New pathways and metabolic engineering strategies for microbial synthesis of diols

Diols are important bulk chemicals that are widely used in polymer, cosmetics, fuel, food, and pharmaceutical industries. The development of bioprocess to produce diols from renewable feedstocks has gained much interest in recent years and is contributing to reducing the carbon footprint of the chem...

Full description

Saved in:
Bibliographic Details
Published inCurrent opinion in biotechnology Vol. 78; p. 102845
Main Authors Cen, Xuecong, Dong, Yang, Liu, Dehua, Chen, Zhen
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 01.12.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Diols are important bulk chemicals that are widely used in polymer, cosmetics, fuel, food, and pharmaceutical industries. The development of bioprocess to produce diols from renewable feedstocks has gained much interest in recent years and is contributing to reducing the carbon footprint of the chemical industry. Although bioproduction of some natural diols such as 1,3-propanediol and 2,3-butanediol has been commercialized, microbial production of most other diols is still challenging due to the lack of natural biosynthetic pathways. This review describes the recent efforts in the development of novel synthetic pathways and metabolic engineering strategies for the biological production of C2∼C5 diols. We also discussed the main challenges and future perspectives for the microbial processes toward industrial application. [Display omitted] ●Advances in the biological production of important C2–C5 diols are reviewed.●Recent advances in synthetic biology enable the construction of non-natural pathways.●Systems' metabolic engineering accelerates the development of diols' bioproduction.
AbstractList Diols are important bulk chemicals that are widely used in polymer, cosmetics, fuel, food, and pharmaceutical industries. The development of bioprocess to produce diols from renewable feedstocks has gained much interest in recent years and is contributing to reducing the carbon footprint of the chemical industry. Although bioproduction of some natural diols such as 1,3-propanediol and 2,3-butanediol has been commercialized, microbial production of most other diols is still challenging due to the lack of natural biosynthetic pathways. This review describes the recent efforts in the development of novel synthetic pathways and metabolic engineering strategies for the biological production of C2∼C5 diols. We also discussed the main challenges and future perspectives for the microbial processes toward industrial application. [Display omitted] ●Advances in the biological production of important C2–C5 diols are reviewed.●Recent advances in synthetic biology enable the construction of non-natural pathways.●Systems' metabolic engineering accelerates the development of diols' bioproduction.
Diols are important bulk chemicals that are widely used in polymer, cosmetics, fuel, food, and pharmaceutical industries. The development of bioprocess to produce diols from renewable feedstocks has gained much interest in recent years and is contributing to reducing the carbon footprint of the chemical industry. Although bioproduction of some natural diols such as 1,3-propanediol and 2,3-butanediol has been commercialized, microbial production of most other diols is still challenging due to the lack of natural biosynthetic pathways. This review describes the recent efforts in the development of novel synthetic pathways and metabolic engineering strategies for the biological production of C2∼C5 diols. We also discussed the main challenges and future perspectives for the microbial processes toward industrial application.Diols are important bulk chemicals that are widely used in polymer, cosmetics, fuel, food, and pharmaceutical industries. The development of bioprocess to produce diols from renewable feedstocks has gained much interest in recent years and is contributing to reducing the carbon footprint of the chemical industry. Although bioproduction of some natural diols such as 1,3-propanediol and 2,3-butanediol has been commercialized, microbial production of most other diols is still challenging due to the lack of natural biosynthetic pathways. This review describes the recent efforts in the development of novel synthetic pathways and metabolic engineering strategies for the biological production of C2∼C5 diols. We also discussed the main challenges and future perspectives for the microbial processes toward industrial application.
Diols are important bulk chemicals that are widely used in polymer, cosmetics, fuel, food, and pharmaceutical industries. The development of bioprocess to produce diols from renewable feedstocks has gained much interest in recent years and is contributing to reducing the carbon footprint of the chemical industry. Although bioproduction of some natural diols such as 1,3-propanediol and 2,3-butanediol has been commercialized, microbial production of most other diols is still challenging due to the lack of natural biosynthetic pathways. This review describes the recent efforts in the development of novel synthetic pathways and metabolic engineering strategies for the biological production of C2∼C5 diols. We also discussed the main challenges and future perspectives for the microbial processes toward industrial application.
ArticleNumber 102845
Author Dong, Yang
Cen, Xuecong
Liu, Dehua
Chen, Zhen
Author_xml – sequence: 1
  givenname: Xuecong
  surname: Cen
  fullname: Cen, Xuecong
  organization: Key Laboratory of Industrial Biocatalysis (Ministry of Education), Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
– sequence: 2
  givenname: Yang
  surname: Dong
  fullname: Dong, Yang
  organization: College of Arts & Sciences, University of Pennsylvania, Philadelphia 19104, USA
– sequence: 3
  givenname: Dehua
  surname: Liu
  fullname: Liu, Dehua
  organization: Key Laboratory of Industrial Biocatalysis (Ministry of Education), Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
– sequence: 4
  givenname: Zhen
  orcidid: 0000-0003-3792-5544
  surname: Chen
  fullname: Chen, Zhen
  email: zhenchen2013@mail.tsinghua.edu.cn
  organization: Key Laboratory of Industrial Biocatalysis (Ministry of Education), Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36403537$$D View this record in MEDLINE/PubMed
