The flavonols quercetin, rutin and morin in DNA solution: UV–vis dichroic (and mid-infrared) analysis explain the possible association between the biopolymer and a nucleophilic vegetable-dye
Previous studies showed evidence that quercetin can bind DNA by intercalation [R. Solimani et al., J. Agric. Food Chem. 43 (1995) 876–882] and a comparison with the flavanol dihydroquercetin indicated that the interaction is correlated to the planarity and hydrophobicity of the benzopyranic-4-one pl...
Saved in:
Published in | Biochimica et biophysica acta Vol. 1336; no. 2; pp. 281 - 294 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
29.08.1997
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Previous studies showed evidence that quercetin can bind DNA by intercalation [R. Solimani et al., J. Agric. Food Chem. 43 (1995) 876–882] and a comparison with the flavanol dihydroquercetin indicated that the interaction is correlated to the planarity and hydrophobicity of the benzopyranic-4-one plane [R. Solimani, Int. J. Biol. Macromol. 18 (1996) 287–295]. In this study flow linear dichroism (LD) spectra of the hydrophobic quercetin were compared with hydrophilic aglycoside morin and 3-glycoside rutin in the same conditions: [DNA]=3.1·10
−2 mol/l phosphate, [dye]=(1.0–4.0)·10
−4 mol/l. Morin and rutin in an aqueous environment showed the same behaviour as quercetin in buffer–ethanol (70:30, v/v) solution, with their common benzopyranic-4-one part within the biopolymer. The LD
R values (LD normalised to the relative isotropic absorption) indicated a greater affinity of the quercetin for the DNA. Comparison of the LD
R of morin and rutin showed a ratio LD
morin
R/LD
rutin
R≈1.1–1.2 very close to unity and this suggests the localisation of the 3-rutinoside of rutin outside the intercalation site. Dichroic measurements recorded in extreme conditions of concentration partly clarified the sequences of interaction between quercetin and DNA in solution which shows the prototypical behaviour of the flavonolic group. This consists of an initial weak external association, where an electrostatic component is excluded, and which can evolve to intercalation changing the DNA concentration, whereas the quantity of the flavonol influences relatively the association. The carbonylic region of the benzopyranic-4-one chromophore is probably localised outside the intercalation site. This was suggested by indirect infrared (attenuated total reflection ATR) data of the quercetin–ethanol solution: the presence of free and chelated carbonyl determines a greater density of negative charges in this region of the chromophore, with the consequent lower probability of this portion penetrating the external polyanionic perimeter of the DNA. A simple approach to determine the order of magnitude of the anisotropic band II of the flavonols completely covered by the more intense DNA band at 260 nm, was also proposed. The low number of intercalated chromophores did not determine an alteration of the flexibility and hydrodynamic behaviour of the biopolymer and this can be correlated to a biological consideration: the flavonols probably do not interfere with the genetic functionality of the DNA. In contrast, the potentially close relationship between these nucleophilic dyes and the biopolymer, shown in this study, suggests a protective role on the nucleophilic groups of the DNA, which are a target of free radicals and the reactive electrophilic groups. |
---|---|
AbstractList | Previous studies showed evidence that quercetin can bind DNA by intercalation [R. Solimani et al., J. Agric. Food Chem. 43 (1995) 876-882] and a comparison with the flavanol dihydroquercetin indicated that the interaction is correlated to the planarity and hydrophobicity of the benzopyranic-4-one plane [R. Solimani, Int. J. Biol. Macromol. 18 (1996) 287-295]. In this study flow linear dichroism (LD) spectra of the hydrophobic quercetin were compared with hydrophilic aglycoside morin and 3-glycoside rutin in the same conditions: [DNA] = 3.1 x 10(-2) mol/l phosphate, [dye] = (1.0-4.0) x 10(-4) mol/l. Morin and rutin in an aqueous environment showed the same behaviour as quercetin in buffer-ethanol (70:30, v/v) solution, with their common benzopyranic-4-one part within the biopolymer. The LD(R) values (LD normalised to the relative isotropic absorption) indicated a greater affinity of the quercetin for the DNA. Comparison of the LD(R) of morin and rutin showed a ratio LD(R)morin/LD(R)rutin approximately 1.1-1.2 very close to unity and this suggests the localisation of the 3-rutinoside of rutin outside the intercalation site. Dichroic measurements recorded in extreme conditions of concentration partly clarified the sequences of interaction between quercetin and DNA in solution which shows the prototypical behaviour of the flavonolic group. This consists of an initial weak external association, where an electrostatic component is excluded, and which can evolve to intercalation changing the DNA concentration, whereas the quantity of the flavonol influences relatively the association. The carbonylic region of the benzopyranic-4-one chromophore is probably localised outside the intercalation site. This was suggested by indirect infrared (attenuated total reflection ATR) data of the quercetin-ethanol solution: the presence of free and chelated carbonyl determines a greater density of negative charges in this region of the