Evaluation of fuel ethanol production from aqueous ammonia-treated rice straw via simultaneous saccharification and fermentation
Rice straw (RS) has been considered a promising feedstock for ethanol production in Asia. However, the recalcitrance of biomass, particularly the presence of lignin, hinders the enzymatic saccharification of polysaccharides in RS and consequently decreases the ethanol yield. Here, we used aqueous am...
Saved in:
Published in | Biomass & bioenergy Vol. 93; pp. 150 - 157 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.10.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Rice straw (RS) has been considered a promising feedstock for ethanol production in Asia. However, the recalcitrance of biomass, particularly the presence of lignin, hinders the enzymatic saccharification of polysaccharides in RS and consequently decreases the ethanol yield. Here, we used aqueous ammonia pretreatment to remove lignin from RS (aRS). The reaction conditions were a solid:liquid ratio of 1:12, an ammonia concentration of 27% (w w−1), room temperature, and a 2-week incubation. We evaluated enzymatic digestibility and the ethanol production yield. A 42% reduction in lignin content increased the glucan conversion of aRS to glucose from 20 to 71% using a combination of Cellic Ctec2 cellulases and Cellic Htec2 xylanases at enzyme loads of 15 FPU +100 XU g−1 solid. Scanning electron microscopy highlighted the extensive removal of external fibres and increased porosity of aRS, which aided the accessibility of cellulose for enzymes. Using the same enzyme dosage and a solid load of 100 g L−1, simultaneous saccharification and fermentation using a monoculture of Saccharomyces cerevisiae and co-culture with Candida tropicalis yielded ethanol concentrations of 22 and 25 g L−1, corresponding to fermentation efficiencies of 96 and 86% fermentation, respectively. The volumetric ethanol productivities for these systems were 0.45 and 0.52 g L−1 h−1. However, the ethanol yield based on the theoretical glucose and xylose concentrations was lower for the co-culture (0.44 g g−1) than the monoculture (0.49 g g−1) due to the low xylose consumption. Further research should optimise fermentation variables or select/improve microbial strains capable of fermenting xylose to increase the overall ethanol production yield.
[Display omitted]
•Rice straw was treated with 27% (w w−1) aqueous ammonia at room temperature.•Lignin was removed by 42%, with exposure of internal fibres.•The highest glucan-to-glucose conversion was 71% using a combination of cellulase and xylanase.•Ethanol yields were achieved at 96 and 86% for mono- and co-cultures. |
---|---|
AbstractList | Rice straw (RS) has been considered a promising feedstock for ethanol production in Asia. However, the recalcitrance of biomass, particularly the presence of lignin, hinders the enzymatic saccharification of polysaccharides in RS and consequently decreases the ethanol yield. Here, we used aqueous ammonia pretreatment to remove lignin from RS (aRS). The reaction conditions were a solid:liquid ratio of 1:12, an ammonia concentration of 27% (w w super(-1)), room temperature, and a 2-week incubation. We evaluated enzymatic digestibility and the ethanol production yield. A 42% reduction in lignin content increased the glucan conversion of aRS to glucose from 20 to 71% using a combination of Cellic Ctec2 cellulases and Cellic Htec2 xylanases at enzyme loads of 15 FPU +100 XU g super(-1) solid. Scanning electron microscopy highlighted the extensive removal of external fibres and increased porosity of aRS, which aided the accessibility of cellulose for enzymes. Using the same enzyme dosage and a solid load of 100 g L super(-1), simultaneous saccharification and fermentation using a monoculture of Saccharomyces cerevisiae and co-culture with Candida tropicalis yielded ethanol concentrations of 22 and 25 g L super(-1), corresponding to fermentation efficiencies of 96 and 86% fermentation, respectively. The volumetric ethanol productivities for these systems were 0.45 and 0.52 g L super(-1) h super(-1). However, the ethanol yield based on the theoretical glucose and xylose concentrations was lower for the co-culture (0.44 g g super(-1)) than the monoculture (0.49 g g super(-1)) due to the low xylose consumption. Further research should optimise fermentation variables or select/improve microbial strains capable of fermenting xylose to increase the overall ethanol production yield. Rice straw (RS) has been considered a promising feedstock for ethanol production in Asia. However, the recalcitrance of biomass, particularly the presence of lignin, hinders the enzymatic saccharification of polysaccharides in RS and consequently decreases the ethanol yield. Here, we used aqueous ammonia pretreatment to remove lignin from RS (aRS). The reaction conditions were a solid:liquid ratio of 1:12, an ammonia concentration of 27% (w w−1), room temperature, and a 2-week incubation. We evaluated enzymatic digestibility and the ethanol production yield. A 42% reduction in lignin content increased the glucan conversion of aRS to glucose from 20 to 71% using a combination of Cellic Ctec2 cellulases and Cellic Htec2 xylanases at enzyme loads of 15 FPU +100 XU g−1 solid. Scanning electron microscopy highlighted the extensive removal of external fibres and increased porosity of aRS, which aided the accessibility of cellulose for enzymes. Using the same enzyme dosage and a solid load of 100 g L−1, simultaneous saccharification and fermentation using a monoculture of Saccharomyces cerevisiae and co-culture with Candida tropicalis yielded ethanol concentrations of 22 and 25 g L−1, corresponding to fermentation efficiencies of 96 and 86% fermentation, respectively. The volumetric ethanol productivities for these systems were 0.45 and 0.52 g L−1 h−1. However, the ethanol yield based on the theoretical glucose and xylose concentrations was lower for the co-culture (0.44 g g−1) than the monoculture (0.49 g g−1) due to the low xylose consumption. Further research should optimise fermentation variables or select/improve microbial strains capable of fermenting xylose to increase the overall ethanol production yield. [Display omitted] •Rice straw was treated with 27% (w w−1) aqueous ammonia at room temperature.