Quantification of somatic mutation flow across individual cell division events by lineage sequencing

Mutation data reveal the dynamic equilibrium between DNA damage and repair processes in cells and are indispensable to the understanding of age-related diseases, tumor evolution, and the acquisition of drug resistance. However, available genome-wide methods have a limited ability to resolve rare som...

Full description

Saved in:
Bibliographic Details
Published inGenome research Vol. 28; no. 12; pp. 1901 - 1918
Main Authors Brody, Yehuda, Kimmerling, Robert J., Maruvka, Yosef E., Benjamin, David, Elacqua, Juniper J., Haradhvala, Nicholas J., Kim, Jaegil, Mouw, Kent W., Frangaj, Kristjana, Koren, Amnon, Getz, Gad, Manalis, Scott R., Blainey, Paul C.
Format Journal Article
LanguageEnglish
Published United States Cold Spring Harbor Laboratory Press 01.12.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Mutation data reveal the dynamic equilibrium between DNA damage and repair processes in cells and are indispensable to the understanding of age-related diseases, tumor evolution, and the acquisition of drug resistance. However, available genome-wide methods have a limited ability to resolve rare somatic variants and the relationships between these variants. Here, we present lineage sequencing, a new genome sequencing approach that enables somatic event reconstruction by providing quality somatic mutation call sets with resolution as high as the single-cell level in subject lineages. Lineage sequencing entails sampling single cells from a population and sequencing subclonal sample sets derived from these cells such that knowledge of relationships among the cells can be used to jointly call variants across the sample set. This approach integrates data from multiple sequence libraries to support each variant and precisely assigns mutations to lineage segments. We applied lineage sequencing to a human colon cancer cell line with a DNA polymerase epsilon ( POLE ) proofreading deficiency (HT115) and a human retinal epithelial cell line immortalized by constitutive telomerase expression (RPE1). Cells were cultured under continuous observation to link observed single-cell phenotypes with single-cell mutation data. The high sensitivity, specificity, and resolution of the data provide a unique opportunity for quantitative analysis of variation in mutation rate, spectrum, and correlations among variants. Our data show that mutations arrive with nonuniform probability across sublineages and that DNA lesion dynamics may cause strong correlations between certain mutations.
AbstractList Mutation data reveal the dynamic equilibrium between DNA damage and repair processes in cells and are indispensable to the understanding of age-related diseases, tumor evolution, and the acquisition of drug resistance. However, available genome-wide methods have a limited ability to resolve rare somatic variants and the relationships between these variants. Here, we present lineage sequencing, a new genome sequencing approach that enables somatic event reconstruction by providing quality somatic mutation call sets with resolution as high as the single-cell level in subject lineages. Lineage sequencing entails sampling single cells from a population and sequencing subclonal sample sets derived from these cells such that knowledge of relationships among the cells can be used to jointly call variants across the sample set. This approach integrates data from multiple sequence libraries to support each variant and precisely assigns mutations to lineage segments. We applied lineage sequencing to a human colon cancer cell line with a DNA polymerase epsilon (POLE) proofreading deficiency (HT115) and a human retinal epithelial cell line immortalized by constitutive telomerase expression (RPE1). Cells were cultured under continuous observation to link observed single-cell phenotypes with single-cell mutation data. The high sensitivity, specificity, and resolution of the data provide a unique opportunity for quantitative analysis of variation in mutation rate, spectrum, and correlations among variants. Our data show that mutations arrive with nonuniform probability across sublineages and that DNA lesion dynamics may cause strong correlations between certain mutations.Mutation data reveal the dynamic equilibrium between DNA damage and repair processes in cells and are indispensable to the understanding of age-related diseases, tumor evolution, and the acquisition of drug resistance. However, available genome-wide methods have a limited ability to resolve rare somatic variants and the relationships between these variants. Here, we present lineage sequencing, a new genome sequencing approach that enables somatic event reconstruction by providing quality somatic mutation call sets with resolution as high as the single-cell level in subject lineages. Lineage sequencing entails sampling single cells from a population and sequencing subclonal sample sets derived from these cells such that knowledge of relationships among the cells can be used to jointly call variants across the sample set. This approach integrates data from multiple sequence libraries to support each variant and precisely assigns mutations to lineage segments. We applied lineage sequencing to a human colon cancer cell line with a DNA polymerase epsilon (POLE) proofreading deficiency (HT115) and a human retinal epithelial cell line immortalized by constitutive telomerase expression (RPE1). Cells were cultured under continuous observation to link observed single-cell phenotypes with single-cell mutation data. The high sensitivity, specificity, and resolution of the data provide a unique opportunity for quantitative analysis of variation in mutation rate, spectrum, and correlations among variants. Our data show that mutations arrive with nonuniform probability across sublineages and that DNA lesion dynamics may cause strong correlations between certain mutations.