BookMark eNqFkE9rHCEYh6UkNJuk36AUj73MVkedGUsphNA_gdBCac7i6DubdzujW3Ub9tt3wqQ95LInRZ7nBz7n5CTEAIS85mzNGW_ebdcu7nqM65rV9fxUd1K9ICvetbpistYnZMW06ireNPqMnOe8ZYwp0bKX5Ew0kon5viI_vsED3dly_2APmdrg6QTF9nFERyFsMAAkDBuaS7IFNgiZDjHRCV2KPdqR5kMo95Ax0zhQj3HMl-R0sGOGV0_nBbn7_Onn9dfq9vuXm-ur28rJjpfKeTlYZn0jlVSilm3n-1a2oodOeMtBQ-29htY2Wg1ODdaqToMQjWKuAW_FBXm77O5S_L2HXMyE2cE42gBxn03dik5qzhSb0TdP6L6fwJtdwsmmg_nXYQbkAszfyjnB8B_hzDzmNluz5DaPuc2Se9beP9McFlswhjkXjsfkj4sMc6Q_CMlkhxAceEzgivERjw18eDbgRgzo7PgLDsf1vzS6spw
CitedBy_id crossref_primary_10_1016_j_molliq_2025_127135
crossref_primary_10_3390_biotech13010002
crossref_primary_10_1016_j_trac_2024_117726
crossref_primary_10_1016_j_copbio_2023_103006
crossref_primary_10_1039_D3GC02863A
crossref_primary_10_1038_s41929_025_01299_5
crossref_primary_10_3389_fbioe_2024_1423935
Cites_doi 10.1016/j.bej.2022.108478
10.1002/elsc.201600215
10.1186/s13568-021-01276-8
10.1038/ncomms15828
10.1016/j.jbiosc.2020.11.004
10.1128/AEM.03172-16
10.1186/s40643-021-00485-0
10.1002/aic.16339
10.1073/pnas.2003032117
10.1186/s13068-020-01816-7
10.1038/s41586-022-04599-z
10.1016/j.ymben.2015.03.009
10.1021/acssynbio.1c00144
10.1038/s41598-019-48091-7
10.1186/s13068-017-0992-9
10.1016/j.cej.2022.137617
10.1016/j.ymben.2015.10.013
10.1016/j.ymben.2022.01.006
10.1186/s13068-019-1545-1
10.1186/s12934-022-01875-5
10.1002/cssc.201902928
10.1002/biot.201000140
10.1039/C7FD00057J
10.1021/acssynbio.9b00003
10.1002/bab.1987
10.1186/s13068-021-02067-w
10.1002/bit.26468
10.1002/bit.26963
10.1016/j.enzmictec.2016.10.020
10.1016/j.cattod.2012.04.048
10.1007/s10295-014-1541-1
10.1007/s00253-021-11436-2
10.1016/j.ymben.2015.12.004
10.1080/09168451.2014.891933
10.1002/bit.25717
10.1186/s12934-015-0312-7
10.1016/j.ymben.2014.12.007
10.1021/acssynbio.0c00567
10.1007/s10529-006-9122-7
10.1016/j.mec.2018.e00082
10.1038/nchembio.2020
10.1016/j.ymben.2021.03.008
10.1038/nchembio.580
10.1016/j.copbio.2017.06.007
10.1039/D1GC04288B
10.1186/1475-2859-12-4
10.1002/biot.201900003
10.1016/j.ymben.2018.09.012
10.1021/acssuschemeng.7b00059
10.1016/j.copbio.2016.04.016
10.1039/c2cs15359a
10.1016/j.biortech.2020.124527
10.1007/s00253-012-4618-7
10.1016/j.ymben.2016.12.001
10.1021/acssynbio.0c00486
10.1007/s00253-019-09640-2
10.1039/D1GC02867G
10.1007/s00253-021-11652-w
10.1002/chem.201602390
10.1002/btpr.2917
10.1016/j.ymben.2018.04.013
10.1016/j.ymben.2017.02.003
10.1038/s41929-018-0212-4
10.3390/biom12050715
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright © 2022 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2022 Elsevier Ltd
– notice: Copyright © 2022 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.copbio.2022.102845
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-0429
ExternalDocumentID 36403537
10_1016_j_copbio_2022_102845
S0958166922001793
Genre Journal Article
Review
GroupedDBID ---
--K
--M
-~X
.1-
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29F
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JM
9JN
AAAJQ
AABNK
AAEDT
AAEDW
AAHBH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARKO
AATTM
AAXKI
AAXUO
AAYWO
ABEFU
ABFRF
ABGSF
ABJNI
ABMAC
ABNUV
ABOCM
ABUDA
ABWVN
ABXDB
ACDAQ
ACGFO
ACGFS
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEWK
ADEZE
ADMUD
ADNMO
ADUVX
AEBSH
AEFWE
AEHWI
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGEKW
AGHFR
AGQPQ
AGRDE
AGUBO
AGYEJ
AHHHB
AHPOS
AI.
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJUYK
AKBMS
AKRWK
AKURH
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CAG
CJTIS
COF
CS3
DU5
EBS
EFJIC
EFKBS
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLW
HVGLF
HZ~
IHE
J1W
KOM
LUGTX
LX3
M41
MO0
N9A
O-L
O9-
O9.
OAUVE
OK~
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SBG
SCC
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSG
SSI
SSU
SSZ
T5K
TWZ
VH1
WUQ
Z5R
~02
~G-
AACTN
AAIAV
ABYKQ
AFCTW
AFKWA
AJBFU
AJOXV
AMFUW
DOVZS
EFLBG
RIG
XFK
AAYXX
AGRNS
BNPGV
CITATION
SSH
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c481t-cd4fa0ad6454532478db7473be83da1e9e2dd9e7a695fc5faa589e33650c6eda3
IEDL.DBID .~1
ISSN 0958-1669
1879-0429
IngestDate Thu Jul 10 22:08:06 EDT 2025
Wed Feb 19 02:25:54 EST 2025
Thu Apr 24 23:01:31 EDT 2025
Tue Jul 01 01:00:15 EDT 2025
Fri Feb 23 02:40:13 EST 2024
Tue Aug 26 16:32:39 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License Copyright © 2022 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c481t-cd4fa0ad6454532478db7473be83da1e9e2dd9e7a695fc5faa589e33650c6eda3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
ORCID 0000-0003-3792-5544
PMID 36403537
PQID 2738491050
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2738491050
pubmed_primary_36403537
crossref_primary_10_1016_j_copbio_2022_102845
crossref_citationtrail_10_1016_j_copbio_2022_102845
elsevier_sciencedirect_doi_10_1016_j_copbio_2022_102845
elsevier_clinicalkey_doi_10_1016_j_copbio_2022_102845
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2022
2022-12-00
2022-Dec
20221201
PublicationDateYYYYMMDD 2022-12-01
PublicationDate_xml – month: 12
  year: 2022
  text: December 2022
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Current opinion in biotechnology
PublicationTitleAlternate Curr Opin Biotechnol
PublicationYear 2022
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Yim, Haselbeck, Niu, Pujol-Baxley, Burgard, Boldt, Khandurina, Trawick, Osterhout, Stephen (bib39) 2011; 7
Lee, Lee, Jin, Rao (bib53) 2021; 105
Mizobata, Mitsui, Yamada, Matsumoto, Yoshihara, Tokumoto, Ogino (bib54) 2021; 131
Cen, Liu, Chen, Liu, Chen (bib59) 2021; 10
Salusjarvi, Havukainen, Koivistoinen, Toivari (bib10) 2019; 103
Liu, Xu, Zheng, Liu (bib23) 2010; 5
Li, Dong, Liu, Cen, Liu, Chen (bib26) 2022; 70
Zhu, Liu, Chen (bib7) 2022; 24
Kataoka, Vangnai, Ueda, Tajima, Nakashimada, Kato (bib47) 2014; 78
Tao, Bu, Zou, Hu, Zheng, Ouyang (bib33) 2021; 14
Kou, Cui, Fu, Dai, Wang, Chen (bib58) 2022; 21
Liu, Ramos, Valdehuesa, Nisola, Lee, Chung (bib17) 2013; 97
Tai, Xiong, Jambunathan, Wang, Wang, Stapleton, Zhang (bib45) 2016; 12
Wang, Li, Zou, Yan (bib42) 2020; 117
Sato, Ikeda, Tanaka (bib34) 2021; 11
Liu, Fabos, Taylor, Knight, Whiston, Hutchings (bib51) 2016; 22
Lee, Kim, Chae, Cho, Kim, Shin, Kim, Ko, Jang, Jang (bib63) 2019; 2
Liu, Wang, Zeng (bib2) 2022; 13
Kim, Lee, Baek, Kong, Na, Lee, Sundstrom, Park, Kim (bib66) 2020; 13
L. Fernandez, Global monoethylene glycol market volume 2015-2029
accessed 14 Jun 2022.
