Medical Image Synthesis with Deep Convolutional Adversarial Networks
Medical imaging plays a critical role in various clinical applications. However, due to multiple considerations such as cost and radiation dose, the acquisition of certain image modalities may be limited. Thus, medical image synthesis can be of great benefit by estimating a desired imaging modality...
Saved in:
Published in | IEEE transactions on biomedical engineering Vol. 65; no. 12; pp. 2720 - 2730 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.12.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Institute of Electrical and Electronics Engineers |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Medical imaging plays a critical role in various clinical applications. However, due to multiple considerations such as cost and radiation dose, the acquisition of certain image modalities may be limited. Thus, medical image synthesis can be of great benefit by estimating a desired imaging modality without incurring an actual scan. In this paper, we propose a generative adversarial approach to address this challenging problem. Specifically, we train a fully convolutional network (FCN) to generate a target image given a source image. To better model a nonlinear mapping from source to target and to produce more realistic target images, we propose to use the adversarial learning strategy to better model the FCN. Moreover, the FCN is designed to incorporate an image-gradient-difference-based loss function to avoid generating blurry target images. Long-term residual unit is also explored to help the training of the network. We further apply Auto-Context Model to implement a context-aware deep convolutional adversarial network. Experimental results show that our method is accurate and robust for synthesizing target images from the corresponding source images. In particular, we evaluate our method on three datasets, to address the tasks of generating CT from MRI and generating 7T MRI from 3T MRI images. Our method outperforms the state-of-the-art methods under comparison in all datasets and tasks. |
---|---|
AbstractList | Medical imaging plays a critical role in various clinical applications. However, due to multiple considerations such as cost and radiation dose, the acquisition of certain image modalities may be limited. Thus, medical image synthesis can be of great benefit by estimating a desired imaging modality without incurring an actual scan. In this paper, we propose a generative adversarial approach to address this challenging problem. Specifically, we train a fully convolutional network (FCN) to generate a target image given a source image. To better model a nonlinear mapping from source to target and to produce more realistic target images, we propose to use the adversarial learning strategy to better model the FCN. Moreover, the FCN is designed to incorporate an image-gradient-difference-based loss function to avoid generating blurry target images. Long-term residual unit is also explored to help the training of the network. We further apply Auto-Context Model to implement a context-aware deep convolutional adversarial network. Experimental results show that our method is accurate and robust for synthesizing target images from the corresponding source images. In particular, we evaluate our method on three datasets, to address the tasks of generating CT from MRI and generating 7T MRI from 3T MRI images. Our method outperforms the state-of-the-art methods under comparison in all datasets and tasks. Medical imaging plays a critical role in various clinical applications. However, due to multiple considerations such as cost and radiation dose, the acquisition of certain image modalities may be limited. Thus, medical image synthesis can be of great benefit by estimating a desired imaging modality without incurring an actual scan. In this paper, we propose a generative adversarial approach to address this challenging problem. Specifically, we train a fully convolutional network (FCN) to generate a target image given a source image. To better model a nonlinear mapping from source to target and to produce more realistic target images, we propose to use the adversarial learning strategy to better model the FCN. Moreover, the FCN is designed to incorporate an image-gradient-difference-based loss function to avoid generating blurry target