New pathways and metabolic engineering strategies for microbial synthesis of diols
Diols are important bulk chemicals that are widely used in polymer, cosmetics, fuel, food, and pharmaceutical industries. The development of bioprocess to produce diols from renewable feedstocks has gained much interest in recent years and is contributing to reducing the carbon footprint of the chem...
Saved in:
Published in | Current opinion in biotechnology Vol. 78; p. 102845 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
01.12.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Diols are important bulk chemicals that are widely used in polymer, cosmetics, fuel, food, and pharmaceutical industries. The development of bioprocess to produce diols from renewable feedstocks has gained much interest in recent years and is contributing to reducing the carbon footprint of the chemical industry. Although bioproduction of some natural diols such as 1,3-propanediol and 2,3-butanediol has been commercialized, microbial production of most other diols is still challenging due to the lack of natural biosynthetic pathways. This review describes the recent efforts in the development of novel synthetic pathways and metabolic engineering strategies for the biological production of C2∼C5 diols. We also discussed the main challenges and future perspectives for the microbial processes toward industrial application.
[Display omitted]
●Advances in the biological production of important C2–C5 diols are reviewed.●Recent advances in synthetic biology enable the construction of non-natural pathways.●Systems' metabolic engineering accelerates the development of diols' bioproduction. |
---|---|
AbstractList | Diols are important bulk chemicals that are widely used in polymer, cosmetics, fuel, food, and pharmaceutical industries. The development of bioprocess to produce diols from renewable feedstocks has gained much interest in recent years and is contributing to reducing the carbon footprint of the chemical industry. Although bioproduction of some natural diols such as 1,3-propanediol and 2,3-butanediol has been commercialized, microbial production of most other diols is still challenging due to the lack of natural biosynthetic pathways. This review describes the recent efforts in the development of novel synthetic pathways and metabolic engineering strategies for the biological production of C2∼C5 diols. We also discussed the main challenges and future perspectives for the microbial processes toward industrial application.
[Display omitted]
●Advances in the biological production of important C2–C5 diols are reviewed.●Recent advances in synthetic biology enable the construction of non-natural pathways.●Systems' metabolic engineering accelerates the development of diols' bioproduction. Diols are important bulk chemicals that are widely used in polymer, cosmetics, fuel, food, and pharmaceutical industries. The development of bioprocess to produce diols from renewable feedstocks has gained much interest in recent years and is contributing to reducing the carbon footprint of the chemical industry. Although bioproduction of some natural diols such as 1,3-propanediol and 2,3-butanediol has been commercialized, microbial production of most other diols is still challenging due to the lack of natural biosynthetic pathways. This review describes the recent efforts in the development of novel synthetic pathways and metabolic engineering strategies for the biological production of C2∼C5 diols. We also discussed the main challenges and future perspectives for the microbial processes toward industrial application.Diols are important bulk chemicals that are widely used in polymer, cosmetics, fuel, food, and pharmaceutical industries. The development of bioprocess to produce diols from renewable feedstocks has gained much interest in recent years and is contributing to reducing the carbon footprint of the chemical industry. Although bioproduction of some natural diols such as 1,3-propanediol and 2,3-butanediol has been commercialized, microbial production of most other diols is still challenging due to the lack of natural biosynthetic pathways. This review describes the recent efforts in the development of novel synthetic pathways and metabolic engineering strategies for the biological production of C2∼C5 diols. We also discussed the main challenges and future perspectives for the microbial processes toward industrial application. Diols are important bulk chemicals that are widely used in polymer, cosmetics, fuel, food, and pharmaceutical industries. The development of bioprocess to produce diols from renewable feedstocks has gained much interest in recent years and is contributing to reducing the carbon footprint of the chemical industry. Although bioproduction of some natural diols such as 1,3-propanediol and 2,3-butanediol has been commercialized, microbial production of most other diols is still challenging due to the lack of natural biosynthetic pathways. This review describes the recent efforts in the development of novel synthetic pathways and metabolic engineering strategies for the biological production of C2∼C5 diols. We also discussed the main challenges and future perspectives for the microbial processes toward industrial application. |
ArticleNumber | 102845 |
Author | Dong, Yang Cen, Xuecong Liu, Dehua Chen, Zhen |