chromophore, with the consequent lower probability of this portion penetrating the external polyanionic perimeter of the DNA. A simple approach to determine the order of magnitude of the anisotropic band II of the flavonols completely covered by the more intense DNA band at 260 nm, was also proposed. The low number of intercalated chromophores did not determine an alteration of the flexibility and hydrodynamic behaviour of the biopolymer and this can be correlated to a biological consideration: the flavonols probably do not interfere with the genetic functionality of the DNA. In contrast, the potentially close relationship between these nucleophilic dyes and the biopolymer, shown in this study, suggests a protective role on the nucleophilic groups of the DNA, which are a target of free radicals and the reactive electrophilic groups. Previous studies showed evidence that quercetin can bind DNA by intercalation [R. Solimani et al., J. Agric. Food Chem. 43 (1995) 876–882] and a comparison with the flavanol dihydroquercetin indicated that the interaction is correlated to the planarity and hydrophobicity of the benzopyranic-4-one plane [R. Solimani, Int. J. Biol. Macromol. 18 (1996) 287–295]. In this study flow linear dichroism (LD) spectra of the hydrophobic quercetin were compared with hydrophilic aglycoside morin and 3-glycoside rutin in the same conditions: [DNA]=3.1·10 −2 mol/l phosphate, [dye]=(1.0–4.0)·10 −4 mol/l. Morin and rutin in an aqueous environment showed the same behaviour as quercetin in buffer–ethanol (70:30, v/v) solution, with their common benzopyranic-4-one part within the biopolymer. The LD R values (LD normalised to the relative isotropic absorption) indicated a greater affinity of the quercetin for the DNA. Comparison of the LD R of morin and rutin showed a ratio LD morin R/LD rutin R≈1.1–1.2 very close to unity and this suggests the localisation of the 3-rutinoside of rutin outside the intercalation site. Dichroic measurements recorded in extreme conditions of concentration partly clarified the sequences of interaction between quercetin and DNA in solution which shows the prototypical behaviour of the flavonolic group. This consists of an initial weak external association, where an electrostatic component is excluded, and which can evolve to intercalation changing the DNA concentration, whereas the quantity of the flavonol influences relatively the association. The carbonylic region of the benzopyranic-4-one chromophore is probably localised outside the intercalation site. This was suggested by indirect infrared (attenuated total reflection ATR) data of the quercetin–ethanol solution: the presence of free and chelated carbonyl determines a greater density of negative charges in this region of the chromophore, with the consequent lower probability of this portion penetrating the external polyanionic perimeter of the DNA. A simple approach to determine the order of magnitude of the anisotropic band II of the flavonols completely covered by the more intense DNA band at 260 nm, was also proposed. The low number of intercalated chromophores did not determine an alteration of the flexibility and hydrodynamic behaviour of the biopolymer and this can be correlated to a biological consideration: the flavonols probably do not interfere with the genetic functionality of the DNA. In contrast, the potentially close relationship between these nucleophilic dyes and the biopolymer, shown in this study, suggests a protective role on the nucleophilic groups of the DNA, which are a target of free radicals and the reactive electrophilic groups. Previous studies showed evidence that quercetin can bind DNA by intercalation [R. Solimani et al., J. Agric. Food Chem. 43 (1995) 876-882] and a comparison with the flavanol dihydroquercetin indicated that the interaction is correlated to the planarity and hydrophobicity of the benzopyranic-4-one plane [R. Solimani, Int. J. Biol. Macromol. 18 (1996) 287-295]. In this study flow linear dichroism (LD) spectra of the hydrophobic quercetin were compared with hydrophilic aglycoside morin and 3-glycoside rutin in the same conditions: [DNA] = 3.1 x 10(-2) mol/l phosphate, [dye] = (1.0-4.0) x 10(-4) mol/l. Morin and rutin in an aqueous environment showed the same behaviour as quercetin in buffer-ethanol (70:30, v/v) solution, with their common benzopyranic-4-one part within the biopolymer. The LD(R) values (LD normalised to the relative isotropic absorption) indicated a greater affinity of the quercetin for the DNA. Comparison of the LD(R) of morin and rutin showed a ratio LD(R)morin/LD(R)rutin approximately 1.1-1.2 very close to unity and this suggests the localisation of the 3-rutinoside of rutin outside the intercalation site. Dichroic measurements recorded in extreme conditions of concentration partly clarified the sequences of interaction between quercetin and DNA in solution which shows the prototypical behaviour of the flavonolic group. This consists of an initial weak external association, where an electrostatic component is excluded, and which can evolve to intercalation changing the DNA concentration, whereas the quantity of the flavonol influences relatively the association. The carbonylic region of the benzopyranic-4-one chromophore is probably localised outside the intercalation site. This was suggested by indirect infrared (attenuated total reflection ATR) data of the quercetin-ethanol solution: the