CO2 Sequestration Through Aqueous Carbonation of Electric Arc Furnace Slag
Electric Arc Furnace slag (EAF slag) reuse is currently limited by its inconsistent chemical composition and volume instability. However, the alkaline composition suggests the possibility to use this material for carbon capture and storage. This study investigated the CO2 uptake of EAF slag using a...
Saved in:
Published in | Journal of Advanced Concrete Technology Vol. 22; no. 4; pp. 207 - 218 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Tokyo
Japan Concrete Institute
12.04.2024
Japan Science and Technology Agency |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Electric Arc Furnace slag (EAF slag) reuse is currently limited by its inconsistent chemical composition and volume instability. However, the alkaline composition suggests the possibility to use this material for carbon capture and storage. This study investigated the CO2 uptake of EAF slag using a direct aqueous carbonation technique. The process was implemented at room temperature and ambient pressure, with minimized energy consumption. The CO2-reactive phases were identified through X-ray diffraction analysis. Different CO2 quantification techniques were employed: thermogravimetric analysis, acid digestion and thermal decomposition. The replicability of experiments and quantification techniques was assessed through analysis of variance and pairwise comparisons. The average CO2 uptake and coefficient of variation resulted respectively 7.9% and 9.0%, with a carbonation degree of about 34%, proving that this simple mineralization process can be promising even in mild conditions. |
---|---|
AbstractList | Electric Arc Furnace slag (EAF slag) reuse is currently limited by its inconsistent chemical composition and volume instability. However, the alkaline composition suggests the possibility to use this material for carbon capture and storage. This study investigated the CO2 uptake of EAF slag using a direct aqueous carbonation technique. The process was implemented at room temperature and ambient pressure, with minimized energy consumption. The CO2-reactive phases were identified through X-ray diffraction analysis. Different CO2 quantification techniques were employed: thermogravimetric analysis, acid digestion and thermal decomposition. The replicability of experiments and quantification techniques was assessed through analysis of variance and pairwise comparisons. The average CO2 uptake and coefficient of variation resulted respectively 7.9% and 9.0%, with a carbonation degree of about 34%, proving that this simple mineralization process can be promising even in mild conditions. |
Author | Palmero, Paola Humbert, Pedro Bonfante, Francesca Tulliani, Jean-Marc Christian Garufi, Davide Ferrara, Giuseppe |
Author_xml | – sequence: 1 fullname: Bonfante, Francesca organization: Department of Applied Science and Technology (DISAT), INSTM R.U. Lince Laboratory, Politecnico di Torino, Turin 10129, Italy – sequence: 2 fullname: Ferrara, Giuseppe organization: Department of Applied Science and Technology (DISAT), INSTM R.U. Lince Laboratory, Politecnico di Torino, Turin 10129, Italy – sequence: 3 fullname: Humbert, Pedro organization: Innovation Centre for Sustainable Construction, CRH, Amsterdam, 1083 HL, The Netherlands – sequence: 4 fullname: Garufi, Davide organization: Innovation Centre for Sustainable Construction, CRH, Amsterdam, 1083 HL, The Netherlands – sequence: 5 fullname: Tulliani, Jean-Marc Christian organization: Department of Applied Science and Technology (DISAT), INSTM R.U. Lince Laboratory, Politecnico di Torino, Turin 10129, Italy – sequence: 6 fullname: Palmero, Paola organization: Department of Applied Science and Technology (DISAT), INSTM R.U. Lince Laboratory, Politecnico di Torino, Turin 10129, Italy |
BookMark | eNp1kMtqwzAQRUVJoWnaVX9A0GVxqpcje1MIJumDQBZJ12IsS4mNa6WSvejf14lDFoWuZpg5d7hzb9GocY1B6IGSKacxfa5At1PGpozIKzSmXMiIp5SPTv0sSggVN-g2hIoQLrmUY_SRrRnemO_OhNZDW7oGb_fedbs9nvdD1wWcgc9dM-ycxYva6NaXGs-9xsvON6AN3tSwu0PXFupg7s91gj6Xi232Fq3Wr-_ZfBVpkdA2KiwIBpbmotAmNimJtbA0nRGjKcjCFsbaGDhATgrNucgTIxNLUhtbOuOF5RP0ONw9eHfyrSp3tFEHxUksJBNpInuKDpT2LgRvrNJle3qi_7OsFSXqGJk6RqYYU31kvebpj-bgyy_wP__QLwNdhRZ25sKCb0tdmwsrzoLLQu_BK9PwX7Fdh2c |
