_nbd_2024_106437 crossref_primary_10_1080_21678421_2023_2295455 crossref_primary_10_1186_s12964_023_01336_5 crossref_primary_10_1089_ars_2024_0674 crossref_primary_10_3390_metabo12080709 crossref_primary_10_1016_j_tins_2023_11_003 crossref_primary_10_1016_j_stem_2023_04_017 crossref_primary_10_1038_s41598_022_12133_4 crossref_primary_10_1186_s40035_022_00331_z crossref_primary_10_37349_ent_2021_00014 crossref_primary_10_3390_ijms222011224 crossref_primary_10_1007_s12035_024_04672_w crossref_primary_10_3389_fnmol_2022_825031 |
Cites_doi | 10.1002/0471143030.cb2402s35 10.1016/j.devbrainres.2003.09.015 10.1371/journal.pbio.1002605 10.1002/ana.25431 10.1016/0962-8924(93)90213-K 10.1111/j.1471-4159.2007.05190.x 10.15252/embr.201439225 10.1146/annurev-cellbio-100913-013101 10.1007/s00401-013-1211-9 10.1194/jlr.P071639 10.1007/s00401-020-02205-y 10.1038/nmeth.1314 10.1126/science.1254960 10.1073/pnas.1008227107 10.1038/s41593-018-0120-6 10.1016/j.neuron.2013.07.033 10.1136/jmg.35.7.558 10.1038/nature11314 10.1007/s00401-016-1666-6 10.1146/annurev-biochem-062917-011852 10.1096/fj.12-205807 10.1016/j.ccell.2015.09.021 10.1194/jlr.R800054-JLR200 10.1007/s00401-016-1603-8 10.1126/science.1134108 10.1194/jlr.D040790 10.1194/jlr.R006338 10.1007/s00401-014-1358-z 10.1038/nm.2833 10.1007/s00401-012-1039-8 10.1073/pnas.51.4.585 10.1038/nn.2779 10.1016/j.semcdb.2017.07.011 10.1016/j.brainres.2013.11.019 10.1073/pnas.1534923100 10.1002/dvdy.21283 10.1038/nsmb.1666 10.1016/S1474-4422(18)30251-5 10.1016/j.bbalip.2015.02.010 10.1007/s40264-017-0620-4 10.1038/nrn3121 10.7554/eLife.37419 10.1139/o59-099 10.1186/s12864-015-1273-2 10.1016/j.brainres.2012.05.056 10.1046/j.1471-4159.1995.64020895.x 10.1126/science.1206998 10.1016/j.stem.2018.12.013 10.1111/jnc.13745 10.1093/nar/gkr1082 10.1126/science.aan4183 10.1083/jcb.202001064 10.1093/hmg/ddy384 10.1093/hmg/ddq137 10.1038/nn1426 10.1016/j.jalz.2013.06.003 10.1016/j.tibs.2014.08.008 10.1038/ncomms14241 10.1001/jamaneurol.2015.4773 10.1172/JCI0215593 10.1038/s41419-018-1081-0 10.1073/pnas.2007806117 10.1073/pnas.1809821115 10.1194/jlr.R400004-JLR200 10.1146/annurev-genom-091212-153412 10.1016/j.cell.2015.01.036 10.1021/acs.analchem.0c04565 10.1126/science.1252304 10.1007/s00401-017-1679-9 10.1002/ana.24936 |
ContentType | Journal Article |
Copyright | 2021 Ho et al. Copyright Rockefeller University Press Sep 2021 2021 Ho et al. 2021 |
Copyright_xml | – notice: 2021 Ho et al. – notice: Copyright Rockefeller University Press Sep 2021 – notice: 2021 Ho et al. 2021 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QL 7QP 7QR 7TK 7TM 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
DOI | 10.1083/jcb.201910213 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Technology Research Database Nucleic Acids Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Genetics Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE Virology and AIDS Abstracts MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
DocumentTitleAlternate | TDP-43 influences cholesterol metabolism in CNS |
EISSN | 1540-8140 |
ExternalDocumentID | PMC8348376 34347016 10_1083_jcb_201910213 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIA NIH HHS grantid: T32 AG000255 – fundername: NINDS NIH HHS grantid: R01 NS095793 – fundername: NIA NIH HHS grantid: P01 AG066597 – fundername: NIA NIH HHS grantid: P30 AG072979 – fundername: ; – fundername: ; grantid: MOE2016-T2-1-024 – fundername: ; grantid: NMRC/OFIRG/0001/2016; NMRC/OFIRG/0042/2017 – fundername: ; grantid: IAF-ICP I1901E0040; R01 NS095793; P30 AG072979; P01 AG066597; T32 AG000255 |
