Epidermal growth factor receptor signaling mediates aldosterone-induced profibrotic responses in kidney
Aldosterone has been recognized as a risk factor for the development of chronic kidney disease (CKD). Studies have indicated that enhanced activation of epidermal growth factor receptor (EGFR) is associated with the development and progression of renal fibrosis. But if EGFR is involved in aldosteron...
Saved in:
Published in | Experimental cell research Vol. 346; no. 1; pp. 99 - 110 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.08.2016
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Aldosterone has been recognized as a risk factor for the development of chronic kidney disease (CKD). Studies have indicated that enhanced activation of epidermal growth factor receptor (EGFR) is associated with the development and progression of renal fibrosis. But if EGFR is involved in aldosterone-induced renal fibrosis is less investigated. In the present study, we examined the effect of erlotinib, an inhibitor of EGFR tyrosine kinase activity, on the progression of aldosterone-induced renal profibrotic responses in a murine model underwent uninephrectomy. Erlotinib-treated rats exhibited relieved structural lesion comparing with rats treated with aldosterone alone, as characterized by glomerular hypertrophy, mesangial cell proliferation and expansion. Also, erlotinib inhibited the expression of TGF-β, α-SMA and mesangial matrix proteins such as collagen Ⅳ and fibronectin. In cultured mesangial cells, inhibition of EGFR also abrogated aldosterone-induced expression of extracellular matrix proteins, cell proliferation and migration. We also demonstrated that aldosterone induced the phosphorylation of EGFR through generation of ROS. And the activation of EGFR resulted in the phosphorylation of ERK1/2, leading to the activation of profibrotic pathways. Taken together, we concluded that aldosterone-mediated tissue fibrosis relies on ROS induced EGFR/ERK activation, highlighting EGFR as a potential therapeutic target for modulating renal fibrosis.
•EGFR was involved in aldosterone-induced renal profibrotic responses.•Aldosterone-induced EGFR activation was mediated by MR-dependent ROS generation.•EGFR activated the MAPK/ERK1/2 signaling to promote renal fibrosis. |
---|---|
AbstractList | Aldosterone has been recognized as a risk factor for the development of chronic kidney disease (CKD). Studies have indicated that enhanced activation of epidermal growth factor receptor (EGFR) is associated with the development and progression of renal fibrosis. But if EGFR is involved in aldosterone-induced renal fibrosis is less investigated. In the present study, we examined the effect of erlotinib, an inhibitor of EGFR tyrosine kinase activity, on the progression of aldosterone-induced renal profibrotic responses in a murine model underwent uninephrectomy. Erlotinib-treated rats exhibited relieved structural lesion comparing with rats treated with aldosterone alone, as characterized by glomerular hypertrophy, mesangial cell proliferation and expansion. Also, erlotinib inhibited the expression of TGF-β, α-SMA and mesangial matrix proteins such as collagen Ⅳ and fibronectin. In cultured mesangial cells, inhibition of EGFR also abrogated aldosterone-induced expression of extracellular matrix proteins, cell proliferation and migration. We also demonstrated that aldosterone induced the phosphorylation of EGFR through generation of ROS. And the activation of EGFR resulted in the phosphorylation of ERK1/2, leading to the activation of profibrotic pathways. Taken together, we concluded that aldosterone-mediated tissue fibrosis relies on ROS induced EGFR/ERK activation, highlighting EGFR as a potential therapeutic target for modulating renal fibrosis.
•EGFR was involved in aldosterone-induced renal profibrotic responses.•Aldosterone-induced EGFR activation was mediated by MR-dependent ROS generation.•EGFR activated the MAPK/ERK1/2 signaling to promote renal fibrosis. Aldosterone has been recognized as a risk factor for the development of chronic kidney disease (CKD). Studies have indicated that enhanced activation of epidermal growth factor receptor (EGFR) is associated with the development and progression of renal fibrosis. But if EGFR is involved in aldosterone-induced renal fibrosis is less investigated. In the present study, we examined the effect of erlotinib, an inhibitor of EGFR tyrosine kinase activity, on the progression of aldosterone-induced renal profibrotic responses in a murine model underwent uninephrectomy. Erlotinib-treated rats exhibited relieved structural lesion comparing with rats treated with aldosterone alone, as characterized by glomerular hypertrophy, mesangial cell proliferation and expansion. Also, erlotinib inhibited the expression of TGF-β, α-SMA and mesangial matrix proteins such as collagen Ⅳ and fibronectin. In cultured mesangial cells, inhibition of EGFR also abrogated aldosterone-induced expression of extracellular matrix proteins, cell proliferation and migration. We also demonstrated that aldosterone induced the phosphorylation of EGFR through generation of ROS. And the activation of EGFR resulted in the phosphorylation of ERK1/2, leading to the activation of profibrotic pathways. Taken together, we concluded that aldosterone-mediated tissue fibrosis relies on ROS induced EGFR/ERK activation, highlighting EGFR as a potential therapeutic target for modulating renal fibrosis. Aldosterone has been recognized as a risk factor for the development of chronic kidney disease (CKD). Studies have indicated that enhanced activation of epidermal growth factor receptor (EGFR) is associated with the development and progression of renal fibrosis. But if EGFR is involved in aldosterone-induced renal fibrosis is less