The flavonols quercetin, rutin and morin in DNA solution: UV–vis dichroic (and mid-infrared) analysis explain the possible association between the biopolymer and a nucleophilic vegetable-dye

Previous studies showed evidence that quercetin can bind DNA by intercalation [R. Solimani et al., J. Agric. Food Chem. 43 (1995) 876–882] and a comparison with the flavanol dihydroquercetin indicated that the interaction is correlated to the planarity and hydrophobicity of the benzopyranic-4-one pl...

Full description

Saved in:
Bibliographic Details
Published inBiochimica et biophysica acta Vol. 1336; no. 2; pp. 281 - 294
Main Author Solimani, Riccardo
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 29.08.1997
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Previous studies showed evidence that quercetin can bind DNA by intercalation [R. Solimani et al., J. Agric. Food Chem. 43 (1995) 876–882] and a comparison with the flavanol dihydroquercetin indicated that the interaction is correlated to the planarity and hydrophobicity of the benzopyranic-4-one plane [R. Solimani, Int. J. Biol. Macromol. 18 (1996) 287–295]. In this study flow linear dichroism (LD) spectra of the hydrophobic quercetin were compared with hydrophilic aglycoside morin and 3-glycoside rutin in the same conditions: [DNA]=3.1·10 −2 mol/l phosphate, [dye]=(1.0–4.0)·10 −4 mol/l. Morin and rutin in an aqueous environment showed the same behaviour as quercetin in buffer–ethanol (70:30, v/v) solution, with their common benzopyranic-4-one part within the biopolymer. The LD R values (LD normalised to the relative isotropic absorption) indicated a greater affinity of the quercetin for the DNA. Comparison of the LD R of morin and rutin showed a ratio LD morin R/LD rutin R≈1.1–1.2 very close to unity and this suggests the localisation of the 3-rutinoside of rutin outside the intercalation site. Dichroic measurements recorded in extreme conditions of concentration partly clarified the sequences of interaction between quercetin and DNA in solution which shows the prototypical behaviour of the flavonolic group. This consists of an initial weak external association, where an electrostatic component is excluded, and which can evolve to intercalation changing the DNA concentration, whereas the quantity of the flavonol influences relatively the association. The carbonylic region of the benzopyranic-4-one chromophore is probably localised outside the intercalation site. This was suggested by indirect infrared (attenuated total reflection ATR) data of the quercetin–ethanol solution: the presence of free and chelated carbonyl determines a greater density of negative charges in this region of the chromophore, with the consequent lower probability of this portion penetrating the external polyanionic perimeter of the DNA. A simple approach to determine the order of magnitude of the anisotropic band II of the flavonols completely covered by the more intense DNA band at 260 nm, was also proposed. The low number of intercalated chromophores did not determine an alteration of the flexibility and hydrodynamic behaviour of the biopolymer and this can be correlated to a biological consideration: the flavonols probably do not interfere with the genetic functionality of the DNA. In contrast, the potentially close relationship between these nucleophilic dyes and the biopolymer, shown in this study, suggests a protective role on the nucleophilic groups of the DNA, which are a target of free radicals and the reactive electrophilic groups.
AbstractList Previous studies showed evidence that quercetin can bind DNA by intercalation [R. Solimani et al., J. Agric. Food Chem. 43 (1995) 876-882] and a comparison with the flavanol dihydroquercetin indicated that the interaction is correlated to the planarity and hydrophobicity of the benzopyranic-4-one plane [R. Solimani, Int. J. Biol. Macromol. 18 (1996) 287-295]. In this study flow linear dichroism (LD) spectra of the hydrophobic quercetin were compared with hydrophilic aglycoside morin and 3-glycoside rutin in the same conditions: [DNA] = 3.1 x 10(-2) mol/l phosphate, [dye] = (1.0-4.0) x 10(-4) mol/l. Morin and rutin in an aqueous environment showed the same behaviour as quercetin in buffer-ethanol (70:30, v/v) solution, with their common benzopyranic-4-one part within the biopolymer. The LD(R) values (LD normalised to the relative isotropic absorption) indicated a greater affinity of the quercetin for the DNA. Comparison of the LD(R) of morin and rutin showed a ratio LD(R)morin/LD(R)rutin approximately 1.1-1.2 very close to unity and this suggests the localisation of the 3-rutinoside of rutin outside the intercalation site. Dichroic measurements recorded in extreme conditions of concentration partly clarified the sequences of interaction between quercetin and DNA in solution which shows the prototypical behaviour of the flavonolic group. This consists of an initial weak external association, where an electrostatic component is excluded, and which can evolve to intercalation changing the DNA concentration, whereas the quantity of the flavonol influences relatively the association. The carbonylic region of the benzopyranic-4-one chromophore is probably localised outside the intercalation site. This was suggested by indirect infrared (attenuated total reflection ATR) data of the quercetin-ethanol solution: the presence of free and chelated carbonyl determines a greater density of negative charges in this region of the chromophore, with the consequent lower probability of this portion penetrating the external polyanionic perimeter of the DNA. A simple approach to determine the order of magnitude of the anisotropic band II of the flavonols completely covered by the more intense DNA band at 260 nm, was also proposed. The low number of intercalated chromophores did not determine an alteration of the flexibility and hydrodynamic behaviour of the biopolymer and this can be correlated to a biological consideration: the flavonols probably do not interfere with the genetic functionality of the DNA. In contrast, the potentially close relationship between these nucleophilic dyes and the biopolymer, shown in this study, suggests a protective role on the nucleophilic groups of the DNA, which are a target of free radicals and the reactive electrophilic groups.