Mutation data reveal the dynamic equilibrium between DNA damage and repair processes in cells and are indispensable to the understanding of age-related diseases, tumor evolution, and the acquisition of drug resistance. However, available genome-wide methods have a limited ability to resolve rare somatic variants and the relationships between these variants. Here, we present lineage sequencing, a new genome sequencing approach that enables somatic event reconstruction by providing quality somatic mutation call sets with resolution as high as the single-cell level in subject lineages. Lineage sequencing entails sampling single cells from a population and sequencing subclonal sample sets derived from these cells such that knowledge of relationships among the cells can be used to jointly call variants across the sample set. This approach integrates data from multiple sequence libraries to support each variant and precisely assigns mutations to lineage segments. We applied lineage sequencing to a human colon cancer cell line with a DNA polymerase epsilon ( POLE ) proofreading deficiency (HT115) and a human retinal epithelial cell line immortalized by constitutive telomerase expression (RPE1). Cells were cultured under continuous observation to link observed single-cell phenotypes with single-cell mutation data. The high sensitivity, specificity, and resolution of the data provide a unique opportunity for quantitative analysis of variation in mutation rate, spectrum, and correlations among variants. Our data show that mutations arrive with nonuniform probability across sublineages and that DNA lesion dynamics may cause strong correlations between certain mutations.
Mutation data reveal the dynamic equilibrium between DNA damage and repair processes in cells and are indispensable to the understanding of age-related diseases, tumor evolution, and the acquisition of drug resistance. However, available genome-wide methods have a limited ability to resolve rare somatic variants and the relationships between these variants. Here, we present lineage sequencing, a new genome sequencing approach that enables somatic event reconstruction by providing quality somatic mutation call sets with resolution as high as the single-cell level in subject lineages. Lineage sequencing entails sampling single cells from a population and sequencing subclonal sample sets derived from these cells such that knowledge of relationships among the cells can be used to jointly call variants across the sample set. This approach integrates data from multiple sequence libraries to support each variant and precisely assigns mutations to lineage segments. We applied lineage sequencing to a human colon cancer cell line with a DNA polymerase epsilon ( POLE ) proofreading deficiency (HT115) and a human retinal epithelial cell line immortalized by constitutive telomerase expression (RPE1). Cells were cultured under continuous observation to link observed single-cell phenotypes with single-cell mutation data. The high sensitivity, specificity, and resolution of the data provide a unique opportunity for quantitative analysis of variation in mutation rate, spectrum, and correlations among variants. Our data show that mutations arrive with nonuniform probability across sublineages and that DNA lesion dynamics may cause strong correlations between certain mutations.
Mutation data reveal the dynamic equilibrium between DNA damage and repair processes in cells and are indispensable to the understanding of age-related diseases, tumor evolution, and the acquisition of drug resistance. However, available genome-wide methods have a limited ability to resolve rare somatic variants and the relationships between these variants. Here, we present lineage sequencing, a new genome sequencing approach that enables somatic event reconstruction by providing quality somatic mutation call sets with resolution as high as the single-cell level in subject lineages. Lineage sequencing entails sampling single cells from a population and sequencing subclonal sample sets derived from these cells such that knowledge of relationships among the cells can be used to jointly call variants across the sample set. This approach integrates data from multiple sequence libraries to support each variant and precisely assigns mutations to lineage segments. We applied lineage sequencing to a human colon cancer cell line with a DNA polymerase epsilon ( ) proofreading deficiency (HT115) and a human retinal epithelial cell line immortalized by constitutive telomerase expression (RPE1). Cells were cultured under continuous observation to link observed single-cell phenotypes with single-cell mutation data. The high sensitivity, specificity, and resolution of the data provide a unique opportunity for quantitative analysis of variation in mutation rate, spectrum, and correlations among variants. Our data show that mutations arrive with nonuniform probability across sublineages and that DNA lesion dynamics may cause strong correlations between certain mutations.
Author Blainey, Paul C.
Manalis, Scott R.
Koren, Amnon
Kimmerling, Robert J.
Brody, Yehuda
Mouw, Kent W.
Kim, Jaegil
Maruvka, Yosef E.
Benjamin, David
Frangaj, Kristjana
Elacqua, Juniper J.
Haradhvala, Nicholas J.
