Quantification of somatic mutation flow across individual cell division events by lineage sequencing
Mutation data reveal the dynamic equilibrium between DNA damage and repair processes in cells and are indispensable to the understanding of age-related diseases, tumor evolution, and the acquisition of drug resistance. However, available genome-wide methods have a limited ability to resolve rare som...
Saved in:
Published in | Genome research Vol. 28; no. 12; pp. 1901 - 1918 |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Cold Spring Harbor Laboratory Press
01.12.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Mutation data reveal the dynamic equilibrium between DNA damage and repair processes in cells and are indispensable to the understanding of age-related diseases, tumor evolution, and the acquisition of drug resistance. However, available genome-wide methods have a limited ability to resolve rare somatic variants and the relationships between these variants. Here, we present lineage sequencing, a new genome sequencing approach that enables somatic event reconstruction by providing quality somatic mutation call sets with resolution as high as the single-cell level in subject lineages. Lineage sequencing entails sampling single cells from a population and sequencing subclonal sample sets derived from these cells such that knowledge of relationships among the cells can be used to jointly call variants across the sample set. This approach integrates data from multiple sequence libraries to support each variant and precisely assigns mutations to lineage segments. We applied lineage sequencing to a human colon cancer cell line with a DNA polymerase epsilon ( POLE ) proofreading deficiency (HT115) and a human retinal epithelial cell line immortalized by constitutive telomerase expression (RPE1). Cells were cultured under continuous observation to link observed single-cell phenotypes with single-cell mutation data. The high sensitivity, specificity, and resolution of the data provide a unique opportunity for quantitative analysis of variation in mutation rate, spectrum, and correlations among variants. Our data show that mutations arrive with nonuniform probability across sublineages and that DNA lesion dynamics may cause strong correlations between certain mutations. |
---|---|
AbstractList | Mutation data reveal the dynamic equilibrium between DNA damage and repair processes in cells and are indispensable to the understanding of age-related diseases, tumor evolution, and the acquisition of drug resistance. However, available genome-wide methods have a limited ability to resolve rare somatic variants and the relationships between these variants. Here, we present lineage sequencing, a new genome sequencing approach that enables somatic event reconstruction by providing quality somatic mutation call sets with resolution as high as the single-cell level in subject lineages. Lineage sequencing entails sampling single cells from a population and sequencing subclonal sample sets derived from these cells such that knowledge of relationships among the cells can be used to jointly call variants across the sample set. This approach integrates data from multiple sequence libraries to support each variant and precisely assigns mutations to lineage segments. We applied lineage sequencing to a human colon cancer cell line with a DNA polymerase epsilon (POLE) proofreading deficiency (HT115) and a human retinal epithelial cell line immortalized by constitutive telomerase expression (RPE1). Cells were cultured under continuous observation to link observed single-cell phenotypes with single-cell mutation data. The high sensitivity, specificity, and resolution of the data provide a unique opportunity for quantitative analysis of variation in mutation rate, spectrum, and correlations among variants. Our data show that mutations arrive with nonuniform probability across sublineages and