Lu, Yao, Yang, Zhang, Gu, Mojovic, Baganz, Lye, Shi, Hao (bib18) 2021; 68
Zhang, Liu, Chen (bib4) 2017; 10
Nakagawa, Tomishige (bib9) 2012; 195
Wang, Zhang, Zhang, Gong, Jiang, Sun, Shen, Wang, Yuan, Yan (bib48) 2021; 23
Hirokawa, Maki, Hanai (bib27) 2017; 39
Pereira, Zhang, De Mey, Lim, Li, Stephanopoulos (bib22) 2016; 113
Frazao, Trichez, Serrano-Bataille, Dagkesamanskaia, Topham, Walther, Francois (bib32) 2019; 9
Rehman, Leng, Zhuang, Vuppaladadiyam, Lin, Leu (bib57) 2022; 448
Chae, Choi, Kim, Ko, Lee (bib62) 2017; 47
Guo, Liu, Jin, Zhang, Yu, Deng, Wang (bib40) 2022; 185
Lu, Diaz, Czarnecki, Zhu, Kim, Shroff, Acosta, Alexander, Cole, Zhang (bib61) 2022; 604
David, Schmid, Adrian, Wilde, Buhler (bib64) 2018; 115
Choi, Woo, Ho, Yup (bib1) 2014; 28
Liu, Lu (bib44) 2015; 29
Li, Liao (bib36) 2013; 12
Chae, Choi, Ryu, Lee (bib14) 2018; 64
Utesch, Sabra, Prescher, Baur, Arbter, Zeng (bib67) 2019; 116
Vivek, Hazeena, Alphy, Kumar, Magdouli, Sindhu, Pandey, Binod (bib5) 2021; 322
Sun, Shu, Lu, Wang, Tisma, Zhu, Shi, Baganz, Lye, Hao (bib35) 2021; 105
Arnaud, Wu, Chang, Comerford, Farmer, Schmid, Chang, Li, Mascal (bib60) 2017; 202
Pereira, Li, De Mey, Lim, Zhang, Hoeltgen, Stephanopoulos (bib16) 2016; 34
Zhang, Sun, Liu, Cen, Liu, Chen (bib25) 2021; 8
Liu, Cen, Liu, Chen (bib3) 2021; 10
Lee, Seo (bib55) 2019; 12
Uranukul, Woolston, Fink, Stephanopoulos (bib15) 2018; 51
Wu, Liu, Liu, Chen, Huo (bib6) 2022; 12
Zhong, Zhang, Wu, Liu, Chen (bib29) 2019; 8
Jiang, Liu, Mu, Sun, Xiu (bib65) 2017; 17
Zhang, Ma, Dischert, Soucaille, Zeng (bib30) 2019; 14
Niu, Kramer, Mueller, Liu, Guo (bib38) 2019; 8
Kim, Flick, Brunzelle, Singer, Evdokimova, Brown, Joo, Minasov, Anderson, Mahadevan (bib49) 2017; 83
Wang, Jain, Shen, Sun, Cheng, Liao, Yuan, Yan (bib46) 2017; 40
Novak, Kutscha, Pflugl (bib56) 2020; 13
Yue, Zhao, Ma, Gong (bib12) 2012; 41
Chen, Huang, Wu, Liu (bib21) 2016; 33
Li, Wu, Cen, Liu, Zhang, Liu, Chen (bib28) 2021; 10
Alkim, Cam, Trichez, Auriol, Spina, Vax, Bartolo, Besse, François, Walther (bib20) 2015; 14
H. S. Baek, B. Y. Woo, S. J. Yoo, Y. H. Joo, S. S. Shin, M. H. Oh, J. H. Lee, and S. Y. Kim, Composition containing meso-2,3-butanediol, Patent US 10525017, 2020.
Cabulong, Valdehuesa, Ramos, Nisola, Lee, Lee, Chung (bib19) 2017; 97
Nemr, Muller, Joo, Gawand, Choudhary, Mendonca, Lu, Yu, Yakunin, Mahadevan (bib50) 2018; 48
Pooth, van Gaalen, Trenkamp, Wiechert, Oldiges (bib43) 2020; 36
Barton, Burgard, Burk, Crater, Osterhout, Pharkya, Steer, Sun, Trawick, Van Dien (bib41) 2015; 42
Grabar, Zhou, Shanmugam, Yomano, Ingram (bib37) 2006; 28
Burgard, Burk, Osterhout, Dien, Yim (bib11) 2016; 42
Zhang, Li, Liu, Cen, Liu, Chen (bib24) 2021; 65
Walther, Topham, Irague, Auriol, Baylac, Cordier, Dressaire, Lozano-Huguet, Tarrat, Martineau (bib31) 2017; 8
Huang, Brentzel, Barnett, Dumesic, Huber, Maravelias (bib8) 2017; 5
Zhang (10.1016/j.copbio.2022.102845_bib30) 2019; 14
Chae (10.1016/j.copbio.2022.102845_bib62) 2017; 47
Li (10.1016/j.copbio.2022.102845_bib28) 2021; 10
Walther (10.1016/j.copbio.2022.102845_bib31) 2017; 8
Liu (10.1016/j.copbio.2022.102845_bib3) 2021; 10
Wu (10.1016/j.copbio.2022.102845_bib6) 2022; 12
Liu (10.1016/j.copbio.2022.102845_bib17) 2013; 97
Liu (10.1016/j.copbio.2022.102845_bib44) 2015; 29
Chae (10.1016/j.copbio.2022.102845_bib14) 2018; 64
Frazao (10.1016/j.copbio.2022.102845_bib32) 2019; 9
Zhong (10.1016/j.copbio.2022.102845_bib29) 2019; 8
Grabar (10.1016/j.copbio.2022.102845_bib37) 2006; 28
Novak (10.1016/j.copbio.2022.102845_bib56) 2020; 13
David (10.1016/j.copbio.2022.102845_bib64) 2018; 115
Zhu (10.1016/j.copbio.2022.102845_sbref7) 2022; 24
Wang (10.1016/j.copbio.2022.102845_bib46) 2017; 40
Li (10.1016/j.copbio.2022.102845_bib36) 2013; 12
Jiang (10.1016/j.copbio.2022.102845_bib65) 2017; 17
Utesch (10.1016/j.copbio.2022.102845_bib67) 2019; 116
Mizobata (10.1016/j.copbio.2022.102845_bib54) 2021; 131
Salusjarvi (10.1016/j.copbio.2022.102845_bib10) 2019; 103
Kou (10.1016/j.copbio.2022.102845_sbref56) 2022; 21
Tai (10.1016/j.copbio.2022.102845_bib45) 2016; 12
Lee (10.1016/j.copbio.2022.102845_bib63) 2019; 2
Alkim (10.1016/j.copbio.2022.102845_bib20) 2015; 14
Sato (10.1016/j.copbio.2022.102845_bib34) 2021; 11
Choi (10.1016/j.copbio.2022.102845_bib1) 2014; 28
Guo (10.1016/j.copbio.2022.102845_bib40) 2022; 185
Wang (10.1016/j.copbio.2022.102845_sbref41) 2020; 117
Kataoka (10.1016/j.copbio.2022.102845_bib47) 2014; 78
Cen (10.1016/j.copbio.2022.102845_sbref57) 2021; 10
Uranukul (10.1016/j.copbio.2022.102845_bib15) 2018; 51
Rehman (10.1016/j.copbio.2022.102845_bib57) 2022; 448
Lu (10.1016/j.copbio.2022.102845_bib61) 2022; 604
Lee (10.1016/j.copbio.2022.102845_bib53) 2021; 105
Liu (10.1016/j.copbio.2022.102845_bib51) 2016; 22
Vivek (10.1016/j.copbio.2022.102845_bib5) 2021; 322
Cabulong (10.1016/j.copbio.2022.102845_bib19) 2017; 97
Kim (10.1016/j.copbio.2022.102845_bib49) 2017; 83
Nemr (10.1016/j.copbio.2022.102845_bib50) 2018; 48
Zhang (10.1016/j.copbio.2022.102845_bib4) 2017; 10
Arnaud (10.1016/j.copbio.2022.102845_bib60) 2017; 202
Yue (10.1016/j.copbio.2022.102845_bib12) 2012; 41
Pereira (10.1016/j.copbio.2022.102845_bib16) 2016; 34
Hirokawa (10.1016/j.copbio.2022.102845_bib27) 2017; 39
Pooth (10.1016/j.copbio.2022.102845_bib43) 2020; 36
Lu (10.1016/j.copbio.2022.102845_bib18) 2021; 68
Huang (10.1016/j.copbio.2022.102845_bib8) 2017; 5
Zhang (10.1016/j.copbio.2022.102845_sbref23) 2021; 65
