High resolution annotation of zebrafish transcriptome using long-read sequencing

With the emergence of zebrafish as an important model organism, a concerted effort has been made to study its transcriptome. This effort is limited, however, by gaps in zebrafish annotation, which are especially pronounced concerning transcripts dynamically expressed during zygotic genome activation...

Full description

Saved in:
Bibliographic Details
Published inGenome research Vol. 28; no. 9; pp. 1415 - 1425
Main Authors Nudelman, German, Frasca, Antonio, Kent, Brandon, Sadler, Kirsten C., Sealfon, Stuart C., Walsh, Martin J., Zaslavsky, Elena
Format Journal Article
LanguageEnglish
Published United States Cold Spring Harbor Laboratory Press 01.09.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract With the emergence of zebrafish as an important model organism, a concerted effort has been made to study its transcriptome. This effort is limited, however, by gaps in zebrafish annotation, which are especially pronounced concerning transcripts dynamically expressed during zygotic genome activation (ZGA). To date, short-read sequencing has been the principal technology for zebrafish transcriptome annotation. In part because these sequence reads are too short for assembly methods to resolve the full complexity of the transcriptome, the current annotation is rudimentary. By providing direct observation of full-length transcripts, recently refined long-read sequencing platforms can dramatically improve annotation coverage and accuracy. Here, we leveraged the SMRT platform to study the transcriptome of zebrafish embryos before and after ZGA. Our analysis revealed additional novelty and complexity in the zebrafish transcriptome, identifying 2539 high-confidence novel transcripts that originated from previously unannotated loci and 1835 high-confidence new isoforms in previously annotated genes. We validated these findings using a suite of computational approaches including structural prediction, sequence homology, and functional conservation analyses, as well as by confirmatory transcript quantification with short-read sequencing data. Our analyses provided insight into new homologs and paralogs of functionally important proteins and noncoding RNAs, isoform switching occurrences, and different classes of novel splicing events. Several novel isoforms representing distinct splicing events were validated through PCR experiments, including the discovery and validation of a novel 8-kb transcript spanning multiple mir-430 elements, an important driver of early development. Our study provides a significantly improved zebrafish transcriptome annotation resource.
AbstractList With the emergence of zebrafish as an important model organism, a concerted effort has been made to study its transcriptome. This effort is limited, however, by gaps in zebrafish annotation, which are especially pronounced concerning transcripts dynamically expressed during zygotic genome activation (ZGA). To date, short-read sequencing has been the principal technology for zebrafish transcriptome annotation. In part because these sequence reads are too short for assembly methods to resolve the full complexity of the transcriptome, the current annotation is rudimentary. By providing direct observation of full-length transcripts, recently refined long-read sequencing platforms can dramatically improve annotation coverage and accuracy. Here, we leveraged the SMRT platform to study the transcriptome of zebrafish embryos before and after ZGA. Our analysis revealed additional novelty and complexity in the zebrafish transcriptome, identifying 2539 high-confidence novel transcripts that originated from previously unannotated loci and 1835 high-confidence new isoforms in previously annotated genes. We validated these findings using a suite of computational approaches including structural prediction, sequence homology, and functional conservation analyses, as well as by confirmatory transcript quantification with short-read sequencing data. Our analyses provided insight into new homologs and paralogs of functionally important proteins and noncoding RNAs, isoform switching occurrences, and different classes of novel splicing events. Several novel isoforms representing distinct splicing events were validated through PCR experiments, including the discovery and validation of a novel 8-kb transcript spanning multiple mir-430 elements, an important driver of early development. Our study provides a significantly improved zebrafish transcriptome annotation resource.With the emergence of zebrafish as an important model organism, a concerted effort has been made to study its transcriptome. This effort is limited, however, by gaps in zebrafish annotation, which are especially pronounced concerning transcripts dynamically expressed during zygotic genome activation (ZGA). To date, short-read sequencing has been the principal technology for zebrafish transcriptome annotation. In part because these sequence reads are too short for assembly methods to resolve the full complexity of the transcriptome, the current annotation is rudimentary. By providing direct observation of full-length transcripts, recently refined long-read sequencing platforms can dramatically improve annotation coverage and accuracy. Here, we leveraged the SMRT platform to study the transcriptome of zebrafish embryos before and after ZGA. Our analysis revealed additional novelty and complexity in the zebrafish transcriptome, identifying 2539 high-confidence novel transcripts that originated from previously unannotated loci and 1835 high-confidence new isoforms in previously annotated genes. We validated these findings using a suite of computational approaches including structural prediction, sequence homology, and functional conservation analyses, as well as by confirmatory transcript quantification with short-read sequencing data. Our analyses provided insight into new homologs and paralogs of functionally important proteins and noncoding RNAs, isoform switching occurrences, and different classes of novel splicing events. Several novel isoforms representing distinct splicing events were validated through PCR experiments, including the discovery and validation of a novel 8-kb transcript spanning multiple mir-430 elements, an important driver of early development. Our study provides a significantly improved zebrafish transcriptome annotation resource.
