CO2 Sequestration Through Aqueous Carbonation of Electric Arc Furnace Slag

Electric Arc Furnace slag (EAF slag) reuse is currently limited by its inconsistent chemical composition and volume instability. However, the alkaline composition suggests the possibility to use this material for carbon capture and storage. This study investigated the CO2 uptake of EAF slag using a...

Full description

Saved in:
Bibliographic Details
Published inJournal of Advanced Concrete Technology Vol. 22; no. 4; pp. 207 - 218
Main Authors Bonfante, Francesca, Ferrara, Giuseppe, Humbert, Pedro, Garufi, Davide, Tulliani, Jean-Marc Christian, Palmero, Paola
Format Journal Article
LanguageEnglish
Published Tokyo Japan Concrete Institute 12.04.2024
Japan Science and Technology Agency
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Electric Arc Furnace slag (EAF slag) reuse is currently limited by its inconsistent chemical composition and volume instability. However, the alkaline composition suggests the possibility to use this material for carbon capture and storage. This study investigated the CO2 uptake of EAF slag using a direct aqueous carbonation technique. The process was implemented at room temperature and ambient pressure, with minimized energy consumption. The CO2-reactive phases were identified through X-ray diffraction analysis. Different CO2 quantification techniques were employed: thermogravimetric analysis, acid digestion and thermal decomposition. The replicability of experiments and quantification techniques was assessed through analysis of variance and pairwise comparisons. The average CO2 uptake and coefficient of variation resulted respectively 7.9% and 9.0%, with a carbonation degree of about 34%, proving that this simple mineralization process can be promising even in mild conditions.
AbstractList Electric Arc Furnace slag (EAF slag) reuse is currently limited by its inconsistent chemical composition and volume instability. However, the alkaline composition suggests the possibility to use this material for carbon capture and storage. This study investigated the CO2 uptake of EAF slag using a direct aqueous carbonation technique. The process was implemented at room temperature and ambient pressure, with minimized energy consumption. The CO2-reactive phases were identified through X-ray diffraction analysis. Different CO2 quantification techniques were employed: thermogravimetric analysis, acid digestion and thermal decomposition. The replicability of experiments and quantification techniques was assessed through analysis of variance and pairwise comparisons. The average CO2 uptake and coefficient of variation resulted respectively 7.9% and 9.0%, with a carbonation degree of about 34%, proving that this simple mineralization process can be promising even in mild conditions.
Author Palmero, Paola
Humbert, Pedro
Bonfante, Francesca
Tulliani, Jean-Marc Christian
Garufi, Davide
Ferrara, Giuseppe
Author_xml – sequence: 1
  fullname: Bonfante, Francesca
  organization: Department of Applied Science and Technology (DISAT), INSTM R.U. Lince Laboratory, Politecnico di Torino, Turin 10129, Italy
– sequence: 2
  fullname: Ferrara, Giuseppe
  organization: Department of Applied Science and Technology (DISAT), INSTM R.U. Lince Laboratory, Politecnico di Torino, Turin 10129, Italy
– sequence: 3
  fullname: Humbert, Pedro
  organization: Innovation Centre for Sustainable Construction, CRH, Amsterdam, 1083 HL, The Netherlands
– sequence: 4
  fullname: Garufi, Davide
  organization: Innovation Centre for Sustainable Construction, CRH, Amsterdam, 1083 HL, The Netherlands
– sequence: 5
  fullname: Tulliani, Jean-Marc Christian
  organization: Department of Applied Science and Technology (DISAT), INSTM R.U. Lince Laboratory, Politecnico di Torino, Turin 10129, Italy
– sequence: 6
  fullname: Palmero, Paola
  organization: Department of Applied Science and Technology (DISAT), INSTM R.U. Lince Laboratory, Politecnico di Torino, Turin 10129, Italy
BookMark eNp1kMtqwzAQRUVJoWnaVX9A0GVxqpcje1MIJumDQBZJ12IsS4mNa6WSvejf14lDFoWuZpg5d7hzb9GocY1B6IGSKacxfa5At1PGpozIKzSmXMiIp5SPTv0sSggVN-g2hIoQLrmUY_SRrRnemO_OhNZDW7oGb_fedbs9nvdD1wWcgc9dM-ycxYva6NaXGs-9xsvON6AN3tSwu0PXFupg7s91gj6Xi232Fq3Wr-_ZfBVpkdA2KiwIBpbmotAmNimJtbA0nRGjKcjCFsbaGDhATgrNucgTIxNLUhtbOuOF5RP0ONw9eHfyrSp3tFEHxUksJBNpInuKDpT2LgRvrNJle3qi_7OsFSXqGJk6RqYYU31kvebpj-bgyy_wP__QLwNdhRZ25sKCb0tdmwsrzoLLQu_BK9PwX7Fdh2c