that DNA lesion dynamics may cause strong correlations between certain mutations.Mutation data reveal the dynamic equilibrium between DNA damage and repair processes in cells and are indispensable to the understanding of age-related diseases, tumor evolution, and the acquisition of drug resistance. However, available genome-wide methods have a limited ability to resolve rare somatic variants and the relationships between these variants. Here, we present lineage sequencing, a new genome sequencing approach that enables somatic event reconstruction by providing quality somatic mutation call sets with resolution as high as the single-cell level in subject lineages. Lineage sequencing entails sampling single cells from a population and sequencing subclonal sample sets derived from these cells such that knowledge of relationships among the cells can be used to jointly call variants across the sample set. This approach integrates data from multiple sequence libraries to support each variant and precisely assigns mutations to lineage segments. We applied lineage sequencing to a human colon cancer cell line with a DNA polymerase epsilon (POLE) proofreading deficiency (HT115) and a human retinal epithelial cell line immortalized by constitutive telomerase expression (RPE1). Cells were cultured under continuous observation to link observed single-cell phenotypes with single-cell mutation data. The high sensitivity, specificity, and resolution of the data provide a unique opportunity for quantitative analysis of variation in mutation rate, spectrum, and correlations among variants. Our data show that mutations arrive with nonuniform probability across sublineages and that DNA lesion dynamics may cause strong correlations between certain mutations. Mutation data reveal the dynamic equilibrium between DNA damage and repair processes in cells and are indispensable to the understanding of age-related diseases, tumor evolution, and the acquisition of drug resistance. However, available genome-wide methods have a limited ability to resolve rare somatic variants and the relationships between these variants. Here, we present lineage sequencing, a new genome sequencing approach that enables somatic event reconstruction by providing quality somatic mutation call sets with resolution as high as the single-cell level in subject lineages. Lineage sequencing entails sampling single cells from a population and sequencing subclonal sample sets derived from these cells such that knowledge of relationships among the cells can be used to jointly call variants across the sample set. This approach integrates data from multiple sequence libraries to support each variant and precisely assigns mutations to lineage segments. We applied lineage sequencing to a human colon cancer cell line with a DNA polymerase epsilon ( POLE ) proofreading deficiency (HT115) and a human retinal epithelial cell line immortalized by constitutive telomerase expression (RPE1). Cells were cultured under continuous observation to link observed single-cell phenotypes with single-cell mutation data. The high sensitivity, specificity, and resolution of the data provide a unique opportunity for quantitative analysis of variation in mutation rate, spectrum, and correlations among variants. Our data show that mutations arrive with nonuniform probability across sublineages and that DNA lesion dynamics may cause strong correlations between certain mutations. Mutation data reveal the dynamic equilibrium between DNA damage and repair processes in cells and are indispensable to the understanding of age-related diseases, tumor evolution, and the acquisition of drug resistance. However, available genome-wide methods have a limited ability to resolve rare somatic variants and the relationships between these variants. Here, we present lineage sequencing, a new genome sequencing approach that enables somatic event reconstruction by providing quality