Medical Image Synthesis with Deep Convolutional Adversarial Networks

Medical imaging plays a critical role in various clinical applications. However, due to multiple considerations such as cost and radiation dose, the acquisition of certain image modalities may be limited. Thus, medical image synthesis can be of great benefit by estimating a desired imaging modality...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on biomedical engineering Vol. 65; no. 12; pp. 2720 - 2730
Main Authors Nie, Dong, Trullo, Roger, Lian, Jun, Wang, Li, Petitjean, Caroline, Ruan, Su, Wang, Qian, Shen, Dinggang
Format Journal Article
LanguageEnglish
Published United States IEEE 01.12.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Institute of Electrical and Electronics Engineers
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Medical imaging plays a critical role in various clinical applications. However, due to multiple considerations such as cost and radiation dose, the acquisition of certain image modalities may be limited. Thus, medical image synthesis can be of great benefit by estimating a desired imaging modality without incurring an actual scan. In this paper, we propose a generative adversarial approach to address this challenging problem. Specifically, we train a fully convolutional network (FCN) to generate a target image given a source image. To better model a nonlinear mapping from source to target and to produce more realistic target images, we propose to use the adversarial learning strategy to better model the FCN. Moreover, the FCN is designed to incorporate an image-gradient-difference-based loss function to avoid generating blurry target images. Long-term residual unit is also explored to help the training of the network. We further apply Auto-Context Model to implement a context-aware deep convolutional adversarial network. Experimental results show that our method is accurate and robust for synthesizing target images from the corresponding source images. In particular, we evaluate our method on three datasets, to address the tasks of generating CT from MRI and generating 7T MRI from 3T MRI images. Our method outperforms the state-of-the-art methods under comparison in all datasets and tasks.
AbstractList Medical imaging plays a critical role in various clinical applications. However, due to multiple considerations such as cost and radiation dose, the acquisition of certain image modalities may be limited. Thus, medical image synthesis can be of great benefit by estimating a desired imaging modality without incurring an actual scan. In this paper, we propose a generative adversarial approach to address this challenging problem. Specifically, we train a fully convolutional network (FCN) to generate a target image given a source image. To better model a nonlinear mapping from source to target and to produce more realistic target images, we propose to use the adversarial learning strategy to better model the FCN. Moreover, the FCN is designed to incorporate an image-gradient-difference-based loss function to avoid generating blurry target images. Long-term residual unit is also explored to help the training of the network. We further apply Auto-Context Model to implement a context-aware deep convolutional adversarial network. Experimental results show that our method is accurate and robust for synthesizing target images from the corresponding source images. In particular, we evaluate our method on three datasets, to address the tasks of generating CT from MRI and generating 7T MRI from 3T MRI images. Our method outperforms the state-of-the-art methods under comparison in all datasets and tasks.
Medical imaging plays a critical role in various clinical applications. However, due to multiple considerations such as cost and radiation dose, the acquisition of certain image modalities may be limited. Thus, medical image synthesis can be of great benefit by estimating a desired imaging modality without incurring an actual scan. In this paper, we propose a generative adversarial approach to address this challenging problem. Specifically, we train a fully convolutional network (FCN) to generate a target image given a source image. To better model a nonlinear mapping from source to target and to produce more realistic target images, we propose to use the adversarial learning strategy to better model the FCN. Moreover, the FCN is designed to incorporate an image-gradient-difference-based loss function to avoid generating blurry target images. Long-term residual unit is also explored to help the training of the network. We further apply Auto-Context Model to implement a context-aware deep convolutional adversarial network. Experimental results show that our method is accurate and robust for synthesizing target images from the corresponding source images. In particular, we evaluate our method on three datasets, to address the tasks of generating CT from MRI and generating 7T MRI from 3T MRI images. Our method outperforms the state-of-the-art methods under comparison in all datasets and tasks.Medical imaging plays a critical role in various clinical applications. However, due to multiple considerations such as cost and radiation dose, the acquisition of certain image modalities may be limited. Thus, medical image synthesis can be of great benefit by estimating a desired imaging modality without incurring an actual scan. In this paper, we propose a generative adversarial approach to address this challenging problem. Specifically, we train a fully convolutional network (FCN) to generate a target image given a source image. To better model a nonlinear mapping from source to target and to produce more realistic target images, we propose to use the adversarial learning strategy to better model the FCN. Moreover, the FCN is designed to incorporate an image-gradient-difference-based loss function to avoid generating blurry target images. Long-term residual unit is also explored to help the training of the network. We further apply Auto-Context Model to implement a context-aware deep convolutional adversarial network. Experimental results show that our method is accurate and robust for synthesizing target images from the corresponding source images. In particular, we evaluate our method on three datasets, to address the tasks of generating CT from MRI and generating 7T MRI from 3T MRI images. Our method outperforms the state-of-the-art methods under comparison in all datasets and tasks.