GroupedDBID | --- -DZ -~X .55 123 18M 29K 2WC 34G 36B 39C 4.4 53G 85S AAYXX ABDNZ ABOCM ABPPZ ABRJW ABZEH ACGFO ACGOD ACIWK ACKOT ACNCT ACPRK ADBBV AEILP AENEX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BKOMP BTFSW C45 CITATION CS3 D-I D0L DIK DU5 E3Z EBS EMB F5P F9R FRP GX1 H13 HF~ HYE IH2 JZ9 KQ8 N9A NHB O5R O5S OK1 P2P PQQKQ R.V RHI RNS RXW SJN TAE TN5 TR2 TRP TWZ UBX UHB UKR UPT W8F WH7 WOQ X7M YKV YNH YOC YQT YSK YWH YZZ ZCA ~KM CGR CUY CVF ECM EIF NPM 7QL 7QP 7QR 7TK 7TM 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c481t-f8f90f05081474499dbefbe2c2af9e902a21fc29fc1ad9b040cc7779b34897333 |
ISSN | 0021-9525 1540-8140 |
IngestDate | Thu Aug 21 18:21:23 EDT 2025 Thu Jul 10 19:56:27 EDT 2025 Mon Jun 30 10:32:44 EDT 2025 Thu Apr 03 07:08:29 EDT 2025 Tue Jul 01 02:00:49 EDT 2025 Thu Apr 24 23:11:04 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
License | 2021 Ho et al. This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms/). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 International license, as described at https://creativecommons.org/licenses/by-nc-sa/4.0/). |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c481t-f8f90f05081474499dbefbe2c2af9e902a21fc29fc1ad9b040cc7779b34897333 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 W.Y. Ho, J.-C. Chang, and K. Lim contributed equally to this paper. |
ORCID | 0000-0002-2195-6090 0000-0002-4589-1180 0000-0002-3050-634X 0000-0001-6383-4289 0000-0002-0300-8812 0000-0001-8407-9251 0000-0003-4633-0622 0000-0001-9644-9598 0000-0002-5769-4854 0000-0003-1809-9451 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC8348376 |
PMID | 34347016 |
PQID | 2570234919 |
PQPubID | 48855 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8348376 proquest_miscellaneous_2558094136 proquest_journals_2570234919 pubmed_primary_34347016 crossref_citationtrail_10_1083_jcb_201910213 crossref_primary_10_1083_jcb_201910213 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-09-06 |
PublicationDateYYYYMMDD | 2021-09-06 |
PublicationDate_xml | – month: 09 year: 2021 text: 2021-09-06 day: 06 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | The Journal of cell biology |
PublicationTitleAlternate | J Cell Biol |
PublicationYear | 2021 |
Publisher | Rockefeller University Press |
Publisher_xml | – name: Rockefeller University Press |
References | Chiò (2023072716285365200_bib15) 2016; 73 Jurevics (2023072716285365200_bib29) 1995; 64 Camargo (2023072716285365200_bib11) 2017; 15 Brown (2023072716285365200_bib8) 2009; 50 Nagano (2023072716285365200_bib42) 2020; 140 Hill (2023072716285365200_bib24) 2018; 21 Quan (2023072716285365200_bib50) 2003; 146 Camargo (2023072716285365200_bib10) 2012; 26 Listenberger (2023072716285365200_bib36) 2007 Gao (2023072716285365200_bib19) 2021; 93 Björkhem (2023072716285365200_bib6) 2010; 51 Saher (2023072716285365200_bib54) 2005; 8 Ratnadiwakara (2023072716285365200_bib51) 2018; 7 Son (2023072716285365200_bib59) 2014; 55 Singh (2023072716285365200_bib58) 2009; 16 Lagier-Tourenne (2023072716285365200_bib30) 2010; 19 Horton (2023072716285365200_bib27) 2003; 100 Abdel-Khalik (2023072716285365200_bib1) 2017; 58 Lee (2023072716285365200_bib31) 2011; 13 Yang (2023072716285365200_bib67) 2018; 17 Wake (2023072716285365200_bib63) 2011; 333 Josephs (2023072716285365200_bib28) 2014; 127 Lee (2023072716285365200_bib32) 2012; 487 Pfeiffer (2023072716285365200_bib47) 1993; 3 Lee (2023072716285365200_bib33) 2017; 134 Majumder (2023072716285365200_bib38) 2016; 132 Winkler (2023072716285365200_bib66) 2013; 125 Bandres Ciga (2023072716285365200_bib3) 2019; 85 Wang (2023072716285365200_bib64) 2008; 105 Ling (2023072716285365200_bib35) 2013; 79 Chang (2023072716285365200_bib13) 2014; 1584 Goldstein (2023072716285365200_bib22) 2015; 