With the emergence of zebrafish as an important model organism, a concerted effort has been made to study its transcriptome. This effort is limited, however, by gaps in zebrafish annotation, which are especially pronounced concerning transcripts dynamically expressed during zygotic genome activation (ZGA). To date, short-read sequencing has been the principal technology for zebrafish transcriptome annotation. In part because these sequence reads are too short for assembly methods to resolve the full complexity of the transcriptome, the current annotation is rudimentary. By providing direct observation of full-length transcripts, recently refined long-read sequencing platforms can dramatically improve annotation coverage and accuracy. Here, we leveraged the SMRT platform to study the transcriptome of zebrafish embryos before and after ZGA. Our analysis revealed additional novelty and complexity in the zebrafish transcriptome, identifying 2539 high-confidence novel transcripts that originated from previously unannotated loci and 1835 high-confidence new isoforms in previously annotated genes. We validated these findings using a suite of computational approaches including structural prediction, sequence homology, and functional conservation analyses, as well as by confirmatory transcript quantification with short-read sequencing data. Our analyses provided insight into new homologs and paralogs of functionally important proteins and noncoding RNAs, isoform switching occurrences, and different classes of novel splicing events. Several novel isoforms representing distinct splicing events were validated through PCR experiments, including the discovery and validation of a novel 8-kb transcript spanning multiple mir-430 elements, an important driver of early development. Our study provides a significantly improved zebrafish transcriptome annotation resource.
With the emergence of zebrafish as an important model organism, a concerted effort has been made to study its transcriptome. This effort is limited, however, by gaps in zebrafish annotation, which are especially pronounced concerning transcripts dynamically expressed during zygotic genome activation (ZGA). To date, short-read sequencing has been the principal technology for zebrafish transcriptome annotation. In part because these sequence reads are too short for assembly methods to resolve the full complexity of the transcriptome, the current annotation is rudimentary. By providing direct observation of full-length transcripts, recently refined long-read sequencing platforms can dramatically improve annotation coverage and accuracy. Here, we leveraged the SMRT platform to study the transcriptome of zebrafish embryos before and after ZGA. Our analysis revealed additional novelty and complexity in the zebrafish transcriptome, identifying 2539 high-confidence novel transcripts that originated from previously unannotated loci and 1835 high-confidence new isoforms in previously annotated genes. We validated these findings using a suite of computational approaches including structural prediction, sequence homology, and functional conservation analyses, as well as by confirmatory transcript quantification with short-read sequencing data. Our analyses provided insight into new homologs and paralogs of functionally important proteins and noncoding RNAs, isoform switching occurrences, and different classes of novel splicing events. Several novel isoforms representing distinct splicing events were validated through PCR experiments, including the discovery and validation of a novel 8-kb transcript spanning multiple mir-430 elements, an important driver of early development. Our study provides a significantly improved zebrafish transcriptome annotation resource.