investigated. In the present study, we examined the effect of erlotinib, an inhibitor of EGFR tyrosine kinase activity, on the progression of aldosterone-induced renal profibrotic responses in a murine model underwent uninephrectomy. Erlotinib-treated rats exhibited relieved structural lesion comparing with rats treated with aldosterone alone, as characterized by glomerular hypertrophy, mesangial cell proliferation and expansion. Also, erlotinib inhibited the expression of TGF-β, α-SMA and mesangial matrix proteins such as collagen Ⅳ and fibronectin. In cultured mesangial cells, inhibition of EGFR also abrogated aldosterone-induced expression of extracellular matrix proteins, cell proliferation and migration. We also demonstrated that aldosterone induced the phosphorylation of EGFR through generation of ROS. And the activation of EGFR resulted in the phosphorylation of ERK1/2, leading to the activation of profibrotic pathways. Taken together, we concluded that aldosterone-mediated tissue fibrosis relies on ROS induced EGFR/ERK activation, highlighting EGFR as a potential therapeutic target for modulating renal fibrosis.Aldosterone has been recognized as a risk factor for the development of chronic kidney disease (CKD). Studies have indicated that enhanced activation of epidermal growth factor receptor (EGFR) is associated with the development and progression of renal fibrosis. But if EGFR is involved in aldosterone-induced renal fibrosis is less investigated. In the present study, we examined the effect of erlotinib, an inhibitor of EGFR tyrosine kinase activity, on the progression of aldosterone-induced renal profibrotic responses in a murine model underwent uninephrectomy. Erlotinib-treated rats exhibited relieved structural lesion comparing with rats treated with aldosterone alone, as characterized by glomerular hypertrophy, mesangial cell proliferation and expansion. Also, erlotinib inhibited the expression of TGF-β, α-SMA and mesangial matrix proteins such as collagen Ⅳ and fibronectin. In cultured mesangial cells, inhibition of EGFR also abrogated aldosterone-induced expression of extracellular matrix proteins, cell proliferation and migration. We also demonstrated that aldosterone induced the phosphorylation of EGFR through generation of ROS. And the activation of EGFR resulted in the phosphorylation of ERK1/2, leading to the activation of profibrotic pathways. Taken together, we concluded that aldosterone-mediated tissue fibrosis relies on ROS induced EGFR/ERK activation, highlighting EGFR as a potential therapeutic target for modulating renal fibrosis. Aldosterone has been recognized as a risk factor for the development of chronic kidney disease (CKD). Studies have indicated that enhanced activation of epidermal growth factor receptor (EGFR) is associated with the development and progression of renal fibrosis. But if EGFR is involved in aldosterone-induced renal fibrosis is less investigated. In the present study, we examined the effect of erlotinib, an inhibitor of EGFR tyrosine kinase activity, on the progression of aldosterone-induced renal profibrotic responses in a murine model underwent uninephrectomy. Erlotinib-treated rats exhibited relieved structural lesion comparing with rats treated with aldosterone alone, as characterized by glomerular hypertrophy, mesangial cell proliferation and expansion. Also, erlotinib inhibited the expression of TGF-[beta], [alpha]-SMA and mesangial matrix proteins such as collagen IV and fibronectin. In cultured mesangial cells, inhibition of EGFR also abrogated aldosterone-induced expression of extracellular matrix proteins, cell proliferation and migration. We also demonstrated that aldosterone induced the phosphorylation of EGFR through generation of ROS. And the activation of EGFR resulted in the phosphorylation of ERK1/2, leading to the activation of profibrotic pathways. Taken together, we concluded that aldosterone-mediated tissue fibrosis relies on ROS induced EGFR/ERK activation, highlighting EGFR as a potential therapeutic target for modulating renal fibrosis. * EGFR was involved in aldosterone-induced renal profibrotic responses. * Aldosterone-induced EGFR activation was mediated by MR-dependent ROS generation. * EGFR activated the MAPK/ERK1/2 signaling to promote renal fibrosis. Aldosterone has been recognized as a risk factor for the development of chronic kidney disease (CKD). Studies have indicated that enhanced activation of epidermal growth factor receptor (EGFR) is associated with the development and progression of renal fibrosis. But if EGFR is involved in aldosterone-induced renal fibrosis is less investigated. In the present study, we examined the effect of erlotinib, an inhibitor of EGFR tyrosine kinase activity, on the progression of aldosterone-induced renal profibrotic responses in a murine model underwent uninephrectomy. Erlotinib-treated rats exhibited relieved structural lesion comparing with rats treated with aldosterone alone, as characterized by glomerular hypertrophy, mesangial cell proliferation and expansion. Also, erlotinib inhibited the expression of TGF-β, α-SMA and mesangial matrix proteins such as collagen Ⅳ and fibronectin. In cultured mesangial cells, inhibition of EGFR also abrogated aldosterone-induced expression of extracellular matrix proteins, cell proliferation and migration. We also demonstrated that aldosterone induced the phosphorylation of EGFR through generation of ROS. And the activation of EGFR resulted in the phosphorylation of ERK1/2, leading to the activation of profibrotic pathways. Taken together, we concluded that aldosterone-mediated tissue fibrosis relies on ROS induced EGFR/ERK activation, highlighting EGFR as a potential therapeutic target for modulating renal fibrosis. - Highlights: • EGFR was involved in aldosterone-induced renal profibrotic responses. • Aldosterone-induced EGFR activation was mediated by MR-dependent ROS generation. • EGFR activated the MAPK/ERK1/2 signaling to promote renal fibrosis. |