Previous studies showed evidence that quercetin can bind DNA by intercalation [R. Solimani et al., J. Agric. Food Chem. 43 (1995) 876–882] and a comparison with the flavanol dihydroquercetin indicated that the interaction is correlated to the planarity and hydrophobicity of the benzopyranic-4-one plane [R. Solimani, Int. J. Biol. Macromol. 18 (1996) 287–295]. In this study flow linear dichroism (LD) spectra of the hydrophobic quercetin were compared with hydrophilic aglycoside morin and 3-glycoside rutin in the same conditions: [DNA]=3.1·10 −2 mol/l phosphate, [dye]=(1.0–4.0)·10 −4 mol/l. Morin and rutin in an aqueous environment showed the same behaviour as quercetin in buffer–ethanol (70:30, v/v) solution, with their common benzopyranic-4-one part within the biopolymer. The LD R values (LD normalised to the relative isotropic absorption) indicated a greater affinity of the quercetin for the DNA. Comparison of the LD R of morin and rutin showed a ratio LD morin R/LD rutin R≈1.1–1.2 very close to unity and this suggests the localisation of the 3-rutinoside of rutin outside the intercalation site. Dichroic measurements recorded in extreme conditions of concentration partly clarified the sequences of interaction between quercetin and DNA in solution which shows the prototypical behaviour of the flavonolic group. This consists of an initial weak external association, where an electrostatic component is excluded, and which can evolve to intercalation changing the DNA concentration, whereas the quantity of the flavonol influences relatively the association. The carbonylic region of the benzopyranic-4-one chromophore is probably localised outside the intercalation site. This was suggested by indirect infrared (attenuated total reflection ATR) data of the quercetin–ethanol solution: the presence of free and chelated carbonyl determines a greater density of negative charges in this region of the chromophore, with the consequent lower probability of this portion penetrating the external polyanionic perimeter of the DNA. A simple approach to determine the order of magnitude of the anisotropic band II of the flavonols completely covered by the more intense DNA band at 260 nm, was also proposed. The low number of intercalated chromophores did not determine an alteration of the flexibility and hydrodynamic behaviour of the biopolymer and this can be correlated to a biological consideration: the flavonols probably do not interfere with the genetic functionality of the DNA. In contrast, the potentially close relationship between these nucleophilic dyes and the biopolymer, shown in this study, suggests a protective role on the nucleophilic groups of the DNA, which are a target of free radicals and the reactive electrophilic groups.
Previous studies showed evidence that quercetin can bind DNA by intercalation [R. Solimani et al., J. Agric. Food Chem. 43 (1995) 876-882] and a comparison with the flavanol dihydroquercetin indicated that the interaction is correlated to the planarity and hydrophobicity of the benzopyranic-4-one plane [R. Solimani, Int. J. Biol. Macromol. 18 (1996) 287-295]. In this study flow linear dichroism (LD) spectra of the hydrophobic quercetin were compared with hydrophilic aglycoside morin and 3-glycoside rutin in the same conditions: [DNA] = 3.1 x 10(-2) mol/l phosphate, [dye] = (1.0-4.0) x 10(-4) mol/l. Morin and rutin in an aqueous environment showed the same behaviour as quercetin in buffer-ethanol (70:30, v/v) solution, with their common benzopyranic-4-one part within the biopolymer. The LD(R) values (LD normalised to the relative isotropic absorption) indicated a greater affinity of the quercetin for the DNA. Comparison of the LD(R) of morin and rutin showed a ratio LD(R)morin/LD(R)rutin approximately 1.1-1.2 very close to unity and this suggests the localisation of the 3-rutinoside of rutin outside the intercalation site. Dichroic measurements recorded in extreme conditions of concentration partly clarified the sequences of interaction between quercetin and DNA in solution which shows the prototypical behaviour of the flavonolic group. This consists of an initial weak external association, where an electrostatic component is excluded, and which can evolve to intercalation changing the DNA concentration, whereas the quantity of the flavonol influences relatively the association. The carbonylic region of the benzopyranic-4-one chromophore is probably localised outside the intercalation site. This was suggested by indirect infrared (attenuated total reflection ATR) data of the quercetin-ethanol solution: the presence of free and chelated carbonyl determines a greater density of negative charges in this region of the chromophore, with the consequent lower probability of this portion penetrating the external polyanionic perimeter of the DNA. A simple approach to determine the order of magnitude of the anisotropic band II of the flavonols completely covered by the more intense DNA band at 260 nm, was also proposed. The low number of intercalated chromophores did not determine an alteration of the flexibility and hydrodynamic behaviour of the biopolymer and this can be correlated to a biological consideration: the flavonols probably do not interfere with the genetic functionality of the DNA. In contrast, the potentially close relationship between these nucleophilic dyes and the biopolymer, shown in this study, suggests a protective role on the nucleophilic groups of the DNA, which are a target of free radicals and the reactive electrophilic groups.Previous studies showed evidence that quercetin can bind DNA by intercalation [R. Solimani et al., J. Agric. Food Chem. 43 (1995) 876-882] and a comparison with the flavanol dihydroquercetin indicated that the interaction is correlated to the planarity and hydrophobicity of the benzopyranic-4-one plane [R. Solimani, Int. J. Biol. Macromol. 18 (1996) 287-295]. In this study flow linear dichroism (LD) spectra of the hydrophobic quercetin were compared with hydrophilic aglycoside morin and 3-glycoside rutin in the same conditions: [DNA] = 3.1 x 10(-2) mol/l phosphate, [dye] = (1.0-4.0) x 10(-4) mol/l. Morin and rutin in an aqueous environment showed the same behaviour as quercetin in buffer-ethanol (70:30, v/v) solution, with their common benzopyranic-4-one part within the biopolymer. The LD(R) values (LD normalised to the relative isotropic absorption) indicated a greater affinity of the quercetin for the DNA. Comparison of the LD(R) of morin and rutin showed a ratio LD(R)morin/LD(R)rutin approximately 1.1-1.2 very close to unity and this suggests the localisation of the 3-rutinoside of rutin outside the intercalation site. Dichroic measurements recorded in extreme conditions of concentration partly clarified the sequences of interaction between quercetin and DNA in solution which shows the prototypical behaviour of the flavonolic group. This consists of an initial weak external association, where an electrostatic component is excluded, and which can evolve to intercalation changing the DNA concentration, whereas the quantity of the flavonol influences relatively the association. The carbonylic region of the benzopyranic-4-one chromophore is probably localised outside the intercalation site. This was suggested by indirect infrared (attenuated total reflection ATR) data of the quercetin-ethanol solution: the presence of free and chelated carbonyl determines a greater density of negative charges in this region of the chromophore, with the consequent lower probability of this portion penetrating the external polyanionic perimeter of the DNA. A simple approach to determine the order of magnitude of the anisotropic band II of the flavonols completely covered by the more intense DNA band at 260 nm, was also proposed. The low number of intercalated chromophores did not determine an alteration of the flexibility and hydrodynamic behaviour of the biopolymer and this can be correlated to a biological consideration: the flavonols probably do not interfere with the genetic functionality of the DNA. In contrast, the potentially close relationship between these nucleophilic dyes and the biopolymer, shown in this study, suggests a protective role on the nucleophilic groups of the DNA, which are a target of free radicals and the reactive electrophilic groups.