images. Long-term residual unit is also explored to help the training of the network. We further apply Auto-Context Model to implement a context-aware deep convolutional adversarial network. Experimental results show that our method is accurate and robust for synthesizing target images from the corresponding source images. In particular, we evaluate our method on three datasets, to address the tasks of generating CT from MRI and generating 7T MRI from 3T MRI images. Our method outperforms the state-of-the-art methods under comparison in all datasets and tasks.Medical imaging plays a critical role in various clinical applications. However, due to multiple considerations such as cost and radiation dose, the acquisition of certain image modalities may be limited. Thus, medical image synthesis can be of great benefit by estimating a desired imaging modality without incurring an actual scan. In this paper, we propose a generative adversarial approach to address this challenging problem. Specifically, we train a fully convolutional network (FCN) to generate a target image given a source image. To better model a nonlinear mapping from source to target and to produce more realistic target images, we propose to use the adversarial learning strategy to better model the FCN. Moreover, the FCN is designed to incorporate an image-gradient-difference-based loss function to avoid generating blurry target images. Long-term residual unit is also explored to help the training of the network. We further apply Auto-Context Model to implement a context-aware deep convolutional adversarial network. Experimental results show that our method is accurate and robust for synthesizing target images from the corresponding source images. In particular, we evaluate our method on three datasets, to address the tasks of generating CT from MRI and generating 7T MRI from 3T MRI images. Our method outperforms the state-of-the-art methods under comparison in all datasets and tasks. |
Author | Nie, Dong Wang, Li Ruan, Su Petitjean, Caroline Wang, Qian Shen, Dinggang Trullo, Roger Lian, Jun |
Author_xml | – sequence: 1 givenname: Dong orcidid: 0000-0003-0385-8988 surname: Nie fullname: Nie, Dong email: dongnie@cs.unc.edu organization: Department of Computer Science, Department of Radiology and BRIC, UNC-Chapel Hill, Chapel Hill, NC, USA – sequence: 2 givenname: Roger surname: Trullo fullname: Trullo, Roger organization: Department of Radiology and BRICUNC-Chapel Hill – sequence: 3 givenname: Jun surname: Lian fullname: Lian, Jun organization: Department of Radiation OncologyUNC-Chapel Hill – sequence: 4 givenname: Li orcidid: 0000-0003-2165-0080 surname: Wang fullname: Wang, Li organization: Department of Radiology and BRICUNC-Chapel Hill – sequence: 5 givenname: Caroline surname: Petitjean fullname: Petitjean, Caroline organization: Department of Computer ScienceUniversity of Normandy – sequence: 6 givenname: Su orcidid: 0000-0001-8785-6917 surname: Ruan fullname: Ruan, Su organization: Med-X Research Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China Radiology and Biomedical – sequence: 7 givenname: Qian surname: Wang fullname: Wang, Qian email: wang.qian@sjtu.edu.cn organization: Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA – sequence: 8 givenname: Dinggang orcidid: 0000-0002-7934-5698 surname: Shen fullname: Shen, Dinggang email: dgshen@med.unc.edu organization: Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29993445$$D View this record in MEDLINE/PubMed https://hal.science/hal-02054415$$DView record in HAL |
BookMark | eNp9kUtvEzEUhS3UiqaFH4CQ0Ejd0MUEv8feIKXpU0phQVlbjuemcZmMgz2Tqv8ej5JWkAUrP-53zr32OUYHbWgBoQ8EjwnB-sv9-d3lmGKixlQRLph6g0ZECFVSwcgBGuFcKjXV_Agdp_SYj1xx-RYdUa0141yM0MUd1N7Zprhd2Qcofjy33RKST8WT75bFBcC6mIZ2E5q-86HN3KTeQEw2-rz_Bt1TiL_SO3S4sE2C97v1BP28uryf3pSz79e308msdFyRroRaLthcclypBa0o0ZRXoEBYVVunnVTOMS6Zo4TUc8DM5mErnAFpKamcZCfo69Z33c9XUDtou2gbs45-ZeOzCdabfyutX5qHsDGSacU4ywZnW4PlnuxmMjPDHaZYcE7EhmT2865ZDL97SJ1Z-eSgaWwLoU-GYjl4UqwzerqHPoY-5t_KFGGVUJVgA_Xp7-lf-7-EkYFqC7gYUoqwMM53dvj3_BjfGILNELsZYjdD7GYXe1aSPeWL-f80H7caDwCvvGIEy1z9A_gItoE |
CODEN | IEBEAX |
