Alloy design for laser powder bed fusion additive manufacturing: a critical review

Metal additive manufacturing (AM) has been extensively studied in recent decades. Despite the significant progress achieved in manufacturing complex shapes and structures, challenges such as severe cracking when using existing alloys for laser powder bed fusion (L-PBF) AM have persisted. These chall...

Full description

Saved in:
Bibliographic Details
Published inInternational Journal of Extreme Manufacturing Vol. 6; no. 2; pp. 22002 - 62
Main Authors Liu, Zhuangzhuang, Zhou, Qihang, Liang, Xiaokang, Wang, Xiebin, Li, Guichuan, Vanmeensel, Kim, Xie, Jianxin
Format Journal Article
LanguageEnglish
Published Bristol IOP Publishing 01.04.2024
Beijing Advanced Innovation Center for Materials Genome Engineering,University of Science and Technology Beijing,Beijing 100083,People's Republic of China
Key Laboratory for Advanced Materials Processing(MOE),Institute for Advanced Materials and Technology,University of Science and Technology Beijing,Beijing 100083,People's Republic of China
Beijing Laboratory of Metallic Materials and Processing for Modern Transportation,Institute for Advanced Materials and Technology,University of Science and Technology Beijing,Beijing 100083,People's Republic of China%Key Laboratory for Advanced Materials Processing(MOE),Institute for Advanced Materials and Technology,University of Science and Technology Beijing,Beijing 100083,People's Republic of China%Capital Aerospace Machinery Corporation Limited,Beijing 100076,People's Republic of China%Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials(Ministry of Education),Shandong University,Jingshi Road 17923,Jinan 250061,People's Republic of China%Department of Materials Engineering,KU Leuven,Leuven 3001,Belgium
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Metal additive manufacturing (AM) has been extensively studied in recent decades. Despite the significant progress achieved in manufacturing complex shapes and structures, challenges such as severe cracking when using existing alloys for laser powder bed fusion (L-PBF) AM have persisted. These challenges arise because commercial alloys are primarily designed for conventional casting or forging processes, overlooking the fast cooling rates, steep temperature gradients and multiple thermal cycles of L-PBF. To address this, there is an urgent need to develop novel alloys specifically tailored for L-PBF technologies. This review provides a comprehensive summary of the strategies employed in alloy design for L-PBF. It aims to guide future research on designing novel alloys dedicated to L-PBF instead of adapting existing alloys. The review begins by discussing the features of the L-PBF processes, focusing on rapid solidification and intrinsic heat treatment. Next, the printability of the four main existing alloys (Fe-, Ni-, Al- and Ti-based alloys) is critically assessed, with a comparison of their conventional weldability. It was found that the weldability criteria are not always applicable in estimating printability. Furthermore, the review presents recent advances in alloy development and associated strategies, categorizing them into crack mitigation-oriented, microstructure manipulation-oriented and machine learning-assisted approaches. Lastly, an outlook and suggestions are given to highlight the issues that need to be addressed in future work. Process features and typical defects of L-PBF are summarized. Printability of Fe-based, Ni-based, Al-based and Ti-based alloys is summarized and discussed. The application of weldability criteria in assessing printability during L-PBF for each alloy is evaluated. Strategies used in alloy design for L-PBF are summarized and categorized into crack mitigation-oriented, microstructure manipulation-oriented and machine learning-assisted approaches.
AbstractList Metal additive manufacturing(AM)has been extensively studied in recent decades.Despite the significant progress achieved in manufacturing complex shapes and structures,challenges such as severe cracking when using existing alloys for laser powder bed fusion(L-PBF)AM have persisted.These challenges arise because commercial alloys are primarily designed for conventional casting or forging processes,overlooking the fast cooling rates,steep temperature gradients and multiple thermal cycles of L-PBF.To address this,there is an urgent need to develop novel alloys specifically tailored for L-PBF technologies.This review provides a comprehensive summary of the strategies employed in alloy design for L-PBF.It aims to guide future research on designing novel alloys dedicated to L-PBF instead of adapting existing alloys.The review begins by discussing the features of the L-PBF processes,focusing on rapid solidification and intrinsic heat treatment.Next,the printability of the four main existing alloys(Fe-,Ni-,Al-and Ti-based alloys)is critically assessed,with a comparison of their conventional weldability.It was found that the weldability criteria are not always applicable in estimating printability.Furthermore,the review presents recent advances in alloy development and associated strategies,categorizing them into crack mitigation-oriented,microstructure manipulation-oriented and machine learning-assisted approaches.Lastly,an outlook and suggestions are given to highlight the issues that need to be addressed in future work.