With the emergence of zebrafish as an important model organism, a concerted effort has been made to study its transcriptome. This effort is limited, however, by gaps in zebrafish annotation, which are especially pronounced concerning transcripts dynamically expressed during zygotic genome activation (ZGA). To date, short-read sequencing has been the principal technology for zebrafish transcriptome annotation. In part because these sequence reads are too short for assembly methods to resolve the full complexity of the transcriptome, the current annotation is rudimentary. By providing direct observation of full-length transcripts, recently refined long-read sequencing platforms can dramatically improve annotation coverage and accuracy. Here, we leveraged the SMRT platform to study the transcriptome of zebrafish embryos before and after ZGA. Our analysis revealed additional novelty and complexity in the zebrafish transcriptome, identifying 2539 high-confidence novel transcripts that originated from previously unannotated loci and 1835 high-confidence new isoforms in previously annotated genes. We validated these findings using a suite of computational approaches including structural prediction, sequence homology, and functional conservation analyses, as well as by confirmatory transcript quantification with short-read sequencing data. Our analyses provided insight into new homologs and paralogs of functionally important proteins and noncoding RNAs, isoform switching occurrences, and different classes of novel splicing events. Several novel isoforms representing distinct splicing events were validated through PCR experiments, including the discovery and validation of a novel 8-kb transcript spanning multiple elements, an important driver of early development. Our study provides a significantly improved zebrafish transcriptome annotation resource.
Author Zaslavsky, Elena
Nudelman, German
Frasca, Antonio
Sealfon, Stuart C.
Walsh, Martin J.
Sadler, Kirsten C.
Kent, Brandon
AuthorAffiliation 6 Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
4 Department of Development and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
1 Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
3 Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
5 Program in Biology, New York University Abu Dhabi, Abu Dhabi, UAE
7 The Mount Sinai Center for RNA Biology and Medicine, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
2 Center for Advanced Research on Diagnostic Assays (CARDA), Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
AuthorAffiliation_xml – name: 2 Center for Advanced Research on Diagnostic Assays (CARDA), Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
– name: 1 Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
– name: 5 Program in Biology, New York University Abu Dhabi, Abu Dhabi, UAE
– name: 7 The Mount Sinai Center for RNA Biology and Medicine, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
– name: 6 Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
– name: 4 Department of Development and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
– name: 3 Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
Author_xml – sequence: 1
  givenname: German
  surname: Nudelman
  fullname: Nudelman, German
– sequence: 2
  givenname: Antonio
  surname: Frasca
  fullname: Frasca, Antonio
– sequence: 3
  givenname: Brandon
  surname: Kent
  fullname: Kent, Brandon
– sequence: 4
  givenname: Kirsten C.
  surname: Sadler
  fullname: Sadler, Kirsten C.
– sequence: 5
  givenname: Stuart C.
  surname: Sealfon
  fullname: Sealfon, Stuart C.
– sequence: 6
  givenname: Martin J.
  surname: Walsh
  fullname: Walsh, Martin J.
– sequence: 7
  givenname: Elena
  orcidid: 0000-0002-4828-7771
  surname: Zaslavsky
  fullname: Zaslavsky, Elena
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30061115$$D View this record in MEDLINE/PubMed
