Epidermal growth factor receptor signaling mediates aldosterone-induced profibrotic responses in kidney

Aldosterone has been recognized as a risk factor for the development of chronic kidney disease (CKD). Studies have indicated that enhanced activation of epidermal growth factor receptor (EGFR) is associated with the development and progression of renal fibrosis. But if EGFR is involved in aldosteron...

Full description

Saved in:
Bibliographic Details
Published inExperimental cell research Vol. 346; no. 1; pp. 99 - 110
Main Authors Sheng, Lili, Yang, Min, Ding, Wei, Zhang, Minmin, Niu, Jianying, Qiao, Zhongdong, Gu, Yong
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.08.2016
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Aldosterone has been recognized as a risk factor for the development of chronic kidney disease (CKD). Studies have indicated that enhanced activation of epidermal growth factor receptor (EGFR) is associated with the development and progression of renal fibrosis. But if EGFR is involved in aldosterone-induced renal fibrosis is less investigated. In the present study, we examined the effect of erlotinib, an inhibitor of EGFR tyrosine kinase activity, on the progression of aldosterone-induced renal profibrotic responses in a murine model underwent uninephrectomy. Erlotinib-treated rats exhibited relieved structural lesion comparing with rats treated with aldosterone alone, as characterized by glomerular hypertrophy, mesangial cell proliferation and expansion. Also, erlotinib inhibited the expression of TGF-β, α-SMA and mesangial matrix proteins such as collagen Ⅳ and fibronectin. In cultured mesangial cells, inhibition of EGFR also abrogated aldosterone-induced expression of extracellular matrix proteins, cell proliferation and migration. We also demonstrated that aldosterone induced the phosphorylation of EGFR through generation of ROS. And the activation of EGFR resulted in the phosphorylation of ERK1/2, leading to the activation of profibrotic pathways. Taken together, we concluded that aldosterone-mediated tissue fibrosis relies on ROS induced EGFR/ERK activation, highlighting EGFR as a potential therapeutic target for modulating renal fibrosis. •EGFR was involved in aldosterone-induced renal profibrotic responses.•Aldosterone-induced EGFR activation was mediated by MR-dependent ROS generation.•EGFR activated the MAPK/ERK1/2 signaling to promote renal fibrosis.
AbstractList Aldosterone has been recognized as a risk factor for the development of chronic kidney disease (CKD). Studies have indicated that enhanced activation of epidermal growth factor receptor (EGFR) is associated with the development and progression of renal fibrosis. But if EGFR is involved in aldosterone-induced renal fibrosis is less investigated. In the present study, we examined the effect of erlotinib, an inhibitor of EGFR tyrosine kinase activity, on the progression of aldosterone-induced renal profibrotic responses in a murine model underwent uninephrectomy. Erlotinib-treated rats exhibited relieved structural lesion comparing with rats treated with aldosterone alone, as characterized by glomerular hypertrophy, mesangial cell proliferation and expansion. Also, erlotinib inhibited the expression of TGF-β, α-SMA and mesangial matrix proteins such as collagen Ⅳ and fibronectin. In cultured mesangial cells, inhibition of EGFR also abrogated aldosterone-induced expression of extracellular matrix proteins, cell proliferation and migration. We also demonstrated that aldosterone induced the phosphorylation of EGFR through generation of ROS. And the activation of EGFR resulted in the phosphorylation of ERK1/2, leading to the activation of profibrotic pathways. Taken together, we concluded that aldosterone-mediated tissue fibrosis relies on ROS induced EGFR/ERK activation, highlighting EGFR as a potential therapeutic target for modulating renal fibrosis. •EGFR was involved in aldosterone-induced renal profibrotic responses.•Aldosterone-induced EGFR activation was mediated by MR-dependent ROS generation.•EGFR activated the MAPK/ERK1/2 signaling to promote renal fibrosis.
Aldosterone has been recognized as a risk factor for the development of chronic kidney disease (CKD). Studies have indicated that enhanced activation of epidermal growth factor receptor (EGFR) is associated with the development and progression of renal fibrosis. But if EGFR is involved in aldosterone-induced renal fibrosis is less investigated. In the present study, we examined the effect of erlotinib, an inhibitor of EGFR tyrosine kinase activity, on the progression of aldosterone-induced renal profibrotic responses in a murine model underwent uninephrectomy. Erlotinib-treated rats exhibited relieved structural lesion comparing with rats treated with aldosterone alone, as characterized by glomerular hypertrophy, mesangial cell proliferation and expansion. Also, erlotinib inhibited the expression of TGF-β, α-SMA and mesangial matrix proteins such as collagen Ⅳ and fibronectin. In cultured mesangial cells, inhibition of EGFR also abrogated aldosterone-induced expression of extracellular matrix proteins, cell proliferation and migration. We also demonstrated that aldosterone induced the phosphorylation of EGFR through generation of ROS. And the activation of EGFR resulted in the phosphorylation of ERK1/2, leading to the activation of profibrotic pathways. Taken together, we concluded that aldosterone-mediated tissue fibrosis relies on ROS induced EGFR/ERK activation, highlighting EGFR as a potential therapeutic target for modulating renal fibrosis.
Aldosterone has been recognized as a risk factor for the development of chronic kidney disease (CKD). Studies have indicated that enhanced activation of epidermal growth factor receptor (EGFR) is associated with the development and progression of renal fibrosis. But if EGFR is involved in aldosterone-induced renal fibrosis is less investigated. In the present study, we examined the effect of erlotinib, an inhibitor of EGFR tyrosine kinase activity, on the progression of aldosterone-induced renal profibrotic responses in a murine model underwent uninephrectomy. Erlotinib-treated rats exhibited relieved structural lesion comparing with rats treated with aldosterone alone, as characterized by glomerular hypertrophy, mesangial cell proliferation and expansion. Also, erlotinib inhibited the expression of TGF-β, α-SMA and mesangial matrix proteins such as collagen Ⅳ and fibronectin. In cultured mesangial cells, inhibition of EGFR also abrogated aldosterone-induced expression of extracellular matrix proteins, cell proliferation and migration. We also demonstrated that aldosterone induced the phosphorylation of EGFR through generation of ROS. And the activation of EGFR resulted in the phosphorylation of ERK1/2, leading to the activation of profibrotic pathways. Taken together, we concluded that aldosterone-mediated tissue fibrosis relies on ROS induced EGFR/ERK activation, highlighting EGFR as a potential therapeutic target for modulating renal fibrosis.Aldosterone has been recognized as a risk factor for the development of chronic kidney disease (CKD). Studies have indicated that enhanced activation of epidermal growth factor receptor (EGFR) is associated with the development and progression of renal fibrosis. But if EGFR is involved in aldosterone-induced renal fibrosis is less investigated. In the present study, we examined the effect of erlotinib, an inhibitor of EGFR tyrosine kinase activity, on the progression of aldosterone-induced renal profibrotic responses in a murine model underwent uninephrectomy. Erlotinib-treated rats exhibited relieved structural lesion comparing with rats treated with aldosterone alone, as characterized by glomerular hypertrophy, mesangial cell proliferation and expansion. Also, erlotinib inhibited the expression of TGF-β, α-SMA and mesangial matrix proteins such as collagen Ⅳ and fibronectin. In cultured mesangial cells, inhibition of EGFR also abrogated aldosterone-induced expression of extracellular matrix proteins, cell proliferation and migration. We also demonstrated that aldosterone induced the phosphorylation of EGFR through generation of ROS. And the activation of EGFR resulted in the phosphorylation of ERK1/2, leading to the activation of profibrotic pathways. Taken together, we concluded that aldosterone-mediated tissue fibrosis relies on ROS induced EGFR/ERK activation, highlighting EGFR as a potential therapeutic target for modulating renal fibrosis.
