Late Glacial Demographic Expansion Motivates a Clock Overhaul for Population Genetics
The molecular clock hypothesis is fundamental in evolutionary biology as by assuming constancy of the molecular rate it provides a timeframe for evolution. However, increasing evidence shows time dependence of inferred molecular rates with inflated values obtained using recent calibrations. As recen...
Saved in:
Published in | Systematic biology Vol. 65; no. 3; pp. 449 - 464 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
England
Oxford University Press
01.05.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The molecular clock hypothesis is fundamental in evolutionary biology as by assuming constancy of the molecular rate it provides a timeframe for evolution. However, increasing evidence shows time dependence of inferred molecular rates with inflated values obtained using recent calibrations. As recent demographic calibrations are virtually non-existent in most species, older phylogenetic calibration points (>1 Ma) are commonly used, which overestimate demographic parameters. To obtain more reliable rates of molecular evolution for population studies, I propose the calibration of demographic transition (CDT) method, which uses the timing of climatic changes over the late glacial warming period to calibrate expansions in various species. Simulation approaches and empirical data sets from a diversity of species (from mollusk to humans) confirm that, when compared with other genealogy-based calibration methods, the CDT provides a robust and broadly applicable clock for population genetics. The resulting CDT rates of molecular evolution also confirm rate heterogeneity over time and among taxa. Comparisons of expansion dates with ecological evidence confirm the inaccuracy of phylogenetically derived divergence rates when dating population-level events. The CDT method opens opportunities for addressing issues such as demographic responses to past climate change and the origin of rate heterogeneity related to taxa, genes, time, and genetic information content. |
---|---|
AbstractList | The molecular clock hypothesis is fundamental in evolutionary biology as by assuming constancy of the molecular rate it provides a timeframe for evolution. However, increasing evidence shows time dependence of inferred molecular rates with inflated values obtained using recent calibrations. As recent demographic calibrations are virtually non-existent in most species, older phylogenetic calibration points (>1 Ma) are commonly used, which overestimate demographic parameters. To obtain more reliable rates of molecular evolution for population studies, I propose the calibration of demographic transition (CDT) method, which uses the timing of climatic changes over the late glacial warming period to calibrate expansions in various species. Simulation approaches and empirical data sets from a diversity of species (from mollusk to humans) confirm that, when compared with other genealogy-based calibration methods, the CDT provides a robust and broadly applicable clock for population genetics. The resulting CDT rates of molecular evolution also confirm rate heterogeneity over time and among taxa. Comparisons of expansion dates with ecological evidence confirm the inaccuracy of phylogenetically derived divergence rates when dating population-level events. The CDT method opens opportunities for addressing issues such as demographic responses to past climate change and the origin of rate heterogeneity related to taxa, genes, time, and genetic information content. The molecular clock hypothesis is fundamental in evolutionary biology as by assuming constancy of the molecular rate it provides a timeframe for evolution. However, increasing evidence shows time dependence of inferred molecular rates