BookMark eNptkUtLxTAQhYMovpdupeDGTTVpkzTZCCK-QNCFrkOaTnojvck1aQX99Uavioqrmcl8cziZ2UKrPnhAaI_gI0IwOe7jUVXVTPBcNitokzAqS0a5XM05FqKUmJENtJXSI8a4pkKso40aY04IYZvo7sr1syJCCsM0uuAL7X0Y9UcabPEKbdTWpVkxRu2TiW4xhjkUU3K-L4bg-zKC7ooETxN4kx930JrVQ4Ldz7iNHi7O78-uypvby-uz05vSUEHG0lLZUGOBYwMV7YxgkkFbUcOJFFgLCrJtmdHc1hqkpqJriKxASMubzgKtt9HJUncxtXPoDPjscFCL6OY6vqignfrd8W6m-vCsOKkwr3EWOPwUiCGbT6Oau2RgGLSHMCVVYYEFE5KxjB78QR_DFH3-nqpIzYXMEM_U_k9H31a-lp2BegmYGFKKYJVxy1Vng25QBKv3k6o-quVJc9nkqfLP1Jfw__wbF3ekNA
CitedBy_id crossref_primary_10_1016_j_fsi_2020_09_013
crossref_primary_10_3389_fgene_2019_01175
crossref_primary_10_1016_j_fsi_2020_09_015
crossref_primary_10_3389_fvets_2022_752521
crossref_primary_10_1038_s41598_020_80168_6
crossref_primary_10_1186_s12864_020_6769_8
crossref_primary_10_1186_s13059_024_03197_8
crossref_primary_10_3389_fgene_2021_683408
crossref_primary_10_3389_fmars_2021_821253
crossref_primary_10_1007_s11427_018_9499_5
crossref_primary_10_1016_j_ijbiomac_2020_01_029
crossref_primary_10_1111_1744_7917_13001
crossref_primary_10_1007_s10126_022_10163_7
crossref_primary_10_18097_BMCRM00086
crossref_primary_10_3389_fcell_2022_879795
crossref_primary_10_1016_j_aquaculture_2021_736457
crossref_primary_10_1016_j_fsi_2024_109957
crossref_primary_10_1016_j_isci_2019_06_013
crossref_primary_10_1186_s12864_021_08017_y
crossref_primary_10_1186_s12864_023_09212_9
crossref_primary_10_3390_ijms231911547
crossref_primary_10_1021_acs_jproteome_3c00056
crossref_primary_10_3389_fgene_2019_00834
crossref_primary_10_3390_ijms20246359
crossref_primary_10_1038_s42003_021_02833_4
crossref_primary_10_1111_age_13311
crossref_primary_10_3390_ani14142058
crossref_primary_10_1186_s12864_019_5691_4
crossref_primary_10_1159_000529376
crossref_primary_10_1038_s42003_024_07177_3
crossref_primary_10_1016_j_aqrep_2022_101264
crossref_primary_10_1093_dnares_dsz014
crossref_primary_10_1038_s41598_021_93593_y
crossref_primary_10_1038_s41467_020_16444_w
crossref_primary_10_1111_1758_2229_12735
crossref_primary_10_2139_ssrn_3305587
crossref_primary_10_1534_g3_119_200997
crossref_primary_10_1038_s41598_020_77520_1
crossref_primary_10_1016_j_fsi_2020_06_015
crossref_primary_10_1016_j_ecoenv_2023_115283
crossref_primary_10_1016_j_gene_2024_148988
crossref_primary_10_1186_s12915_019_0683_z
crossref_primary_10_1186_s13059_023_03127_0
crossref_primary_10_1093_g3journal_jkac315
crossref_primary_10_3389_fgene_2021_619056
crossref_primary_10_1016_j_biocel_2018_12_009
crossref_primary_10_3390_v14061289
crossref_primary_10_1111_mec_16377
crossref_primary_10_1101_gr_258871_119
crossref_primary_10_3390_biology14030232
crossref_primary_10_1101_gr_274282_120
crossref_primary_10_1093_g3journal_jkae050
crossref_primary_10_1016_j_fsi_2022_08_037
crossref_primary_10_3390_ijms24044239
crossref_primary_10_3389_fpls_2024_1331949
Cites_doi 10.1101/gr.097857.109
10.1093/nar/25.17.3389
10.1038/nature12111
10.1093/bioinformatics/btp544
10.1016/j.celrep.2013.12.030
10.1101/gr.132159.111
10.1101/gr.3715005
10.1093/bioinformatics/bti310
10.1128/MCB.17.2.529
10.1093/nar/gkn188
10.1016/j.gpb.2015.08.002
10.1093/nar/gkt006
10.1002/aja.1002030302
10.1093/nar/gkt1223
10.1002/bies.201400103
10.1038/nrg2934
10.1016/j.biochi.2011.06.017
10.1101/gad.17446611
10.1126/science.1122689
10.1038/ng.259
10.1093/bioinformatics/btt509
10.1038/ncomms11706
10.1093/bfgp/elt049
10.1186/1479-7364-8-3
10.1093/nar/gkg006
10.1038/nmeth.2722
10.1261/rna.029090.111
10.1038/sj.emboj.7600385
10.1101/gr.229102. Article published online before print in May 2002
10.1093/bioinformatics/bts635
10.1101/gr.133009.111
10.1242/dev.098343
10.1093/nar/gkm952
10.1016/j.ydbio.2015.11.016
10.1371/journal.pone.0160197
10.1101/sqb.2008.73.053
10.1038/nprot.2013.084
10.1016/j.molcel.2016.02.027
10.1093/nar/gkw629
10.1101/gr.116012.110
10.1371/journal.pone.0132628
10.1038/ng0498-345
10.1038/ng.3192
10.1093/nar/gkv1168
10.1371/journal.pone.0094650
10.1038/sdata.2014.45
10.1093/nar/gkr1079
10.4161/trns.2.3.16172
10.1261/rna.041814.113
10.1186/gb-2013-14-6-405
10.1038/ncomms11708
10.1016/j.ydbio.2016.01.036
10.1038/nprot.2012.016
10.1242/dev.033183
10.1038/nbt.2705
10.4161/rna.22036
10.1109/TCBB.2013.140
10.1261/rna.051557.115
10.1038/nbt.3519
ContentType Journal Article
Copyright 2018 Nudelman et al.; Published by Cold Spring Harbor Laboratory Press.