somatic mutation call sets with resolution as high as the single-cell level in subject lineages. Lineage sequencing entails sampling single cells from a population and sequencing subclonal sample sets derived from these cells such that knowledge of relationships among the cells can be used to jointly call variants across the sample set. This approach integrates data from multiple sequence libraries to support each variant and precisely assigns mutations to lineage segments. We applied lineage sequencing to a human colon cancer cell line with a DNA polymerase epsilon ( POLE ) proofreading deficiency (HT115) and a human retinal epithelial cell line immortalized by constitutive telomerase expression (RPE1). Cells were cultured under continuous observation to link observed single-cell phenotypes with single-cell mutation data. The high sensitivity, specificity, and resolution of the data provide a unique opportunity for quantitative analysis of variation in mutation rate, spectrum, and correlations among variants. Our data show that mutations arrive with nonuniform probability across sublineages and that DNA lesion dynamics may cause strong correlations between certain mutations. Mutation data reveal the dynamic equilibrium between DNA damage and repair processes in cells and are indispensable to the understanding of age-related diseases, tumor evolution, and the acquisition of drug resistance. However, available genome-wide methods have a limited ability to resolve rare somatic variants and the relationships between these variants. Here, we present lineage sequencing, a new genome sequencing approach that enables somatic event reconstruction by providing quality somatic mutation call sets with resolution as high as the single-cell level in subject lineages. Lineage sequencing entails sampling single cells from a population and sequencing subclonal sample sets derived from these cells such that knowledge of relationships among the cells can be used to jointly call variants across the sample set. This approach integrates data from multiple sequence libraries to support each variant and precisely assigns mutations to lineage segments. We applied lineage sequencing to a human colon cancer cell line with a DNA polymerase epsilon ( ) proofreading deficiency (HT115) and a human retinal epithelial cell line immortalized by constitutive telomerase expression (RPE1). Cells were cultured under continuous observation to link observed single-cell phenotypes with single-cell mutation data. The high sensitivity, specificity, and resolution of the data provide a unique opportunity for quantitative analysis of variation in mutation rate, spectrum, and correlations among variants. Our data show that mutations arrive with nonuniform probability across sublineages and that DNA lesion dynamics may cause strong correlations between certain mutations. |
Author | Blainey, Paul C. Manalis, Scott R. Koren, Amnon Kimmerling, Robert J. Brody, Yehuda Mouw, Kent W. Kim, Jaegil Maruvka, Yosef E. Benjamin, David Frangaj, Kristjana Elacqua, Juniper J. Haradhvala, Nicholas J. Getz, Gad |
AuthorAffiliation | 3 MIT Department of Biological Engineering, Cambridge, Massachusetts 02139, USA 8 Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, USA 1 Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA 6 Harvard Medical School, Boston, Massachusetts 02115, USA 7 Department of Radiation Oncology, Brigham and Women's Hospital, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA 2 Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA 4 Koch Institute for Integrative Cancer Research, MIT, Cambridge, Massachusetts 02139, USA 5 MGH Cancer Center and Department of Pathology, Boston, Massachusetts 02114, USA |