presence of free and chelated carbonyl determines a greater density of negative charges in this region of the chromophore, with the consequent lower probability of this portion penetrating the external polyanionic perimeter of the DNA. A simple approach to determine the order of magnitude of the anisotropic band II of the flavonols completely covered by the more intense DNA band at 260 nm, was also proposed. The low number of intercalated chromophores did not determine an alteration of the flexibility and hydrodynamic behaviour of the biopolymer and this can be correlated to a biological consideration: the flavonols probably do not interfere with the genetic functionality of the DNA. In contrast, the potentially close relationship between these nucleophilic dyes and the biopolymer, shown in this study, suggests a protective role on the nucleophilic groups of the DNA, which are a target of free radicals and the reactive electrophilic groups.Previous studies showed evidence that quercetin can bind DNA by intercalation [R. Solimani et al., J. Agric. Food Chem. 43 (1995) 876-882] and a comparison with the flavanol dihydroquercetin indicated that the interaction is correlated to the planarity and hydrophobicity of the benzopyranic-4-one plane [R. Solimani, Int. J. Biol. Macromol. 18 (1996) 287-295]. In this study flow linear dichroism (LD) spectra of the hydrophobic quercetin were compared with hydrophilic aglycoside morin and 3-glycoside rutin in the same conditions: [DNA] = 3.1 x 10(-2) mol/l phosphate, [dye] = (1.0-4.0) x 10(-4) mol/l. Morin and rutin in an aqueous environment showed the same behaviour as quercetin in buffer-ethanol (70:30, v/v) solution, with their common benzopyranic-4-one part within the biopolymer. The LD(R) values (LD normalised to the relative isotropic absorption) indicated a greater affinity of the quercetin for the DNA. Comparison of the LD(R) of morin and rutin showed a ratio LD(R)morin/LD(R)rutin approximately 1.1-1.2 very close to unity and this suggests the localisation of the 3-rutinoside of rutin outside the intercalation site. Dichroic measurements recorded in extreme conditions of concentration partly clarified the sequences of interaction between quercetin and DNA in solution which shows the prototypical behaviour of the flavonolic group. This consists of an initial weak external association, where an electrostatic component is excluded, and which can evolve to intercalation changing the DNA concentration, whereas the quantity of the flavonol influences relatively the association. The carbonylic region of the benzopyranic-4-one chromophore is probably localised outside the intercalation site. This was suggested by indirect infrared (attenuated total reflection ATR) data of the quercetin-ethanol solution: the presence of free and chelated carbonyl determines a greater density of negative charges in this region of the chromophore, with the consequent lower probability of this portion penetrating the external polyanionic perimeter of the DNA. A simple approach to determine the order of magnitude of the anisotropic band II of the flavonols completely covered by the more intense DNA band at 260 nm, was also proposed. The low number of intercalated chromophores did not determine an alteration of the flexibility and hydrodynamic behaviour of the biopolymer and this can be correlated to a biological consideration: the flavonols probably do not interfere with the genetic functionality of the DNA. In contrast, the potentially close relationship between these nucleophilic dyes and the biopolymer, shown in this study, suggests a protective role on the nucleophilic groups of the DNA, which are a target of free radicals and the reactive electrophilic groups. Previous studies showed evidence that quercetin can bind DNA by intercalation [R. Solimani et al., J. Agric. Food Chem. 43 (1995) 876-882] and a comparison with the flavanol dihydroquercetin indicated that the interaction is correlated to the planarity and hydrophobicity of the benzopyranic-4-one plane [R. Solimani, Int. J. Biol. Macromol. 18 (1996) 287-295]. In this study flow linear dichroism (LD) spectra of the hydrophobic quercetin were compared with hydrophilic aglycoside morin and 3-glycoside rutin in the same conditions: [DNA] = 3.1 . 10(-2) mol/l phosphate, [dye] = (1.0-4.0) . 10(-4) mol/l. Morin and rutin in an aqueous environment showed the same behaviour as quercetin in buffer-ethanol (70:30, v/v) solution, with their common benzopyranic-4-one part within the biopolymer. The LD(R) values (LD normalised to the relative isotropic absorption) indicated a greater affinity of the quercetin for the DNA. Comparison of the LD(R) of morin and rutin showed a ratio LD(R) morin/LD(R) rutin approximately 1.1-1.2 very close to unity and this suggests the localisation of the 3-rutinoside of rutin outside the intercalation site. Dichroic measurements recorded in extreme conditions of concentration partly clarified the sequences of interaction between quercetin and DNA in solution which shows the prototypical behaviour of the flavonolic group. This consists of an initial weak external association, where an electrostatic component is excluded, and which can evolve to intercalation changing the DNA concentration, whereas the quantity of the flavonol influences relatively the association. The carbonylic region of the benzopyranic-4-one chromophore is probably localised outside the