Getz, Gad
AuthorAffiliation 3 MIT Department of Biological Engineering, Cambridge, Massachusetts 02139, USA
8 Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, USA
1 Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
6 Harvard Medical School, Boston, Massachusetts 02115, USA
7 Department of Radiation Oncology, Brigham and Women's Hospital, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA
2 Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
4 Koch Institute for Integrative Cancer Research, MIT, Cambridge, Massachusetts 02139, USA
5 MGH Cancer Center and Department of Pathology, Boston, Massachusetts 02114, USA
AuthorAffiliation_xml – name: 5 MGH Cancer Center and Department of Pathology, Boston, Massachusetts 02114, USA
– name: 8 Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, USA
– name: 6 Harvard Medical School, Boston, Massachusetts 02115, USA
– name: 7 Department of Radiation Oncology, Brigham and Women's Hospital, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA
– name: 3 MIT Department of Biological Engineering, Cambridge, Massachusetts 02139, USA
– name: 2 Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
– name: 1 Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
– name: 4 Koch Institute for Integrative Cancer Research, MIT, Cambridge, Massachusetts 02139, USA
Author_xml – sequence: 1
  givenname: Yehuda
  surname: Brody
  fullname: Brody, Yehuda
– sequence: 2
  givenname: Robert J.
  surname: Kimmerling
  fullname: Kimmerling, Robert J.
– sequence: 3
  givenname: Yosef E.
  surname: Maruvka
  fullname: Maruvka, Yosef E.
– sequence: 4
  givenname: David
  surname: Benjamin
  fullname: Benjamin, David
– sequence: 5
  givenname: Juniper J.
  surname: Elacqua
  fullname: Elacqua, Juniper J.
– sequence: 6
  givenname: Nicholas J.
  surname: Haradhvala
  fullname: Haradhvala, Nicholas J.
– sequence: 7
  givenname: Jaegil
  surname: Kim
  fullname: Kim, Jaegil
– sequence: 8
  givenname: Kent W.
  surname: Mouw
  fullname: Mouw, Kent W.
– sequence: 9
  givenname: Kristjana
  surname: Frangaj
  fullname: Frangaj, Kristjana
– sequence: 10
  givenname: Amnon
  surname: Koren
  fullname: Koren, Amnon
– sequence: 11
  givenname: Gad
  surname: Getz
  fullname: Getz, Gad
– sequence: 12
  givenname: Scott R.
  surname: Manalis
  fullname: Manalis, Scott R.
– sequence: 13
  givenname: Paul C.
  surname: Blainey
  fullname: Blainey, Paul C.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30459213$$D View this record in MEDLINE/PubMed
BookMark eNp1kd1r1zAUhoNM3IdeeisBb3bTedIkbXojyHAqDETQ65CmJzWjTWbS_mT_vamdQwde5ZzkyXs-3lNyFGJAQl4yuGAM2JsxXdRcScFLqp6QEyZFV0nRdEclBqWqDiQ7Jqc53wAAF0o9I8cchOxqxk_I8GU1YfHOW7P4GGh0NMe5xJbO67LfuSn-pMammDP1YfAHP6xmohaniW5Z3iA8YFgy7e_o5AOaEWnGHysG68P4nDx1Zsr44v48I9-u3n-9_Fhdf_7w6fLddWWFYks1DM62KA1I2TjT96ZjgD0YIcBB4xygQm7c0KKC1nY9E-jagQsnWjCNlPyMvN11b9d-xsGWjpKZ9G3ys0l3Ohqv_30J_rse40E3dVGUvAic3wukWJrPi5593uY0AeOadVlZqSMbrgr6-hF6E9cUyniFaupWyJbXhXr1d0cPrfwxoADVDvxeb0L3gDDQm8F6THo3uKRbWf6It363qQzkp__8-gWvFKwR
CitedBy_id crossref_primary_10_7554_eLife_95338_3
crossref_primary_10_1371_journal_pone_0288655
crossref_primary_10_1038_s41467_024_55497_z
crossref_primary_10_1038_s42003_020_01544_6
crossref_primary_10_1039_D1LC01030A
crossref_primary_10_1038_s12276_021_00680_1
crossref_primary_10_1038_s41467_020_14844_6
crossref_primary_10_1016_j_xgen_2023_100315
crossref_primary_10_1038_s41586_020_2435_1
crossref_primary_10_7554_eLife_95338
crossref_primary_10_1242_dev_169730
crossref_primary_10_2139_ssrn_3940628
crossref_primary_10_1016_j_cels_2023_11_005
crossref_primary_10_3390_cells10051224
crossref_primary_10_1016_j_isci_2022_104074
crossref_primary_10_1038_s42003_020_01460_9