Aldosterone has been recognized as a risk factor for the development of chronic kidney disease (CKD). Studies have indicated that enhanced activation of epidermal growth factor receptor (EGFR) is associated with the development and progression of renal fibrosis. But if EGFR is involved in aldosterone-induced renal fibrosis is less investigated. In the present study, we examined the effect of erlotinib, an inhibitor of EGFR tyrosine kinase activity, on the progression of aldosterone-induced renal profibrotic responses in a murine model underwent uninephrectomy. Erlotinib-treated rats exhibited relieved structural lesion comparing with rats treated with aldosterone alone, as characterized by glomerular hypertrophy, mesangial cell proliferation and expansion. Also, erlotinib inhibited the expression of TGF-[beta], [alpha]-SMA and mesangial matrix proteins such as collagen IV and fibronectin. In cultured mesangial cells, inhibition of EGFR also abrogated aldosterone-induced expression of extracellular matrix proteins, cell proliferation and migration. We also demonstrated that aldosterone induced the phosphorylation of EGFR through generation of ROS. And the activation of EGFR resulted in the phosphorylation of ERK1/2, leading to the activation of profibrotic pathways. Taken together, we concluded that aldosterone-mediated tissue fibrosis relies on ROS induced EGFR/ERK activation, highlighting EGFR as a potential therapeutic target for modulating renal fibrosis. * EGFR was involved in aldosterone-induced renal profibrotic responses. * Aldosterone-induced EGFR activation was mediated by MR-dependent ROS generation. * EGFR activated the MAPK/ERK1/2 signaling to promote renal fibrosis.
Aldosterone has been recognized as a risk factor for the development of chronic kidney disease (CKD). Studies have indicated that enhanced activation of epidermal growth factor receptor (EGFR) is associated with the development and progression of renal fibrosis. But if EGFR is involved in aldosterone-induced renal fibrosis is less investigated. In the present study, we examined the effect of erlotinib, an inhibitor of EGFR tyrosine kinase activity, on the progression of aldosterone-induced renal profibrotic responses in a murine model underwent uninephrectomy. Erlotinib-treated rats exhibited relieved structural lesion comparing with rats treated with aldosterone alone, as characterized by glomerular hypertrophy, mesangial cell proliferation and expansion. Also, erlotinib inhibited the expression of TGF-β, α-SMA and mesangial matrix proteins such as collagen Ⅳ and fibronectin. In cultured mesangial cells, inhibition of EGFR also abrogated aldosterone-induced expression of extracellular matrix proteins, cell proliferation and migration. We also demonstrated that aldosterone induced the phosphorylation of EGFR through generation of ROS. And the activation of EGFR resulted in the phosphorylation of ERK1/2, leading to the activation of profibrotic pathways. Taken together, we concluded that aldosterone-mediated tissue fibrosis relies on ROS induced EGFR/ERK activation, highlighting EGFR as a potential therapeutic target for modulating renal fibrosis. - Highlights: • EGFR was involved in aldosterone-induced renal profibrotic responses. • Aldosterone-induced EGFR activation was mediated by MR-dependent ROS generation. • EGFR activated the MAPK/ERK1/2 signaling to promote renal fibrosis.
Author Yang, Min
Zhang, Minmin
Sheng, Lili
Ding, Wei
Qiao, Zhongdong
Niu, Jianying
Gu, Yong
Author_xml – sequence: 1
  givenname: Lili
  surname: Sheng
  fullname: Sheng, Lili
  organization: Department of Nephrology, Shanghai Fifth People's Hospital, Fudan University, Shanghai 200240, China
– sequence: 2
  givenname: Min
  surname: Yang
  fullname: Yang, Min
  organization: Department of Nephrology, Shanghai Fifth People's Hospital, Fudan University, Shanghai 200240, China
– sequence: 3
  givenname: Wei
  surname: Ding
  fullname: Ding, Wei
  organization: Department of Nephrology, Shanghai Fifth People's Hospital, Fudan University, Shanghai 200240, China
– sequence: 4
  givenname: Minmin
  surname: Zhang
  fullname: Zhang, Minmin
  organization: Department of Nephrology, Shanghai Huashan Hospital, Fudan University, Shanghai 200240, China
– sequence: 5
  givenname: Jianying
  surname: Niu
  fullname: Niu, Jianying
  organization: Department of Nephrology, Shanghai Fifth People's Hospital, Fudan University, Shanghai 200240, China
– sequence: 6
  givenname: Zhongdong
  surname: Qiao
  fullname: Qiao, Zhongdong
  organization: School of Life Science and Biotechnology, Shanghai Jiaotong University, Shanghai 200240, China
– sequence: 7
  givenname: Yong
  surname: Gu
  fullname: Gu, Yong
  email: yonggu@vip.163.com
  organization: Department of Nephrology, Shanghai Fifth People's Hospital, Fudan University, Shanghai 200240, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27317889$$D View this record in MEDLINE/PubMed
https://www.osti.gov/biblio/22648603$$D View this record in Osti.gov