Nakagawa (10.1016/j.copbio.2022.102845_bib9) 2012; 195
Pereira (10.1016/j.copbio.2022.102845_bib22) 2016; 113
Li (10.1016/j.copbio.2022.102845_sbref25) 2022; 70
Sun (10.1016/j.copbio.2022.102845_bib35) 2021; 105
Barton (10.1016/j.copbio.2022.102845_bib41) 2015; 42
10.1016/j.copbio.2022.102845_bib13
10.1016/j.copbio.2022.102845_bib52
Wang (10.1016/j.copbio.2022.102845_bib48) 2021; 23
Niu (10.1016/j.copbio.2022.102845_bib38) 2019; 8
Liu (10.1016/j.copbio.2022.102845_bib23) 2010; 5
Chen (10.1016/j.copbio.2022.102845_bib21) 2016; 33
Yim (10.1016/j.copbio.2022.102845_bib39) 2011; 7
Tao (10.1016/j.copbio.2022.102845_bib33) 2021; 14
Burgard (10.1016/j.copbio.2022.102845_bib11) 2016; 42
Liu (10.1016/j.copbio.2022.102845_sbref2) 2022; 13
Lee (10.1016/j.copbio.2022.102845_bib55) 2019; 12
Zhang (10.1016/j.copbio.2022.102845_bib25) 2021; 8
Kim (10.1016/j.copbio.2022.102845_bib66) 2020; 13
References_xml – volume: 33
  start-page: 12
  year: 2016
  end-page: 18
  ident: bib21
  publication-title: Metab Eng
– volume: 13
  year: 2022
  ident: bib2
  article-title: Biosynthesizing structurally diverse diols via a general route combining oxidative and reductive formations of OH-groups
  publication-title: Nat Commun
– volume: 10
  start-page: 1946
  year: 2021
  end-page: 1955
  ident: bib3
  publication-title: ACS Synth Biol
– volume: 113
  start-page: 376
  year: 2016
  end-page: 383
  ident: bib22
  publication-title: Biotechnol Bioeng
– volume: 8
  year: 2021
  ident: bib25
  publication-title: Bioresour Bioprocess
– volume: 64
  start-page: 4193
  year: 2018
  end-page: 4200
  ident: bib14
  publication-title: AICHE J
– volume: 9
  year: 2019
  ident: bib32
  article-title: Construction of a synthetic pathway for the production of 1,3-propanediol from glucose
  publication-title: Sci Rep
– volume: 10
  start-page: 478
  year: 2021
  end-page: 486
  ident: bib28
  article-title: Efficient production of 1,3-propanediol from diverse carbohydrates via a non-natural pathway using 3–hydroxypropionic acid as an intermediate
  publication-title: ACS Synth Biol
– volume: 14
  year: 2021
  ident: bib33
  article-title: A comprehensive review on microbial production of 1,2-propanediol: micro-organisms, metabolic pathways, and metabolic engineering
  publication-title: Biotechnol Biofuels
– volume: 5
  start-page: 4699
  year: 2017
  end-page: 4706
  ident: bib8
  article-title: Conversion of furfural to 1,5-pentanediol: Process synthesis and analysis
  publication-title: ACS Sustain Chem Eng
– volume: 34
  start-page: 80
  year: 2016
  end-page: 87
  ident: bib16
  article-title: Efficient utilization of pentoses for bioproduction of the renewable two-carbon compounds ethylene glycol and glycolate
  publication-title: Metab Eng
– volume: 65
  start-page: 52
  year: 2021
  end-page: 65
  ident: bib24
  publication-title: Metab Eng
– volume: 10
  year: 2017
  ident: bib4
  article-title: Production of C2–C4 diols from renewable bioresources: new metabolic pathways and metabolic engineering strategies
  publication-title: Biotechnol Biofuels
– volume: 36
  year: 2020
  ident: bib43
  publication-title: Biotechnol Prog
– volume: 8
  year: 2019
  ident: bib38
  publication-title: Metab Eng Commun
– volume: 105
  start-page: 5751
  year: 2021
  end-page: 5767
  ident: bib53
  article-title: Metabolic engineering of non-pathogenic microorganisms for 2,3-butanediol production
  publication-title: Appl Microbiol Biotechnol
– volume: 10
  start-page: 192
  year: 2021
  end-page: 203
  ident: bib59
  article-title: Metabolic engineering of
  publication-title: ACS Synth Biol
– volume: 448
  year: 2022
  ident: bib57
  publication-title: Chem Eng J
– volume: 12
  year: 2013
  ident: bib36
  publication-title: Micro Cell Fact
– volume: 17
  start-page: 635
  year: 2017
  end-page: 644
  ident: bib65
  article-title: High tolerance to glycerol and high production of 1,3-propanediol in batch fermentations by microbial consortium from marine sludge
  publication-title: Eng Life Sci
– volume: 8
  start-page: 587
  year: 2019
  end-page: 595
  ident: bib29
  publication-title: ACS Synth Biol
– volume: 23
  start-page: 8694
  year: 2021
  end-page: 8706
  ident: bib48
  publication-title: Green Chem
– volume: 5
  start-page: 1137
  year: 2010
  end-page: 1148
  ident: bib23
  article-title: 1,3-Propanediol and its copolymers: research, development and industrialization
  publication-title: Biotechnol J
– volume: 117
  start-page: 19159
  year: 2020
  end-page: 19167
  ident: bib42
  article-title: Bacterial synthesis of C3-C5 diols via extending amino acid catabolism
  publication-title: Proc Natl Acad Sci USA
– volume: 12
  year: 2022
  ident: bib6
  publication-title: Biomolecules
– volume: 8
  year: 2017
  ident: bib31
  article-title: Construction of a synthetic metabolic pathway for biosynthesis of the non-natural methionine precursor 2,4-dihydroxybutyric acid
  publication-title: Nat Commun
– volume: 322
  year: 2021
  ident: bib5
  article-title: Recent advances in microbial biosynthesis of C3-C5 diols: Genetics and process engineering approaches
  publication-title: Bioresour Technol
– volume: 47
  start-page: 67
  year: 2017
  end-page: 82
  ident: bib62
  article-title: Recent advances in systems metabolic engineering tools and strategies
  publication-title: Curr Opin Biotechnol
– reference: , accessed 14 Jun 2022.