Author | Yang, Min Zhang, Minmin Sheng, Lili Ding, Wei Qiao, Zhongdong Niu, Jianying Gu, Yong |
Author_xml | – sequence: 1 givenname: Lili surname: Sheng fullname: Sheng, Lili organization: Department of Nephrology, Shanghai Fifth People's Hospital, Fudan University, Shanghai 200240, China – sequence: 2 givenname: Min surname: Yang fullname: Yang, Min organization: Department of Nephrology, Shanghai Fifth People's Hospital, Fudan University, Shanghai 200240, China – sequence: 3 givenname: Wei surname: Ding fullname: Ding, Wei organization: Department of Nephrology, Shanghai Fifth People's Hospital, Fudan University, Shanghai 200240, China – sequence: 4 givenname: Minmin surname: Zhang fullname: Zhang, Minmin organization: Department of Nephrology, Shanghai Huashan Hospital, Fudan University, Shanghai 200240, China – sequence: 5 givenname: Jianying surname: Niu fullname: Niu, Jianying organization: Department of Nephrology, Shanghai Fifth People's Hospital, Fudan University, Shanghai 200240, China – sequence: 6 givenname: Zhongdong surname: Qiao fullname: Qiao, Zhongdong organization: School of Life Science and Biotechnology, Shanghai Jiaotong University, Shanghai 200240, China – sequence: 7 givenname: Yong surname: Gu fullname: Gu, Yong email: yonggu@vip.163.com organization: Department of Nephrology, Shanghai Fifth People's Hospital, Fudan University, Shanghai 200240, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27317889$$D View this record in MEDLINE/PubMed https://www.osti.gov/biblio/22648603$$D View this record in Osti.gov |
BookMark | eNp9kU9r3DAQxUVJaTZpP0GhGHrpxduRrLWtQw8lpH8gkEtyFrI02mjrlVxJTrvfvnI3aSGHwIA08HvD470zcuKDR0LeUlhToO3H3fqAv3Vcs7KsoQyIF2RFQUDNOGMnZAVAec171p2Ss5R2AND3tH1FTlnX0K7vxYpsLydnMO7VWG1j-JXvKqt0DrGKqHFaPsltvRqd31Z7NE5lTJUaTUgZY_FTO29mjaaaYrBuiCE7XbRpCj4V0vnqhzMeD6_JS6vGhG8e3nNy--Xy5uJbfXX99fvF56ta857m2sLA23bD7dAaIQQbjMLO9thgJzggb6y1LRcCOEOjuW2tAbXRfMNFh2Bsc07eH-8Wg04m7TLqOx28R50lYy3vW2gK9eFIFdc_Z0xZ7l3SOI7KY5iTpD10AmDD6f-D_9BdmGNJZKEYL1447wr17oGahxKTnKLbq3iQj0EXQBwBHUNKEa0s1lR2weeo3CgpyKVUuZN_S5VLqRLKwKJtnmgfzz-v-nRUYYn73mFc0kBfunJxCcME96z-Dwj6vb8 |
CitedBy_id | crossref_primary_10_1093_ndt_gfx264 crossref_primary_10_1155_2022_7753508 crossref_primary_10_1042_CS20211075 crossref_primary_10_1016_j_neuchi_2020_12_008 crossref_primary_10_1667_RR14901_1 crossref_primary_10_3390_ijms22116154 crossref_primary_10_1016_j_jff_2017_01_031 crossref_primary_10_3389_fphar_2024_1394997 crossref_primary_10_3389_fphar_2020_598910 crossref_primary_10_1016_j_intimp_2024_112692 crossref_primary_10_1152_physrev_00038_2017 crossref_primary_10_1016_j_bbrc_2020_10_067 crossref_primary_10_1042_CS20201016 crossref_primary_10_1111_jvp_12848 crossref_primary_10_3390_cells10051148 crossref_primary_10_1038_s41598_020_62755_9 crossref_primary_10_3389_fmed_2020_609158 crossref_primary_10_1016_j_jff_2017_12_013 crossref_primary_10_1016_j_jphs_2016_12_005 crossref_primary_10_1093_ndt_gfac185 |
Cites_doi | 10.1007/s11906-010-0116-4 10.2337/db12-1010 10.1159/000441262 10.1093/ndt/gfs030 10.1159/000313363 10.1016/j.bbrc.2006.07.057 10.1161/01.HYP.0000118519.66430.22 10.1681/ASN.2007101079 10.1038/ki.2012.352 10.1053/j.ajkd.2011.03.029 10.1016/j.steroids.2009.09.008 10.1371/journal.pone.0145946 10.1172/JCI8315 10.1681/ASN.2005020129 10.1016/S0955-0674(99)80024-6 10.1016/j.bbrc.2012.01.037 10.1681/ASN.2011050493 10.1016/j.lfs.2012.02.022 10.1016/j.trsl.2008.12.008 10.1093/ndt/gfv125 10.1159/000357777 10.1155/2013/839761 10.12659/MSM.895945 10.1016/j.cellsig.2013.07.007 10.1161/01.HYP.0000174593.88899.68 10.1111/j.1523-1755.2004.00701.x 10.1152/ajpheart.00421.2002 10.1093/ndt/gfq750 10.1159/000256665 10.1091/mbc.e02-05-0260 10.1681/ASN.2011070645 10.1002/phy2.64 10.1146/annurev-pharmtox-070115-095427 10.1111/j.1523-1755.2005.09911.x 10.2337/db13-1279 10.1002/mc.20710 |
ContentType | Journal Article |
Copyright | 2016 Elsevier Inc. Copyright © 2016 Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2016 Elsevier Inc. – notice: Copyright © 2016 Elsevier Inc. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7TK 7TM 8FD FR3 P64 RC3 7X8 OTOTI |
DOI | 10.1016/j.yexcr.2016.06.009 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Neurosciences Abstracts Nucleic Acids Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic OSTI.GOV |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Genetics Abstracts Engineering Research Database Technology Research Database Neurosciences Abstracts Nucleic Acids Abstracts Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic Genetics Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1090-2422 |
EndPage | 110 |
ExternalDocumentID | 22648603 4199160701 27317889 10_1016_j_yexcr_2016_06_009 S0014482716301604 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M -DZ -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5RE 5VS 7-5 71M 8P~ 9JM AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABFRF ABGSF ABJNI ABMAC ABOCM ABPPZ ABUDA ABYKQ ACDAQ ACGFO ACGFS ACNCT ACPRK ACRLP ADBBV ADEZE ADUVX AEBSH AEFWE AEHWI AEKER AENEX AFKWA AFTJW AFXIZ AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC C45 CS3 DM4 DOVZS DU5 EBS EFBJH EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W K-O KOM L7B LG5 LX2 M41 MO0 N9A O-L O9- OAUVE OVD OZT P-8 P-9 P2P PC. PQQKQ Q38 RIG RNS ROL RPZ SCC SDF SDG SDP SES SPCBC SSU SSZ T5K TEORI TWZ VQA WH7 Y6R YZZ ZA5 ZCA ZMT ZU3 ~G- ~KM .55 .GJ 29G 3O- 53G 9M8 AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABEFU ABWVN ABXDB ACKIV ACRPL ACVFH ADCNI ADFGL ADMUD ADNMO ADVLN ADXHL AEIPS AETEA AEUPX AFJKZ AFPUW AGCQF AGHFR AGQPQ AGRDE AGRNS AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CAG CITATION COF FA8 FEDTE FGOYB G-2 HLW HVGLF HZ~ LPU MVM NEJ OHT R2- SBG SEW SSH VH1 WUQ X7L X7M XOL XPP YYP ZGI ZKB CGR CUY CVF ECM EIF NPM 7TK 7TM 8FD EFKBS FR3 P64 RC3 7X8 AALMO AAPBV ABPIF ABPTK ABQIS EFJIC OTOTI PQEST |