•Lignin was removed by 42%, with exposure of internal fibres.•The highest glucan-to-glucose conversion was 71% using a combination of cellulase and xylanase.•Ethanol yields were achieved at 96 and 86% for mono- and co-cultures. Rice straw (RS) has been considered a promising feedstock for ethanol production in Asia. However, the recalcitrance of biomass, particularly the presence of lignin, hinders the enzymatic saccharification of polysaccharides in RS and consequently decreases the ethanol yield. Here, we used aqueous ammonia pretreatment to remove lignin from RS (aRS). The reaction conditions were a solid:liquid ratio of 1:12, an ammonia concentration of 27% (w w−1), room temperature, and a 2-week incubation. We evaluated enzymatic digestibility and the ethanol production yield. A 42% reduction in lignin content increased the glucan conversion of aRS to glucose from 20 to 71% using a combination of Cellic Ctec2 cellulases and Cellic Htec2 xylanases at enzyme loads of 15 FPU +100 XU g−1 solid. Scanning electron microscopy highlighted the extensive removal of external fibres and increased porosity of aRS, which aided the accessibility of cellulose for enzymes. Using the same enzyme dosage and a solid load of 100 g L−1, simultaneous saccharification and fermentation using a monoculture of Saccharomyces cerevisiae and co-culture with Candida tropicalis yielded ethanol concentrations of 22 and 25 g L−1, corresponding to fermentation efficiencies of 96 and 86% fermentation, respectively. The volumetric ethanol productivities for these systems were 0.45 and 0.52 g L−1 h−1. However, the ethanol yield based on the theoretical glucose and xylose concentrations was lower for the co-culture (0.44 g g−1) than the monoculture (0.49 g g−1) due to the low xylose consumption. Further research should optimise fermentation variables or select/improve microbial strains capable of fermenting xylose to increase the overall ethanol production yield. |
Author | Waeonukul, Rattiya Tachaapaikoon, Chakrit Permsriburasuk, Chutidet Ratanakhanokchai, Khanok Pason, Patthra Phitsuwan, Paripok |
Author_xml | – sequence: 1 givenname: Paripok surname: Phitsuwan fullname: Phitsuwan, Paripok organization: Division of Biochemical Technology, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkuntien, Bangkok 10150, Thailand – sequence: 2 givenname: Chutidet surname: Permsriburasuk fullname: Permsriburasuk, Chutidet organization: Department of Chemical Engineering, Faculty of Engineering, King Mongkut's University of Technology Thonburi, Thungkru, Bangkok 10140, Thailand – sequence: 3 givenname: Rattiya surname: Waeonukul fullname: Waeonukul, Rattiya organization: Pilot Plant Development and Training Institute, King Mongkut's University of Technology, Thonburi, Bangkok 10150, Thailand – sequence: 4 givenname: Patthra surname: Pason fullname: Pason, Patthra organization: Pilot Plant Development and Training Institute, King Mongkut's University of Technology, Thonburi, Bangkok 10150, Thailand – sequence: 5 givenname: Chakrit surname: Tachaapaikoon fullname: Tachaapaikoon, Chakrit organization: Pilot Plant Development and Training Institute, King Mongkut's University of Technology, Thonburi, Bangkok 10150, Thailand – sequence: 6 givenname: Khanok orcidid: 0000-0003-0922-9867 surname: Ratanakhanokchai fullname: Ratanakhanokchai, Khanok email: khanok.rat@kmutt.ac.th organization: Division of Biochemical Technology, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkuntien, Bangkok 10150, Thailand |
BookMark | eNqNkUFv3CAQhVGVSNmk-QsRx17sAraxLfXQKkraSpF6yR3NjgeFlQ0p4K16608vWbeXXtIDQgPvG3jzLtmZD54Yu5GilkLq94d678JSFtWq1LXoayHVG7aTQ99UahTjGduJUctq7Jr2gl2mdBBCtqKVO_br7gjzCtkFz4PldqWZU34CH2b-HMO04unKxrBw-L5SWBOHZQneQZUjQaaJR4fEU47wgx8d8OSWdc7gT9oEiE8QnXW4PQJ-4pbiQj6fDt6ycwtzous_-xV7vL97vP1SPXz7_PX200OF7SBzZTsxdXZqEEbs2snqfdeVQncKNTWWUPXtCEMvQO3bPUqBQwG0grEhYW1zxd5tbYupYiNls7iENM_bP40cmr6Rou3H_5Fq3cteqSL9sEkxhpQiWYNus1Wm4WYjhXmJyBzM34jMS0RG9KZEVHD9D_4c3QLx5-vgxw2kMrGjo2gSOvJIk4uE2UzBvdbiN9XrtgQ |
CitedBy_id | crossref_primary_10_1016_j_fuel_2018_09_024 crossref_primary_10_1016_j_fuel_2019_03_080 crossref_primary_10_1186_s13068_023_02295_2 crossref_primary_10_1016_j_jtice_2017_04_021 crossref_primary_10_1128_AEM_01522_17 crossref_primary_10_1016_j_enzmictec_2021_109762 crossref_primary_10_1155_2017_4876969 crossref_primary_10_1016_j_jics_2021_100147 crossref_primary_10_4236_jsbs_2016_63008 crossref_primary_10_1007_s12649_017_9931_z crossref_primary_10_18412_1816_0387_2019_6_474_481 crossref_primary_10_1016_j_eti_2021_102238 crossref_primary_10_1134_S2070050420020038 crossref_primary_10_1007_s12155_019_09995_4 crossref_primary_10_1080_21655979_2021_1961662 crossref_primary_10_1016_j_jclepro_2019_07_073 crossref_primary_10_1128_AEM_01730_21 crossref_primary_10_1016_j_biortech_2018_03_023 crossref_primary_10_3390_jof7100853 crossref_primary_10_1007_s00253_021_11308_9 crossref_primary_10_1007_s00253_020_10758_x crossref_primary_10_1016_j_renene_2019_07_016 crossref_primary_10_1016_j_bcab_2024_103142 crossref_primary_10_1016_j_enconman_2022_115869 crossref_primary_10_1007_s00253_020_10388_3 crossref_primary_10_1016_j_biombioe_2020_105705 crossref_primary_10_1111_jam_14255 crossref_primary_10_1021_acssuschemeng_3c01200 crossref_primary_10_1007_s40974_018_0083_1 crossref_primary_10_1007_s12649_017_9989_7 |