Copyright Cold Spring Harbor Laboratory Press Sep 2018
2018
Copyright_xml – notice: 2018 Nudelman et al.; Published by Cold Spring Harbor Laboratory Press.
– notice: Copyright Cold Spring Harbor Laboratory Press Sep 2018
– notice: 2018
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7TM
8FD
FR3
P64
RC3
7X8
5PM
DOI 10.1101/gr.223586.117
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Nucleic Acids Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Genetics Abstracts
Engineering Research Database
Technology Research Database
Nucleic Acids Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef
Genetics Abstracts
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
Biology
DocumentTitleAlternate Nudelman et al
EISSN 1549-5469
EndPage 1425
ExternalDocumentID PMC6120630
30061115
10_1101_gr_223586_117
Genre Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NCI NIH HHS
  grantid: R01 CA154809
– fundername: NHLBI NIH HHS
  grantid: R01 HL103967
– fundername: NIAID NIH HHS
  grantid: U19 AI117873
– fundername: ;
  grantid: U19 AI117873
– fundername: ;
  grantid: 5R01CA154809; 5R01HL103967
GroupedDBID ---
.GJ
18M
29H
2WC
39C
4.4
53G
5GY
5RE
5VS
AAFWJ
AAYOK
AAYXX
AAZTW
ABDIX
ABDNZ
ACGFO
ACLKE
ACYGS
ADBBV
ADNWM
AEILP
AENEX
AHPUY
AI.
ALMA_UNASSIGNED_HOLDINGS
BAWUL
BTFSW
C1A
CITATION
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
FRP
GX1
H13
HYE
IH2
K-O
KQ8
MV1
R.V
RCX
RHI
RNS
RPM
RXW
SJN
TAE
TR2
VH1
W8F
WOQ
YKV
ZCG
ZGI
ZXP
CGR
CUY
CVF
ECM
EIF
NPM
7TM
8FD
FR3
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c481t-f4974cfe60ce24dc8595eb24c61980a84e9bb5ca6f3ae9a48d7192e89f67dfe43
ISSN 1088-9051
1549-5469
IngestDate Thu Aug 21 18:18:52 EDT 2025
Tue Aug 05 11:25:06 EDT 2025
Fri Jul 25 05:15:04 EDT 2025
Mon Jul 21 06:01:06 EDT 2025
Thu Apr 24 23:02:24 EDT 2025
Tue Jul 01 02:20:42 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License 2018 Nudelman et al.; Published by Cold Spring Harbor Laboratory Press.
This article is distributed exclusively by Cold Spring Harbor Laboratory Press for the first six months after the full-issue publication date (see http://genome.cshlp.org/site/misc/terms.xhtml). After six months, it is available under a Creative Commons License (Attribution-NonCommercial 4.0 International), as described at http://creativecommons.org/licenses/by-nc/4.0/.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c481t-f4974cfe60ce24dc8595eb24c61980a84e9bb5ca6f3ae9a48d7192e89f67dfe43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
These authors are joint first authors and contributed equally to this work.