CitedBy_id | crossref_primary_10_1093_jcde_qwac072 crossref_primary_10_1016_j_media_2023_102814 crossref_primary_10_1002_mp_15182 crossref_primary_10_1103_PhysRevResearch_6_043048 crossref_primary_10_1016_j_jconrel_2021_06_039 crossref_primary_10_1109_TMI_2022_3231461 crossref_primary_10_1097_RLI_0000000000000640 crossref_primary_10_1364_BOE_467683 crossref_primary_10_1002_mp_15981 crossref_primary_10_1109_TCI_2022_3209099 crossref_primary_10_1109_TTS_2023_3234203 crossref_primary_10_1109_TMI_2018_2884053 crossref_primary_10_3390_cancers14010040 crossref_primary_10_1002_ima_22777 crossref_primary_10_1007_s00259_020_04746_6 crossref_primary_10_1016_j_ultras_2024_107268 crossref_primary_10_1016_j_media_2024_103184 crossref_primary_10_36930_40340415 crossref_primary_10_1109_ACCESS_2024_3430968 crossref_primary_10_1109_ACCESS_2024_3401841 crossref_primary_10_1109_TMI_2021_3055483 crossref_primary_10_1142_S0219649225500017 crossref_primary_10_1088_1361_6560_ab41af crossref_primary_10_1088_2632_2153_abdbff crossref_primary_10_1109_TMI_2022_3167808 crossref_primary_10_1016_j_knosys_2023_110802 crossref_primary_10_1167_tvst_10_4_34 crossref_primary_10_1109_RBME_2023_3269776 crossref_primary_10_1016_j_neucom_2022_05_044 crossref_primary_10_1016_j_cmpb_2019_105101 crossref_primary_10_1186_s12880_024_01242_3 crossref_primary_10_1002_mp_17598 crossref_primary_10_1016_j_neucom_2021_04_060 crossref_primary_10_1109_TMI_2019_2922960 crossref_primary_10_3390_jimaging9040081 crossref_primary_10_3348_kjr_2023_0818 crossref_primary_10_1016_j_cmpb_2023_107391 crossref_primary_10_2478_amns_2024_3046 crossref_primary_10_1016_j_ab_2024_115627 crossref_primary_10_1007_s11042_020_09308_4 crossref_primary_10_1145_3663759 crossref_primary_10_1016_j_media_2019_101552 crossref_primary_10_1007_s11831_023_10028_9 crossref_primary_10_1109_TMI_2020_3042789 crossref_primary_10_1016_j_media_2020_101787 crossref_primary_10_1016_j_media_2020_101663 crossref_primary_10_1109_TNNLS_2023_3266551 crossref_primary_10_1109_TCI_2023_3241546 crossref_primary_10_1007_s13246_023_01290_z crossref_primary_10_1007_s13534_022_00227_x crossref_primary_10_1016_j_media_2020_101667 crossref_primary_10_1016_j_cmpb_2022_106676 crossref_primary_10_1002_ima_23169 crossref_primary_10_1002_jmri_28622 crossref_primary_10_1016_j_bspc_2019_101641 crossref_primary_10_3389_fneur_2024_1383773 crossref_primary_10_1186_s12938_023_01070_6 crossref_primary_10_1109_TAI_2022_3187388 crossref_primary_10_1016_j_compbiomed_2022_105964 crossref_primary_10_1117_1_JBO_28_3_036501 crossref_primary_10_3348_kjr_2019_0855 crossref_primary_10_3847_1538_4365_ad1dd4 crossref_primary_10_1016_j_ins_2024_121793 crossref_primary_10_3390_bioengineering10060716 crossref_primary_10_1016_j_asoc_2021_107375 crossref_primary_10_3389_fneur_2022_1051397 crossref_primary_10_1109_TPAMI_2024_3399098 crossref_primary_10_2196_28114 crossref_primary_10_3390_cancers15143565 crossref_primary_10_32604_cmc_2023_039062 crossref_primary_10_1016_j_media_2019_101565 crossref_primary_10_1109_ACCESS_2020_3002090 crossref_primary_10_1002_mp_15073 crossref_primary_10_1007_s10845_019_01507_7 crossref_primary_10_1007_s10278_023_00951_5 crossref_primary_10_3348_kjr_2023_0393 crossref_primary_10_1088_1361_6560_adb2d7 crossref_primary_10_1109_JSTSP_2020_3013418 crossref_primary_10_1007_s11063_022_10922_6 crossref_primary_10_1002_mp_13331 crossref_primary_10_1016_j_neuroimage_2020_117308 crossref_primary_10_1016_j_media_2024_103275 crossref_primary_10_1002_mp_15988 crossref_primary_10_1002_mp_14418 crossref_primary_10_1109_ACCESS_2020_3028113 crossref_primary_10_1016_j_compbiomed_2023_106541 crossref_primary_10_1155_2020_4942121 crossref_primary_10_1109_ACCESS_2020_3040340 crossref_primary_10_1007_s11036_020_01678_1 crossref_primary_10_1016_j_media_2021_102004 crossref_primary_10_1038_s41698_024_00502_3 crossref_primary_10_1016_j_media_2020_101770 crossref_primary_10_1002_mp_15380 crossref_primary_10_1016_j_media_2020_101763 crossref_primary_10_1016_j_compmedimag_2024_102431 crossref_primary_10_1016_j_media_2021_102335 crossref_primary_10_1117_1_JMI_5_4_043504 crossref_primary_10_1002_acm2_14304 crossref_primary_10_1002_ima_22972 crossref_primary_10_1109_ACCESS_2019_2930238 crossref_primary_10_1002_mp_17328 crossref_primary_10_1016_j_media_2018_12_002 crossref_primary_10_1016_j_media_2024_103300 crossref_primary_10_1016_j_compbiomed_2022_105985 crossref_primary_10_1007_s12559_024_10291_3 crossref_primary_10_1093_psyrad_kkab017 crossref_primary_10_3390_s23114993 crossref_primary_10_1088_1361_6560_ac60b9 crossref_primary_10_3390_cancers15143544 crossref_primary_10_1109_ACCESS_2019_2896409 