intercalation site. This was suggested by indirect infrared (attenuated total reflection ATR) data of the quercetin-ethanol solution: the presence of free and chelated carbonyl determines a greater density of negative charges in this region of the chromophore, with the consequent lower probability of this portion penetrating the external polyanionic perimeter of the DNA. A simple approach to determine the order of magnitude of the anisotropic band II of the flavonols completely covered by the more intense DNA band at 260 nm, was also proposed. The low number of intercalated chromophores did not determine an alteration of the flexibility and hydrodynamic behaviour of the biopolymer and this can be correlated to a biological consideration: the flavonols probably do not interfere with the genetic functionality of the DNA. In contrast, the potentially close relationship between these nucleophilic dyes and the biopolymer, shown in this study, suggests a protective role on the nucleophilic groups of the DNA, which are a target of free radicals and the reactive electrophilic groups. |
Author | Solimani, Riccardo |
Author_xml | – sequence: 1 givenname: Riccardo surname: Solimani fullname: Solimani, Riccardo organization: Dipartimento di Protezione e Valorizzazione Agroalimentare, Università degli Studi di Bologna, Via S. Giacomo, 7, I-40126 Bologna, Italy |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/9305801$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkktuFDEQhi0UFCaBI0R4hRIpDXa_3IYFihJeUgSLZFB2ltsuZ4zc7cbuGZgdd-BCnIWT4JkeWLAZyVJZqu-vKv1VR-ig9z0gdELJc0po_eKGFKTMSlpXp5ydEUKKJrt7gGa0YXnWEFIfoNk_5BE6ivFLgkjFq0N0yAtSNYTO0K_bBWDj5Mr33kX8dQlBwWj7cxyWKWDZa9z5kH7pXX28wNG7lPD9Szz__PvHz5WNWFu1CN4qfLqlrc5sb4IMoM-SXrp1TBB8H5xMNcbUb_Ax2tYBljF6ZeWmHm5h_AYwAa31g3frDsJ2AIn7pXLgh4V1qc0K7mGUSZ_pNTxGD410EZ7s4jGav31ze_k-u_707sPlxXWmyoaOGTSUKcNb1rYcDKfcyIIzXjIqazDAGwV5rRuqGQdltGampKolnAJVmha6OEbPprpD8MmlOIrORgXOyR78MgqWLCWM5nvBsikZyyuSwJMduGw70GIItpNhLXa7SflXU16F5FcAI5Qdt16NQVonKBGbQxDbQxCbLQvOxPYQxF1SV_-p_9bfp3s66Yz0Qt4HG8X8Jk_jkLxhFaMsEa8nApLdKwtBRGWhV6BtADUK7e2eHn8ADL_Z3Q |
CitedBy_id | crossref_primary_10_1016_j_cbi_2014_06_027 crossref_primary_10_1016_j_snb_2007_09_082 crossref_primary_10_1016_j_cryobiol_2020_04_010 crossref_primary_10_1016_j_ijms_2009_01_007 crossref_primary_10_1016_j_jcis_2006_06_045 crossref_primary_10_1016_S0006_291X_03_01006_4 crossref_primary_10_1016_j_saa_2009_12_083 crossref_primary_10_1016_j_jinorgbio_2007_01_005 crossref_primary_10_1016_j_molstruc_2008_10_032 crossref_primary_10_1093_jxb_err416 crossref_primary_10_1016_j_fshw_2018_08_001 crossref_primary_10_1016_j_jasms_2008_04_018 crossref_primary_10_1039_c1an15652g crossref_primary_10_1002_bio_2583 crossref_primary_10_1007_s11581_023_05356_6 crossref_primary_10_1111_tpj_13559 crossref_primary_10_1016_j_saa_2009_09_022 crossref_primary_10_1016_j_molstruc_2010_04_039 crossref_primary_10_1016_j_colsurfa_2005_09_009 crossref_primary_10_1002_bio_4140 crossref_primary_10_3892_ijmm_2016_2764 crossref_primary_10_1002_cjoc_20040221122 crossref_primary_10_1007_s10973_010_0864_z crossref_primary_10_1016_j_jlumin_2009_04_030 crossref_primary_10_1016_j_bcp_2006_09_024 crossref_primary_10_1016_j_vibspec_2017_05_008 crossref_primary_10_1246_cl_2007_84 crossref_primary_10_1016_j_bcab_2020_101683 crossref_primary_10_1016_j_colsurfb_2014_01_057 crossref_primary_10_1016_j_theriogenology_2012_06_032 crossref_primary_10_1021_np070285u crossref_primary_10_1016_j_jpba_2007_08_007 crossref_primary_10_1016_j_cbi_2016_08_020 crossref_primary_10_1016_S0006_2952_02_01521_6 crossref_primary_10_1039_b800268a crossref_primary_10_1016_j_bmcl_2006_03_087 crossref_primary_10_1016_j_electacta_2008_09_038 crossref_primary_10_1080_07391102_2023_2192792 crossref_primary_10_1016_j_chroma_2013_01_060 crossref_primary_10_1016_S0026_265X_01_00118_7 crossref_primary_10_1016_j_lwt_2006_06_007 |
Cites_doi | 10.1021/bk-1992-0507.ch003 10.1021/ja00090a032 10.1016/S0022-2836(61)80004-1 10.1021/bk-1992-0507.ch016 10.1021/bk-1992-0507.ch002 10.1021/jf00052a006 10.1063/1.1730994 10.1111/j.1751-1097.1993.tb02959.x 10.1016/S0009-2797(86)80051-5 10.1093/mutage/9.3.193 10.1006/abbi.1994.1039 10.1021/j100468a001 10.1080/01635589309514287 10.1016/0006-2952(88)90169-4 10.1039/P29820000447 10.1021/bk-1992-0507.ch019 10.1021/jf00059a005 10.1017/S0033583500004728 10.1002/bip.360220709 10.1002/bip.1964.360020407 10.1090/S0025-5718-1965-0178586-1 10.1016/0165-1110(80)90029-9 10.1016/0006-2952(94)90424-3 10.1093/carcin/10.10.1833 10.1111/j.1365-2621.1961.tb00783.x 10.1016/0005-2736(94)00262-N 10.1007/978-1-4899-2913-6 10.1016/0003-9969(83)90005-5 10.1159/000399407 10.1021/bk-1992-0507.ch018 10.1016/0141-8130(95)01089-0 10.1366/000370278774331567 10.1016/0584-8539(73)80163-1 10.1021/ja00385a005 |
ContentType | Journal Article |
Copyright | 1997 Elsevier Science B.V. |
Copyright_xml | – notice: 1997 Elsevier Science B.V. |
DBID | FBQ AAYXX CITATION CGR CUY CVF ECM EIF NPM 7S9 L.6 7X8 |
DOI | 10.1016/S0304-4165(97)00038-X |
DatabaseName | AGRIS CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Biology |
EISSN | 1872-8006 |
EndPage | 294 |
ExternalDocumentID | 9305801 10_1016_S0304_4165_97_00038_X US201302875717 S030441659700038X |