crossref_primary_10_1007_s10577_019_09624_y
Cites_doi 10.1126/science.aaa6806
10.1101/cshperspect.a012708
10.1126/science.279.5349.349
10.1038/nsmb.1924
10.1016/j.cell.2013.03.025
10.1038/nmeth.3955
10.1038/ng.3222
10.1038/s41467-018-04002-4
10.1038/ng.3557
10.1038/s41598-018-29325-6
10.1042/EBC20160082
10.1038/ng.3991
10.1002/path.4880
10.4331/wjbc.v6.i3.48
10.1016/j.cell.2015.12.050
10.1016/j.celrep.2018.03.076
10.1038/nature12477
10.1016/j.cell.2017.01.018
10.1016/j.ajhg.2012.10.018
10.1126/science.aaf7907
10.1201/b16018
10.1126/science.aab1785
10.1126/science.aao4426
10.3389/fgene.2012.00174
10.1038/ncomms15183
10.1016/j.cell.2008.01.036
10.1038/nbt.2053
10.1038/srep36540
10.1038/ng.2591
10.1038/nature21703
10.1093/nar/gkq408
10.1038/nrg.2016.159
10.1021/acs.chemrestox.7b00128
10.1038/nature11003
10.1126/science.aak9787
10.1038/s41467-018-04052-8
10.1126/science.aab4082
10.1038/nature22312
10.1002/cncr.29046
10.4161/15384101.2014.954456
10.1093/carcin/bgw055
10.1093/bioinformatics/btt375
10.1038/ncomms6437
10.1038/nature19768
10.1038/nature14279
10.1038/nature20777
10.1073/pnas.0907147106
10.1038/nrc.2017.58
10.1038/ncomms9866
10.1101/gr.162131.113
10.1371/journal.pcbi.1004583
10.1038/nsmb.3474
10.1101/gr.219956.116
10.1038/s41568-018-0004-9
10.1038/nrm3289
10.1038/nrg.2017.117
10.1371/journal.pgen.1006315
10.1038/ncomms13919
10.1136/jmedgenet-2013-101712
10.1158/0008-5472.CAN-04-1198
10.1038/nature16166
10.1093/bioinformatics/bts271
10.1038/nature23302
10.1093/nar/gku1075
10.1146/annurev-genet-112414-054722
10.1038/nsmb.1659
10.1016/j.celrep.2012.12.008
10.1073/pnas.1208715109
10.1126/science.1186802
10.1038/nrc.2015.1
10.1038/nature14173
10.1016/j.cell.2017.10.014
10.1038/ncomms10220
10.1101/gr.174789.114
10.1038/nbt.2514
10.1093/nar/gks1443
10.1038/nrg.2015.16
10.1038/nrc2998
10.1093/nar/gkl842
10.1186/s13059-016-0963-7
10.1073/pnas.0912629107
10.1126/science.aao3130
10.1371/journal.pgen.1005932
10.1038/nature18959
ContentType Journal Article
Copyright 2018 Brody et al.; Published by Cold Spring Harbor Laboratory Press.
Copyright Cold Spring Harbor Laboratory Press Dec 2018
2018
Copyright_xml – notice: 2018 Brody et al.; Published by Cold Spring Harbor Laboratory Press.
– notice: Copyright Cold Spring Harbor Laboratory Press Dec 2018
– notice: 2018
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7TM
8FD
FR3
P64
RC3
7X8
5PM
DOI 10.1101/gr.238543.118
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Nucleic Acids Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Genetics Abstracts
Engineering Research Database
Technology Research Database
Nucleic Acids Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

CrossRef
Genetics Abstracts
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
Biology
DocumentTitleAlternate Brody et al
EISSN 1549-5469
EndPage 1918
ExternalDocumentID PMC6280753
30459213
10_1101_gr_238543_118
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NHLBI NIH HHS
  grantid: DP2 HL141005
– fundername: NHGRI NIH HHS
  grantid: RM1 HG006193
– fundername: NIEHS NIH HHS
  grantid: P30 ES002109
– fundername: NIGMS NIH HHS
  grantid: T32 GM008313
– fundername: NIAID NIH HHS
  grantid: R21 AI110787
– fundername: ;
– fundername: Klarman Cell Observatory Foundation
– fundername: National Science Foundation GRFP
– fundername: MIT's Center for Environmental Health Sciences
  grantid: R21AI110787
– fundername: Core Center
  grantid: P30-ES002109
– fundername: National Institute of Allergy and Infectious Disease
– fundername: Career Award at the Scientific Interface
GroupedDBID ---
.GJ
18M
29H
2WC
39C
4.4
53G
5GY
5RE
5VS
AAFWJ
AAYXX
AAZTW
ABDIX
ABDNZ
ACGFO
ACLKE
ACYGS
ADBBV
ADNWM
AEILP
AENEX
AHPUY
AI.