BookMark eNp9kU9r3DAQxUVJaTZpP0GhGHrpxduRrLWtQw8lpH8gkEtyFrI02mjrlVxJTrvfvnI3aSGHwIA08HvD470zcuKDR0LeUlhToO3H3fqAv3Vcs7KsoQyIF2RFQUDNOGMnZAVAec171p2Ss5R2AND3tH1FTlnX0K7vxYpsLydnMO7VWG1j-JXvKqt0DrGKqHFaPsltvRqd31Z7NE5lTJUaTUgZY_FTO29mjaaaYrBuiCE7XbRpCj4V0vnqhzMeD6_JS6vGhG8e3nNy--Xy5uJbfXX99fvF56ta857m2sLA23bD7dAaIQQbjMLO9thgJzggb6y1LRcCOEOjuW2tAbXRfMNFh2Bsc07eH-8Wg04m7TLqOx28R50lYy3vW2gK9eFIFdc_Z0xZ7l3SOI7KY5iTpD10AmDD6f-D_9BdmGNJZKEYL1447wr17oGahxKTnKLbq3iQj0EXQBwBHUNKEa0s1lR2weeo3CgpyKVUuZN_S5VLqRLKwKJtnmgfzz-v-nRUYYn73mFc0kBfunJxCcME96z-Dwj6vb8
CitedBy_id crossref_primary_10_1093_ndt_gfx264
crossref_primary_10_1155_2022_7753508
crossref_primary_10_1042_CS20211075
crossref_primary_10_1016_j_neuchi_2020_12_008
crossref_primary_10_1667_RR14901_1
crossref_primary_10_3390_ijms22116154
crossref_primary_10_1016_j_jff_2017_01_031
crossref_primary_10_3389_fphar_2024_1394997
crossref_primary_10_3389_fphar_2020_598910
crossref_primary_10_1016_j_intimp_2024_112692
crossref_primary_10_1152_physrev_00038_2017
crossref_primary_10_1016_j_bbrc_2020_10_067
crossref_primary_10_1042_CS20201016
crossref_primary_10_1111_jvp_12848
crossref_primary_10_3390_cells10051148
crossref_primary_10_1038_s41598_020_62755_9
crossref_primary_10_3389_fmed_2020_609158
crossref_primary_10_1016_j_jff_2017_12_013
crossref_primary_10_1016_j_jphs_2016_12_005
crossref_primary_10_1093_ndt_gfac185
Cites_doi 10.1007/s11906-010-0116-4
10.2337/db12-1010
10.1159/000441262
10.1093/ndt/gfs030
10.1159/000313363
10.1016/j.bbrc.2006.07.057
10.1161/01.HYP.0000118519.66430.22
10.1681/ASN.2007101079
10.1038/ki.2012.352
10.1053/j.ajkd.2011.03.029
10.1016/j.steroids.2009.09.008
10.1371/journal.pone.0145946
10.1172/JCI8315
10.1681/ASN.2005020129
10.1016/S0955-0674(99)80024-6
10.1016/j.bbrc.2012.01.037
10.1681/ASN.2011050493
10.1016/j.lfs.2012.02.022
10.1016/j.trsl.2008.12.008
10.1093/ndt/gfv125
10.1159/000357777
10.1155/2013/839761
10.12659/MSM.895945
10.1016/j.cellsig.2013.07.007
10.1161/01.HYP.0000174593.88899.68
10.1111/j.1523-1755.2004.00701.x
10.1152/ajpheart.00421.2002
10.1093/ndt/gfq750
10.1159/000256665
10.1091/mbc.e02-05-0260
10.1681/ASN.2011070645
10.1002/phy2.64
10.1146/annurev-pharmtox-070115-095427
10.1111/j.1523-1755.2005.09911.x
10.2337/db13-1279
10.1002/mc.20710
ContentType Journal Article
Copyright 2016 Elsevier Inc.
Copyright © 2016 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2016 Elsevier Inc.
– notice: Copyright © 2016 Elsevier Inc. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7TM
8FD
FR3
P64
RC3
7X8
OTOTI
DOI 10.1016/j.yexcr.2016.06.009
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Neurosciences Abstracts
Nucleic Acids Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
OSTI.GOV
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Genetics Abstracts
Engineering Research Database
Technology Research Database
Neurosciences Abstracts
Nucleic Acids Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList
MEDLINE
MEDLINE - Academic
Genetics Abstracts

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1090-2422
EndPage 110
ExternalDocumentID 22648603
4199160701
27317889
10_1016_j_yexcr_2016_06_009
S0014482716301604
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
-DZ
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5RE
5VS
7-5
71M
8P~
9JM
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABFRF
ABGSF
ABJNI
ABMAC
ABOCM
ABPPZ
ABUDA
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNCT
ACPRK
ACRLP
ADBBV
ADEZE
ADUVX
AEBSH
AEFWE
AEHWI
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
C45
CS3
DM4
DOVZS
DU5
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
K-O
KOM
L7B
LG5
LX2
M41
MO0
N9A
O-L
O9-
OAUVE
OVD
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
RIG
RNS
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SPCBC
SSU
SSZ
T5K
TEORI
TWZ
VQA
WH7
Y6R
YZZ
ZA5
ZCA
ZMT
ZU3
~G-
~KM
.55
.GJ
29G
3O-
53G
9M8
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABEFU
ABWVN
ABXDB
ACKIV
ACRPL
ACVFH
ADCNI
ADFGL
ADMUD
ADNMO
ADVLN
ADXHL
AEIPS
AETEA
AEUPX
AFJKZ
AFPUW
AGCQF
AGHFR
AGQPQ
AGRDE
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CAG
CITATION
COF
FA8
FEDTE
FGOYB
G-2
HLW
HVGLF
HZ~
LPU
MVM
NEJ
OHT
R2-
SBG
SEW
SSH
VH1
WUQ
X7L
X7M
XOL
XPP
YYP
ZGI
ZKB
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7TM
8FD
EFKBS
FR3
P64
RC3
7X8
AALMO
AAPBV
ABPIF
ABPTK
ABQIS
EFJIC
OTOTI
PQEST
ID FETCH-LOGICAL-c481t-f0b46654fb6d9992bdae7f8e3e7940e43fff6499042edc4f6fd0a5c45497e0df3
IEDL.DBID .~1
ISSN 0014-4827
1090-2422
IngestDate Thu May 18 18:35:39 EDT 2023
Fri Jul 11 10:50:09 EDT 2025
Wed Aug 13 05:00:50 EDT 2025
Thu Apr 03 07:07:04 EDT 2025
Thu Apr 24 23:09:52 EDT 2025
Tue Jul 01 00:59:31 EDT 2025
Fri Feb 23 02:34:36 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords ERK1/2
Profibrotic response
Reactive oxidative stress
Aldosterone
Epidermal growth factor receptor
Language English
License Copyright © 2016 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c481t-f0b46654fb6d9992bdae7f8e3e7940e43fff6499042edc4f6fd0a5c45497e0df3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 27317889
PQID 1824499447
PQPubID 32173
PageCount 12
ParticipantIDs osti_scitechconnect_22648603
proquest_miscellaneous_1807900541
proquest_journals_1824499447
pubmed_primary_27317889
crossref_citationtrail_10_1016_j_yexcr_2016_06_009
crossref_primary_10_1016_j_yexcr_2016_06_009
elsevier_sciencedirect_doi_10_1016_j_yexcr_2016_06_009
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-08-01
2016-08-00
20160801
PublicationDateYYYYMMDD 2016-08-01
PublicationDate_xml – month: 08
  year: 2016