ORCID 0000-0002-4828-7771
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC6120630
PMID 30061115
PQID 2136899556
PQPubID 2049132
PageCount 11
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6120630
proquest_miscellaneous_2080858955
proquest_journals_2136899556
pubmed_primary_30061115
crossref_citationtrail_10_1101_gr_223586_117
crossref_primary_10_1101_gr_223586_117
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-09-01
PublicationDateYYYYMMDD 2018-09-01
PublicationDate_xml – month: 09
  year: 2018
  text: 2018-09-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle Genome research
PublicationTitleAlternate Genome Res
PublicationYear 2018
Publisher Cold Spring Harbor Laboratory Press
Publisher_xml – name: Cold Spring Harbor Laboratory Press
References 2021111811173970000_28.9.1415.39
2021111811173970000_28.9.1415.38
(2021111811173970000_28.9.1415.56) 2016; 11
2021111811173970000_28.9.1415.37
2021111811173970000_28.9.1415.36
2021111811173970000_28.9.1415.35
2021111811173970000_28.9.1415.34
2021111811173970000_28.9.1415.33
2021111811173970000_28.9.1415.32
2021111811173970000_28.9.1415.31
2021111811173970000_28.9.1415.41
2021111811173970000_28.9.1415.40
(2021111811173970000_28.9.1415.3) 2016; 7
2021111811173970000_28.9.1415.49
2021111811173970000_28.9.1415.48
2021111811173970000_28.9.1415.47
2021111811173970000_28.9.1415.45
2021111811173970000_28.9.1415.44
2021111811173970000_28.9.1415.43
2021111811173970000_28.9.1415.42
2021111811173970000_28.9.1415.52
2021111811173970000_28.9.1415.51
2021111811173970000_28.9.1415.50
(2021111811173970000_28.9.1415.29) 2014; 1
2021111811173970000_28.9.1415.19
2021111811173970000_28.9.1415.18
2021111811173970000_28.9.1415.17
2021111811173970000_28.9.1415.16
2021111811173970000_28.9.1415.15
2021111811173970000_28.9.1415.59
2021111811173970000_28.9.1415.14
(2021111811173970000_28.9.1415.46) 2015; 87
2021111811173970000_28.9.1415.58
2021111811173970000_28.9.1415.13
2021111811173970000_28.9.1415.57
2021111811173970000_28.9.1415.12
2021111811173970000_28.9.1415.11
2021111811173970000_28.9.1415.55
2021111811173970000_28.9.1415.10
2021111811173970000_28.9.1415.54
2021111811173970000_28.9.1415.53
2021111811173970000_28.9.1415.60
2021111811173970000_28.9.1415.28
2021111811173970000_28.9.1415.27
2021111811173970000_28.9.1415.26
2021111811173970000_28.9.1415.25
2021111811173970000_28.9.1415.24
2021111811173970000_28.9.1415.23
2021111811173970000_28.9.1415.22
2021111811173970000_28.9.1415.1
2021111811173970000_28.9.1415.21
2021111811173970000_28.9.1415.20
2021111811173970000_28.9.1415.30
2021111811173970000_28.9.1415.2
2021111811173970000_28.9.1415.5
2021111811173970000_28.9.1415.4
2021111811173970000_28.9.1415.7
2021111811173970000_28.9.1415.6
2021111811173970000_28.9.1415.9
2021111811173970000_28.9.1415.8
References_xml – ident: 2021111811173970000_28.9.1415.40
  doi: 10.1101/gr.097857.109
– ident: 2021111811173970000_28.9.1415.5
  doi: 10.1093/nar/25.17.3389
– ident: 2021111811173970000_28.9.1415.25
  doi: 10.1038/nature12111
– ident: 2021111811173970000_28.9.1415.23
  doi: 10.1093/bioinformatics/btp544
– ident: 2021111811173970000_28.9.1415.22
  doi: 10.1016/j.celrep.2013.12.030
– ident: 2021111811173970000_28.9.1415.11
  doi: 10.1101/gr.132159.111
– ident: 2021111811173970000_28.9.1415.48
  doi: 10.1101/gr.3715005
– ident: 2021111811173970000_28.9.1415.59
  doi: 10.1093/bioinformatics/bti310
– ident: 2021111811173970000_28.9.1415.60