Cites_doi | 10.1016/j.biortech.2011.07.050 10.1016/j.copbio.2013.09.008 10.1016/j.biombioe.2010.08.027 10.1016/j.biortech.2013.04.127 10.1016/j.biortech.2012.10.133 10.1007/s12010-011-9204-4 10.1016/j.bej.2013.11.013 10.1016/j.biortech.2009.04.026 10.1007/s00253-003-1320-9 10.1016/j.renene.2009.12.015 10.1016/j.copbio.2014.01.014 10.1016/j.biortech.2009.10.079 10.1021/bp0702018 10.1007/s00449-014-1165-x 10.1016/j.biortech.2007.10.055 10.1007/s00253-009-2001-0 10.3390/ijms9091621 10.1016/j.procbio.2010.04.017 10.1016/j.biortech.2011.07.028 10.1186/s13068-014-0166-y 10.1016/j.fuel.2015.03.072 10.1016/j.biortech.2013.05.003 10.1016/j.biombioe.2015.04.019 10.1016/j.jiec.2011.11.016 10.1016/S0960-8524(03)00097-X 10.1016/j.biortech.2010.05.039 10.1016/j.biombioe.2005.11.015 10.1016/j.jbiosc.2008.12.024 10.1038/sj.jim.2900626 10.1016/j.biortech.2014.04.101 10.1126/science.1137016 10.1039/C5RA05792B 10.1016/j.biombioe.2011.08.022 10.1016/j.biortech.2014.06.054 10.1016/j.biombioe.2013.08.027 10.1016/j.biortech.2015.08.085 10.1016/j.biortech.2011.06.068 10.1016/j.biombioe.2012.08.024 10.1016/j.biortech.2014.09.109 10.1021/jf301244m 10.1007/BF00154647 10.1016/j.rser.2015.04.114 |
ContentType | Journal Article |
Copyright | 2016 Elsevier Ltd |
Copyright_xml | – notice: 2016 Elsevier Ltd |
DBID | AAYXX CITATION 7S9 L.6 7QO 7ST 7T7 8FD C1K FR3 P64 SOI |
DOI | 10.1016/j.biombioe.2016.07.012 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic Biotechnology Research Abstracts Environment Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Biotechnology and BioEngineering Abstracts Environment Abstracts |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic Biotechnology Research Abstracts Technology Research Database Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Environment Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | Biotechnology Research Abstracts AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Environmental Sciences |
EISSN | 1873-2909 |
EndPage | 157 |
ExternalDocumentID | 10_1016_j_biombioe_2016_07_012 S0961953416302471 |
GeographicLocations | Asia |
GeographicLocations_xml | – name: Asia |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 23N 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM 9JN AABNK AABVA AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AARJD AATLK AAXUO ABFNM ABGRD ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE ADMUD ADQTV AEBSH AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AHIDL AHPOS AI. AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BELTK BKOJK BLECG BLXMC CBWCG CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JARJE KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAC SCC SDF SDG SES SEW SPC SPCBC SSA SSG SSJ SSR SSZ T5K VH1 WUQ ~G- ~KM AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7S9 EFKBS L.6 7QO 7ST 7T7 8FD C1K FR3 P64 SOI |
ID | FETCH-LOGICAL-c481t-f50d5fd3ca9c54df6b553ca652c6e3fec2749a870a2b4bc10c80d562a93e0ff3 |
IEDL.DBID | .~1 |
ISSN | 0961-9534 |
IngestDate | Thu Jul 10 21:55:39 EDT 2025 Thu Aug 07 15:07:06 EDT 2025 Tue Jul 01 01:49:44 EDT 2025 Thu Apr 24 22:58:42 EDT 2025 Fri Feb 23 02:27:01 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Aqueous ammonia pretreatment Lignin Ethanol Simultaneous saccharification and fermentation Rice straw |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c481t-f50d5fd3ca9c54df6b553ca652c6e3fec2749a870a2b4bc10c80d562a93e0ff3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-0922-9867 |
PQID | 1836671722 |
PQPubID | 24069 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_1837310479 proquest_miscellaneous_1836671722 crossref_citationtrail_10_1016_j_biombioe_2016_07_012 crossref_primary_10_1016_j_biombioe_2016_07_012 elsevier_sciencedirect_doi_10_1016_j_biombioe_2016_07_012 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-10-01 |
PublicationDateYYYYMMDD | 2016-10-01 |
PublicationDate_xml | – month: 10 year: 2016 text: 2016-10-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Biomass & bioenergy |
PublicationYear | 2016 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Karimi, Kheradmandinia, Taherzadeh (bib5) 2006; 30 de Assis Castro, Roberto (bib28) 2015; 78 Kim, Ryu, Seo (bib41) 1999; 22 Liu, Padmanabhan, Cheng, Schwyter, Pauly, Bell (bib18) 2013; 135 Oberoi, Vadlani, Brijwani, Bhargav, Patil (bib37) 2010; 45 Kim, Kim, Sunwoo, Lee (bib12) 2003; 90 Gao, Bule, Laskar, Chen (bib14) 2012; 60 Ko, Bak, Jung, Lee, Choi, Kim (bib25) 2009; 100 Cheng, Wu, Lin, Zhang (bib35) 2014; 7 Taherzadeh, Karimi (bib10) 2008; 9 Himmel, Ding, Johnson, Adney, Nimlos, Brady (bib7) 2007; 315 Phitsuwan, Sakka, Ratanakhanokchai (bib1) 2013; 58 Suriyachai, Weerasaia, Laosiripojana, Champreda, Unrean (bib42) 2013; 142 Gupta, Lee (bib17) 2010; 101 García Martín, Cuevas, Bravo, Sánchez (bib36) 2010; 35 Kim, Kim, Lee, Kang, Park, Kim (bib24) 2011; 164 Kim, Han (bib44) 2012; 46 Gong, Holtman, Franqui-Espiet, Orts, Zhao (bib27) 2011; 35 Jeffries (bib39) 1981; 3 Yang, Choi, Park, Kim (bib8) 2015; 49 Kim, Kim, Lee, Park, Cho, Park (bib23) 2011; 102 Chang, Thitikorn-amorn, Hsieh, Ou, Chen, Ratanakhanokchai (bib4) 2011; 35 Kim, Lee, Song, Han (bib20) 2014; 166 