ALMA_UNASSIGNED_HOLDINGS
BAWUL
BTFSW
C1A
CITATION
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
FRP
GX1
H13
HYE
IH2
K-O
KQ8
MV1
R.V
RCX
RHI
RNS
RPM
RXW
SJN
TAE
TR2
VH1
W8F
WOQ
YKV
ZCG
ZGI
ZXP
AAYOK
CGR
CUY
CVF
ECM
EIF
NPM
7TM
8FD
FR3
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c481t-ddfc7e5a0556fabba910eb0a440f06ff0e8e3afd7e807c9b14ef7d34f470a6553
ISSN 1088-9051
1549-5469
IngestDate Thu Aug 21 14:32:43 EDT 2025
Fri Jul 11 05:34:58 EDT 2025
Fri Jul 25 02:57:15 EDT 2025
Sat Jun 14 01:30:57 EDT 2025
Sun Aug 03 02:37:18 EDT 2025
Thu Apr 24 22:58:15 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License 2018 Brody et al.; Published by Cold Spring Harbor Laboratory Press.
This article, published in Genome Research, is available under a Creative Commons License (Attribution 4.0 International), as described at http://creativecommons.org/licenses/by/4.0/.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c481t-ddfc7e5a0556fabba910eb0a440f06ff0e8e3afd7e807c9b14ef7d34f470a6553
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC6280753
PMID 30459213
PQID 2162745732
PQPubID 2049132
PageCount 18
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6280753
proquest_miscellaneous_2136555638
proquest_journals_2162745732
pubmed_primary_30459213
crossref_primary_10_1101_gr_238543_118
crossref_citationtrail_10_1101_gr_238543_118
PublicationCentury 2000
PublicationDate 2018-12-01
PublicationDateYYYYMMDD 2018-12-01
PublicationDate_xml – month: 12
  year: 2018
  text: 2018-12-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle Genome research
PublicationTitleAlternate Genome Res
PublicationYear 2018
Publisher Cold Spring Harbor Laboratory Press
Publisher_xml – name: Cold Spring Harbor Laboratory Press
References 2025061209300679000_28.12.1901.71
2025061209300679000_28.12.1901.70
2025061209300679000_28.12.1901.73
2025061209300679000_28.12.1901.72
2025061209300679000_28.12.1901.35
2025061209300679000_28.12.1901.79
2025061209300679000_28.12.1901.34
2025061209300679000_28.12.1901.78
2025061209300679000_28.12.1901.37
2025061209300679000_28.12.1901.36
2025061209300679000_28.12.1901.31
2025061209300679000_28.12.1901.75
2025061209300679000_28.12.1901.30
2025061209300679000_28.12.1901.74
2025061209300679000_28.12.1901.33
2025061209300679000_28.12.1901.77
2025061209300679000_28.12.1901.32
2025061209300679000_28.12.1901.76
2025061209300679000_28.12.1901.28
2025061209300679000_28.12.1901.27
2025061209300679000_28.12.1901.29
2025061209300679000_28.12.1901.82
2025061209300679000_28.12.1901.81
2025061209300679000_28.12.1901.40
2025061209300679000_28.12.1901.84
2025061209300679000_28.12.1901.83
2025061209300679000_28.12.1901.80
2025061209300679000_28.12.1901.46
2025061209300679000_28.12.1901.45
2025061209300679000_28.12.1901.48
2025061209300679000_28.12.1901.47
2025061209300679000_28.12.1901.42
2025061209300679000_28.12.1901.41
2025061209300679000_28.12.1901.44
2025061209300679000_28.12.1901.43
2025061209300679000_28.12.1901.39
2025061209300679000_28.12.1901.38
2025061209300679000_28.12.1901.51
2025061209300679000_28.12.1901.50
2025061209300679000_28.12.1901.13
2025061209300679000_28.12.1901.57
2025061209300679000_28.12.1901.12
2025061209300679000_28.12.1901.56
2025061209300679000_28.12.1901.15
2025061209300679000_28.12.1901.59
2025061209300679000_28.12.1901.14