– volume: 14
  year: 2015
  ident: bib20
  publication-title: Micro Cell Fact
– volume: 70
  start-page: 79
  year: 2022
  end-page: 88
  ident: bib26
  publication-title: Metab Eng
– volume: 39
  start-page: 192
  year: 2017
  end-page: 199
  ident: bib27
  publication-title: Metab Eng
– volume: 97
  start-page: 11
  year: 2017
  end-page: 20
  ident: bib19
  publication-title: Enzym Micro Technol
– volume: 42
  start-page: 118
  year: 2016
  end-page: 125
  ident: bib11
  article-title: Development of a commercial scale process for production of 1,4-butanediol from sugar
  publication-title: Curr Opin Biotechnol
– volume: 21
  year: 2022
  ident: bib58
  publication-title: Micro Cell Fact
– volume: 51
  start-page: 20
  year: 2018
  end-page: 31
  ident: bib15
  publication-title: Metab Eng
– volume: 12
  start-page: 247
  year: 2016
  end-page: 253
  ident: bib45
  article-title: Engineering nonphosphorylative metabolism to generate lignocellulose-derived products
  publication-title: Nat Chem Biol
– volume: 131
  start-page: 283
  year: 2021
  end-page: 289
  ident: bib54
  publication-title: J Biosci Bioeng
– volume: 14
  year: 2019
  ident: bib30
  article-title: Engineering of phosphoserine aminotransferase increases the conversion of L-homoserine to 4-hydroxy-2-ketobutyrate in a glycerol-independent pathway of 1,3-propanediol production from glucose
  publication-title: Biotechnol J
– volume: 11
  year: 2021
  ident: bib34
  publication-title: AMB Express
– volume: 48
  start-page: 13
  year: 2018
  end-page: 24
  ident: bib50
  publication-title: Metab Eng
– volume: 83
  year: 2017
  ident: bib49
  article-title: Novel Aldo-Keto reductases for the biocatalytic conversion of 3-hydroxybutanal to 1,3-butanediol: Structural and biochemical studies
  publication-title: Appl Environ Microbiol
– volume: 185
  year: 2022
  ident: bib40
  article-title: Advances in research on the bio-production of 1,4-butanediol by the engineered microbes
  publication-title: Biochem Eng J
– volume: 22
  start-page: 12290
  year: 2016
  end-page: 12294
  ident: bib51
  article-title: One-step production of 1,3-butadiene from 2,3-butanediol dehydration
  publication-title: Chem-Eur J
– volume: 2
  start-page: 18
  year: 2019
  end-page: 33
  ident: bib63
  article-title: A comprehensive metabolic map for production of bio-based chemicals
  publication-title: Nat Catal
– reference: L. Fernandez, Global monoethylene glycol market volume 2015-2029,
– volume: 105
  start-page: 9003
  year: 2021
  end-page: 9016
  ident: bib35
  publication-title: Appl Microbiol Biotechnol
– volume: 28
  start-page: 223
  year: 2014
  end-page: 239
  ident: bib1
  article-title: Biorefineries for the production of top building block chemicals and their derivatives
  publication-title: Metab Eng
– volume: 41
  start-page: 4218
  year: 2012
  end-page: 4244
  ident: bib12
  article-title: Ethylene glycol: properties, synthesis, and applications
  publication-title: Chem Soc Rev
– volume: 24
  start-page: 1390
  year: 2022
  end-page: 1403
  ident: bib7
  article-title: Recent advances in biological production of 1,3-propanediol: new routes and engineering strategies
  publication-title: Green Chem
– volume: 12
  year: 2019
  ident: bib55
  publication-title: Biotechnol Biofuels
– volume: 68
  start-page: 744
  year: 2021
  end-page: 755
  ident: bib18
  publication-title: Biotechnol Appl Biochem
– volume: 29
  start-page: 135
  year: 2015
  end-page: 141
  ident: bib44
  publication-title: Metab Eng
– volume: 40
  start-page: 148
  year: 2017
  end-page: 156
  ident: bib46
  article-title: Rational engineering of diol dehydratase enables 1,4-butanediol biosynthesis from xylose
  publication-title: Metab Eng
– volume: 103
  start-page: 2525
  year: 2019
  end-page: 2535
  ident: bib10
  article-title: Biotechnological production of glycolic acid and ethylene glycol: current state and perspectives
  publication-title: Appl Microbiol Biotechnol
– volume: 78
  start-page: 695
  year: 2014
  end-page: 700
  ident: bib47
  publication-title: Biosci Biotechnol Biochem
– volume: 97
  start-page: 3409
  year: 2013
  end-page: 3417
  ident: bib17
  publication-title: Appl Microbiol Biotechnol
– volume: 195
  start-page: 136
  year: 2012
  end-page: 143
  ident: bib9
  article-title: Production of 1,5-pentanediol from biomass via furfural and tetrahydrofurfuryl alcohol
  publication-title: Catal Today
– volume: 13
  year: 2020
  ident: bib56
  publication-title: Biotechnol Biofuels
– volume: 604
  start-page: 662
  year: 2022
  end-page: 667
  ident: bib61
  article-title: Machine learning-aided engineering of hydrolases for PET depolymerization
  publication-title: Nature
– volume: 28
  start-page: 1527
  year: 2006
  end-page: 1535
  ident: bib37
  publication-title: Biotechnol Lett
– volume: 202
  start-page: 61
  year: 2017
  end-page: 77
  ident: bib60
  article-title: New bio-based monomers: tuneable polyester properties using branched diols from biomass
  publication-title: Faraday Discuss
– volume: 116
  start-page: 1627
  year: 2019
  end-page: 1643
  ident: bib67
  publication-title: Biotechnol Bioeng
– volume: 13
  start-page: 564
  year: 2020
  end-page: 573
  ident: bib66
  publication-title: Chemsuschem
– reference: H. S. Baek, B. Y. Woo, S. J. Yoo, Y. H. Joo, S. S. Shin, M. H. Oh, J. H. Lee, and S. Y. Kim, Composition containing meso-2,3-butanediol, Patent US 10525017, 2020.
– volume: 42
  start-page: 349
  year: 2015
  end-page: 360
  ident: bib41
  article-title: An integrated biotechnology platform for developing sustainable chemical processes
  publication-title: J Ind Microbiol Biotechnol
– volume: 7
  start-page: 445
  year: 2011
  end-page: 452
  ident: bib39
  publication-title: Nat Chem Biol
– volume: 115
  start-page: 300
  year: 2018
  end-page: 311
  ident: bib64
  publication-title: Biotechnol Bioeng
– volume: 185
  year: 2022
  ident: 10.1016/j.copbio.2022.102845_bib40
  article-title: Advances in research on the bio-production of 1,4-butanediol by the engineered microbes
  publication-title: Biochem Eng J
  doi: 10.1016/j.bej.2022.108478
– volume: 17
  start-page: 635
  year: 2017
  ident: 10.1016/j.copbio.2022.102845_bib65
  article-title: High tolerance to glycerol and high production of 1,3-propanediol in batch fermentations by microbial consortium from marine sludge
  publication-title: Eng Life Sci
  doi: 10.1002/elsc.201600215
– volume: 11
  year: 2021
  ident: 10.1016/j.copbio.2022.102845_bib34
  article-title: Production of R- and S-1,2-propanediol in engineered Lactococcus lactis