CitedBy_id crossref_primary_10_1016_j_conbuildmat_2024_137456
crossref_primary_10_1016_j_mineng_2024_109154
crossref_primary_10_3151_jact_22_706
Cites_doi 10.1016/j.conbuildmat.2019.03.169
10.1016/j.apenergy.2013.07.035
10.1016/j.cej.2022.140552
10.1016/j.jcou.2017.07.003
10.1016/j.jhazmat.2010.11.038
10.1617/s11527-014-0380-x
10.1016/j.ijggc.2012.11.026
10.1016/j.jclepro.2017.08.015
10.1016/j.jhazmat.2009.01.122
10.1007/s10973-013-3300-3
10.1016/j.jhazmat.2014.09.016
10.7717/peerj.10387
10.1007/978-3-031-33187-9_54
10.1016/j.jhazmat.2016.03.036
10.1016/j.jhazmat.2011.08.006
10.3151/jact.21.789
10.1021/ie701721j
10.1002/ghg.38
10.1021/es052534b
10.1021/es050795f
10.1016/j.cemconres.2013.08.009
10.1016/j.egypro.2011.01.138
10.1007/978-981-10-3268-4_11
10.1016/j.resconrec.2016.12.009
10.1179/037195503225003708
10.1016/j.jcou.2021.101667
10.1007/s40831-015-0028-2
10.1016/j.egypro.2017.03.1674
10.1007/s11837-021-05135-6
10.1021/acssuschemeng.7b00291
10.1016/j.resconrec.2020.104883
10.1007/s12649-010-9047-1
10.1016/j.heliyon.2019.e02602
10.3390/cryst11121498
10.1016/j.conbuildmat.2023.133384
10.1021/es802910z
10.1016/j.jclepro.2018.01.189
10.1007/s10973-021-10914-z
10.1007/s11356-016-6926-4
10.1139/cjce-2017-0603
10.1016/j.ijggc.2019.102819
10.1016/j.cemconres.2016.05.013
ContentType Journal Article
Copyright 2024 by Japan Concrete Institute
Copyright Japan Science and Technology Agency 2024
Copyright_xml – notice: 2024 by Japan Concrete Institute
– notice: Copyright Japan Science and Technology Agency 2024
DBID AAYXX
CITATION
7QQ
7SR
8BQ
8FD
FR3
JG9
KR7
DOI 10.3151/jact.22.207
DatabaseName CrossRef
Ceramic Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Engineering Research Database
Materials Research Database
Civil Engineering Abstracts
DatabaseTitle CrossRef
Materials Research Database
Civil Engineering Abstracts
Engineered Materials Abstracts
Technology Research Database
Ceramic Abstracts
Engineering Research Database
METADEX
DatabaseTitleList Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1347-3913
EndPage 218
ExternalDocumentID 10_3151_jact_22_207
article_jact_22_4_22_207_article_char_en
GroupedDBID 5GY
ACIWK
ADDVE
AENEX
ALMA_UNASSIGNED_HOLDINGS
CS3
DU5
EBS
EJD
JSF
JSH
KQ8
OK1
P2P
RJT
RZJ
AAYXX
CITATION
7QQ
7SR
8BQ
8FD
FR3
JG9
KR7
ID FETCH-LOGICAL-c481t-dfa42af1b4dce5e905c4f1960ec1a7dfdeff5a3aab0dc334b8e78f09f5f163df3
ISSN 1346-8014
IngestDate Mon Jun 30 10:06:05 EDT 2025
Tue Jul 01 01:31:06 EDT 2025
Thu Apr 24 22:57:51 EDT 2025
Fri May 10 01:25:07 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c481t-dfa42af1b4dce5e905c4f1960ec1a7dfdeff5a3aab0dc334b8e78f09f5f163df3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.jstage.jst.go.jp/article/jact/22/4/22_207/_article/-char/en
PQID 3054724987
PQPubID 1996343
PageCount 12
ParticipantIDs proquest_journals_3054724987
crossref_citationtrail_10_3151_jact_22_207
crossref_primary_10_3151_jact_22_207
jstage_primary_article_jact_22_4_22_207_article_char_en
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024/04/12
PublicationDateYYYYMMDD 2024-04-12
PublicationDate_xml – month: 04
  year: 2024
  text: 2024/04/12
  day: 12
PublicationDecade 2020
PublicationPlace Tokyo
PublicationPlace_xml – name: Tokyo
PublicationTitle Journal of Advanced Concrete Technology
PublicationTitleAlternate ACT
PublicationYear 2024
Publisher Japan Concrete Institute
Japan Science and Technology Agency
Publisher_xml – name: Japan Concrete Institute
– name: Japan Science and Technology Agency
References 42) Wang, Y.-J., Tao, M.-J., Li, J.-G., Zeng, Y.-N., Qin, S. and Liu, S.-H., (2021). “Carbonation of EAF stainless steel slag and its effect on chromium leaching characteristics.” Crystals, 11(12), 1498.
17) Humbert, P. S., Castro-Gomes, J. P. and Savastano, H., (2019). “Clinker-free CO2 cured steel slag based binder: Optimal conditions and potential applications.” Construction and Building Materials, 210, 413-421.
38) Takahashi, H., Maruyama, I., Ohkubo, T., Kitagaki, R., Suda, Y., Teramoto, A., Haga, K. and Nagase, T., (2023). “Error factors in quantifying inorganic carbonate CO2 in concrete materials.” Journal of Advanced Concrete Technology, 21(10), 789-802.