2025061209300679000_28.12.1901.58
2025061209300679000_28.12.1901.53
2025061209300679000_28.12.1901.52
2025061209300679000_28.12.1901.11
2025061209300679000_28.12.1901.55
2025061209300679000_28.12.1901.10
2025061209300679000_28.12.1901.54
2025061209300679000_28.12.1901.49
2025061209300679000_28.12.1901.60
2025061209300679000_28.12.1901.62
2025061209300679000_28.12.1901.61
2025061209300679000_28.12.1901.24
2025061209300679000_28.12.1901.68
2025061209300679000_28.12.1901.23
2025061209300679000_28.12.1901.67
2025061209300679000_28.12.1901.26
2025061209300679000_28.12.1901.25
2025061209300679000_28.12.1901.69
2025061209300679000_28.12.1901.20
2025061209300679000_28.12.1901.64
2025061209300679000_28.12.1901.63
2025061209300679000_28.12.1901.22
2025061209300679000_28.12.1901.66
2025061209300679000_28.12.1901.21
2025061209300679000_28.12.1901.65
2025061209300679000_28.12.1901.7
2025061209300679000_28.12.1901.8
2025061209300679000_28.12.1901.9
2025061209300679000_28.12.1901.3
2025061209300679000_28.12.1901.17
2025061209300679000_28.12.1901.4
2025061209300679000_28.12.1901.16
2025061209300679000_28.12.1901.5
2025061209300679000_28.12.1901.19
2025061209300679000_28.12.1901.6
2025061209300679000_28.12.1901.18
2025061209300679000_28.12.1901.1
2025061209300679000_28.12.1901.2
References_xml – ident: 2025061209300679000_28.12.1901.51
  doi: 10.1126/science.aaa6806
– ident: 2025061209300679000_28.12.1901.66
  doi: 10.1101/cshperspect.a012708
– ident: 2025061209300679000_28.12.1901.13
  doi: 10.1126/science.279.5349.349
– ident: 2025061209300679000_28.12.1901.32
  doi: 10.1038/nsmb.1924
– ident: 2025061209300679000_28.12.1901.43
  doi: 10.1016/j.cell.2013.03.025
– ident: 2025061209300679000_28.12.1901.82
  doi: 10.1038/nmeth.3955
– ident: 2025061209300679000_28.12.1901.18
  doi: 10.1038/ng.3222
– ident: 2025061209300679000_28.12.1901.30
  doi: 10.1038/s41467-018-04002-4
– ident: 2025061209300679000_28.12.1901.35
  doi: 10.1038/ng.3557
– ident: 2025061209300679000_28.12.1901.57
  doi: 10.1038/s41598-018-29325-6
– ident: 2025061209300679000_28.12.1901.79
  doi: 10.1042/EBC20160082
– ident: 2025061209300679000_28.12.1901.24
  doi: 10.1038/ng.3991
– ident: 2025061209300679000_28.12.1901.58
  doi: 10.1002/path.4880
– ident: 2025061209300679000_28.12.1901.10
  doi: 10.4331/wjbc.v6.i3.48
– ident: 2025061209300679000_28.12.1901.29
  doi: 10.1016/j.cell.2015.12.050
– ident: 2025061209300679000_28.12.1901.38
  doi: 10.1016/j.celrep.2018.03.076
– ident: 2025061209300679000_28.12.1901.3
  doi: 10.1038/nature12477
– ident: 2025061209300679000_28.12.1901.52
  doi: 10.1016/j.cell.2017.01.018
– ident: 2025061209300679000_28.12.1901.39
  doi: 10.1016/j.ajhg.2012.10.018
– ident: 2025061209300679000_28.12.1901.53
  doi: 10.1126/science.aaf7907
– ident: 2025061209300679000_28.12.1901.28
  doi: 10.1201/b16018
– ident: 2025061209300679000_28.12.1901.46
  doi: 10.1126/science.aab1785
– ident: 2025061209300679000_28.12.1901.47
  doi: 10.1126/science.aao4426
– ident: 2025061209300679000_28.12.1901.49
  doi: 10.3389/fgene.2012.00174
– ident: 2025061209300679000_28.12.1901.55
  doi: 10.1038/ncomms15183
– ident: 2025061209300679000_28.12.1901.64
  doi: 10.1016/j.cell.2008.01.036
– ident: 2025061209300679000_28.12.1901.60
  doi: 10.1038/nbt.2053
– ident: 2025061209300679000_28.12.1901.14
  doi: 10.1038/srep36540