Kim, Lee, Jang, Han, Park, Kim (bib43) 2012; 18 Shen, Kumar, Hu, Saddler (bib30) 2011; 102 Cha, Yang, Ahn, Moon, Yoon, Yu (bib33) 2014; 37 Zeng, Zhao, Yang, Ding (bib6) 2014; 27 Rattanachomsri, Tanapongpipat, Eurwilaichitr, Champreda (bib38) 2009; 107 Zhong, Lau, Balan, Dale, Yuan (bib21) 2009; 84 Jung, Kim, Han, Choi, Kim (bib16) 2011; 102 Saini, Agrawal, Satlewal, Saini, Gupta, Mathur (bib29) 2015; 5 Binod, Sindhu, Singhania, Vikram, Devi, Nagalakshmi (bib3) 2010; 101 Sluiter, Hames, Ruiz, Scarlata, Sluiter, Templeton (bib26) 2008 Kastner, Eiteman, Lee (bib40) 2003; 63 Kim, Lee, Kim (bib11) 2016; 199 Ramadoss, Muthukumar (bib15) 2014; 83 Yamamoto, Iakovlev, Bankar, Tunc, van Heiningen (bib32) 2014; 167 Selig, Viamajala, Decker, Tucker, Himmel, Vinzant (bib34) 2007; 23 Pengilly, García-Aparicio, Diedericks, Brienzo, Görgens (bib31) 2015; 154 Phitsuwan, Ratanakhanokchai (bib2) 2014; 2 Kim, Taylor, Hicks (bib13) 2008; 99 Yang, Zhang, Xin, Wang, Zhang (bib19) 2014; 173 Gu, Wang, Jing, Jin (bib22) 2013; 142 Meng, Ragauskas (bib9) 2014; 27 Yamamoto (10.1016/j.biombioe.2016.07.012_bib32) 2014; 167 Selig (10.1016/j.biombioe.2016.07.012_bib34) 2007; 23 Oberoi (10.1016/j.biombioe.2016.07.012_bib37) 2010; 45 Kim (10.1016/j.biombioe.2016.07.012_bib12) 2003; 90 Gao (10.1016/j.biombioe.2016.07.012_bib14) 2012; 60 Cheng (10.1016/j.biombioe.2016.07.012_bib35) 2014; 7 Liu (10.1016/j.biombioe.2016.07.012_bib18) 2013; 135 Gu (10.1016/j.biombioe.2016.07.012_bib22) 2013; 142 Ko (10.1016/j.biombioe.2016.07.012_bib25) 2009; 100 Chang (10.1016/j.biombioe.2016.07.012_bib4) 2011; 35 Jung (10.1016/j.biombioe.2016.07.012_bib16) 2011; 102 Kim (10.1016/j.biombioe.2016.07.012_bib11) 2016; 199 García Martín (10.1016/j.biombioe.2016.07.012_bib36) 2010; 35 Kastner (10.1016/j.biombioe.2016.07.012_bib40) 2003; 63 Suriyachai (10.1016/j.biombioe.2016.07.012_bib42) 2013; 142 Phitsuwan (10.1016/j.biombioe.2016.07.012_bib1) 2013; 58 Binod (10.1016/j.biombioe.2016.07.012_bib3) 2010; 101 Yang (10.1016/j.biombioe.2016.07.012_bib8) 2015; 49 Kim (10.1016/j.biombioe.2016.07.012_bib13) 2008; 99 Saini (10.1016/j.biombioe.2016.07.012_bib29) 2015; 5 Himmel (10.1016/j.biombioe.2016.07.012_bib7) 2007; 315 Gupta (10.1016/j.biombioe.2016.07.012_bib17) 2010; 101 Gong (10.1016/j.biombioe.2016.07.012_bib27) 2011; 35 Kim (10.1016/j.biombioe.2016.07.012_bib44) 2012; 46 Rattanachomsri (10.1016/j.biombioe.2016.07.012_bib38) 2009; 107 Cha (10.1016/j.biombioe.2016.07.012_bib33) 2014; 37 Kim (10.1016/j.biombioe.2016.07.012_bib24) 2011; 164 Kim (10.1016/j.biombioe.2016.07.012_bib43) 2012; 18 Zeng (10.1016/j.biombioe.2016.07.012_bib6) 2014; 27 Sluiter (10.1016/j.biombioe.2016.07.012_bib26) 2008 Shen (10.1016/j.biombioe.2016.07.012_bib30) 2011; 102 Karimi (10.1016/j.biombioe.2016.07.012_bib5) 2006; 30 Jeffries (10.1016/j.biombioe.2016.07.012_bib39) 1981; 3 Ramadoss (10.1016/j.biombioe.2016.07.012_bib15) 2014; 83 Pengilly (10.1016/j.biombioe.2016.07.012_bib31) 2015; 154 Phitsuwan (10.1016/j.biombioe.2016.07.012_bib2) 2014; 2 Kim (10.1016/j.biombioe.2016.07.012_bib20) 2014; 166 de Assis Castro (10.1016/j.biombioe.2016.07.012_bib28) 2015; 78 Taherzadeh (10.1016/j.biombioe.2016.07.012_bib10) 2008; 9 Yang (10.1016/j.biombioe.2016.07.012_bib19) 2014; 173 Kim (10.1016/j.biombioe.2016.07.012_bib41) 1999; 22 Meng (10.1016/j.biombioe.2016.07.012_bib9) 2014; 27 Zhong (10.1016/j.biombioe.2016.07.012_bib21) 2009; 84 Kim (10.1016/j.biombioe.2016.07.012_bib23) 2011; 102 |
References_xml | – volume: 49 start-page: 335 year: 2015 end-page: 349 ident: bib8 article-title: Current states and prospects of organic waste utilization for biorefineries publication-title: Renew. Sust. Energ Rev. – volume: 27 start-page: 38 year: 2014 end-page: 45 ident: bib6 article-title: Lignin plays a negative role in the biochemical process for producing lignocellulosic biofuels publication-title: Curr. Opin. Biotechnol. – volume: 35 start-page: 4435 year: 2011 end-page: 4441 ident: bib27 article-title: Development of an integrated pretreatment fractionation process for fermentable sugars and lignin: application to almond ( publication-title: Biomass Bioenergy – volume: 60 start-page: 8632 year: 2012 end-page: 8639 ident: bib14 article-title: Structural and thermal characterization of wheat straw pretreated with aqueous ammonia soaking publication-title: J. Agric. Food Chem. – volume: 135 start-page: 23 year: 2013 end-page: 29 ident: bib18 article-title: Aqueous-ammonia delignification of miscanthus followed by enzymatic hydrolysis to sugars publication-title: Bioresour. Technol. – volume: 154 start-page: 352 year: 2015 end-page: 360 ident: bib31 article-title: Enzymatic hydrolysis of steam-pretreated sweet sorghum bagasse by combinations of cellulase and endo-xylanase publication-title: Fuel – volume: 142 start-page: 218 year: 2013 end-page: 224 ident: bib22 article-title: Sulfite–formaldehyde pretreatment on rice straw for the improvement of enzymatic saccharification publication-title: Bioresour. Technol. – volume: 199 start-page: 42 year: 2016 end-page: 48 ident: bib11 article-title: A review on alkaline pretreatment technology for bioconversion of lignocellulosic biomass publication-title: Bioresour. Technol. – volume: 30 start-page: 247 year: 2006 end-page: 253 ident: bib5 article-title: Conversion of rice straw to sugars by dilute-acid hydrolysis publication-title: Biomass Bioenergy – volume: 107 start-page: 488 year: 2009 end-page: 493 ident: bib38 article-title: Simultaneous non-thermal saccharification of cassava pulp by multi-enzyme activity and ethanol fermentation by publication-title: J. Biosci. Bioeng. – volume: 