with inflated values obtained using recent calibrations. As recent demographic calibrations are virtually non-existent in most species, older phylogenetic calibration points (>1 Ma) are commonly used, which overestimate demographic parameters. To obtain more reliable rates of molecular evolution for population studies, I propose the calibration of demographic transition (CDT) method, which uses the timing of climatic changes over the late glacial warming period to calibrate expansions in various species. Simulation approaches and empirical data sets from a diversity of species (from mollusk to humans) confirm that, when compared with other genealogy-based calibration methods, the CDT provides a robust and broadly applicable clock for population genetics. The resulting CDT rates of molecular evolution also confirm rate heterogeneity over time and among taxa. Comparisons of expansion dates with ecological evidence confirm the inaccuracy of phylogenetically derived divergence rates when dating population-level events. The CDT method opens opportunities for addressing issues such as demographic responses to past climate change and the origin of rate heterogeneity related to taxa, genes, time, and genetic information content. Abstract The molecular clock hypothesis is fundamental in evolutionary biology as by assuming constancy of the molecular rate it provides a timeframe for evolution. However, increasing evidence shows time dependence of inferred molecular rates with inflated values obtained using recent calibrations. As recent demographic calibrations are virtually non-existent in most species, older phylogenetic calibration points (>1 Ma) are commonly used, which overestimate demographic parameters. To obtain more reliable rates of molecular evolution for population studies, I propose the calibration of demographic transition (CDT) method, which uses the timing of climatic changes over the late glacial warming period to calibrate expansions in various species. Simulation approaches and empirical data sets from a diversity of species (from mollusk to humans) confirm that, when compared with other genealogy-based calibration methods, the CDT provides a robust and broadly applicable clock for population genetics. The resulting CDT rates of molecular evolution also confirm rate heterogeneity over time and among taxa. Comparisons of expansion dates with ecological evidence confirm the inaccuracy of phylogenetically derived divergence rates when dating population-level events. The CDT method opens opportunities for addressing issues such as demographic responses to past climate change and the origin of rate heterogeneity related to taxa, genes, time, and genetic information content. |
Author | Hoareau, Thierry B. |
Author_xml | – sequence: 1 givenname: Thierry B. surname: Hoareau fullname: Hoareau, Thierry B. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26683588$$D View this record in MEDLINE/PubMed |
BookMark | eNqF0M9LwzAUB_AgE50_jh6VgBcv1aTpS9KjTJ3CZB4ceCtplrrOrqlJO_S_N6M6wYun93h8-PL4HqBBbWuD0Akll5Sk7Mp_-ry0YaxpTHbQkBLBI8n4y2CzcxYBBbGPDrxfEkIpB7qH9mPOJQMph2g2Ua3B40rpUlX4xqzsq1PNotT49qNRtS9tjR9tW64D81jhUWX1G56ujVuorsKFdfjJNl2l2o0cm9q0pfZHaLdQlTfH3_MQze5un0f30WQ6fhhdTyKdSNpGWqk8Z1LpVENKJIAUCQNegCThls8BjGGQ8nkeAwcRS54yQ5I0ifMChJTsEF30uY2z753xbbYqvTZVpWpjO59RIUEAE4kI9PwPXdrO1eG7oNJQhqAiDirqlXbWe2eKrHHlSrnPjJJs03fW9531fQd_9p3a5Ssz3-qfgn8_tF3zb9ZpT5e-tW6Lk4TEUoS4L6wVlkE |