– ident: 2025061209300679000_28.12.1901.20
  doi: 10.1038/ng.2591
– ident: 2025061209300679000_28.12.1901.33
  doi: 10.1038/nature21703
– ident: 2025061209300679000_28.12.1901.63
  doi: 10.1093/nar/gkq408
– ident: 2025061209300679000_28.12.1901.80
  doi: 10.1038/nrg.2016.159
– ident: 2025061209300679000_28.12.1901.27
  doi: 10.1021/acs.chemrestox.7b00128
– ident: 2025061209300679000_28.12.1901.7
  doi: 10.1038/nature11003
– ident: 2025061209300679000_28.12.1901.15
  doi: 10.1126/science.aak9787
– ident: 2025061209300679000_28.12.1901.84
  doi: 10.1038/s41467-018-04052-8
– ident: 2025061209300679000_28.12.1901.50
  doi: 10.1126/science.aab4082
– ident: 2025061209300679000_28.12.1901.54
  doi: 10.1038/nature22312
– ident: 2025061209300679000_28.12.1901.11
  doi: 10.1002/cncr.29046
– ident: 2025061209300679000_28.12.1901.25
  doi: 10.4161/15384101.2014.954456
– ident: 2025061209300679000_28.12.1901.56
  doi: 10.1093/carcin/bgw055
– ident: 2025061209300679000_28.12.1901.62
  doi: 10.1093/bioinformatics/btt375
– ident: 2025061209300679000_28.12.1901.83
  doi: 10.1038/ncomms6437
– ident: 2025061209300679000_28.12.1901.12
  doi: 10.1038/nature19768
– ident: 2025061209300679000_28.12.1901.42
  doi: 10.1038/nature14279
– ident: 2025061209300679000_28.12.1901.23
  doi: 10.1038/nature20777
– ident: 2025061209300679000_28.12.1901.2
  doi: 10.1073/pnas.0907147106
– ident: 2025061209300679000_28.12.1901.8
  doi: 10.1038/nrc.2017.58
– ident: 2025061209300679000_28.12.1901.34
  doi: 10.1038/ncomms9866
– ident: 2025061209300679000_28.12.1901.31
  doi: 10.1101/gr.162131.113
– ident: 2025061209300679000_28.12.1901.45
  doi: 10.1371/journal.pcbi.1004583
– ident: 2025061209300679000_28.12.1901.74
  doi: 10.1038/nsmb.3474
– ident: 2025061209300679000_28.12.1901.6
  doi: 10.1101/gr.219956.116
– ident: 2025061209300679000_28.12.1901.72
  doi: 10.1038/s41568-018-0004-9
– ident: 2025061209300679000_28.12.1901.67
  doi: 10.1038/nrm3289
– ident: 2025061209300679000_28.12.1901.68
  doi: 10.1038/nrg.2017.117
– ident: 2025061209300679000_28.12.1901.9
  doi: 10.1371/journal.pgen.1006315
– ident: 2025061209300679000_28.12.1901.36
  doi: 10.1038/ncomms13919
– ident: 2025061209300679000_28.12.1901.44
  doi: 10.1136/jmedgenet-2013-101712
– ident: 2025061209300679000_28.12.1901.5
  doi: 10.1158/0008-5472.CAN-04-1198
– ident: 2025061209300679000_28.12.1901.81
  doi: 10.1038/nature16166
– ident: 2025061209300679000_28.12.1901.69
  doi: 10.1093/bioinformatics/bts271
– ident: 2025061209300679000_28.12.1901.78
  doi: 10.1038/nature23302
– ident: 2025061209300679000_28.12.1901.22
  doi: 10.1093/nar/gku1075
– ident: 2025061209300679000_28.12.1901.40
  doi: 10.1146/annurev-genet-112414-054722
– ident: 2025061209300679000_28.12.1901.71
  doi: 10.1038/nsmb.1659
– ident: 2025061209300679000_28.12.1901.4
  doi: 10.1016/j.celrep.2012.12.008
– ident: 2025061209300679000_28.12.1901.70
  doi: 10.1073/pnas.1208715109
– ident: 2025061209300679000_28.12.1901.61
  doi: 10.1126/science.1186802
– ident: 2025061209300679000_28.12.1901.21
  doi: 10.1038/nrc.2015.1
– ident: 2025061209300679000_28.12.1901.75
  doi: 10.1038/nature14173
– ident: 2025061209300679000_28.12.1901.1
  doi: 10.1016/j.cell.2017.10.014
– ident: 2025061209300679000_28.12.1901.37
  doi: 10.1038/ncomms10220
– ident: 2025061209300679000_28.12.1901.73
  doi: 10.1101/gr.174789.114