Author_xml | – sequence: 1 givenname: Xuecong surname: Cen fullname: Cen, Xuecong organization: Key Laboratory of Industrial Biocatalysis (Ministry of Education), Department of Chemical Engineering, Tsinghua University, Beijing 100084, China – sequence: 2 givenname: Yang surname: Dong fullname: Dong, Yang organization: College of Arts & Sciences, University of Pennsylvania, Philadelphia 19104, USA – sequence: 3 givenname: Dehua surname: Liu fullname: Liu, Dehua organization: Key Laboratory of Industrial Biocatalysis (Ministry of Education), Department of Chemical Engineering, Tsinghua University, Beijing 100084, China – sequence: 4 givenname: Zhen orcidid: 0000-0003-3792-5544 surname: Chen fullname: Chen, Zhen email: zhenchen2013@mail.tsinghua.edu.cn organization: Key Laboratory of Industrial Biocatalysis (Ministry of Education), Department of Chemical Engineering, Tsinghua University, Beijing 100084, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36403537$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkE9rHCEYh6UkNJuk36AUj73MVkedGUsphNA_gdBCac7i6DubdzujW3Ub9tt3wqQ95LInRZ7nBz7n5CTEAIS85mzNGW_ebdcu7nqM65rV9fxUd1K9ICvetbpistYnZMW06ireNPqMnOe8ZYwp0bKX5Ew0kon5viI_vsED3dly_2APmdrg6QTF9nFERyFsMAAkDBuaS7IFNgiZDjHRCV2KPdqR5kMo95Ax0zhQj3HMl-R0sGOGV0_nBbn7_Onn9dfq9vuXm-ur28rJjpfKeTlYZn0jlVSilm3n-1a2oodOeMtBQ-29htY2Wg1ODdaqToMQjWKuAW_FBXm77O5S_L2HXMyE2cE42gBxn03dik5qzhSb0TdP6L6fwJtdwsmmg_nXYQbkAszfyjnB8B_hzDzmNluz5DaPuc2Se9beP9McFlswhjkXjsfkj4sMc6Q_CMlkhxAceEzgivERjw18eDbgRgzo7PgLDsf1vzS6spw |
CitedBy_id | crossref_primary_10_1016_j_molliq_2025_127135 crossref_primary_10_3390_biotech13010002 crossref_primary_10_1016_j_trac_2024_117726 crossref_primary_10_1016_j_copbio_2023_103006 crossref_primary_10_1039_D3GC02863A crossref_primary_10_1038_s41929_025_01299_5 crossref_primary_10_3389_fbioe_2024_1423935 |
Cites_doi | 10.1016/j.bej.2022.108478 10.1002/elsc.201600215 10.1186/s13568-021-01276-8 10.1038/ncomms15828 10.1016/j.jbiosc.2020.11.004 10.1128/AEM.03172-16 10.1186/s40643-021-00485-0 10.1002/aic.16339 10.1073/pnas.2003032117 10.1186/s13068-020-01816-7 10.1038/s41586-022-04599-z 10.1016/j.ymben.2015.03.009 10.1021/acssynbio.1c00144 10.1038/s41598-019-48091-7 10.1186/s13068-017-0992-9 10.1016/j.cej.2022.137617 10.1016/j.ymben.2015.10.013 10.1016/j.ymben.2022.01.006 10.1186/s13068-019-1545-1 10.1186/s12934-022-01875-5 10.1002/cssc.201902928 10.1002/biot.201000140 10.1039/C7FD00057J 10.1021/acssynbio.9b00003 10.1002/bab.1987 10.1186/s13068-021-02067-w 10.1002/bit.26468 10.1002/bit.26963 10.1016/j.enzmictec.2016.10.020 10.1016/j.cattod.2012.04.048 10.1007/s10295-014-1541-1 10.1007/s00253-021-11436-2 10.1016/j.ymben.2015.12.004 10.1080/09168451.2014.891933 10.1002/bit.25717 10.1186/s12934-015-0312-7 10.1016/j.ymben.2014.12.007 10.1021/acssynbio.0c00567 10.1007/s10529-006-9122-7 10.1016/j.mec.2018.e00082 10.1038/nchembio.2020 10.1016/j.ymben.2021.03.008 10.1038/nchembio.580 10.1016/j.copbio.2017.06.007 10.1039/D1GC04288B 10.1186/1475-2859-12-4 10.1002/biot.201900003 10.1016/j.ymben.2018.09.012 10.1021/acssuschemeng.7b00059 10.1016/j.copbio.2016.04.016 10.1039/c2cs15359a 10.1016/j.biortech.2020.124527 10.1007/s00253-012-4618-7 10.1016/j.ymben.2016.12.001 10.1021/acssynbio.0c00486 10.1007/s00253-019-09640-2 10.1039/D1GC02867G 10.1007/s00253-021-11652-w 10.1002/chem.201602390 10.1002/btpr.2917 10.1016/j.ymben.2018.04.013 10.1016/j.ymben.2017.02.003 10.1038/s41929-018-0212-4 10.3390/biom12050715 |
ContentType | Journal Article |
Copyright | 2022 Elsevier Ltd Copyright © 2022 Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2022 Elsevier Ltd – notice: Copyright © 2022 Elsevier Ltd. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1016/j.copbio.2022.102845 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1879-0429 |
ExternalDocumentID | 36403537 10_1016_j_copbio_2022_102845 S0958166922001793 |
Genre | Journal Article Review |
GroupedDBID | --- --K --M -~X .1- .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 29F 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM 9JN AAAJQ AABNK AAEDT AAEDW AAHBH AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARKO AATTM AAXKI AAXUO AAYWO ABEFU ABFRF ABGSF ABJNI ABMAC ABNUV ABOCM ABUDA ABWVN ABXDB ACDAQ ACGFO ACGFS ACRLP ACRPL ACVFH ADBBV ADCNI ADEWK ADEZE ADMUD ADNMO ADUVX AEBSH AEFWE AEHWI AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFPUW AFRHN AFTJW AFXIZ AGCQF AGEKW AGHFR AGQPQ AGRDE AGUBO AGYEJ AHHHB AHPOS AI. AIEXJ AIGII AIIUN AIKHN AITUG AJUYK AKBMS AKRWK AKURH AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CAG CJTIS COF CS3 DU5 EBS EFJIC EFKBS EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLW HVGLF HZ~ IHE J1W KOM LUGTX LX3 M41 MO0 N9A O-L O9- O9. OAUVE OK~ OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SBG SCC SDF SDG SDP SES SEW SPC SPCBC SSG SSI SSU SSZ T5K TWZ VH1 WUQ Z5R ~02 ~G- AACTN AAIAV ABYKQ AFCTW AFKWA AJBFU AJOXV AMFUW DOVZS EFLBG RIG XFK AAYXX AGRNS BNPGV CITATION SSH CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c481t-cd4fa0ad6454532478db7473be83da1e9e2dd9e7a695fc5faa589e33650c6eda3 |
IEDL.DBID | .~1 |
ISSN | 0958-1669 1879-0429 |
IngestDate | Thu Jul 10 22:08:06 EDT 2025 Wed Feb 19 02:25:54 EST 2025 Thu Apr 24 23:01:31 EDT 2025 Tue Jul 01 01:00:15 EDT 2025 Fri Feb 23 02:40:13 EST 2024 Tue Aug 26 16:32:39 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | Copyright © 2022 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c481t-cd4fa0ad6454532478db7473be83da1e9e2dd9e7a695fc5faa589e33650c6eda3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0003-3792-5544 |
PMID | 36403537 |
PQID | 2738491050 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2738491050 pubmed_primary_36403537 crossref_primary_10_1016_j_copbio_2022_102845 crossref_citationtrail_10_1016_j_copbio_2022_102845 elsevier_sciencedirect_doi_10_1016_j_copbio_2022_102845 elsevier_clinicalkey_doi_10_1016_j_copbio_2022_102845 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2022 2022-12-00 2022-Dec 20221201 |
PublicationDateYYYYMMDD | 2022-12-01 |
PublicationDate_xml | – month: 12 year: 2022 text: December 2022 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Current opinion in biotechnology |
PublicationTitleAlternate | Curr Opin Biotechnol |