AuthorAffiliation_xml | – name: 5 MGH Cancer Center and Department of Pathology, Boston, Massachusetts 02114, USA – name: 8 Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, USA – name: 6 Harvard Medical School, Boston, Massachusetts 02115, USA – name: 7 Department of Radiation Oncology, Brigham and Women's Hospital, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA – name: 3 MIT Department of Biological Engineering, Cambridge, Massachusetts 02139, USA – name: 2 Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA – name: 1 Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA – name: 4 Koch Institute for Integrative Cancer Research, MIT, Cambridge, Massachusetts 02139, USA |
Author_xml | – sequence: 1 givenname: Yehuda surname: Brody fullname: Brody, Yehuda – sequence: 2 givenname: Robert J. surname: Kimmerling fullname: Kimmerling, Robert J. – sequence: 3 givenname: Yosef E. surname: Maruvka fullname: Maruvka, Yosef E. – sequence: 4 givenname: David surname: Benjamin fullname: Benjamin, David – sequence: 5 givenname: Juniper J. surname: Elacqua fullname: Elacqua, Juniper J. – sequence: 6 givenname: Nicholas J. surname: Haradhvala fullname: Haradhvala, Nicholas J. – sequence: 7 givenname: Jaegil surname: Kim fullname: Kim, Jaegil – sequence: 8 givenname: Kent W. surname: Mouw fullname: Mouw, Kent W. – sequence: 9 givenname: Kristjana surname: Frangaj fullname: Frangaj, Kristjana – sequence: 10 givenname: Amnon surname: Koren fullname: Koren, Amnon – sequence: 11 givenname: Gad surname: Getz fullname: Getz, Gad – sequence: 12 givenname: Scott R. surname: Manalis fullname: Manalis, Scott R. – sequence: 13 givenname: Paul C. surname: Blainey fullname: Blainey, Paul C. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30459213$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kd1r1zAUhoNM3IdeeisBb3bTedIkbXojyHAqDETQ65CmJzWjTWbS_mT_vamdQwde5ZzkyXs-3lNyFGJAQl4yuGAM2JsxXdRcScFLqp6QEyZFV0nRdEclBqWqDiQ7Jqc53wAAF0o9I8cchOxqxk_I8GU1YfHOW7P4GGh0NMe5xJbO67LfuSn-pMammDP1YfAHP6xmohaniW5Z3iA8YFgy7e_o5AOaEWnGHysG68P4nDx1Zsr44v48I9-u3n-9_Fhdf_7w6fLddWWFYks1DM62KA1I2TjT96ZjgD0YIcBB4xygQm7c0KKC1nY9E-jagQsnWjCNlPyMvN11b9d-xsGWjpKZ9G3ys0l3Ohqv_30J_rse40E3dVGUvAic3wukWJrPi5593uY0AeOadVlZqSMbrgr6-hF6E9cUyniFaupWyJbXhXr1d0cPrfwxoADVDvxeb0L3gDDQm8F6THo3uKRbWf6It363qQzkp__8-gWvFKwR |
CitedBy_id | crossref_primary_10_7554_eLife_95338_3 crossref_primary_10_1371_journal_pone_0288655 crossref_primary_10_1038_s41467_024_55497_z crossref_primary_10_1038_s42003_020_01544_6 crossref_primary_10_1039_D1LC01030A crossref_primary_10_1038_s12276_021_00680_1 crossref_primary_10_1038_s41467_020_14844_6 crossref_primary_10_1016_j_xgen_2023_100315 crossref_primary_10_1038_s41586_020_2435_1 crossref_primary_10_7554_eLife_95338 crossref_primary_10_1242_dev_169730 crossref_primary_10_2139_ssrn_3940628 crossref_primary_10_1016_j_cels_2023_11_005 crossref_primary_10_3390_cells10051224 crossref_primary_10_1016_j_isci_2022_104074 crossref_primary_10_1038_s42003_020_01460_9 crossref_primary_10_1007_s10577_019_09624_y |
Cites_doi | 10.1126/science.aaa6806 10.1101/cshperspect.a012708 10.1126/science.279.5349.349 10.1038/nsmb.1924 10.1016/j.cell.2013.03.025 10.1038/nmeth.3955 10.1038/ng.3222 10.1038/s41467-018-04002-4 10.1038/ng.3557 10.1038/s41598-018-29325-6 10.1042/EBC20160082 10.1038/ng.3991 10.1002/path.4880 10.4331/wjbc.v6.i3.48 10.1016/j.cell.2015.12.050 10.1016/j.celrep.2018.03.076 10.1038/nature12477 10.1016/j.cell.2017.01.018 10.1016/j.ajhg.2012.10.018 10.1126/science.aaf7907 10.1201/b16018 10.1126/science.aab1785 10.1126/science.aao4426 10.3389/fgene.2012.00174 10.1038/ncomms15183 10.1016/j.cell.2008.01.036 10.1038/nbt.2053 10.1038/srep36540 10.1038/ng.2591 10.1038/nature21703 10.1093/nar/gkq408 10.1038/nrg.2016.159 10.1021/acs.chemrestox.7b00128 10.1038/nature11003 10.1126/science.aak9787 10.1038/s41467-018-04052-8 10.1126/science.aab4082 10.1038/nature22312 10.1002/cncr.29046 10.4161/15384101.2014.954456 10.1093/carcin/bgw055 10.1093/bioinformatics/btt375 10.1038/ncomms6437 10.1038/nature19768 10.1038/nature14279 10.1038/nature20777 10.1073/pnas.0907147106 10.1038/nrc.2017.58 10.1038/ncomms9866 