– ident: 2025061209300679000_28.12.1901.16
  doi: 10.1038/nbt.2514
– ident: 2025061209300679000_28.12.1901.17
  doi: 10.1093/nar/gks1443
– ident: 2025061209300679000_28.12.1901.26
  doi: 10.1038/nrg.2015.16
– ident: 2025061209300679000_28.12.1901.41
  doi: 10.1038/nrc2998
– ident: 2025061209300679000_28.12.1901.59
  doi: 10.1093/nar/gkl842
– ident: 2025061209300679000_28.12.1901.76
  doi: 10.1186/s13059-016-0963-7
– ident: 2025061209300679000_28.12.1901.48
  doi: 10.1073/pnas.0912629107
– ident: 2025061209300679000_28.12.1901.19
  doi: 10.1126/science.aao3130
– ident: 2025061209300679000_28.12.1901.65
  doi: 10.1371/journal.pgen.1005932
– ident: 2025061209300679000_28.12.1901.77
  doi: 10.1038/nature18959
SSID ssj0003488
Score 2.3718662
Snippet Mutation data reveal the dynamic equilibrium between DNA damage and repair processes in cells and are indispensable to the understanding of age-related...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1901
SubjectTerms Age
Cell division
Cell Division - genetics
Cell Line
Colon cancer
Deoxyribonucleic acid
DNA
DNA Copy Number Variations
DNA damage
DNA Mutational Analysis - mortality
DNA repair
DNA sequencing
DNA-directed DNA polymerase
Drug resistance
Epithelial cells
Genomes
Genotype
High-Throughput Nucleotide Sequencing - methods
Humans
Method
Mutation
Mutation rates
Phenotypes
Polymorphism, Single Nucleotide
Proofreading
Single-Cell Analysis - methods
Telomerase
Time-Lapse Imaging
Title Quantification of somatic mutation flow across individual cell division events by lineage sequencing
URI https://www.ncbi.nlm.nih.gov/pubmed/30459213
https://www.proquest.com/docview/2162745732
https://www.proquest.com/docview/2136555638
https://pubmed.ncbi.nlm.nih.gov/PMC6280753
Volume 28
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZgCMELgo1LYSAjob2UdLnYSfq4jY3BLgiplbqnyEnsrdAmqG1A49dzju0kLRRp8BIljpW0Pl_s7xyfCyFvAqy1LQC80hfcYaGMnBSA5Agg_6D3cJXnaIc8Ow-Ph-zjiI9ad1sdXbJIe9nPtXEl_yNVaAO5YpTsP0i2eSg0wDnIF44gYTjeSMafK2F8fRreNy9NCtZpVXsRTsofXaHXwu64Db5Ce30Xr9BY1tVZnObIRJF0oheP9bCu1zXLXt_LopxinZUlE5hR5c1UfSGvqlbDPxmjUXxii6YYF-52F-pMzKrvXzV1vSjnUrUhEfuy-CKmJrdB63JvLRNevOTlYSdT1nc4M6VYenJNm52B_XgZaf7SfIp0Zf1ErwsMXM56QDk4C6Ahble0ehf__FNyNDw9TQaHo8FtcscHTQKLXLz7cNIs1gHTpUmbn9WkYfV2Vx6-Slv-0EV-d6ld4iiDh-SBVS7onkHKI3JLFptka68Qi3J6TXeodvfV-yib5O5-fXbvoC76t0XyVUjRUlELKVpDiiKkqIEUbSFFEVK0hhQ1kKLpNbWQoi2kHpPh0eHg4NixhTicjMXewslzlUWSC0y8pESaCuCYMnUFY65yQ6VcGctAqDySsRtl_dRjUkV5wBSLXBFyHjwhG0VZyGeEitwLYyDJGUa_cMmEhEf2hQcLZxinvuyQt_U4J5nNUo_FUiaJ1lZdL7mcJUYscBl3yE7T_ZtJz_K3jtu10BL7Bc8T38PKUzwK_A553dyGEccRE4UsK-wTwD_gsEx1yFMj4-ZN6GXQhw4dEq1Iv-mAudtX7xTjK53DPcQsVDx4foP3viD3269rm2wsZpV8CUx4kb7SWP4Floy5XA
linkProvider Flying Publisher
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantification+of+somatic+mutation+flow+across+individual+cell+division+events+by+lineage+sequencing&rft.jtitle=Genome+research&rft.au=Brody%2C+Yehuda&rft.au=Kimmerling%2C+Robert+J&rft.au=Maruvka%2C+Yosef+E&rft.au=Benjamin%2C+David&rft.date=2018-12-01&rft.issn=1549-5469&rft.eissn=1549-5469&rft.volume=28&rft.issue=12&rft.spage=1901&rft_id=info:doi/10.1101%2Fgr.238543.118&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1088-9051&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1088-9051&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1088-9051&client=summon