PublicationYear | 2022 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Yim, Haselbeck, Niu, Pujol-Baxley, Burgard, Boldt, Khandurina, Trawick, Osterhout, Stephen (bib39) 2011; 7 Lee, Lee, Jin, Rao (bib53) 2021; 105 Mizobata, Mitsui, Yamada, Matsumoto, Yoshihara, Tokumoto, Ogino (bib54) 2021; 131 Cen, Liu, Chen, Liu, Chen (bib59) 2021; 10 Salusjarvi, Havukainen, Koivistoinen, Toivari (bib10) 2019; 103 Liu, Xu, Zheng, Liu (bib23) 2010; 5 Li, Dong, Liu, Cen, Liu, Chen (bib26) 2022; 70 Zhu, Liu, Chen (bib7) 2022; 24 Kataoka, Vangnai, Ueda, Tajima, Nakashimada, Kato (bib47) 2014; 78 Tao, Bu, Zou, Hu, Zheng, Ouyang (bib33) 2021; 14 Kou, Cui, Fu, Dai, Wang, Chen (bib58) 2022; 21 Liu, Ramos, Valdehuesa, Nisola, Lee, Chung (bib17) 2013; 97 Tai, Xiong, Jambunathan, Wang, Wang, Stapleton, Zhang (bib45) 2016; 12 Wang, Li, Zou, Yan (bib42) 2020; 117 Sato, Ikeda, Tanaka (bib34) 2021; 11 Liu, Fabos, Taylor, Knight, Whiston, Hutchings (bib51) 2016; 22 Lee, Kim, Chae, Cho, Kim, Shin, Kim, Ko, Jang, Jang (bib63) 2019; 2 Liu, Wang, Zeng (bib2) 2022; 13 Kim, Lee, Baek, Kong, Na, Lee, Sundstrom, Park, Kim (bib66) 2020; 13 L. Fernandez, Global monoethylene glycol market volume 2015-2029 accessed 14 Jun 2022. Lu, Yao, Yang, Zhang, Gu, Mojovic, Baganz, Lye, Shi, Hao (bib18) 2021; 68 Zhang, Liu, Chen (bib4) 2017; 10 Nakagawa, Tomishige (bib9) 2012; 195 Wang, Zhang, Zhang, Gong, Jiang, Sun, Shen, Wang, Yuan, Yan (bib48) 2021; 23 Hirokawa, Maki, Hanai (bib27) 2017; 39 Pereira, Zhang, De Mey, Lim, Li, Stephanopoulos (bib22) 2016; 113 Frazao, Trichez, Serrano-Bataille, Dagkesamanskaia, Topham, Walther, Francois (bib32) 2019; 9 Rehman, Leng, Zhuang, Vuppaladadiyam, Lin, Leu (bib57) 2022; 448 Chae, Choi, Kim, Ko, Lee (bib62) 2017; 47 Guo, Liu, Jin, Zhang, Yu, Deng, Wang (bib40) 2022; 185 Lu, Diaz, Czarnecki, Zhu, Kim, Shroff, Acosta, Alexander, Cole, Zhang (bib61) 2022; 604 David, Schmid, Adrian, Wilde, Buhler (bib64) 2018; 115 Choi, Woo, Ho, Yup (bib1) 2014; 28 Liu, Lu (bib44) 2015; 29 Li, Liao (bib36) 2013; 12 Chae, Choi, Ryu, Lee (bib14) 2018; 64 Utesch, Sabra, Prescher, Baur, Arbter, Zeng (bib67) 2019; 116 Vivek, Hazeena, Alphy, Kumar, Magdouli, Sindhu, Pandey, Binod (bib5) 2021; 322 Sun, Shu, Lu, Wang, Tisma, Zhu, Shi, Baganz, Lye, Hao (bib35) 2021; 105 Arnaud, Wu, Chang, Comerford, Farmer, Schmid, Chang, Li, Mascal (bib60) 2017; 202 Pereira, Li, De Mey, Lim, Zhang, Hoeltgen, Stephanopoulos (bib16) 2016; 34 Zhang, Sun, Liu, Cen, Liu, Chen (bib25) 2021; 8 Liu, Cen, Liu, Chen (bib3) 2021; 10 Lee, Seo (bib55) 2019; 12 Uranukul, Woolston, Fink, Stephanopoulos (bib15) 2018; 51 Wu, Liu, Liu, Chen, Huo (bib6) 2022; 12 Zhong, Zhang, Wu, Liu, Chen (bib29) 2019; 8 Jiang, Liu, Mu, Sun, Xiu (bib65) 2017; 17 Zhang, Ma, Dischert, Soucaille, Zeng (bib30) 2019; 14 Niu, Kramer, Mueller, Liu, Guo (bib38) 2019; 8 Kim, Flick, Brunzelle, Singer, Evdokimova, Brown, Joo, Minasov, Anderson, Mahadevan (bib49) 2017; 83 Wang, Jain, Shen, Sun, Cheng, Liao, Yuan, Yan (bib46) 2017; 40 Novak, Kutscha, Pflugl (bib56) 2020; 13 Yue, Zhao, Ma, Gong (bib12) 2012; 41 Chen, Huang, Wu, Liu (bib21) 2016; 33 Li, Wu, Cen, Liu, Zhang, Liu, Chen (bib28) 2021; 10 Alkim, Cam, Trichez, Auriol, Spina, Vax, Bartolo, Besse, François, Walther (bib20) 2015; 14 H. S. Baek, B. Y. Woo, S. J. Yoo, Y. H. Joo, S. S. Shin, M. H. Oh, J. H. Lee, and S. Y. Kim, Composition containing meso-2,3-butanediol, Patent US 10525017, 2020. Cabulong, Valdehuesa, Ramos, Nisola, Lee, Lee, Chung (bib19) 2017; 97 Nemr, Muller, Joo, Gawand, Choudhary, Mendonca, Lu, Yu, Yakunin, Mahadevan (bib50) 2018; 48 Pooth, van Gaalen, Trenkamp, Wiechert, Oldiges (bib43) 2020; 36 Barton, Burgard, Burk, Crater, Osterhout, Pharkya, Steer, Sun, Trawick, Van Dien (bib41) 2015; 42 Grabar, Zhou, Shanmugam, Yomano, Ingram (bib37) 2006; 28 Burgard, Burk, Osterhout, Dien, Yim (bib11) 2016; 42 Zhang, Li, Liu, Cen, Liu, Chen (bib24) 2021; 65 Walther, Topham, Irague, Auriol, Baylac, Cordier, Dressaire, Lozano-Huguet, Tarrat, Martineau (bib31) 2017; 8 Huang, Brentzel, Barnett, Dumesic, Huber, Maravelias (bib8) 2017; 5 Zhang (10.1016/j.copbio.2022.102845_bib30) 2019; 14 Chae (10.1016/j.copbio.2022.102845_bib62) 2017; 47 Li (10.1016/j.copbio.2022.102845_bib28) 2021; 10 Walther (10.1016/j.copbio.2022.102845_bib31) 2017; 8 Liu (10.1016/j.copbio.2022.102845_bib3) 2021; 10 Wu (10.1016/j.copbio.2022.102845_bib6) 2022; 12 Liu (10.1016/j.copbio.2022.102845_bib17) 2013; 97 Liu (10.1016/j.copbio.2022.102845_bib44) 2015; 29 Chae (10.1016/j.copbio.2022.102845_bib14) 2018; 64 Frazao (10.1016/j.copbio.2022.102845_bib32) 2019; 9 Zhong (10.1016/j.copbio.2022.102845_bib29) 2019; 8 Grabar (10.1016/j.copbio.2022.102845_bib37) 2006; 28 Novak (10.1016/j.copbio.2022.102845_bib56) 2020; 13 David (10.1016/j.copbio.2022.102845_bib64) 2018; 115 Zhu (10.1016/j.copbio.2022.102845_sbref7) 2022; 24 Wang (10.1016/j.copbio.2022.102845_bib46) 2017; 40 Li (10.1016/j.copbio.2022.102845_bib36) 2013; 12 Jiang (10.1016/j.copbio.2022.102845_bib65) 2017; 17 Utesch (10.1016/j.copbio.2022.102845_bib67) 2019; 116 Mizobata (10.1016/j.copbio.2022.102845_bib54) 2021; 131 Salusjarvi (10.1016/j.copbio.2022.102845_bib10) 2019; 103 Kou (10.1016/j.copbio.2022.102845_sbref56) 2022; 21 Tai (10.1016/j.copbio.2022.102845_bib45) 2016; 12 Lee (10.1016/j.copbio.2022.102845_bib63) 2019; 2 Alkim (10.1016/j.copbio.2022.102845_bib20) 2015; 14 Sato (10.1016/j.copbio.2022.102845_bib34) 2021; 11 Choi (10.1016/j.copbio.2022.102845_bib1) 2014; 28 Guo (10.1016/j.copbio.2022.102845_bib40) 2022; 185 Wang (10.1016/j.copbio.2022.102845_sbref41) 2020; 117 Kataoka (10.1016/j.copbio.2022.102845_bib47) 2014; 78 Cen (10.1016/j.copbio.2022.102845_sbref57) 2021; 10 Uranukul (10.1016/j.copbio.2022.102845_bib15) 2018; 51 Rehman (10.1016/j.copbio.2022.102845_bib57) 2022; 448 Lu (10.1016/j.copbio.2022.102845_bib61) 2022; 604 Lee (10.1016/j.copbio.2022.102845_bib53) 2021; 105 Liu (10.1016/j.copbio.2022.102845_bib51) 2016; 22 Vivek (10.1016/j.copbio.2022.102845_bib5) 2021; 322 Cabulong (10.1016/j.copbio.2022.102845_bib19) 2017; 97 Kim (10.1016/j.copbio.2022.102845_bib49) 2017; 83 Nemr (10.1016/j.copbio.2022.102845_bib50) 2018; 48 Zhang (10.1016/j.copbio.2022.102845_bib4) 2017; 10 Arnaud (10.1016/j.copbio.2022.102845_bib60) 2017; 202 Yue (10.1016/j.copbio.2022.102845_bib12) 2012; 41 Pereira (10.1016/j.copbio.2022.102845_bib16) 2016; 34 Hirokawa (10.1016/j.copbio.2022.102845_bib27) 2017; 39 Pooth (10.1016/j.copbio.2022.102845_bib43) 2020; 36 Lu (10.1016/j.copbio.2022.102845_bib18) 2021; 68 Huang (10.1016/j.copbio.2022.102845_bib8) 2017; 5 Zhang (10.1016/j.copbio.2022.102845_sbref23) 2021; 65 Nakagawa (10.1016/j.copbio.2022.102845_bib9) 2012; 195 Pereira (10.1016/j.copbio.2022.102845_bib22) 2016; 113 Li (10.1016/j.copbio.2022.102845_sbref25) 2022; 70 Sun (10.1016/j.copbio.2022.102845_bib35) 2021; 105 Barton (10.1016/j.copbio.2022.102845_bib41) 2015; 42 10.1016/j.copbio.2022.102845_bib13 10.1016/j.copbio.2022.102845_bib52 Wang (10.1016/j.copbio.2022.102845_bib48) 2021; 23 Niu (10.1016/j.copbio.2022.102845_bib38) 2019; 8 Liu (10.1016/j.copbio.2022.102845_bib23) 2010; 5 Chen (10.1016/j.copbio.2022.102845_bib21) 2016; 33 Yim (10.1016/j.copbio.2022.102845_bib39) 2011; 7 Tao (10.1016/j.copbio.2022.102845_bib33) 2021; 14 Burgard (10.1016/j.copbio.2022.102845_bib11) 2016; 42 Liu (10.1016/j.copbio.2022.102845_sbref2) 2022; 13 Lee (10.1016/j.copbio.2022.102845_bib55) 2019; 12 Zhang (10.1016/j.copbio.2022.102845_bib25) 2021; 8 Kim (10.1016/j.copbio.2022.102845_bib66) 2020; 13 |