63 start-page: 96 year: 2003 end-page: 100 ident: bib40 article-title: Effect of redox potential on stationary-phase xylitol fermentations using publication-title: Appl. Microbiol. Biotechnol. – volume: 99 start-page: 5694 year: 2008 end-page: 5702 ident: bib13 article-title: Bioethanol production from barley hull using SAA (soaking in aqueous ammonia) pretreatment publication-title: Bioresour. Technol. – volume: 46 start-page: 210 year: 2012 end-page: 217 ident: bib44 article-title: Optimization of alkaline pretreatment conditions for enhancing glucose yield of rice straw by response surface methodology publication-title: Biomass Bioenergy – year: 2008 ident: bib26 article-title: Determination of Structural Carbohydrates and Lignin in Biomass – volume: 7 start-page: 166 year: 2014 ident: bib35 article-title: Aerobic and sequential anaerobic fermentation to produce xylitol and ethanol using non-detoxified acid pretreated corncob publication-title: Biotechnol. Biofuels – volume: 23 start-page: 1333 year: 2007 end-page: 1339 ident: bib34 article-title: Deposition of lignin droplets produced during dilute acid pretreatment of maize stems retards enzymatic hydrolysis of cellulose publication-title: Biotechnol. Prog. – volume: 83 start-page: 33 year: 2014 end-page: 41 ident: bib15 article-title: Ultrasound assisted ammonia pretreatment of sugarcane bagasse for fermentable sugar production publication-title: Biochem. Eng. J. – volume: 102 start-page: 8945 year: 2011 end-page: 8951 ident: bib30 article-title: Evaluation of hemicellulose removal by xylanase and delignification on SHF and SSF for bioethanol production with steam-pretreated substrates publication-title: Bioresour. Technol. – volume: 78 start-page: 156 year: 2015 end-page: 163 ident: bib28 article-title: Effect of nutrient supplementation on ethanol production in different strategies of saccharification and fermentation from acid pretreated rice straw publication-title: Biomass Bioenergy – volume: 5 start-page: 37485 year: 2015 end-page: 37494 ident: bib29 article-title: Second generation bioethanol production at high gravity of pilot-scale pretreated wheat straw employing newly isolated thermotolerant yeast publication-title: RSC Adv. – volume: 58 start-page: 390 year: 2013 end-page: 405 ident: bib1 article-title: Improvement of lignocellulosic biomass in planta: a review of feedstocks, biomass recalcitrance, and strategic manipulation of ideal plants designed for ethanol production and processability publication-title: Biomass Bioenergy – volume: 3 start-page: 213 year: 1981 end-page: 218 ident: bib39 article-title: Conversion of xylose to ethanol under aerobic conditions by publication-title: Biotechnol. Lett. – volume: 142 start-page: 171 year: 2013 end-page: 178 ident: bib42 article-title: Optimized simultaneous saccharification and co-fermentation of rice straw for ethanol production by publication-title: Bioresour. Technol. – volume: 45 start-page: 1299 year: 2010 end-page: 1306 ident: bib37 article-title: Enhanced ethanol production via fermentation of rice straw with hydrolysate-adapted publication-title: Process Biochem. – volume: 35 start-page: 90 year: 2011 end-page: 95 ident: bib4 article-title: Enhanced enzymatic conversion with freeze pretreatment of rice straw publication-title: Biomass Bioenergy – volume: 2 start-page: 1 year: 2014 end-page: 5 ident: bib2 article-title: Can we create “Elite Rice”—a multifunctional crop for food, feed, and bioenergy production? publication-title: Sust. Chem. Proc. – volume: 164 start-page: 1183 year: 2011 end-page: 1191 ident: bib24 article-title: Pretreatment of rice straw by proton beam irradiation for efficient enzyme digestibility publication-title: Appl. Biochem. Biotechnol. – volume: 166 start-page: 353 year: 2014 end-page: 357 ident: bib20 article-title: Effects of ammonium carbonate pretreatment on the enzymatic digestibility and structural features of rice straw publication-title: Bioresour. Technol. – volume: 101 start-page: 8185 year: 2010 end-page: 8191 ident: bib17 article-title: Investigation of biomass degradation mechanism in pretreatment of switchgrass by aqueous ammonia and sodium hydroxide publication-title: Bioresour. Technol. – volume: 27 start-page: 150 year: 2014 end-page: 158 ident: bib9 article-title: Recent advances in understanding the role of cellulose accessibility in enzymatic hydrolysis of lignocellulosic substrates publication-title: Curr. Opin. Biotechnol. – volume: 173 start-page: 198 year: 2014 end-page: 206 ident: bib19 article-title: Evaluation of aqueous ammonia pretreatment for enzymatic hydrolysis of different fractions of bamboo shoot and mature bamboo publication-title: Bioresour. Technol. – volume: 100 start-page: 4374 year: 2009 end-page: 4380 ident: bib25 article-title: Ethanol production from rice straw using optimized aqueous-ammonia soaking pretreatment and simultaneous saccharification and fermentation processes publication-title: Bioresour. Technol. – volume: 35 start-page: 1602 year: 2010 end-page: 1608 ident: bib36 article-title: Ethanol production from olive prunings by autohydrolysis and fermentation with publication-title: Renew. Energ – volume: 102 start-page: 8992 year: 2011 end-page: 8999 ident: bib23 article-title: Two-stage pretreatment of rice straw using aqueous ammonia and dilute acid publication-title: Bioresour. Technol. – volume: 315 start-page: 804 year: 2007 end-page: 807 ident: bib7 article-title: Biomass recalcitrance: engineering plants and enzymes for biofuels production publication-title: Science – volume: 102 start-page: 9806 