34) Primavera, A., Pontoni, L., Mombelli, D., Barella, S. and Mapelli, C., (2015). “EAF Slag treatment for inert materials’ production.” Journal of Sustainable Metallurgy, 2, 3-12.
20) Ibrahim, M. H., El-Naas, M. H., Zevenhoven, R. and Al-Sobhi, S. A., (2019). “Enhanced CO2 capture through reaction with steel-making dust in high salinity water.” International Journal of Greenhouse Gas Control, 91, 102819.
26) Mahoutian, M., Chaallal, O. and Shao, Y., (2018). “Pilot production of steel slag masonry blocks.” Canadian Journal of Civil Engineering, 45(7), 537-546.
11) Ferrara, G., Belli, A., Keulen, A., Tulliani, J. C. and Palmero, P., (2023). “Testing procedures for CO2 uptake assessment of accelerated carbonation products: Experimental application on basic oxygen furnace steel slag samples.” Construction and Building Materials, 406, 133384.
30) Moon, E. J. and Choi, Y. C., (2018). “Development of carbon-capture binder using stainless steel argon oxygen decarburization slag activated by carbonation.” Journal of Cleaner Production, 180, 642-654.
39) Uibu, M., Kuusik, R., Andreas, L. and Kirsimäe, K., (2011). “The CO2-binding by Ca-Mg-silicates in direct aqueous carbonation of oil shale ash and steel slag.” Energy Procedia, 4, 925-932.
9) Chiang, P. C. and Pan, S. Y., (2017). “Iron and steel slags.” In: Carbon Dioxide Mineralization and Utilization. Singapore: Springer Nature Singapore, 233-252.
16) Huijgen, W. J. J., Witkamp, G. J. and Comans, R. N. J., (2005). “Mineral CO2 sequestration by steel slag carbonation.” Environmental Science and Technology, 39(24), 9676-9682.
31) Omale, S. O., Choong, T. S. Y., Abdullah, L. C., Siajam, S. I. and Yip, M. W., (2019). “Utilization of Malaysia EAF slags for effective application in direct aqueous sequestration of carbon dioxide under ambient temperature.” Heliyon, 5(10), e02602.
32) Pan, S. Y., Chiang, P. C., Chen, Y. H., Tan, C. S. and Chang, E. E., (2014). “Kinetics of carbonation reaction of basic oxygen furnace slags in a rotating packed bed using the surface coverage model: Maximization of carbonation conversion.” Applied Energy, 113, 267-276.
10) Fang, Y., Su, W., Zhang, Y., Zhang, M., Ding, X. and Wang, Q., (2022). “Effect of accelerated precarbonation on hydration activity and volume stability of steel slag as a supplementary cementitious material.” Journal of Thermal Analysis and Calorimetry, 147(11), 6181-6191.
21) IEA, (2021). “Net zero by 2050.” Paris: International Energy Agency (IEA).
12) Ghacham, A. B., Pasquier, L.-C., Cecchi, E., Blais, J.-F. and Mercier, G., (2016). “CO2 sequestration by mineral carbonation of steel slags under ambient temperature: Parameters influence, and optimization.” Environmental Science and Pollution Research, 23(17), 17635-17646.
13) Ghacham, A. B., Pasquier, L.-C., Cecchi, E., Blais, J.-F. and Mercier, G., (2017). “Valorization of waste concrete through CO2 mineral carbonation: Optimizing parameters and improving reactivity using concrete separation.” Journal of Cleaner Production, 166, 869-878.
15) Huijgen, W. J. J. and Comans, R. N. J., (2006). “Carbonation of steel slag for CO2 sequestration: Leaching of products and reaction mechanisms.” Environmental Science and Technology, 40(8), 2790-2796.
23) Kim, J. and Azimi, G., (2021). “The CO2 sequestration by supercritical carbonation of electric arc furnace slag.” Journal of CO2 Utilization, 52, 101667.
8) Chang, E. E., Pan, S. Y., Chen, Y. H., Chu, H. W., Wang, C. F. and Chiang, P. C., (2011b). “CO2 sequestration by carbonation of steelmaking slags in an autoclave reactor.” Journal of Hazardous Materials, 195, 107-114.
27) Mahoutian, M., Shao, Y., Mucci, A. and Fournier, B., (2015). “Carbonation and hydration behavior of EAF and BOF steel slag binders.” Materials and Structures, 48, 3075-3085.
19) Huntzinger, D. N., Gierke, J. S., Sutter, L. L., Kawatra, S. K. and Eisele, T. C., (2009). “Mineral carbonation for carbon sequestration in cement kiln dust from waste piles.” Journal of Hazardous Materials, 168(1), 31-37.
22) Juckes, L. M., (2003). “The volume stability of modern steelmaking slags.” Mineral Processing and Extractive Metallurgy. 112, 177-197.