CitedBy_id | crossref_primary_10_1016_j_conbuildmat_2024_137456 crossref_primary_10_1016_j_mineng_2024_109154 crossref_primary_10_3151_jact_22_706 |
Cites_doi | 10.1016/j.conbuildmat.2019.03.169 10.1016/j.apenergy.2013.07.035 10.1016/j.cej.2022.140552 10.1016/j.jcou.2017.07.003 10.1016/j.jhazmat.2010.11.038 10.1617/s11527-014-0380-x 10.1016/j.ijggc.2012.11.026 10.1016/j.jclepro.2017.08.015 10.1016/j.jhazmat.2009.01.122 10.1007/s10973-013-3300-3 10.1016/j.jhazmat.2014.09.016 10.7717/peerj.10387 10.1007/978-3-031-33187-9_54 10.1016/j.jhazmat.2016.03.036 10.1016/j.jhazmat.2011.08.006 10.3151/jact.21.789 10.1021/ie701721j 10.1002/ghg.38 10.1021/es052534b 10.1021/es050795f 10.1016/j.cemconres.2013.08.009 10.1016/j.egypro.2011.01.138 10.1007/978-981-10-3268-4_11 10.1016/j.resconrec.2016.12.009 10.1179/037195503225003708 10.1016/j.jcou.2021.101667 10.1007/s40831-015-0028-2 10.1016/j.egypro.2017.03.1674 10.1007/s11837-021-05135-6 10.1021/acssuschemeng.7b00291 10.1016/j.resconrec.2020.104883 10.1007/s12649-010-9047-1 10.1016/j.heliyon.2019.e02602 10.3390/cryst11121498 10.1016/j.conbuildmat.2023.133384 10.1021/es802910z 10.1016/j.jclepro.2018.01.189 10.1007/s10973-021-10914-z 10.1007/s11356-016-6926-4 10.1139/cjce-2017-0603 10.1016/j.ijggc.2019.102819 10.1016/j.cemconres.2016.05.013 |
ContentType | Journal Article |
Copyright | 2024 by Japan Concrete Institute Copyright Japan Science and Technology Agency 2024 |
Copyright_xml | – notice: 2024 by Japan Concrete Institute – notice: Copyright Japan Science and Technology Agency 2024 |
DBID | AAYXX CITATION 7QQ 7SR 8BQ 8FD FR3 JG9 KR7 |
DOI | 10.3151/jact.22.207 |
DatabaseName | CrossRef Ceramic Abstracts Engineered Materials Abstracts METADEX Technology Research Database Engineering Research Database Materials Research Database Civil Engineering Abstracts |
DatabaseTitle | CrossRef Materials Research Database Civil Engineering Abstracts Engineered Materials Abstracts Technology Research Database Ceramic Abstracts Engineering Research Database METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1347-3913 |
EndPage | 218 |
ExternalDocumentID | 10_3151_jact_22_207 article_jact_22_4_22_207_article_char_en |
GroupedDBID | 5GY ACIWK ADDVE AENEX ALMA_UNASSIGNED_HOLDINGS CS3 DU5 EBS EJD JSF JSH KQ8 OK1 P2P RJT RZJ AAYXX CITATION 7QQ 7SR 8BQ 8FD FR3 JG9 KR7 |
ID | FETCH-LOGICAL-c481t-dfa42af1b4dce5e905c4f1960ec1a7dfdeff5a3aab0dc334b8e78f09f5f163df3 |
ISSN | 1346-8014 |
IngestDate | Mon Jun 30 10:06:05 EDT 2025 Tue Jul 01 01:31:06 EDT 2025 Thu Apr 24 22:57:51 EDT 2025 Fri May 10 01:25:07 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c481t-dfa42af1b4dce5e905c4f1960ec1a7dfdeff5a3aab0dc334b8e78f09f5f163df3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://www.jstage.jst.go.jp/article/jact/22/4/22_207/_article/-char/en |
PQID | 3054724987 |
PQPubID | 1996343 |
PageCount | 12 |
ParticipantIDs | proquest_journals_3054724987 crossref_citationtrail_10_3151_jact_22_207 crossref_primary_10_3151_jact_22_207 jstage_primary_article_jact_22_4_22_207_article_char_en |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024/04/12 |
PublicationDateYYYYMMDD | 2024-04-12 |
PublicationDate_xml | – month: 04 year: 2024 text: 2024/04/12 day: 12 |
PublicationDecade | 2020 |
PublicationPlace | Tokyo |
PublicationPlace_xml | – name: Tokyo |
PublicationTitle | Journal of Advanced Concrete Technology |
PublicationTitleAlternate | ACT |
PublicationYear | 2024 |
Publisher | Japan Concrete Institute Japan Science and Technology Agency |
Publisher_xml | – name: Japan Concrete Institute – name: Japan Science and Technology Agency |