10.1101/gr.162131.113 10.1371/journal.pcbi.1004583 10.1038/nsmb.3474 10.1101/gr.219956.116 10.1038/s41568-018-0004-9 10.1038/nrm3289 10.1038/nrg.2017.117 10.1371/journal.pgen.1006315 10.1038/ncomms13919 10.1136/jmedgenet-2013-101712 10.1158/0008-5472.CAN-04-1198 10.1038/nature16166 10.1093/bioinformatics/bts271 10.1038/nature23302 10.1093/nar/gku1075 10.1146/annurev-genet-112414-054722 10.1038/nsmb.1659 10.1016/j.celrep.2012.12.008 10.1073/pnas.1208715109 10.1126/science.1186802 10.1038/nrc.2015.1 10.1038/nature14173 10.1016/j.cell.2017.10.014 10.1038/ncomms10220 10.1101/gr.174789.114 10.1038/nbt.2514 10.1093/nar/gks1443 10.1038/nrg.2015.16 10.1038/nrc2998 10.1093/nar/gkl842 10.1186/s13059-016-0963-7 10.1073/pnas.0912629107 10.1126/science.aao3130 10.1371/journal.pgen.1005932 10.1038/nature18959 |
ContentType | Journal Article |
Copyright | 2018 Brody et al.; Published by Cold Spring Harbor Laboratory Press. Copyright Cold Spring Harbor Laboratory Press Dec 2018 2018 |
Copyright_xml | – notice: 2018 Brody et al.; Published by Cold Spring Harbor Laboratory Press. – notice: Copyright Cold Spring Harbor Laboratory Press Dec 2018 – notice: 2018 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7TM 8FD FR3 P64 RC3 7X8 5PM |
DOI | 10.1101/gr.238543.118 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Nucleic Acids Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Genetics Abstracts Engineering Research Database Technology Research Database Nucleic Acids Abstracts Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef Genetics Abstracts MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry Biology |
DocumentTitleAlternate | Brody et al |
EISSN | 1549-5469 |
EndPage | 1918 |
ExternalDocumentID | PMC6280753 30459213 10_1101_gr_238543_118 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NHLBI NIH HHS grantid: DP2 HL141005 – fundername: NHGRI NIH HHS grantid: RM1 HG006193 – fundername: NIEHS NIH HHS grantid: P30 ES002109 – fundername: NIGMS NIH HHS grantid: T32 GM008313 – fundername: NIAID NIH HHS grantid: R21 AI110787 – fundername: ; – fundername: Klarman Cell Observatory Foundation – fundername: National Science Foundation GRFP – fundername: MIT's Center for Environmental Health Sciences grantid: R21AI110787 – fundername: Core Center grantid: P30-ES002109 – fundername: National Institute of Allergy and Infectious Disease – fundername: Career Award at the Scientific Interface |
GroupedDBID | --- .GJ 18M 29H 2WC 39C 4.4 53G 5GY 5RE 5VS AAFWJ AAYXX AAZTW ABDIX ABDNZ ACGFO ACLKE ACYGS ADBBV ADNWM AEILP AENEX AHPUY AI. ALMA_UNASSIGNED_HOLDINGS BAWUL BTFSW C1A CITATION CS3 DIK DU5 E3Z EBS EJD F5P FRP GX1 H13 HYE IH2 K-O KQ8 MV1 R.V RCX RHI RNS RPM RXW SJN TAE TR2 VH1 W8F WOQ YKV ZCG ZGI ZXP AAYOK CGR CUY CVF ECM EIF NPM 7TM 8FD FR3 P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c481t-ddfc7e5a0556fabba910eb0a440f06ff0e8e3afd7e807c9b14ef7d34f470a6553 |
ISSN | 1088-9051 1549-5469 |
IngestDate | Thu Aug 21 14:32:43 EDT 2025 Fri Jul 11 05:34:58 EDT 2025 Fri Jul 25 02:57:15 EDT 2025 Sat Jun 14 01:30:57 EDT 2025 Sun Aug 03 02:37:18 EDT 2025 Thu Apr 24 22:58:15 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
License | 2018 Brody et al.; Published by Cold Spring Harbor Laboratory Press. This article, published in Genome Research, is available under a Creative Commons License (Attribution 4.0 International), as described at http://creativecommons.org/licenses/by/4.0/. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c481t-ddfc7e5a0556fabba910eb0a440f06ff0e8e3afd7e807c9b14ef7d34f470a6553 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC6280753 |
PMID | 30459213 |
PQID | 2162745732 |
PQPubID | 2049132 |
PageCount | 18 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6280753 proquest_miscellaneous_2136555638 proquest_journals_2162745732 pubmed_primary_30459213 crossref_primary_10_1101_gr_238543_118 crossref_citationtrail_10_1101_gr_238543_118 |
PublicationCentury | 2000 |