161 Saher (2023072716285365200_bib55) 2012; 18 Lord (2023072716285365200_bib37) 2020; 219 Berghoff (2023072716285365200_bib4) 2017; 8 Horton (2023072716285365200_bib26) 2002; 109 Brown (2023072716285365200_bib9) 2018; 87 Nave (2023072716285365200_bib44) 2014; 30 Cantuti-Castelvetri (2023072716285365200_bib12) 2018; 359 Golomb (2023072716285365200_bib23) 2018; 41 Aoki (2023072716285365200_bib2) 2015; 129 Cheng (2023072716285365200_bib14) 2015; 28 Wang (2023072716285365200_bib65) 2018; 115 Ling (2023072716285365200_bib34) 2010; 107 Hor (2023072716285365200_bib25) 2018; 9 Bin (2023072716285365200_bib5) 2016; 139 Bligh (2023072716285365200_bib7) 1959; 37 Ryan (2023072716285365200_bib52) 1998; 35 McKenzie (2023072716285365200_bib41) 2014; 346 Polymenidou (2023072716285365200_bib49) 2011; 14 Martín (2023072716285365200_bib40) 2014; 15 Toledo (2023072716285365200_bib61) 2014; 10 Yang (2023072716285365200_bib70) 2015; 16 Fiesel (2023072716285365200_bib18) 2012; 40 Saher (2023072716285365200_bib53) 2015 Tan (2023072716285365200_bib60) 2017; 133 van der Kant (2023072716285365200_bib62) 2019; 24 Peng (2023072716285365200_bib46) 2020; 117 Gibson (2023072716285365200_bib21) 2014; 344 Zeng (2023072716285365200_bib68) 2019; 28 Nathans (2023072716285365200_bib43) 1964; 51 Dietschy (2023072716285365200_bib16) 2004; 45 Platt (2023072716285365200_bib48) 2014; 15 Schmidt (2023072716285365200_bib56) 2009; 6 Mariosa (2023072716285365200_bib39) 2017; 81 Neumann (2023072716285365200_bib45) 2006; 314 Sharpe (2023072716285365200_bib57) 2014; 39 Zhao (2023072716285365200_bib69) 2007; 236 Engelking (2023072716285365200_bib17) 2018; 81 Garbuzova-Davis (2023072716285365200_bib20) 2012; 1469 |
References_xml | – volume-title: Curr. Protoc. Cell Biol. year: 2007 ident: 2023072716285365200_bib36 article-title: Fluorescent Detection of Lipid Droplets and Associated Proteins doi: 10.1002/0471143030.cb2402s35 – volume: 146 start-page: 87 year: 2003 ident: 2023072716285365200_bib50 article-title: Ontogenesis and regulation of cholesterol metabolism in the central nervous system of the mouse publication-title: Brain Res. Dev. Brain Res. doi: 10.1016/j.devbrainres.2003.09.015 – volume: 15 start-page: e1002605 year: 2017 ident: 2023072716285365200_bib11 article-title: Oligodendroglial myelination requires astrocyte-derived lipids publication-title: PLoS Biol. doi: 10.1371/journal.pbio.1002605 – volume: 85 start-page: 470 year: 2019 ident: 2023072716285365200_bib3 article-title: Shared polygenic risk and causal inferences in amyotrophic lateral sclerosis publication-title: Ann. Neurol. doi: 10.1002/ana.25431 – volume: 3 start-page: 191 year: 1993 ident: 2023072716285365200_bib47 article-title: The oligodendrocyte and its many cellular processes publication-title: Trends Cell Biol. doi: 10.1016/0962-8924(93)90213-K – volume: 105 start-page: 797 year: 2008 ident: 2023072716285365200_bib64 article-title: TDP-43, the signature protein of FTLD-U, is a neuronal activity-responsive factor publication-title: J. Neurochem. doi: 10.1111/j.1471-4159.2007.05190.x – volume: 15 start-page: 1036 year: 2014 ident: 2023072716285365200_bib40 article-title: Cholesterol in brain disease: sometimes determinant and frequently implicated publication-title: EMBO Rep. doi: 10.15252/embr.201439225 – volume: 30 start-page: 503 year: 2014 ident: 2023072716285365200_bib44 article-title: Myelination of the nervous system: mechanisms and functions publication-title: Annu. Rev. Cell Dev. Biol. doi: 10.1146/annurev-cellbio-100913-013101 – volume: 127 start-page: 441 year: 2014 ident: 2023072716285365200_bib28 article-title: Staging TDP-43 pathology in Alzheimer’s disease publication-title: Acta Neuropathol. doi: 10.1007/s00401-013-1211-9 – volume: 58 start-page: 267 year: 2017 ident: 2023072716285365200_bib1 article-title: Defective cholesterol metabolism in amyotrophic lateral sclerosis publication-title: J. Lipid Res. doi: 10.1194/jlr.P071639 – volume: 140 start-page: 695 year: 2020 ident: 2023072716285365200_bib42 article-title: TDP-43 transports ribosomal protein mRNA to regulate axonal local translation in neuronal axons publication-title: Acta Neuropathol. doi: 10.1007/s00401-020-02205-y – volume: 6 start-page: 275 year: 2009 ident: 2023072716285365200_bib56 article-title: SUnSET, a nonradioactive method to monitor protein synthesis publication-title: Nat. Methods. doi: 10.1038/nmeth.1314 – volume: 346 start-page: 318 year: 2014 ident: 2023072716285365200_bib41 article-title: Motor skill learning requires active central myelination publication-title: Science. doi: 10.1126/science.1254960 – volume: 107 start-page: 13318 year: 2010 ident: 2023072716285365200_bib34 article-title: ALS-associated mutations in TDP-43 increase its stability and promote TDP-43 complexes with FUS/TLS publication-title: Proc. Natl. Acad. Sci. USA. doi: 10.1073/pnas.1008227107 – volume: 21 start-page: 683 year: 2018 ident: 2023072716285365200_bib24 article-title: Lifelong cortical myelin plasticity and age-related degeneration in the live mammalian brain publication-title: Nat. Neurosci. doi: 10.1038/s41593-018-0120-6 – volume: 79 start-page: 416 year: 2013 ident: 2023072716285365200_bib35 article-title: Converging mechanisms in ALS and FTD: disrupted RNA and protein homeostasis publication-title: Neuron. doi: 10.1016/j.neuron.2013.07.033 – volume: 35 start-page: 558 year: 1998 ident: 2023072716285365200_bib52 article-title: Smith-Lemli-Opitz syndrome: a variable clinical and biochemical phenotype publication-title: J. Med. Genet. doi: 10.1136/jmg.35.7.558 – volume: 487 start-page: 443 year: 2012 ident: 2023072716285365200_bib32 article-title: Oligodendroglia metabolically support axons and contribute to neurodegeneration publication-title: Nature. doi: 10.1038/nature11314 – volume: 133 start-page: 177 year: 2017 ident: 2023072716285365200_bib60 article-title: ALS/FTLD: experimental models and reality publication-title: Acta Neuropathol. doi: 10.1007/s00401-016-1666-6 – volume: 87 start-page: 783 year: 2018 ident: 2023072716285365200_bib9 article-title: Retrospective on Cholesterol Homeostasis: The Central Role of Scap publication-title: Annu. Rev. Biochem. doi: 10.1146/annurev-biochem-062917-011852 – volume: 26 start-page: 4302 year: 2012 ident: 2023072716285365200_bib10 article-title: High-fat diet ameliorates neurological deficits caused by defective astrocyte lipid metabolism publication-title: FASEB J. doi: 10.1096/fj.12-205807 – volume: 28 start-page: 569 year: 2015 ident: 2023072716285365200_bib14 article-title: Glucose-Mediated N-glycosylation of SCAP Is Essential for SREBP-1 Activation and Tumor Growth publication-title: Cancer Cell. doi: 10.1016/j.ccell.2015.09.021 – volume: 50 start-page: S15 year: 2009 ident: 2023072716285365200_bib8 article-title: Cholesterol feedback: from Schoenheimer’s bottle to Scap’s MELADL publication-title: J. Lipid Res. doi: 10.1194/jlr.R800054-JLR200 – volume: 132 start-page: 721 year: 2016 ident: 2023072716285365200_bib38 article-title: Co-regulation of mRNA translation by TDP-43 and Fragile X Syndrome protein FMRP publication-title: Acta Neuropathol. doi: 10.1007/s00401-016-1603-8 – volume: 314 start-page: 130 year: 2006 ident: 2023072716285365200_bib45 article-title: Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis publication-title: Science. doi: 10.1126/science.1134108 – volume: 