References_xml | – volume: 33 start-page: 12 year: 2016 end-page: 18 ident: bib21 publication-title: Metab Eng – volume: 13 year: 2022 ident: bib2 article-title: Biosynthesizing structurally diverse diols via a general route combining oxidative and reductive formations of OH-groups publication-title: Nat Commun – volume: 10 start-page: 1946 year: 2021 end-page: 1955 ident: bib3 publication-title: ACS Synth Biol – volume: 113 start-page: 376 year: 2016 end-page: 383 ident: bib22 publication-title: Biotechnol Bioeng – volume: 8 year: 2021 ident: bib25 publication-title: Bioresour Bioprocess – volume: 64 start-page: 4193 year: 2018 end-page: 4200 ident: bib14 publication-title: AICHE J – volume: 9 year: 2019 ident: bib32 article-title: Construction of a synthetic pathway for the production of 1,3-propanediol from glucose publication-title: Sci Rep – volume: 10 start-page: 478 year: 2021 end-page: 486 ident: bib28 article-title: Efficient production of 1,3-propanediol from diverse carbohydrates via a non-natural pathway using 3–hydroxypropionic acid as an intermediate publication-title: ACS Synth Biol – volume: 14 year: 2021 ident: bib33 article-title: A comprehensive review on microbial production of 1,2-propanediol: micro-organisms, metabolic pathways, and metabolic engineering publication-title: Biotechnol Biofuels – volume: 5 start-page: 4699 year: 2017 end-page: 4706 ident: bib8 article-title: Conversion of furfural to 1,5-pentanediol: Process synthesis and analysis publication-title: ACS Sustain Chem Eng – volume: 34 start-page: 80 year: 2016 end-page: 87 ident: bib16 article-title: Efficient utilization of pentoses for bioproduction of the renewable two-carbon compounds ethylene glycol and glycolate publication-title: Metab Eng – volume: 65 start-page: 52 year: 2021 end-page: 65 ident: bib24 publication-title: Metab Eng – volume: 10 year: 2017 ident: bib4 article-title: Production of C2–C4 diols from renewable bioresources: new metabolic pathways and metabolic engineering strategies publication-title: Biotechnol Biofuels – volume: 36 year: 2020 ident: bib43 publication-title: Biotechnol Prog – volume: 8 year: 2019 ident: bib38 publication-title: Metab Eng Commun – volume: 105 start-page: 5751 year: 2021 end-page: 5767 ident: bib53 article-title: Metabolic engineering of non-pathogenic microorganisms for 2,3-butanediol production publication-title: Appl Microbiol Biotechnol – volume: 10 start-page: 192 year: 2021 end-page: 203 ident: bib59 article-title: Metabolic engineering of publication-title: ACS Synth Biol – volume: 448 year: 2022 ident: bib57 publication-title: Chem Eng J – volume: 12 year: 2013 ident: bib36 publication-title: Micro Cell Fact – volume: 17 start-page: 635 year: 2017 end-page: 644 ident: bib65 article-title: High tolerance to glycerol and high production of 1,3-propanediol in batch fermentations by microbial consortium from marine sludge publication-title: Eng Life Sci – volume: 8 start-page: 587 year: 2019 end-page: 595 ident: bib29 publication-title: ACS Synth Biol – volume: 23 start-page: 8694 year: 2021 end-page: 8706 ident: bib48 publication-title: Green Chem – volume: 5 start-page: 1137 year: 2010 end-page: 1148 ident: bib23 article-title: 1,3-Propanediol and its copolymers: research, development and industrialization publication-title: Biotechnol J – volume: 117 start-page: 19159 year: 2020 end-page: 19167 ident: bib42 article-title: Bacterial synthesis of C3-C5 diols via extending amino acid catabolism publication-title: Proc Natl Acad Sci USA – volume: 12 year: 2022 ident: bib6 publication-title: Biomolecules – volume: 8 year: 2017 ident: bib31 article-title: Construction of a synthetic metabolic pathway for biosynthesis of the non-natural methionine precursor 2,4-dihydroxybutyric acid publication-title: Nat Commun – volume: 322 year: 2021 ident: bib5 article-title: Recent advances in microbial biosynthesis of C3-C5 diols: Genetics and process engineering approaches publication-title: Bioresour Technol – volume: 47 start-page: 67 year: 2017 end-page: 82 ident: bib62 article-title: Recent advances in systems metabolic engineering tools and strategies publication-title: Curr Opin Biotechnol – reference: , accessed 14 Jun 2022. – volume: 14 year: 2015 ident: bib20 publication-title: Micro Cell Fact – volume: 70 start-page: 79 year: 2022 end-page: 88 ident: bib26 publication-title: Metab Eng – volume: 39 start-page: 192 year: 2017 end-page: 199 ident: bib27 publication-title: Metab Eng – volume: 97 start-page: 11 year: 2017 end-page: 20 ident: bib19 publication-title: Enzym Micro Technol – volume: 42 start-page: 118 year: 2016 end-page: 125 ident: bib11 article-title: Development of a commercial scale process for production of 1,4-butanediol from sugar publication-title: Curr Opin Biotechnol – volume: 21 year: 2022 ident: bib58 publication-title: Micro Cell Fact – volume: 51 start-page: 20 year: 2018 end-page: 31 ident: bib15 publication-title: Metab Eng – volume: 12 start-page: 247 year: 2016 end-page: 253 ident: bib45 article-title: Engineering nonphosphorylative metabolism to generate lignocellulose-derived products publication-title: Nat Chem Biol – volume: 131 start-page: 283 year: 2021 end-page: 289 ident: bib54 