  publication-title: AMB Express
  doi: 10.1186/s13568-021-01276-8
– volume: 8
  year: 2017
  ident: 10.1016/j.copbio.2022.102845_bib31
  article-title: Construction of a synthetic metabolic pathway for biosynthesis of the non-natural methionine precursor 2,4-dihydroxybutyric acid
  publication-title: Nat Commun
  doi: 10.1038/ncomms15828
– volume: 131
  start-page: 283
  year: 2021
  ident: 10.1016/j.copbio.2022.102845_bib54
  article-title: Improvement of 2,3-butanediol tolerance in Saccharomyces cerevisiae by using a novel mutagenesis strategy
  publication-title: J Biosci Bioeng
  doi: 10.1016/j.jbiosc.2020.11.004
– volume: 83
  year: 2017
  ident: 10.1016/j.copbio.2022.102845_bib49
  article-title: Novel Aldo-Keto reductases for the biocatalytic conversion of 3-hydroxybutanal to 1,3-butanediol: Structural and biochemical studies
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.03172-16
– volume: 8
  year: 2021
  ident: 10.1016/j.copbio.2022.102845_bib25
  article-title: Development of a plasmid stabilization system in Vibrio natriegens for the high production of 1,3-propanediol and 3-hydroxypropionate
  publication-title: Bioresour Bioprocess
  doi: 10.1186/s40643-021-00485-0
– volume: 64
  start-page: 4193
  year: 2018
  ident: 10.1016/j.copbio.2022.102845_bib14
  article-title: Production of ethylene glycol from xylose by metabolically engineered Escherichia coli
  publication-title: AICHE J
  doi: 10.1002/aic.16339
– volume: 117
  start-page: 19159
  year: 2020
  ident: 10.1016/j.copbio.2022.102845_sbref41
  article-title: Bacterial synthesis of C3-C5 diols via extending amino acid catabolism
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.2003032117
– volume: 13
  year: 2020
  ident: 10.1016/j.copbio.2022.102845_bib56
  article-title: Microbial upgrading of acetate into 2,3-butanediol and acetoin by E. coli W
  publication-title: Biotechnol Biofuels
  doi: 10.1186/s13068-020-01816-7
– volume: 604
  start-page: 662
  year: 2022
  ident: 10.1016/j.copbio.2022.102845_bib61
  article-title: Machine learning-aided engineering of hydrolases for PET depolymerization
  publication-title: Nature
  doi: 10.1038/s41586-022-04599-z
– volume: 29
  start-page: 135
  year: 2015
  ident: 10.1016/j.copbio.2022.102845_bib44
  article-title: Autonomous production of 1,4-butanediol via a de novo biosynthesis pathway in engineered Escherichia coli
  publication-title: Metab Eng
  doi: 10.1016/j.ymben.2015.03.009
– volume: 10
  start-page: 1946
  year: 2021
  ident: 10.1016/j.copbio.2022.102845_bib3
  article-title: Metabolic engineering of Escherichia coli for high-yield production of (R)-1,3-butanediol
  publication-title: ACS Synth Biol
  doi: 10.1021/acssynbio.1c00144
– volume: 9
  year: 2019
  ident: 10.1016/j.copbio.2022.102845_bib32
  article-title: Construction of a synthetic pathway for the production of 1,3-propanediol from glucose
  publication-title: Sci Rep
  doi: 10.1038/s41598-019-48091-7
– volume: 10
  year: 2017
  ident: 10.1016/j.copbio.2022.102845_bib4
  article-title: Production of C2–C4 diols from renewable bioresources: new metabolic pathways and metabolic engineering strategies
  publication-title: Biotechnol Biofuels
  doi: 10.1186/s13068-017-0992-9
– volume: 448
  year: 2022
  ident: 10.1016/j.copbio.2022.102845_bib57
  article-title: Genomic insights to facilitate the construction of a high-xylose-utilization Enterococcus faecalis OPS2 for 2,3-BDO production
  publication-title: Chem Eng J
  doi: 10.1016/j.cej.2022.137617
– volume: 33
  start-page: 12
  year: 2016
  ident: 10.1016/j.copbio.2022.102845_bib21
  article-title: Metabolic engineering of Corynebacterium glutamicum for the de novo production of ethylene glycol from glucose
  publication-title: Metab Eng
  doi: 10.1016/j.ymben.2015.10.013
– volume: 70
  start-page: 79
  year: 2022
  ident: 10.1016/j.copbio.2022.102845_sbref25
  article-title: Systems metabolic engineering of Corynebacterium glutamicum for high-level production of 1,3-propanediol from glucose and xylose
  publication-title: Metab Eng
  doi: 10.1016/j.ymben.2022.01.006
– volume: 12
  year: 2019
  ident: 10.1016/j.copbio.2022.102845_bib55
  article-title: Production of 2,3-butanediol from glucose and cassava hydrolysates by metabolically engineered industrial polyploid Saccharomyces cerevisiae
  publication-title: Biotechnol Biofuels
  doi: 10.1186/s13068-019-1545-1
– volume: 21
  year: 2022
  ident: 10.1016/j.copbio.2022.102845_sbref56
  article-title: Metabolic engineering of Corynebacterium glutamicum for efficient production of optically pure (2R,3R)-2,3-butanediol
  publication-title: Micro Cell Fact
  doi: 10.1186/s12934-022-01875-5
– volume: 13
  start-page: 564
  year: 2020
  ident: 10.1016/j.copbio.2022.102845_bib66
  article-title: Small current but highly productive synthesis of 1,3-Propanediol from clycerol by an electrode-driven metabolic shift in Klebsiella pneumoniae L17
  publication-title: Chemsuschem
  doi: 10.1002/cssc.201902928
– volume: 5
  start-page: 1137
  year: 2010
  ident: 10.1016/j.copbio.2022.102845_bib23
  article-title: 1,3-Propanediol and its copolymers: research, development and industrialization
  publication-title: Biotechnol J
  doi: 10.1002/biot.201000140
– volume: 202
  start-page: 61
  year: 2017
  ident: 10.1016/j.copbio.2022.102845_bib60
  article-title: New bio-based monomers: tuneable polyester properties using branched diols from biomass
  publication-title: Faraday Discuss
  doi: 10.1039/C7FD00057J
– volume: 8
  start-page: 587
  year: 2019
  ident: 10.1016/j.copbio.2022.102845_bib29
  article-title: Metabolic engineering of a homoserine-derived non-natural pathway for the de novo production of 1,3-propanediol from glucose
  publication-title: ACS Synth Biol
  doi: 10.1021/acssynbio.9b00003
– volume: 68
  start-page: 744
  year: 2021
  ident: 10.1016/j.copbio.2022.102845_bib18
  article-title: Ethylene glycol and glycolic acid production by wild-type Escherichia coli
  publication-title: Biotechnol Appl Biochem
  doi: 10.1002/bab.1987
– ident: 10.1016/j.copbio.2022.102845_bib13
– volume: 14
  year: 2021
  ident: 10.1016/j.copbio.2022.102845_bib33
  article-title: A comprehensive review on microbial production of 1,2-propanediol: micro-organisms, metabolic pathways, and metabolic engineering
  publication-title: Biotechnol Biofuels
  doi: 10.1186/s13068-021-02067-w
– volume: 115
  start-page: 300
  year: 2018
  ident: 10.1016/j.copbio.2022.102845_bib64
  article-title: Production of 1,2-propanediol in photoautotrophic Synechocystis is linked to glycogen turn-over
  publication-title: Biotechnol Bioeng