crossref_primary_10_1080_21681163_2022_2152375 crossref_primary_10_1109_TETCI_2023_3296499 crossref_primary_10_1016_j_engappai_2022_105744 crossref_primary_10_1109_ACCESS_2019_2953923 crossref_primary_10_1088_1361_6560_ad237f crossref_primary_10_1007_s10115_023_01991_7 crossref_primary_10_1109_ACCESS_2022_3193668 crossref_primary_10_1016_j_knosys_2024_111799 crossref_primary_10_1126_sciadv_add3607 crossref_primary_10_1016_j_bspc_2025_107735 crossref_primary_10_1016_j_jvir_2022_12_008 crossref_primary_10_3390_s22114043 crossref_primary_10_1016_j_nima_2020_164638 crossref_primary_10_1038_s41598_022_10256_2 crossref_primary_10_3390_curroncol28040217 crossref_primary_10_1002_mp_13626 crossref_primary_10_1088_2057_1976_ac3c64 crossref_primary_10_1515_jisys_2023_0047 crossref_primary_10_1109_TCI_2020_3012928 crossref_primary_10_1088_1361_6560_ab25bc crossref_primary_10_3390_app11104554 crossref_primary_10_1016_j_bspc_2019_101562 crossref_primary_10_1016_j_compbiomed_2021_104917 crossref_primary_10_1109_JBHI_2021_3103387 crossref_primary_10_1016_j_media_2020_101747 crossref_primary_10_1109_TMI_2024_3367321 crossref_primary_10_1038_s41746_021_00507_3 crossref_primary_10_1109_JBHI_2023_3311021 crossref_primary_10_1016_j_compmedimag_2022_102094 crossref_primary_10_1016_j_eswa_2022_118045 crossref_primary_10_1016_j_displa_2021_102079 crossref_primary_10_1002_mrm_28327 crossref_primary_10_1016_j_neucom_2021_09_032 crossref_primary_10_1109_TBME_2023_3243491 crossref_primary_10_1007_s11042_023_15747_6 crossref_primary_10_1002_mrm_28689 crossref_primary_10_1016_j_neucom_2024_127676 crossref_primary_10_1002_acm2_13121 crossref_primary_10_1109_TMI_2022_3191011 crossref_primary_10_3389_fmolb_2021_627454 crossref_primary_10_1007_s00261_023_04004_x crossref_primary_10_1186_s12880_022_00854_x crossref_primary_10_1007_s00521_020_05226_6 crossref_primary_10_1016_j_media_2023_102800 crossref_primary_10_1002_ima_23113 crossref_primary_10_1007_s00371_023_03096_2 crossref_primary_10_1038_s41597_023_02400_y crossref_primary_10_1016_j_ijrobp_2019_08_049 crossref_primary_10_1002_mp_17338 crossref_primary_10_1109_JBHI_2023_3249404 crossref_primary_10_1109_TMI_2020_3015379 crossref_primary_10_1109_TMI_2019_2895894 crossref_primary_10_1016_j_csda_2022_107561 crossref_primary_10_1371_journal_pdig_0000202 crossref_primary_10_1109_TCI_2025_3540711 crossref_primary_10_1038_s41551_021_00751_8 crossref_primary_10_1109_TMI_2023_3319646 crossref_primary_10_1002_mp_15460 crossref_primary_10_1016_j_ejmp_2023_103184 crossref_primary_10_1109_TRPMS_2023_3339173 crossref_primary_10_1016_j_neuroimage_2024_120595 crossref_primary_10_3390_biomedicines10020223 crossref_primary_10_1016_j_jksuci_2023_101821 crossref_primary_10_1111_micc_12854 crossref_primary_10_1016_j_cmpb_2024_108007 crossref_primary_10_1109_TMI_2019_2951439 crossref_primary_10_1007_s00521_022_06928_9 crossref_primary_10_1016_j_slast_2021_10_014 crossref_primary_10_1109_TBME_2022_3192309 crossref_primary_10_1109_TMI_2020_2969630 crossref_primary_10_1016_j_media_2024_103106 crossref_primary_10_1088_2632_2153_ab869f crossref_primary_10_1007_s11548_022_02590_7 crossref_primary_10_1016_j_ajog_2024_04_022 crossref_primary_10_1109_TMI_2021_3082578 crossref_primary_10_1016_j_media_2022_102369 crossref_primary_10_1109_TIM_2021_3126832 crossref_primary_10_1016_j_compbiomed_2024_107982 crossref_primary_10_1109_TMI_2024_3368664 crossref_primary_10_1186_s41747_022_00295_9 crossref_primary_10_1016_j_compbiomed_2024_107983 crossref_primary_10_1093_bib_bbaa310 crossref_primary_10_21641_los_2024_21_2_244 crossref_primary_10_1016_j_cmpb_2021_106225 crossref_primary_10_1016_j_media_2020_101716 crossref_primary_10_3390_math12182808 crossref_primary_10_1177_09287329241291368 crossref_primary_10_1097_IAE_0000000000002898 crossref_primary_10_3389_fneur_2019_00869 crossref_primary_10_1016_j_neuroimage_2021_118206 crossref_primary_10_1016_j_cmpb_2022_107130 crossref_primary_10_3389_fpls_2021_760139 crossref_primary_10_1007_s11042_021_10707_4 crossref_primary_10_1016_j_compmedimag_2023_102249 crossref_primary_10_1016_j_inffus_2020_10_015 crossref_primary_10_1364_BOE_394715 crossref_primary_10_1088_1361_6560_abc303 crossref_primary_10_1109_TBME_2018_2883958 crossref_primary_10_1016_j_media_2020_101944 crossref_primary_10_1016_j_neuroimage_2023_120411 crossref_primary_10_6009_jjrt_2020_JSRT_76_11_1173 crossref_primary_10_1002_jmri_27256 