55 start-page: 155 year: 2014 ident: 2023072716285365200_bib59 article-title: High-temperature GC-MS-based serum cholesterol signatures may reveal sex differences in vasospastic angina publication-title: J. Lipid Res. doi: 10.1194/jlr.D040790 – volume: 51 start-page: 2489 year: 2010 ident: 2023072716285365200_bib6 article-title: Genetic connections between neurological disorders and cholesterol metabolism publication-title: J. Lipid Res. doi: 10.1194/jlr.R006338 – volume: 129 start-page: 53 year: 2015 ident: 2023072716285365200_bib2 article-title: Hippocampal sclerosis in Lewy body disease is a TDP-43 proteinopathy similar to FTLD-TDP Type A publication-title: Acta Neuropathol. doi: 10.1007/s00401-014-1358-z – volume: 18 start-page: 1130 year: 2012 ident: 2023072716285365200_bib55 article-title: Therapy of Pelizaeus-Merzbacher disease in mice by feeding a cholesterol-enriched diet publication-title: Nat. Med. doi: 10.1038/nm.2833 – volume: 125 start-page: 111 year: 2013 ident: 2023072716285365200_bib66 article-title: Blood-spinal cord barrier breakdown and pericyte reductions in amyotrophic lateral sclerosis publication-title: Acta Neuropathol. doi: 10.1007/s00401-012-1039-8 – volume: 51 start-page: 585 year: 1964 ident: 2023072716285365200_bib43 article-title: PUROMYCIN INHIBITION OF PROTEIN SYNTHESIS: INCORPORATION OF PUROMYCIN INTO PEPTIDE CHAINS publication-title: Proc. Natl. Acad. Sci. USA. doi: 10.1073/pnas.51.4.585 – volume: 14 start-page: 459 year: 2011 ident: 2023072716285365200_bib49 article-title: Long pre-mRNA depletion and RNA missplicing contribute to neuronal vulnerability from loss of TDP-43 publication-title: Nat. Neurosci. doi: 10.1038/nn.2779 – volume: 81 start-page: 98 year: 2018 ident: 2023072716285365200_bib17 article-title: Developmental and extrahepatic physiological functions of SREBP pathway genes in mice publication-title: Semin. Cell Dev. Biol doi: 10.1016/j.semcdb.2017.07.011 – volume: 1584 start-page: 39 year: 2014 ident: 2023072716285365200_bib13 article-title: Motor neuron expression of the voltage-gated calcium channel cacophony restores locomotion defects in a Drosophila, TDP-43 loss of function model of ALS publication-title: Brain Res. doi: 10.1016/j.brainres.2013.11.019 – volume: 100 start-page: 12027 year: 2003 ident: 2023072716285365200_bib27 article-title: Combined analysis of oligonucleotide microarray data from transgenic and knockout mice identifies direct SREBP target genes publication-title: Proc. Natl. Acad. Sci. USA. doi: 10.1073/pnas.1534923100 – volume: 236 start-page: 2708 year: 2007 ident: 2023072716285365200_bib69 article-title: Selective expression of LDLR and VLDLR in myelinating oligodendrocytes publication-title: Dev. Dyn. doi: 10.1002/dvdy.21283 – volume: 16 start-page: 1128 year: 2009 ident: 2023072716285365200_bib58 article-title: Rates of in situ transcription and splicing in large human genes publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb.1666 – volume: 17 start-page: 773 year: 2018 ident: 2023072716285365200_bib67 article-title: Evaluation of TDP-43 proteinopathy and hippocampal sclerosis in relation to APOE ε4 haplotype status: a community-based cohort study publication-title: Lancet Neurol. doi: 10.1016/S1474-4422(18)30251-5 – start-page: 1083 volume-title: Biochim. Biophys. Acta year: 2015 ident: 2023072716285365200_bib53 article-title: Cholesterol in myelin biogenesis and hypomyelinating disorders doi: 10.1016/j.bbalip.2015.02.010 – volume: 41 start-page: 403 year: 2018 ident: 2023072716285365200_bib23 article-title: Amyotrophic Lateral Sclerosis Associated with Statin Use: A Disproportionality Analysis of the FDA’s Adverse Event Reporting