year: 2011 end-page: 9809 ident: bib16 article-title: Aqueous ammonia pretreatment of oil palm empty fruit bunches for ethanol production publication-title: Bioresour. Technol. – volume: 90 start-page: 39 year: 2003 end-page: 47 ident: bib12 article-title: Pretreatment of corn stover by aqueous ammonia publication-title: Bioresour. Technol. – volume: 167 start-page: 530 year: 2014 end-page: 538 ident: bib32 article-title: Enzymatic hydrolysis of hardwood and softwood harvest residue fibers released by sulfur dioxide–ethanol–water fractionation publication-title: Bioresour. Technol. – volume: 22 start-page: 181 year: 1999 end-page: 186 ident: bib41 article-title: Analysis and optimization of a two-substrate fermentation for xylitol production using publication-title: J. Ind. Microbiol. Biotechnol. – volume: 18 start-page: 183 year: 2012 end-page: 187 ident: bib43 article-title: Sugar recovery from rice straw by dilute acid pretreatment publication-title: J. Ind. Eng. Chem. – volume: 101 start-page: 4767 year: 2010 end-page: 4774 ident: bib3 article-title: Bioethanol production from rice straw: an overview publication-title: Bioresour. Technol. – volume: 9 start-page: 1621 year: 2008 end-page: 1651 ident: bib10 article-title: Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: a review publication-title: Int. J. Mol. Sci. – volume: 37 start-page: 1907 year: 2014 end-page: 1915 ident: bib33 article-title: The optimized CO publication-title: Bioprocess Biosyst. Eng. – volume: 84 start-page: 667 year: 2009 end-page: 676 ident: bib21 article-title: Optimization of enzymatic hydrolysis and ethanol fermentation from AFEX-treated rice straw publication-title: Appl. Microbiol. Biotechnol. – volume: 102 start-page: 9806 issue: 20 year: 2011 ident: 10.1016/j.biombioe.2016.07.012_bib16 article-title: Aqueous ammonia pretreatment of oil palm empty fruit bunches for ethanol production publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2011.07.050 – volume: 27 start-page: 38 year: 2014 ident: 10.1016/j.biombioe.2016.07.012_bib6 article-title: Lignin plays a negative role in the biochemical process for producing lignocellulosic biofuels publication-title: Curr. Opin. Biotechnol. doi: 10.1016/j.copbio.2013.09.008 – volume: 35 start-page: 90 issue: 1 year: 2011 ident: 10.1016/j.biombioe.2016.07.012_bib4 article-title: Enhanced enzymatic conversion with freeze pretreatment of rice straw publication-title: Biomass Bioenergy doi: 10.1016/j.biombioe.2010.08.027 – volume: 142 start-page: 218 year: 2013 ident: 10.1016/j.biombioe.2016.07.012_bib22 article-title: Sulfite–formaldehyde pretreatment on rice straw for the improvement of enzymatic saccharification publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2013.04.127 – volume: 135 start-page: 23 year: 2013 ident: 10.1016/j.biombioe.2016.07.012_bib18 article-title: Aqueous-ammonia delignification of miscanthus followed by enzymatic hydrolysis to sugars publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2012.10.133 – volume: 164 start-page: 1183 issue: 7 year: 2011 ident: 10.1016/j.biombioe.2016.07.012_bib24 article-title: Pretreatment of rice straw by proton beam irradiation for efficient enzyme digestibility publication-title: Appl. Biochem. Biotechnol. doi: 10.1007/s12010-011-9204-4 – volume: 83 start-page: 33 year: 2014 ident: 10.1016/j.biombioe.2016.07.012_bib15 article-title: Ultrasound assisted ammonia pretreatment of sugarcane bagasse for fermentable sugar production publication-title: Biochem. Eng. J. doi: 10.1016/j.bej.2013.11.013 – volume: 100 start-page: 4374 issue: 19 year: 2009 ident: 10.1016/j.biombioe.2016.07.012_bib25 article-title: Ethanol production from rice straw using optimized aqueous-ammonia soaking pretreatment and simultaneous saccharification and fermentation processes publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2009.04.026 – volume: 63 start-page: 96 issue: 1 year: 2003 ident: 10.1016/j.biombioe.2016.07.012_bib40 article-title: Effect of redox potential on stationary-phase xylitol fermentations using Candida tropicalis publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s00253-003-1320-9 – volume: 35 start-page: 1602 issue: 7 year: 2010 ident: 10.1016/j.biombioe.2016.07.012_bib36 article-title: Ethanol production from olive prunings by autohydrolysis and fermentation with Candida tropicalis publication-title: Renew. Energ doi: 10.1016/j.renene.2009.12.015 – volume: 27 start-page: 150 year: 2014 ident: 10.1016/j.biombioe.2016.07.012_bib9 article-title: Recent advances in understanding the role of cellulose accessibility in enzymatic hydrolysis of lignocellulosic substrates publication-title: Curr. Opin. Biotechnol. doi: 10.1016/j.copbio.2014.01.014 – volume: 101 start-page: 4767 issue: 13 year: 2010 ident: 10.1016/j.biombioe.2016.07.012_bib3 article-title: Bioethanol production from rice straw: an overview publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2009.10.079 – volume: 23 start-page: 1333 issue: 6 year: 2007 ident: 10.1016/j.biombioe.2016.07.012_bib34 article-title: Deposition of lignin droplets produced during dilute acid pretreatment of maize stems retards enzymatic hydrolysis of cellulose publication-title: Biotechnol. Prog. doi: 10.1021/bp0702018 – volume: 37 start-page: 1907 issue: 9 year: 2014 ident: 10.1016/j.biombioe.2016.07.012_bib33 article-title: The optimized CO2-added ammonia explosion pretreatment for bioethanol production from rice straw publication-title: Bioprocess Biosyst. Eng. doi: 10.1007/s00449-014-1165-x – volume: 99 start-page: 5694 issue: 13 year: 2008 ident: 10.1016/j.biombioe.2016.07.012_bib13 