publication-title: J Biosci Bioeng – volume: 14 year: 2019 ident: bib30 article-title: Engineering of phosphoserine aminotransferase increases the conversion of L-homoserine to 4-hydroxy-2-ketobutyrate in a glycerol-independent pathway of 1,3-propanediol production from glucose publication-title: Biotechnol J – volume: 11 year: 2021 ident: bib34 publication-title: AMB Express – volume: 48 start-page: 13 year: 2018 end-page: 24 ident: bib50 publication-title: Metab Eng – volume: 83 year: 2017 ident: bib49 article-title: Novel Aldo-Keto reductases for the biocatalytic conversion of 3-hydroxybutanal to 1,3-butanediol: Structural and biochemical studies publication-title: Appl Environ Microbiol – volume: 185 year: 2022 ident: bib40 article-title: Advances in research on the bio-production of 1,4-butanediol by the engineered microbes publication-title: Biochem Eng J – volume: 22 start-page: 12290 year: 2016 end-page: 12294 ident: bib51 article-title: One-step production of 1,3-butadiene from 2,3-butanediol dehydration publication-title: Chem-Eur J – volume: 2 start-page: 18 year: 2019 end-page: 33 ident: bib63 article-title: A comprehensive metabolic map for production of bio-based chemicals publication-title: Nat Catal – reference: L. Fernandez, Global monoethylene glycol market volume 2015-2029, – volume: 105 start-page: 9003 year: 2021 end-page: 9016 ident: bib35 publication-title: Appl Microbiol Biotechnol – volume: 28 start-page: 223 year: 2014 end-page: 239 ident: bib1 article-title: Biorefineries for the production of top building block chemicals and their derivatives publication-title: Metab Eng – volume: 41 start-page: 4218 year: 2012 end-page: 4244 ident: bib12 article-title: Ethylene glycol: properties, synthesis, and applications publication-title: Chem Soc Rev – volume: 24 start-page: 1390 year: 2022 end-page: 1403 ident: bib7 article-title: Recent advances in biological production of 1,3-propanediol: new routes and engineering strategies publication-title: Green Chem – volume: 12 year: 2019 ident: bib55 publication-title: Biotechnol Biofuels – volume: 68 start-page: 744 year: 2021 end-page: 755 ident: bib18 publication-title: Biotechnol Appl Biochem – volume: 29 start-page: 135 year: 2015 end-page: 141 ident: bib44 publication-title: Metab Eng – volume: 40 start-page: 148 year: 2017 end-page: 156 ident: bib46 article-title: Rational engineering of diol dehydratase enables 1,4-butanediol biosynthesis from xylose publication-title: Metab Eng – volume: 103 start-page: 2525 year: 2019 end-page: 2535 ident: bib10 article-title: Biotechnological production of glycolic acid and ethylene glycol: current state and perspectives publication-title: Appl Microbiol Biotechnol – volume: 78 start-page: 695 year: 2014 end-page: 700 ident: bib47 publication-title: Biosci Biotechnol Biochem – volume: 97 start-page: 3409 year: 2013 end-page: 3417 ident: bib17 publication-title: Appl Microbiol Biotechnol – volume: 195 start-page: 136 year: 2012 end-page: 143 ident: bib9 article-title: Production of 1,5-pentanediol from biomass via furfural and tetrahydrofurfuryl alcohol publication-title: Catal Today – volume: 13 year: 2020 ident: bib56 publication-title: Biotechnol Biofuels – volume: 604 start-page: 662 year: 2022 end-page: 667 ident: bib61 article-title: Machine learning-aided engineering of hydrolases for PET depolymerization publication-title: Nature – volume: 28 start-page: 1527 year: 2006 end-page: 1535 ident: bib37 publication-title: Biotechnol Lett – volume: 202 start-page: 61 year: 2017 end-page: 77 ident: bib60 article-title: New bio-based monomers: tuneable polyester properties using branched diols from biomass publication-title: Faraday Discuss – volume: 116 start-page: 1627 year: 2019 end-page: 1643 ident: bib67 publication-title: Biotechnol Bioeng – volume: 13 start-page: 564 year: 2020 end-page: 573 ident: bib66 publication-title: Chemsuschem – reference: H. S. Baek, B. Y. Woo, S. J. Yoo, Y. H. Joo, S. S. Shin, M. H. Oh, J. H. Lee, and S. Y. Kim, Composition containing meso-2,3-butanediol, Patent US 10525017, 2020. – volume: 42 start-page: 349 year: 2015 end-page: 360 ident: bib41 article-title: An integrated biotechnology platform for developing sustainable chemical processes publication-title: J Ind Microbiol Biotechnol – volume: 7 start-page: 445 year: 2011 end-page: 452 ident: bib39 publication-title: Nat Chem Biol – volume: 115 start-page: 300 year: 2018 end-page: 311 ident: bib64 publication-title: Biotechnol Bioeng – volume: 185 year: 2022 ident: 10.1016/j.copbio.2022.102845_bib40 article-title: Advances in research on the bio-production of 1,4-butanediol by the engineered microbes publication-title: Biochem Eng J doi: 10.1016/j.bej.2022.108478 – volume: 17 start-page: 635 year: 2017 ident: 10.1016/j.copbio.2022.102845_bib65 article-title: High tolerance to glycerol and high production of 1,3-propanediol in batch fermentations by microbial consortium from marine sludge publication-title: Eng Life Sci doi: 10.1002/elsc.201600215 – volume: 11 year: 2021 ident: 10.1016/j.copbio.2022.102845_bib34 article-title: Production of R- and S-1,2-propanediol in engineered Lactococcus lactis publication-title: AMB Express doi: 10.1186/s13568-021-01276-8 – volume: 8 year: 2017 ident: 10.1016/j.copbio.2022.102845_bib31 article-title: Construction of a synthetic metabolic pathway for biosynthesis of the non-natural methionine precursor 2,4-dihydroxybutyric acid publication-title: Nat Commun doi: 10.1038/ncomms15828 – volume: 131 start-page: 283 year: 2021 ident: 10.1016/j.copbio.2022.102845_bib54 article-title: Improvement of 2,3-butanediol tolerance in Saccharomyces cerevisiae by using a novel mutagenesis strategy publication-title: J Biosci Bioeng doi: 10.1016/j.jbiosc.2020.11.004 – volume: 83 year: 2017 ident: 10.1016/j.copbio.2022.102845_bib49 article-title: Novel Aldo-Keto reductases for the biocatalytic conversion of 3-hydroxybutanal to 1,3-butanediol: Structural and biochemical studies publication-title: Appl Environ Microbiol doi: 10.1128/AEM.03172-16 – volume: 8 year: 2021 