25) Liu, G., Schollbach, K., van der Laan, S., Tang, P. and Florea, M. V. A., (2020). “Recycling and utilization of high volume converter steel slag into CO2 activated mortars - The role of slag particle size.” Resources, Conservation and Recycling, 160, 104883.
4) Bonenfant, D., Kharoune, L., Sauvé, S., Hausler, R., Niquette, P., Mimeault, M. and Kharoune, M., (2008). “CO2 sequestration potential of steel slags at ambient pressure and temperature.” Industrial and Engineering Chemistry Research, 47(20), 7610-7616.
7) Chang, E. E., Chiu, A. C., Pan, S. Y., Chen, Y. H., Tan, C. S. and Chiang, P. C., (2013). “Carbonation of basic oxygen furnace slag with metalworking wastewater in a slurry reactor.” International Journal of Greenhouse Gas Control, 12, 382-389.
6) Chang, E. E., Chen, C. H., Pan, S. Y. and Chiang, P. C., (2011a). “Performance evaluation for carbonation of steel-making slags in a slurry reactor.” Journal of Hazardous Materials, 186(1), 558-564.
36) Skaf, M., Manso, J. M., Aragón, Á., Fuente-Alonso, J. A. and Ortega-López, V., (2017). “EAF slag in asphalt mixes: A brief review of its possible re-use.” Resources, Conservation and Recycling, 120, 176-185.
18) Huntzinger, D. N., Gierke, J. S., Sutter, L. L., Kawatra, S. K. and Eisele, T. C., (2009). “Carbon dioxide sequestration in cement kiln dust through mineral carbonation.” Environmental Science and Technology, 43(6), 1986-1992.
47) Zhang, Y., Yu, L., Cui, K., Wang, H. and Fu, T., (2023). “Carbon capture and storage technology by steel-making slags: Recent progress and future challenges.” Chemical Engineering Journal, 455, 140552.
35) RILEM, (2022). “Technical Committee 309-MCP on accelerated mineral carbonation for the production of construction materials [online].” Paris, Réunion Internationale des Laboratoires et Experts des Matériaux, Systèmes de Construction et Ouvrages (RILEM). Available from: <https://www.rilem.net/groupe/309-mcp-accelerated-mineral-carbonation-for-the-production-of-construction-materials-442 > [Accessed: 13 February 2024].
46) Zhang, D., Ghouleh, Z. and Shao, Y., (2017). “Review on carbonation curing of cement-based materials.” Journal of CO2 Utilization, 21, 119-131.
14) Gobetti, A., Cornacchia, G. and Ramorino, G., (2022). “Reuse of electric arc furnace slag as filler for nitrile butadiene rubber.” JOM, 74(4), 1329-1339.
29) Mo, L., Zhang, F. and Deng, M., (2016). “Mechanical performance and microstructure of the calcium carbonate binders produced by carbonating steel slag paste under CO2 curing.” Cement and Concrete Research, 88, 217-226.
40) Unluer, C. and Al-Tabbaa, A., (2013). “Impact of hydrated magnesium carbonate additives on the carbonation of reactive MgO cements.” Cement and Concrete Research, 54, 87-97.
28) Midway, S., Robertson, M., Flinn, S. and Kaller, M., (2020). “Comparing multiple comparisons: Practical guidance for choosing the best multiple comparisons test.” PeerJ, Life and Environment, 8, e10387.
5) Bonfante, F., Ferrara, G., Humbert, P., Tulliani, J. C. and Palmero, P., (2023). “Direct aqueous mineralization of industrial waste for the production of carbonated supplementary cementitious materials.” In: A. Jędrzejewska, F. Kanavaris, M. Azenha, F. Benboudjema and D. Schlicke, Eds. Proc. International RILEM Conference on Synergising Expertise towards Sustainability and Robustness of Cement-based Materials and Concrete Structures. (SynerCrete 2023), Milos, Greece 14-16 June 2023. Cham, Switzerland: Springer Cham, 44, 581-592.
33) Pan, S.-Y., Shah, K. J., Chen, Y.-H., Wang, M.-H. and Chiang, P.-C., (2017). “Deployment of accelerated carbonation using alkaline solid wastes for carbon mineralization and utilization toward a circular economy.” ACS Sustainable Chemistry and Engineering, 5, 6429-6437.
2) Baciocchi, R., Costa, G., Di Bartolomeo, E., Pollettini, A., Pomi, R. and Stramazzo, A., (2015). “Thin-film versus slurry-phase carbonation of steel slag: CO2 uptake and effects on mineralogy.” Journal of Hazardous Materials, 283, 302-313.
37) Steinour, H. H., (1959). “Some effects of carbon dioxide on mortars and concrete-discussion.” Journal of the American Concrete Institute, 30(2), 905-907.
41) Unluer, C. and Al-Tabbaa, A., (2014). “Characterization of light and heavy hydrated magnesium carbonates using thermal analysis.” Journal of Thermal Analysis and Calorimetry, 115(1), 595-607.
3) Baciocchi, R., Costa, G., Di Gianfilippo, M., Pollettini, A. and Pomi, R., (2011). “Wet versus slurry carbonation of EAF steel slag.” Greenhouse Gases: Science and Technology, 1(4), 312-319.