crossref_primary_10_1109_TMI_2021_3077089 crossref_primary_10_1016_j_knosys_2022_109362 crossref_primary_10_1109_TCI_2020_3019137 crossref_primary_10_1016_j_bspc_2021_102550 crossref_primary_10_1055_s_0041_1740630 crossref_primary_10_1016_j_media_2021_102191 crossref_primary_10_1002_mp_13617 crossref_primary_10_1109_JBHI_2019_2922986 crossref_primary_10_1155_2022_8134018 crossref_primary_10_1109_ACCESS_2019_2963741 crossref_primary_10_1109_ACCESS_2019_2940623 crossref_primary_10_1177_08953996241304988 crossref_primary_10_1016_j_media_2021_102198 crossref_primary_10_1109_TMI_2020_3025133 crossref_primary_10_1016_j_cmpb_2022_106949 crossref_primary_10_1088_1361_6560_ab0b66 crossref_primary_10_1016_j_compmedimag_2022_102167 crossref_primary_10_1109_TMI_2023_3288001 crossref_primary_10_1002_acm2_14499 crossref_primary_10_1002_mp_15479 crossref_primary_10_1016_j_cmpb_2020_105895 crossref_primary_10_3390_app11083508 crossref_primary_10_1016_j_bspc_2021_103199 crossref_primary_10_1016_j_eswa_2022_117421 crossref_primary_10_1109_TMI_2019_2901750 crossref_primary_10_1007_s12410_019_9480_x crossref_primary_10_1088_1361_6560_ac508d crossref_primary_10_1109_JBHI_2021_3088866 crossref_primary_10_3389_fphy_2023_1088899 crossref_primary_10_1007_s13042_023_01871_0 crossref_primary_10_1007_s13246_023_01244_5 crossref_primary_10_1016_j_compmedimag_2023_102227 crossref_primary_10_1109_TMI_2023_3321064 crossref_primary_10_3390_app131810521 crossref_primary_10_1007_s10489_022_03609_x crossref_primary_10_1109_TMI_2024_3424785 crossref_primary_10_3390_app12010352 crossref_primary_10_1109_ACCESS_2020_3017915 crossref_primary_10_1186_s43055_024_01287_y crossref_primary_10_1186_s40658_022_00486_8 crossref_primary_10_1002_mrm_29356 crossref_primary_10_1016_j_cviu_2024_104100 crossref_primary_10_1109_TBME_2020_3006296 crossref_primary_10_1016_j_compmedimag_2022_102150 crossref_primary_10_1186_s13014_023_02384_4 crossref_primary_10_1002_ima_70013 crossref_primary_10_1016_j_media_2022_102692 crossref_primary_10_1088_1361_6560_acf3c9 crossref_primary_10_1109_TMI_2020_2987026 crossref_primary_10_1109_TMI_2022_3199155 crossref_primary_10_12677_CSA_2021_117200 crossref_primary_10_1016_j_bspc_2024_106660 crossref_primary_10_1109_TMI_2021_3107013 crossref_primary_10_1109_TRPMS_2023_3243576 crossref_primary_10_1109_ACCESS_2020_2993867 crossref_primary_10_1007_s42835_023_01602_z crossref_primary_10_3389_fradi_2023_1336902 crossref_primary_10_1007_s11548_019_02040_x crossref_primary_10_1002_mrm_28376 crossref_primary_10_1088_1361_6560_ab8cd2 crossref_primary_10_1007_s11263_020_01321_2 crossref_primary_10_3233_XST_230094 crossref_primary_10_3390_info14030190 crossref_primary_10_1002_mrm_28819 crossref_primary_10_1109_ACCESS_2019_2896911 crossref_primary_10_1109_TBME_2024_3367762 crossref_primary_10_1109_ACCESS_2020_3026073 crossref_primary_10_1088_1361_6560_ab857b crossref_primary_10_1109_TMI_2023_3290149 crossref_primary_10_3390_diagnostics13050974 crossref_primary_10_1007_s00330_023_09512_4 crossref_primary_10_1109_ACCESS_2023_3335196 crossref_primary_10_1109_JBHI_2018_2832538 crossref_primary_10_1007_s11548_021_02372_7 crossref_primary_10_1038_s41551_021_00758_1 crossref_primary_10_1038_s41598_024_78424_0 crossref_primary_10_1088_1361_6560_ab3242 crossref_primary_10_1109_TMI_2019_2911203 crossref_primary_10_1002_lary_28708 crossref_primary_10_3390_diagnostics12112708 crossref_primary_10_3390_s21227518 crossref_primary_10_1073_pnas_2021446118 crossref_primary_10_3390_app122211600 crossref_primary_10_1109_TNNLS_2020_2995800 crossref_primary_10_1002_jmri_28944 crossref_primary_10_1016_j_compbiomed_2023_106738 crossref_primary_10_1007_s11548_021_02433_x crossref_primary_10_1109_ACCESS_2019_2933368 crossref_primary_10_1016_j_media_2024_103121 crossref_primary_10_1109_TNNLS_2018_2870182 crossref_primary_10_1007_s10278_019_00265_5 crossref_primary_10_1167_tvst_9_2_29 crossref_primary_10_1016_j_neuroimage_2020_117366 crossref_primary_10_1109_JSTSP_2020_3001513 crossref_primary_10_1259_bjr_20190067 crossref_primary_10_5812_ipmn_134223 crossref_primary_10_1007_s10278_023_00908_8 crossref_primary_10_1016_j_nic_2020_06_003 crossref_primary_10_1142_S0218488522400128 crossref_primary_10_1155_2021_6679603 crossref_primary_10_1109_TPS_2023_3268170 crossref_primary_10_3390_diagnostics11112147 crossref_primary_10_1016_j_media_2022_102472 