Author Nie, Dong
Wang, Li
Ruan, Su
Petitjean, Caroline
Wang, Qian
Shen, Dinggang
Trullo, Roger
Lian, Jun
Author_xml – sequence: 1
  givenname: Dong
  orcidid: 0000-0003-0385-8988
  surname: Nie
  fullname: Nie, Dong
  email: dongnie@cs.unc.edu
  organization: Department of Computer Science, Department of Radiology and BRIC, UNC-Chapel Hill, Chapel Hill, NC, USA
– sequence: 2
  givenname: Roger
  surname: Trullo
  fullname: Trullo, Roger
  organization: Department of Radiology and BRICUNC-Chapel Hill
– sequence: 3
  givenname: Jun
  surname: Lian
  fullname: Lian, Jun
  organization: Department of Radiation OncologyUNC-Chapel Hill
– sequence: 4
  givenname: Li
  orcidid: 0000-0003-2165-0080
  surname: Wang
  fullname: Wang, Li
  organization: Department of Radiology and BRICUNC-Chapel Hill
– sequence: 5
  givenname: Caroline
  surname: Petitjean
  fullname: Petitjean, Caroline
  organization: Department of Computer ScienceUniversity of Normandy
– sequence: 6
  givenname: Su
  orcidid: 0000-0001-8785-6917
  surname: Ruan
  fullname: Ruan, Su
  organization: Med-X Research Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China Radiology and Biomedical
– sequence: 7
  givenname: Qian
  surname: Wang
  fullname: Wang, Qian
  email: wang.qian@sjtu.edu.cn
  organization: Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
– sequence: 8
  givenname: Dinggang
  orcidid: 0000-0002-7934-5698
  surname: Shen
  fullname: Shen, Dinggang
  email: dgshen@med.unc.edu
  organization: Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29993445$$D View this record in MEDLINE/PubMed
https://hal.science/hal-02054415$$DView record in HAL
BookMark eNp9kUtvEzEUhS3UiqaFH4CQ0Ejd0MUEv8feIKXpU0phQVlbjuemcZmMgz2Tqv8ej5JWkAUrP-53zr32OUYHbWgBoQ8EjwnB-sv9-d3lmGKixlQRLph6g0ZECFVSwcgBGuFcKjXV_Agdp_SYj1xx-RYdUa0141yM0MUd1N7Zprhd2Qcofjy33RKST8WT75bFBcC6mIZ2E5q-86HN3KTeQEw2-rz_Bt1TiL_SO3S4sE2C97v1BP28uryf3pSz79e308msdFyRroRaLthcclypBa0o0ZRXoEBYVVunnVTOMS6Zo4TUc8DM5mErnAFpKamcZCfo69Z33c9XUDtou2gbs45-ZeOzCdabfyutX5qHsDGSacU4ywZnW4PlnuxmMjPDHaZYcE7EhmT2865ZDL97SJ1Z-eSgaWwLoU-GYjl4UqwzerqHPoY-5t_KFGGVUJVgA_Xp7-lf-7-EkYFqC7gYUoqwMM53dvj3_BjfGILNELsZYjdD7GYXe1aSPeWL-f80H7caDwCvvGIEy1z9A_gItoE
CODEN IEBEAX
CitedBy_id crossref_primary_10_1093_jcde_qwac072
crossref_primary_10_1016_j_media_2023_102814
crossref_primary_10_1002_mp_15182
crossref_primary_10_1103_PhysRevResearch_6_043048
crossref_primary_10_1016_j_jconrel_2021_06_039
crossref_primary_10_1109_TMI_2022_3231461
crossref_primary_10_1097_RLI_0000000000000640
crossref_primary_10_1364_BOE_467683
crossref_primary_10_1002_mp_15981
crossref_primary_10_1109_TCI_2022_3209099
crossref_primary_10_1109_TTS_2023_3234203
crossref_primary_10_1109_TMI_2018_2884053
crossref_primary_10_3390_cancers14010040
crossref_primary_10_1002_ima_22777
crossref_primary_10_1007_s00259_020_04746_6
crossref_primary_10_1016_j_ultras_2024_107268
crossref_primary_10_1016_j_media_2024_103184
crossref_primary_10_36930_40340415
crossref_primary_10_1109_ACCESS_2024_3430968
crossref_primary_10_1109_ACCESS_2024_3401841
crossref_primary_10_1109_TMI_2021_3055483
crossref_primary_10_1142_S0219649225500017
crossref_primary_10_1088_1361_6560_ab41af
crossref_primary_10_1088_2632_2153_abdbff
crossref_primary_10_1109_TMI_2022_3167808
crossref_primary_10_1016_j_knosys_2023_110802
crossref_primary_10_1167_tvst_10_4_34
crossref_primary_10_1109_RBME_2023_3269776
crossref_primary_10_1016_j_neucom_2022_05_044
crossref_primary_10_1016_j_cmpb_2019_105101
crossref_primary_10_1186_s12880_024_01242_3
crossref_primary_10_1002_mp_17598
crossref_primary_10_1016_j_neucom_2021_04_060
crossref_primary_10_1109_TMI_2019_2922960
crossref_primary_10_3390_jimaging9040081
crossref_primary_10_3348_kjr_2023_0818
crossref_primary_10_1016_j_cmpb_2023_107391
crossref_primary_10_2478_amns_2024_3046
crossref_primary_10_1016_j_ab_2024_115627
crossref_primary_10_1007_s11042_020_09308_4
crossref_primary_10_1145_3663759
crossref_primary_10_1016_j_media_2019_101552
crossref_primary_10_1007_s11831_023_10028_9
crossref_primary_10_1109_TMI_2020_3042789
crossref_primary_10_1016_j_media_2020_101787
crossref_primary_10_1016_j_media_2020_101663
crossref_primary_10_1109_TNNLS_2023_3266551
crossref_primary_10_1109_TCI_2023_3241546