CitedBy_id | crossref_primary_10_1371_journal_pone_0223624 crossref_primary_10_3389_fmars_2022_923439 crossref_primary_10_1038_hdy_2016_51 crossref_primary_10_2108_zs160169 crossref_primary_10_1016_j_dsr_2020_103399 crossref_primary_10_1111_jfb_14276 crossref_primary_10_1007_s10750_016_2896_2 crossref_primary_10_1111_gcb_13616 crossref_primary_10_7717_peerj_13452 crossref_primary_10_1186_s12898_019_0266_4 crossref_primary_10_1111_jbi_12991 crossref_primary_10_1111_jfb_14316 crossref_primary_10_2989_1814232X_2020_1788640 crossref_primary_10_1111_jfb_13466 crossref_primary_10_1111_jpy_13182 crossref_primary_10_1098_rspb_2020_1325 crossref_primary_10_1111_jzs_12368 crossref_primary_10_2989_1814232X_2017_1303398 crossref_primary_10_1038_s41598_021_85042_7 crossref_primary_10_1093_biolinnean_blx070 crossref_primary_10_1093_icesjms_fsz009 crossref_primary_10_1016_j_ecss_2019_106401 crossref_primary_10_1007_s10750_017_3209_0 crossref_primary_10_1371_journal_pone_0197611 crossref_primary_10_1016_j_ecss_2017_10_012 crossref_primary_10_1038_s41437_018_0135_5 |
Cites_doi | 10.1186/1471-2148-8-220 10.1038/ncomms3656 10.1093/bioinformatics/16.4.395 10.1093/molbev/msn244 10.1038/35016000 10.1016/j.ajhg.2009.05.001 10.1093/molbev/msq088 10.1111/j.1365-294X.2008.04059.x 10.1093/molbev/msm239 10.1371/journal.pone.0028567 10.1038/nrg3130 10.1038/217624a0 10.1111/j.1365-294X.2010.04783.x 10.1038/ejhg.2013.282 10.1371/journal.pone.0001615 10.1093/oxfordjournals.molbev.a003872 10.1093/molbev/msr121 10.1371/journal.pone.0070492 10.1093/genetics/155.3.1429 10.1093/molbev/mss084 10.1080/10635150701258795 10.1371/journal.pone.0062992 10.1098/rstb.2011.0014 10.1016/j.ympev.2007.06.011 10.1111/j.1365-294X.2009.04333.x 10.1046/j.1365-2540.2000.00717.x 10.1007/s00239-003-2513-7 10.1093/molbev/msi103 10.1093/sysbio/syp028 10.1146/annurev.ecolsys.38.091206.095815 10.1111/j.1365-294X.2009.04163.x 10.3389/fgene.2012.00130 10.1016/S0169-5347(03)00216-7 10.1126/science.1184119 10.1016/j.tree.2014.07.004 10.1111/j.1365-294X.2007.03601.x 10.1016/j.ajhg.2008.01.019 10.1093/molbev/msr227 10.1016/j.ajhg.2010.08.006 10.1098/rspb.2014.0732 10.1038/246096a0 10.1080/10635150701435401 10.1038/nrg2158 10.1016/j.cub.2013.02.044 10.1093/sysbio/syq099 10.1073/pnas.76.4.1967 10.1016/j.ympev.2010.08.017 10.1093/gbe/evr108 10.1038/sj.hdy.6801054 10.1016/j.ympev.2012.06.006 10.1186/1471-2105-11-401 10.1098/rspb.2011.0321 10.1016/j.ajhg.2008.06.014 10.1111/jbi.12416 10.1111/gcb.12157 10.1093/molbev/msi145 10.1111/j.1365-2699.2009.02104.x 10.1038/hdy.1997.65 10.1111/j.1365-294X.2008.03738.x 10.1111/j.1365-294X.2011.05178.x 10.1093/molbev/msm147 10.1016/j.tree.2012.04.011 10.1126/science.1141038 10.1016/j.tree.2010.06.007 10.1038/nrg1659 10.1086/380911 10.1126/science.1101074 10.1111/j.1558-5646.2011.01458.x 10.1016/j.tig.2005.11.006 10.1534/genetics.108.094904 10.1038/ngeo439 10.1371/journal.pone.0017511 10.1093/molbev/msp005 10.1186/1471-2148-13-223 10.1073/pnas.82.6.1741 10.1016/j.ympev.2011.10.004 10.1098/rspb.2011.0346 10.1534/genetics.107.071332 10.1534/genetics.110.118661 10.1038/hdy.2010.14 10.1186/1471-2148-7-214 10.1093/molbev/msn256 10.1111/j.1755-0998.2011.02988.x 10.1073/pnas.90.9.4087 10.1017/S0959774305000107 10.1111/mec.12296 10.1186/1471-2148-8-289 10.1093/genetics/153.4.1863 10.1046/j.1365-294x.1998.00364.x 10.1093/molbev/msm271 10.1093/molbev/msp175 10.1371/journal.pgen.1000209 10.1111/j.1752-4571.2012.00260.x 10.1002/jqs.1227 10.1038/nature10574 10.1093/molbev/msq051 10.1016/j.ympev.2010.11.026 10.1007/BF02111234 10.1016/j.palaeo.2009.10.009 10.1146/annurev.ecolsys.36.102003.152633 10.1016/j.tree.2008.06.010 |
ContentType | Journal Article |
Copyright | Copyright © 2016 Society of Systematic Biologists The Author(s) 2015. Published by Oxford University Press, on behalf of the Society of Systematic Biologists. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2015 The Author(s) 2015. Published by Oxford University Press, on behalf of the Society of Systematic Biologists. All rights reserved. For Permissions, please email: journals.permissions@oup.com. Copyright Oxford University Press, UK May 2016 |