Genre | Journal Article |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23N 3O- 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ 9JM AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABGSF ABMAC ABUDA ABXDB ABYKQ ACDAQ ACIUM ACRLP ADBBV ADEZE ADMUD ADUVX AEBSH AEHWI AEKER AFKWA AFTJW AFXIZ AGHFR AGRDE AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DOVZS EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLW HVGLF HZ~ IHE J1W KOM LX3 M41 MO0 N9A O-L O9- OAUVE OHT OZT P-8 P-9 PC. Q38 R2- ROL RPZ SBG SCC SDF SDG SDP SES SEW SPCBC SSU SSZ T5K UQL WH7 WUQ XJT XPP ~G- -~X .55 .GJ AAYJJ ABJNI ABWVN ACRPL ADNMO AFFNX AI. AKRWK F5P FBQ H~9 K-O MVM RIG TWZ UHS VH1 X7M Y6R YYP ZE2 ZGI ~KM AAHBH AATTM AAXKI AAYWO AAYXX ACVFH ADCNI AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP ANKPU APXCP BNPGV CITATION SSH CGR CUY CVF ECM EIF NPM 7S9 L.6 7X8 |
ID | FETCH-LOGICAL-c481t-e817cf9b7bb9ef919fa3979471a6efe98ce26d81d79ecfdd7f41cb091e1cd13d3 |
IEDL.DBID | .~1 |
ISSN | 0304-4165 0006-3002 |
IngestDate | Fri Jul 11 02:35:02 EDT 2025 Thu Jul 10 23:38:30 EDT 2025 Mon Jul 21 06:01:03 EDT 2025 Tue Jul 01 03:48:50 EDT 2025 Thu Apr 24 22:54:24 EDT 2025 Thu Apr 03 09:41:06 EDT 2025 Fri Feb 23 02:32:49 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Nucleophilic intercalator Hydrophilic and hydrophobic environment Linear dichroism Flavonols-benzopyranic-4-one plane |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c481t-e817cf9b7bb9ef919fa3979471a6efe98ce26d81d79ecfdd7f41cb091e1cd13d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 9305801 |
PQID | 48477250 |
PQPubID | 24069 |
PageCount | 14 |
ParticipantIDs | proquest_miscellaneous_79300712 proquest_miscellaneous_48477250 pubmed_primary_9305801 crossref_citationtrail_10_1016_S0304_4165_97_00038_X crossref_primary_10_1016_S0304_4165_97_00038_X fao_agris_US201302875717 elsevier_sciencedirect_doi_10_1016_S0304_4165_97_00038_X |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 1900 |
PublicationDate | 1997-08-29 |
PublicationDateYYYYMMDD | 1997-08-29 |
PublicationDate_xml | – month: 08 year: 1997 text: 1997-08-29 day: 29 |
PublicationDecade | 1990 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Biochimica et biophysica acta |
PublicationTitleAlternate | Biochim Biophys Acta |
PublicationYear | 1997 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Wada, Kozawa (BIB35) 1964; A2 Robak, Gryglewski (BIB14) 1988; 37 Broersma (BIB34) 1960; 32 A.K. Verma, in: C.-T. Ho, C.Y. Lee, M.-T. Huang (Eds.), Phenolic Compounds in Food and Their Effect on Health, vol. I, Am. Chem. Soc., Washington, DC, 1992, pp. 250–264. D. Dunlap, B. Samorı̀, C. Bustamante, in: B. Samorı̀, E.W. Thulstrup (Eds.), Polarized Spectroscopy of Ordered Systems, Kluwer, Dordrecht, pp. 275-296. U. Burkert, N. Allinger, Molecular Mechanics, Am. Chem. Soc., Monogr. 177, 1982. Jovanovic, Stenken, Tosic, Marjanovic, Simic (BIB11) 1994; 116 Jensen, Schellman, Troxell (BIB26) 1978; 32 Wallet, Cody, Wojtczac, Blessing (BIB44) 1993; 8 Parisis, Pritchard (BIB5) 1987; 28 Solimani, Bayon, Domini, Pifferi, Todesco, Marconi, Samorı̀ (BIB22) 1995; 43 Rahman, Shahabuddin, Hadi, Paris (BIB21) 1989; 10 K. Nakanishi, Infrared Absorption Spectroscopy, Holden-Day, San Francisco, CA/Nankodo, Tokyo, 1962. Deschner, Ruperto, Song, Newmark (BIB8) 1993; 20 Solimani (BIB23) 1996; 18 Thulstrup, Michl (BIB32) 1982; 104 Matsuoka, Nordén (BIB37) 1983; 22 D. Lin-Vien, N.B. Colthup, W.G. Fateley, J.G. Grasselli, The Handbook of Infrared and Raman Characteristic Frequencies of Organic Molecules, Harcourt, Brace & Jovanovich/Academic Press, Boston, MA, 1991.. Terao, Piskula, Yao (BIB19) 1994; 308 J.B. Harborne, in: The Flavonoids: Advances in Research since 1980, Chapman and Hall, New York, 1988. N.J. Harrick, Internal Reflection Spectroscopy, Wiley, New York, 1967. B. Samorı̀, P. Mariani, G.P. Spada, J. Chem. Soc. Perkin Trans. II (1982) 447–453. Wada (BIB28) 1964; 2 Ahmed, Ramesh, Nagaraja, Parish, Hadi (BIB18) 1994; 9 P.R. Griffiths, J.A. Haseth, Fourier Transform Infrared Spectroscopy, Wiley, New York, 1986. M.-T. Huang, T. Ferraro, in: C.-T. Ho, C.Y. Lee, M.-T. Huang (Eds.), Phenolic Compounds in Food and Their Effect on Health, vol. I, Am. Chem. Soc., Washington, DC, 1992, pp. 8–33. Nordén, Kubista, Kurucsev (BIB33) 1992; 25 Hipps, Crosby (BIB24) 1979; 83 Brown (BIB3) 1980; 75 J.K. Weisburger, in: C.-T. Ho, C.Y. Lee, M.-T. Huang (Eds.), Phenolic Compounds in Food and Their Effect on Health, vol. I, Am. Chem. Soc., Washington, DC, 1992, pp. 35–47. Michelson (BIB29) 1981; 31 Wu, Zeng, Wu, Fung (BIB15) 1994; 47 L.J. Bellamy, The Infrared Spectra of Complex Molecules, Wiley, New York, 1958. T. Leighton, C. Ginther, L. Fluss, W.L. Harter, J. Cansado, V. Nortario, in: C.-T. Ho, C.Y. Lee, M.-T. Huang (Eds.), Phenolic Compounds in Food and Their Effect on Health, vol. I, Am. Chem. Soc., Washington, DC, 1992, pp. 220–238. Yoku, Tsushida, Takei, Nakatani, Terao (BIB13) 1995; 1234 Kühnau (BIB2) 1976; 24 E.E. Deschner, in: C.-T. Ho, C.Y. Lee, M.