ident: 10.1016/j.copbio.2022.102845_bib25 article-title: Development of a plasmid stabilization system in Vibrio natriegens for the high production of 1,3-propanediol and 3-hydroxypropionate publication-title: Bioresour Bioprocess doi: 10.1186/s40643-021-00485-0 – volume: 64 start-page: 4193 year: 2018 ident: 10.1016/j.copbio.2022.102845_bib14 article-title: Production of ethylene glycol from xylose by metabolically engineered Escherichia coli publication-title: AICHE J doi: 10.1002/aic.16339 – volume: 117 start-page: 19159 year: 2020 ident: 10.1016/j.copbio.2022.102845_sbref41 article-title: Bacterial synthesis of C3-C5 diols via extending amino acid catabolism publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.2003032117 – volume: 13 year: 2020 ident: 10.1016/j.copbio.2022.102845_bib56 article-title: Microbial upgrading of acetate into 2,3-butanediol and acetoin by E. coli W publication-title: Biotechnol Biofuels doi: 10.1186/s13068-020-01816-7 – volume: 604 start-page: 662 year: 2022 ident: 10.1016/j.copbio.2022.102845_bib61 article-title: Machine learning-aided engineering of hydrolases for PET depolymerization publication-title: Nature doi: 10.1038/s41586-022-04599-z – volume: 29 start-page: 135 year: 2015 ident: 10.1016/j.copbio.2022.102845_bib44 article-title: Autonomous production of 1,4-butanediol via a de novo biosynthesis pathway in engineered Escherichia coli publication-title: Metab Eng doi: 10.1016/j.ymben.2015.03.009 – volume: 10 start-page: 1946 year: 2021 ident: 10.1016/j.copbio.2022.102845_bib3 article-title: Metabolic engineering of Escherichia coli for high-yield production of (R)-1,3-butanediol publication-title: ACS Synth Biol doi: 10.1021/acssynbio.1c00144 – volume: 9 year: 2019 ident: 10.1016/j.copbio.2022.102845_bib32 article-title: Construction of a synthetic pathway for the production of 1,3-propanediol from glucose publication-title: Sci Rep doi: 10.1038/s41598-019-48091-7 – volume: 10 year: 2017 ident: 10.1016/j.copbio.2022.102845_bib4 article-title: Production of C2–C4 diols from renewable bioresources: new metabolic pathways and metabolic engineering strategies publication-title: Biotechnol Biofuels doi: 10.1186/s13068-017-0992-9 – volume: 448 year: 2022 ident: 10.1016/j.copbio.2022.102845_bib57 article-title: Genomic insights to facilitate the construction of a high-xylose-utilization Enterococcus faecalis OPS2 for 2,3-BDO production publication-title: Chem Eng J doi: 10.1016/j.cej.2022.137617 – volume: 33 start-page: 12 year: 2016 ident: 10.1016/j.copbio.2022.102845_bib21 article-title: Metabolic engineering of Corynebacterium glutamicum for the de novo production of ethylene glycol from glucose publication-title: Metab Eng doi: 10.1016/j.ymben.2015.10.013 – volume: 70 start-page: 79 year: 2022 ident: 10.1016/j.copbio.2022.102845_sbref25 article-title: Systems metabolic engineering of Corynebacterium glutamicum for high-level production of 1,3-propanediol from glucose and xylose publication-title: Metab Eng doi: 10.1016/j.ymben.2022.01.006 – volume: 12 year: 2019 ident: 10.1016/j.copbio.2022.102845_bib55 article-title: Production of 2,3-butanediol from glucose and cassava hydrolysates by metabolically engineered industrial polyploid Saccharomyces cerevisiae publication-title: Biotechnol Biofuels doi: 10.1186/s13068-019-1545-1 – volume: 21 year: 2022 ident: 10.1016/j.copbio.2022.102845_sbref56 article-title: Metabolic engineering of Corynebacterium glutamicum for efficient production of optically pure (2R,3R)-2,3-butanediol publication-title: Micro Cell Fact doi: 10.1186/s12934-022-01875-5 – volume: 13 start-page: 564 year: 2020 ident: 10.1016/j.copbio.2022.102845_bib66 article-title: Small current but highly productive synthesis of 1,3-Propanediol from clycerol by an electrode-driven metabolic shift in Klebsiella pneumoniae L17 publication-title: Chemsuschem doi: 10.1002/cssc.201902928 – volume: 5 start-page: 1137 year: 2010 ident: 10.1016/j.copbio.2022.102845_bib23 article-title: 1,3-Propanediol and its copolymers: research, development and industrialization publication-title: Biotechnol J doi: 10.1002/biot.201000140 – volume: 202 start-page: 61 year: 2017 ident: 10.1016/j.copbio.2022.102845_bib60 article-title: New bio-based monomers: tuneable polyester properties using branched diols from biomass publication-title: Faraday Discuss doi: 10.1039/C7FD00057J – volume: 8 start-page: 587 year: 2019 ident: 10.1016/j.copbio.2022.102845_bib29 article-title: Metabolic engineering of a homoserine-derived non-natural pathway for the de novo production of 1,3-propanediol from glucose publication-title: ACS Synth Biol doi: 10.1021/acssynbio.9b00003 – volume: 68 start-page: 744 year: 2021 ident: 10.1016/j.copbio.2022.102845_bib18 article-title: Ethylene glycol and glycolic acid production by wild-type Escherichia coli publication-title: Biotechnol Appl Biochem doi: 10.1002/bab.1987 – ident: 10.1016/j.copbio.2022.102845_bib13 – volume: 14 year: 2021 ident: 10.1016/j.copbio.2022.102845_bib33 article-title: A comprehensive review on microbial production of 1,2-propanediol: micro-organisms, metabolic pathways, and metabolic engineering publication-title: Biotechnol Biofuels doi: 10.1186/s13068-021-02067-w – volume: 115 start-page: 300 year: 2018 ident: 10.1016/j.copbio.2022.102845_bib64 article-title: Production of 1,2-propanediol in photoautotrophic Synechocystis is linked to glycogen turn-over publication-title: Biotechnol Bioeng doi: 10.1002/bit.26468 – volume: 116 start-page: 1627 year: 2019 ident: 10.1016/j.copbio.2022.102845_bib67 article-title: Enhanced electron transfer of different mediators for strictly opposite shifting of metabolism in Clostridium pasteurianum grown on glycerol in a new electrochemical bioreactor publication-title: Biotechnol Bioeng doi: 10.1002/bit.26963 – volume: 97 start-page: 11 year: 2017 ident: 10.1016/j.copbio.2022.102845_bib19 article-title: Enhanced yield of ethylene glycol production from D-xylose by pathway optimization in Escherichia coli publication-title: Enzym Micro Technol doi: 10.1016/j.enzmictec.2016.10.020 – volume: 195 start-page: 136 year: 2012 ident: 10.1016/j.copbio.2022.102845_bib9 article-title: Production of 1,5-pentanediol from biomass via furfural and tetrahydrofurfuryl alcohol publication-title: Catal Today doi: 10.1016/j.cattod.2012.04.048 – volume: 42 start-page: 349 year: 2015 ident: 10.1016/j.copbio.2022.102845_bib41 article-title: An integrated biotechnology platform for developing sustainable chemical processes publication-title: J Ind Microbiol Biotechnol doi: 10.1007/s10295-014-1541-1 – volume: 105 start-page: 5751 year: 2021 ident: 10.1016/j.copbio.2022.102845_bib53 article-title: Metabolic engineering of non-pathogenic microorganisms for 2,3-butanediol production publication-title: Appl Microbiol Biotechnol doi: 10.1007/s00253-021-11436-2 – volume: 34 start-page: 80 year: 2016 ident: 10.1016/j.copbio.2022.102845_bib16 article-title: Efficient utilization of pentoses for bioproduction of the renewable two-carbon compounds ethylene glycol and glycolate publication-title: Metab Eng doi: 10.1016/j.ymben.2015.12.004 – volume: 78 start-page: 695 year: 2014 ident: 10.1016/j.copbio.2022.102845_bib47 article-title: Enhancement of (R)-1,3-butanediol production by engineered Escherichia coli using a bioreactor system with strict regulation of overall oxygen transfer coefficient and pH publication-title: Biosci Biotechnol Biochem doi: 10.1080/09168451.2014.891933 – volume: 113 start-page: 376 year: 2016 ident: 10.1016/j.copbio.2022.102845_bib22 article-title: Engineering a novel biosynthetic pathway in Escherichia coli. for production of renewable ethylene glycol publication-title: Biotechnol Bioeng doi: 10.1002/bit.25717 – volume: 14 year: 2015 ident: 10.1016/j.copbio.2022.102845_bib20 article-title: Optimization of ethylene glycol production from (D)-xylose via a synthetic pathway implemented in Escherichia coli publication-title: Micro Cell Fact doi: 10.1186/s12934-015-0312-7 – volume: 28 start-page: 223 year: 2014 ident: 10.1016/j.copbio.2022.102845_bib1 article-title: Biorefineries for the production of top building block chemicals and their derivatives publication-title: Metab Eng doi: 10.1016/j.ymben.2014.12.007 – volume: 10 start-page: 192 year: 2021 ident: 10.1016/j.copbio.2022.102845_sbref57 article-title: Metabolic engineering of Escherichia coli for de novo production of 1,5-pentanediol from glucose publication-title: ACS Synth Biol doi: 10.1021/acssynbio.0c00567 – volume: 28 start-page: 1527 year: 2006 ident: 10.1016/j.copbio.2022.102845_bib37 article-title: Methylglyoxal bypass identified as source of chiral contamination in L(+) and D(-)-lactate fermentations by recombinant Escherichia coli publication-title: Biotechnol Lett doi: 10.1007/s10529-006-9122-7 – volume: 8 year: 2019 ident: 10.1016/j.copbio.2022.102845_bib38 article-title: Metabolic engineering of Escherichia coli for the de novo stereospecific biosynthesis of 1,2-propanediol through lactic acid publication-title: Metab Eng Commun doi: 10.1016/j.mec.2018.e00082 – volume: 12 start-page: 247 year: 2016 ident: 10.1016/j.copbio.2022.102845_bib45 article-title: Engineering nonphosphorylative metabolism to generate lignocellulose-derived products publication-title: Nat Chem Biol doi: 10.1038/nchembio.2020 – volume: 65 start-page: 52 year: 2021 ident: 10.1016/j.copbio.2022.102845_sbref23 article-title: Systems metabolic engineering of Vibrio natriegens for the production of 1,3-propanediol publication-title: Metab Eng doi: 10.1016/j.ymben.2021.03.008 – volume: 7 start-page: 445 year: 2011 ident: 10.1016/j.copbio.2022.102845_bib39 article-title: Metabolic engineering of Escherichia coli for direct production of 1,4-butanediol publication-title: Nat Chem Biol doi: 10.1038/nchembio.580 – volume: 47 start-page: 67 year: 2017 ident: 10.1016/j.copbio.2022.102845_bib62 article-title: Recent advances in systems metabolic engineering tools and strategies publication-title: Curr Opin Biotechnol doi: 10.1016/j.copbio.2017.06.007 – volume: 24 start-page: 1390 year: 2022 ident: 10.1016/j.copbio.2022.102845_sbref7 article-title: Recent advances in biological production of 1,3-propanediol: new routes and engineering strategies publication-title: Green Chem doi: 10.1039/D1GC04288B – volume: 12 year: 2013 ident: 10.1016/j.copbio.2022.102845_bib36 article-title: Engineering a cyanobacterium as the catalyst for the photosynthetic conversion of CO2 to 1,2-propanediol publication-title: Micro Cell Fact doi: 10.1186/1475-2859-12-4 – ident: 10.1016/j.copbio.2022.102845_bib52 – volume: 14 year: 2019 ident: 10.1016/j.copbio.2022.102845_bib30 article-title: Engineering of phosphoserine aminotransferase increases the conversion of L-homoserine to 4-hydroxy-2-ketobutyrate in a glycerol-independent pathway of 1,3-propanediol production from glucose publication-title: Biotechnol J doi: 10.1002/biot.201900003 – volume: 51 start-page: 20 year: 2018 ident: 10.1016/j.copbio.2022.102845_bib15 article-title: Biosynthesis of monoethylene glycol in Saccharomyces cerevisiae utilizing native glycolytic enzymes publication-title: Metab Eng doi: 10.1016/j.ymben.2018.09.012 – volume: 5 start-page: 4699 year: 2017 ident: 10.1016/j.copbio.2022.102845_bib8 article-title: Conversion of furfural to 1,5-pentanediol: Process synthesis and analysis publication-title: ACS Sustain Chem Eng doi: 10.1021/acssuschemeng.7b00059 – volume: 13 year: 2022 ident: 10.1016/j.copbio.2022.102845_sbref2 article-title: Biosynthesizing structurally diverse diols via a general route combining oxidative and reductive formations of OH-groups publication-title: Nat Commun – volume: 42 start-page: 118 year: 2016 ident: 10.1016/j.copbio.2022.102845_bib11 article-title: Development of a commercial scale process for production of 1,4-butanediol from sugar publication-title: Curr Opin Biotechnol doi: 10.1016/j.copbio.2016.04.016 – volume: 41 start-page: 4218 year: 2012 ident: 10.1016/j.copbio.2022.102845_bib12 article-title: Ethylene glycol: properties, synthesis, and applications publication-title: Chem Soc Rev doi: 10.1039/c2cs15359a – volume: 322 year: 2021 ident: 