System publication-title: Drug Saf. doi: 10.1007/s40264-017-0620-4 – volume: 13 start-page: 38 year: 2011 ident: 2023072716285365200_bib31 article-title: Gains or losses: molecular mechanisms of TDP43-mediated neurodegeneration publication-title: Nat. Rev. Neurosci. doi: 10.1038/nrn3121 – volume: 7 year: 2018 ident: 2023072716285365200_bib51 article-title: SRSF3 promotes pluripotency through Nanog mRNA export and coordination of the pluripotency gene expression program publication-title: eLife. doi: 10.7554/eLife.37419 – volume: 37 start-page: 911 year: 1959 ident: 2023072716285365200_bib7 article-title: A rapid method of total lipid extraction and purification publication-title: Can. J. Biochem. Physiol. doi: 10.1139/o59-099 – volume: 16 start-page: 51 year: 2015 ident: 2023072716285365200_bib70 article-title: CLIPdb: a CLIP-seq database for protein-RNA interactions publication-title: BMC Genomics doi: 10.1186/s12864-015-1273-2 – volume: 1469 start-page: 114 year: 2012 ident: 2023072716285365200_bib20 article-title: Impaired blood-brain/spinal cord barrier in ALS patients publication-title: Brain Res. doi: 10.1016/j.brainres.2012.05.056 – volume: 64 start-page: 895 year: 1995 ident: 2023072716285365200_bib29 article-title: Cholesterol for synthesis of myelin is made locally, not imported into brain publication-title: J. Neurochem. doi: 10.1046/j.1471-4159.1995.64020895.x – volume: 333 start-page: 1647 year: 2011 ident: 2023072716285365200_bib63 article-title: Control of local protein synthesis and initial events in myelination by action potentials publication-title: Science. doi: 10.1126/science.1206998 – volume: 24 start-page: 363 year: 2019 ident: 2023072716285365200_bib62 article-title: Cholesterol Metabolism Is a Druggable Axis that Independently Regulates Tau and Amyloid-β in iPSC-Derived Alzheimer’s Disease Neurons publication-title: Cell Stem Cell. doi: 10.1016/j.stem.2018.12.013 – volume: 139 start-page: 181 year: 2016 ident: 2023072716285365200_bib5 article-title: The oligodendrocyte-specific antibody ‘CC1’ binds Quaking 7 publication-title: J. Neurochem. doi: 10.1111/jnc.13745 – volume: 40 start-page: 2668 year: 2012 ident: 2023072716285365200_bib18 article-title: TDP-43 regulates global translational yield by splicing of exon junction complex component SKAR publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkr1082 – volume: 359 start-page: 684 year: 2018 ident: 2023072716285365200_bib12 article-title: Defective cholesterol clearance limits remyelination in the aged central nervous system publication-title: Science. doi: 10.1126/science.aan4183 – volume: 219 year: 2020 ident: 2023072716285365200_bib37 article-title: SuperPlots: Communicating reproducibility and variability in cell biology publication-title: J. Cell Biol. doi: 10.1083/jcb.202001064 – volume: 28 start-page: 688 year: 2019 ident: 2023072716285365200_bib68 article-title: Causal effects of blood lipids on amyotrophic lateral sclerosis: a Mendelian randomization study publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/ddy384 – volume: 19 start-page: R46 year: 2010 ident: 2023072716285365200_bib30 article-title: TDP-43 and FUS/TLS: emerging roles in RNA processing and neurodegeneration publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/ddq137 – volume: 8 start-page: 468 year: 2005 ident: 2023072716285365200_bib54 article-title: High cholesterol level is essential for myelin membrane growth publication-title: Nat. Neurosci. doi: 10.1038/nn1426 – volume: 10 start-page: 477 year: 2014 ident: 2023072716285365200_bib61 article-title: A platform for discovery: The University of Pennsylvania Integrated Neurodegenerative Disease Biobank