45) Xuan, D., Zhan, B., Poon, C. S. and Zheng, W., (2016). “Innovative reuse of concrete slurry waste from ready-mixed concrete plants in construction products.” Journal of Hazardous Materials, 312, 65-72.
24) Librandi, P., Costa, G., Bello de Souza, A. C., Stendardo, S., Luna, A. S. and Baciocchi, R., (2017). “Carbonation of steel slag: Testing of the wet route in a pilot-scale reactor.” Energy Procedia, 114, 5381-5392.
44) WSA, (2019). “World steel in figures 2019.” Brussels, World Steel Association (WSA). Available from: <https://worldsteel.org/wp-content/uploads/2019-World-Steel-in-Figures.pdf?x82173 > [Accessed 4 October 2022].
1) Baciocchi
22
44
23
45
24
46
25
47
26
27
28
29
30
31
10
32
11
33
12
34
13
35
14
36
15
37
16
38
17
39
18
19
1
2
3
4
5
6
7
8
9
40
41
20
42
21
43
References_xml – reference: 4) Bonenfant, D., Kharoune, L., Sauvé, S., Hausler, R., Niquette, P., Mimeault, M. and Kharoune, M., (2008). “CO2 sequestration potential of steel slags at ambient pressure and temperature.” Industrial and Engineering Chemistry Research, 47(20), 7610-7616.
– reference: 29) Mo, L., Zhang, F. and Deng, M., (2016). “Mechanical performance and microstructure of the calcium carbonate binders produced by carbonating steel slag paste under CO2 curing.” Cement and Concrete Research, 88, 217-226.
– reference: 47) Zhang, Y., Yu, L., Cui, K., Wang, H. and Fu, T., (2023). “Carbon capture and storage technology by steel-making slags: Recent progress and future challenges.” Chemical Engineering Journal, 455, 140552.
– reference: 13) Ghacham, A. B., Pasquier, L.-C., Cecchi, E., Blais, J.-F. and Mercier, G., (2017). “Valorization of waste concrete through CO2 mineral carbonation: Optimizing parameters and improving reactivity using concrete separation.” Journal of Cleaner Production, 166, 869-878.
– reference: 21) IEA, (2021). “Net zero by 2050.” Paris: International Energy Agency (IEA).
– reference: 43) WSA, (2010). “Steel industry co-products [online].” Brussels, World Steel Association (WSA). Available from: <https://worldsteel.org/steel-topics/environment-climate-change/steel-industry-co-products/ > [Accessed 28 September 2023].
– reference: 10) Fang, Y., Su, W., Zhang, Y., Zhang, M., Ding, X. and Wang, Q., (2022). “Effect of accelerated precarbonation on hydration activity and volume stability of steel slag as a supplementary cementitious material.” Journal of Thermal Analysis and Calorimetry, 147(11), 6181-6191.
– reference: 14) Gobetti, A., Cornacchia, G. and Ramorino, G., (2022). “Reuse of electric arc furnace slag as filler for nitrile butadiene rubber.” JOM, 74(4), 1329-1339.
– reference: 17) Humbert, P. S., Castro-Gomes, J. P. and Savastano, H., (2019). “Clinker-free CO2 cured steel slag based binder: Optimal conditions and potential applications.” Construction and Building Materials, 210, 413-421.
– reference: 3) Baciocchi, R., Costa, G., Di Gianfilippo, M., Pollettini, A. and Pomi, R., (2011). “Wet versus slurry carbonation of EAF steel slag.” Greenhouse Gases: Science and Technology, 1(4), 312-319.
– reference: 37) Steinour, H. H., (1959). “Some effects of carbon dioxide on mortars and concrete-discussion.” Journal of the American Concrete Institute, 30(2), 905-907.
– reference: 26) Mahoutian, M., Chaallal, O. and Shao, Y., (2018). “Pilot production of steel slag masonry blocks.” Canadian Journal of Civil Engineering, 45(7), 537-546.
– reference: 36) Skaf, M., Manso, J. M., Aragón, Á., Fuente-Alonso, J. A. and Ortega-López, V., (2017). “EAF slag in asphalt mixes: A brief review of its possible re-use.” Resources, Conservation and Recycling, 120, 176-185.
– reference: 15) Huijgen, W. J. J. and Comans, R. N. J., (2006). “Carbonation of steel slag for CO2 sequestration: Leaching of products and reaction mechanisms.” Environmental Science and Technology, 40(8), 2790-2796.
– reference: 32) Pan, S. Y., Chiang, P. C., Chen, Y. H., Tan, C. S. and Chang, E. E., (2014). “Kinetics of carbonation reaction of basic oxygen furnace slags in a rotating packed bed using the surface coverage model: Maximization of carbonation conversion.” Applied Energy, 113, 267-276.
– reference: 25) Liu, G., Schollbach, K., van der Laan, S., Tang, P. and Florea, M. V. A., (2020). “Recycling and utilization of high volume converter steel slag into CO2 activated mortars - The role of slag particle size.” Resources, Conservation and Recycling, 160, 104883.