Previous studies showed evidence that quercetin can bind DNA by intercalation [R. Solimani et al., J. Agric. Food Chem. 43 (1995) 876-882] and a comparison with the flavanol dihydroquercetin indicated that the interaction is correlated to the planarity and hydrophobicity of the benzopyranic-4-one plane [R. Solimani, Int. J. Biol. Macromol. 18 (1996) 287-295]. In this study flow linear dichroism (LD) spectra of the hydrophobic quercetin were compared with hydrophilic aglycoside morin and 3-glycoside rutin in the same conditions: [DNA] = 3.1 . 10(-2) mol/l phosphate, [dye] = (1.0-4.0) . 10(-4) mol/l. Morin and rutin in an aqueous environment showed the same behaviour as quercetin in buffer-ethanol (70:30, v/v) solution, with their common benzopyranic-4-one part within the biopolymer. The LD(R) values (LD normalised to the relative isotropic absorption) indicated a greater affinity of the quercetin for the DNA. Comparison of the LD(R) of morin and rutin showed a ratio LD(R) morin/LD(R) rutin approximately 1.1-1.2 very close to unity and this suggests the localisation of the 3-rutinoside of rutin outside the intercalation site. Dichroic measurements recorded in extreme conditions of concentration partly clarified the sequences of interaction between quercetin and DNA in solution which shows the prototypical behaviour of the flavonolic group. This consists of an initial weak external association, where an electrostatic component is excluded, and which can evolve to intercalation changing the DNA concentration, whereas the quantity of the flavonol influences relatively the association. The carbonylic region of the benzopyranic-4-one chromophore is probably localised outside the intercalation site. This was suggested by indirect infrared (attenuated total reflection ATR) data of the quercetin-ethanol solution: the presence of free and chelated carbonyl determines a greater density of negative charges in this region of the chromophore, with the consequent lower probability of this portion penetrating the external polyanionic perimeter of the DNA. A simple approach to determine the order of magnitude of the anisotropic band II of the flavonols completely covered by the more intense DNA band at 260 nm, was also proposed. The low number of intercalated chromophores did not determine an alteration of the flexibility and hydrodynamic behaviour of the biopolymer and this can be correlated to a biological consideration: the flavonols probably do not interfere with the genetic functionality of the DNA. In contrast, the potentially close relationship between these nucleophilic dyes and the biopolymer, shown in this study, suggests a protective role on the nucleophilic groups of the DNA, which are a target of free radicals and the reactive electrophilic groups.
Author Solimani, Riccardo
Author_xml – sequence: 1
  givenname: Riccardo
  surname: Solimani
  fullname: Solimani, Riccardo
  organization: Dipartimento di Protezione e Valorizzazione Agroalimentare, Università degli Studi di Bologna, Via S. Giacomo, 7, I-40126 Bologna, Italy
BackLink https://www.ncbi.nlm.nih.gov/pubmed/9305801$$D View this record in MEDLINE/PubMed
BookMark eNqFkktuFDEQhi0UFCaBI0R4hRIpDXa_3IYFihJeUgSLZFB2ltsuZ4zc7cbuGZgdd-BCnIWT4JkeWLAZyVJZqu-vKv1VR-ig9z0gdELJc0po_eKGFKTMSlpXp5ydEUKKJrt7gGa0YXnWEFIfoNk_5BE6ivFLgkjFq0N0yAtSNYTO0K_bBWDj5Mr33kX8dQlBwWj7cxyWKWDZa9z5kH7pXX28wNG7lPD9Szz__PvHz5WNWFu1CN4qfLqlrc5sb4IMoM-SXrp1TBB8H5xMNcbUb_Ax2tYBljF6ZeWmHm5h_AYwAa31g3frDsJ2AIn7pXLgh4V1qc0K7mGUSZ_pNTxGD410EZ7s4jGav31ze_k-u_707sPlxXWmyoaOGTSUKcNb1rYcDKfcyIIzXjIqazDAGwV5rRuqGQdltGampKolnAJVmha6OEbPprpD8MmlOIrORgXOyR78MgqWLCWM5nvBsikZyyuSwJMduGw70GIItpNhLXa7SflXU16F5FcAI5Qdt16NQVonKBGbQxDbQxCbLQvOxPYQxF1SV_-p_9bfp3s66Yz0Qt4HG8X8Jk_jkLxhFaMsEa8nApLdKwtBRGWhV6BtADUK7e2eHn8ADL_Z3Q
CitedBy_id crossref_primary_10_1016_j_cbi_2014_06_027
crossref_primary_10_1016_j_snb_2007_09_082
crossref_primary_10_1016_j_cryobiol_2020_04_010
crossref_primary_10_1016_j_ijms_2009_01_007
crossref_primary_10_1016_j_jcis_2006_06_045
crossref_primary_10_1016_S0006_291X_03_01006_4
crossref_primary_10_1016_j_saa_2009_12_083
crossref_primary_10_1016_j_jinorgbio_2007_01_005
crossref_primary_10_1016_j_molstruc_2008_10_032
crossref_primary_10_1093_jxb_err416
crossref_primary_10_1016_j_fshw_2018_08_001
crossref_primary_10_1016_j_jasms_2008_04_018
crossref_primary_10_1039_c1an15652g
crossref_primary_10_1002_bio_2583
crossref_primary_10_1007_s11581_023_05356_6
crossref_primary_10_1111_tpj_13559
crossref_primary_10_1016_j_saa_2009_09_022
crossref_primary_10_1016_j_molstruc_2010_04_039
crossref_primary_10_1016_j_colsurfa_2005_09_009
crossref_primary_10_1002_bio_4140
crossref_primary_10_3892_ijmm_2016_2764
crossref_primary_10_1002_cjoc_20040221122
crossref_primary_10_1007_s10973_010_0864_z
crossref_primary_10_1016_j_jlumin_2009_04_030
crossref_primary_10_1016_j_bcp_2006_09_024
crossref_primary_10_1016_j_vibspec_2017_05_008
crossref_primary_10_1246_cl_2007_84
crossref_primary_10_1016_j_bcab_2020_101683
crossref_primary_10_1016_j_colsurfb_2014_01_057
crossref_primary_10_1016_j_theriogenology_2012_06_032
crossref_primary_10_1021_np070285u
crossref_primary_10_1016_j_jpba_2007_08_007
crossref_primary_10_1016_j_cbi_2016_08_020
crossref_primary_10_1016_S0006_2952_02_01521_6
crossref_primary_10_1039_b800268a
crossref_primary_10_1016_j_bmcl_2006_03_087
crossref_primary_10_1016_j_electacta_2008_09_038
crossref_primary_10_1080_07391102_2023_2192792
crossref_primary_10_1016_j_chroma_2013_01_060
crossref_primary_10_1016_S0026_265X_01_00118_7
crossref_primary_10_1016_j_lwt_2006_06_007
Cites_doi 10.1021/bk-1992-0507.ch003
10.1021/ja00090a032
10.1016/S0022-2836(61)80004-1
10.1021/bk-1992-0507.ch016
10.1021/bk-1992-0507.ch002
10.1021/jf00052a006
10.1063/1.1730994
10.1111/j.1751-1097.1993.tb02959.x
10.1016/S0009-2797(86)80051-5
10.1093/mutage/9.3.193
10.1006/abbi.1994.1039
10.1021/j100468a001
10.1080/01635589309514287
10.1016/0006-2952(88)90169-4
10.1039/P29820000447
10.1021/bk-1992-0507.ch019
10.1021/jf00059a005
10.1017/S0033583500004728
10.1002/bip.360220709
10.1002/bip.1964.360020407
10.1090/S0025-5718-1965-0178586-1
10.1016/0165-1110(80)90029-9
10.1016/0006-2952(94)90424-3
10.1093/carcin/10.10.1833
10.1111/j.1365-2621.1961.tb00783.x
10.1016/0005-2736(94)00262-N
10.1007/978-1-4899-2913-6
10.1016/0003-9969(83)90005-5
10.1159/000399407
10.1021/bk-1992-0507.ch018
10.1016/0141-8130(95)01089-0
10.1366/000370278774331567
10.1016/0584-8539(73)80163-1
10.1021/ja00385a005
ContentType Journal Article
Copyright 1997 Elsevier Science B.V.