10.1016/j.copbio.2022.102845_bib5 article-title: Recent advances in microbial biosynthesis of C3-C5 diols: Genetics and process engineering approaches publication-title: Bioresour Technol doi: 10.1016/j.biortech.2020.124527 – volume: 97 start-page: 3409 year: 2013 ident: 10.1016/j.copbio.2022.102845_bib17 article-title: Biosynthesis of ethylene glycol in Escherichia coli publication-title: Appl Microbiol Biotechnol doi: 10.1007/s00253-012-4618-7 – volume: 39 start-page: 192 year: 2017 ident: 10.1016/j.copbio.2022.102845_bib27 article-title: Improvement of 1,3-propanediol production using an engineered cyanobacterium, Synechococcus elongatus by optimization of the gene expression level of a synthetic metabolic pathway and production conditions publication-title: Metab Eng doi: 10.1016/j.ymben.2016.12.001 – volume: 10 start-page: 478 year: 2021 ident: 10.1016/j.copbio.2022.102845_bib28 article-title: Efficient production of 1,3-propanediol from diverse carbohydrates via a non-natural pathway using 3–hydroxypropionic acid as an intermediate publication-title: ACS Synth Biol doi: 10.1021/acssynbio.0c00486 – volume: 103 start-page: 2525 year: 2019 ident: 10.1016/j.copbio.2022.102845_bib10 article-title: Biotechnological production of glycolic acid and ethylene glycol: current state and perspectives publication-title: Appl Microbiol Biotechnol doi: 10.1007/s00253-019-09640-2 – volume: 23 start-page: 8694 year: 2021 ident: 10.1016/j.copbio.2022.102845_bib48 article-title: Tunable hybrid carbon metabolism coordination for the carbon-efficient biosynthesis of 1,3-butanediol in Escherichia coli publication-title: Green Chem doi: 10.1039/D1GC02867G – volume: 105 start-page: 9003 year: 2021 ident: 10.1016/j.copbio.2022.102845_bib35 article-title: 1,2-Propanediol production from glycerol via an endogenous pathway of Klebsiella pneumoniae publication-title: Appl Microbiol Biotechnol doi: 10.1007/s00253-021-11652-w – volume: 22 start-page: 12290 year: 2016 ident: 10.1016/j.copbio.2022.102845_bib51 article-title: One-step production of 1,3-butadiene from 2,3-butanediol dehydration publication-title: Chem-Eur J doi: 10.1002/chem.201602390 – volume: 36 year: 2020 ident: 10.1016/j.copbio.2022.102845_bib43 article-title: Comprehensive analysis of metabolic sensitivity of 1,4-butanediol producing Escherichia coli toward substrate and oxygen availability publication-title: Biotechnol Prog doi: 10.1002/btpr.2917 – volume: 48 start-page: 13 year: 2018 ident: 10.1016/j.copbio.2022.102845_bib50 article-title: Engineering a short, aldolase-based pathway for (R)-1,3-butanediol production in Escherichia coli publication-title: Metab Eng doi: 10.1016/j.ymben.2018.04.013 – volume: 40 start-page: 148 year: 2017 ident: 10.1016/j.copbio.2022.102845_bib46 article-title: Rational engineering of diol dehydratase enables 1,4-butanediol biosynthesis from xylose publication-title: Metab Eng doi: 10.1016/j.ymben.2017.02.003 – volume: 2 start-page: 18 year: 2019 ident: 10.1016/j.copbio.2022.102845_bib63 article-title: A comprehensive metabolic map for production of bio-based chemicals publication-title: Nat Catal doi: 10.1038/s41929-018-0212-4 – volume: 12 year: 2022 ident: 10.1016/j.copbio.2022.102845_bib6 article-title: Metabolic engineering and regulation of diol biosynthesis from renewable biomass in Escherichia coli publication-title: Biomolecules doi: 10.3390/biom12050715 |
SSID | ssj0005370 |
Score | 2.4471328 |
SecondaryResourceType | review_article |
Snippet | Diols are important bulk chemicals that are widely used in polymer, cosmetics, fuel, food, and pharmaceutical industries. The development of bioprocess to... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 102845 |
SubjectTerms | Biosynthetic Pathways Butylene Glycols - metabolism Metabolic Engineering |
Title | New pathways and metabolic engineering strategies for microbial synthesis of diols |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0958166922001793 https://dx.doi.org/10.1016/j.copbio.2022.102845 https://www.ncbi.nlm.nih.gov/pubmed/36403537 https://www.proquest.com/docview/2738491050 |
Volume | 78 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6iFz2Ib9cXEbzG7TZJH8dlUVZFDz7AW0iTFCpru9iKePG3O9PHqqAoHltm-piZTr40800IOTJear3QJkwCdmUitpJpQKXMT4xwuAQpIuQOX14F4ztxfi_v58io48JgWWWb-5ucXmfr9ky_tWZ_mmX9GwAHuOgV-1gWBGGGDHYRYpQfv30q8-D1hnEozFC6o8_VNV6mmCYZUgB9H3sYREhq-n54-gl-1sPQ6QpZbvEjHTaPuErmXL5Glj51FVwn15C4KO40_KJfS6pzSx9dBb6eZIa6D0FaVl2bCArIlT5mdU8muHj5mgMsLLOSFim1WTEpN8jd6cntaMzarROYEdGgYsaKVHvaYr8uCZgpjGwCEweeuIhbPXCx862NXaiDWKZGphocFDvOAa-ZwFnNN8l8XuRum1A7qH-UhomnU5jLhVrGHjc2SIRMQdL0CO8spkzbVxy3t5ioroDsQTV2Vmhn1di5R9hMa9r01fhFXnbOUB1nFLKcgsT_i1440_sSV3_QPOx8ruCTw3UUnbviuVTIZhIAs6TXI1tNMMzegQfC4xBzO_--7y5ZxKOmZGaPzFdPz24fgE-VHNSRfUAWhmcX46t3gpIC1g |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOiDfbQnElOJrNxnYehx4QtNrSxwFaqTfj2I4UtE1WTapqL_wp_iAzeSyt1KoIqdfE49jj8fhz5gXw3ga5C2KXcYXYlcvUKW4QlfIws9KTCVImFDt8cBhNj-XXE3WyAr-HWBhyq-x1f6fTW23dPxn33BzPi2L8HcEBGb3SkNyCUMx6z8o9v7jAe1u9tfsFF_lDGO5sH32e8r60ALcymTTcOpmbwDjKZ6UQU8SJyxBYi8wnwpmJT33oXOpjE6Uqtyo3OIHUC4F4xkbeGYH93oP7SJtQ2YSPvy75lYi2Qh2NjtPwhni91qnMVvOsoJjDMKSkCQlFUV1_Ht6Ed9tzb-cJPO4BK_vU8eQprPjyGTy6lMbwOXxDTcmotPGFWdTMlI6d-gaFa1ZY5v82ZHUz5KVgCJXZadEmgcLO60WJOLQualblzBXVrH4Bx3fC0JewWlalfw3MTdo_s3EWmBwvj7FRaSCsizKpcmxpRyAGjmnbJzKnehozPXis_dQdnzXxWXd8HgFfUs27RB63tFfDYughSBXVqsaT5ha6eEl3RZD_gXJzWHONe5wMN6b01XmtKXxKIq5TwQhedcKwnIOIZCBQ5tb--7vv4MH06GBf7-8e7q3DQ3rT-eu8gdXm7Ny_RdTVZButlDP4cdfb6g_mAT_g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=New+pathways+and+metabolic+engineering+strategies+for+microbial+synthesis+of+diols&rft.jtitle=Current+opinion+in+biotechnology&rft.au=Cen%2C+Xuecong&rft.au=Dong%2C+Yang&rft.au=Liu%2C+Dehua&rft.au=Chen%2C+Zhen&rft.date=2022-12-01&rft.issn=1879-0429&rft.eissn=1879-0429&rft.volume=78&rft.spage=102845&rft_id=info:doi/10.1016%2Fj.copbio.2022.102845&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0958-1669&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0958-1669&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0958-1669&client=summon |