– reference: 40) Unluer, C. and Al-Tabbaa, A., (2013). “Impact of hydrated magnesium carbonate additives on the carbonation of reactive MgO cements.” Cement and Concrete Research, 54, 87-97.
– reference: 30) Moon, E. J. and Choi, Y. C., (2018). “Development of carbon-capture binder using stainless steel argon oxygen decarburization slag activated by carbonation.” Journal of Cleaner Production, 180, 642-654.
– reference: 46) Zhang, D., Ghouleh, Z. and Shao, Y., (2017). “Review on carbonation curing of cement-based materials.” Journal of CO2 Utilization, 21, 119-131.
– reference: 1) Baciocchi, R., Costa, G., Di Bartolomeo, E., Pollettini, A. and Pomi, R., (2010). “Carbonation of stainless steel slag as a process for CO2 storage and slag valorization.” Waste and Biomass Valorization, 1(4), 467-477.
– reference: 44) WSA, (2019). “World steel in figures 2019.” Brussels, World Steel Association (WSA). Available from: <https://worldsteel.org/wp-content/uploads/2019-World-Steel-in-Figures.pdf?x82173 > [Accessed 4 October 2022].
– reference: 16) Huijgen, W. J. J., Witkamp, G. J. and Comans, R. N. J., (2005). “Mineral CO2 sequestration by steel slag carbonation.” Environmental Science and Technology, 39(24), 9676-9682.
– reference: 18) Huntzinger, D. N., Gierke, J. S., Sutter, L. L., Kawatra, S. K. and Eisele, T. C., (2009). “Carbon dioxide sequestration in cement kiln dust through mineral carbonation.” Environmental Science and Technology, 43(6), 1986-1992.
– reference: 22) Juckes, L. M., (2003). “The volume stability of modern steelmaking slags.” Mineral Processing and Extractive Metallurgy. 112, 177-197.
– reference: 11) Ferrara, G., Belli, A., Keulen, A., Tulliani, J. C. and Palmero, P., (2023). “Testing procedures for CO2 uptake assessment of accelerated carbonation products: Experimental application on basic oxygen furnace steel slag samples.” Construction and Building Materials, 406, 133384.
– reference: 12) Ghacham, A. B., Pasquier, L.-C., Cecchi, E., Blais, J.-F. and Mercier, G., (2016). “CO2 sequestration by mineral carbonation of steel slags under ambient temperature: Parameters influence, and optimization.” Environmental Science and Pollution Research, 23(17), 17635-17646.
– reference: 31) Omale, S. O., Choong, T. S. Y., Abdullah, L. C., Siajam, S. I. and Yip, M. W., (2019). “Utilization of Malaysia EAF slags for effective application in direct aqueous sequestration of carbon dioxide under ambient temperature.” Heliyon, 5(10), e02602.
– reference: 39) Uibu, M., Kuusik, R., Andreas, L. and Kirsimäe, K., (2011). “The CO2-binding by Ca-Mg-silicates in direct aqueous carbonation of oil shale ash and steel slag.” Energy Procedia, 4, 925-932.
– reference: 7) Chang, E. E., Chiu, A. C., Pan, S. Y., Chen, Y. H., Tan, C. S. and Chiang, P. C., (2013). “Carbonation of basic oxygen furnace slag with metalworking wastewater in a slurry reactor.” International Journal of Greenhouse Gas Control, 12, 382-389.
– reference: 45) Xuan, D., Zhan, B., Poon, C. S. and Zheng, W., (2016). “Innovative reuse of concrete slurry waste from ready-mixed concrete plants in construction products.” Journal of Hazardous Materials, 312, 65-72.
– reference: 9) Chiang, P. C. and Pan, S. Y., (2017). “Iron and steel slags.” In: Carbon Dioxide Mineralization and Utilization. Singapore: Springer Nature Singapore, 233-252.
– reference: 28) Midway, S., Robertson, M., Flinn, S. and Kaller, M., (2020). “Comparing multiple comparisons: Practical guidance for choosing the best multiple comparisons test.” PeerJ, Life and Environment, 8, e10387.
– reference: 33) Pan, S.-Y., Shah, K. J., Chen, Y.-H., Wang, M.-H. and Chiang, P.-C., (2017). “Deployment of accelerated carbonation using alkaline solid wastes for carbon mineralization and utilization toward a circular economy.” ACS Sustainable Chemistry and Engineering, 5, 6429-6437.
– reference: 2) Baciocchi, R., Costa, G., Di Bartolomeo, E., Pollettini, A., Pomi, R. and Stramazzo, A., (2015). “Thin-film versus slurry-phase carbonation of steel slag: CO2 uptake and effects on mineralogy.” Journal of Hazardous Materials, 283, 302-313.
– reference: 19) Huntzinger, D. N., Gierke, J. S., Sutter, L. L., Kawatra, S. K. and Eisele, T. C., (2009). “Mineral carbonation for carbon sequestration in cement kiln dust from waste piles.” Journal of Hazardous Materials, 168(1), 31-37.