Copyright_xml – notice: 1997 Elsevier Science B.V.
DBID FBQ
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7S9
L.6
7X8
DOI 10.1016/S0304-4165(97)00038-X
DatabaseName AGRIS
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic
AGRICOLA

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Biology
EISSN 1872-8006
EndPage 294
ExternalDocumentID 9305801
10_1016_S0304_4165_97_00038_X
US201302875717
S030441659700038X
Genre Journal Article
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23N
3O-
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JM
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABFNM
ABGSF
ABMAC
ABUDA
ABXDB
ABYKQ
ACDAQ
ACIUM
ACRLP
ADBBV
ADEZE
ADMUD
ADUVX
AEBSH
AEHWI
AEKER
AFKWA
AFTJW
AFXIZ
AGHFR
AGRDE
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DOVZS
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLW
HVGLF
HZ~
IHE
J1W
KOM
LX3
M41
MO0
N9A
O-L
O9-
OAUVE
OHT
OZT
P-8
P-9
PC.
Q38
R2-
ROL
RPZ
SBG
SCC
SDF
SDG
SDP
SES
SEW
SPCBC
SSU
SSZ
T5K
UQL
WH7
WUQ
XJT
XPP
~G-
-~X
.55
.GJ
AAYJJ
ABJNI
ABWVN
ACRPL
ADNMO
AFFNX
AI.
AKRWK
F5P
FBQ
H~9
K-O
MVM
RIG
TWZ
UHS
VH1
X7M
Y6R
YYP
ZE2
ZGI
~KM
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ACVFH
ADCNI
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
CGR
CUY
CVF
ECM
EIF
NPM
7S9
L.6
7X8
ID FETCH-LOGICAL-c481t-e817cf9b7bb9ef919fa3979471a6efe98ce26d81d79ecfdd7f41cb091e1cd13d3
IEDL.DBID .~1
ISSN 0304-4165
0006-3002
IngestDate Fri Jul 11 02:35:02 EDT 2025
Thu Jul 10 23:38:30 EDT 2025
Mon Jul 21 06:01:03 EDT 2025
Tue Jul 01 03:48:50 EDT 2025
Thu Apr 24 22:54:24 EDT 2025
Thu Apr 03 09:41:06 EDT 2025
Fri Feb 23 02:32:49 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Nucleophilic intercalator
Hydrophilic and hydrophobic environment
Linear dichroism
Flavonols-benzopyranic-4-one plane
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c481t-e817cf9b7bb9ef919fa3979471a6efe98ce26d81d79ecfdd7f41cb091e1cd13d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 9305801
PQID 48477250
PQPubID 24069
PageCount 14
ParticipantIDs proquest_miscellaneous_79300712
proquest_miscellaneous_48477250
pubmed_primary_9305801
crossref_citationtrail_10_1016_S0304_4165_97_00038_X
crossref_primary_10_1016_S0304_4165_97_00038_X
fao_agris_US201302875717
elsevier_sciencedirect_doi_10_1016_S0304_4165_97_00038_X
ProviderPackageCode CITATION
AAYXX
PublicationCentury 1900
PublicationDate 1997-08-29
PublicationDateYYYYMMDD 1997-08-29
PublicationDate_xml – month: 08
  year: 1997
  text: 1997-08-29
  day: 29
PublicationDecade 1990
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Biochimica et biophysica acta
PublicationTitleAlternate Biochim Biophys Acta
PublicationYear 1997
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Wada, Kozawa (BIB35) 1964; A2
Robak, Gryglewski (BIB14) 1988; 37
Broersma (BIB34) 1960; 32
A.K. Verma, in: C.-T. Ho, C.Y. Lee, M.-T. Huang (Eds.), Phenolic Compounds in Food and Their Effect on Health, vol. I, Am. Chem. Soc., Washington, DC, 1992, pp. 250–264.
D. Dunlap, B. Samorı̀, C. Bustamante, in: B. Samorı̀, E.W. Thulstrup (Eds.), Polarized Spectroscopy of Ordered Systems, Kluwer, Dordrecht, pp. 275-296.
U. Burkert, N. Allinger, Molecular Mechanics, Am. Chem. Soc., Monogr. 177, 1982.
Jovanovic, Stenken, Tosic, Marjanovic, Simic (BIB11) 1994; 116
Jensen, Schellman, Troxell (BIB26) 1978; 32
Wallet, Cody, Wojtczac, Blessing (BIB44) 1993; 8
Parisis, Pritchard (BIB5) 1987; 28
Solimani, Bayon, Domini, Pifferi, Todesco, Marconi, Samorı̀ (BIB22) 1995; 43
Rahman, Shahabuddin, Hadi, Paris (BIB21) 1989; 10
K. Nakanishi, Infrared Absorption Spectroscopy, Holden-Day, San Francisco, CA/Nankodo, Tokyo, 1962.
Deschner, Ruperto, Song, Newmark (BIB8) 1993; 20
Solimani (BIB23) 1996; 18
Thulstrup, Michl (BIB32) 1982; 104
Matsuoka, Nordén (BIB37) 1983; 22
D. Lin-Vien, N.B. Colthup, W.G. Fateley, J.G. Grasselli, The Handbook of Infrared and Raman Characteristic Frequencies of Organic Molecules, Harcourt, Brace & Jovanovich/Academic Press, Boston, MA, 1991..
Terao, Piskula, Yao (BIB19) 1994; 308
J.B. Harborne, in: The Flavonoids: Advances in Research since 1980, Chapman and Hall, New York, 1988.
N.J. Harrick, Internal Reflection Spectroscopy, Wiley, New York, 1967.