  doi: 10.1002/bit.26468
– volume: 116
  start-page: 1627
  year: 2019
  ident: 10.1016/j.copbio.2022.102845_bib67
  article-title: Enhanced electron transfer of different mediators for strictly opposite shifting of metabolism in Clostridium pasteurianum grown on glycerol in a new electrochemical bioreactor
  publication-title: Biotechnol Bioeng
  doi: 10.1002/bit.26963
– volume: 97
  start-page: 11
  year: 2017
  ident: 10.1016/j.copbio.2022.102845_bib19
  article-title: Enhanced yield of ethylene glycol production from D-xylose by pathway optimization in Escherichia coli
  publication-title: Enzym Micro Technol
  doi: 10.1016/j.enzmictec.2016.10.020
– volume: 195
  start-page: 136
  year: 2012
  ident: 10.1016/j.copbio.2022.102845_bib9
  article-title: Production of 1,5-pentanediol from biomass via furfural and tetrahydrofurfuryl alcohol
  publication-title: Catal Today
  doi: 10.1016/j.cattod.2012.04.048
– volume: 42
  start-page: 349
  year: 2015
  ident: 10.1016/j.copbio.2022.102845_bib41
  article-title: An integrated biotechnology platform for developing sustainable chemical processes
  publication-title: J Ind Microbiol Biotechnol
  doi: 10.1007/s10295-014-1541-1
– volume: 105
  start-page: 5751
  year: 2021
  ident: 10.1016/j.copbio.2022.102845_bib53
  article-title: Metabolic engineering of non-pathogenic microorganisms for 2,3-butanediol production
  publication-title: Appl Microbiol Biotechnol
  doi: 10.1007/s00253-021-11436-2
– volume: 34
  start-page: 80
  year: 2016
  ident: 10.1016/j.copbio.2022.102845_bib16
  article-title: Efficient utilization of pentoses for bioproduction of the renewable two-carbon compounds ethylene glycol and glycolate
  publication-title: Metab Eng
  doi: 10.1016/j.ymben.2015.12.004
– volume: 78
  start-page: 695
  year: 2014
  ident: 10.1016/j.copbio.2022.102845_bib47
  article-title: Enhancement of (R)-1,3-butanediol production by engineered Escherichia coli using a bioreactor system with strict regulation of overall oxygen transfer coefficient and pH
  publication-title: Biosci Biotechnol Biochem
  doi: 10.1080/09168451.2014.891933
– volume: 113
  start-page: 376
  year: 2016
  ident: 10.1016/j.copbio.2022.102845_bib22
  article-title: Engineering a novel biosynthetic pathway in Escherichia coli. for production of renewable ethylene glycol
  publication-title: Biotechnol Bioeng
  doi: 10.1002/bit.25717
– volume: 14
  year: 2015
  ident: 10.1016/j.copbio.2022.102845_bib20
  article-title: Optimization of ethylene glycol production from (D)-xylose via a synthetic pathway implemented in Escherichia coli
  publication-title: Micro Cell Fact
  doi: 10.1186/s12934-015-0312-7
– volume: 28
  start-page: 223
  year: 2014
  ident: 10.1016/j.copbio.2022.102845_bib1
  article-title: Biorefineries for the production of top building block chemicals and their derivatives
  publication-title: Metab Eng
  doi: 10.1016/j.ymben.2014.12.007
– volume: 10
  start-page: 192
  year: 2021
  ident: 10.1016/j.copbio.2022.102845_sbref57
  article-title: Metabolic engineering of Escherichia coli for de novo production of 1,5-pentanediol from glucose
  publication-title: ACS Synth Biol
  doi: 10.1021/acssynbio.0c00567
– volume: 28
  start-page: 1527
  year: 2006
  ident: 10.1016/j.copbio.2022.102845_bib37
  article-title: Methylglyoxal bypass identified as source of chiral contamination in L(+) and D(-)-lactate fermentations by recombinant Escherichia coli
  publication-title: Biotechnol Lett
  doi: 10.1007/s10529-006-9122-7
– volume: 8
  year: 2019
  ident: 10.1016/j.copbio.2022.102845_bib38
  article-title: Metabolic engineering of Escherichia coli for the de novo stereospecific biosynthesis of 1,2-propanediol through lactic acid
  publication-title: Metab Eng Commun
  doi: 10.1016/j.mec.2018.e00082
– volume: 12
  start-page: 247
  year: 2016
  ident: 10.1016/j.copbio.2022.102845_bib45
  article-title: Engineering nonphosphorylative metabolism to generate lignocellulose-derived products
  publication-title: Nat Chem Biol
  doi: 10.1038/nchembio.2020
– volume: 65
  start-page: 52
  year: 2021
  ident: 10.1016/j.copbio.2022.102845_sbref23
  article-title: Systems metabolic engineering of Vibrio natriegens for the production of 1,3-propanediol
  publication-title: Metab Eng
  doi: 10.1016/j.ymben.2021.03.008
– volume: 7
  start-page: 445
  year: 2011
  ident: 10.1016/j.copbio.2022.102845_bib39
  article-title: Metabolic engineering of Escherichia coli for direct production of 1,4-butanediol
  publication-title: Nat Chem Biol
  doi: 10.1038/nchembio.580
– volume: 47
  start-page: 67
  year: 2017
  ident: 10.1016/j.copbio.2022.102845_bib62
  article-title: Recent advances in systems metabolic engineering tools and strategies
  publication-title: Curr Opin Biotechnol
  doi: 10.1016/j.copbio.2017.06.007
– volume: 24
  start-page: 1390
  year: 2022
  ident: 10.1016/j.copbio.2022.102845_sbref7
  article-title: Recent advances in biological production of 1,3-propanediol: new routes and engineering strategies
  publication-title: Green Chem
  doi: 10.1039/D1GC04288B
– volume: 12
  year: 2013
  ident: 10.1016/j.copbio.2022.102845_bib36
  article-title: Engineering a cyanobacterium as the catalyst for the photosynthetic conversion of CO2 to 1,2-propanediol
  publication-title: Micro Cell Fact
  doi: 10.1186/1475-2859-12-4
– ident: 10.1016/j.copbio.2022.102845_bib52
– volume: 14
  year: 2019
  ident: 10.1016/j.copbio.2022.102845_bib30
  article-title: Engineering of phosphoserine aminotransferase increases the conversion of L-homoserine to 4-hydroxy-2-ketobutyrate in a glycerol-independent pathway of 1,3-propanediol production from glucose
  publication-title: Biotechnol J
  doi: 10.1002/biot.201900003
– volume: 51
  start-page: 20
  year: 2018
  ident: 10.1016/j.copbio.2022.102845_bib15
  article-title: Biosynthesis of monoethylene glycol in Saccharomyces cerevisiae utilizing native glycolytic enzymes
  publication-title: Metab Eng
  doi: 10.1016/j.ymben.2018.09.012
– volume: 5
  start-page: 4699
  year: 2017
  ident: 10.1016/j.copbio.2022.102845_bib8
  article-title: Conversion of furfural to 1,5-pentanediol: Process synthesis and analysis
  publication-title: ACS Sustain Chem Eng
  doi: 10.1021/acssuschemeng.7b00059
– volume: 13
  year: 2022
  ident: 10.1016/j.copbio.2022.102845_sbref2
  article-title: Biosynthesizing structurally diverse diols via a general route combining oxidative and reductive formations of OH-groups
  publication-title: Nat Commun
– volume: 42
  start-page: 118
  year: 2016
  ident: 10.1016/j.copbio.2022.102845_bib11