  text: 2016-08-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle Experimental cell research
PublicationTitleAlternate Exp Cell Res
PublicationYear 2016
Publisher Elsevier Inc
Elsevier BV
Publisher_xml – name: Elsevier Inc
– name: Elsevier BV
References Brem, Morris, Gong (bib11) 2011; 58
Nistala, Wei, Sowers, Whaley-Connell (bib34) 2009; 153
Huang, Zhang, Ding, Chen (bib13) 2009; 296
Thomas, Dooley, Harvey (bib7) 2010; 75
Nagai, Miyata, Sun (bib40) 2005; 46
Terzi, Burtin, Hekmati (bib22) 2000; 106
Barrera-Chimal, Perez-Villalva, Rodriguez-Romo (bib28) 2013; 83
Cortinovis, Perico, Cattaneo, Remuzzi (bib5) 2009; 3
Toyonaga, Tsuruya, Ikeda (bib26) 2011; 26
Stockand, Meszaros (bib39) 2003; 284
Kelly, Raj, Rahman (bib2) 2015; 30
Patni, Mathew, Luan (bib36) 2007; 293
Hollenberg (bib10) 2004; 66
Chen, Meng, Zhang (bib27) 2013; 2013
Mathew, Patni, Chaudhary (bib29) 2008; 295
Xu, Ding, Yang (bib17) 2014; 126
Hackel, Zwick, Prenzel, Ullrich (bib18) 1999; 11
Queisser, Oteiza, Stopper, Oli, Schupp (bib35) 2011; 50
Lai, Chen, Hao, Lin, Gu (bib12) 2006; 348
Taniguchi, Xia, Goldberg (bib33) 2013; 62
Ding, Yang, Zhang, Gu (bib25) 2012; 90
Remuzzi, Cattaneo, Perico (bib8) 2008; 19
Ding, Yang, Zhang, Gu (bib16) 2012; 418
Nishiyama, Yao, Nagai (bib37) 2004; 43
Ding, Xu, Wang, Zhang (bib24) 2015; 21
Remuzzi, Perico, Macia, Ruggenenti (bib1) 2005; 6899
Siragy, Carey (bib3) 2010; 31
Terada, Kobayashi, Kuwana (bib30) 2005; 16
Zhang, Chen, Lai (bib31) 2010; 31
Chen, Chen, Nagai (bib14) 2012; 23
Lu, Ku, Campese (bib6) 2010; 12
Flamant, Bollee, Henique, Tharaux (bib20) 2012; 27
Samarakoon, Dobberfuhl, Cooley (bib21) 2013; 25
Zhang, Wang, Paueksakon, Harris (bib32) 2014; 63
Bomback (bib9) 2016; 41
Forrester, Kawai, O’Brien (bib19) 2016; 56
Martín-Fernández, Rubio-Navarro, Cortegano (bib4) 2016; 11
Hendron, Stockand (bib38) 2002; 13
Cheema, Poulsen, Enghild (bib15) 2013; 1
Liu, Guo, Pang (bib23) 2012; 23
Chen (10.1016/j.yexcr.2016.06.009_bib14) 2012; 23
Taniguchi (10.1016/j.yexcr.2016.06.009_bib33) 2013; 62
Huang (10.1016/j.yexcr.2016.06.009_bib13) 2009; 296
Xu (10.1016/j.yexcr.2016.06.009_bib17) 2014; 126
Nistala (10.1016/j.yexcr.2016.06.009_bib34) 2009; 153
Forrester (10.1016/j.yexcr.2016.06.009_bib19) 2016; 56
Toyonaga (10.1016/j.yexcr.2016.06.009_bib26) 2011; 26
Hackel (10.1016/j.yexcr.2016.06.009_bib18) 1999; 11
Queisser (10.1016/j.yexcr.2016.06.009_bib35) 2011; 50
Nagai (10.1016/j.yexcr.2016.06.009_bib40) 2005; 46
Kelly (10.1016/j.yexcr.2016.06.009_bib2) 2015; 30
Hendron (10.1016/j.yexcr.2016.06.009_bib38) 2002; 13
Remuzzi (10.1016/j.yexcr.2016.06.009_bib1) 2005; 6899
Ding (10.1016/j.yexcr.2016.06.009_bib25) 2012; 90
Martín-Fernández (10.1016/j.yexcr.2016.06.009_bib4) 2016; 11
Lu (10.1016/j.yexcr.2016.06.009_bib6) 2010; 12
Stockand (10.1016/j.yexcr.2016.06.009_bib39) 2003; 284
Remuzzi (10.1016/j.yexcr.2016.06.009_bib8) 2008; 19
Samarakoon (10.1016/j.yexcr.2016.06.009_bib21) 2013; 25
Cortinovis (10.1016/j.yexcr.2016.06.009_bib5) 2009; 3
Terzi (10.1016/j.yexcr.2016.06.009_bib22) 2000; 106
Zhang (10.1016/j.yexcr.2016.06.009_bib32) 2014; 63
Flamant (10.1016/j.yexcr.2016.06.009_bib20) 2012; 27
Patni (10.1016/j.yexcr.2016.06.009_bib36) 2007; 293
Cheema (10.1016/j.yexcr.2016.06.009_bib15) 2013; 1
Barrera-Chimal (10.1016/j.yexcr.2016.06.009_bib28) 2013; 83
Mathew (10.1016/j.yexcr.2016.06.009_bib29) 2008; 295
Ding (10.1016/j.yexcr.2016.06.009_bib16) 2012; 418
Lai (10.1016/j.yexcr.2016.06.009_bib12) 2006; 348
Zhang (10.1016/j.yexcr.2016.06.009_bib31) 2010; 31
Terada (10.1016/j.yexcr.2016.06.009_bib30) 2005; 16
Nishiyama (10.1016/j.yexcr.2016.06.009_bib37) 2004; 43
Siragy (10.1016/j.yexcr.2016.06.009_bib3) 2010; 31
Thomas (10.1016/j.yexcr.2016.06.009_bib7) 2010; 75
Ding (10.1016/j.yexcr.2016.06.009_bib24) 2015; 21
Chen (10.1016/j.yexcr.2016.06.009_bib27) 2013; 2013
Bomback (10.1016/j.yexcr.2016.06.009_bib9) 2016; 41
Hollenberg (10.1016/j.yexcr.2016.06.009_bib10) 2004; 66
Brem (10.1016/j.yexcr.2016.06.009_bib11) 2011; 58
Liu (10.1016/j.yexcr.2016.06.009_bib23) 2012; 23
References_xml – volume: 418
  start-page: 451
  year: 2012
  end-page: 456
  ident: bib16
  article-title: Reactive oxygen species-mediated endoplasmic reticulum stress contributes to aldosterone-induced apoptosis in tubular epithelial cells
  publication-title: Biochem. Biophys. Res. Commun.
– volume: 83
  start-page: 93
  year: 2013
  end-page: 103
  ident: bib28
  article-title: Spironolactone prevents chronic kidney disease caused by ischemic acute kidney injury
  publication-title: Kidney Int.
– volume: 11
  start-page: e145946
  year: 2016
  ident: bib4
  article-title: Aldosterone induces renal fibrosis and inflammatory M1-macrophage subtype via mineralocorticoid receptor in rats
  publication-title: PLoS One
– volume: 63
  start-page: 2063
  year: 2014
  end-page: 2072
  ident: bib32
  article-title: Epidermal growth factor receptor inhibition slows progression of diabetic nephropathy in association with a decrease in endoplasmic reticulum stress and an increase in autophagy
  publication-title: Diabetes
– volume: 348
  start-page: 70
  year: 2006
  end-page: 75
  ident: bib12
  article-title: Aldosterone promotes fibronectin production through a smad2-dependent TGF-β1 pathway in mesangial cells
  publication-title: Biochem. Biophys. Res. Commun.