crossref_primary_10_1007_s13246_023_01290_z
crossref_primary_10_1007_s13534_022_00227_x
crossref_primary_10_1016_j_media_2020_101667
crossref_primary_10_1016_j_cmpb_2022_106676
crossref_primary_10_1002_ima_23169
crossref_primary_10_1002_jmri_28622
crossref_primary_10_1016_j_bspc_2019_101641
crossref_primary_10_3389_fneur_2024_1383773
crossref_primary_10_1186_s12938_023_01070_6
crossref_primary_10_1109_TAI_2022_3187388
crossref_primary_10_1016_j_compbiomed_2022_105964
crossref_primary_10_1117_1_JBO_28_3_036501
crossref_primary_10_3348_kjr_2019_0855
crossref_primary_10_3847_1538_4365_ad1dd4
crossref_primary_10_1016_j_ins_2024_121793
crossref_primary_10_3390_bioengineering10060716
crossref_primary_10_1016_j_asoc_2021_107375
crossref_primary_10_3389_fneur_2022_1051397
crossref_primary_10_1109_TPAMI_2024_3399098
crossref_primary_10_2196_28114
crossref_primary_10_3390_cancers15143565
crossref_primary_10_32604_cmc_2023_039062
crossref_primary_10_1016_j_media_2019_101565
crossref_primary_10_1109_ACCESS_2020_3002090
crossref_primary_10_1002_mp_15073
crossref_primary_10_1007_s10845_019_01507_7
crossref_primary_10_1007_s10278_023_00951_5
crossref_primary_10_3348_kjr_2023_0393
crossref_primary_10_1088_1361_6560_adb2d7
crossref_primary_10_1109_JSTSP_2020_3013418
crossref_primary_10_1007_s11063_022_10922_6
crossref_primary_10_1002_mp_13331
crossref_primary_10_1016_j_neuroimage_2020_117308
crossref_primary_10_1016_j_media_2024_103275
crossref_primary_10_1002_mp_15988
crossref_primary_10_1002_mp_14418
crossref_primary_10_1109_ACCESS_2020_3028113
crossref_primary_10_1016_j_compbiomed_2023_106541
crossref_primary_10_1155_2020_4942121
crossref_primary_10_1109_ACCESS_2020_3040340
crossref_primary_10_1007_s11036_020_01678_1
crossref_primary_10_1016_j_media_2021_102004
crossref_primary_10_1038_s41698_024_00502_3
crossref_primary_10_1016_j_media_2020_101770
crossref_primary_10_1002_mp_15380
crossref_primary_10_1016_j_media_2020_101763
crossref_primary_10_1016_j_compmedimag_2024_102431
crossref_primary_10_1016_j_media_2021_102335
crossref_primary_10_1117_1_JMI_5_4_043504
crossref_primary_10_1002_acm2_14304
crossref_primary_10_1002_ima_22972
crossref_primary_10_1109_ACCESS_2019_2930238
crossref_primary_10_1002_mp_17328
crossref_primary_10_1016_j_media_2018_12_002
crossref_primary_10_1016_j_media_2024_103300
crossref_primary_10_1016_j_compbiomed_2022_105985
crossref_primary_10_1007_s12559_024_10291_3
crossref_primary_10_1093_psyrad_kkab017
crossref_primary_10_3390_s23114993
crossref_primary_10_1088_1361_6560_ac60b9
crossref_primary_10_3390_cancers15143544
crossref_primary_10_1109_ACCESS_2019_2896409
crossref_primary_10_1080_21681163_2022_2152375
crossref_primary_10_1109_TETCI_2023_3296499
crossref_primary_10_1016_j_engappai_2022_105744
crossref_primary_10_1109_ACCESS_2019_2953923
crossref_primary_10_1088_1361_6560_ad237f
crossref_primary_10_1007_s10115_023_01991_7
crossref_primary_10_1109_ACCESS_2022_3193668
crossref_primary_10_1016_j_knosys_2024_111799
crossref_primary_10_1126_sciadv_add3607
crossref_primary_10_1016_j_bspc_2025_107735
crossref_primary_10_1016_j_jvir_2022_12_008
crossref_primary_10_3390_s22114043
crossref_primary_10_1016_j_nima_2020_164638
crossref_primary_10_1038_s41598_022_10256_2
crossref_primary_10_3390_curroncol28040217
crossref_primary_10_1002_mp_13626
crossref_primary_10_1088_2057_1976_ac3c64
crossref_primary_10_1515_jisys_2023_0047
crossref_primary_10_1109_TCI_2020_3012928
crossref_primary_10_1088_1361_6560_ab25bc
crossref_primary_10_3390_app11104554
crossref_primary_10_1016_j_bspc_2019_101562
crossref_primary_10_1016_j_compbiomed_2021_104917
crossref_primary_10_1109_JBHI_2021_3103387
crossref_primary_10_1016_j_media_2020_101747
crossref_primary_10_1109_TMI_2024_3367321
crossref_primary_10_1038_s41746_021_00507_3
crossref_primary_10_1109_JBHI_2023_3311021
crossref_primary_10_1016_j_compmedimag_2022_102094
crossref_primary_10_1016_j_eswa_2022_118045
crossref_primary_10_1016_j_displa_2021_102079
crossref_primary_10_1002_mrm_28327
crossref_primary_10_1016_j_neucom_2021_09_032
crossref_primary_10_1109_TBME_2023_3243491
crossref_primary_10_1007_s11042_023_15747_6
crossref_primary_10_1002_mrm_28689
crossref_primary_10_1016_j_neucom_2024_127676