  article-title: Development of a commercial scale process for production of 1,4-butanediol from sugar
  publication-title: Curr Opin Biotechnol
  doi: 10.1016/j.copbio.2016.04.016
– volume: 41
  start-page: 4218
  year: 2012
  ident: 10.1016/j.copbio.2022.102845_bib12
  article-title: Ethylene glycol: properties, synthesis, and applications
  publication-title: Chem Soc Rev
  doi: 10.1039/c2cs15359a
– volume: 322
  year: 2021
  ident: 10.1016/j.copbio.2022.102845_bib5
  article-title: Recent advances in microbial biosynthesis of C3-C5 diols: Genetics and process engineering approaches
  publication-title: Bioresour Technol
  doi: 10.1016/j.biortech.2020.124527
– volume: 97
  start-page: 3409
  year: 2013
  ident: 10.1016/j.copbio.2022.102845_bib17
  article-title: Biosynthesis of ethylene glycol in Escherichia coli
  publication-title: Appl Microbiol Biotechnol
  doi: 10.1007/s00253-012-4618-7
– volume: 39
  start-page: 192
  year: 2017
  ident: 10.1016/j.copbio.2022.102845_bib27
  article-title: Improvement of 1,3-propanediol production using an engineered cyanobacterium, Synechococcus elongatus by optimization of the gene expression level of a synthetic metabolic pathway and production conditions
  publication-title: Metab Eng
  doi: 10.1016/j.ymben.2016.12.001
– volume: 10
  start-page: 478
  year: 2021
  ident: 10.1016/j.copbio.2022.102845_bib28
  article-title: Efficient production of 1,3-propanediol from diverse carbohydrates via a non-natural pathway using 3–hydroxypropionic acid as an intermediate
  publication-title: ACS Synth Biol
  doi: 10.1021/acssynbio.0c00486
– volume: 103
  start-page: 2525
  year: 2019
  ident: 10.1016/j.copbio.2022.102845_bib10
  article-title: Biotechnological production of glycolic acid and ethylene glycol: current state and perspectives
  publication-title: Appl Microbiol Biotechnol
  doi: 10.1007/s00253-019-09640-2
– volume: 23
  start-page: 8694
  year: 2021
  ident: 10.1016/j.copbio.2022.102845_bib48
  article-title: Tunable hybrid carbon metabolism coordination for the carbon-efficient biosynthesis of 1,3-butanediol in Escherichia coli
  publication-title: Green Chem
  doi: 10.1039/D1GC02867G
– volume: 105
  start-page: 9003
  year: 2021
  ident: 10.1016/j.copbio.2022.102845_bib35
  article-title: 1,2-Propanediol production from glycerol via an endogenous pathway of Klebsiella pneumoniae
  publication-title: Appl Microbiol Biotechnol
  doi: 10.1007/s00253-021-11652-w
– volume: 22
  start-page: 12290
  year: 2016
  ident: 10.1016/j.copbio.2022.102845_bib51
  article-title: One-step production of 1,3-butadiene from 2,3-butanediol dehydration
  publication-title: Chem-Eur J
  doi: 10.1002/chem.201602390
– volume: 36
  year: 2020
  ident: 10.1016/j.copbio.2022.102845_bib43
  article-title: Comprehensive analysis of metabolic sensitivity of 1,4-butanediol producing Escherichia coli toward substrate and oxygen availability
  publication-title: Biotechnol Prog
  doi: 10.1002/btpr.2917
– volume: 48
  start-page: 13
  year: 2018
  ident: 10.1016/j.copbio.2022.102845_bib50
  article-title: Engineering a short, aldolase-based pathway for (R)-1,3-butanediol production in Escherichia coli
  publication-title: Metab Eng
  doi: 10.1016/j.ymben.2018.04.013
– volume: 40
  start-page: 148
  year: 2017
  ident: 10.1016/j.copbio.2022.102845_bib46
  article-title: Rational engineering of diol dehydratase enables 1,4-butanediol biosynthesis from xylose
  publication-title: Metab Eng
  doi: 10.1016/j.ymben.2017.02.003
– volume: 2
  start-page: 18
  year: 2019
  ident: 10.1016/j.copbio.2022.102845_bib63
  article-title: A comprehensive metabolic map for production of bio-based chemicals
  publication-title: Nat Catal
  doi: 10.1038/s41929-018-0212-4
– volume: 12
  year: 2022
  ident: 10.1016/j.copbio.2022.102845_bib6
  article-title: Metabolic engineering and regulation of diol biosynthesis from renewable biomass in Escherichia coli
  publication-title: Biomolecules
  doi: 10.3390/biom12050715
SSID ssj0005370
Score 2.4471328
SecondaryResourceType review_article
Snippet Diols are important bulk chemicals that are widely used in polymer, cosmetics, fuel, food, and pharmaceutical industries. The development of bioprocess to...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 102845
SubjectTerms Biosynthetic Pathways
Butylene Glycols - metabolism
Metabolic Engineering
Title New pathways and metabolic engineering strategies for microbial synthesis of diols
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0958166922001793
https://dx.doi.org/10.1016/j.copbio.2022.102845
https://www.ncbi.nlm.nih.gov/pubmed/36403537
https://www.proquest.com/docview/2738491050
Volume 78
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6iFz2Ib9cXEbzG7TZJH8dlUVZFDz7AW0iTFCpru9iKePG3O9PHqqAoHltm-piZTr40800IOTJear3QJkwCdmUitpJpQKXMT4xwuAQpIuQOX14F4ztxfi_v58io48JgWWWb-5ucXmfr9ky_tWZ_mmX9GwAHuOgV-1gWBGGGDHYRYpQfv30q8-D1hnEozFC6o8_VNV6mmCYZUgB9H3sYREhq-n54-gl-1sPQ6QpZbvEjHTaPuErmXL5Glj51FVwn15C4KO40_KJfS6pzSx9dBb6eZIa6D0FaVl2bCArIlT5mdU8muHj5mgMsLLOSFim1WTEpN8jd6cntaMzarROYEdGgYsaKVHvaYr8uCZgpjGwCEweeuIhbPXCx862NXaiDWKZGphocFDvOAa-ZwFnNN8l8XuRum1A7qH-UhomnU5jLhVrGHjc2SIRMQdL0CO8spkzbVxy3t5ioroDsQTV2Vmhn1di5R9hMa9r01fhFXnbOUB1nFLKcgsT_i1440_sSV3_QPOx8ruCTw3UUnbviuVTIZhIAs6TXI1tNMMzegQfC4xBzO_--7y5ZxKOmZGaPzFdPz24fgE-VHNSRfUAWhmcX46t3gpIC1g
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOiDfbQnElOJrNxnYehx4QtNrSxwFaqTfj2I4UtE1WTapqL_wp_iAzeSyt1KoIqdfE49jj8fhz5gXw3ga5C2KXcYXYlcvUKW4QlfIws9KTCVImFDt8cBhNj-XXE3WyAr-HWBhyq-x1f6fTW23dPxn33BzPi2L8HcEBGb3SkNyCUMx6z8o9v7jAe1u9tfsFF_lDGO5sH32e8r60ALcymTTcOpmbwDjKZ6UQU8SJyxBYi8wnwpmJT33oXOpjE6Uqtyo3OIHUC4F4xkbeGYH93oP7SJtQ2YSPvy75lYi2Qh2NjtPwhni91qnMVvOsoJjDMKSkCQlFUV1_Ht6Ed9tzb-cJPO4BK_vU8eQprPjyGTy6lMbwOXxDTcmotPGFWdTMlI6d-gaFa1ZY5v82ZHUz5KVgCJXZadEmgcLO60WJOLQualblzBXVrH4Bx3fC0JewWlalfw3MTdo_s3EWmBwvj7FRaSCsizKpcmxpRyAGjmnbJzKnehozPXis_dQdnzXxWXd8HgFfUs27RB63tFfDYughSBXVqsaT5ha6eEl3RZD_gXJzWHONe5wMN6b01XmtKXxKIq5TwQhedcKwnIOIZCBQ5tb--7vv4MH06GBf7-8e7q3DQ3rT-eu8gdXm7Ny_RdTVZButlDP4cdfb6g_mAT_g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=New+pathways+and+metabolic+engineering+strategies+for+microbial+synthesis+of+diols&rft.jtitle=Current+opinion+in+biotechnology&rft.au=Cen%2C+Xuecong&rft.au=Dong%2C+Yang&rft.au=Liu%2C+Dehua&rft.au=Chen%2C+Zhen&rft.date=2022-12-01&rft.issn=1879-0429&rft.eissn=1879-0429&rft.volume=78&rft.spage=102845&rft_id=info:doi/10.1016%2Fj.copbio.2022.102845&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0958-1669&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0958-1669&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0958-1669&client=summon