Copyright_xml | – notice: Copyright © 2016 Society of Systematic Biologists – notice: The Author(s) 2015. Published by Oxford University Press, on behalf of the Society of Systematic Biologists. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2015 – notice: The Author(s) 2015. Published by Oxford University Press, on behalf of the Society of Systematic Biologists. All rights reserved. For Permissions, please email: journals.permissions@oup.com. – notice: Copyright Oxford University Press, UK May 2016 |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION K9. 7X8 |
DOI | 10.1093/sysbio/syv120 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitleList | ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Zoology Biology Ecology |
EISSN | 1076-836X |
EndPage | 464 |
ExternalDocumentID | 4076797761 10_1093_sysbio_syv120 26683588 10.1093/sysbio/syv120 44028768 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- -~X .2P .I3 0R~ 123 18M 1TH 29Q 2FS 36B 4.4 48X 5VS 5WD 70D AABJS AABMN AAESY AAHKG AAIMJ AAISJ AAIYJ AAJKP AAJQQ AAKGQ AAMDB AAMVS AANRK AAOGV AAPQZ AAPXW AAUQX AAVAP AAVLN ABBHK ABDBF ABEUO ABIXL ABJNI ABNKS ABPLY ABPPZ ABPTD ABQLI ABSAR ABTLG ABWST ABXSQ ABXZS ABZBJ ACCCW ACGEJ ACGFO ACGFS ACGOD ACIPB ACNCT ACPRK ACSTJ ACUFI ACUTJ ADBBV ADEIU ADEYI ADFTL ADGZP ADHKW ADHZD ADIPN ADOCK ADORX ADQLU ADRIX ADRTK ADULT ADVEK ADXPE ADYVW ADZLD ADZTZ ADZXQ AEGPL AEGXH AEJOX AEKSI AELWJ AEMDU AENEX AENZO AEPUE AESBF AETBJ AEUPB AEWNT AFAZZ AFFZL AFGWE AFIYH AFKVX AFOFC AFXEN AGINJ AGKEF AGQXC AGSYK AGUYK AHMBA AHXPO AIAGR AIJHB AIKOY AJEEA AJWEG AKHUL AKWXX ALMA_UNASSIGNED_HOLDINGS ALUQC ALXQX APIBT APWMN AQVQM ARIXL AXUDD AYOIW AZQFJ BAYMD BCRHZ BENPR BEYMZ BHONS BQDIO BSWAC BYORX C45 CASEJ CBGCD CDBKE COF CS3 CUYZI CWIXF CZ4 DAKXR DEVKO DILTD DOOOF DPORF DPPUQ DU5 DWIUU D~K EAD EAP EAS EBC EBD EBS EE~ EHN EJD EMB EMK EMOBN EPL EPT EST ESX F5P F9B FHSFR FLUFQ FOEOM FQBLK GAUVT GJXCC H5~ HAR HCIFZ HF~ HW0 HZ~ I-F IOX J21 JAAYA JBMMH JBS JEB JENOY JHFFW JKQEH JLS JLXEF JPM JSODD JST KAQDR KBUDW KOP KSI KSN M-Z M49 N9A NGC NLBLG NOMLY NU- NVLIB O9- OAWHX OBOKY ODMLO OJQWA OJZSN OVD OWPYF P2P PAFKI PEELM Q1. Q5Y QBD Q~Q RD5 ROX ROZ RUSNO RW1 RWL RXO RXW SA0 SV3 TAE TEORI TLC TN5 TUS VQA WH7 X7H XSW YAYTL YKOAZ YXANX ~02 ~91 AAHBH AARHZ AAUAY ABMNT ABXVV ADACV ADQBN AHXOZ AILXY ALIPV ATGXG H13 IPSME JXSIZ .-4 3V. 53G 6.Y 7X7 88A 88E 88I 8AF 8AO 8CJ 8FE 8FH 8FI 8FJ 8G5 AAWDT ABSMQ ABTAH ABUWG ACFRR ACMRT ACPQN ACZBC AEKPW AFKRA AFSHK AFYAG AGKRT AGMDO ANFBD APJGH AQDSO ASAOO ASPBG ATDFG ATTQO AVWKF AZFZN AZQEC BBNVY BES BHPHI BKSAR BPHCQ BVXVI CAG CCPQU CGR CUY CVF CXTWN D1J DFGAJ DWQXO ECM EIF ELUNK FEDTE FYUFA GNUQQ GTFYD GUQSH HGD HMCUK HQ2 HTVGU HVGLF JEFFH LK8 M0L M1P M2O M2P M2Q M7P MBTAY MVM NEJ NPM O0~ O~Y PADUT PB- PCBAR PQQKQ PROAC PSQYO S0X TCN UBC UKHRP WHG XOL YXE ZCG ZY4 AASNB AAYXX CITATION KC5 K9. 7X8 |
ID | FETCH-LOGICAL-c481t-caabb38ac9c590855874356f580ac9bd55ee3596db2565728693e04942bf57883 |
ISSN | 1063-5157 |
IngestDate | Fri Oct 25 03:37:54 EDT 2024 Thu Oct 10 17:07:50 EDT 2024 Fri Aug 23 01:25:29 EDT 2024 Wed Oct 16 01:00:55 EDT 2024 Fri Oct 18 01:57:02 EDT 2024 Fri Feb 02 08:05:50 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | two-epoch model Bayesian skyline plots molecular rate calibration of demographic transition expansion dating time dependency molecular calibration |
Language | English |
License | The Author(s) 2015. Published by Oxford University Press, on behalf of the Society of Systematic Biologists. All rights reserved. For Permissions, please email: journals.permissions@oup.com. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c481t-caabb38ac9c590855874356f580ac9bd55ee3596db2565728693e04942bf57883 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://academic.oup.com/sysbio/article-pdf/65/3/449/24754790/syv120.pdf |
PMID | 26683588 |
PQID | 1793587172 |
PQPubID | 37498 |