References | 42) Wang, Y.-J., Tao, M.-J., Li, J.-G., Zeng, Y.-N., Qin, S. and Liu, S.-H., (2021). “Carbonation of EAF stainless steel slag and its effect on chromium leaching characteristics.” Crystals, 11(12), 1498. 17) Humbert, P. S., Castro-Gomes, J. P. and Savastano, H., (2019). “Clinker-free CO2 cured steel slag based binder: Optimal conditions and potential applications.” Construction and Building Materials, 210, 413-421. 38) Takahashi, H., Maruyama, I., Ohkubo, T., Kitagaki, R., Suda, Y., Teramoto, A., Haga, K. and Nagase, T., (2023). “Error factors in quantifying inorganic carbonate CO2 in concrete materials.” Journal of Advanced Concrete Technology, 21(10), 789-802. 34) Primavera, A., Pontoni, L., Mombelli, D., Barella, S. and Mapelli, C., (2015). “EAF Slag treatment for inert materials’ production.” Journal of Sustainable Metallurgy, 2, 3-12. 20) Ibrahim, M. H., El-Naas, M. H., Zevenhoven, R. and Al-Sobhi, S. A., (2019). “Enhanced CO2 capture through reaction with steel-making dust in high salinity water.” International Journal of Greenhouse Gas Control, 91, 102819. 26) Mahoutian, M., Chaallal, O. and Shao, Y., (2018). “Pilot production of steel slag masonry blocks.” Canadian Journal of Civil Engineering, 45(7), 537-546. 11) Ferrara, G., Belli, A., Keulen, A., Tulliani, J. C. and Palmero, P., (2023). “Testing procedures for CO2 uptake assessment of accelerated carbonation products: Experimental application on basic oxygen furnace steel slag samples.” Construction and Building Materials, 406, 133384. 30) Moon, E. J. and Choi, Y. C., (2018). “Development of carbon-capture binder using stainless steel argon oxygen decarburization slag activated by carbonation.” Journal of Cleaner Production, 180, 642-654. 39) Uibu, M., Kuusik, R., Andreas, L. and Kirsimäe, K., (2011). “The CO2-binding by Ca-Mg-silicates in direct aqueous carbonation of oil shale ash and steel slag.” Energy Procedia, 4, 925-932. 9) Chiang, P. C. and Pan, S. Y., (2017). “Iron and steel slags.” In: Carbon Dioxide Mineralization and Utilization. Singapore: Springer Nature Singapore, 233-252. 16) Huijgen, W. J. J., Witkamp, G. J. and Comans, R. N. J., (2005). “Mineral CO2 sequestration by steel slag carbonation.” Environmental Science and Technology, 39(24), 9676-9682. 31) Omale, S. O., Choong, T. S. Y., Abdullah, L. C., Siajam, S. I. and Yip, M. W., (2019). “Utilization of Malaysia EAF slags for effective application in direct aqueous sequestration of carbon dioxide under ambient temperature.” Heliyon, 5(10), e02602. 32) Pan, S. Y., Chiang, P. C., Chen, Y. H., Tan, C. S. and Chang, E. E., (2014). “Kinetics of carbonation reaction of basic oxygen furnace slags in a rotating packed bed using the surface coverage model: Maximization of carbonation conversion.” Applied Energy, 113, 267-276. 10) Fang, Y., Su, W., Zhang, Y., Zhang, M., Ding, X. and Wang, Q., (2022). “Effect of accelerated precarbonation on hydration activity and volume stability of steel slag as a supplementary cementitious material.” Journal of Thermal Analysis and Calorimetry, 147(11), 6181-6191. 21) IEA, (2021). “Net zero by 2050.” Paris: International Energy Agency (IEA). 12) Ghacham, A. B., Pasquier, L.-C., Cecchi, E., Blais, J.-F. and Mercier, G., (2016). “CO2 sequestration by mineral carbonation of steel slags under ambient temperature: Parameters influence, and optimization.” Environmental Science and Pollution Research, 23(17), 17635-17646. 13) Ghacham, A. B., Pasquier, L.-C., Cecchi, E., Blais, J.-F. and Mercier, G., (2017). “Valorization of waste concrete through CO2 mineral carbonation: Optimizing parameters and improving reactivity using concrete separation.” Journal of Cleaner Production, 166, 869-878. 15) Huijgen, W. J. J. and Comans, R. N. J., (2006). “Carbonation of steel slag for CO2 sequestration: Leaching of products and reaction mechanisms.” Environmental Science and Technology, 40(8), 2790-2796. 23) Kim, J. and Azimi, G., (2021). “The CO2 sequestration by supercritical carbonation of electric arc furnace slag.” Journal of CO2 Utilization, 52, 101667. 8) Chang, E. E., Pan, S. Y., Chen, Y. H., Chu, H. W., Wang, C. F. and Chiang, P. C., (2011b). “CO2 sequestration by carbonation of steelmaking slags in an autoclave reactor.” Journal of Hazardous Materials, 195, 107-114. 27) Mahoutian, M., Shao, Y., Mucci, A. and Fournier, B., (2015). “Carbonation and hydration behavior of EAF and BOF steel slag binders.” Materials and Structures, 48, 3075-3085. 19) Huntzinger, D. N., Gierke, J. S., Sutter, L. L., Kawatra, S. K. and Eisele, T. C., (2009). “Mineral carbonation for carbon sequestration in cement kiln dust from waste piles.” Journal of Hazardous Materials, 168(1), 31-37. 