crossref_primary_10_1002_acm2_13121
crossref_primary_10_1109_TMI_2022_3191011
crossref_primary_10_3389_fmolb_2021_627454
crossref_primary_10_1007_s00261_023_04004_x
crossref_primary_10_1186_s12880_022_00854_x
crossref_primary_10_1007_s00521_020_05226_6
crossref_primary_10_1016_j_media_2023_102800
crossref_primary_10_1002_ima_23113
crossref_primary_10_1007_s00371_023_03096_2
crossref_primary_10_1038_s41597_023_02400_y
crossref_primary_10_1016_j_ijrobp_2019_08_049
crossref_primary_10_1002_mp_17338
crossref_primary_10_1109_JBHI_2023_3249404
crossref_primary_10_1109_TMI_2020_3015379
crossref_primary_10_1109_TMI_2019_2895894
crossref_primary_10_1016_j_csda_2022_107561
crossref_primary_10_1371_journal_pdig_0000202
crossref_primary_10_1109_TCI_2025_3540711
crossref_primary_10_1038_s41551_021_00751_8
crossref_primary_10_1109_TMI_2023_3319646
crossref_primary_10_1002_mp_15460
crossref_primary_10_1016_j_ejmp_2023_103184
crossref_primary_10_1109_TRPMS_2023_3339173
crossref_primary_10_1016_j_neuroimage_2024_120595
crossref_primary_10_3390_biomedicines10020223
crossref_primary_10_1016_j_jksuci_2023_101821
crossref_primary_10_1111_micc_12854
crossref_primary_10_1016_j_cmpb_2024_108007
crossref_primary_10_1109_TMI_2019_2951439
crossref_primary_10_1007_s00521_022_06928_9
crossref_primary_10_1016_j_slast_2021_10_014
crossref_primary_10_1109_TBME_2022_3192309
crossref_primary_10_1109_TMI_2020_2969630
crossref_primary_10_1016_j_media_2024_103106
crossref_primary_10_1088_2632_2153_ab869f
crossref_primary_10_1007_s11548_022_02590_7
crossref_primary_10_1016_j_ajog_2024_04_022
crossref_primary_10_1109_TMI_2021_3082578
crossref_primary_10_1016_j_media_2022_102369
crossref_primary_10_1109_TIM_2021_3126832
crossref_primary_10_1016_j_compbiomed_2024_107982
crossref_primary_10_1109_TMI_2024_3368664
crossref_primary_10_1186_s41747_022_00295_9
crossref_primary_10_1016_j_compbiomed_2024_107983
crossref_primary_10_1093_bib_bbaa310
crossref_primary_10_21641_los_2024_21_2_244
crossref_primary_10_1016_j_cmpb_2021_106225
crossref_primary_10_1016_j_media_2020_101716
crossref_primary_10_3390_math12182808
crossref_primary_10_1177_09287329241291368
crossref_primary_10_1097_IAE_0000000000002898
crossref_primary_10_3389_fneur_2019_00869
crossref_primary_10_1016_j_neuroimage_2021_118206
crossref_primary_10_1016_j_cmpb_2022_107130
crossref_primary_10_3389_fpls_2021_760139
crossref_primary_10_1007_s11042_021_10707_4
crossref_primary_10_1016_j_compmedimag_2023_102249
crossref_primary_10_1016_j_inffus_2020_10_015
crossref_primary_10_1364_BOE_394715
crossref_primary_10_1088_1361_6560_abc303
crossref_primary_10_1109_TBME_2018_2883958
crossref_primary_10_1016_j_media_2020_101944
crossref_primary_10_1016_j_neuroimage_2023_120411
crossref_primary_10_6009_jjrt_2020_JSRT_76_11_1173
crossref_primary_10_1002_jmri_27256
crossref_primary_10_1109_TMI_2021_3077089
crossref_primary_10_1016_j_knosys_2022_109362
crossref_primary_10_1109_TCI_2020_3019137
crossref_primary_10_1016_j_bspc_2021_102550
crossref_primary_10_1055_s_0041_1740630
crossref_primary_10_1016_j_media_2021_102191
crossref_primary_10_1002_mp_13617
crossref_primary_10_1109_JBHI_2019_2922986
crossref_primary_10_1155_2022_8134018
crossref_primary_10_1109_ACCESS_2019_2963741
crossref_primary_10_1109_ACCESS_2019_2940623
crossref_primary_10_1177_08953996241304988
crossref_primary_10_1016_j_media_2021_102198
crossref_primary_10_1109_TMI_2020_3025133
crossref_primary_10_1016_j_cmpb_2022_106949
crossref_primary_10_1088_1361_6560_ab0b66
crossref_primary_10_1016_j_compmedimag_2022_102167
crossref_primary_10_1109_TMI_2023_3288001
crossref_primary_10_1002_acm2_14499
crossref_primary_10_1002_mp_15479
crossref_primary_10_1016_j_cmpb_2020_105895
crossref_primary_10_3390_app11083508
crossref_primary_10_1016_j_bspc_2021_103199
crossref_primary_10_1016_j_eswa_2022_117421
crossref_primary_10_1109_TMI_2019_2901750
crossref_primary_10_1007_s12410_019_9480_x
crossref_primary_10_1088_1361_6560_ac508d
crossref_primary_10_1109_JBHI_2021_3088866
crossref_primary_10_3389_fphy_2023_1088899
crossref_primary_10_1007_s13042_023_01871_0
crossref_primary_10_1007_s13246_023_01244_5
crossref_primary_10_1016_j_compmedimag_2023_102227
crossref_primary_10_1109_TMI_2023_3321064