– volume: 295
  start-page: F73
  year: 2008
  end-page: F81
  ident: bib29
  article-title: Aldosterone induces mesangial cell apoptosis both in vivo and in vitro
  publication-title: AJP: Ren. Physiol.
– volume: 13
  start-page: 3042
  year: 2002
  end-page: 3054
  ident: bib38
  article-title: Activation of mitogen-activated protein kinase (mitogen-activated protein kinase/extracellular signal-regulated kinase) cascade by aldosterone
  publication-title: Mol. Biol. Cell
– volume: 16
  start-page: 2296
  year: 2005
  end-page: 2305
  ident: bib30
  article-title: Aldosterone stimulates proliferation of mesangial cells by activating mitogen-activated protein kinase 1/2, cyclin D1, and cyclin A
  publication-title: J. Am. Soc. Nephrol.
– volume: 3
  start-page: 133
  year: 2009
  end-page: 143
  ident: bib5
  article-title: Aldosterone and progression of kidney disease. Ther Adv
  publication-title: Cardiovasc. Dis.
– volume: 26
  start-page: 2475
  year: 2011
  end-page: 2484
  ident: bib26
  article-title: Spironolactone inhibits hyperglycemia-induced podocyte injury by attenuating ROS production
  publication-title: Nephrol. Dial. Transpl.
– volume: 56
  start-page: 627
  year: 2016
  end-page: 653
  ident: bib19
  article-title: Epidermal growth factor receptor transactivation: mechanisms, pathophysiology, and potential therapies in the cardiovascular system
  publication-title: Annu Rev. Pharmacol. Toxicol.
– volume: 106
  start-page: 225
  year: 2000
  end-page: 234
  ident: bib22
  article-title: Targeted expression of a dominant-negative EGF-R in the kidney reduces tubulo-interstitial lesions after renal injury
  publication-title: J. Clin. Investig.
– volume: 66
  start-page: 1
  year: 2004
  end-page: 9
  ident: bib10
  article-title: Aldosterone in the development and progression of renal injury
  publication-title: Kidney Int.
– volume: 11
  start-page: 184
  year: 1999
  end-page: 189
  ident: bib18
  article-title: Epidermal growth factor receptors: critical mediators of multiple receptor pathways
  publication-title: Curr. Opin. Cell Biol.
– volume: 6899
  start-page: 57
  year: 2005
  end-page: 65
  ident: bib1
  article-title: The role of renin-angiotensin-aldosterone system in the progression of chronic kidney disease
  publication-title: Kidney Int.
– volume: 23
  start-page: 215
  year: 2012
  end-page: 224
  ident: bib14
  article-title: EGFR signaling promotes TGF beta-dependent renal fibrosis
  publication-title: J. Am. Soc. Nephrol.
– volume: 90
  start-page: 600
  year: 2012
  end-page: 606
  ident: bib25
  article-title: Chronic inhibition of nuclear factor kappa B attenuates aldosterone/salt-induced renal injury
  publication-title: Life Sci.
– volume: 31
  start-page: 75
  year: 2010
  end-page: 82
  ident: bib31
  article-title: Aldosterone promotes fibronectin synthesis in rat mesangial cells via ERK1/2-stimulated Na
  publication-title: Am. J. Nephrol.
– volume: 43
  start-page: 841
  year: 2004
  end-page: 848
  ident: bib37
  article-title: Possible contributions of reactive oxygen species and mitogen-activated protein kinase to renal injury in aldosterone/salt-induced hypertensive rats
  publication-title: Hypertension
– volume: 12
  start-page: 303
  year: 2010
  end-page: 306
  ident: bib6
  article-title: Aldosterone in the pathogenesis of chronic kidney disease and proteinuria
  publication-title: Curr. Hypertens. Rep.
– volume: 46
  start-page: 1039
  year: 2005
  end-page: 1045
  ident: bib40
  article-title: Aldosterone stimulates collagen gene expression and synthesis via activation of ERK1/2 in rat renal fibroblasts
  publication-title: Hypertension
– volume: 19
  start-page: 1459
  year: 2008
  end-page: 1462
  ident: bib8
  article-title: The aggravating mechanisms of aldosterone on kidney fibrosis
  publication-title: J. Am. Soc. Nephrol.
– volume: 62
  start-page: 3874
  year: 2013
  end-page: 3886
  ident: bib33
  article-title: Inhibition of src kinase blocks high glucose-induced EGFR transactivation and collagen synthesis in mesangial cells and prevents diabetic nephropathy in mice
  publication-title: Diabetes
– volume: 293
  start-page: F1065
  year: 2007
  end-page: F1071
  ident: bib36
  article-title: Aldosterone promotes proximal tubular cell apoptosis: role of oxidative stress
  publication-title: AJP: Ren. Physiol.
– volume: 153
  start-page: 102
  year: 2009
  end-page: 113
  ident: bib34
  article-title: Renin-angiotensin-aldosterone system-mediated redox effects in chronic kidney disease
  publication-title: Transl. Res.
– volume: 58
  start-page: 471
  year: 2011
  end-page: 479
  ident: bib11
  article-title: Aldosterone-induced fibrosis in the kidney: questions and controversies
  publication-title: Am. J. Kidney Dis.
– volume: 126
  start-page: 25
  year: 2014
  end-page: 32
  ident: bib17
  article-title: Contributions of endoplasmic reticulum stress and reactive oxygen species to renal injury in aldosterone/salt-induced rats
  publication-title: Nephron Exp. Nephrol.
– volume: 284
  start-page: H176
  year: 2003
  end-page: H184
  ident: bib39
  article-title: Aldosterone stimulates proliferation of cardiac fibroblasts by activating Ki-RasA and MAPK1/2 signaling
  publication-title: Am. J. Physiol. Heart Circ. Physiol.
– volume: 1
  start-page: e64
  year: 2013
  ident: bib15
  article-title: Aldosterone and angiotensin II induce protein aggregation in renal proximal tubules
  publication-title: Physiol. Rep.
– volume: 31
  start-page: 541
  year: 2010
  end-page: 550
  ident: bib3
  article-title: Role of the intrarenal renin-angiotensin-aldosterone system in chronic kidney disease
  publication-title: Am. J. Nephrol.
– volume: 75
  start-page: 550
  year: 2010
  end-page: 554
  ident: bib7
  article-title: Aldosterone as a renal growth factor
  publication-title: Steroids
– volume: 296
  start-page: F1323
  year: 2009
  end-page: F1333
  ident: bib13
  article-title: Aldosterone-induced mesangial cell proliferation is mediated by EGF
  publication-title: Recept. Trans. AJP: Ren. Physiol.
– volume: 27
  start-page: 1297
  year: 2012
  end-page: 1304
  ident: bib20
  article-title: Epidermal growth factor: a new therapeutic target in glomerular disease
  publication-title: Nephrol. Dial. Transpl.
– volume: 21
  start-page: 3136
  year: 2015
  end-page: 3143
  ident: bib24
  article-title: Rotenone attenuates renal injury in aldosterone-infused rats by inhibiting oxidative stress, mitochondrial dysfunction, and inflammasome activation
  publication-title: Med. Sci. Monit.