22) Juckes, L. M., (2003). “The volume stability of modern steelmaking slags.” Mineral Processing and Extractive Metallurgy. 112, 177-197. 25) Liu, G., Schollbach, K., van der Laan, S., Tang, P. and Florea, M. V. A., (2020). “Recycling and utilization of high volume converter steel slag into CO2 activated mortars - The role of slag particle size.” Resources, Conservation and Recycling, 160, 104883. 4) Bonenfant, D., Kharoune, L., Sauvé, S., Hausler, R., Niquette, P., Mimeault, M. and Kharoune, M., (2008). “CO2 sequestration potential of steel slags at ambient pressure and temperature.” Industrial and Engineering Chemistry Research, 47(20), 7610-7616. 7) Chang, E. E., Chiu, A. C., Pan, S. Y., Chen, Y. H., Tan, C. S. and Chiang, P. C., (2013). “Carbonation of basic oxygen furnace slag with metalworking wastewater in a slurry reactor.” International Journal of Greenhouse Gas Control, 12, 382-389. 6) Chang, E. E., Chen, C. H., Pan, S. Y. and Chiang, P. C., (2011a). “Performance evaluation for carbonation of steel-making slags in a slurry reactor.” Journal of Hazardous Materials, 186(1), 558-564. 36) Skaf, M., Manso, J. M., Aragón, Á., Fuente-Alonso, J. A. and Ortega-López, V., (2017). “EAF slag in asphalt mixes: A brief review of its possible re-use.” Resources, Conservation and Recycling, 120, 176-185. 18) Huntzinger, D. N., Gierke, J. S., Sutter, L. L., Kawatra, S. K. and Eisele, T. C., (2009). “Carbon dioxide sequestration in cement kiln dust through mineral carbonation.” Environmental Science and Technology, 43(6), 1986-1992. 47) Zhang, Y., Yu, L., Cui, K., Wang, H. and Fu, T., (2023). “Carbon capture and storage technology by steel-making slags: Recent progress and future challenges.” Chemical Engineering Journal, 455, 140552. 35) RILEM, (2022). “Technical Committee 309-MCP on accelerated mineral carbonation for the production of construction materials [online].” Paris, Réunion Internationale des Laboratoires et Experts des Matériaux, Systèmes de Construction et Ouvrages (RILEM). Available from: <https://www.rilem.net/groupe/309-mcp-accelerated-mineral-carbonation-for-the-production-of-construction-materials-442 > [Accessed: 13 February 2024]. 46) Zhang, D., Ghouleh, Z. and Shao, Y., (2017). “Review on carbonation curing of cement-based materials.” Journal of CO2 Utilization, 21, 119-131. 14) Gobetti, A., Cornacchia, G. and Ramorino, G., (2022). “Reuse of electric arc furnace slag as filler for nitrile butadiene rubber.” JOM, 74(4), 1329-1339. 29) Mo, L., Zhang, F. and Deng, M., (2016). “Mechanical performance and microstructure of the calcium carbonate binders produced by carbonating steel slag paste under CO2 curing.” Cement and Concrete Research, 88, 217-226. 40) Unluer, C. and Al-Tabbaa, A., (2013). “Impact of hydrated magnesium carbonate additives on the carbonation of reactive MgO cements.” Cement and Concrete Research, 54, 87-97. 28) Midway, S., Robertson, M., Flinn, S. and Kaller, M., (2020). “Comparing multiple comparisons: Practical guidance for choosing the best multiple comparisons test.” PeerJ, Life and Environment, 8, e10387. 5) Bonfante, F., Ferrara, G., Humbert, P., Tulliani, J. C. and Palmero, P., (2023). “Direct aqueous mineralization of industrial waste for the production of carbonated supplementary cementitious materials.” In: A. Jędrzejewska, F. Kanavaris, M. Azenha, F. Benboudjema and D. Schlicke, Eds. Proc. International RILEM Conference on Synergising Expertise towards Sustainability and Robustness of Cement-based Materials and Concrete Structures. (SynerCrete 2023), Milos, Greece 14-16 June 2023. Cham, Switzerland: Springer Cham, 44, 581-592. 33) Pan, S.-Y., Shah, K. J., Chen, Y.-H., Wang, M.-H. and Chiang, P.-C., (2017). “Deployment of accelerated carbonation using alkaline solid wastes for carbon mineralization and utilization toward a circular economy.” ACS Sustainable Chemistry and Engineering, 5, 6429-6437. 2) Baciocchi, R., Costa, G., Di Bartolomeo, E., Pollettini, A., Pomi, R. and Stramazzo, A., (2015). “Thin-film versus slurry-phase carbonation of steel slag: CO2 uptake and effects on mineralogy.” Journal of Hazardous Materials, 283, 302-313. 