publication-title: Alzheimers Dement. doi: 10.1016/j.jalz.2013.06.003 – volume: 39 start-page: 527 year: 2014 ident: 2023072716285365200_bib57 article-title: The UPS and downs of cholesterol homeostasis publication-title: Trends Biochem. Sci. doi: 10.1016/j.tibs.2014.08.008 – volume: 8 start-page: 14241 year: 2017 ident: 2023072716285365200_bib4 article-title: Dietary cholesterol promotes repair of demyelinated lesions in the adult brain publication-title: Nat. Commun. doi: 10.1038/ncomms14241 – volume: 73 start-page: 425 year: 2016 ident: 2023072716285365200_bib15 article-title: The Role of APOE in the Occurrence of Frontotemporal Dementia in Amyotrophic Lateral Sclerosis publication-title: JAMA Neurol. doi: 10.1001/jamaneurol.2015.4773 – volume: 109 start-page: 1125 year: 2002 ident: 2023072716285365200_bib26 article-title: SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver publication-title: J. Clin. Invest. doi: 10.1172/JCI0215593 – volume: 9 start-page: 1100 year: 2018 ident: 2023072716285365200_bib25 article-title: Cell cycle inhibitors protect motor neurons in an organoid model of Spinal Muscular Atrophy publication-title: Cell Death Dis. doi: 10.1038/s41419-018-1081-0 – volume: 117 start-page: 29101 year: 2020 ident: 2023072716285365200_bib46 article-title: Loss of TDP-43 in astrocytes leads to motor deficits by triggering A1-like reactive phenotype and triglial dysfunction publication-title: Proc. Natl. Acad. Sci. USA. doi: 10.1073/pnas.2007806117 – volume: 115 start-page: E10941 year: 2018 ident: 2023072716285365200_bib65 article-title: Cell-autonomous requirement of TDP-43, an ALS/FTD signature protein, for oligodendrocyte survival and myelination publication-title: Proc. Natl. Acad. Sci. USA. doi: 10.1073/pnas.1809821115 – volume: 45 start-page: 1375 year: 2004 ident: 2023072716285365200_bib16 article-title: Thematic review series: brain Lipids. Cholesterol metabolism in the central nervous system during early development and in the mature animal publication-title: J. Lipid Res. doi: 10.1194/jlr.R400004-JLR200 – volume: 15 start-page: 173 year: 2014 ident: 2023072716285365200_bib48 article-title: Disorders of cholesterol metabolism and their unanticipated convergent mechanisms of disease publication-title: Annu. Rev. Genomics Hum. Genet. doi: 10.1146/annurev-genom-091212-153412 – volume: 161 start-page: 161 year: 2015 ident: 2023072716285365200_bib22 article-title: A century of cholesterol and coronaries: from plaques to genes to statins publication-title: Cell. doi: 10.1016/j.cell.2015.01.036 – volume: 93 start-page: 3163 year: 2021 ident: 2023072716285365200_bib19 article-title: LICAR: An Application for Isotopic Correction of Targeted Lipidomic Data Acquired with Class-Based Chromatographic Separations Using Multiple Reaction Monitoring publication-title: Anal. Chem. doi: 10.1021/acs.analchem.0c04565 – volume: 344 year: 2014 ident: 2023072716285365200_bib21 article-title: Neuronal activity promotes oligodendrogenesis and adaptive myelination in the mammalian brain publication-title: Science. doi: 10.1126/science.1252304 – volume: 134 start-page: 65 year: 2017 ident: 2023072716285365200_bib33 article-title: Expansion of the classification of FTLD-TDP: distinct pathology associated with rapidly progressive frontotemporal degeneration publication-title: Acta Neuropathol. doi: 10.1007/s00401-017-1679-9 – volume: 81 start-page: 718 year: 2017 ident: 2023072716285365200_bib39 article-title: Blood biomarkers of carbohydrate, lipid, and apolipoprotein metabolisms and risk of amyotrophic lateral sclerosis: A more than 20-year follow-up of the Swedish AMORIS cohort publication-title: Ann. Neurol. doi: 10.1002/ana.24936 |