PageCount | 16 |
ParticipantIDs | proquest_miscellaneous_1785753747 proquest_journals_1793587172 crossref_primary_10_1093_sysbio_syv120 pubmed_primary_26683588 oup_primary_10_1093_sysbio_syv120 jstor_primary_44028768 |
PublicationCentury | 2000 |
PublicationDate | 2016-05-01 |
PublicationDateYYYYMMDD | 2016-05-01 |
PublicationDate_xml | – month: 05 year: 2016 text: 2016-05-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Oxford |
PublicationTitle | Systematic biology |
PublicationTitleAlternate | Syst Biol |
PublicationYear | 2016 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
References | 2016042908190524000_65.3.449.36 2016042908190524000_65.3.449.37 2016042908190524000_65.3.449.34 2016042908190524000_65.3.449.35 2016042908190524000_65.3.449.32 2016042908190524000_65.3.449.33 2016042908190524000_65.3.449.30 2016042908190524000_65.3.449.31 Hoban (2016042908190524000_65.3.449.51) 2012; 13 Laurin (2016042908190524000_65.3.449.60) 2012; 3 2016042908190524000_65.3.449.38 2016042908190524000_65.3.449.39 2016042908190524000_65.3.449.47 2016042908190524000_65.3.449.48 Clark (2016042908190524000_65.3.449.16) 1992; 9 2016042908190524000_65.3.449.45 2016042908190524000_65.3.449.46 2016042908190524000_65.3.449.43 2016042908190524000_65.3.449.44 2016042908190524000_65.3.449.41 2016042908190524000_65.3.449.42 2016042908190524000_65.3.449.40 2016042908190524000_65.3.449.49 2016042908190524000_65.3.449.58 2016042908190524000_65.3.449.59 2016042908190524000_65.3.449.56 2016042908190524000_65.3.449.57 2016042908190524000_65.3.449.54 2016042908190524000_65.3.449.55 2016042908190524000_65.3.449.52 2016042908190524000_65.3.449.53 2016042908190524000_65.3.449.50 Wakeley (2016042908190524000_65.3.449.100) 1999; 153 Rajabi-Maham (2016042908190524000_65.3.449.82) 2008; 17 2016042908190524000_65.3.449.101 2016042908190524000_65.3.449.67 2016042908190524000_65.3.449.68 2016042908190524000_65.3.449.65 2016042908190524000_65.3.449.66 2016042908190524000_65.3.449.63 2016042908190524000_65.3.449.64 2016042908190524000_65.3.449.61 2016042908190524000_65.3.449.62 2016042908190524000_65.3.449.104 2016042908190524000_65.3.449.105 2016042908190524000_65.3.449.102 2016042908190524000_65.3.449.103 Pybus (2016042908190524000_65.3.449.81) 2000; 155 2016042908190524000_65.3.449.78 2016042908190524000_65.3.449.79 2016042908190524000_65.3.449.76 2016042908190524000_65.3.449.77 2016042908190524000_65.3.449.74 2016042908190524000_65.3.449.75 2016042908190524000_65.3.449.72 2016042908190524000_65.3.449.73 2016042908190524000_65.3.449.70 2016042908190524000_65.3.449.71 2016042908190524000_65.3.449.1 2016042908190524000_65.3.449.89 2016042908190524000_65.3.449.2 2016042908190524000_65.3.449.87 2016042908190524000_65.3.449.88 2016042908190524000_65.3.449.85 2016042908190524000_65.3.449.86 2016042908190524000_65.3.449.7 2016042908190524000_65.3.449.83 2016042908190524000_65.3.449.8 2016042908190524000_65.3.449.84 2016042908190524000_65.3.449.9 2016042908190524000_65.3.449.3 2016042908190524000_65.3.449.4 2016042908190524000_65.3.449.80 2016042908190524000_65.3.449.5 2016042908190524000_65.3.449.6 Mugal (2016042908190524000_65.3.449.69) 2014; 31 2016042908190524000_65.3.449.14 2016042908190524000_65.3.449.15 2016042908190524000_65.3.449.12 2016042908190524000_65.3.449.13 2016042908190524000_65.3.449.10 2016042908190524000_65.3.449.98 2016042908190524000_65.3.449.11 2016042908190524000_65.3.449.99 2016042908190524000_65.3.449.96 2016042908190524000_65.3.449.97 2016042908190524000_65.3.449.94 2016042908190524000_65.3.449.95 2016042908190524000_65.3.449.92 2016042908190524000_65.3.449.93 2016042908190524000_65.3.449.90 2016042908190524000_65.3.449.91 2016042908190524000_65.3.449.18 2016042908190524000_65.3.449.19 2016042908190524000_65.3.449.17 2016042908190524000_65.3.449.25 2016042908190524000_65.3.449.26 2016042908190524000_65.3.449.23 2016042908190524000_65.3.449.24 2016042908190524000_65.3.449.21 2016042908190524000_65.3.449.22 2016042908190524000_65.3.449.20 2016042908190524000_65.3.449.29 2016042908190524000_65.3.449.27 2016042908190524000_65.3.449.28 |