37) Steinour, H. H., (1959). “Some effects of carbon dioxide on mortars and concrete-discussion.” Journal of the American Concrete Institute, 30(2), 905-907. 41) Unluer, C. and Al-Tabbaa, A., (2014). “Characterization of light and heavy hydrated magnesium carbonates using thermal analysis.” Journal of Thermal Analysis and Calorimetry, 115(1), 595-607. 3) Baciocchi, R., Costa, G., Di Gianfilippo, M., Pollettini, A. and Pomi, R., (2011). “Wet versus slurry carbonation of EAF steel slag.” Greenhouse Gases: Science and Technology, 1(4), 312-319. 45) Xuan, D., Zhan, B., Poon, C. S. and Zheng, W., (2016). “Innovative reuse of concrete slurry waste from ready-mixed concrete plants in construction products.” Journal of Hazardous Materials, 312, 65-72. 24) Librandi, P., Costa, G., Bello de Souza, A. C., Stendardo, S., Luna, A. S. and Baciocchi, R., (2017). “Carbonation of steel slag: Testing of the wet route in a pilot-scale reactor.” Energy Procedia, 114, 5381-5392. 44) WSA, (2019). “World steel in figures 2019.” Brussels, World Steel Association (WSA). Available from: <https://worldsteel.org/wp-content/uploads/2019-World-Steel-in-Figures.pdf?x82173 > [Accessed 4 October 2022]. 1) Baciocchi 22 44 23 45 24 46 25 47 26 27 28 29 30 31 10 32 11 33 12 34 13 35 14 36 15 37 16 38 17 39 18 19 1 2 3 4 5 6 7 8 9 40 41 20 42 21 43 |
References_xml | – reference: 4) Bonenfant, D., Kharoune, L., Sauvé, S., Hausler, R., Niquette, P., Mimeault, M. and Kharoune, M., (2008). “CO2 sequestration potential of steel slags at ambient pressure and temperature.” Industrial and Engineering Chemistry Research, 47(20), 7610-7616. – reference: 29) Mo, L., Zhang, F. and Deng, M., (2016). “Mechanical performance and microstructure of the calcium carbonate binders produced by carbonating steel slag paste under CO2 curing.” Cement and Concrete Research, 88, 217-226. – reference: 47) Zhang, Y., Yu, L., Cui, K., Wang, H. and Fu, T., (2023). “Carbon capture and storage technology by steel-making slags: Recent progress and future challenges.” Chemical Engineering Journal, 455, 140552. – reference: 13) Ghacham, A. B., Pasquier, L.-C., Cecchi, E., Blais, J.-F. and Mercier, G., (2017). “Valorization of waste concrete through CO2 mineral carbonation: Optimizing parameters and improving reactivity using concrete separation.” Journal of Cleaner Production, 166, 869-878. – reference: 21) IEA, (2021). “Net zero by 2050.” Paris: International Energy Agency (IEA). – reference: 43) WSA, (2010). “Steel industry co-products [online].” Brussels, World Steel Association (WSA). Available from: <https://worldsteel.org/steel-topics/environment-climate-change/steel-industry-co-products/ > [Accessed 28 September 2023]. – reference: 10) Fang, Y., Su, W., Zhang, Y., Zhang, M., Ding, X. and Wang, Q., (2022). “Effect of accelerated precarbonation on hydration activity and volume stability of steel slag as a supplementary cementitious material.” Journal of Thermal Analysis and Calorimetry, 147(11), 6181-6191. – reference: 14) Gobetti, A., Cornacchia, G. and Ramorino, G., (2022). “Reuse of electric arc furnace slag as filler for nitrile butadiene rubber.” JOM, 74(4), 1329-1339. – reference: 17) Humbert, P. S., Castro-Gomes, J. P. and Savastano, H., (2019). “Clinker-free CO2 cured steel slag based binder: Optimal conditions and potential applications.” Construction and Building Materials, 210, 413-421. – reference: 3) Baciocchi, R., Costa, G., Di Gianfilippo, M., Pollettini, A. and Pomi, R., (2011). “Wet versus slurry carbonation of EAF steel slag.” Greenhouse Gases: Science and Technology, 1(4), 312-319. – reference: 37) Steinour, H. H., (1959). “Some effects of carbon dioxide on mortars and concrete-discussion.” Journal of the American Concrete Institute, 30(2), 905-907. – reference: 26) Mahoutian, M., Chaallal, O. and Shao, Y., (2018). “Pilot production of steel slag masonry blocks.” Canadian Journal of Civil Engineering, 45(7), 537-546. – reference: 36) Skaf, M., Manso, J. M., Aragón, Á., Fuente-Alonso, J. A. and Ortega-López, V., (2017). “EAF slag in asphalt mixes: A brief review of its possible re-use.” Resources, Conservation and Recycling, 120, 176-185. – reference: 15) Huijgen, W. J. J. and Comans, R. N. J., (2006). “Carbonation