crossref_primary_10_3390_app131810521
crossref_primary_10_1007_s10489_022_03609_x
crossref_primary_10_1109_TMI_2024_3424785
crossref_primary_10_3390_app12010352
crossref_primary_10_1109_ACCESS_2020_3017915
crossref_primary_10_1186_s43055_024_01287_y
crossref_primary_10_1186_s40658_022_00486_8
crossref_primary_10_1002_mrm_29356
crossref_primary_10_1016_j_cviu_2024_104100
crossref_primary_10_1109_TBME_2020_3006296
crossref_primary_10_1016_j_compmedimag_2022_102150
crossref_primary_10_1186_s13014_023_02384_4
crossref_primary_10_1002_ima_70013
crossref_primary_10_1016_j_media_2022_102692
crossref_primary_10_1088_1361_6560_acf3c9
crossref_primary_10_1109_TMI_2020_2987026
crossref_primary_10_1109_TMI_2022_3199155
crossref_primary_10_12677_CSA_2021_117200
crossref_primary_10_1016_j_bspc_2024_106660
crossref_primary_10_1109_TMI_2021_3107013
crossref_primary_10_1109_TRPMS_2023_3243576
crossref_primary_10_1109_ACCESS_2020_2993867
crossref_primary_10_1007_s42835_023_01602_z
crossref_primary_10_3389_fradi_2023_1336902
crossref_primary_10_1007_s11548_019_02040_x
crossref_primary_10_1002_mrm_28376
crossref_primary_10_1088_1361_6560_ab8cd2
crossref_primary_10_1007_s11263_020_01321_2
crossref_primary_10_3233_XST_230094
crossref_primary_10_3390_info14030190
crossref_primary_10_1002_mrm_28819
crossref_primary_10_1109_ACCESS_2019_2896911
crossref_primary_10_1109_TBME_2024_3367762
crossref_primary_10_1109_ACCESS_2020_3026073
crossref_primary_10_1088_1361_6560_ab857b
crossref_primary_10_1109_TMI_2023_3290149
crossref_primary_10_3390_diagnostics13050974
crossref_primary_10_1007_s00330_023_09512_4
crossref_primary_10_1109_ACCESS_2023_3335196
crossref_primary_10_1109_JBHI_2018_2832538
crossref_primary_10_1007_s11548_021_02372_7
crossref_primary_10_1038_s41551_021_00758_1
crossref_primary_10_1038_s41598_024_78424_0
crossref_primary_10_1088_1361_6560_ab3242
crossref_primary_10_1109_TMI_2019_2911203
crossref_primary_10_1002_lary_28708
crossref_primary_10_3390_diagnostics12112708
crossref_primary_10_3390_s21227518
crossref_primary_10_1073_pnas_2021446118
crossref_primary_10_3390_app122211600
crossref_primary_10_1109_TNNLS_2020_2995800
crossref_primary_10_1002_jmri_28944
crossref_primary_10_1016_j_compbiomed_2023_106738
crossref_primary_10_1007_s11548_021_02433_x
crossref_primary_10_1109_ACCESS_2019_2933368
crossref_primary_10_1016_j_media_2024_103121
crossref_primary_10_1109_TNNLS_2018_2870182
crossref_primary_10_1007_s10278_019_00265_5
crossref_primary_10_1167_tvst_9_2_29
crossref_primary_10_1016_j_neuroimage_2020_117366
crossref_primary_10_1109_JSTSP_2020_3001513
crossref_primary_10_1259_bjr_20190067
crossref_primary_10_5812_ipmn_134223
crossref_primary_10_1007_s10278_023_00908_8
crossref_primary_10_1016_j_nic_2020_06_003
crossref_primary_10_1142_S0218488522400128
crossref_primary_10_1155_2021_6679603
crossref_primary_10_1109_TPS_2023_3268170
crossref_primary_10_3390_diagnostics11112147
crossref_primary_10_1016_j_media_2022_102472
crossref_primary_10_1016_j_media_2023_103046
crossref_primary_10_1016_j_neurad_2023_01_157
crossref_primary_10_1016_j_compmedimag_2020_101801
crossref_primary_10_1109_TAP_2019_2948565
crossref_primary_10_7555_JBR_36_20220037
crossref_primary_10_1007_s11242_021_01728_6
crossref_primary_10_1016_j_ejmp_2021_09_006
crossref_primary_10_1186_s13634_019_0649_x
crossref_primary_10_14338_IJPT_19_00062_1
crossref_primary_10_1016_j_media_2021_102049
crossref_primary_10_1145_3657298
crossref_primary_10_1088_1361_6560_ac0684
crossref_primary_10_1109_JBHI_2024_3367375
crossref_primary_10_1109_TCYB_2018_2841847
crossref_primary_10_1007_s10278_024_01312_6
crossref_primary_10_1016_j_neunet_2020_08_014
crossref_primary_10_1007_s00521_018_3735_3
crossref_primary_10_3390_s22010206
crossref_primary_10_1088_1361_6560_acaf49
crossref_primary_10_1016_j_compbiomed_2021_104763
crossref_primary_10_1088_1361_6560_ac4123
crossref_primary_10_1002_mp_13927
crossref_primary_10_1109_JBHI_2024_3393870
crossref_primary_10_1038_s41598_022_12646_y
crossref_primary_10_1016_j_patcog_2023_109715
crossref_primary_10_1016_j_artmed_2022_102332
crossref_primary_10_1109_JSEN_2020_2973337
crossref_primary_10_1007_s10334_023_01145_4
Cites_doi 10.1109/CVPR.2015.7298965
10.1016/j.neuroimage.2013.06.030