article-title: Bioethanol production from barley hull using SAA (soaking in aqueous ammonia) pretreatment publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2007.10.055 – volume: 84 start-page: 667 issue: 4 year: 2009 ident: 10.1016/j.biombioe.2016.07.012_bib21 article-title: Optimization of enzymatic hydrolysis and ethanol fermentation from AFEX-treated rice straw publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s00253-009-2001-0 – volume: 9 start-page: 1621 issue: 9 year: 2008 ident: 10.1016/j.biombioe.2016.07.012_bib10 article-title: Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: a review publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms9091621 – volume: 45 start-page: 1299 issue: 8 year: 2010 ident: 10.1016/j.biombioe.2016.07.012_bib37 article-title: Enhanced ethanol production via fermentation of rice straw with hydrolysate-adapted Candida tropicalis ATCC 13803 publication-title: Process Biochem. doi: 10.1016/j.procbio.2010.04.017 – volume: 102 start-page: 8945 issue: 19 year: 2011 ident: 10.1016/j.biombioe.2016.07.012_bib30 article-title: Evaluation of hemicellulose removal by xylanase and delignification on SHF and SSF for bioethanol production with steam-pretreated substrates publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2011.07.028 – volume: 7 start-page: 166 issue: 1 year: 2014 ident: 10.1016/j.biombioe.2016.07.012_bib35 article-title: Aerobic and sequential anaerobic fermentation to produce xylitol and ethanol using non-detoxified acid pretreated corncob publication-title: Biotechnol. Biofuels doi: 10.1186/s13068-014-0166-y – volume: 154 start-page: 352 year: 2015 ident: 10.1016/j.biombioe.2016.07.012_bib31 article-title: Enzymatic hydrolysis of steam-pretreated sweet sorghum bagasse by combinations of cellulase and endo-xylanase publication-title: Fuel doi: 10.1016/j.fuel.2015.03.072 – volume: 142 start-page: 171 year: 2013 ident: 10.1016/j.biombioe.2016.07.012_bib42 article-title: Optimized simultaneous saccharification and co-fermentation of rice straw for ethanol production by Saccharomyces cerevisiae and Scheffersomyces stipitis co-culture using design of experiments publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2013.05.003 – volume: 2 start-page: 1 issue: 1 year: 2014 ident: 10.1016/j.biombioe.2016.07.012_bib2 article-title: Can we create “Elite Rice”—a multifunctional crop for food, feed, and bioenergy production? publication-title: Sust. Chem. Proc. – volume: 78 start-page: 156 year: 2015 ident: 10.1016/j.biombioe.2016.07.012_bib28 article-title: Effect of nutrient supplementation on ethanol production in different strategies of saccharification and fermentation from acid pretreated rice straw publication-title: Biomass Bioenergy doi: 10.1016/j.biombioe.2015.04.019 – volume: 18 start-page: 183 issue: 1 year: 2012 ident: 10.1016/j.biombioe.2016.07.012_bib43 article-title: Sugar recovery from rice straw by dilute acid pretreatment publication-title: J. Ind. Eng. Chem. doi: 10.1016/j.jiec.2011.11.016 – volume: 90 start-page: 39 issue: 1 year: 2003 ident: 10.1016/j.biombioe.2016.07.012_bib12 article-title: Pretreatment of corn stover by aqueous ammonia publication-title: Bioresour. Technol. doi: 10.1016/S0960-8524(03)00097-X – volume: 101 start-page: 8185 issue: 21 year: 2010 ident: 10.1016/j.biombioe.2016.07.012_bib17 article-title: Investigation of biomass degradation mechanism in pretreatment of switchgrass by aqueous ammonia and sodium hydroxide publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2010.05.039 – year: 2008 ident: 10.1016/j.biombioe.2016.07.012_bib26 – volume: 30 start-page: 247 issue: 3 year: 2006 ident: 10.1016/j.biombioe.2016.07.012_bib5 article-title: Conversion of rice straw to sugars by dilute-acid hydrolysis publication-title: Biomass Bioenergy doi: 10.1016/j.biombioe.2005.11.015 – volume: 107 start-page: 488 issue: 5 year: 2009 ident: 10.1016/j.biombioe.2016.07.012_bib38 article-title: Simultaneous non-thermal saccharification of cassava pulp by multi-enzyme activity and ethanol fermentation by Candida tropicalis publication-title: J. Biosci. Bioeng. doi: 10.1016/j.jbiosc.2008.12.024 – volume: 22 start-page: 181 issue: 3 year: 1999 ident: 10.1016/j.biombioe.2016.07.012_bib41 article-title: Analysis and optimization of a two-substrate fermentation for xylitol production using Candida tropicalis publication-title: J. Ind. Microbiol. Biotechnol. doi: 10.1038/sj.jim.2900626 – volume: 166 start-page: 353 year: 2014 ident: 10.1016/j.biombioe.2016.07.012_bib20 article-title: Effects of ammonium carbonate pretreatment on the enzymatic digestibility and structural features of rice straw publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2014.04.101 – volume: 315 start-page: 804 issue: 5813 year: 2007 ident: 10.1016/j.biombioe.2016.07.012_bib7 article-title: Biomass recalcitrance: engineering plants and enzymes for biofuels production publication-title: Science doi: 10.1126/science.1137016 – volume: 5 start-page: 37485 issue: 47 year: 2015 ident: 10.1016/j.biombioe.2016.07.012_bib29 article-title: Second generation bioethanol production at high gravity of pilot-scale pretreated wheat straw employing newly isolated thermotolerant yeast Kluyveromyces marxianus DBTIOC-35 publication-title: RSC Adv. doi: 10.1039/C5RA05792B – volume: 35 start-page: 4435 issue: 10 year: 2011 ident: 10.1016/j.biombioe.2016.07.012_bib27 article-title: Development of an integrated pretreatment fractionation process for fermentable sugars and lignin: application to almond (Prunus dulcis) shell publication-title: Biomass Bioenergy doi: 