ID | FETCH-LOGICAL-c481t-f0b46654fb6d9992bdae7f8e3e7940e43fff6499042edc4f6fd0a5c45497e0df3 |
IEDL.DBID | .~1 |
ISSN | 0014-4827 1090-2422 |
IngestDate | Thu May 18 18:35:39 EDT 2023 Fri Jul 11 10:50:09 EDT 2025 Wed Aug 13 05:00:50 EDT 2025 Thu Apr 03 07:07:04 EDT 2025 Thu Apr 24 23:09:52 EDT 2025 Tue Jul 01 00:59:31 EDT 2025 Fri Feb 23 02:34:36 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | ERK1/2 Profibrotic response Reactive oxidative stress Aldosterone Epidermal growth factor receptor |
Language | English |
License | Copyright © 2016 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c481t-f0b46654fb6d9992bdae7f8e3e7940e43fff6499042edc4f6fd0a5c45497e0df3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 27317889 |
PQID | 1824499447 |
PQPubID | 32173 |
PageCount | 12 |
ParticipantIDs | osti_scitechconnect_22648603 proquest_miscellaneous_1807900541 proquest_journals_1824499447 pubmed_primary_27317889 crossref_citationtrail_10_1016_j_yexcr_2016_06_009 crossref_primary_10_1016_j_yexcr_2016_06_009 elsevier_sciencedirect_doi_10_1016_j_yexcr_2016_06_009 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-08-01 2016-08-00 20160801 |
PublicationDateYYYYMMDD | 2016-08-01 |
PublicationDate_xml | – month: 08 year: 2016 text: 2016-08-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | Experimental cell research |
PublicationTitleAlternate | Exp Cell Res |
PublicationYear | 2016 |
Publisher | Elsevier Inc Elsevier BV |
Publisher_xml | – name: Elsevier Inc – name: Elsevier BV |
References | Brem, Morris, Gong (bib11) 2011; 58 Nistala, Wei, Sowers, Whaley-Connell (bib34) 2009; 153 Huang, Zhang, Ding, Chen (bib13) 2009; 296 Thomas, Dooley, Harvey (bib7) 2010; 75 Nagai, Miyata, Sun (bib40) 2005; 46 Terzi, Burtin, Hekmati (bib22) 2000; 106 Barrera-Chimal, Perez-Villalva, Rodriguez-Romo (bib28) 2013; 83 Cortinovis, Perico, Cattaneo, Remuzzi (bib5) 2009; 3 Toyonaga, Tsuruya, Ikeda (bib26) 2011; 26 Stockand, Meszaros (bib39) 2003; 284 Kelly, Raj, Rahman (bib2) 2015; 30 Patni, Mathew, Luan (bib36) 2007; 293 Hollenberg (bib10) 2004; 66 Chen, Meng, Zhang (bib27) 2013; 2013 Mathew, Patni, Chaudhary (bib29) 2008; 295 Xu, Ding, Yang (bib17) 2014; 126 Hackel, Zwick, Prenzel, Ullrich (bib18) 1999; 11 Queisser, Oteiza, Stopper, Oli, Schupp (bib35) 2011; 50 Lai, Chen, Hao, Lin, Gu (bib12) 2006; 348 Taniguchi, Xia, Goldberg (bib33) 2013; 62 Ding, Yang, Zhang, Gu (bib25) 2012; 90 Remuzzi, Cattaneo, Perico (bib8) 2008; 19 Ding, Yang, Zhang, Gu (bib16) 2012; 418 Nishiyama, Yao, Nagai (bib37) 2004; 43 Ding, Xu, Wang, Zhang (bib24) 2015; 21 Remuzzi, Perico, Macia, Ruggenenti (bib1) 2005; 6899 Siragy, Carey (bib3) 2010; 31 Terada, Kobayashi, Kuwana (bib30) 2005; 16 Zhang, Chen, Lai (bib31) 2010; 31 Chen, Chen, Nagai (bib14) 2012; 23 Lu, Ku, Campese (bib6) 2010; 12 Flamant, Bollee, Henique, Tharaux (bib20) 2012; 27 Samarakoon, Dobberfuhl, Cooley (bib21) 2013; 25 Zhang, Wang, Paueksakon, Harris (bib32) 2014; 63 Bomback (bib9) 2016; 41 Forrester, Kawai, O’Brien (bib19) 2016; 56 Martín-Fernández, Rubio-Navarro, Cortegano (bib4) 2016; 11 Hendron, Stockand (bib38) 2002; 13 Cheema, Poulsen, Enghild (bib15) 2013; 1 Liu, Guo, Pang (bib23) 2012; 23 Chen (10.1016/j.yexcr.2016.06.009_bib14) 2012; 23 Taniguchi (10.1016/j.yexcr.2016.06.009_bib33) 2013; 62 Huang (10.1016/j.yexcr.2016.06.009_bib13) 2009; 296 Xu (10.1016/j.yexcr.2016.06.009_bib17) 2014; 126 Nistala (10.1016/j.yexcr.2016.06.009_bib34) 2009; 153 Forrester (10.1016/j.yexcr.2016.06.009_bib19) 2016; 56 Toyonaga (10.1016/j.yexcr.2016.06.009_bib26) 2011; 26 Hackel (10.1016/j.yexcr.2016.06.009_bib18) 1999; 11 Queisser (10.1016/j.yexcr.2016.06.009_bib35) 2011; 50 Nagai (10.1016/j.yexcr.2016.06.009_bib40) 2005; 46 Kelly (10.1016/j.yexcr.2016.06.009_bib2) 2015; 30 Hendron (10.1016/j.yexcr.2016.06.009_bib38) 2002; 13 Remuzzi (10.1016/j.yexcr.2016.06.009_bib1) 2005; 6899 Ding (10.1016/j.yexcr.2016.06.009_bib25) 2012; 90 Martín-Fernández (10.1016/j.yexcr.2016.06.009_bib4) 2016; 11 Lu (10.1016/j.yexcr.2016.06.009_bib6) 2010; 12 Stockand (10.1016/j.yexcr.2016.06.009_bib39) 2003; 284 Remuzzi (10.1016/j.yexcr.2016.06.009_bib8) 2008; 19 Samarakoon (10.1016/j.yexcr.2016.06.009_bib21) 2013; 25 Cortinovis (10.1016/j.yexcr.2016.06.009_bib5) 2009; 3 Terzi (10.1016/j.yexcr.2016.06.009_bib22) 2000; 106 Zhang (10.1016/j.yexcr.2016.06.009_bib32) 2014; 63 Flamant (10.1016/j.yexcr.2016.06.009_bib20) 2012; 27 Patni (10.1016/j.yexcr.2016.06.009_bib36) 2007; 293 Cheema (10.1016/j.yexcr.2016.06.009_bib15) 2013; 1 Barrera-Chimal (10.1016/j.yexcr.2016.06.009_bib28) 2013; 83 Mathew (10.1016/j.yexcr.2016.06.009_bib29) 2008; 295 Ding (10.1016/j.yexcr.2016.06.009_bib16) 2012; 418 Lai (10.1016/j.yexcr.2016.06.009_bib12) 2006; 348 Zhang (10.1016/j.yexcr.2016.06.009_bib31) 2010; 31 Terada (10.1016/j.yexcr.2016.06.009_bib30) 2005; 16 Nishiyama (10.1016/j.yexcr.2016.06.009_bib37) 2004; 43 Siragy (10.1016/j.yexcr.2016.06.009_bib3) 2010; 31 Thomas (10.1016/j.yexcr.2016.06.009_bib7) 2010; 75 Ding (10.1016/j.yexcr.2016.06.009_bib24) 2015; 21 Chen (10.1016/j.yexcr.2016.06.009_bib27) 2013; 2013 Bomback (10.1016/j.yexcr.2016.06.009_bib9) 2016; 41 Hollenberg (10.1016/j.yexcr.2016.06.009_bib10) 2004; 66 Brem (10.1016/j.yexcr.2016.06.009_bib11) 2011; 58 Liu (10.1016/j.yexcr.2016.06.009_bib23) 2012; 23 |