– volume: 30
  start-page: 1711
  year: 2015
  end-page: 1718
  ident: bib2
  article-title: The role of renin-angiotensin-aldosterone system genes in the progression of chronic kidney disease: findings from the Chronic Renal Insufficiency Cohort (CRIC) study
  publication-title: Nephrol. Dial. Transplant.
– volume: 50
  start-page: 123
  year: 2011
  end-page: 135
  ident: bib35
  article-title: Aldosterone induces oxidative stress, oxidative DNA damage and NF-κB-activation in kidney tubule cells
  publication-title: Mol. Carcinog.
– volume: 41
  start-page: 166
  year: 2016
  end-page: 170
  ident: bib9
  article-title: Mineralocorticoid receptor antagonists in end-stage renal disease: efficacy and safety
  publication-title: Blood Purif.
– volume: 23
  start-page: 854
  year: 2012
  end-page: 867
  ident: bib23
  article-title: Genetic or pharmacologic blockade of EGFR inhibits renal fibrosis
  publication-title: J. Am. Soc. Nephrol.
– volume: 25
  start-page: 2198
  year: 2013
  end-page: 2209
  ident: bib21
  article-title: Induction of renal fibrotic genes by TGF-β1 requires EGFR activation, p53 and reactive oxygen species
  publication-title: Cell Signal
– volume: 2013
  start-page: 1
  year: 2013
  end-page: 7
  ident: bib27
  article-title: Role of NADPH oxidase-mediated reactive oxygen species in podocyte injury
  publication-title: Biomed. Res. Int.
– volume: 12
  start-page: 303
  issue: 4
  year: 2010
  ident: 10.1016/j.yexcr.2016.06.009_bib6
  article-title: Aldosterone in the pathogenesis of chronic kidney disease and proteinuria
  publication-title: Curr. Hypertens. Rep.
  doi: 10.1007/s11906-010-0116-4
– volume: 62
  start-page: 3874
  issue: 11
  year: 2013
  ident: 10.1016/j.yexcr.2016.06.009_bib33
  article-title: Inhibition of src kinase blocks high glucose-induced EGFR transactivation and collagen synthesis in mesangial cells and prevents diabetic nephropathy in mice
  publication-title: Diabetes
  doi: 10.2337/db12-1010
– volume: 41
  start-page: 166
  issue: 1–3
  year: 2016
  ident: 10.1016/j.yexcr.2016.06.009_bib9
  article-title: Mineralocorticoid receptor antagonists in end-stage renal disease: efficacy and safety
  publication-title: Blood Purif.
  doi: 10.1159/000441262
– volume: 27
  start-page: 1297
  issue: 4
  year: 2012
  ident: 10.1016/j.yexcr.2016.06.009_bib20
  article-title: Epidermal growth factor: a new therapeutic target in glomerular disease
  publication-title: Nephrol. Dial. Transpl.
  doi: 10.1093/ndt/gfs030
– volume: 31
  start-page: 541
  issue: 6
  year: 2010
  ident: 10.1016/j.yexcr.2016.06.009_bib3
  article-title: Role of the intrarenal renin-angiotensin-aldosterone system in chronic kidney disease
  publication-title: Am. J. Nephrol.
  doi: 10.1159/000313363
– volume: 348
  start-page: 70
  issue: 1
  year: 2006
  ident: 10.1016/j.yexcr.2016.06.009_bib12
  article-title: Aldosterone promotes fibronectin production through a smad2-dependent TGF-β1 pathway in mesangial cells
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2006.07.057
– volume: 43
  start-page: 841
  issue: 4
  year: 2004
  ident: 10.1016/j.yexcr.2016.06.009_bib37
  article-title: Possible contributions of reactive oxygen species and mitogen-activated protein kinase to renal injury in aldosterone/salt-induced hypertensive rats
  publication-title: Hypertension
  doi: 10.1161/01.HYP.0000118519.66430.22
– volume: 19
  start-page: 1459
  issue: 8
  year: 2008
  ident: 10.1016/j.yexcr.2016.06.009_bib8
  article-title: The aggravating mechanisms of aldosterone on kidney fibrosis
  publication-title: J. Am. Soc. Nephrol.
  doi: 10.1681/ASN.2007101079
– volume: 83
  start-page: 93
  issue: 1
  year: 2013
  ident: 10.1016/j.yexcr.2016.06.009_bib28
  article-title: Spironolactone prevents chronic kidney disease caused by ischemic acute kidney injury
  publication-title: Kidney Int.
  doi: 10.1038/ki.2012.352
– volume: 3
  start-page: 133
  issue: 2
  year: 2009
  ident: 10.1016/j.yexcr.2016.06.009_bib5
  article-title: Aldosterone and progression of kidney disease. Ther Adv
  publication-title: Cardiovasc. Dis.
– volume: 58
  start-page: 471
  issue: 3
  year: 2011
  ident: 10.1016/j.yexcr.2016.06.009_bib11
  article-title: Aldosterone-induced fibrosis in the kidney: questions and controversies
  publication-title: Am. J. Kidney Dis.
  doi: 10.1053/j.ajkd.2011.03.029
– volume: 75
  start-page: 550
  issue: 8–9
  year: 2010
  ident: 10.1016/j.yexcr.2016.06.009_bib7
  article-title: Aldosterone as a renal growth factor
  publication-title: Steroids
  doi: 10.1016/j.steroids.2009.09.008
– volume: 11
  start-page: e145946
  issue: 1
  year: 2016
  ident: 10.1016/j.yexcr.2016.06.009_bib4
  article-title: Aldosterone induces renal fibrosis and inflammatory M1-macrophage subtype via mineralocorticoid receptor in rats
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0145946
– volume: 106
  start-page: 225
  issue: 2
  year: 2000
  ident: 10.1016/j.yexcr.2016.06.009_bib22
  article-title: Targeted expression of a dominant-negative EGF-R in the kidney reduces tubulo-interstitial lesions after renal injury
  publication-title: J. Clin. Investig.
  doi: 10.1172/JCI8315
– volume: 16
  start-page: 2296
  issue: 8
  year: 2005
  ident: 10.1016/j.yexcr.2016.06.009_bib30
  article-title: Aldosterone stimulates proliferation of mesangial cells by activating mitogen-activated protein kinase 1/2, cyclin D1, and cyclin A
  publication-title: J. Am. Soc. Nephrol.
  doi: 10.1681/ASN.2005020129
– volume: 295
  start-page: F73
  issue: 1
  year: 2008
  ident: 10.1016/j.yexcr.2016.06.009_bib29
  article-title: Aldosterone induces mesangial cell apoptosis both in vivo and in vitro
  publication-title: AJP: Ren. Physiol.