10.1016/j.biombioe.2011.08.022 – volume: 167 start-page: 530 year: 2014 ident: 10.1016/j.biombioe.2016.07.012_bib32 article-title: Enzymatic hydrolysis of hardwood and softwood harvest residue fibers released by sulfur dioxide–ethanol–water fractionation publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2014.06.054 – volume: 58 start-page: 390 year: 2013 ident: 10.1016/j.biombioe.2016.07.012_bib1 article-title: Improvement of lignocellulosic biomass in planta: a review of feedstocks, biomass recalcitrance, and strategic manipulation of ideal plants designed for ethanol production and processability publication-title: Biomass Bioenergy doi: 10.1016/j.biombioe.2013.08.027 – volume: 199 start-page: 42 year: 2016 ident: 10.1016/j.biombioe.2016.07.012_bib11 article-title: A review on alkaline pretreatment technology for bioconversion of lignocellulosic biomass publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2015.08.085 – volume: 102 start-page: 8992 issue: 19 year: 2011 ident: 10.1016/j.biombioe.2016.07.012_bib23 article-title: Two-stage pretreatment of rice straw using aqueous ammonia and dilute acid publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2011.06.068 – volume: 46 start-page: 210 year: 2012 ident: 10.1016/j.biombioe.2016.07.012_bib44 article-title: Optimization of alkaline pretreatment conditions for enhancing glucose yield of rice straw by response surface methodology publication-title: Biomass Bioenergy doi: 10.1016/j.biombioe.2012.08.024 – volume: 173 start-page: 198 year: 2014 ident: 10.1016/j.biombioe.2016.07.012_bib19 article-title: Evaluation of aqueous ammonia pretreatment for enzymatic hydrolysis of different fractions of bamboo shoot and mature bamboo publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2014.09.109 – volume: 60 start-page: 8632 issue: 35 year: 2012 ident: 10.1016/j.biombioe.2016.07.012_bib14 article-title: Structural and thermal characterization of wheat straw pretreated with aqueous ammonia soaking publication-title: J. Agric. Food Chem. doi: 10.1021/jf301244m – volume: 3 start-page: 213 issue: 5 year: 1981 ident: 10.1016/j.biombioe.2016.07.012_bib39 article-title: Conversion of xylose to ethanol under aerobic conditions by Candida tropicalis publication-title: Biotechnol. Lett. doi: 10.1007/BF00154647 – volume: 49 start-page: 335 year: 2015 ident: 10.1016/j.biombioe.2016.07.012_bib8 article-title: Current states and prospects of organic waste utilization for biorefineries publication-title: Renew. Sust. Energ Rev. doi: 10.1016/j.rser.2015.04.114 |
SSID | ssj0014041 |
Score | 2.3668582 |
Snippet | Rice straw (RS) has been considered a promising feedstock for ethanol production in Asia. However, the recalcitrance of biomass, particularly the presence of... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 150 |
SubjectTerms | ambient temperature ammonia Aqueous ammonia pretreatment Asia biomass Candida tropicalis cellulases cellulose coculture enzymatic hydrolysis Ethanol ethanol fuels ethanol production feedstocks fermentation glucose Lignin porosity Rice straw saccharification Saccharomyces cerevisiae scanning electron microscopy Simultaneous saccharification and fermentation xylanases xylose |
Title | Evaluation of fuel ethanol production from aqueous ammonia-treated rice straw via simultaneous saccharification and fermentation |
URI | https://dx.doi.org/10.1016/j.biombioe.2016.07.012 https://www.proquest.com/docview/1836671722 https://www.proquest.com/docview/1837310479 |
Volume | 93 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Na9swFBehu7SHsqUt_diCBr26sWVJto6hpGQby2UZ9CZkfYBLcEKTtLfSP33v-SNNB10POxgsW0JC7-lJT3q_nwi5TLjLcsWLiDmRR9yAz6p8iCOWSe_AIwrMI97551ROfvPvt-K2R647LAyGVba2v7HptbVuvwzb3hwuy3L4Cy8rUSLFFQVMNDWOnPMMtfzqaRvmgewx9a15kBmPKvkOSvjuCiHu8CBdZtKQeCbsrQnqL1Ndzz83H8lhu3Cko6Ztn0jPV31ysEMn2Ccn4xfUGmRth-3qiDyPt5zedBFo2Pg59bhnvpjTZUP5ir8QakIN1L7YrKhBBS1NVEeie0eRfIjivsgjfSgNXZUYimiqOu_KWERvYdRRU4mpHA1g81tgU3VMZjfj2fUkaq9eiCzPk3UUROxEcKk1ygrugiyEgIQUzEqfBm_BmVUGxrphBS9sEtscCkhmVOrjENITslctKn9KqMqcSGzgnjHHcwPeZAY-kvQBXkEb4jMiuu7WtqUlx9sx5rqLP7vTnZg0iknHmQYxnZHhttyyIeZ4t4TqpKlfqZiG2ePdsl878WsYf3io0vSwBpMoJfjE7N95shQ5MdT5f7Thguxjqokk_Ez21vcb_wVWROtiUKv8gHwYffsxmf4BZqIQgw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOQAHVAoVBQpGgmO6iWM78YFDVbba0seFRerNcvyQUq2yK7JLxQXxm_iFzCTOUpCgB9RDpDzs2JqxZzz2zDeEvMm4K0rFq4Q5USbcgM2qfEgTVkjvwCIKzGO889m5nHziHy7ExQb5McTCoFtllP29TO-kdXwzitQcLep69BGTlSiR44oCFE2RRc_KE__1Cuy29t3xe2DyW8aOxtPDSRJTCySWl9kyCSJ1IrjcGmUFd0FWQsCDFMxKnwdvwVhTBsayYRWvbJbaEipIZlTu0xBy-O0dcpeDtMCsCfvf1m4liFbTZemDzuHRKL8WlXy5jyH1cCE8Z9aDhmbsbwrxD9XQ6bujLfIwLlTpQU-LR2TDN9vkwTX4wm2yM_4VJQdFo5hoH5Pv4zWGOJ0HGlZ-Rj3u0c9ndNFDzOInDG2hBlqfr1pqcELUJuk8372jCHZEcR_min6pDW1rdH00TVe2NRajxdDLqW_ENI4G0DExkKp5Qqa3wY8dstnMG_-UUFU4kdnAPWOOlwas1wJsMukD3MLoS3eJGMitbYRBx2wcMz34u13qgU0a2aTTQgObdsloXW_RA4HcWEMN3NS_DWkN2urGuq8H9muY73iI01NYgwiWEmxw9u8yRY4YHOrZf_ThFbk3mZ6d6tPj85Pn5D5-6b0YX5DN5eeV34PV2LJ62Q1_SvQtT7efAmJM7w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evaluation+of+fuel+ethanol+production+from+aqueous+ammonia-treated+rice+straw+via+simultaneous+saccharification+and+fermentation&rft.jtitle=Biomass+%26+bioenergy&rft.au=Phitsuwan%2C+Paripok&rft.au=Permsriburasuk%2C+Chutidet&rft.au=Waeonukul%2C+Rattiya&rft.au=Pason%2C+Patthra&rft.date=2016-10-01&rft.issn=0961-9534&rft.volume=93&rft.spage=150&rft.epage=157&rft_id=info:doi/10.1016%2Fj.biombioe.2016.07.012&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0961-9534&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0961-9534&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0961-9534&client=summon |