B. Samorı̀, P. Mariani, G.P. Spada, J. Chem. Soc. Perkin Trans. II (1982) 447–453.
Wada (BIB28) 1964; 2
Ahmed, Ramesh, Nagaraja, Parish, Hadi (BIB18) 1994; 9
P.R. Griffiths, J.A. Haseth, Fourier Transform Infrared Spectroscopy, Wiley, New York, 1986.
M.-T. Huang, T. Ferraro, in: C.-T. Ho, C.Y. Lee, M.-T. Huang (Eds.), Phenolic Compounds in Food and Their Effect on Health, vol. I, Am. Chem. Soc., Washington, DC, 1992, pp. 8–33.
Nordén, Kubista, Kurucsev (BIB33) 1992; 25
Hipps, Crosby (BIB24) 1979; 83
Brown (BIB3) 1980; 75
J.K. Weisburger, in: C.-T. Ho, C.Y. Lee, M.-T. Huang (Eds.), Phenolic Compounds in Food and Their Effect on Health, vol. I, Am. Chem. Soc., Washington, DC, 1992, pp. 35–47.
Michelson (BIB29) 1981; 31
Wu, Zeng, Wu, Fung (BIB15) 1994; 47
L.J. Bellamy, The Infrared Spectra of Complex Molecules, Wiley, New York, 1958.
T. Leighton, C. Ginther, L. Fluss, W.L. Harter, J. Cansado, V. Nortario, in: C.-T. Ho, C.Y. Lee, M.-T. Huang (Eds.), Phenolic Compounds in Food and Their Effect on Health, vol. I, Am. Chem. Soc., Washington, DC, 1992, pp. 220–238.
Yoku, Tsushida, Takei, Nakatani, Terao (BIB13) 1995; 1234
Kühnau (BIB2) 1976; 24
E.E. Deschner, in: C.-T. Ho, C.Y. Lee, M.-T. Huang (Eds.), Phenolic Compounds in Food and Their Effect on Health, vol. I, Am. Chem. Soc., Washington, DC, 1992, pp. 265–268.
Lerman (BIB42) 1961; 3
Ben-Hur, Rosenthal, Granot (Graziani) (BIB20) 1993; 57
Crawford, Sinnhuber, Aft (BIB17) 1961; 26
Vinson, Dabbagh, Serry, Jang (BIB12) 1995; 43
Shah, Bhattacharya (BIB16) 1986; 59
Low, Yang (BIB38) 1973; 29A
C.R. Cantor, P.R. Schimmel, Biophysical Chemistry, Part II, W.H. Freeman, San Francisco, CA, 1980.
Cooley, Tukey (BIB31) 1965; 19
Hipps (10.1016/S0304-4165(97)00038-X_BIB24) 1979; 83
Lerman (10.1016/S0304-4165(97)00038-X_BIB42) 1961; 3
Matsuoka (10.1016/S0304-4165(97)00038-X_BIB37) 1983; 22
Solimani (10.1016/S0304-4165(97)00038-X_BIB23) 1996; 18
Ben-Hur (10.1016/S0304-4165(97)00038-X_BIB20) 1993; 57
10.1016/S0304-4165(97)00038-X_BIB25
Cooley (10.1016/S0304-4165(97)00038-X_BIB31) 1965; 19
Low (10.1016/S0304-4165(97)00038-X_BIB38) 1973; 29A
10.1016/S0304-4165(97)00038-X_BIB27
Wada (10.1016/S0304-4165(97)00038-X_BIB35) 1964; A2
10.1016/S0304-4165(97)00038-X_BIB41
Shah (10.1016/S0304-4165(97)00038-X_BIB16) 1986; 59
Solimani (10.1016/S0304-4165(97)00038-X_BIB22) 1995; 43
10.1016/S0304-4165(97)00038-X_BIB40
10.1016/S0304-4165(97)00038-X_BIB43
10.1016/S0304-4165(97)00038-X_BIB9
Robak (10.1016/S0304-4165(97)00038-X_BIB14) 1988; 37
10.1016/S0304-4165(97)00038-X_BIB6
10.1016/S0304-4165(97)00038-X_BIB45
10.1016/S0304-4165(97)00038-X_BIB7
10.1016/S0304-4165(97)00038-X_BIB4
Wallet (10.1016/S0304-4165(97)00038-X_BIB44) 1993; 8
Kühnau (10.1016/S0304-4165(97)00038-X_BIB2) 1976; 24
Terao (10.1016/S0304-4165(97)00038-X_BIB19) 1994; 308
Michelson (10.1016/S0304-4165(97)00038-X_BIB29) 1981; 31
10.1016/S0304-4165(97)00038-X_BIB1
Yoku (10.1016/S0304-4165(97)00038-X_BIB13) 1995; 1234
Jensen (10.1016/S0304-4165(97)00038-X_BIB26) 1978; 32
Brown (10.1016/S0304-4165(97)00038-X_BIB3) 1980; 75
Crawford (10.1016/S0304-4165(97)00038-X_BIB17) 1961; 26
10.1016/S0304-4165(97)00038-X_BIB36
Vinson (10.1016/S0304-4165(97)00038-X_BIB12) 1995; 43
Rahman (10.1016/S0304-4165(97)00038-X_BIB21) 1989; 10
10.1016/S0304-4165(97)00038-X_BIB39
Parisis (10.1016/S0304-4165(97)00038-X_BIB5) 1987; 28
Wada (10.1016/S0304-4165(97)00038-X_BIB28) 1964; 2
Thulstrup (10.1016/S0304-4165(97)00038-X_BIB32) 1982; 104
Wu (10.1016/S0304-4165(97)00038-X_BIB15) 1994; 47
10.1016/S0304-4165(97)00038-X_BIB30
Deschner (10.1016/S0304-4165(97)00038-X_BIB8) 1993; 20
10.1016/S0304-4165(97)00038-X_BIB10
Broersma (10.1016/S0304-4165(97)00038-X_BIB34) 1960; 32
Jovanovic (10.1016/S0304-4165(97)00038-X_BIB11) 1994; 116
Nordén (10.1016/S0304-4165(97)00038-X_BIB33) 1992; 25
Ahmed (10.1016/S0304-4165(97)00038-X_BIB18) 1994; 9
References_xml – volume: 24
  start-page: 117
  year: 1976
  end-page: 191
  ident: BIB2
  publication-title: World Rev. Nutr. Diet
– volume: 57
  start-page: 984
  year: 1993
  end-page: 988
  ident: BIB20
  publication-title: Photochem. Photobiol.
– volume: 18
  start-page: 287
  year: 1996
  end-page: 295
  ident: BIB23
  publication-title: Int. J. Biol. Macrom.