– volume: 11
  start-page: 184
  issue: 2
  year: 1999
  ident: 10.1016/j.yexcr.2016.06.009_bib18
  article-title: Epidermal growth factor receptors: critical mediators of multiple receptor pathways
  publication-title: Curr. Opin. Cell Biol.
  doi: 10.1016/S0955-0674(99)80024-6
– volume: 418
  start-page: 451
  issue: 3
  year: 2012
  ident: 10.1016/j.yexcr.2016.06.009_bib16
  article-title: Reactive oxygen species-mediated endoplasmic reticulum stress contributes to aldosterone-induced apoptosis in tubular epithelial cells
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2012.01.037
– volume: 23
  start-page: 854
  issue: 5
  year: 2012
  ident: 10.1016/j.yexcr.2016.06.009_bib23
  article-title: Genetic or pharmacologic blockade of EGFR inhibits renal fibrosis
  publication-title: J. Am. Soc. Nephrol.
  doi: 10.1681/ASN.2011050493
– volume: 90
  start-page: 600
  issue: 15–16
  year: 2012
  ident: 10.1016/j.yexcr.2016.06.009_bib25
  article-title: Chronic inhibition of nuclear factor kappa B attenuates aldosterone/salt-induced renal injury
  publication-title: Life Sci.
  doi: 10.1016/j.lfs.2012.02.022
– volume: 153
  start-page: 102
  issue: 3
  year: 2009
  ident: 10.1016/j.yexcr.2016.06.009_bib34
  article-title: Renin-angiotensin-aldosterone system-mediated redox effects in chronic kidney disease
  publication-title: Transl. Res.
  doi: 10.1016/j.trsl.2008.12.008
– volume: 30
  start-page: 1711
  issue: 10
  year: 2015
  ident: 10.1016/j.yexcr.2016.06.009_bib2
  article-title: The role of renin-angiotensin-aldosterone system genes in the progression of chronic kidney disease: findings from the Chronic Renal Insufficiency Cohort (CRIC) study
  publication-title: Nephrol. Dial. Transplant.
  doi: 10.1093/ndt/gfv125
– volume: 126
  start-page: 25
  issue: 1
  year: 2014
  ident: 10.1016/j.yexcr.2016.06.009_bib17
  article-title: Contributions of endoplasmic reticulum stress and reactive oxygen species to renal injury in aldosterone/salt-induced rats
  publication-title: Nephron Exp. Nephrol.
  doi: 10.1159/000357777
– volume: 2013
  start-page: 1
  year: 2013
  ident: 10.1016/j.yexcr.2016.06.009_bib27
  article-title: Role of NADPH oxidase-mediated reactive oxygen species in podocyte injury
  publication-title: Biomed. Res. Int.
  doi: 10.1155/2013/839761
– volume: 21
  start-page: 3136
  year: 2015
  ident: 10.1016/j.yexcr.2016.06.009_bib24
  article-title: Rotenone attenuates renal injury in aldosterone-infused rats by inhibiting oxidative stress, mitochondrial dysfunction, and inflammasome activation
  publication-title: Med. Sci. Monit.
  doi: 10.12659/MSM.895945
– volume: 25
  start-page: 2198
  issue: 11
  year: 2013
  ident: 10.1016/j.yexcr.2016.06.009_bib21
  article-title: Induction of renal fibrotic genes by TGF-β1 requires EGFR activation, p53 and reactive oxygen species
  publication-title: Cell Signal
  doi: 10.1016/j.cellsig.2013.07.007
– volume: 46
  start-page: 1039
  issue: 4
  year: 2005
  ident: 10.1016/j.yexcr.2016.06.009_bib40
  article-title: Aldosterone stimulates collagen gene expression and synthesis via activation of ERK1/2 in rat renal fibroblasts
  publication-title: Hypertension
  doi: 10.1161/01.HYP.0000174593.88899.68
– volume: 66
  start-page: 1
  issue: 1
  year: 2004
  ident: 10.1016/j.yexcr.2016.06.009_bib10
  article-title: Aldosterone in the development and progression of renal injury
  publication-title: Kidney Int.
  doi: 10.1111/j.1523-1755.2004.00701.x
– volume: 284
  start-page: H176
  issue: 1
  year: 2003
  ident: 10.1016/j.yexcr.2016.06.009_bib39
  article-title: Aldosterone stimulates proliferation of cardiac fibroblasts by activating Ki-RasA and MAPK1/2 signaling
  publication-title: Am. J. Physiol. Heart Circ. Physiol.
  doi: 10.1152/ajpheart.00421.2002
– volume: 26
  start-page: 2475
  issue: 8
  year: 2011
  ident: 10.1016/j.yexcr.2016.06.009_bib26
  article-title: Spironolactone inhibits hyperglycemia-induced podocyte injury by attenuating ROS production
  publication-title: Nephrol. Dial. Transpl.
  doi: 10.1093/ndt/gfq750
– volume: 293
  start-page: F1065
  issue: 4
  year: 2007
  ident: 10.1016/j.yexcr.2016.06.009_bib36
  article-title: Aldosterone promotes proximal tubular cell apoptosis: role of oxidative stress
  publication-title: AJP: Ren. Physiol.
– volume: 31
  start-page: 75
  issue: 1
  year: 2010
  ident: 10.1016/j.yexcr.2016.06.009_bib31
  article-title: Aldosterone promotes fibronectin synthesis in rat mesangial cells via ERK1/2-stimulated Na+-H+ exchanger isoform 1
  publication-title: Am. J. Nephrol.
  doi: 10.1159/000256665
– volume: 13
  start-page: 3042
  issue: 9
  year: 2002
  ident: 10.1016/j.yexcr.2016.06.009_bib38
  article-title: Activation of mitogen-activated protein kinase (mitogen-activated protein kinase/extracellular signal-regulated kinase) cascade by aldosterone
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.e02-05-0260
– volume: 23
  start-page: 215
  issue: 2
  year: 2012
  ident: 10.1016/j.yexcr.2016.06.009_bib14
  article-title: EGFR signaling promotes TGF beta-dependent renal fibrosis
  publication-title: J. Am. Soc. Nephrol.
  doi: 10.1681/ASN.2011070645
– volume: 1
  start-page: e64
  issue: 4
  year: 2013
  ident: 10.1016/j.yexcr.2016.06.009_bib15
  article-title: Aldosterone and angiotensin II induce protein aggregation in renal proximal tubules
  publication-title: Physiol. Rep.
  doi: 10.1002/phy2.64
– volume: 56
  start-page: 627
  year: 2016
  ident: 10.1016/j.yexcr.2016.06.009_bib19
  article-title: Epidermal growth factor receptor transactivation: mechanisms, pathophysiology, and potential therapies in the cardiovascular system
  publication-title: Annu Rev. Pharmacol. Toxicol.
  doi: 10.1146/annurev-pharmtox-070115-095427
– volume: 6899
  start-page: 57
  year: 2005
  ident: 10.1016/j.yexcr.2016.06.009_bib1
  article-title: The role of renin-angiotensin-aldosterone system in the progression of chronic kidney disease
  publication-title: Kidney Int.
  doi: 10.1111/j.1523-1755.2005.09911.x
– volume: 63
  start-page: 2063
  issue: 6
  year: 2014
  ident: 10.1016/j.yexcr.2016.06.009_bib32
  article-title: Epidermal growth factor receptor inhibition slows progression of diabetic nephropathy in association with a decrease in endoplasmic reticulum stress and an increase in autophagy
  publication-title: Diabetes
  doi: 10.2337/db13-1279
– volume: 50
  start-page: 123
  issue: 2
  year: 2011
  ident: 10.1016/j.yexcr.2016.06.009_bib35
  article-title: Aldosterone induces oxidative stress, oxidative DNA damage and NF-κB-activation in kidney tubule cells
  publication-title: Mol. Carcinog.
  doi: 10.1002/mc.20710
– volume: 296
  start-page: F1323
  issue: 6
  year: 2009
  ident: 10.1016/j.yexcr.2016.06.009_bib13
  article-title: Aldosterone-induced mesangial cell proliferation is mediated by EGF
  publication-title: Recept. Trans. AJP: Ren. Physiol.