of steel slag for CO2 sequestration: Leaching of products and reaction mechanisms.” Environmental Science and Technology, 40(8), 2790-2796. – reference: 32) Pan, S. Y., Chiang, P. C., Chen, Y. H., Tan, C. S. and Chang, E. E., (2014). “Kinetics of carbonation reaction of basic oxygen furnace slags in a rotating packed bed using the surface coverage model: Maximization of carbonation conversion.” Applied Energy, 113, 267-276. – reference: 25) Liu, G., Schollbach, K., van der Laan, S., Tang, P. and Florea, M. V. A., (2020). “Recycling and utilization of high volume converter steel slag into CO2 activated mortars - The role of slag particle size.” Resources, Conservation and Recycling, 160, 104883. – reference: 40) Unluer, C. and Al-Tabbaa, A., (2013). “Impact of hydrated magnesium carbonate additives on the carbonation of reactive MgO cements.” Cement and Concrete Research, 54, 87-97. – reference: 30) Moon, E. J. and Choi, Y. C., (2018). “Development of carbon-capture binder using stainless steel argon oxygen decarburization slag activated by carbonation.” Journal of Cleaner Production, 180, 642-654. – reference: 46) Zhang, D., Ghouleh, Z. and Shao, Y., (2017). “Review on carbonation curing of cement-based materials.” Journal of CO2 Utilization, 21, 119-131. – reference: 1) Baciocchi, R., Costa, G., Di Bartolomeo, E., Pollettini, A. and Pomi, R., (2010). “Carbonation of stainless steel slag as a process for CO2 storage and slag valorization.” Waste and Biomass Valorization, 1(4), 467-477. – reference: 44) WSA, (2019). “World steel in figures 2019.” Brussels, World Steel Association (WSA). Available from: <https://worldsteel.org/wp-content/uploads/2019-World-Steel-in-Figures.pdf?x82173 > [Accessed 4 October 2022]. – reference: 16) Huijgen, W. J. J., Witkamp, G. J. and Comans, R. N. J., (2005). “Mineral CO2 sequestration by steel slag carbonation.” Environmental Science and Technology, 39(24), 9676-9682. – reference: 18) Huntzinger, D. N., Gierke, J. S., Sutter, L. L., Kawatra, S. K. and Eisele, T. C., (2009). “Carbon dioxide sequestration in cement kiln dust through mineral carbonation.” Environmental Science and Technology, 43(6), 1986-1992. – reference: 22) Juckes, L. M., (2003). “The volume stability of modern steelmaking slags.” Mineral Processing and Extractive Metallurgy. 112, 177-197. – reference: 11) Ferrara, G., Belli, A., Keulen, A., Tulliani, J. C. and Palmero, P., (2023). “Testing procedures for CO2 uptake assessment of accelerated carbonation products: Experimental application on basic oxygen furnace steel slag samples.” Construction and Building Materials, 406, 133384. – reference: 12) Ghacham, A. B., Pasquier, L.-C., Cecchi, E., Blais, J.-F. and Mercier, G., (2016). “CO2 sequestration by mineral carbonation of steel slags under ambient temperature: Parameters influence, and optimization.” Environmental Science and Pollution Research, 23(17), 17635-17646. – reference: 31) Omale, S. O., Choong, T. S. Y., Abdullah, L. C., Siajam, S. I. and Yip, M. W., (2019). “Utilization of Malaysia EAF slags for effective application in direct aqueous sequestration of carbon dioxide under ambient temperature.” Heliyon, 5(10), e02602. – reference: 39) Uibu, M., Kuusik, R., Andreas, L. and Kirsimäe, K., (2011). “The CO2-binding by Ca-Mg-silicates in direct aqueous carbonation of oil shale ash and steel slag.” Energy Procedia, 4, 925-932. – reference: 7) Chang, E. E., Chiu, A. C., Pan, S. Y., Chen, Y. H., Tan, C. S. and Chiang, P. C., (2013). “Carbonation of basic oxygen furnace slag with metalworking wastewater in a slurry reactor.” International Journal of Greenhouse Gas Control, 12, 382-389. – reference: 45) Xuan, D., Zhan, B., Poon, C. S. and Zheng, W., (2016). “Innovative reuse of concrete slurry waste from ready-mixed concrete plants in construction products.” Journal of Hazardous Materials, 312, 65-72. – reference: 9) Chiang, P. C. and Pan, S. Y., (2017). “Iron and steel slags.” In: Carbon Dioxide Mineralization and Utilization. Singapore: Springer Nature Singapore, 233-252. – reference: 28) Midway, S., Robertson, M., Flinn, S. and Kaller, M., (2020). “Comparing multiple comparisons: Practical guidance for choosing the best multiple comparisons test.” PeerJ, Life and Environment, 8, e10387. – reference: 33) Pan, S.