crossref_primary_10_1016_j_media_2023_103046 crossref_primary_10_1016_j_neurad_2023_01_157 crossref_primary_10_1016_j_compmedimag_2020_101801 crossref_primary_10_1109_TAP_2019_2948565 crossref_primary_10_7555_JBR_36_20220037 crossref_primary_10_1007_s11242_021_01728_6 crossref_primary_10_1016_j_ejmp_2021_09_006 crossref_primary_10_1186_s13634_019_0649_x crossref_primary_10_14338_IJPT_19_00062_1 crossref_primary_10_1016_j_media_2021_102049 crossref_primary_10_1145_3657298 crossref_primary_10_1088_1361_6560_ac0684 crossref_primary_10_1109_JBHI_2024_3367375 crossref_primary_10_1109_TCYB_2018_2841847 crossref_primary_10_1007_s10278_024_01312_6 crossref_primary_10_1016_j_neunet_2020_08_014 crossref_primary_10_1007_s00521_018_3735_3 crossref_primary_10_3390_s22010206 crossref_primary_10_1088_1361_6560_acaf49 crossref_primary_10_1016_j_compbiomed_2021_104763 crossref_primary_10_1088_1361_6560_ac4123 crossref_primary_10_1002_mp_13927 crossref_primary_10_1109_JBHI_2024_3393870 crossref_primary_10_1038_s41598_022_12646_y crossref_primary_10_1016_j_patcog_2023_109715 crossref_primary_10_1016_j_artmed_2022_102332 crossref_primary_10_1109_JSEN_2020_2973337 crossref_primary_10_1007_s10334_023_01145_4 |
Cites_doi | 10.1109/CVPR.2015.7298965 10.1016/j.neuroimage.2013.06.030 10.1109/TPAMI.2015.2439281 10.2991/978-94-91216-30-5_6 10.1109/TMI.2015.2461533 10.1016/j.media.2003.11.002 10.1109/CVPR.2016.182 10.1007/978-3-319-46976-8_5 10.1007/978-3-319-66179-7_48 10.2967/jnumed.109.069112 10.1007/978-3-319-24574-4_28 10.1109/ICCV.2015.79 10.1016/j.jneumeth.2015.08.004 10.2967/jnumed.111.092577 10.1109/TNNLS.2015.2476656 10.1118/1.3464799 10.1007/978-3-319-10443-0_39 10.1118/1.598392 10.1145/3065386 10.1109/TPAMI.2009.186 10.1109/CVPR.2016.90 10.1016/j.media.2012.05.008 10.1002/ima.20007 10.1109/TMI.2014.2340135 10.1038/nature14539 10.1007/978-3-642-40763-5_32 10.1002/mp.12155 10.1118/1.1569270 10.1109/CVPR.2016.181 10.1109/TCYB.2018.2797905 10.1007/978-3-540-39899-8_84 10.1007/978-3-319-24553-9_12 10.2967/jnumed.107.049353 10.1007/978-3-319-10593-2_13 10.1007/978-3-319-46976-8_18 10.1016/j.neuroimage.2008.10.040 10.1093/comjnl/bxm075 10.1016/j.neuroimage.2011.05.010 10.1109/CVPR.2017.613 10.1109/ISBI.2014.6868038 10.1109/ISBI.2016.7493515 10.1007/978-3-319-24571-3_79 10.1016/j.media.2007.06.004 10.1109/TMI.2016.2549918 10.1007/978-3-319-10443-0_29 10.1109/CVPR.2017.19 10.1007/978-3-642-40811-3_76 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018 Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018 – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | 97E RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 1XC 5PM |
DOI | 10.1109/TBME.2018.2814538 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic Hyper Article en Ligne (HAL) PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Ceramic Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Materials Research Database MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering Computer Science |
EISSN | 1558-2531 |
EndPage | 2730 |
ExternalDocumentID | PMC6398343 oai_HAL_hal_02054415v1 29993445 10_1109_TBME_2018_2814538 8310638 |
Genre | orig-research Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61473190; 81471733 funderid: 10.13039/501100001809 – fundername: Science and Technology Commission of Shanghai Municipality grantid: 16511101100; 16410722400 funderid: 10.13039/501100003399 – fundername: National Institutes of Health grantid: CA206100 funderid: 10.13039/100000002 – fundername: National Key Research and Development Program of China grantid: 2017YFC0107600 – fundername: NIBIB NIH HHS grantid: R01 EB006733 – fundername: NCI NIH HHS grantid: R01 CA206100 |
GroupedDBID | --- -~X .55 .DC .GJ 0R~ 29I 4.4 53G 5GY 5RE 5VS 6IF 6IK 6IL 6IN 85S 97E AAJGR AARMG AASAJ AAWTH AAYJJ ABAZT ABJNI ABQJQ ABVLG ACGFO ACGFS ACIWK ACKIV ACNCT ACPRK ADZIZ AENEX AETIX AFFNX AFRAH AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CHZPO CS3 DU5 EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IEGSK IFIPE IFJZH IPLJI JAVBF LAI MS~ O9- OCL P2P RIA RIE RIL RNS TAE TN5 VH1 VJK X7M ZGI ZXP AAYXX CITATION RIG CGR CUY CVF ECM EIF NPM PKN 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 1XC 5PM |
ID | FETCH-LOGICAL-c481t-ed6f3b64078f27219247e8e5a8dac9c68cc3463c211dbe03a846708e56a217c63 |
IEDL.DBID | RIE |
ISSN | 0018-9294 1558-2531 |