  doi: 10.1128/MCB.17.2.529
– ident: 2021111811173970000_28.9.1415.20
  doi: 10.1093/nar/gkn188
– ident: 2021111811173970000_28.9.1415.44
  doi: 10.1016/j.gpb.2015.08.002
– ident: 2021111811173970000_28.9.1415.54
  doi: 10.1093/nar/gkt006
– ident: 2021111811173970000_28.9.1415.30
  doi: 10.1002/aja.1002030302
– ident: 2021111811173970000_28.9.1415.14
  doi: 10.1093/nar/gkt1223
– ident: 2021111811173970000_28.9.1415.38
  doi: 10.1002/bies.201400103
– ident: 2021111811173970000_28.9.1415.35
  doi: 10.1038/nrg2934
– ident: 2021111811173970000_28.9.1415.58
  doi: 10.1016/j.biochi.2011.06.017
– ident: 2021111811173970000_28.9.1415.9
  doi: 10.1101/gad.17446611
– ident: 2021111811173970000_28.9.1415.16
  doi: 10.1126/science.1122689
– ident: 2021111811173970000_28.9.1415.36
  doi: 10.1038/ng.259
– ident: 2021111811173970000_28.9.1415.33
  doi: 10.1093/bioinformatics/btt509
– volume: 7
  start-page: 11706
  year: 2016
  ident: 2021111811173970000_28.9.1415.3
  article-title: A survey of the sorghum transcriptome using single-molecule long reads
  publication-title: Nat Commun
  doi: 10.1038/ncomms11706
– ident: 2021111811173970000_28.9.1415.2
  doi: 10.1093/bfgp/elt049
– ident: 2021111811173970000_28.9.1415.24
  doi: 10.1186/1479-7364-8-3
– ident: 2021111811173970000_28.9.1415.18
  doi: 10.1093/nar/gkg006
– ident: 2021111811173970000_28.9.1415.13
  doi: 10.1038/nmeth.2722
– ident: 2021111811173970000_28.9.1415.57
  doi: 10.1261/rna.029090.111
– ident: 2021111811173970000_28.9.1415.31
  doi: 10.1038/sj.emboj.7600385
– ident: 2021111811173970000_28.9.1415.27
  doi: 10.1101/gr.229102. Article published online before print in May 2002
– ident: 2021111811173970000_28.9.1415.12
  doi: 10.1093/bioinformatics/bts635
– ident: 2021111811173970000_28.9.1415.37
  doi: 10.1101/gr.133009.111
– ident: 2021111811173970000_28.9.1415.10
  doi: 10.1242/dev.098343
– ident: 2021111811173970000_28.9.1415.19
  doi: 10.1093/nar/gkm952
– ident: 2021111811173970000_28.9.1415.50
  doi: 10.1016/j.ydbio.2015.11.016
– volume: 11
  start-page: e0160197
  year: 2016
  ident: 2021111811173970000_28.9.1415.56
  article-title: Identification of novel transcribed regions in zebrafish (Danio rerio) using RNA-sequencing
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0160197
– ident: 2021111811173970000_28.9.1415.6
  doi: 10.1101/sqb.2008.73.053
– ident: 2021111811173970000_28.9.1415.21
  doi: 10.1038/nprot.2013.084
– ident: 2021111811173970000_28.9.1415.32
  doi: 10.1016/j.molcel.2016.02.027
– ident: 2021111811173970000_28.9.1415.34
  doi: 10.1093/nar/gkw629
– ident: 2021111811173970000_28.9.1415.1
  doi: 10.1101/gr.116012.110
– ident: 2021111811173970000_28.9.1415.17
  doi: 10.1371/journal.pone.0132628
– ident: 2021111811173970000_28.9.1415.41
  doi: 10.1038/ng0498-345
– ident: 2021111811173970000_28.9.1415.26
  doi: 10.1038/ng.3192
– ident: 2021111811173970000_28.9.1415.39
  doi: 10.1093/nar/gkv1168
– ident: 2021111811173970000_28.9.1415.52
  doi: 10.1371/journal.pone.0094650
– volume: 1
  start-page: 140045
  year: 2014
  ident: 2021111811173970000_28.9.1415.29
  article-title: Long-read, whole-genome shotgun sequence data for five model organisms
  publication-title: Sci Data
  doi: 10.1038/sdata.2014.45
– volume: 87
  start-page: 11.16.1
  year: 2015
  ident: 2021111811173970000_28.9.1415.46
  article-title: Alternative splicing signatures in RNA-seq data: percent spliced in (PSI)
  publication-title: Curr Protoc Hum Genet