PublicationDate | 2018-12-01 |
PublicationDateYYYYMMDD | 2018-12-01 |
PublicationDate_xml | – month: 12 year: 2018 text: 2018-12-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | Genome research |
PublicationTitleAlternate | Genome Res |
PublicationYear | 2018 |
Publisher | Cold Spring Harbor Laboratory Press |
Publisher_xml | – name: Cold Spring Harbor Laboratory Press |
References | 2025061209300679000_28.12.1901.71 2025061209300679000_28.12.1901.70 2025061209300679000_28.12.1901.73 2025061209300679000_28.12.1901.72 2025061209300679000_28.12.1901.35 2025061209300679000_28.12.1901.79 2025061209300679000_28.12.1901.34 2025061209300679000_28.12.1901.78 2025061209300679000_28.12.1901.37 2025061209300679000_28.12.1901.36 2025061209300679000_28.12.1901.31 2025061209300679000_28.12.1901.75 2025061209300679000_28.12.1901.30 2025061209300679000_28.12.1901.74 2025061209300679000_28.12.1901.33 2025061209300679000_28.12.1901.77 2025061209300679000_28.12.1901.32 2025061209300679000_28.12.1901.76 2025061209300679000_28.12.1901.28 2025061209300679000_28.12.1901.27 2025061209300679000_28.12.1901.29 2025061209300679000_28.12.1901.82 2025061209300679000_28.12.1901.81 2025061209300679000_28.12.1901.40 2025061209300679000_28.12.1901.84 2025061209300679000_28.12.1901.83 2025061209300679000_28.12.1901.80 2025061209300679000_28.12.1901.46 2025061209300679000_28.12.1901.45 2025061209300679000_28.12.1901.48 2025061209300679000_28.12.1901.47 2025061209300679000_28.12.1901.42 2025061209300679000_28.12.1901.41 2025061209300679000_28.12.1901.44 2025061209300679000_28.12.1901.43 2025061209300679000_28.12.1901.39 2025061209300679000_28.12.1901.38 2025061209300679000_28.12.1901.51 2025061209300679000_28.12.1901.50 2025061209300679000_28.12.1901.13 2025061209300679000_28.12.1901.57 2025061209300679000_28.12.1901.12 2025061209300679000_28.12.1901.56 2025061209300679000_28.12.1901.15 2025061209300679000_28.12.1901.59 2025061209300679000_28.12.1901.14 2025061209300679000_28.12.1901.58 2025061209300679000_28.12.1901.53 2025061209300679000_28.12.1901.52 2025061209300679000_28.12.1901.11 2025061209300679000_28.12.1901.55 2025061209300679000_28.12.1901.10 2025061209300679000_28.12.1901.54 2025061209300679000_28.12.1901.49 2025061209300679000_28.12.1901.60 2025061209300679000_28.12.1901.62 2025061209300679000_28.12.1901.61 2025061209300679000_28.12.1901.24 2025061209300679000_28.12.1901.68 2025061209300679000_28.12.1901.23 2025061209300679000_28.12.1901.67 2025061209300679000_28.12.1901.26 2025061209300679000_28.12.1901.25 2025061209300679000_28.12.1901.69 2025061209300679000_28.12.1901.20 2025061209300679000_28.12.1901.64 2025061209300679000_28.12.1901.63 2025061209300679000_28.12.1901.22 2025061209300679000_28.12.1901.66 2025061209300679000_28.12.1901.21 2025061209300679000_28.12.1901.65 2025061209300679000_28.12.1901.7 2025061209300679000_28.12.1901.8 2025061209300679000_28.12.1901.9 2025061209300679000_28.12.1901.3 2025061209300679000_28.12.1901.17 2025061209300679000_28.12.1901.4 2025061209300679000_28.12.1901.16 2025061209300679000_28.12.1901.5 2025061209300679000_28.12.1901.19 2025061209300679000_28.12.1901.6 2025061209300679000_28.12.1901.18 2025061209300679000_28.12.1901.1 2025061209300679000_28.12.1901.2 |
References_xml | – ident: 2025061209300679000_28.12.1901.51 doi: 10.1126/science.aaa6806 – ident: 2025061209300679000_28.12.1901.66 doi: 10.1101/cshperspect.a012708 – ident: 2025061209300679000_28.12.1901.13 doi: 10.1126/science.279.5349.349 – ident: 2025061209300679000_28.12.1901.32 doi: 10.1038/nsmb.1924 – ident: 2025061209300679000_28.12.1901.43 doi: 10.1016/j.cell.2013.03.025 – ident: 2025061209300679000_28.12.1901.82 doi: 10.1038/nmeth.3955 – ident: 2025061209300679000_28.12.1901.18 doi: 10.1038/ng.3222 – ident: 2025061209300679000_28.12.1901.30 doi: 10.1038/s41467-018-04002-4 – ident: 2025061209300679000_28.12.1901.35 doi: 10.1038/ng.3557 – ident: 2025061209300679000_28.12.1901.57 