References_xml | – ident: 2016042908190524000_65.3.449.57 doi: 10.1186/1471-2148-8-220 – ident: 2016042908190524000_65.3.449.11 doi: 10.1038/ncomms3656 – ident: 2016042908190524000_65.3.449.83 doi: 10.1093/bioinformatics/16.4.395 – ident: 2016042908190524000_65.3.449.38 doi: 10.1093/molbev/msn244 – ident: 2016042908190524000_65.3.449.40 doi: 10.1038/35016000 – ident: 2016042908190524000_65.3.449.93 doi: 10.1016/j.ajhg.2009.05.001 – ident: 2016042908190524000_65.3.449.29 doi: 10.1093/molbev/msq088 – ident: 2016042908190524000_65.3.449.71 doi: 10.1111/j.1365-294X.2008.04059.x – ident: 2016042908190524000_65.3.449.53 doi: 10.1093/molbev/msm239 – ident: 2016042908190524000_65.3.449.66 doi: 10.1371/journal.pone.0028567 – volume: 13 start-page: 110 year: 2012 ident: 2016042908190524000_65.3.449.51 article-title: Computer simulations: Tools for population and evolutionary genetics publication-title: Nat. Rev. Genet. doi: 10.1038/nrg3130 contributor: fullname: Hoban – ident: 2016042908190524000_65.3.449.55 doi: 10.1038/217624a0 – ident: 2016042908190524000_65.3.449.77 doi: 10.1111/j.1365-294X.2010.04783.x – ident: 2016042908190524000_65.3.449.62 doi: 10.1038/ejhg.2013.282 – ident: 2016042908190524000_65.3.449.47 doi: 10.1371/journal.pone.0001615 – ident: 2016042908190524000_65.3.449.97 doi: 10.1093/oxfordjournals.molbev.a003872 – ident: 2016042908190524000_65.3.449.99 doi: 10.1093/molbev/msr121 – ident: 2016042908190524000_65.3.449.74 doi: 10.1371/journal.pone.0070492 – volume: 155 start-page: 1429 year: 2000 ident: 2016042908190524000_65.3.449.81 article-title: An integrated framework for the inference of viral population history from reconstructed genealogies publication-title: Genetics doi: 10.1093/genetics/155.3.1429 contributor: fullname: Pybus – ident: 2016042908190524000_65.3.449.1 doi: 10.1093/molbev/mss084 – ident: 2016042908190524000_65.3.449.27 doi: 10.1080/10635150701258795 – ident: 2016042908190524000_65.3.449.37 doi: 10.1371/journal.pone.0062992 – ident: 2016042908190524000_65.3.449.10 doi: 10.1098/rstb.2011.0014 – ident: 2016042908190524000_65.3.449.65 doi: 10.1016/j.ympev.2007.06.011 – ident: 2016042908190524000_65.3.449.70 doi: 10.1111/j.1365-294X.2009.04333.x – ident: 2016042908190524000_65.3.449.92 doi: 10.1046/j.1365-2540.2000.00717.x – ident: 2016042908190524000_65.3.449.19 doi: 10.1007/s00239-003-2513-7 – ident: 2016042908190524000_65.3.449.25 doi: 10.1093/molbev/msi103 – ident: 2016042908190524000_65.3.449.20 doi: 10.1093/sysbio/syp028 – ident: 2016042908190524000_65.3.449.61 doi: 10.1146/annurev.ecolsys.38.091206.095815 – ident: 2016042908190524000_65.3.449.56 doi: 10.1111/j.1365-294X.2009.04163.x – volume: 3 start-page: 130 year: 2012 ident: 2016042908190524000_65.3.449.60 article-title: Recent progress in paleontological methods for dating the Tree of Life publication-title: Front. Genet. doi: 10.3389/fgene.2012.00130 contributor: fullname: Laurin – ident: 2016042908190524000_65.3.449.23 doi: 10.1016/S0169-5347(03)00216-7 – ident: 2016042908190524000_65.3.449.21 doi: 10.1126/science.1184119 – ident: 2016042908190524000_65.3.449.41 doi: 10.1016/j.tree.2014.07.004 – volume: 17 start-page: 627 year: 2008 ident: 2016042908190524000_65.3.449.82 article-title: Phylogeography and postglacial expansion of Mus musculus domesticus inferred from mitochondrial DNA coalescent, from Iran to Europe publication-title: Mol. Ecol. doi: 10.1111/j.1365-294X.2007.03601.x contributor: fullname: Rajabi-Maham – ident: 2016042908190524000_65.3.449.28 doi: 10.1016/j.ajhg.2008.01.019 – volume: 9 start-page: 744 year: 1992 ident: 2016042908190524000_65.3.449.16 article-title: Sequencing errors and molecular evolutionary analysis publication-title: Mol. Biol. Evol. contributor: fullname: Clark – ident: 2016042908190524000_65.3.449.18 doi: 10.1093/molbev/msr227 – ident: 2016042908190524000_65.3.449.5 doi: 10.1016/j.ajhg.2010.08.006 – ident: 2016042908190524000_65.3.449.26 doi: 10.1098/rspb.2014.0732 – ident: 2016042908190524000_65.3.449.73 doi: 10.1038/246096a0 – ident: 2016042908190524000_65.3.449.49 doi: 10.1080/10635150701435401 – ident: 2016042908190524000_65.3.449.2 doi: 10.1038/nrg2158 – ident: 2016042908190524000_65.3.449.32 doi: 10.1016/j.cub.2013.02.044 – ident: 2016042908190524000_65.3.449.44 doi: 10.1093/sysbio/syq099 – ident: 2016042908190524000_65.3.449.12 doi: 10.1073/pnas.76.4.1967 – ident: 2016042908190524000_65.3.449.9 doi: 10.1016/j.ympev.2010.08.017 – ident: 2016042908190524000_65.3.449.96 doi: 10.1093/gbe/evr108 – ident: 2016042908190524000_65.3.449.7 doi: 10.1038/sj.hdy.6801054 – ident: 2016042908190524000_65.3.449.35 doi: 10.1016/j.ympev.2012.06.006 – ident: 2016042908190524000_65.3.449.17 doi: 10.1186/1471-2105-11-401 – ident: 2016042908190524000_65.3.449.39 doi: 10.1098/rspb.2011.0321 – ident: 2016042908190524000_65.3.449.42 doi: 10.1016/j.ajhg.2008.06.014 – ident: 2016042908190524000_65.3.449.64 doi: 10.1111/jbi.12416 – ident: 2016042908190524000_65.3.449.79 doi: 10.1111/gcb.12157 – ident: 2016042908190524000_65.3.449.46 doi: 10.1093/molbev/msi145 – ident: 2016042908190524000_65.3.449.88 doi: 10.1111/j.1365-2699.2009.02104.x – ident: 2016042908190524000_65.3.449.85 doi: 10.1038/hdy.1997.65 – ident: 2016042908190524000_65.3.449.86 – ident: 2016042908190524000_65.3.449.89 doi: 10.1111/j.1365-294X.2008.03738.x – ident: 2016042908190524000_65.3.449.43 doi: 10.1111/j.1365-294X.2011.05178.x – ident: 2016042908190524000_65.3.449.52 doi: 10.1093/molbev/msm147 – volume: 31 start-page: 212 year: 2014 ident: 2016042908190524000_65.3.449.69 publication-title: Why time matters: Codon evolution and the temporal dynamics of dN/dS contributor: fullname: Mugal – ident: 2016042908190524000_65.3.449.31 doi: 10.1016/j.tree.2012.04.011 – ident: 2016042908190524000_65.3.449.54 doi: 10.1126/science.1141038 – ident: 2016042908190524000_65.3.449.59 doi: 10.1016/j.tree.2010.06.007 – ident: 2016042908190524000_65.3.449.58 doi: 10.1038/nrg1659 – ident: 2016042908190524000_65.3.449.104 doi: 10.1086/380911 – ident: 2016042908190524000_65.3.449.90 doi: 10.1126/science.1101074 – ident: 2016042908190524000_65.3.449.6 doi: 10.1111/j.1558-5646.2011.01458.x – ident: 2016042908190524000_65.3.449.45 doi: 10.1016/j.tig.2005.11.006 – ident: 2016042908190524000_65.3.449.94 doi: 10.1534/genetics.108.094904 – ident: 2016042908190524000_65.3.449.4 doi: 10.1038/ngeo439 – ident: 2016042908190524000_65.3.449.75 doi: 10.1371/journal.pone.0017511 – ident: 2016042908190524000_65.3.449.95 doi: 10.1093/molbev/msp005 – ident: 2016042908190524000_65.3.449.3 doi: 10.1186/1471-2148-13-223 – ident: 2016042908190524000_65.3.449.103 doi: 10.1073/pnas.82.6.1741 – ident: 2016042908190524000_65.3.449.50 doi: 10.1016/j.ympev.2011.10.004 – ident: 2016042908190524000_65.3.449.22 doi: 10.1098/rspb.2011.0346 – ident: 2016042908190524000_65.3.449.87 doi: 10.1534/genetics.107.071332 – ident: 2016042908190524000_65.3.449.15 doi: 10.1534/genetics.110.118661 – ident: 2016042908190524000_65.3.449.14 doi: 10.1038/hdy.2010.14 – ident: 2016042908190524000_65.3.449.24 doi: 10.1186/1471-2148-7-214 – ident: 2016042908190524000_65.3.449.105 – ident: 2016042908190524000_65.3.449.84 doi: 10.1093/molbev/msn256 – ident: 2016042908190524000_65.3.449.48 doi: 10.1111/j.1755-0998.2011.02988.x – ident: 2016042908190524000_65.3.449.67 doi: 10.1073/pnas.90.9.4087 – ident: 2016042908190524000_65.3.449.33 