SSID ssj0008816
Score 2.3236897
Snippet Aldosterone has been recognized as a risk factor for the development of chronic kidney disease (CKD). Studies have indicated that enhanced activation of...
SourceID osti
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 99
SubjectTerms 60 APPLIED LIFE SCIENCES
ALDOSTERONE
Aldosterone - adverse effects
ANIMAL TISSUES
Animals
Cell Line
Cell Movement - drug effects
CELL PROLIFERATION
Cell Proliferation - drug effects
COLLAGEN
COMPARATIVE EVALUATIONS
DISEASES
Epidermal growth factor receptor
ERK1/2
Erlotinib Hydrochloride - pharmacology
Extracellular Matrix - drug effects
Extracellular Matrix - metabolism
Extracellular Signal-Regulated MAP Kinases - metabolism
FIBROSIS
GROWTH FACTORS
HAZARDS
HYPERTROPHY
INHIBITION
Kidney - drug effects
Kidney - enzymology
Kidney - metabolism
Kidney - pathology
Kidney Glomerulus - drug effects
Kidney Glomerulus - pathology
KIDNEYS
Male
MAP Kinase Signaling System - drug effects
MATRICES
Mesangial Cells - drug effects
Mesangial Cells - pathology
Mice
MIGRATION
Models, Biological
OXIDATION
PHOSPHORYLATION
Phosphorylation - drug effects
PHOSPHOTRANSFERASES
PLANT GROWTH
PLANT TISSUES
POTENTIALS
Profibrotic response
RATS
Rats, Sprague-Dawley
Reactive oxidative stress
Reactive Oxygen Species - metabolism
Receptor, Epidermal Growth Factor - antagonists & inhibitors
Receptor, Epidermal Growth Factor - metabolism
RECEPTORS
Receptors, Mineralocorticoid - metabolism
Signal Transduction - drug effects
SIGNALS
STRESSES
Transcriptional Activation - genetics
TYROSINE
Title Epidermal growth factor receptor signaling mediates aldosterone-induced profibrotic responses in kidney
URI https://dx.doi.org/10.1016/j.yexcr.2016.06.009
https://www.ncbi.nlm.nih.gov/pubmed/27317889
https://www.proquest.com/docview/1824499447
https://www.proquest.com/docview/1807900541
https://www.osti.gov/biblio/22648603
Volume 346
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTxtBDLZQUCUuFdCWpjw0lXrslH3M7sweEQIFEJyKxG00Ow8IjTZRGiRy4bdjz-4GVQIOvSW7tjLjsT228tkG-GEkurzMVrworeWidpJX0gquCpdlRuRSFVQ7fHlVjq7F-U1xswbHfS0MwSo739_69OituyeHnTQPZ-Mx1fhiMqAyDPhzapNGPUGFkKTlv55eYB5KxfGnRMyJuu88FDFeS_9oqSloWsYmnoRKfP12GkzR4N4OQuNldLoJH7sokh21C92CNd9sw4d2ruTyE9ye0NxXdLkTdotp9uKOtWN1GG7Vz-gDwTYMVaKzWDqC8SYzE0cFH_Np4zkm6njkjsWJ3vV8ij-DvBFNi5Tjhv0Zu8YvP8P16cnv4xHvJipwK1S64CGpBY0bDnXpMDLMame8DMrnHs0y8SIPIZSYA6Ele2dFKINLTGEFJpHSJy7kX2DQ4DK-AhP4vPIySVVwojDSGNwJxgPWYU4W0mIIWS9Jbbt24zT1YqJ7XNm9juLXJH4d0XXVEH6umGZtt433ycv-iPQ_SqPxPnifcY8OlJioVa4lTBFyUVGxKpMcX_cHrTuT_qsxERMoGlSxIXxfvUZjpH9YTOOnD0STyIqi4HQIO62CrPaBcWIqlaq-_e-id2GDvrXowz0YLOYPfh8jokV9EFX-ANaPzi5GV8-Pzwwk
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VIAQXxLMEChgJbpjuw7v2HjggaJXSx6mVejNeP8pCtInSVJALf4o_yIx3NwgJekDqLVp7Eu94PJ5RvpkP4KWR6PIyW_GitJaL2kleSSu4KlyWGZFLVVDt8OFROTkRH0-L0w34OdTCEKyy9_2dT4_eun-y3Wtze940VOOLyYDKMODPqU2a6JGV-371DfO287d7H3CTX2XZ7s7x-wnvqQW4FSpd8pDUgnh3Q106DJGy2hkvg_K5R_tMvMhDCCUmA2jS3lkRyuASU1iB2ZT0iQs5fu81uC7QXRBtwpsfv3ElSkW-VVodp-UNrY4iqGzlv1vqQpqWsWsowSD_fh2OZnjC_x31xttv9w7c7sNW9q7TzF3Y8O09uNERWa7uw9kOEc2ij5-yM8zrl59Zx-PDULd-Th8IJ2Ko9J3FWhUMcJmZOqowWcxaz5vWoY05FinE68UMfwZlI3wXZzYt-9q41q8ewMmV6PkhjFpcxiNgAp9XXiapCk4URhqDb4IBiHWYBIa0GEM2aFLbvr850WxM9QBk-6Kj-jWpX0c4XzWG12uhedfe4_Lp5bBF-g8r1XgBXS64RRtKQtSb1xKICaWoilmVSY7Dw0br3oeca8z8BKpGCDmGF-thPP30l45p_eyC5iSyorA7HcNmZyDr98DANJVKVY__d9HP4ebk-PBAH-wd7T-BWzTSQR-3YLRcXPinGI4t62fR_Bl8uurz9gt_00j8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Epidermal+growth+factor+receptor+signaling+mediates+aldosterone-induced+profibrotic+responses+in+kidney&rft.jtitle=Experimental+cell+research&rft.au=Sheng%2C+Lili&rft.au=Yang%2C+Min&rft.au=Ding%2C+Wei&rft.au=Zhang%2C+Minmin&rft.date=2016-08-01&rft.issn=0014-4827&rft.eissn=1090-2422&rft.volume=346&rft.issue=1&rft_id=info:doi/10.1016%2FJ.YEXCR.2016.06.009&rft.externalDocID=22648603
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0014-4827&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0014-4827&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0014-4827&client=summon