IngestDate | Thu Aug 21 18:17:33 EDT 2025 Fri May 09 12:18:17 EDT 2025 Fri Jul 11 12:15:02 EDT 2025 Mon Jun 30 08:29:29 EDT 2025 Wed Feb 19 02:30:00 EST 2025 Tue Jul 01 03:28:30 EDT 2025 Thu Apr 24 22:54:57 EDT 2025 Wed Aug 27 02:52:56 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c481t-ed6f3b64078f27219247e8e5a8dac9c68cc3463c211dbe03a846708e56a217c63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 PMCID: PMC6398343 |
ORCID | 0000-0002-7934-5698 0000-0003-0385-8988 0000-0003-2165-0080 0000-0001-8785-6917 0000-0003-0013-5370 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/6398343 |
PMID | 29993445 |
PQID | 2137587539 |
PQPubID | 85474 |
PageCount | 11 |
ParticipantIDs | ieee_primary_8310638 crossref_primary_10_1109_TBME_2018_2814538 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6398343 pubmed_primary_29993445 crossref_citationtrail_10_1109_TBME_2018_2814538 hal_primary_oai_HAL_hal_02054415v1 proquest_journals_2137587539 proquest_miscellaneous_2068343209 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-12-01 |
PublicationDateYYYYMMDD | 2018-12-01 |
PublicationDate_xml | – month: 12 year: 2018 text: 2018-12-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | IEEE transactions on biomedical engineering |
PublicationTitleAbbrev | TBME |
PublicationTitleAlternate | IEEE Trans Biomed Eng |
PublicationYear | 2018 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Institute of Electrical and Electronics Engineers |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) – name: Institute of Electrical and Electronics Engineers |
References | ref13 ref12 ref14 ref53 goodfellow (ref38) 0 ref52 ref11 ref54 ref10 ref17 ref16 ref19 ref18 ref51 ref50 ref47 ref42 manjón (ref15) 2010; 2010 ref41 ref43 luo (ref45) 0 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref34 ref37 ref36 ref31 tu (ref48) 2010; 32 ref30 ref33 ref32 ref2 ref1 ref39 yu (ref46) 0 mathieu (ref35) 0 radford (ref44) 2015 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 32813646 - IEEE Trans Biomed Eng. 2020 Sep;67(9):2706 |
References_xml | – year: 2015 ident: ref44 article-title: Unsupervised representation learning with deep convolutional generative adversarial networks – ident: ref39 doi: 10.1109/CVPR.2015.7298965 – ident: ref17 doi: 10.1016/j.neuroimage.2013.06.030 – ident: ref34 doi: 10.1109/TPAMI.2015.2439281 – ident: ref7 doi: 10.2991/978-94-91216-30-5_6 – ident: ref18 doi: 10.1109/TMI.2015.2461533 – ident: ref24 doi: 10.1016/j.media.2003.11.002 – ident: ref47 doi: 10.1109/CVPR.2016.182 – ident: ref4 doi: 10.1007/978-3-319-46976-8_5 – ident: ref37 doi: 10.1007/978-3-319-66179-7_48 – ident: ref10 doi: 10.2967/jnumed.109.069112 – ident: ref52 doi: 10.1007/978-3-319-24574-4_28 – ident: ref25 doi: 10.1109/ICCV.2015.79 – ident: ref12 doi: 10.1016/j.jneumeth.2015.08.004 – ident: ref8 doi: 10.2967/jnumed.111.092577 – ident: ref20 doi: 10.1109/TNNLS.2015.2476656 – ident: ref23 doi: 10.1118/1.3464799 – ident: ref32 doi: 10.1007/978-3-319-10443-0_39 – ident: ref1 doi: 10.1118/1.598392 – ident: ref26 doi: 10.1145/3065386 – volume: 32 start-page: 1744 year: 2010 ident: ref48 article-title: Auto-context and its application to high-level vision tasks and 3d brain image segmentation publication-title: IEEE TPAMI doi: 10.1109/TPAMI.2009.186 – ident: ref28 doi: 10.1109/CVPR.2016.90 – ident: ref49 doi: 10.1016/j.media.2012.05.008 – ident: ref5 doi: 10.1002/ima.20007 – ident: ref53 doi: 10.1109/TMI.2014.2340135 – ident: ref27 doi: 10.1038/nature14539 – ident: ref29 doi: 10.1007/978-3-642-40763-5_32 – ident: ref42 doi: 10.1002/mp.12155 – ident: ref9 doi: 10.1118/1.1569270 – volume: 2010 start-page: 17 year: 2010 ident: ref15 article-title: Mri superresolution using self-similarity and image priors publication-title: J Biomed Imaging – ident: ref31 doi: 10.1109/CVPR.2016.181 – ident: ref41 doi: 10.1109/TCYB.2018.2797905 – ident: ref22 doi: 10.1007/978-3-540-39899-8_84 – ident: ref21 doi: 10.1007/978-3-319-24553-9_12 – ident: ref11 doi: 10.2967/jnumed.107.049353 – ident: ref30 doi: 10.1007/978-3-319-10593-2_13 – start-page: 4898 year: 0 ident: ref45 article-title: Understanding the effective receptive field in deep convolutional neural networks publication-title: Proc Adv Neural Inform Process Syst – ident: ref43 doi: 10.1007/978-3-319-46976-8_18 – ident: ref51 doi: 10.1016/j.neuroimage.2008.10.040 – ident: ref6 doi: 10.1093/comjnl/bxm075 – ident: ref2 doi: 