Metal additive manufacturing (AM) has been extensively studied in recent decades. Despite the significant progress achieved in manufacturing complex shapes and structures, challenges such as severe cracking when using existing alloys for laser powder bed fusion (L-PBF) AM have persisted. These challenges arise because commercial alloys are primarily designed for conventional casting or forging processes, overlooking the fast cooling rates, steep temperature gradients and multiple thermal cycles of L-PBF. To address this, there is an urgent need to develop novel alloys specifically tailored for L-PBF technologies. This review provides a comprehensive summary of the strategies employed in alloy design for L-PBF. It aims to guide future research on designing novel alloys dedicated to L-PBF instead of adapting existing alloys. The review begins by discussing the features of the L-PBF processes, focusing on rapid solidification and intrinsic heat treatment. Next, the printability of the four main existing alloys (Fe-, Ni-, Al- and Ti-based alloys) is critically assessed, with a comparison of their conventional weldability. It was found that the weldability criteria are not always applicable in estimating printability. Furthermore, the review presents recent advances in alloy development and associated strategies, categorizing them into crack mitigation-oriented, microstructure manipulation-oriented and machine learning-assisted approaches. Lastly, an outlook and suggestions are given to highlight the issues that need to be addressed in future work. Process features and typical defects of L-PBF are summarized. Printability of Fe-based, Ni-based, Al-based and Ti-based alloys is summarized and discussed. The application of weldability criteria in assessing printability during L-PBF for each alloy is evaluated. Strategies used in alloy design for L-PBF are summarized and categorized into crack mitigation-oriented, microstructure manipulation-oriented and machine learning-assisted approaches.
Author Wang, Xiebin
Liu, Zhuangzhuang
Zhou, Qihang
Li, Guichuan
Vanmeensel, Kim
Xie, Jianxin
Liang, Xiaokang
AuthorAffiliation Key Laboratory for Advanced Materials Processing(MOE),Institute for Advanced Materials and Technology,University of Science and Technology Beijing,Beijing 100083,People's Republic of China;Beijing Advanced Innovation Center for Materials Genome Engineering,University of Science and Technology Beijing,Beijing 100083,People's Republic of China;Beijing Laboratory of Metallic Materials and Processing for Modern Transportation,Institute for Advanced Materials and Technology,University of Science and Technology Beijing,Beijing 100083,People's Republic of China%Key Laboratory for Advanced Materials Processing(MOE),Institute for Advanced Materials and Technology,University of Science and Technology Beijing,Beijing 100083,People's Republic of China%Capital Aerospace Machinery Corporation Limited,Beijing 100076,People's Republic of China%Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials(Ministry of Education),Shandong University,Jingshi Road 17923,Jinan 250061,Peop
AuthorAffiliation_xml – name: Key Laboratory for Advanced Materials Processing(MOE),Institute for Advanced Materials and Technology,University of Science and Technology Beijing,Beijing 100083,People's Republic of China;Beijing Advanced Innovation Center for Materials Genome Engineering,University of Science and Technology Beijing,Beijing 100083,People's Republic of China;Beijing Laboratory of Metallic Materials and Processing for Modern Transportation,Institute for Advanced Materials and Technology,University of Science and Technology Beijing,Beijing 100083,People's Republic of China%Key Laboratory for Advanced Materials Processing(MOE),Institute for Advanced Materials and Technology,University of Science and Technology Beijing,Beijing 100083,People's Republic of China%Capital Aerospace Machinery Corporation Limited,Beijing 100076,People's Republic of China%Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials(Ministry of Education),Shandong University,Jingshi Road 17923,Jinan 250061,People's Republic of China%Department of Materials Engineering,KU Leuven,Leuven 3001,Belgium
Author_xml – sequence: 1
  givenname: Zhuangzhuang
  orcidid: 0000-0002-9732-7338
  surname: Liu
  fullname: Liu, Zhuangzhuang