– reference: 23) Kim, J. and Azimi, G., (2021). “The CO2 sequestration by supercritical carbonation of electric arc furnace slag.” Journal of CO2 Utilization, 52, 101667.
– reference: 24) Librandi, P., Costa, G., Bello de Souza, A. C., Stendardo, S., Luna, A. S. and Baciocchi, R., (2017). “Carbonation of steel slag: Testing of the wet route in a pilot-scale reactor.” Energy Procedia, 114, 5381-5392.
– reference: 8) Chang, E. E., Pan, S. Y., Chen, Y. H., Chu, H. W., Wang, C. F. and Chiang, P. C., (2011b). “CO2 sequestration by carbonation of steelmaking slags in an autoclave reactor.” Journal of Hazardous Materials, 195, 107-114.
– reference: 20) Ibrahim, M. H., El-Naas, M. H., Zevenhoven, R. and Al-Sobhi, S. A., (2019). “Enhanced CO2 capture through reaction with steel-making dust in high salinity water.” International Journal of Greenhouse Gas Control, 91, 102819.
– reference: 34) Primavera, A., Pontoni, L., Mombelli, D., Barella, S. and Mapelli, C., (2015). “EAF Slag treatment for inert materials’ production.” Journal of Sustainable Metallurgy, 2, 3-12.
– reference: 35) RILEM, (2022). “Technical Committee 309-MCP on accelerated mineral carbonation for the production of construction materials [online].” Paris, Réunion Internationale des Laboratoires et Experts des Matériaux, Systèmes de Construction et Ouvrages (RILEM). Available from: <https://www.rilem.net/groupe/309-mcp-accelerated-mineral-carbonation-for-the-production-of-construction-materials-442 > [Accessed: 13 February 2024].
– reference: 38) Takahashi, H., Maruyama, I., Ohkubo, T., Kitagaki, R., Suda, Y., Teramoto, A., Haga, K. and Nagase, T., (2023). “Error factors in quantifying inorganic carbonate CO2 in concrete materials.” Journal of Advanced Concrete Technology, 21(10), 789-802.
– reference: 41) Unluer, C. and Al-Tabbaa, A., (2014). “Characterization of light and heavy hydrated magnesium carbonates using thermal analysis.” Journal of Thermal Analysis and Calorimetry, 115(1), 595-607.
– reference: 5) Bonfante, F., Ferrara, G., Humbert, P., Tulliani, J. C. and Palmero, P., (2023). “Direct aqueous mineralization of industrial waste for the production of carbonated supplementary cementitious materials.” In: A. Jędrzejewska, F. Kanavaris, M. Azenha, F. Benboudjema and D. Schlicke, Eds. Proc. International RILEM Conference on Synergising Expertise towards Sustainability and Robustness of Cement-based Materials and Concrete Structures. (SynerCrete 2023), Milos, Greece 14-16 June 2023. Cham, Switzerland: Springer Cham, 44, 581-592.
– reference: 6) Chang, E. E., Chen, C. H., Pan, S. Y. and Chiang, P. C., (2011a). “Performance evaluation for carbonation of steel-making slags in a slurry reactor.” Journal of Hazardous Materials, 186(1), 558-564.
– reference: 42) Wang, Y.-J., Tao, M.-J., Li, J.-G., Zeng, Y.-N., Qin, S. and Liu, S.-H., (2021). “Carbonation of EAF stainless steel slag and its effect on chromium leaching characteristics.” Crystals, 11(12), 1498.
– reference: 27) Mahoutian, M., Shao, Y., Mucci, A. and Fournier, B., (2015). “Carbonation and hydration behavior of EAF and BOF steel slag binders.” Materials and Structures, 48, 3075-3085.