References_xml | – volume: 418 start-page: 451 year: 2012 end-page: 456 ident: bib16 article-title: Reactive oxygen species-mediated endoplasmic reticulum stress contributes to aldosterone-induced apoptosis in tubular epithelial cells publication-title: Biochem. Biophys. Res. Commun. – volume: 83 start-page: 93 year: 2013 end-page: 103 ident: bib28 article-title: Spironolactone prevents chronic kidney disease caused by ischemic acute kidney injury publication-title: Kidney Int. – volume: 11 start-page: e145946 year: 2016 ident: bib4 article-title: Aldosterone induces renal fibrosis and inflammatory M1-macrophage subtype via mineralocorticoid receptor in rats publication-title: PLoS One – volume: 63 start-page: 2063 year: 2014 end-page: 2072 ident: bib32 article-title: Epidermal growth factor receptor inhibition slows progression of diabetic nephropathy in association with a decrease in endoplasmic reticulum stress and an increase in autophagy publication-title: Diabetes – volume: 348 start-page: 70 year: 2006 end-page: 75 ident: bib12 article-title: Aldosterone promotes fibronectin production through a smad2-dependent TGF-β1 pathway in mesangial cells publication-title: Biochem. Biophys. Res. Commun. – volume: 295 start-page: F73 year: 2008 end-page: F81 ident: bib29 article-title: Aldosterone induces mesangial cell apoptosis both in vivo and in vitro publication-title: AJP: Ren. Physiol. – volume: 13 start-page: 3042 year: 2002 end-page: 3054 ident: bib38 article-title: Activation of mitogen-activated protein kinase (mitogen-activated protein kinase/extracellular signal-regulated kinase) cascade by aldosterone publication-title: Mol. Biol. Cell – volume: 16 start-page: 2296 year: 2005 end-page: 2305 ident: bib30 article-title: Aldosterone stimulates proliferation of mesangial cells by activating mitogen-activated protein kinase 1/2, cyclin D1, and cyclin A publication-title: J. Am. Soc. Nephrol. – volume: 3 start-page: 133 year: 2009 end-page: 143 ident: bib5 article-title: Aldosterone and progression of kidney disease. Ther Adv publication-title: Cardiovasc. Dis. – volume: 26 start-page: 2475 year: 2011 end-page: 2484 ident: bib26 article-title: Spironolactone inhibits hyperglycemia-induced podocyte injury by attenuating ROS production publication-title: Nephrol. Dial. Transpl. – volume: 56 start-page: 627 year: 2016 end-page: 653 ident: bib19 article-title: Epidermal growth factor receptor transactivation: mechanisms, pathophysiology, and potential therapies in the cardiovascular system publication-title: Annu Rev. Pharmacol. Toxicol. – volume: 106 start-page: 225 year: 2000 end-page: 234 ident: bib22 article-title: Targeted expression of a dominant-negative EGF-R in the kidney reduces tubulo-interstitial lesions after renal injury publication-title: J. Clin. Investig. – volume: 66 start-page: 1 year: 2004 end-page: 9 ident: bib10 article-title: Aldosterone in the development and progression of renal injury publication-title: Kidney Int. – volume: 11 start-page: 184 year: 1999 end-page: 189 ident: bib18 article-title: Epidermal growth factor receptors: critical mediators of multiple receptor pathways publication-title: Curr. Opin. Cell Biol. – volume: 6899 start-page: 57 year: 2005 end-page: 65 ident: bib1 article-title: The role of renin-angiotensin-aldosterone system in the progression of chronic kidney disease publication-title: Kidney Int. – volume: 23 start-page: 215 year: 2012 end-page: 224 ident: bib14 article-title: EGFR signaling promotes TGF beta-dependent renal fibrosis publication-title: J. Am. Soc. Nephrol. – volume: 90 start-page: 600 year: 2012 end-page: 606 ident: bib25 article-title: Chronic inhibition of nuclear factor kappa B attenuates aldosterone/salt-induced renal injury publication-title: Life Sci. – volume: 31 start-page: 75 year: 2010 end-page: 82 ident: bib31 article-title: Aldosterone promotes fibronectin synthesis in rat mesangial cells via ERK1/2-stimulated Na publication-title: Am. J. Nephrol. – volume: 43 start-page: 841 year: 2004 end-page: 848 ident: bib37 article-title: Possible contributions of reactive oxygen species and mitogen-activated protein kinase to renal injury in aldosterone/salt-induced hypertensive rats publication-title: Hypertension – volume: 12 start-page: 303 year: 2010 end-page: 306 ident: bib6 article-title: Aldosterone in the pathogenesis of chronic kidney disease and proteinuria publication-title: Curr. Hypertens. Rep. – volume: 46 start-page: 1039 year: 2005 end-page: 1045 ident: bib40 article-title: Aldosterone stimulates collagen gene expression and synthesis via activation of ERK1/2 in rat renal fibroblasts publication-title: Hypertension – volume: 19 start-page: 1459 year: 2008 end-page: 1462 ident: bib8 article-title: The aggravating mechanisms of aldosterone on kidney fibrosis publication-title: J. Am. Soc. Nephrol. – volume: 62 start-page: 3874 year: 2013 end-page: 3886 ident: bib33 article-title: Inhibition of src kinase blocks high glucose-induced EGFR transactivation and collagen synthesis in mesangial cells and prevents diabetic nephropathy in mice publication-title: Diabetes – volume: 293 start-page: F1065 year: 2007 end-page: F1071 ident: bib36 article-title: Aldosterone promotes proximal tubular cell apoptosis: role of oxidative stress publication-title: AJP: Ren. Physiol. – volume: 153 start-page: 102 year: 2009 end-page: 113 ident: bib34 article-title: Renin-angiotensin-aldosterone system-mediated redox effects in chronic kidney disease publication-title: Transl. Res. – volume: 58 start-page: 471 year: 2011 end-page: 479 ident: bib11 article-title: Aldosterone-induced fibrosis in the kidney: questions and controversies publication-title: Am. J. Kidney Dis. – volume: 126 start-page: 25 year: 2014 end-page: 32 ident: bib17 article-title: Contributions of endoplasmic reticulum stress and reactive oxygen species to renal injury in aldosterone/salt-induced rats publication-title: Nephron Exp. Nephrol. – volume: 284 start-page: H176 year: 2003 end-page: H184 ident: bib39 article-title: Aldosterone stimulates proliferation of cardiac fibroblasts by activating Ki-RasA and MAPK1/2 signaling publication-title: Am. J. Physiol. Heart Circ. Physiol. – volume: 1 start-page: e64 year: 2013 ident: bib15 article-title: Aldosterone and angiotensin II induce protein aggregation in renal proximal tubules publication-title: Physiol. Rep. – volume: 31 start-page: 541 year: 2010 end-page: 550 ident: bib3 article-title: Role of the intrarenal renin-angiotensin-aldosterone system in chronic kidney disease publication-title: Am. J. Nephrol. – volume: 75 start-page: 550 year: 2010 end-page: 554 ident: bib7 article-title: Aldosterone as a renal growth factor publication-title: Steroids – volume: 296 start-page: F1323 year: 2009 end-page: F1333 ident: bib13 article-title: Aldosterone-induced mesangial cell proliferation is mediated by EGF publication-title: Recept. Trans. AJP: Ren. Physiol. – volume: 27 start-page: 1297 year: 2012 end-page: 1304 ident: bib20 article-title: Epidermal growth factor: a new therapeutic target in glomerular disease publication-title: Nephrol. Dial. Transpl. – volume: 21 start-page: 3136 year: 2015 end-page: 3143 ident: bib24 article-title: Rotenone attenuates renal injury in aldosterone-infused rats by inhibiting oxidative stress, mitochondrial dysfunction, and inflammasome activation publication-title: Med. Sci. Monit. – volume: 30 start-page: 1711 year: 2015 end-page: 1718 ident: bib2 article-title: The role of renin-angiotensin-aldosterone system genes in the progression of chronic kidney disease: findings from the Chronic Renal Insufficiency Cohort (CRIC) study publication-title: Nephrol. Dial. Transplant. – volume: 50 start-page: 123 year: 2011 end-page: 135 ident: bib35 article-title: Aldosterone induces oxidative stress, oxidative DNA damage and NF-κB-activation in kidney tubule cells publication-title: Mol. Carcinog. – volume: 41 start-page: 166 year: 2016 end-page: 170 ident: bib9 article-title: Mineralocorticoid receptor antagonists in end-stage renal disease: efficacy and safety publication-title: Blood Purif. – volume: 23 start-page: 854 year: 2012 end-page: 867 ident: bib23 article-title: Genetic or pharmacologic blockade of EGFR inhibits renal fibrosis publication-title: J. Am. Soc. Nephrol. – volume: 25 start-page: 2198 year: 2013 end-page: 2209 ident: bib21 article-title: Induction of renal fibrotic genes by TGF-β1 requires EGFR activation, p53 and reactive oxygen species publication-title: Cell Signal – volume: 2013 start-page: 1 year: 2013 end-page: 7 ident: bib27 article-title: Role of NADPH oxidase-mediated reactive oxygen species in podocyte injury publication-title: Biomed. Res. Int. – volume: 12 start-page: 303 issue: 4 year: 2010 ident: 10.1016/j.yexcr.2016.06.009_bib6 article-title: Aldosterone in the pathogenesis of chronic kidney disease and proteinuria publication-title: Curr. Hypertens. Rep. doi: 10.1007/s11906-010-0116-4 – volume: 62 start-page: 3874 issue: 11 year: 2013 ident: 10.1016/j.yexcr.2016.06.009_bib33 article-title: Inhibition of src kinase blocks high glucose-induced EGFR transactivation and collagen synthesis in mesangial cells and prevents diabetic nephropathy in mice publication-title: Diabetes doi: 10.2337/db12-1010 – volume: 41 start-page: 166 issue: 1–3 year: 2016 ident: 10.1016/j.yexcr.2016.06.009_bib9 article-title: Mineralocorticoid receptor antagonists in end-stage renal disease: efficacy and safety publication-title: Blood Purif. doi: 10.1159/000441262 – volume: 27 start-page: 1297 issue: 4 year: 2012 ident: 10.1016/j.yexcr.2016.06.009_bib20 article-title: Epidermal growth factor: a new therapeutic target in glomerular disease publication-title: Nephrol. Dial. Transpl. doi: 10.1093/ndt/gfs030 – volume: 31 start-page: 541 issue: 6 year: 2010 ident: 10.1016/j.yexcr.2016.06.009_bib3 article-title: Role of the intrarenal renin-angiotensin-aldosterone system in chronic kidney disease publication-title: Am. J. Nephrol. doi: 10.1159/000313363 – volume: 348 start-page: 70 issue: 1 year: 2006 ident: 10.1016/j.yexcr.2016.06.009_bib12 article-title: Aldosterone promotes fibronectin production through a smad2-dependent TGF-β1 pathway in mesangial cells publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2006.07.057 – volume: 43 start-page: 841 issue: 4 year: 2004 ident: 10.1016/j.yexcr.2016.06.009_bib37 article-title: Possible contributions of reactive oxygen species and mitogen-activated protein kinase to renal injury in aldosterone/salt-induced hypertensive rats publication-title: Hypertension doi: 10.1161/01.HYP.0000118519.66430.22 – volume: 19 start-page: 1459 issue: 8 year: 2008 ident: 10.1016/j.yexcr.2016.06.009_bib8 article-title: The aggravating mechanisms of aldosterone on kidney fibrosis publication-title: J. Am. Soc. Nephrol. doi: 10.1681/ASN.2007101079 – volume: 83 start-page: 93 issue: 1 year: 2013 ident: 10.1016/j.yexcr.2016.06.009_bib28 article-title: Spironolactone prevents chronic kidney disease caused by ischemic acute kidney injury publication-title: Kidney Int. doi: 10.1038/ki.2012.352 – volume: 3 start-page: 133 issue: 2 year: 2009 ident: 10.1016/j.yexcr.2016.06.009_bib5 article-title: Aldosterone and progression of kidney disease. Ther Adv publication-title: Cardiovasc. Dis. – volume: 58 start-page: 471 issue: 3 year: 2011 ident: 10.1016/j.yexcr.2016.06.009_bib11 article-title: Aldosterone-induced fibrosis in the kidney: questions and controversies publication-title: Am. J. Kidney Dis. doi: 10.1053/j.ajkd.2011.03.029 – volume: 75 start-page: 550 issue: 8–9 year: 2010 ident: 10.1016/j.yexcr.2016.06.009_bib7 article-title: Aldosterone as a renal growth factor publication-title: Steroids doi: 10.1016/j.steroids.2009.09.008 – volume: 11 start-page: e145946 issue: 1 year: 2016 ident: 10.1016/j.yexcr.2016.06.009_bib4 article-title: Aldosterone induces renal fibrosis and inflammatory M1-macrophage subtype via mineralocorticoid receptor in rats publication-title: PLoS One doi: 10.1371/journal.pone.0145946 – volume: 106 start-page: 225 issue: 2 year: 2000 ident: 10.1016/j.yexcr.2016.06.009_bib22 article-title: Targeted expression of a dominant-negative EGF-R in the kidney reduces tubulo-interstitial lesions after renal injury publication-title: J. Clin. Investig. doi: 10.1172/JCI8315 – volume: 16 start-page: 2296 issue: 8 year: 2005 ident: 10.1016/j.yexcr.2016.06.009_bib30 article-title: Aldosterone stimulates proliferation of mesangial cells by activating mitogen-activated protein kinase 1/2, cyclin D1, and cyclin A publication-title: J. Am. Soc. Nephrol. doi: 10.1681/ASN.2005020129 – volume: 295 start-page: F73 issue: 1 year: 2008 ident: 10.1016/j.yexcr.2016.06.009_bib29 article-title: Aldosterone induces mesangial cell apoptosis both in vivo and in vitro publication-title: AJP: Ren. Physiol. – volume: 11 start-page: 184 issue: 2 year: 1999 ident: 10.1016/j.yexcr.2016.06.009_bib18 article-title: Epidermal growth factor receptors: critical mediators of multiple receptor pathways publication-title: Curr. Opin. Cell Biol. doi: 10.1016/S0955-0674(99)80024-6 – volume: 418 start-page: 451 issue: 3 year: 2012 ident: 10.1016/j.yexcr.2016.06.009_bib16 article-title: Reactive oxygen species-mediated endoplasmic reticulum stress contributes to aldosterone-induced apoptosis in tubular epithelial cells publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2012.01.037 – volume: 23 start-page: 854 issue: 5 year: 2012 ident: 10.1016/j.yexcr.2016.06.009_bib23 article-title: Genetic or pharmacologic blockade of EGFR inhibits renal fibrosis publication-title: J. Am. Soc. Nephrol. doi: 10.1681/ASN.2011050493 – volume: 90 start-page: 600 issue: 15–16 year: 2012 ident: 10.1016/j.yexcr.2016.06.009_bib25 article-title: Chronic inhibition of nuclear factor kappa B attenuates aldosterone/salt-induced renal injury publication-title: Life Sci. doi: 10.1016/j.lfs.2012.02.022 – volume: 153 start-page: 102 issue: 3 year: 2009 ident: 10.1016/j.yexcr.2016.06.009_bib34 article-title: Renin-angiotensin-aldosterone system-mediated redox effects in chronic kidney disease publication-title: Transl. Res. doi: 10.1016/j.trsl.2008.12.008 – volume: 30 start-page: 1711 issue: 10 year: 2015 ident: 10.1016/j.yexcr.2016.06.009_bib2 article-title: The role of renin-angiotensin-aldosterone system genes in the progression of chronic kidney disease: findings from the Chronic Renal Insufficiency Cohort (CRIC) study publication-title: Nephrol. Dial. Transplant. doi: 10.1093/ndt/gfv125 – volume: 126 start-page: 25 issue: 1 year: 2014 ident: 10.1016/j.yexcr.2016.06.009_bib17 article-title: Contributions of endoplasmic reticulum stress and reactive oxygen species to renal injury in aldosterone/salt-induced rats publication-title: Nephron Exp. Nephrol. doi: 10.1159/000357777 – volume: 2013 start-page: 1 year: 2013 ident: 10.1016/j.yexcr.2016.06.009_bib27 article-title: Role of NADPH oxidase-mediated reactive oxygen species in podocyte injury publication-title: Biomed. Res. Int. doi: 10.1155/2013/839761 – volume: 21 start-page: 3136 year: 2015 ident: 10.1016/j.yexcr.2016.06.009_bib24 article-title: Rotenone attenuates renal injury in aldosterone-infused rats by inhibiting oxidative stress, mitochondrial dysfunction, and inflammasome activation publication-title: Med. Sci. Monit. doi: 10.12659/MSM.895945 – volume: 25 start-page: 2198 issue: 11 year: 2013 ident: 10.1016/j.yexcr.2016.06.009_bib21 article-title: Induction of renal fibrotic genes by TGF-β1 requires EGFR activation, p53 and reactive oxygen species publication-title: Cell Signal doi: 10.1016/j.cellsig.2013.07.007 – volume: 46 start-page: 1039 issue: 4 year: 2005 ident: 10.1016/j.yexcr.2016.06.009_bib40 article-title: Aldosterone stimulates collagen gene expression and synthesis via activation of ERK1/2 in rat renal fibroblasts publication-title: Hypertension doi: 10.1161/01.HYP.0000174593.88899.68 – volume: 66 start-page: 1 issue: 1 year: 2004 ident: 10.1016/j.yexcr.2016.06.009_bib10 article-title: Aldosterone in the development and progression of renal injury publication-title: Kidney Int. doi: 10.1111/j.1523-1755.2004.00701.x – volume: 284 start-page: H176 issue: 1 year: 2003 ident: 10.1016/j.yexcr.2016.06.009_bib39 article-title: Aldosterone stimulates proliferation of cardiac fibroblasts by activating Ki-RasA and MAPK1/2 signaling publication-title: Am. J. Physiol. Heart Circ. Physiol. doi: 10.1152/ajpheart.00421.2002 – volume: 26 start-page: 2475 issue: 8 year: 2011 ident: 10.1016/j.yexcr.2016.06.009_bib26 article-title: Spironolactone inhibits hyperglycemia-induced podocyte injury by attenuating ROS production publication-title: Nephrol. Dial. Transpl. doi: 10.1093/ndt/gfq750 – volume: 293 start-page: F1065 issue: 4 year: 2007 ident: 10.1016/j.yexcr.2016.06.009_bib36 article-title: Aldosterone promotes proximal tubular cell apoptosis: role of oxidative stress publication-title: AJP: Ren. Physiol. – volume: 31 start-page: 75 issue: 1 year: 2010 ident: 10.1016/j.yexcr.2016.06.009_bib31 article-title: Aldosterone promotes fibronectin synthesis in rat mesangial cells via ERK1/2-stimulated Na+-H+ exchanger isoform 1 publication-title: Am. J. Nephrol. doi: 10.1159/000256665 – volume: 13 start-page: 3042 issue: 9 year: 2002 ident: 10.1016/j.yexcr.2016.06.009_bib38 article-title: Activation of mitogen-activated protein kinase (mitogen-activated protein kinase/extracellular signal-regulated kinase) cascade by aldosterone publication-title: Mol. Biol. Cell doi: 10.1091/mbc.e02-05-0260 – volume: 23 start-page: 215 issue: 2 year: 2012 ident: 10.1016/j.yexcr.2016.06.009_bib14 article-title: EGFR signaling promotes TGF beta-dependent