SSID | ssj0004743 |
Score | 2.5144942 |
Snippet | Cholesterol metabolism operates autonomously within the central nervous system (CNS), where the majority of cholesterol resides in myelin. We demonstrate that... Ho et al. provide a novel insight on how loss of TDP-43 (a major disease protein) leads to SREBF2 (a key regulator)–dependent disruption of cholesterol... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 1 |
SubjectTerms | Amyotrophic lateral sclerosis Animals Biosynthesis Central nervous system Cholesterol Cholesterol - metabolism Dementia disorders Demyelination Depletion Disease Models, Animal DNA-Binding Proteins - deficiency DNA-Binding Proteins - genetics Female Frontal Lobe - metabolism Frontal Lobe - pathology Frontotemporal dementia Frontotemporal Dementia - genetics Frontotemporal Dementia - metabolism Frontotemporal Dementia - pathology Gene expression Gene Expression Profiling Gene Expression Regulation Homeostasis Humans Hydroxymethylglutaryl-CoA Synthase - genetics Hydroxymethylglutaryl-CoA Synthase - metabolism Lipid metabolism Lipid Metabolism - genetics Male Membrane and lipid biology Metabolism Mice Mice, Inbred C57BL Mice, Knockout Myelin Myelin Sheath - metabolism Myelin Sheath - pathology Myelination Neuroscience Oligodendrocytes Oligodendroglia - metabolism Oligodendroglia - pathology Organoids - metabolism Organoids - pathology Physiology Primary Cell Culture Proteins Receptors, LDL - genetics Receptors, LDL - metabolism RNA biology Signal Transduction Spinal Cord - metabolism Spinal Cord - pathology Sterol Regulatory Element Binding Protein 2 - genetics Sterol Regulatory Element Binding Protein 2 - metabolism Supplements Temporal Lobe - metabolism Temporal Lobe - pathology Transcription |
Title | TDP-43 mediates SREBF2-regulated gene expression required for oligodendrocyte myelination |
URI | https://www.ncbi.nlm.nih.gov/pubmed/34347016 https://www.proquest.com/docview/2570234919 https://www.proquest.com/docview/2558094136 https://pubmed.ncbi.nlm.nih.gov/PMC8348376 |
Volume | 220 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3bbtQwELWWIlBfEHcCBQUJ8VJcfMkm8SMsLVVRUSmtaJ-i2OuIojZbLVmk7X_wv8zEzmW3RYK-RKvEWUc-x5OxM3OGkFdxmsdSGk7jXKcUZmJOlTKGwlTSSc64UbV25-7nePsw2jkaHg0Gv3tRS7NKb5iLK_NKroMqnANcMUv2P5Bt_xROwG_AF46AMBz_DeMPezSSLvsD90-_7m--3xJ06urLgysJd1oU8XfBrpi5goG_cAGDCyenJ7AotahYYOaVXT-bY256h9SPjkg9txV3-te9dFPLiXq_9RuYiuNZS7ZRsxW9Y6d0BNTw70iM_nElnH1OUPcZ5MKW-S9LP-b4tE4PAWWP5v2tCcHr2Ku4JdM-WHRb4PeH6aW8x75NxiCRoUt_3rDeDEcMNydZ304LwXqEVFfaf3Ao0f4bjUF7CsuWy347gO_8rCaDjGSUML6kwl2_1_d2R6lEof34BrkpYPWB5vPTl54IfeKDMf2De-lW6PvtQs-r5HbTzaLXc2kpsxyR23NxDu6SOx7k8J0j2j0ysOV9cstVK50_IMeObmFDt3CZbiHSLezoFjZ0C4Fu4RLdwh7dHpLDrc2D0Tb1lTmoiVJe0SItFCsYOPccBgMWzWNtC22FEXmhrGIiF7wwQhWG52Ol4UVhTJIkSsO4qkRK-YislJPSPiEh3B3FlluuUF8_MjqRQ8XAXGgj9ZglAXnTjFxmvGw9Vk85zerwiVRmMOZZO-YBed02P3d6LX9ruNbAkPkp_TPDko5CRoqrgLxsL4PBxbmVl3YywzbDlCnw_eKAPHaotT01cAckWcCzbYBi7otXypPvtai7p9zTa9_5jKx2c3CNrFTTmX0ODnOlX9T0_QML2cPD |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=TDP-43+mediates+SREBF2-regulated+gene+expression+required+for+oligodendrocyte+myelination&rft.jtitle=The+Journal+of+cell+biology&rft.au=Ho%2C+Wan+Yun&rft.au=Chang%2C+Jer-Cherng&rft.au=Lim%2C+Kenneth&rft.au=Cazenave-Gassiot%2C+Amaury&rft.date=2021-09-06&rft.pub=Rockefeller+University+Press&rft.issn=0021-9525&rft.eissn=1540-8140&rft.volume=220&rft.issue=9&rft_id=info:doi/10.1083%2Fjcb.201910213&rft_id=info%3Apmid%2F34347016&rft.externalDocID=PMC8348376 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9525&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9525&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9525&client=summon |