doi: 10.1017/S0959774305000107 – ident: 2016042908190524000_65.3.449.8 doi: 10.1111/mec.12296 – ident: 2016042908190524000_65.3.449.36 doi: 10.1186/1471-2148-8-289 – volume: 153 start-page: 1863 year: 1999 ident: 2016042908190524000_65.3.449.100 article-title: Nonequilibrium migration in human history publication-title: Genetics doi: 10.1093/genetics/153.4.1863 contributor: fullname: Wakeley – ident: 2016042908190524000_65.3.449.30 doi: 10.1046/j.1365-294x.1998.00364.x – ident: 2016042908190524000_65.3.449.13 doi: 10.1093/molbev/msm271 – ident: 2016042908190524000_65.3.449.78 doi: 10.1093/molbev/msp175 – ident: 2016042908190524000_65.3.449.68 doi: 10.1371/journal.pgen.1000209 – ident: 2016042908190524000_65.3.449.34 doi: 10.1111/j.1752-4571.2012.00260.x – ident: 2016042908190524000_65.3.449.101 doi: 10.1002/jqs.1227 – ident: 2016042908190524000_65.3.449.63 doi: 10.1038/nature10574 – ident: 2016042908190524000_65.3.449.76 doi: 10.1093/molbev/msq051 – ident: 2016042908190524000_65.3.449.72 doi: 10.1016/j.ympev.2010.11.026 – ident: 2016042908190524000_65.3.449.91 doi: 10.1007/BF02111234 – ident: 2016042908190524000_65.3.449.102 doi: 10.1016/j.palaeo.2009.10.009 – ident: 2016042908190524000_65.3.449.98 doi: 10.1146/annurev.ecolsys.36.102003.152633 – ident: 2016042908190524000_65.3.449.80 doi: 10.1016/j.tree.2008.06.010 |
SSID | ssj0011651 |
Score | 2.373899 |
Snippet | The molecular clock hypothesis is fundamental in evolutionary biology as by assuming constancy of the molecular rate it provides a timeframe for evolution.... Abstract The molecular clock hypothesis is fundamental in evolutionary biology as by assuming constancy of the molecular rate it provides a timeframe for... |
SourceID | proquest crossref pubmed oup jstor |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 449 |
SubjectTerms | Bayesian analysis Calibration Climate Change Datasets Demography Evolution Evolution, Molecular Evolutionary genetics Genetic mutation Genetics, Population - methods Geological time Homo sapiens Human genetics Molecular biology Phylogeny Population Dynamics Population genetics Taxa Time Factors |
Title | Late Glacial Demographic Expansion Motivates a Clock Overhaul for Population Genetics |
URI | https://www.jstor.org/stable/44028768 https://www.ncbi.nlm.nih.gov/pubmed/26683588 https://www.proquest.com/docview/1793587172 https://search.proquest.com/docview/1785753747 |
Volume | 65 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwGLVgExIvaFwGhQ0ZCfESZYtjO3Ued2mZULch0UoVL5HtOhoCWrSmSN2v3-dLnMGQGLxEVpo4jU_yfcexfQ5Cb1U-K8SsT1PVz0TKimyWllJnKa85o5IUSjmPpdOz4mTCPkz5tLPgdKtLGrWnr_64ruR_UIV9gKtdJfsPyMZKYQeUAV_YAsKwvRPGIyCKyftv0n32Pjbfvfz0F20FjCEFWWRPvX-ZWSYyOYLE9TU5h9u8kCu3bjH5GP27nAB10859D3T1U6fzHNSa4mOwkEA3V36OEaTWy3Xwbw5fEEjRzdfbMz7qZf0iFdRZCsaw6C0cAvz0RoxjXmM0pEvmRchvReKgUrVewt9zhZ8kz7qk0w60n51Xw8loVI0H0_F9tJlDuIA4tXlweHw4jKNBpOAk6KNCtfu-0n1f5S98wk8p_W2t4q0ug6MO4y30KHB-fOABfIzumfkT9MC7gK6hNNBt6fPClZ6iiYUWB2jxDWhxhBZHaLHEDlrcQosBWtxBi1ton6HJcDA-OkmDA0aqmSBNqqVUigqpS2296TkXQPh4UXORwT4149wYykvrCWaHr3NRlNRYxZ9c1RCKBd1GG_PF3LxAmBpGc5mXui6tqwApayGsSD3RkkjCdA-9a9ux-uGFTio_QYFWvsEr3-A9tO1aOR7FGHBU6LX20Bto9r-dvNOCUoUXaVnZHAF3BlQaqog_Q5izY1dybhYre4y1kqXQ-e2h5x7MeCXgmNCPEOLlHc5-hR52r8AO2mguV2YXaGWjXoen7ho_9Xx1 |
link.rule.ids | 315,783,787,27936,27937 |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Late+Glacial+Demographic+Expansion+Motivates+a+Clock+Overhaul+for+Population+Genetics&rft.jtitle=Systematic+biology&rft.au=Hoareau%2C+Thierry+B&rft.date=2016-05-01&rft.eissn=1076-836X&rft.volume=65&rft.issue=3&rft.spage=449&rft.epage=464&rft_id=info:doi/10.1093%2Fsysbio%2Fsyv120&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-5157&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-5157&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-5157&client=summon |