– ident: 17
  doi: 10.1016/j.conbuildmat.2019.03.169
– ident: 43
– ident: 32
  doi: 10.1016/j.apenergy.2013.07.035
– ident: 47
  doi: 10.1016/j.cej.2022.140552
– ident: 46
  doi: 10.1016/j.jcou.2017.07.003
– ident: 35
– ident: 6
  doi: 10.1016/j.jhazmat.2010.11.038
– ident: 37
– ident: 27
  doi: 10.1617/s11527-014-0380-x
– ident: 7
  doi: 10.1016/j.ijggc.2012.11.026
– ident: 13
  doi: 10.1016/j.jclepro.2017.08.015
– ident: 19
  doi: 10.1016/j.jhazmat.2009.01.122
– ident: 41
  doi: 10.1007/s10973-013-3300-3
– ident: 2
  doi: 10.1016/j.jhazmat.2014.09.016
– ident: 28
  doi: 10.7717/peerj.10387
– ident: 5
  doi: 10.1007/978-3-031-33187-9_54
– ident: 45
  doi: 10.1016/j.jhazmat.2016.03.036
– ident: 8
  doi: 10.1016/j.jhazmat.2011.08.006
– ident: 38
  doi: 10.3151/jact.21.789
– ident: 4
  doi: 10.1021/ie701721j
– ident: 3
  doi: 10.1002/ghg.38
– ident: 15
  doi: 10.1021/es052534b
– ident: 16
  doi: 10.1021/es050795f
– ident: 40
  doi: 10.1016/j.cemconres.2013.08.009
– ident: 39
  doi: 10.1016/j.egypro.2011.01.138
– ident: 9
  doi: 10.1007/978-981-10-3268-4_11
– ident: 36
  doi: 10.1016/j.resconrec.2016.12.009
– ident: 22
  doi: 10.1179/037195503225003708
– ident: 23
  doi: 10.1016/j.jcou.2021.101667
– ident: 34
  doi: 10.1007/s40831-015-0028-2
– ident: 24
  doi: 10.1016/j.egypro.2017.03.1674
– ident: 14
  doi: 10.1007/s11837-021-05135-6
– ident: 33
  doi: 10.1021/acssuschemeng.7b00291
– ident: 25
  doi: 10.1016/j.resconrec.2020.104883
– ident: 1
  doi: 10.1007/s12649-010-9047-1
– ident: 31
  doi: 10.1016/j.heliyon.2019.e02602
– ident: 42
  doi: 10.3390/cryst11121498
– ident: 11
  doi: 10.1016/j.conbuildmat.2023.133384
– ident: 18
  doi: 10.1021/es802910z
– ident: 30
  doi: 10.1016/j.jclepro.2018.01.189
– ident: 10
  doi: 10.1007/s10973-021-10914-z
– ident: 12
  doi: 10.1007/s11356-016-6926-4
– ident: 21
– ident: 26
  doi: 10.1139/cjce-2017-0603
– ident: 20
  doi: 10.1016/j.ijggc.2019.102819
– ident: 44
– ident: 29
  doi: 10.1016/j.cemconres.2016.05.013
SSID ssj0037377
Score 2.3724267
Snippet Electric Arc Furnace slag (EAF slag) reuse is currently limited by its inconsistent chemical composition and volume instability. However, the alkaline...
SourceID proquest
crossref
jstage
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 207
SubjectTerms Acid digestion
Carbon dioxide
Carbon sequestration
Carbonation
Chemical composition
Coefficient of variation
Electric arc furnaces
Energy consumption
Pressure
Room temperature
Slag
Thermal decomposition
Thermogravimetric analysis
Variance analysis
Title CO2 Sequestration Through Aqueous Carbonation of Electric Arc Furnace Slag
URI https://www.jstage.jst.go.jp/article/jact/22/4/22_207/_article/-char/en
https://www.proquest.com/docview/3054724987
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Journal of Advanced Concrete Technology, 2024/04/12, Vol.22(4), pp.207-218
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLfK4AAHxKfoGCiHnZgyUtupk2OpVqYivqRO2i3y10NFKKm69MLfsT-Y58RxMuhh7GJVrmVX_v383rP7Pgg5Tq1IplboGNIc8IIiTSyzVMXM5lOwGZikyTP7-cv0_IIvL9PL0eh64LW0q9Wp_r03ruQuqGIf4uqiZP8D2TApduBnxBdbRBjbW2E8_0rxsDeS3QO58mV3ZtjpnFvncquqMpiFZ03Rm7U-mW31ycKt4BJxdg96e2zUzkNgXpVoXtZ2z1P8h6oEB09nBqPg6d1_FtaVkW8M1I_r3ZXdbIZEUj5g6Js12yp4AsntDtbB394O3yVo484y6W-xS9T1Zf_rgutDq3daYcs4Cri8jUXtpDGlA9bxoWhtq-N6LU1bqf23AmBowDSFB3R9Sl2cnej1XPA-9HgVblRBacFdg0OL7gsX8Ib8ukfuU7x8OOn56Xv4b4oJJkQb6elWez9Y64Zt8-Anmvc__tXxjeGyekIeezSjWbvqUzKy5TPyaJCH8jlZIpGiG0SKPJEiT6RoQKSogqgjEk6rI0-kyBHpBblYnK3m57EvshFrnk3q2IDkVMJEcaNtavMk1RxQLCdWT6QwYCxAKpmUKjGaMa4yKzJIckgBTXkD7CU5KKvSviJRIoG7go82lTiHYTLJFAWaKGWpESDH5F23PYX2GehdIZRfBd5E3V4GRHAvx-Q4DN60iVf2DxPtPodBt0V3TI46YAp_pq8K1H5cUJ5n4vDOE78mD_vzcEQO6u3OvkHLtVZvGyL9AcMfp-Q
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CO2+Sequestration+Through+Aqueous+Carbonation+of+Electric+Arc+Furnace+Slag&rft.jtitle=Journal+of+Advanced+Concrete+Technology&rft.au=Bonfante%2C+Francesca&rft.au=Ferrara%2C+Giuseppe&rft.au=Humbert%2C+Pedro&rft.au=Garufi%2C+Davide&rft.date=2024-04-12&rft.pub=Japan+Concrete+Institute&rft.eissn=1347-3913&rft.volume=22&rft.issue=4&rft.spage=207&rft.epage=218&rft_id=info:doi/10.3151%2Fjact.22.207&rft.externalDocID=article_jact_22_4_22_207_article_char_en
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1346-8014&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1346-8014&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1346-8014&client=summon