– ident: 2021111811173970000_28.9.1415.42
  doi: 10.1093/nar/gkr1079
– ident: 2021111811173970000_28.9.1415.7
  doi: 10.4161/trns.2.3.16172
– ident: 2021111811173970000_28.9.1415.43
  doi: 10.1261/rna.041814.113
– ident: 2021111811173970000_28.9.1415.45
  doi: 10.1186/gb-2013-14-6-405
– ident: 2021111811173970000_28.9.1415.55
  doi: 10.1038/ncomms11708
– ident: 2021111811173970000_28.9.1415.28
  doi: 10.1016/j.ydbio.2016.01.036
– ident: 2021111811173970000_28.9.1415.53
  doi: 10.1038/nprot.2012.016
– ident: 2021111811173970000_28.9.1415.49
  doi: 10.1242/dev.033183
– ident: 2021111811173970000_28.9.1415.47
  doi: 10.1038/nbt.2705
– ident: 2021111811173970000_28.9.1415.51
  doi: 10.4161/rna.22036
– ident: 2021111811173970000_28.9.1415.15
  doi: 10.1109/TCBB.2013.140
– ident: 2021111811173970000_28.9.1415.4
  doi: 10.1261/rna.051557.115
– ident: 2021111811173970000_28.9.1415.8
  doi: 10.1038/nbt.3519
SSID ssj0003488
Score 2.4876955
Snippet With the emergence of zebrafish as an important model organism, a concerted effort has been made to study its transcriptome. This effort is limited, however,...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1415
SubjectTerms Alternative splicing
Animals
Annotations
Computer applications
Conserved sequence
Danio rerio
Embryos
Gene expression
Genomes
Homology
Isoforms
Molecular Sequence Annotation
Resource
Sequence Analysis, RNA - methods
Sequence Analysis, RNA - standards
Sequence Homology, Nucleic Acid
SMRT protein
Transcription
Transcriptome
Zebrafish
Zebrafish - genetics
Title High resolution annotation of zebrafish transcriptome using long-read sequencing
URI https://www.ncbi.nlm.nih.gov/pubmed/30061115
https://www.proquest.com/docview/2136899556
https://www.proquest.com/docview/2080858955
https://pubmed.ncbi.nlm.nih.gov/PMC6120630
Volume 28
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6FIgQXBC2PQEGLhHoJLrGzdtbHUvqAhsIhkXKz9uVQKV2j1DnQX8-MvV47FBBwsSx7ZFs7n-e18yDktQKdKSU4OcBgGTApRSCF1PBf5TJJJKCGY6Hwp_PkdMY-zuN5r7fuVpeUcl9d_7Ku5H-4CteAr1gl-w-c9Q-FC3AO_IUjcBiOf8VjTNIYgL_sXjIQ1haltwGvcU84rwbIo0KqxENxaQbrKjywLOwiAItRD1w2daPDnKV6YiwSu2ZAbdB4rc3SRU1PUKp7cIEJfKWEa0gAkqLoyPKyhpHA0SE-piO0q0I8uwAT1FgXsHUhiJD7HCuXCVQswTau4pBYegTYHUxqBGOaQDeVBCUsiLUAm4LVCshJXZYGMatntjRiOeId-KUdGRuyugD0pvCvhg4sVvsR1v8muB_darlmZ__8c3Y8m0yy6dF8eovcjsC7wMEX7z-ceQU-YryuoHRf6luzhm83Hr5pytzwT35Os-3YLdMH5L5zOOhBjZ6HpGfsNtk5sLBsl9_pHq1SgKu9lW1y511zdvewGQS4Q74gzGgLM9rCjBY59TCjGzCjFcyohxltYfaIzI6PpoengRvEESjGwzLIGXidKjfJUJmIaYU98YyMmALvmw8FZyaVMlYiyUfCpIJxPQbHwfA0T8Y6N2z0mGzZwpqnhMapzrUGcwlkADOhFkBhsKcctlI0ieqTN82aZsp1qcdhKcus8laHYbZYZTULsE99n-x58m91e5bfEe42DMrcH3yVReEo4Wkax0mfvPK3YXVx00xYU6yBBlwqHnMg6pMnNT_9m0boAIBL1SfjDU57AuzdvnnHXnyteriDY4Hd7p79-bOek3vt_7ZLtsrV2rwAI7iULyvI_gAbyrig
linkProvider Flying Publisher
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High+resolution+annotation+of+zebrafish+transcriptome+using+long-read+sequencing&rft.jtitle=Genome+research&rft.au=Nudelman%2C+German&rft.au=Frasca%2C+Antonio&rft.au=Kent%2C+Brandon&rft.au=Sadler%2C+Kirsten+C&rft.date=2018-09-01&rft.pub=Cold+Spring+Harbor+Laboratory+Press&rft.issn=1088-9051&rft.eissn=1549-5469&rft.volume=28&rft.issue=9&rft.spage=1415&rft_id=info:doi/10.1101%2Fgr.223586.117&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1088-9051&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1088-9051&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1088-9051&client=summon