10.1109/TPAMI.2015.2439281
10.2991/978-94-91216-30-5_6
10.1109/TMI.2015.2461533
10.1016/j.media.2003.11.002
10.1109/CVPR.2016.182
10.1007/978-3-319-46976-8_5
10.1007/978-3-319-66179-7_48
10.2967/jnumed.109.069112
10.1007/978-3-319-24574-4_28
10.1109/ICCV.2015.79
10.1016/j.jneumeth.2015.08.004
10.2967/jnumed.111.092577
10.1109/TNNLS.2015.2476656
10.1118/1.3464799
10.1007/978-3-319-10443-0_39
10.1118/1.598392
10.1145/3065386
10.1109/TPAMI.2009.186
10.1109/CVPR.2016.90
10.1016/j.media.2012.05.008
10.1002/ima.20007
10.1109/TMI.2014.2340135
10.1038/nature14539
10.1007/978-3-642-40763-5_32
10.1002/mp.12155
10.1118/1.1569270
10.1109/CVPR.2016.181
10.1109/TCYB.2018.2797905
10.1007/978-3-540-39899-8_84
10.1007/978-3-319-24553-9_12
10.2967/jnumed.107.049353
10.1007/978-3-319-10593-2_13
10.1007/978-3-319-46976-8_18
10.1016/j.neuroimage.2008.10.040
10.1093/comjnl/bxm075
10.1016/j.neuroimage.2011.05.010
10.1109/CVPR.2017.613
10.1109/ISBI.2014.6868038
10.1109/ISBI.2016.7493515
10.1007/978-3-319-24571-3_79
10.1016/j.media.2007.06.004
10.1109/TMI.2016.2549918
10.1007/978-3-319-10443-0_29
10.1109/CVPR.2017.19
10.1007/978-3-642-40811-3_76
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
1XC
5PM
DOI 10.1109/TBME.2018.2814538
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
Hyper Article en Ligne (HAL)
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic

Materials Research Database
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
Computer Science
EISSN 1558-2531
EndPage 2730
ExternalDocumentID PMC6398343
oai_HAL_hal_02054415v1
29993445
10_1109_TBME_2018_2814538
8310638
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61473190; 81471733
  funderid: 10.13039/501100001809
– fundername: Science and Technology Commission of Shanghai Municipality
  grantid: 16511101100; 16410722400
  funderid: 10.13039/501100003399
– fundername: National Institutes of Health
  grantid: CA206100
  funderid: 10.13039/100000002
– fundername: National Key Research and Development Program of China
  grantid: 2017YFC0107600
– fundername: NIBIB NIH HHS
  grantid: R01 EB006733
– fundername: NCI NIH HHS
  grantid: R01 CA206100
GroupedDBID ---
-~X
.55
.DC
.GJ
0R~
29I
4.4
53G
5GY
5RE
5VS
6IF
6IK
6IL
6IN
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
AAYJJ
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACKIV
ACNCT
ACPRK
ADZIZ
AENEX
AETIX
AFFNX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CHZPO
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IEGSK
IFIPE
IFJZH
IPLJI
JAVBF
LAI
MS~
O9-
OCL
P2P
RIA
RIE
RIL
RNS
TAE
TN5
VH1
VJK
X7M
ZGI
ZXP
AAYXX
CITATION
RIG
CGR
CUY
CVF
ECM
EIF
NPM
PKN
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
1XC
5PM
ID FETCH-LOGICAL-c481t-ed6f3b64078f27219247e8e5a8dac9c68cc3463c211dbe03a846708e56a217c63
IEDL.DBID RIE
ISSN 0018-9294
1558-2531
IngestDate Thu Aug 21 18:17:33 EDT 2025
Fri May 09 12:18:17 EDT 2025
Fri Jul 11 12:15:02 EDT 2025
Mon Jun 30 08:29:29 EDT 2025
Wed Feb 19 02:30:00 EST 2025
Tue Jul 01 03:28:30 EDT 2025
Thu Apr 24 22:54:57 EDT 2025
Wed Aug 27 02:52:56 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c481t-ed6f3b64078f27219247e8e5a8dac9c68cc3463c211dbe03a846708e56a217c63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMCID: PMC6398343
ORCID 0000-0002-7934-5698
0000-0003-0385-8988
0000-0003-2165-0080
0000-0001-8785-6917
0000-0003-0013-5370
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/6398343
PMID 29993445
PQID 2137587539
PQPubID 85474
PageCount 11
ParticipantIDs ieee_primary_8310638
crossref_primary_10_1109_TBME_2018_2814538
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6398343
pubmed_primary_29993445
crossref_citationtrail_10_1109_TBME_2018_2814538
hal_primary_oai_HAL_hal_02054415v1
proquest_journals_2137587539
proquest_miscellaneous_2068343209
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-12-01
PublicationDateYYYYMMDD 2018-12-01
PublicationDate_xml – month: 12
  year: 2018
  text: 2018-12-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on biomedical engineering
PublicationTitleAbbrev TBME
PublicationTitleAlternate IEEE Trans Biomed Eng
PublicationYear 2018
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Institute of Electrical and Electronics Engineers