– reference: D. Dunlap, B. Samorı̀, C. Bustamante, in: B. Samorı̀, E.W. Thulstrup (Eds.), Polarized Spectroscopy of Ordered Systems, Kluwer, Dordrecht, pp. 275-296.
– reference: K. Nakanishi, Infrared Absorption Spectroscopy, Holden-Day, San Francisco, CA/Nankodo, Tokyo, 1962.
– volume: 75
  start-page: 243
  year: 1980
  ident: BIB3
  publication-title: Mutat. Res.
– reference: A.K. Verma, in: C.-T. Ho, C.Y. Lee, M.-T. Huang (Eds.), Phenolic Compounds in Food and Their Effect on Health, vol. I, Am. Chem. Soc., Washington, DC, 1992, pp. 250–264.
– volume: 47
  start-page: 1099
  year: 1994
  end-page: 1103
  ident: BIB15
  publication-title: Biochem. Pharmacol.
– reference: L.J. Bellamy, The Infrared Spectra of Complex Molecules, Wiley, New York, 1958.
– volume: 8
  start-page: 325
  year: 1993
  end-page: 332
  ident: BIB44
  publication-title: Anticancer Drug Design
– volume: 28
  start-page: 583
  year: 1987
  end-page: 590
  ident: BIB5
  publication-title: Arch. Oral Biol.
– volume: 59
  start-page: 1
  year: 1986
  end-page: 15
  ident: BIB16
  publication-title: Chem. Biol. Interact.
– volume: 3
  start-page: 18
  year: 1961
  end-page: 30
  ident: BIB42
  publication-title: J. Mol. Biol.
– reference: C.R. Cantor, P.R. Schimmel, Biophysical Chemistry, Part II, W.H. Freeman, San Francisco, CA, 1980.
– volume: 43
  start-page: 2800
  year: 1995
  end-page: 2802
  ident: BIB12
  publication-title: J. Agric. Food Chem.
– volume: 1234
  start-page: 99
  year: 1995
  end-page: 104
  ident: BIB13
  publication-title: Biochim. Biophys. Acta, Biomembr.
– volume: 19
  start-page: 297
  year: 1965
  ident: BIB31
  publication-title: Math. Comput.
– reference: J.K. Weisburger, in: C.-T. Ho, C.Y. Lee, M.-T. Huang (Eds.), Phenolic Compounds in Food and Their Effect on Health, vol. I, Am. Chem. Soc., Washington, DC, 1992, pp. 35–47.
– volume: 116
  start-page: 4846
  year: 1994
  end-page: 4851
  ident: BIB11
  publication-title: J. Am. Chem. Soc.
– volume: 25
  start-page: 51
  year: 1992
  end-page: 170
  ident: BIB33
  publication-title: Q. Rev. Biophys. I
– volume: 32
  start-page: 1626
  year: 1960
  end-page: 1631
  ident: BIB34
  publication-title: J. Chem. Phys.
– volume: 26
  start-page: 139
  year: 1961
  end-page: 145
  ident: BIB17
  publication-title: J. Food Sci.
– reference: B. Samorı̀, P. Mariani, G.P. Spada, J. Chem. Soc. Perkin Trans. II (1982) 447–453.
– reference: E.E. Deschner, in: C.-T. Ho, C.Y. Lee, M.-T. Huang (Eds.), Phenolic Compounds in Food and Their Effect on Health, vol. I, Am. Chem. Soc., Washington, DC, 1992, pp. 265–268.
– reference: U. Burkert, N. Allinger, Molecular Mechanics, Am. Chem. Soc., Monogr. 177, 1982.
– volume: A2
  start-page: 853
  year: 1964
  ident: BIB35
  publication-title: J. Polym. Sci.
– volume: 43
  start-page: 876
  year: 1995
  end-page: 882
  ident: BIB22
  publication-title: J. Agric. Food Chem.
– reference: T. Leighton, C. Ginther, L. Fluss, W.L. Harter, J. Cansado, V. Nortario, in: C.-T. Ho, C.Y. Lee, M.-T. Huang (Eds.), Phenolic Compounds in Food and Their Effect on Health, vol. I, Am. Chem. Soc., Washington, DC, 1992, pp. 220–238.
– volume: 22
  start-page: 1731
  year: 1983
  end-page: 1746
  ident: BIB37
  publication-title: Biopolymers
– reference: P.R. Griffiths, J.A. Haseth, Fourier Transform Infrared Spectroscopy, Wiley, New York, 1986.
– reference: D. Lin-Vien, N.B. Colthup, W.G. Fateley, J.G. Grasselli, The Handbook of Infrared and Raman Characteristic Frequencies of Organic Molecules, Harcourt, Brace & Jovanovich/Academic Press, Boston, MA, 1991..
– reference: M.-T. Huang, T. Ferraro, in: C.-T. Ho, C.Y. Lee, M.-T. Huang (Eds.), Phenolic Compounds in Food and Their Effect on Health, vol. I, Am. Chem. Soc., Washington, DC, 1992, pp. 8–33.
– reference: J.B. Harborne, in: The Flavonoids: Advances in Research since 1980, Chapman and Hall, New York, 1988.
– volume: 9
  start-page: 193
  year: 1994
  end-page: 197
  ident: BIB18
  publication-title: Mutagenesis
– reference: N.J. Harrick, Internal Reflection Spectroscopy, Wiley, New York, 1967.
– volume: 32
  start-page: 192
  year: 1978
  end-page: 200
  ident: BIB26
  publication-title: Appl. Spectrosc.
– volume: 20
  start-page: 199
  year: 1993
  end-page: 204
  ident: BIB8
  publication-title: Diet. Nutr. Cancer
– volume: 308
  start-page: 278
  year: 1994
  end-page: 284
  ident: BIB19
  publication-title: Arch. Biochem. Biophys.
– volume: 37
  start-page: 837
  year: 1988
  end-page: 841
  ident: BIB14
  publication-title: Biochem. Pharmacol.
– volume: 29A
  start-page: 1761
  year: 1973
  end-page: 1772
  ident: BIB38
  publication-title: Spectrochim. Acta
– volume: 104
  start-page: 5594
  year: 1982
  end-page: 5604
  ident: BIB32
  publication-title: J. Am. Chem. Soc.
– volume: 10
  start-page: 1833
  year: 1989
  end-page: 1839
  ident: BIB21
  publication-title: Carcinogenesis
– volume: 2
  start-page: 361
  year: 1964
  ident: BIB28
  publication-title: Biopolymers
– volume: 31
  start-page: 256
  year: 1981
  ident: BIB29
  publication-title: Philos. Mag.
– volume: 83
  start-page: 555
  year: 1979
  ident: BIB24
  publication-title: J. Phys. Chem.