-Y., Shah, K. J., Chen, Y.-H., Wang, M.-H. and Chiang, P.-C., (2017). “Deployment of accelerated carbonation using alkaline solid wastes for carbon mineralization and utilization toward a circular economy.” ACS Sustainable Chemistry and Engineering, 5, 6429-6437. – reference: 2) Baciocchi, R., Costa, G., Di Bartolomeo, E., Pollettini, A., Pomi, R. and Stramazzo, A., (2015). “Thin-film versus slurry-phase carbonation of steel slag: CO2 uptake and effects on mineralogy.” Journal of Hazardous Materials, 283, 302-313. – reference: 19) Huntzinger, D. N., Gierke, J. S., Sutter, L. L., Kawatra, S. K. and Eisele, T. C., (2009). “Mineral carbonation for carbon sequestration in cement kiln dust from waste piles.” Journal of Hazardous Materials, 168(1), 31-37. – reference: 23) Kim, J. and Azimi, G., (2021). “The CO2 sequestration by supercritical carbonation of electric arc furnace slag.” Journal of CO2 Utilization, 52, 101667. – reference: 24) Librandi, P., Costa, G., Bello de Souza, A. C., Stendardo, S., Luna, A. S. and Baciocchi, R., (2017). “Carbonation of steel slag: Testing of the wet route in a pilot-scale reactor.” Energy Procedia, 114, 5381-5392. – reference: 8) Chang, E. E., Pan, S. Y., Chen, Y. H., Chu, H. W., Wang, C. F. and Chiang, P. C., (2011b). “CO2 sequestration by carbonation of steelmaking slags in an autoclave reactor.” Journal of Hazardous Materials, 195, 107-114. – reference: 20) Ibrahim, M. H., El-Naas, M. H., Zevenhoven, R. and Al-Sobhi, S. A., (2019). “Enhanced CO2 capture through reaction with steel-making dust in high salinity water.” International Journal of Greenhouse Gas Control, 91, 102819. – reference: 34) Primavera, A., Pontoni, L., Mombelli, D., Barella, S. and Mapelli, C., (2015). “EAF Slag treatment for inert materials’ production.” Journal of Sustainable Metallurgy, 2, 3-12. – reference: 35) RILEM, (2022). “Technical Committee 309-MCP on accelerated mineral carbonation for the production of construction materials [online].” Paris, Réunion Internationale des Laboratoires et Experts des Matériaux, Systèmes de Construction et Ouvrages (RILEM). Available from: <https://www.rilem.net/groupe/309-mcp-accelerated-mineral-carbonation-for-the-production-of-construction-materials-442 > [Accessed: 13 February 2024]. – reference: 38) Takahashi, H., Maruyama, I., Ohkubo, T., Kitagaki, R., Suda, Y., Teramoto, A., Haga, K. and Nagase, T., (2023). “Error factors in quantifying inorganic carbonate CO2 in concrete materials.” Journal of Advanced Concrete Technology, 21(10), 789-802. – reference: 41) Unluer, C. and Al-Tabbaa, A., (2014). “Characterization of light and heavy hydrated magnesium carbonates using thermal analysis.” Journal of Thermal Analysis and Calorimetry, 115(1), 595-607. – reference: 5) Bonfante, F., Ferrara, G., Humbert, P., Tulliani, J. C. and Palmero, P., (2023). “Direct aqueous mineralization of industrial waste for the production of carbonated supplementary cementitious materials.” In: A. Jędrzejewska, F. Kanavaris, M. Azenha, F. Benboudjema and D. Schlicke, Eds. Proc. International RILEM Conference on Synergising Expertise towards Sustainability and Robustness of Cement-based Materials and Concrete Structures. (SynerCrete 2023), Milos, Greece 14-16 June 2023. Cham, Switzerland: Springer Cham, 44, 581-592. – reference: 6) Chang, E. E., Chen, C. H., Pan, S. Y. and Chiang, P. C., (2011a). “Performance evaluation for carbonation of steel-making slags in a slurry reactor.” Journal of Hazardous Materials, 186(1), 558-564. – reference: 42) Wang, Y.-J., Tao, M.-J., Li, J.-G., Zeng, Y.-N., Qin, S. and Liu, S.