-T. Huang (Eds.), Phenolic Compounds in Food and Their Effect on Health, vol. I, Am. Chem. Soc., Washington, DC, 1992, pp. 265–268. Lerman (BIB42) 1961; 3 Ben-Hur, Rosenthal, Granot (Graziani) (BIB20) 1993; 57 Crawford, Sinnhuber, Aft (BIB17) 1961; 26 Vinson, Dabbagh, Serry, Jang (BIB12) 1995; 43 Shah, Bhattacharya (BIB16) 1986; 59 Low, Yang (BIB38) 1973; 29A C.R. Cantor, P.R. Schimmel, Biophysical Chemistry, Part II, W.H. Freeman, San Francisco, CA, 1980. Cooley, Tukey (BIB31) 1965; 19 Hipps (10.1016/S0304-4165(97)00038-X_BIB24) 1979; 83 Lerman (10.1016/S0304-4165(97)00038-X_BIB42) 1961; 3 Matsuoka (10.1016/S0304-4165(97)00038-X_BIB37) 1983; 22 Solimani (10.1016/S0304-4165(97)00038-X_BIB23) 1996; 18 Ben-Hur (10.1016/S0304-4165(97)00038-X_BIB20) 1993; 57 10.1016/S0304-4165(97)00038-X_BIB25 Cooley (10.1016/S0304-4165(97)00038-X_BIB31) 1965; 19 Low (10.1016/S0304-4165(97)00038-X_BIB38) 1973; 29A 10.1016/S0304-4165(97)00038-X_BIB27 Wada (10.1016/S0304-4165(97)00038-X_BIB35) 1964; A2 10.1016/S0304-4165(97)00038-X_BIB41 Shah (10.1016/S0304-4165(97)00038-X_BIB16) 1986; 59 Solimani (10.1016/S0304-4165(97)00038-X_BIB22) 1995; 43 10.1016/S0304-4165(97)00038-X_BIB40 10.1016/S0304-4165(97)00038-X_BIB43 10.1016/S0304-4165(97)00038-X_BIB9 Robak (10.1016/S0304-4165(97)00038-X_BIB14) 1988; 37 10.1016/S0304-4165(97)00038-X_BIB6 10.1016/S0304-4165(97)00038-X_BIB45 10.1016/S0304-4165(97)00038-X_BIB7 10.1016/S0304-4165(97)00038-X_BIB4 Wallet (10.1016/S0304-4165(97)00038-X_BIB44) 1993; 8 Kühnau (10.1016/S0304-4165(97)00038-X_BIB2) 1976; 24 Terao (10.1016/S0304-4165(97)00038-X_BIB19) 1994; 308 Michelson (10.1016/S0304-4165(97)00038-X_BIB29) 1981; 31 10.1016/S0304-4165(97)00038-X_BIB1 Yoku (10.1016/S0304-4165(97)00038-X_BIB13) 1995; 1234 Jensen (10.1016/S0304-4165(97)00038-X_BIB26) 1978; 32 Brown (10.1016/S0304-4165(97)00038-X_BIB3) 1980; 75 Crawford (10.1016/S0304-4165(97)00038-X_BIB17) 1961; 26 10.1016/S0304-4165(97)00038-X_BIB36 Vinson (10.1016/S0304-4165(97)00038-X_BIB12) 1995; 43 Rahman (10.1016/S0304-4165(97)00038-X_BIB21) 1989; 10 10.1016/S0304-4165(97)00038-X_BIB39 Parisis (10.1016/S0304-4165(97)00038-X_BIB5) 1987; 28 Wada (10.1016/S0304-4165(97)00038-X_BIB28) 1964; 2 Thulstrup (10.1016/S0304-4165(97)00038-X_BIB32) 1982; 104 Wu (10.1016/S0304-4165(97)00038-X_BIB15) 1994; 47 10.1016/S0304-4165(97)00038-X_BIB30 Deschner (10.1016/S0304-4165(97)00038-X_BIB8) 1993; 20 10.1016/S0304-4165(97)00038-X_BIB10 Broersma (10.1016/S0304-4165(97)00038-X_BIB34) 1960; 32 Jovanovic (10.1016/S0304-4165(97)00038-X_BIB11) 1994; 116 Nordén (10.1016/S0304-4165(97)00038-X_BIB33) 1992; 25 Ahmed (10.1016/S0304-4165(97)00038-X_BIB18) 1994; 9 |
References_xml | – volume: 24 start-page: 117 year: 1976 end-page: 191 ident: BIB2 publication-title: World Rev. Nutr. Diet – volume: 57 start-page: 984 year: 1993 end-page: 988 ident: BIB20 publication-title: Photochem. Photobiol. – volume: 18 start-page: 287 year: 1996 end-page: 295 ident: BIB23 publication-title: Int. J. Biol. Macrom. – reference: D. Dunlap, B. Samorı̀, C. Bustamante, in: B. Samorı̀, E.W. Thulstrup (Eds.), Polarized Spectroscopy of Ordered Systems, Kluwer, Dordrecht, pp. 275-296. – reference: K. Nakanishi, Infrared Absorption Spectroscopy, Holden-Day, San Francisco, CA/Nankodo, Tokyo, 1962. – volume: 75 start-page: 243 year: 1980 ident: BIB3 publication-title: Mutat. Res. – reference: A.K. Verma, in: C.-T. Ho, C.Y. Lee, M.-T. Huang (Eds.), Phenolic Compounds in Food and Their Effect on Health, vol. I, Am. Chem. Soc., Washington, DC, 1992, pp. 250–264. – volume: 47 start-page: 1099 year: 1994 end-page: 1103 ident: BIB15 publication-title: Biochem. Pharmacol. – reference: L.J. Bellamy, The Infrared Spectra of Complex Molecules, Wiley, New York, 1958. – volume: 8 start-page: 325 year: 1993 end-page: 332 ident: BIB44 publication-title: Anticancer Drug Design – volume: 28 start-page: 583 year: 1987 end-page: 590 ident: BIB5 publication-title: Arch. Oral Biol. – volume: 59 start-page: 1 year: 1986 end-page: 15 ident: BIB16 publication-title: Chem. Biol. Interact. – volume: 3 start-page: 18 year: 1961 end-page: 30 ident: BIB42 publication-title: J. Mol. Biol. – reference: C.R. Cantor, P.R. Schimmel, Biophysical Chemistry, Part II, W.H. Freeman, San Francisco, CA, 1980. – volume: 43 start-page: 2800 year: 1995 end-page: 2802 ident: BIB12 publication-title: J. Agric. Food Chem. – volume: 1234 start-page: 99 year: 1995 end-page: 104 ident: BIB13 publication-title: Biochim. Biophys. Acta, Biomembr. – volume: 19 start-page: 297 year: 1965 ident: BIB31 publication-title: Math. Comput. – reference: J.K. Weisburger, in: C.-T. Ho, C.Y. Lee, M.-T. Huang (Eds.), Phenolic Compounds in Food and Their Effect on Health, vol. I, Am. Chem. Soc., Washington, DC, 1992, pp. 35–47. – volume: 116 start-page: 4846 year: 1994 end-page: 4851 ident: BIB11 publication-title: J. Am. Chem. Soc. – volume: 25 start-page: 51 year: 1992 end-page: 170 ident: BIB33 publication-title: Q. Rev. Biophys. I – volume: 32 start-page: 1626 year: 1960 end-page: 1631 ident: BIB34 publication-title: J. Chem. Phys. – volume: 26 start-page: 139 year: 1961 end-page: 145 ident: BIB17 publication-title: J. Food Sci. – reference: B. Samorı̀, P. Mariani, G.P. Spada, J. Chem. Soc. Perkin Trans. II (1982) 447–453. – reference: E.E. Deschner, in: C.-T. Ho, C.Y. Lee, M.-T. Huang (Eds.), Phenolic Compounds in Food and Their Effect on Health, vol. I, Am. Chem. Soc., Washington, DC, 1992, pp. 265–268. – reference: U. Burkert, N. Allinger, Molecular Mechanics, Am. Chem. Soc., Monogr. 177, 1982. – volume: A2 start-page: 853 year: 1964 ident: BIB35 publication-title: J. Polym. Sci. – volume: 43 start-page: 876 year: 1995 end-page: 882 ident: BIB22 publication-title: J. Agric. Food Chem. – reference: T. Leighton, C. Ginther, L. Fluss, W.L. Harter, J. Cansado, V. Nortario, in: C.-T. Ho, C.Y. Lee, M.