renal fibrosis publication-title: J. Am. Soc. Nephrol. doi: 10.1681/ASN.2011070645 – volume: 1 start-page: e64 issue: 4 year: 2013 ident: 10.1016/j.yexcr.2016.06.009_bib15 article-title: Aldosterone and angiotensin II induce protein aggregation in renal proximal tubules publication-title: Physiol. Rep. doi: 10.1002/phy2.64 – volume: 56 start-page: 627 year: 2016 ident: 10.1016/j.yexcr.2016.06.009_bib19 article-title: Epidermal growth factor receptor transactivation: mechanisms, pathophysiology, and potential therapies in the cardiovascular system publication-title: Annu Rev. Pharmacol. Toxicol. doi: 10.1146/annurev-pharmtox-070115-095427 – volume: 6899 start-page: 57 year: 2005 ident: 10.1016/j.yexcr.2016.06.009_bib1 article-title: The role of renin-angiotensin-aldosterone system in the progression of chronic kidney disease publication-title: Kidney Int. doi: 10.1111/j.1523-1755.2005.09911.x – volume: 63 start-page: 2063 issue: 6 year: 2014 ident: 10.1016/j.yexcr.2016.06.009_bib32 article-title: Epidermal growth factor receptor inhibition slows progression of diabetic nephropathy in association with a decrease in endoplasmic reticulum stress and an increase in autophagy publication-title: Diabetes doi: 10.2337/db13-1279 – volume: 50 start-page: 123 issue: 2 year: 2011 ident: 10.1016/j.yexcr.2016.06.009_bib35 article-title: Aldosterone induces oxidative stress, oxidative DNA damage and NF-κB-activation in kidney tubule cells publication-title: Mol. Carcinog. doi: 10.1002/mc.20710 – volume: 296 start-page: F1323 issue: 6 year: 2009 ident: 10.1016/j.yexcr.2016.06.009_bib13 article-title: Aldosterone-induced mesangial cell proliferation is mediated by EGF publication-title: Recept. Trans. AJP: Ren. Physiol. |
SSID | ssj0008816 |
Score | 2.3236897 |
Snippet | Aldosterone has been recognized as a risk factor for the development of chronic kidney disease (CKD). Studies have indicated that enhanced activation of... |
SourceID | osti proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 99 |
SubjectTerms | 60 APPLIED LIFE SCIENCES ALDOSTERONE Aldosterone - adverse effects ANIMAL TISSUES Animals Cell Line Cell Movement - drug effects CELL PROLIFERATION Cell Proliferation - drug effects COLLAGEN COMPARATIVE EVALUATIONS DISEASES Epidermal growth factor receptor ERK1/2 Erlotinib Hydrochloride - pharmacology Extracellular Matrix - drug effects Extracellular Matrix - metabolism Extracellular Signal-Regulated MAP Kinases - metabolism FIBROSIS GROWTH FACTORS HAZARDS HYPERTROPHY INHIBITION Kidney - drug effects Kidney - enzymology Kidney - metabolism Kidney - pathology Kidney Glomerulus - drug effects Kidney Glomerulus - pathology KIDNEYS Male MAP Kinase Signaling System - drug effects MATRICES Mesangial Cells - drug effects Mesangial Cells - pathology Mice MIGRATION Models, Biological OXIDATION PHOSPHORYLATION Phosphorylation - drug effects PHOSPHOTRANSFERASES PLANT GROWTH PLANT TISSUES POTENTIALS Profibrotic response RATS Rats, Sprague-Dawley Reactive oxidative stress Reactive Oxygen Species - metabolism Receptor, Epidermal Growth Factor - antagonists & inhibitors Receptor, Epidermal Growth Factor - metabolism RECEPTORS Receptors, Mineralocorticoid - metabolism Signal Transduction - drug effects SIGNALS STRESSES Transcriptional Activation - genetics TYROSINE |
Title | Epidermal growth factor receptor signaling mediates aldosterone-induced profibrotic responses in kidney |
URI | https://dx.doi.org/10.1016/j.yexcr.2016.06.009 https://www.ncbi.nlm.nih.gov/pubmed/27317889 https://www.proquest.com/docview/1824499447 https://www.proquest.com/docview/1807900541 https://www.osti.gov/biblio/22648603 |
Volume | 346 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTxtBDLZQUCUuFdCWpjw0lXrslH3M7sweEQIFEJyKxG00Ow8IjTZRGiRy4bdjz-4GVQIOvSW7tjLjsT228tkG-GEkurzMVrworeWidpJX0gquCpdlRuRSFVQ7fHlVjq7F-U1xswbHfS0MwSo739_69OituyeHnTQPZ-Mx1fhiMqAyDPhzapNGPUGFkKTlv55eYB5KxfGnRMyJuu88FDFeS_9oqSloWsYmnoRKfP12GkzR4N4OQuNldLoJH7sokh21C92CNd9sw4d2ruTyE9ye0NxXdLkTdotp9uKOtWN1GG7Vz-gDwTYMVaKzWDqC8SYzE0cFH_Np4zkm6njkjsWJ3vV8ij-DvBFNi5Tjhv0Zu8YvP8P16cnv4xHvJipwK1S64CGpBY0bDnXpMDLMame8DMrnHs0y8SIPIZSYA6Ele2dFKINLTGEFJpHSJy7kX2DQ4DK-AhP4vPIySVVwojDSGNwJxgPWYU4W0mIIWS9Jbbt24zT1YqJ7XNm9juLXJH4d0XXVEH6umGZtt433ycv-iPQ_SqPxPnifcY8OlJioVa4lTBFyUVGxKpMcX_cHrTuT_qsxERMoGlSxIXxfvUZjpH9YTOOnD0STyIqi4HQIO62CrPaBcWIqlaq-_e-id2GDvrXowz0YLOYPfh8jokV9EFX-ANaPzi5GV8-Pzwwk |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VIAQXxLMEChgJbpjuw7v2HjggaJXSx6mVejNeP8pCtInSVJALf4o_yIx3NwgJekDqLVp7Eu94PJ5RvpkP4KWR6PIyW_GitJaL2kleSSu4KlyWGZFLVVDt8OFROTkRH0-L0w34OdTCEKyy9_2dT4_eun-y3Wtze940VOOLyYDKMODPqU2a6JGV-371DfO287d7H3CTX2XZ7s7x-wnvqQW4FSpd8pDUgnh3Q106DJGy2hkvg_K5R_tMvMhDCCUmA2jS3lkRyuASU1iB2ZT0iQs5fu81uC7QXRBtwpsfv3ElSkW-VVodp-UNrY4iqGzlv1vqQpqWsWsowSD_fh2OZnjC_x31xttv9w7c7sNW9q7TzF3Y8O09uNERWa7uw9kOEc2ij5-yM8zrl59Zx-PDULd-Th8IJ2Ko9J3FWhUMcJmZOqowWcxaz5vWoY05FinE68UMfwZlI3wXZzYt-9q41q8ewMmV6PkhjFpcxiNgAp9XXiapCk4URhqDb4IBiHWYBIa0GEM2aFLbvr850WxM9QBk-6Kj-jWpX0c4XzWG12uhedfe4_Lp5bBF-g8r1XgBXS64RRtKQtSb1xKICaWoilmVSY7Dw0br3oeca8z8BKpGCDmGF-thPP30l45p_eyC5iSyorA7HcNmZyDr98DANJVKVY__d9HP4ebk-PBAH-wd7T-BWzTSQR-3YLRcXPinGI4t62fR_Bl8uurz9gt_00j8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Epidermal+growth+factor+receptor+signaling+mediates+aldosterone-induced+profibrotic+responses+in+kidney&rft.jtitle=Experimental+cell+research&rft.au=Sheng%2C+Lili&rft.au=Yang%2C+Min&rft.au=Ding%2C+Wei&rft.au=Zhang%2C+Minmin&rft.date=2016-08-01&rft.issn=0014-4827&rft.eissn=1090-2422&rft.volume=346&rft.issue=1&rft_id=info:doi/10.1016%2FJ.YEXCR.2016.06.009&rft.externalDocID=22648603 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0014-4827&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0014-4827&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0014-4827&client=summon |