– ident: 10.1016/S0304-4165(97)00038-X_BIB25
– ident: 10.1016/S0304-4165(97)00038-X_BIB7
  doi: 10.1021/bk-1992-0507.ch003
– volume: 116
  start-page: 4846
  year: 1994
  ident: 10.1016/S0304-4165(97)00038-X_BIB11
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00090a032
– volume: 3
  start-page: 18
  year: 1961
  ident: 10.1016/S0304-4165(97)00038-X_BIB42
  publication-title: J. Mol. Biol.
  doi: 10.1016/S0022-2836(61)80004-1
– ident: 10.1016/S0304-4165(97)00038-X_BIB9
  doi: 10.1021/bk-1992-0507.ch016
– ident: 10.1016/S0304-4165(97)00038-X_BIB40
– ident: 10.1016/S0304-4165(97)00038-X_BIB10
  doi: 10.1021/bk-1992-0507.ch002
– volume: 43
  start-page: 876
  year: 1995
  ident: 10.1016/S0304-4165(97)00038-X_BIB22
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/jf00052a006
– volume: 32
  start-page: 1626
  year: 1960
  ident: 10.1016/S0304-4165(97)00038-X_BIB34
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1730994
– volume: 57
  start-page: 984
  issue: 6
  year: 1993
  ident: 10.1016/S0304-4165(97)00038-X_BIB20
  publication-title: Photochem. Photobiol.
  doi: 10.1111/j.1751-1097.1993.tb02959.x
– volume: 59
  start-page: 1
  year: 1986
  ident: 10.1016/S0304-4165(97)00038-X_BIB16
  publication-title: Chem. Biol. Interact.
  doi: 10.1016/S0009-2797(86)80051-5
– volume: 9
  start-page: 193
  issue: 3
  year: 1994
  ident: 10.1016/S0304-4165(97)00038-X_BIB18
  publication-title: Mutagenesis
  doi: 10.1093/mutage/9.3.193
– volume: 308
  start-page: 278
  year: 1994
  ident: 10.1016/S0304-4165(97)00038-X_BIB19
  publication-title: Arch. Biochem. Biophys.
  doi: 10.1006/abbi.1994.1039
– volume: 83
  start-page: 555
  year: 1979
  ident: 10.1016/S0304-4165(97)00038-X_BIB24
  publication-title: J. Phys. Chem.
  doi: 10.1021/j100468a001
– volume: 20
  start-page: 199
  year: 1993
  ident: 10.1016/S0304-4165(97)00038-X_BIB8
  publication-title: Diet. Nutr. Cancer
  doi: 10.1080/01635589309514287
– ident: 10.1016/S0304-4165(97)00038-X_BIB39
– volume: 37
  start-page: 837
  issue: 5
  year: 1988
  ident: 10.1016/S0304-4165(97)00038-X_BIB14
  publication-title: Biochem. Pharmacol.
  doi: 10.1016/0006-2952(88)90169-4
– ident: 10.1016/S0304-4165(97)00038-X_BIB27
  doi: 10.1039/P29820000447
– volume: 8
  start-page: 325
  year: 1993
  ident: 10.1016/S0304-4165(97)00038-X_BIB44
  publication-title: Anticancer Drug Design
– ident: 10.1016/S0304-4165(97)00038-X_BIB4
  doi: 10.1021/bk-1992-0507.ch019
– volume: 43
  start-page: 2800
  year: 1995
  ident: 10.1016/S0304-4165(97)00038-X_BIB12
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/jf00059a005
– volume: 25
  start-page: 51
  year: 1992
  ident: 10.1016/S0304-4165(97)00038-X_BIB33
  publication-title: Q. Rev. Biophys. I
  doi: 10.1017/S0033583500004728
– volume: 22
  start-page: 1731
  year: 1983
  ident: 10.1016/S0304-4165(97)00038-X_BIB37
  publication-title: Biopolymers
  doi: 10.1002/bip.360220709
– volume: 2
  start-page: 361
  year: 1964
  ident: 10.1016/S0304-4165(97)00038-X_BIB28
  publication-title: Biopolymers
  doi: 10.1002/bip.1964.360020407
– volume: 19
  start-page: 297
  year: 1965
  ident: 10.1016/S0304-4165(97)00038-X_BIB31
  publication-title: Math. Comput.
  doi: 10.1090/S0025-5718-1965-0178586-1
– volume: 75
  start-page: 243
  year: 1980
  ident: 10.1016/S0304-4165(97)00038-X_BIB3
  publication-title: Mutat. Res.
  doi: 10.1016/0165-1110(80)90029-9
– volume: 47
  start-page: 1099
  issue: 6
  year: 1994
  ident: 10.1016/S0304-4165(97)00038-X_BIB15
  publication-title: Biochem. Pharmacol.
  doi: 10.1016/0006-2952(94)90424-3
– volume: 10
  start-page: 1833
  issue: 10
  year: 1989
  ident: 10.1016/S0304-4165(97)00038-X_BIB21
  publication-title: Carcinogenesis
  doi: 10.1093/carcin/10.10.1833
– volume: 26
  start-page: 139
  year: 1961
  ident: 10.1016/S0304-4165(97)00038-X_BIB17
  publication-title: J. Food Sci.
  doi: 10.1111/j.1365-2621.1961.tb00783.x
– ident: 10.1016/S0304-4165(97)00038-X_BIB45
– volume: 1234
  start-page: 99
  issue: 1
  year: 1995
  ident: 10.1016/S0304-4165(97)00038-X_BIB13
  publication-title: Biochim. Biophys. Acta, Biomembr.
  doi: 10.1016/0005-2736(94)00262-N
– ident: 10.1016/S0304-4165(97)00038-X_BIB1
  doi: 10.1007/978-1-4899-2913-6
– ident: 10.1016/S0304-4165(97)00038-X_BIB43
– ident: 10.1016/S0304-4165(97)00038-X_BIB41
– volume: 31
  start-page: 256
  issue: 5
  year: 1981
  ident: 10.1016/S0304-4165(97)00038-X_BIB29
  publication-title: Philos. Mag.