doi: 10.1038/s41598-018-29325-6 – ident: 2025061209300679000_28.12.1901.79 doi: 10.1042/EBC20160082 – ident: 2025061209300679000_28.12.1901.24 doi: 10.1038/ng.3991 – ident: 2025061209300679000_28.12.1901.58 doi: 10.1002/path.4880 – ident: 2025061209300679000_28.12.1901.10 doi: 10.4331/wjbc.v6.i3.48 – ident: 2025061209300679000_28.12.1901.29 doi: 10.1016/j.cell.2015.12.050 – ident: 2025061209300679000_28.12.1901.38 doi: 10.1016/j.celrep.2018.03.076 – ident: 2025061209300679000_28.12.1901.3 doi: 10.1038/nature12477 – ident: 2025061209300679000_28.12.1901.52 doi: 10.1016/j.cell.2017.01.018 – ident: 2025061209300679000_28.12.1901.39 doi: 10.1016/j.ajhg.2012.10.018 – ident: 2025061209300679000_28.12.1901.53 doi: 10.1126/science.aaf7907 – ident: 2025061209300679000_28.12.1901.28 doi: 10.1201/b16018 – ident: 2025061209300679000_28.12.1901.46 doi: 10.1126/science.aab1785 – ident: 2025061209300679000_28.12.1901.47 doi: 10.1126/science.aao4426 – ident: 2025061209300679000_28.12.1901.49 doi: 10.3389/fgene.2012.00174 – ident: 2025061209300679000_28.12.1901.55 doi: 10.1038/ncomms15183 – ident: 2025061209300679000_28.12.1901.64 doi: 10.1016/j.cell.2008.01.036 – ident: 2025061209300679000_28.12.1901.60 doi: 10.1038/nbt.2053 – ident: 2025061209300679000_28.12.1901.14 doi: 10.1038/srep36540 – ident: 2025061209300679000_28.12.1901.20 doi: 10.1038/ng.2591 – ident: 2025061209300679000_28.12.1901.33 doi: 10.1038/nature21703 – ident: 2025061209300679000_28.12.1901.63 doi: 10.1093/nar/gkq408 – ident: 2025061209300679000_28.12.1901.80 doi: 10.1038/nrg.2016.159 – ident: 2025061209300679000_28.12.1901.27 doi: 10.1021/acs.chemrestox.7b00128 – ident: 2025061209300679000_28.12.1901.7 doi: 10.1038/nature11003 – ident: 2025061209300679000_28.12.1901.15 doi: 10.1126/science.aak9787 – ident: 2025061209300679000_28.12.1901.84 doi: 10.1038/s41467-018-04052-8 – ident: 2025061209300679000_28.12.1901.50 doi: 10.1126/science.aab4082 – ident: 2025061209300679000_28.12.1901.54 doi: 10.1038/nature22312 – ident: 2025061209300679000_28.12.1901.11 doi: 10.1002/cncr.29046 – ident: 2025061209300679000_28.12.1901.25 doi: 10.4161/15384101.2014.954456 – ident: 2025061209300679000_28.12.1901.56 doi: 10.1093/carcin/bgw055 – ident: 2025061209300679000_28.12.1901.62 doi: 10.1093/bioinformatics/btt375 – ident: 2025061209300679000_28.12.1901.83 doi: 10.1038/ncomms6437 – ident: 2025061209300679000_28.12.1901.12 doi: 10.1038/nature19768 – ident: 2025061209300679000_28.12.1901.42 doi: 10.1038/nature14279 – ident: 2025061209300679000_28.12.1901.23 doi: 10.1038/nature20777 – ident: 2025061209300679000_28.12.1901.2 doi: 10.1073/pnas.0907147106 – ident: 2025061209300679000_28.12.1901.8 doi: 10.1038/nrc.2017.58 – ident: 2025061209300679000_28.12.1901.34 doi: 10.1038/ncomms9866 – ident: 2025061209300679000_28.12.1901.31 doi: 10.1101/gr.162131.113 – ident: 2025061209300679000_28.12.1901.45 doi: 10.1371/journal.pcbi.1004583 – ident: 2025061209300679000_28.12.1901.74 doi: 10.1038/nsmb.3474 – ident: 2025061209300679000_28.12.1901.6 doi: 10.1101/gr.219956.116 – ident: 2025061209300679000_28.12.1901.72 doi: 10.1038/s41568-018-0004-9 – ident: 2025061209300679000_28.12.1901.67 doi: 10.1038/nrm3289 – ident: 2025061209300679000_28.12.1901.68 doi: 10.1038/nrg.2017.117 – ident: 2025061209300679000_28.12.1901.9 doi: 10.1371/journal.pgen.1006315 – ident: 2025061209300679000_28.12.1901.36 doi: 10.1038/ncomms13919 – ident: 2025061209300679000_28.12.1901.44 doi: 10.1136/jmedgenet-2013-101712 – ident: 2025061209300679000_28.12.1901.5 doi: 10.1158/0008-5472.CAN-04-1198 – ident: 2025061209300679000_28.12.1901.81 doi: 10.1038/nature16166 – ident: 2025061209300679000_28.12.1901.69 doi: 10.1093/bioinformatics/bts271 – ident: 2025061209300679000_28.12.1901.78 doi: 10.1038/nature23302 – ident: 2025061209300679000_28.12.1901.22 doi: 10.1093/nar/gku1075 – ident: 2025061209300679000_28.12.1901.40 doi: 10.1146/annurev-genet-112414-054722 – ident: 2025061209300679000_28.12.1901.71 