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
– name: Institute of Electrical and Electronics Engineers
References ref13
ref12
ref14
ref53
goodfellow (ref38) 0
ref52
ref11
ref54
ref10
ref17
ref16
ref19
ref18
ref51
ref50
ref47
ref42
manjón (ref15) 2010; 2010
ref41
ref43
luo (ref45) 0
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref34
ref37
ref36
ref31
tu (ref48) 2010; 32
ref30
ref33
ref32
ref2
ref1
ref39
yu (ref46) 0
mathieu (ref35) 0
radford (ref44) 2015
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
32813646 - IEEE Trans Biomed Eng. 2020 Sep;67(9):2706
References_xml – year: 2015
  ident: ref44
  article-title: Unsupervised representation learning with deep convolutional generative adversarial networks
– ident: ref39
  doi: 10.1109/CVPR.2015.7298965
– ident: ref17
  doi: 10.1016/j.neuroimage.2013.06.030
– ident: ref34
  doi: 10.1109/TPAMI.2015.2439281
– ident: ref7
  doi: 10.2991/978-94-91216-30-5_6
– ident: ref18
  doi: 10.1109/TMI.2015.2461533
– ident: ref24
  doi: 10.1016/j.media.2003.11.002
– ident: ref47
  doi: 10.1109/CVPR.2016.182
– ident: ref4
  doi: 10.1007/978-3-319-46976-8_5
– ident: ref37
  doi: 10.1007/978-3-319-66179-7_48
– ident: ref10
  doi: 10.2967/jnumed.109.069112
– ident: ref52
  doi: 10.1007/978-3-319-24574-4_28
– ident: ref25
  doi: 10.1109/ICCV.2015.79
– ident: ref12
  doi: 10.1016/j.jneumeth.2015.08.004
– ident: ref8
  doi: 10.2967/jnumed.111.092577
– ident: ref20
  doi: 10.1109/TNNLS.2015.2476656
– ident: ref23
  doi: 10.1118/1.3464799
– ident: ref32
  doi: 10.1007/978-3-319-10443-0_39
– ident: ref1
  doi: 10.1118/1.598392
– ident: ref26
  doi: 10.1145/3065386
– volume: 32
  start-page: 1744
  year: 2010
  ident: ref48
  article-title: Auto-context and its application to high-level vision tasks and 3d brain image segmentation
  publication-title: IEEE TPAMI
  doi: 10.1109/TPAMI.2009.186
– ident: ref28
  doi: 10.1109/CVPR.2016.90
– ident: ref49
  doi: 10.1016/j.media.2012.05.008
– ident: ref5
  doi: 10.1002/ima.20007
– ident: ref53
  doi: 10.1109/TMI.2014.2340135
– ident: ref27
  doi: 10.1038/nature14539
– ident: ref29
  doi: 10.1007/978-3-642-40763-5_32
– ident: ref42
  doi: 10.1002/mp.12155
– ident: ref9
  doi: 10.1118/1.1569270
– volume: 2010
  start-page: 17
  year: 2010
  ident: ref15
  article-title: Mri superresolution using self-similarity and image priors
  publication-title: J Biomed Imaging
– ident: ref31
  doi: 10.1109/CVPR.2016.181
– ident: ref41
  doi: 10.1109/TCYB.2018.2797905
– ident: ref22
  doi: 10.1007/978-3-540-39899-8_84
– ident: ref21
  doi: 10.1007/978-3-319-24553-9_12
– ident: ref11
  doi: 10.2967/jnumed.107.049353
– ident: ref30
  doi: 10.1007/978-3-319-10593-2_13
– start-page: 4898
  year: 0
  ident: ref45
  article-title: Understanding the effective receptive field in deep convolutional neural networks
  publication-title: Proc Adv Neural Inform Process Syst
– ident: ref43
  doi: 10.1007/978-3-319-46976-8_18
– ident: ref51
  doi: 10.1016/j.neuroimage.2008.10.040
– ident: ref6
  doi: 10.1093/comjnl/bxm075
– ident: ref2
  doi: 10.1016/j.neuroimage.2011.05.010
– ident: ref33
  doi: 10.1109/CVPR.2017.613
– start-page: 2672
  year: 0
  ident: ref38
  article-title: Generative adversarial nets
  publication-title: Proc Adv Neural Inform Process Syst
– ident: ref16
  doi: 10.1109/ISBI.2014.6868038
– ident: ref14
  doi: 10.1109/TMI.2014.2340135
– ident: ref40
  doi: 10.1109/ISBI.2016.7493515
– year: 0
  ident: ref35
  publication-title: Proc of the Int Conf on Learning Representations (ICLR)
– year: 0
  ident: ref46
  article-title: Multi-scale context aggregation by dilated convolutions
  publication-title: Proc of the Int Conf on Learning Representations (ICLR)
– ident: ref3
  doi: 10.1007/978-3-319-24571-3_79
– ident: ref50
  doi: 10.1016/j.media.2007.06.004
– ident: ref54
  doi: 10.1109/TMI.2016.2549918
– ident: ref19
  doi: 10.1007/978-3-319-10443-0_29
– ident: ref36
  doi: 10.1109/CVPR.2017.19
– ident: ref13
  doi: 10.1007/978-3-642-40811-3_76
– reference: 32813646 - IEEE Trans Biomed Eng. 2020 Sep;67(9):2706
SSID ssj0014846
Score 2.6847837
Snippet Medical imaging plays a critical role in various clinical applications. However, due to multiple considerations such as cost and radiation dose, the...