– volume: 28
  start-page: 583
  year: 1987
  ident: 10.1016/S0304-4165(97)00038-X_BIB5
  publication-title: Arch. Oral Biol.
  doi: 10.1016/0003-9969(83)90005-5
– volume: 24
  start-page: 117
  year: 1976
  ident: 10.1016/S0304-4165(97)00038-X_BIB2
  publication-title: World Rev. Nutr. Diet
  doi: 10.1159/000399407
– ident: 10.1016/S0304-4165(97)00038-X_BIB6
  doi: 10.1021/bk-1992-0507.ch018
– volume: 18
  start-page: 287
  year: 1996
  ident: 10.1016/S0304-4165(97)00038-X_BIB23
  publication-title: Int. J. Biol. Macrom.
  doi: 10.1016/0141-8130(95)01089-0
– volume: 32
  start-page: 192
  year: 1978
  ident: 10.1016/S0304-4165(97)00038-X_BIB26
  publication-title: Appl. Spectrosc.
  doi: 10.1366/000370278774331567
– ident: 10.1016/S0304-4165(97)00038-X_BIB36
– volume: 29A
  start-page: 1761
  year: 1973
  ident: 10.1016/S0304-4165(97)00038-X_BIB38
  publication-title: Spectrochim. Acta
  doi: 10.1016/0584-8539(73)80163-1
– ident: 10.1016/S0304-4165(97)00038-X_BIB30
– volume: A2
  start-page: 853
  year: 1964
  ident: 10.1016/S0304-4165(97)00038-X_BIB35
  publication-title: J. Polym. Sci.
– volume: 104
  start-page: 5594
  year: 1982
  ident: 10.1016/S0304-4165(97)00038-X_BIB32
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00385a005
SSID ssj0000595
ssj0025309
Score 1.73073
Snippet Previous studies showed evidence that quercetin can bind DNA by intercalation [R. Solimani et al., J. Agric. Food Chem. 43 (1995) 876–882] and a comparison...
Previous studies showed evidence that quercetin can bind DNA by intercalation [R. Solimani et al., J. Agric. Food Chem. 43 (1995) 876-882] and a comparison...
SourceID proquest
pubmed
crossref
fao
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 281
SubjectTerms Anisotropy
chemistry
DNA
DNA - chemistry
Flavonoids
Flavonoids - chemistry
Flavonols-benzopyranic-4-one plane
Hydrophilic and hydrophobic environment
Linear dichroism
Nucleophilic intercalator
plant biochemistry
plant physiology
Quercetin
Quercetin - chemistry
Rutin
Rutin - chemistry
Solutions
Spectrophotometry, Ultraviolet
Spectroscopy, Fourier Transform Infrared
Title The flavonols quercetin, rutin and morin in DNA solution: UV–vis dichroic (and mid-infrared) analysis explain the possible association between the biopolymer and a nucleophilic vegetable-dye
URI https://dx.doi.org/10.1016/S0304-4165(97)00038-X
https://www.ncbi.nlm.nih.gov/pubmed/9305801
https://www.proquest.com/docview/48477250
https://www.proquest.com/docview/79300712
Volume 1336
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LbtNAFB2VIgSbCgpVQ6HMgkUr4SYTj1_sokAViMiCEvBuNM_WUmpHThqRDeIf-CG-hS_hXj8asYgqIVmyNL4zGnvO3DnyfRHymjs_jlnPeXEQK4-7HupBrjxmo14g_cQFBgOcP03C0ZR_TIN0hwzbWBh0q2x0f63TK23dtHSbr9mdZ1n3Ao16QCeAEVf2rRQj2HmEKD_7sXHzAPoQ1JYE7qH0JoqnHqFqPEmi02oQL912Pt1zstjOQqvT6Pwx2WtoJB3UM31Cdmy-Tx7UhSXX--ThsK3j9pT8BiRQN5OrIi9mCwrjlhrjnN_QEkCXU5kbeo1ueBSud5MBbdH4lk6__vn5a5UtqMn0VVlkmp5U0pnxAJgl-q6fQv86rQm13-czCWMApaTzAvfazFK5WX7a-IRVAirD6gzra1tWE5A0x8TKxRz_72i6spd2iUFdnlnbZ2R6_v7LcOQ1dRs8zWO29GzMIu0SFSmVWJewxEm0HsIxKEPrbBJr2w8NEOUosdoZEznOtALiYpk2zDf-AdnNi9weEip9o5hyzNc8xFRyihnnkp6JYuXCPvc7hLerJXST1Bxra8zExnsNFlngIova1O7HIu2Qs9tu8zqrx10d4hYK4h94Cjh57up6CNAR8hKUtphe9CtTMZYRYFGHvGrxJAAUaKqRuS1uFoIDaYiAnW6XAL2K9LDfIQc1EG9fBB4EwDue__-Uj8ijOksvBui8ILvL8sa-BO61VMfV5jom9wcfxqMJ3sefv43_Asd6LM8
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LbtNAFB21RahsEBSqhldnwaKVcJOJxy92VaAK0GbTBmU3mmex5NqWk0Zkg_gHfohv4Uu4149GLKJKSF7Zd0Zj3zN3jnxfhLzlzo9jNnBeHMTK426AdpArj9loEEg_cYHBBOeLSTie8s-zYLZFRl0uDIZVtra_sem1tW7v9Nuv2S_TtH-JTj2gE8CIa__WbJs84LB9sY3ByY91nAfwh6BxJXAPxddpPM0U9c2jJDquZ_Fmmw6obSeLzTS0Po7OnpDHLY-kp81Sn5Itm--Rh01nydUe2R11jdyekd8ABeoyuSzyIptTmLfSmOj8jlaAupzK3NAbjMOjcH2YnNIOju_p9Oufn7-W6ZyaVH-rilTTo1o6NR4gs8Lg9WMY39Q1ofZ7mUmYAzglLQvcbJmlcq1_2gaF1QIqxfYMqxtb1QuQNMfKykWJP3g0Xdpru8CsLs-s7HMyPft4NRp7beMGT_OYLTwbs0i7REVKJdYlLHES3YdwDsrQOpvE2g5DA0w5Sqx2xkSOM62AuVimDfONv0928iK3B4RK3yimHPM1D7GWnGLGuWRgoli5cMj9HuGdtoRuq5pjc41MrMPXQMkClSwaX7sfi1mPnNwNK5uyHvcNiDsoiH_wKeDouW_oAUBHyGuw2mJ6Oax9xdhHgEU9ctjhSQAo0Fcjc1vczgUH1hABPd0sAYYV-eGwR_YbIN69CDwIgHi8-P8lH5Ld8dXFuTj_NPnykjxqSvZits4rsrOobu1rIGIL9abeaH8B-Qcsug
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+flavonols+quercetin%2C+rutin+and+morin+in+DNA+solution%3A+UV%E2%80%93vis+dichroic+%28and+mid-infrared%29+analysis+explain+the+possible+association+between+the+biopolymer+and+a+nucleophilic+vegetable-dye&rft.jtitle=Biochimica+et+biophysica+acta.+General+subjects&rft.au=Solimani%2C+Riccardo&rft.date=1997-08-29&rft.issn=0304-4165&rft.volume=1336&rft.issue=2&rft.spage=281&rft.epage=294&rft_id=info:doi/10.1016%2FS0304-4165%2897%2900038-X&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_S0304_4165_97_00038_X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-4165&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-4165&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-4165&client=summon