doi: 10.1038/nsmb.1659 – ident: 2025061209300679000_28.12.1901.4 doi: 10.1016/j.celrep.2012.12.008 – ident: 2025061209300679000_28.12.1901.70 doi: 10.1073/pnas.1208715109 – ident: 2025061209300679000_28.12.1901.61 doi: 10.1126/science.1186802 – ident: 2025061209300679000_28.12.1901.21 doi: 10.1038/nrc.2015.1 – ident: 2025061209300679000_28.12.1901.75 doi: 10.1038/nature14173 – ident: 2025061209300679000_28.12.1901.1 doi: 10.1016/j.cell.2017.10.014 – ident: 2025061209300679000_28.12.1901.37 doi: 10.1038/ncomms10220 – ident: 2025061209300679000_28.12.1901.73 doi: 10.1101/gr.174789.114 – ident: 2025061209300679000_28.12.1901.16 doi: 10.1038/nbt.2514 – ident: 2025061209300679000_28.12.1901.17 doi: 10.1093/nar/gks1443 – ident: 2025061209300679000_28.12.1901.26 doi: 10.1038/nrg.2015.16 – ident: 2025061209300679000_28.12.1901.41 doi: 10.1038/nrc2998 – ident: 2025061209300679000_28.12.1901.59 doi: 10.1093/nar/gkl842 – ident: 2025061209300679000_28.12.1901.76 doi: 10.1186/s13059-016-0963-7 – ident: 2025061209300679000_28.12.1901.48 doi: 10.1073/pnas.0912629107 – ident: 2025061209300679000_28.12.1901.19 doi: 10.1126/science.aao3130 – ident: 2025061209300679000_28.12.1901.65 doi: 10.1371/journal.pgen.1005932 – ident: 2025061209300679000_28.12.1901.77 doi: 10.1038/nature18959 |
SSID | ssj0003488 |
Score | 2.3718662 |
Snippet | Mutation data reveal the dynamic equilibrium between DNA damage and repair processes in cells and are indispensable to the understanding of age-related... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 1901 |
SubjectTerms | Age Cell division Cell Division - genetics Cell Line Colon cancer Deoxyribonucleic acid DNA DNA Copy Number Variations DNA damage DNA Mutational Analysis - mortality DNA repair DNA sequencing DNA-directed DNA polymerase Drug resistance Epithelial cells Genomes Genotype High-Throughput Nucleotide Sequencing - methods Humans Method Mutation Mutation rates Phenotypes Polymorphism, Single Nucleotide Proofreading Single-Cell Analysis - methods Telomerase Time-Lapse Imaging |
Title | Quantification of somatic mutation flow across individual cell division events by lineage sequencing |
URI | https://www.ncbi.nlm.nih.gov/pubmed/30459213 https://www.proquest.com/docview/2162745732 https://www.proquest.com/docview/2136555638 https://pubmed.ncbi.nlm.nih.gov/PMC6280753 |
Volume | 28 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZgCMELgo1LYSAjob2UdLnYSfq4jY3BLgiplbqnyEnsrdAmqG1A49dzju0kLRRp8BIljpW0Pl_s7xyfCyFvAqy1LQC80hfcYaGMnBSA5Agg_6D3cJXnaIc8Ow-Ph-zjiI9ad1sdXbJIe9nPtXEl_yNVaAO5YpTsP0i2eSg0wDnIF44gYTjeSMafK2F8fRreNy9NCtZpVXsRTsofXaHXwu64Db5Ce30Xr9BY1tVZnObIRJF0oheP9bCu1zXLXt_LopxinZUlE5hR5c1UfSGvqlbDPxmjUXxii6YYF-52F-pMzKrvXzV1vSjnUrUhEfuy-CKmJrdB63JvLRNevOTlYSdT1nc4M6VYenJNm52B_XgZaf7SfIp0Zf1ErwsMXM56QDk4C6Ahble0ehf__FNyNDw9TQaHo8FtcscHTQKLXLz7cNIs1gHTpUmbn9WkYfV2Vx6-Slv-0EV-d6ld4iiDh-SBVS7onkHKI3JLFptka68Qi3J6TXeodvfV-yib5O5-fXbvoC76t0XyVUjRUlELKVpDiiKkqIEUbSFFEVK0hhQ1kKLpNbWQoi2kHpPh0eHg4NixhTicjMXewslzlUWSC0y8pESaCuCYMnUFY65yQ6VcGctAqDySsRtl_dRjUkV5wBSLXBFyHjwhG0VZyGeEitwLYyDJGUa_cMmEhEf2hQcLZxinvuyQt_U4J5nNUo_FUiaJ1lZdL7mcJUYscBl3yE7T_ZtJz_K3jtu10BL7Bc8T38PKUzwK_A553dyGEccRE4UsK-wTwD_gsEx1yFMj4-ZN6GXQhw4dEq1Iv-mAudtX7xTjK53DPcQsVDx4foP3viD3269rm2wsZpV8CUx4kb7SWP4Floy5XA |
linkProvider | Flying Publisher |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantification+of+somatic+mutation+flow+across+individual+cell+division+events+by+lineage+sequencing&rft.jtitle=Genome+research&rft.au=Brody%2C+Yehuda&rft.au=Kimmerling%2C+Robert+J&rft.au=Maruvka%2C+Yosef+E&rft.au=Benjamin%2C+David&rft.date=2018-12-01&rft.issn=1549-5469&rft.eissn=1549-5469&rft.volume=28&rft.issue=12&rft.spage=1901&rft_id=info:doi/10.1101%2Fgr.238543.118&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1088-9051&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1088-9051&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1088-9051&client=summon |