-H., (2021). “Carbonation of EAF stainless steel slag and its effect on chromium leaching characteristics.” Crystals, 11(12), 1498. – reference: 27) Mahoutian, M., Shao, Y., Mucci, A. and Fournier, B., (2015). “Carbonation and hydration behavior of EAF and BOF steel slag binders.” Materials and Structures, 48, 3075-3085. – ident: 17 doi: 10.1016/j.conbuildmat.2019.03.169 – ident: 43 – ident: 32 doi: 10.1016/j.apenergy.2013.07.035 – ident: 47 doi: 10.1016/j.cej.2022.140552 – ident: 46 doi: 10.1016/j.jcou.2017.07.003 – ident: 35 – ident: 6 doi: 10.1016/j.jhazmat.2010.11.038 – ident: 37 – ident: 27 doi: 10.1617/s11527-014-0380-x – ident: 7 doi: 10.1016/j.ijggc.2012.11.026 – ident: 13 doi: 10.1016/j.jclepro.2017.08.015 – ident: 19 doi: 10.1016/j.jhazmat.2009.01.122 – ident: 41 doi: 10.1007/s10973-013-3300-3 – ident: 2 doi: 10.1016/j.jhazmat.2014.09.016 – ident: 28 doi: 10.7717/peerj.10387 – ident: 5 doi: 10.1007/978-3-031-33187-9_54 – ident: 45 doi: 10.1016/j.jhazmat.2016.03.036 – ident: 8 doi: 10.1016/j.jhazmat.2011.08.006 – ident: 38 doi: 10.3151/jact.21.789 – ident: 4 doi: 10.1021/ie701721j – ident: 3 doi: 10.1002/ghg.38 – ident: 15 doi: 10.1021/es052534b – ident: 16 doi: 10.1021/es050795f – ident: 40 doi: 10.1016/j.cemconres.2013.08.009 – ident: 39 doi: 10.1016/j.egypro.2011.01.138 – ident: 9 doi: 10.1007/978-981-10-3268-4_11 – ident: 36 doi: 10.1016/j.resconrec.2016.12.009 – ident: 22 doi: 10.1179/037195503225003708 – ident: 23 doi: 10.1016/j.jcou.2021.101667 – ident: 34 doi: 10.1007/s40831-015-0028-2 – ident: 24 doi: 10.1016/j.egypro.2017.03.1674 – ident: 14 doi: 10.1007/s11837-021-05135-6 – ident: 33 doi: 10.1021/acssuschemeng.7b00291 – ident: 25 doi: 10.1016/j.resconrec.2020.104883 – ident: 1 doi: 10.1007/s12649-010-9047-1 – ident: 31 doi: 10.1016/j.heliyon.2019.e02602 – ident: 42 doi: 10.3390/cryst11121498 – ident: 11 doi: 10.1016/j.conbuildmat.2023.133384 – ident: 18 doi: 10.1021/es802910z – ident: 30 doi: 10.1016/j.jclepro.2018.01.189 – ident: 10 doi: 10.1007/s10973-021-10914-z – ident: 12 doi: 10.1007/s11356-016-6926-4 – ident: 21 – ident: 26 doi: 10.1139/cjce-2017-0603 – ident: 20 doi: 10.1016/j.ijggc.2019.102819 – ident: 44 – ident: 29 doi: 10.1016/j.cemconres.2016.05.013 |
SSID | ssj0037377 |
Score | 2.3724267 |
Snippet | Electric Arc Furnace slag (EAF slag) reuse is currently limited by its inconsistent chemical composition and volume instability. However, the alkaline... |
SourceID | proquest crossref jstage |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 207 |
SubjectTerms | Acid digestion Carbon dioxide Carbon sequestration Carbonation Chemical composition Coefficient of variation Electric arc furnaces Energy consumption Pressure Room temperature Slag Thermal decomposition Thermogravimetric analysis Variance analysis |
Title | CO2 Sequestration Through Aqueous Carbonation of Electric Arc Furnace Slag |
URI | https://www.jstage.jst.go.jp/article/jact/22/4/22_207/_article/-char/en https://www.proquest.com/docview/3054724987 |
Volume | 22 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Journal of Advanced Concrete Technology, 2024/04/12, Vol.22(4), pp.207-218 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLfK4AAHxKfoGCiHnZgyUtupk2OpVqYivqRO2i3y10NFKKm69MLfsT-Y58RxMuhh7GJVrmVX_v383rP7Pgg5Tq1IplboGNIc8IIiTSyzVMXM5lOwGZikyTP7-cv0_IIvL9PL0eh64LW0q9Wp_r03ruQuqGIf4uqiZP8D2TApduBnxBdbRBjbW2E8_0rxsDeS3QO58mV3ZtjpnFvncquqMpiFZ03Rm7U-mW31ycKt4BJxdg96e2zUzkNgXpVoXtZ2z1P8h6oEB09nBqPg6d1_FtaVkW8M1I_r3ZXdbIZEUj5g6Js12yp4AsntDtbB394O3yVo484y6W-xS9T1Zf_rgutDq3daYcs4Cri8jUXtpDGlA9bxoWhtq-N6LU1bqf23AmBowDSFB3R9Sl2cnej1XPA-9HgVblRBacFdg0OL7gsX8Ib8ukfuU7x8OOn56Xv4b4oJJkQb6elWez9Y64Zt8-Anmvc__tXxjeGyekIeezSjWbvqUzKy5TPyaJCH8jlZIpGiG0SKPJEiT6RoQKSogqgjEk6rI0-kyBHpBblYnK3m57EvshFrnk3q2IDkVMJEcaNtavMk1RxQLCdWT6QwYCxAKpmUKjGaMa4yKzJIckgBTXkD7CU5KKvSviJRIoG7go82lTiHYTLJFAWaKGWpESDH5F23PYX2GehdIZRfBd5E3V4GRHAvx-Q4DN60iVf2DxPtPodBt0V3TI46YAp_pq8K1H5cUJ5n4vDOE78mD_vzcEQO6u3OvkHLtVZvGyL9AcMfp-Q |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CO2+Sequestration+Through+Aqueous+Carbonation+of+Electric+Arc+Furnace+Slag&rft.jtitle=Journal+of+Advanced+Concrete+Technology&rft.au=Bonfante%2C+Francesca&rft.au=Ferrara%2C+Giuseppe&rft.au=Humbert%2C+Pedro&rft.au=Garufi%2C+Davide&rft.date=2024-04-12&rft.pub=Japan+Concrete+Institute&rft.eissn=1347-3913&rft.volume=22&rft.issue=4&rft.spage=207&rft.epage=218&rft_id=info:doi/10.3151%2Fjact.22.207&rft.externalDocID=article_jact_22_4_22_207_article_char_en |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1346-8014&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1346-8014&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1346-8014&client=summon |