-T. Huang (Eds.), Phenolic Compounds in Food and Their Effect on Health, vol. I, Am. Chem. Soc., Washington, DC, 1992, pp. 220–238. – volume: 22 start-page: 1731 year: 1983 end-page: 1746 ident: BIB37 publication-title: Biopolymers – reference: P.R. Griffiths, J.A. Haseth, Fourier Transform Infrared Spectroscopy, Wiley, New York, 1986. – reference: D. Lin-Vien, N.B. Colthup, W.G. Fateley, J.G. Grasselli, The Handbook of Infrared and Raman Characteristic Frequencies of Organic Molecules, Harcourt, Brace & Jovanovich/Academic Press, Boston, MA, 1991.. – reference: M.-T. Huang, T. Ferraro, in: C.-T. Ho, C.Y. Lee, M.-T. Huang (Eds.), Phenolic Compounds in Food and Their Effect on Health, vol. I, Am. Chem. Soc., Washington, DC, 1992, pp. 8–33. – reference: J.B. Harborne, in: The Flavonoids: Advances in Research since 1980, Chapman and Hall, New York, 1988. – volume: 9 start-page: 193 year: 1994 end-page: 197 ident: BIB18 publication-title: Mutagenesis – reference: N.J. Harrick, Internal Reflection Spectroscopy, Wiley, New York, 1967. – volume: 32 start-page: 192 year: 1978 end-page: 200 ident: BIB26 publication-title: Appl. Spectrosc. – volume: 20 start-page: 199 year: 1993 end-page: 204 ident: BIB8 publication-title: Diet. Nutr. Cancer – volume: 308 start-page: 278 year: 1994 end-page: 284 ident: BIB19 publication-title: Arch. Biochem. Biophys. – volume: 37 start-page: 837 year: 1988 end-page: 841 ident: BIB14 publication-title: Biochem. Pharmacol. – volume: 29A start-page: 1761 year: 1973 end-page: 1772 ident: BIB38 publication-title: Spectrochim. Acta – volume: 104 start-page: 5594 year: 1982 end-page: 5604 ident: BIB32 publication-title: J. Am. Chem. Soc. – volume: 10 start-page: 1833 year: 1989 end-page: 1839 ident: BIB21 publication-title: Carcinogenesis – volume: 2 start-page: 361 year: 1964 ident: BIB28 publication-title: Biopolymers – volume: 31 start-page: 256 year: 1981 ident: BIB29 publication-title: Philos. Mag. – volume: 83 start-page: 555 year: 1979 ident: BIB24 publication-title: J. Phys. Chem. – ident: 10.1016/S0304-4165(97)00038-X_BIB25 – ident: 10.1016/S0304-4165(97)00038-X_BIB7 doi: 10.1021/bk-1992-0507.ch003 – volume: 116 start-page: 4846 year: 1994 ident: 10.1016/S0304-4165(97)00038-X_BIB11 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00090a032 – volume: 3 start-page: 18 year: 1961 ident: 10.1016/S0304-4165(97)00038-X_BIB42 publication-title: J. Mol. Biol. doi: 10.1016/S0022-2836(61)80004-1 – ident: 10.1016/S0304-4165(97)00038-X_BIB9 doi: 10.1021/bk-1992-0507.ch016 – ident: 10.1016/S0304-4165(97)00038-X_BIB40 – ident: 10.1016/S0304-4165(97)00038-X_BIB10 doi: 10.1021/bk-1992-0507.ch002 – volume: 43 start-page: 876 year: 1995 ident: 10.1016/S0304-4165(97)00038-X_BIB22 publication-title: J. Agric. Food Chem. doi: 10.1021/jf00052a006 – volume: 32 start-page: 1626 year: 1960 ident: 10.1016/S0304-4165(97)00038-X_BIB34 publication-title: J. Chem. Phys. doi: 10.1063/1.1730994 – volume: 57 start-page: 984 issue: 6 year: 1993 ident: 10.1016/S0304-4165(97)00038-X_BIB20 publication-title: Photochem. Photobiol. doi: 10.1111/j.1751-1097.1993.tb02959.x – volume: 59 start-page: 1 year: 1986 ident: 10.1016/S0304-4165(97)00038-X_BIB16 publication-title: Chem. Biol. Interact. doi: 10.1016/S0009-2797(86)80051-5 – volume: 9 start-page: 193 issue: 3 year: 1994 ident: 10.1016/S0304-4165(97)00038-X_BIB18 publication-title: Mutagenesis doi: 10.1093/mutage/9.3.193 – volume: 308 start-page: 278 year: 1994 ident: 10.1016/S0304-4165(97)00038-X_BIB19 publication-title: Arch. Biochem. Biophys. doi: 10.1006/abbi.1994.1039 – volume: 83 start-page: 555 year: 1979 ident: 10.1016/S0304-4165(97)00038-X_BIB24 publication-title: J. Phys. Chem. doi: 10.1021/j100468a001 – volume: 20 start-page: 199 year: 1993 ident: 10.1016/S0304-4165(97)00038-X_BIB8 publication-title: Diet. Nutr. Cancer doi: 10.1080/01635589309514287 – ident: 10.1016/S0304-4165(97)00038-X_BIB39 – volume: 37 start-page: 837 issue: 5 year: 1988 ident: 10.1016/S0304-4165(97)00038-X_BIB14 publication-title: Biochem. Pharmacol. doi: 10.1016/0006-2952(88)90169-4 – ident: 10.1016/S0304-4165(97)00038-X_BIB27 doi: 10.1039/P29820000447 – volume: 8 start-page: 325 year: 1993 ident: 10.1016/S0304-4165(97)00038-X_BIB44 publication-title: Anticancer Drug Design – ident: 10.1016/S0304-4165(97)00038-X_BIB4 doi: 10.1021/bk-1992-0507.ch019 – volume: 43 start-page: 2800 year: 1995 ident: 10.1016/S0304-4165(97)00038-X_BIB12 publication-title: J. Agric. Food Chem. doi: 10.1021/jf00059a005 – volume: 25 start-page: 51 year: 1992 ident: 10.1016/S0304-4165(97)00038-X_BIB33 publication-title: Q. Rev. Biophys. I doi: 10.1017/S0033583500004728 – volume: 22 start-page: 1731 year: 1983 ident: 10.1016/S0304-4165(97)00038-X_BIB37 publication-title: Biopolymers doi: 10.1002/bip.360220709 – volume: 2 start-page: 361 year: 1964 ident: 10.1016/S0304-4165(97)00038-X_BIB28 publication-title: Biopolymers doi: 10.1002/bip.1964.360020407 – volume: 19 start-page: 297 year: 1965 ident: 10.1016/S0304-4165(97)00038-X_BIB31 publication-title: Math. Comput. doi: 10.1090/S0025-5718-1965-0178586-1 – volume: 75 start-page: 243 year: 1980 ident: 10.1016/S0304-4165(97)00038-X_BIB3 publication-title: Mutat. Res. doi: 10.1016/0165-1110(80)90029-9 – volume: 47 start-page: 1099 issue: 6 year: 1994 ident: 10.1016/S0304-4165(97)00038-X_BIB15 publication-title: Biochem. Pharmacol. doi: 10.1016/0006-2952(94)90424-3 – volume: 10 start-page: 1833 issue: 10 year: 1989 ident: 10.1016/S0304-4165(97)00038-X_BIB21 publication-title: Carcinogenesis doi: 10.1093/carcin/10.10.1833 – volume: 26 start-page: 139 year: 1961 ident: 10.1016/S0304-4165(97)00038-X_BIB17 