SourceID pubmedcentral
hal
proquest
pubmed
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2720
SubjectTerms Adversarial learning
Artificial neural networks
auto-context model
Biomedical imaging
Brain - diagnostic imaging
Computed tomography
Computer Science
Datasets
Deep Learning
Generators
Humans
Image acquisition
Image generation
Image Interpretation, Computer-Assisted - methods
image synthesis
Magnetic Resonance Imaging
Medical imaging
Pelvis - diagnostic imaging
Radiation dosage
residual learning
Signal and Image Processing
State of the art
Synthesis
Target recognition
Task analysis
Therapeutic applications
Tomography, X-Ray Computed
Title Medical Image Synthesis with Deep Convolutional Adversarial Networks
URI https://ieeexplore.ieee.org/document/8310638
https://www.ncbi.nlm.nih.gov/pubmed/29993445
https://www.proquest.com/docview/2137587539
https://www.proquest.com/docview/2068343209
https://hal.science/hal-02054415
https://pubmed.ncbi.nlm.nih.gov/PMC6398343
Volume 65
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dT9swED9RHhA8bIzClsGmDPGESBsnjuM8Mj5UJtoXQOItchxHrQYpWlqk7a_fXeJGLUKItyi-WLbuLv6d7wvgSAZJJHPNvcwI6XEdF16iZeSpOAtZnqs4F5TvPByJwR3_dR_dr8FJmwtjjKmDz0yPHmtffj7Vc7oq61NTLJSXDnTQcGtytVqPAZdNUo7PUIGDhFsPJvOT_u3P4QUFccleIBlHDacKwAiMQk5JTEvHUWdMwZB1l5XXAOfLuMmlg-jyIwwXW2jiT3735rOsp_-9qO743j1uwweLSN3TRoQ-wZopd2BrqU7hDmwMrQe-C-fWs-NePeKfyL35WyKCrCaVSxe67rkxT-7ZtHy2Ak3zUsfnSpGcu6Mm5rzahbvLi9uzgWc7MXiaSzbzTC6KMKt9fkWANiMabbGRJlIyVzrRQmodchFqtCbzzPihIlTjI4FQaPJoEe7BejktzRdwgyLJqEQMOXx4wTTCZgT5scappWJKOeAvGJJqW6acumU8pLW54icpsTMldqaWnQ4ct588NTU63iI-RC63dFRde3B6ndI7RM7UkS16Zg50iTMtlWWKAwcLoUitqldpwEK0udDqSxz40Q6jkpLnRZVmOkcaX0jK4PWR5nMjQ-3cC0l0IF6RrpUlro6Uk3FdCBzRJU379fXV7sMmbbyJvTmA9dmfufmGCGqWfa9V5z-FLRPT
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9NAEB61ReJxKNDyMBRYEFyQnHrttb0-cChNq4QmuZBKvbnr9VqtAKeqk1blt_Sv8N-YsTdWUlXcKnGL4snI3nw7O5_nBfBR-kkocy3czETSFTou3ETL0FVxFvA8V3EeUb3zcBT1DsW3o_BoBa7bWhhjTJ18Zjr0sY7l5xM9o1dl2zQUC_FiUygPzNUlErTqS7-L_-Yn39_fG-_2XDtDwNVC8qlr8qgIsjpaVfjIdpBuxEaaUMlc6URHUutARIFGHpRnxgsUncceCkQKnXUdBah3Fe6hnxH6TXVYG6MQsikD8jiaDD8RNmbKvWR7_HW4R2ljsuNLLtCmUM9hdMUCQWVTCwfg6gmlX9ZzXW5zcW9mai4cffuP4c980ZqMlx-d2TTr6N83-kn-r6v6BNatz812mk3yFFZMuQGPFjoxbsD9oc0x2ISujV2x_i-0tez7VYk-cnVaMXplzbrGnLHdSXlhtyzppZnWlaKdzEZNVn31DA7v5Imew1o5Kc1LYH6RZNQEh0JaouAaiQHSmFijaqm4Ug54cwCk2jZip3kgP9OakHlJSvBJCT6phY8Dn9ufnDVdSP4l_AFR1cpR__DeziCl75Ab0My58II7sElIaKUsCBzYmoMwtcasSn0eIKtEXps48L69jGaIYkuqNJMZyniRpBplD2VeNJhtdc-R70C8hOalW1y-Up6e1K3O0X8mta9uv9t38KA3Hg7SQX908Boe0iI0mUZbsDY9n5k36C9Os7f1tmVwfNeI_gvOqm_8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Medical+Image+Synthesis+with+Deep+Convolutional+Adversarial+Networks&rft.jtitle=IEEE+transactions+on+biomedical+engineering&rft.au=Nie%2C+Dong&rft.au=Trullo%2C+Roger&rft.au=Lian%2C+Jun&rft.au=Wang%2C+Li&rft.date=2018-12-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0018-9294&rft.eissn=1558-2531&rft.volume=65&rft.issue=12&rft.spage=2720&rft_id=info:doi/10.1109%2FTBME.2018.2814538&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9294&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9294&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9294&client=summon