10.1016/j.neuroimage.2011.05.010 – ident: ref33 doi: 10.1109/CVPR.2017.613 – start-page: 2672 year: 0 ident: ref38 article-title: Generative adversarial nets publication-title: Proc Adv Neural Inform Process Syst – ident: ref16 doi: 10.1109/ISBI.2014.6868038 – ident: ref14 doi: 10.1109/TMI.2014.2340135 – ident: ref40 doi: 10.1109/ISBI.2016.7493515 – year: 0 ident: ref35 publication-title: Proc of the Int Conf on Learning Representations (ICLR) – year: 0 ident: ref46 article-title: Multi-scale context aggregation by dilated convolutions publication-title: Proc of the Int Conf on Learning Representations (ICLR) – ident: ref3 doi: 10.1007/978-3-319-24571-3_79 – ident: ref50 doi: 10.1016/j.media.2007.06.004 – ident: ref54 doi: 10.1109/TMI.2016.2549918 – ident: ref19 doi: 10.1007/978-3-319-10443-0_29 – ident: ref36 doi: 10.1109/CVPR.2017.19 – ident: ref13 doi: 10.1007/978-3-642-40811-3_76 – reference: 32813646 - IEEE Trans Biomed Eng. 2020 Sep;67(9):2706 |
SSID | ssj0014846 |
Score | 2.6847837 |
Snippet | Medical imaging plays a critical role in various clinical applications. However, due to multiple considerations such as cost and radiation dose, the... |
SourceID | pubmedcentral hal proquest pubmed crossref ieee |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2720 |
SubjectTerms | Adversarial learning Artificial neural networks auto-context model Biomedical imaging Brain - diagnostic imaging Computed tomography Computer Science Datasets Deep Learning Generators Humans Image acquisition Image generation Image Interpretation, Computer-Assisted - methods image synthesis Magnetic Resonance Imaging Medical imaging Pelvis - diagnostic imaging Radiation dosage residual learning Signal and Image Processing State of the art Synthesis Target recognition Task analysis Therapeutic applications Tomography, X-Ray Computed |
Title | Medical Image Synthesis with Deep Convolutional Adversarial Networks |
URI | https://ieeexplore.ieee.org/document/8310638 https://www.ncbi.nlm.nih.gov/pubmed/29993445 https://www.proquest.com/docview/2137587539 https://www.proquest.com/docview/2068343209 https://hal.science/hal-02054415 https://pubmed.ncbi.nlm.nih.gov/PMC6398343 |
Volume | 65 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dT9swED9RHhA8bIzClsGmDPGESBsnjuM8Mj5UJtoXQOItchxHrQYpWlqk7a_fXeJGLUKItyi-WLbuLv6d7wvgSAZJJHPNvcwI6XEdF16iZeSpOAtZnqs4F5TvPByJwR3_dR_dr8FJmwtjjKmDz0yPHmtffj7Vc7oq61NTLJSXDnTQcGtytVqPAZdNUo7PUIGDhFsPJvOT_u3P4QUFccleIBlHDacKwAiMQk5JTEvHUWdMwZB1l5XXAOfLuMmlg-jyIwwXW2jiT3735rOsp_-9qO743j1uwweLSN3TRoQ-wZopd2BrqU7hDmwMrQe-C-fWs-NePeKfyL35WyKCrCaVSxe67rkxT-7ZtHy2Ak3zUsfnSpGcu6Mm5rzahbvLi9uzgWc7MXiaSzbzTC6KMKt9fkWANiMabbGRJlIyVzrRQmodchFqtCbzzPihIlTjI4FQaPJoEe7BejktzRdwgyLJqEQMOXx4wTTCZgT5scappWJKOeAvGJJqW6acumU8pLW54icpsTMldqaWnQ4ct588NTU63iI-RC63dFRde3B6ndI7RM7UkS16Zg50iTMtlWWKAwcLoUitqldpwEK0udDqSxz40Q6jkpLnRZVmOkcaX0jK4PWR5nMjQ-3cC0l0IF6RrpUlro6Uk3FdCBzRJU379fXV7sMmbbyJvTmA9dmfufmGCGqWfa9V5z-FLRPT |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9NAEB61ReJxKNDyMBRYEFyQnHrttb0-cChNq4QmuZBKvbnr9VqtAKeqk1blt_Sv8N-YsTdWUlXcKnGL4snI3nw7O5_nBfBR-kkocy3czETSFTou3ETL0FVxFvA8V3EeUb3zcBT1DsW3o_BoBa7bWhhjTJ18Zjr0sY7l5xM9o1dl2zQUC_FiUygPzNUlErTqS7-L_-Yn39_fG-_2XDtDwNVC8qlr8qgIsjpaVfjIdpBuxEaaUMlc6URHUutARIFGHpRnxgsUncceCkQKnXUdBah3Fe6hnxH6TXVYG6MQsikD8jiaDD8RNmbKvWR7_HW4R2ljsuNLLtCmUM9hdMUCQWVTCwfg6gmlX9ZzXW5zcW9mai4cffuP4c980ZqMlx-d2TTr6N83-kn-r6v6BNatz812mk3yFFZMuQGPFjoxbsD9oc0x2ISujV2x_i-0tez7VYk-cnVaMXplzbrGnLHdSXlhtyzppZnWlaKdzEZNVn31DA7v5Imew1o5Kc1LYH6RZNQEh0JaouAaiQHSmFijaqm4Ug54cwCk2jZip3kgP9OakHlJSvBJCT6phY8Dn9ufnDVdSP4l_AFR1cpR__DeziCl75Ab0My58II7sElIaKUsCBzYmoMwtcasSn0eIKtEXps48L69jGaIYkuqNJMZyniRpBplD2VeNJhtdc-R70C8hOalW1y-Up6e1K3O0X8mta9uv9t38KA3Hg7SQX908Boe0iI0mUZbsDY9n5k36C9Os7f1tmVwfNeI_gvOqm_8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Medical+Image+Synthesis+with+Deep+Convolutional+Adversarial+Networks&rft.jtitle=IEEE+transactions+on+biomedical+engineering&rft.au=Nie%2C+Dong&rft.au=Trullo%2C+Roger&rft.au=Lian%2C+Jun&rft.au=Wang%2C+Li&rft.date=2018-12-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0018-9294&rft.eissn=1558-2531&rft.volume=65&rft.issue=12&rft.spage=2720&rft_id=info:doi/10.1109%2FTBME.2018.2814538&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9294&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9294&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9294&client=summon |