publication-title: J. Food Sci. doi: 10.1111/j.1365-2621.1961.tb00783.x – ident: 10.1016/S0304-4165(97)00038-X_BIB45 – volume: 1234 start-page: 99 issue: 1 year: 1995 ident: 10.1016/S0304-4165(97)00038-X_BIB13 publication-title: Biochim. Biophys. Acta, Biomembr. doi: 10.1016/0005-2736(94)00262-N – ident: 10.1016/S0304-4165(97)00038-X_BIB1 doi: 10.1007/978-1-4899-2913-6 – ident: 10.1016/S0304-4165(97)00038-X_BIB43 – ident: 10.1016/S0304-4165(97)00038-X_BIB41 – volume: 31 start-page: 256 issue: 5 year: 1981 ident: 10.1016/S0304-4165(97)00038-X_BIB29 publication-title: Philos. Mag. – volume: 28 start-page: 583 year: 1987 ident: 10.1016/S0304-4165(97)00038-X_BIB5 publication-title: Arch. Oral Biol. doi: 10.1016/0003-9969(83)90005-5 – volume: 24 start-page: 117 year: 1976 ident: 10.1016/S0304-4165(97)00038-X_BIB2 publication-title: World Rev. Nutr. Diet doi: 10.1159/000399407 – ident: 10.1016/S0304-4165(97)00038-X_BIB6 doi: 10.1021/bk-1992-0507.ch018 – volume: 18 start-page: 287 year: 1996 ident: 10.1016/S0304-4165(97)00038-X_BIB23 publication-title: Int. J. Biol. Macrom. doi: 10.1016/0141-8130(95)01089-0 – volume: 32 start-page: 192 year: 1978 ident: 10.1016/S0304-4165(97)00038-X_BIB26 publication-title: Appl. Spectrosc. doi: 10.1366/000370278774331567 – ident: 10.1016/S0304-4165(97)00038-X_BIB36 – volume: 29A start-page: 1761 year: 1973 ident: 10.1016/S0304-4165(97)00038-X_BIB38 publication-title: Spectrochim. Acta doi: 10.1016/0584-8539(73)80163-1 – ident: 10.1016/S0304-4165(97)00038-X_BIB30 – volume: A2 start-page: 853 year: 1964 ident: 10.1016/S0304-4165(97)00038-X_BIB35 publication-title: J. Polym. Sci. – volume: 104 start-page: 5594 year: 1982 ident: 10.1016/S0304-4165(97)00038-X_BIB32 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00385a005 |
SSID | ssj0000595 ssj0025309 |
Score | 1.73073 |
Snippet | Previous studies showed evidence that quercetin can bind DNA by intercalation [R. Solimani et al., J. Agric. Food Chem. 43 (1995) 876–882] and a comparison... Previous studies showed evidence that quercetin can bind DNA by intercalation [R. Solimani et al., J. Agric. Food Chem. 43 (1995) 876-882] and a comparison... |
SourceID | proquest pubmed crossref fao elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 281 |
SubjectTerms | Anisotropy chemistry DNA DNA - chemistry Flavonoids Flavonoids - chemistry Flavonols-benzopyranic-4-one plane Hydrophilic and hydrophobic environment Linear dichroism Nucleophilic intercalator plant biochemistry plant physiology Quercetin Quercetin - chemistry Rutin Rutin - chemistry Solutions Spectrophotometry, Ultraviolet Spectroscopy, Fourier Transform Infrared |
Title | The flavonols quercetin, rutin and morin in DNA solution: UV–vis dichroic (and mid-infrared) analysis explain the possible association between the biopolymer and a nucleophilic vegetable-dye |
URI | https://dx.doi.org/10.1016/S0304-4165(97)00038-X https://www.ncbi.nlm.nih.gov/pubmed/9305801 https://www.proquest.com/docview/48477250 https://www.proquest.com/docview/79300712 |
Volume | 1336 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LbtNAFB2VIgSbCgpVQ6HMgkUr4SYTj1_sokAViMiCEvBuNM_WUmpHThqRDeIf-CG-hS_hXj8asYgqIVmyNL4zGnvO3DnyfRHymjs_jlnPeXEQK4-7HupBrjxmo14g_cQFBgOcP03C0ZR_TIN0hwzbWBh0q2x0f63TK23dtHSbr9mdZ1n3Ao16QCeAEVf2rRQj2HmEKD_7sXHzAPoQ1JYE7qH0JoqnHqFqPEmi02oQL912Pt1zstjOQqvT6Pwx2WtoJB3UM31Cdmy-Tx7UhSXX--ThsK3j9pT8BiRQN5OrIi9mCwrjlhrjnN_QEkCXU5kbeo1ueBSud5MBbdH4lk6__vn5a5UtqMn0VVlkmp5U0pnxAJgl-q6fQv86rQm13-czCWMApaTzAvfazFK5WX7a-IRVAirD6gzra1tWE5A0x8TKxRz_72i6spd2iUFdnlnbZ2R6_v7LcOQ1dRs8zWO29GzMIu0SFSmVWJewxEm0HsIxKEPrbBJr2w8NEOUosdoZEznOtALiYpk2zDf-AdnNi9weEip9o5hyzNc8xFRyihnnkp6JYuXCPvc7hLerJXST1Bxra8zExnsNFlngIova1O7HIu2Qs9tu8zqrx10d4hYK4h94Cjh57up6CNAR8hKUtphe9CtTMZYRYFGHvGrxJAAUaKqRuS1uFoIDaYiAnW6XAL2K9LDfIQc1EG9fBB4EwDue__-Uj8ijOksvBui8ILvL8sa-BO61VMfV5jom9wcfxqMJ3sefv43_Asd6LM8 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LbtNAFB21RahsEBSqhldnwaKVcJOJxy92VaAK0GbTBmU3mmex5NqWk0Zkg_gHfohv4Uu4149GLKJKSF7Zd0Zj3zN3jnxfhLzlzo9jNnBeHMTK426AdpArj9loEEg_cYHBBOeLSTie8s-zYLZFRl0uDIZVtra_sem1tW7v9Nuv2S_TtH-JTj2gE8CIa__WbJs84LB9sY3ByY91nAfwh6BxJXAPxddpPM0U9c2jJDquZ_Fmmw6obSeLzTS0Po7OnpDHLY-kp81Sn5Itm--Rh01nydUe2R11jdyekd8ABeoyuSzyIptTmLfSmOj8jlaAupzK3NAbjMOjcH2YnNIOju_p9Oufn7-W6ZyaVH-rilTTo1o6NR4gs8Lg9WMY39Q1ofZ7mUmYAzglLQvcbJmlcq1_2gaF1QIqxfYMqxtb1QuQNMfKykWJP3g0Xdpru8CsLs-s7HMyPft4NRp7beMGT_OYLTwbs0i7REVKJdYlLHES3YdwDsrQOpvE2g5DA0w5Sqx2xkSOM62AuVimDfONv0928iK3B4RK3yimHPM1D7GWnGLGuWRgoli5cMj9HuGdtoRuq5pjc41MrMPXQMkClSwaX7sfi1mPnNwNK5uyHvcNiDsoiH_wKeDouW_oAUBHyGuw2mJ6Oax9xdhHgEU9ctjhSQAo0Fcjc1vczgUH1hABPd0sAYYV-eGwR_YbIN69CDwIgHi8-P8lH5Ld8dXFuTj_NPnykjxqSvZits4rsrOobu1rIGIL9abeaH8B-Qcsug |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+flavonols+quercetin%2C+rutin+and+morin+in+DNA+solution%3A+UV%E2%80%93vis+dichroic+%28and+mid-infrared%29+analysis+explain+the+possible+association+between+the+biopolymer+and+a+nucleophilic+vegetable-dye&rft.jtitle=Biochimica+et+biophysica+acta.+General+subjects&rft.au=Solimani%2C+Riccardo&rft.date=1997-08-29&rft.issn=0304-4165&rft.volume=1336&rft.issue=2&rft.spage=281&rft.epage=294&rft_id=info:doi/10.1016%2FS0304-4165%2897%2900038-X&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_S0304_4165_97_00038_X |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-4165&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-4165&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-4165&client=summon |