  organization: Beijing Laboratory of Metallic Materials and Processing for Modern Transportation, Institute for Advanced Materials and Technology, University of Science and Technology Beijing , Beijing 100083, People’s Republic of China
– sequence: 2
  givenname: Qihang
  surname: Zhou
  fullname: Zhou, Qihang
  organization: Key Laboratory for Advanced Materials Processing (MOE), Institute for Advanced Materials and Technology, University of Science and Technology Beijing , Beijing 100083, People’s Republic of China
– sequence: 3
  givenname: Xiaokang
  surname: Liang
  fullname: Liang, Xiaokang
  organization: Capital Aerospace Machinery Corporation Limited , Beijing 100076, People’s Republic of China
– sequence: 4
  givenname: Xiebin
  orcidid: 0000-0001-5132-6797
  surname: Wang
  fullname: Wang, Xiebin
  organization: Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University , Jingshi Road 17923, Jinan 250061, People’s Republic of China
– sequence: 5
  givenname: Guichuan
  surname: Li
  fullname: Li, Guichuan
  organization: KU Leuven Department of Materials Engineering, Leuven 3001, Belgium
– sequence: 6
  givenname: Kim
  surname: Vanmeensel
  fullname: Vanmeensel, Kim
  organization: KU Leuven Department of Materials Engineering, Leuven 3001, Belgium
– sequence: 7
  givenname: Jianxin
  surname: Xie
  fullname: Xie, Jianxin
  organization: Beijing Laboratory of Metallic Materials and Processing for Modern Transportation, Institute for Advanced Materials and Technology, University of Science and Technology Beijing , Beijing 100083, People’s Republic of China
BookMark eNp9kd1rFDEUxYNUsNa--xjwQR9cm--Z-FaKH4WCIPoc7k5uliyzkzGZ6bL965t1qgVRn264-Z3DSc5zcjKkAQl5ydk7ztr2QhjJV4217AI8N7p5Qk5_r04ezq1R6hk5LyWumebSNEbxU_L1su_TgXoscTPQkDLtoWCmY9r7OtboaZhLTAMF7-MUb5HuYJgDdNOc47B5T4F2uV500NOMtxH3L8jTAH3B84d5Rr5__PDt6vPq5sun66vLm1WnWj6tOo2tEhat1FIL2SBYJgAU91a1qjFaKiXQGgatFr4JVgjpJRr0InilrTwj14uvT7B1Y447yAeXILqfi5Q3DnIN1qNjgQXNDYfg10q3AhhDI5XF0PHWW1693ixeexgCDBu3TXMeanq39Xd37rAXTCgmGBMVfbWgY04_ZizTIyss51xyq1mlzEJ1OZWSMbguTjDVj5wyxN5x5o7NuWM17liTW5qrQvaH8NfL_iN5vUhiGh_DxC3unHHCMXHM7UYfKvn2L-Q_je8BREi1rw
CODEN IJEMKF
CitedBy_id crossref_primary_10_1080_17452759_2024_2424463
crossref_primary_10_1002_adem_202401608
crossref_primary_10_3788_IRLA20240432
crossref_primary_10_1016_j_compositesb_2024_111940
crossref_primary_10_1016_j_coco_2024_102244
crossref_primary_10_1088_2631_7990_ad88e3
crossref_primary_10_3390_cryst14090749
crossref_primary_10_3390_app15052550
crossref_primary_10_1088_1361_648X_ad4aab
crossref_primary_10_3390_jmmp8060288
crossref_primary_10_1088_2631_7990_ad4e1d
crossref_primary_10_3390_met14040425
crossref_primary_10_1016_j_matdes_2025_113594
crossref_primary_10_1016_j_msea_2025_148076
crossref_primary_10_1016_j_cja_2024_08_052
crossref_primary_10_1016_j_surfcoat_2024_131487
crossref_primary_10_1016_j_jmrt_2024_06_038
crossref_primary_10_1088_2631_7990_ad7f2e
crossref_primary_10_1088_2631_7990_ad5424
Cites_doi 10.1007/s11595-011-0335-9
10.1080/02670836.2022.2068759
10.1016/j.addma.2017.05.007
10.1016/j.msea.2020.139533
10.1016/j.commatsci.2018.04.022
10.1016/j.actamat.2020.03.060
10.1016/j.msea.2004.03.074
10.1016/j.addma.2018.05.005
10.1016/j.addma.2021.102278
10.1016/S1359-6454(00)00368-2
10.1016/j.addma.2021.101966
10.1080/21663831.2021.1966537
10.3390/ma13092149
10.7502/j.issn.1674-3962.201905032
10.1016/j.apmate.2021.11.001
10.1016/j.msea.2011.11.092
10.7449/2012/Superalloys_2012_577_586
10.1016/j.addma.2021.102314
10.1038/s41524-019-0227-7
10.1016/j.addma.2019.05.028
10.1016/j.jallcom.2020.154481
10.1016/j.addma.2018.09.034
10.3390/met9010086
10.1016/j.commatsci.2022.111185
10.1007/978-3-030-51834-9_99
10.1016/j.jallcom.2009.03.016
10.1038/s41586-019-1783-1
10.1016/j.actamat.2018.03.017
10.1016/j.commatsci.2021.111181
10.1016/j.addma.2017.05.006
10.1016/j.jallcom.2021.159329
10.1016/j.jallcom.2022.168099
10.1016/j.msea.2015.06.088
10.1016/j.addma.2021.102155
10.1126/science.abg1487
10.1016/j.matchar.2021.111012
10.1016/j.addma.2022.102762
10.1088/2631-7990/ab9ead
10.1016/j.actamat.2014.12.054
10.1016/j.mtcomm.2022.103139
10.1016/j.msea.2020.139124
10.1016/j.jmatprotec.2016.08.003
10.1038/nmat5021
10.1038/nature23894
10.1016/j.heliyon.2022.e09041
10.3390/ma14206157
10.1080/02670836.2022.2130530
10.1007/s11661-000-0264-2
10.1016/j.bioactmat.2019.12.004
10.1016/j.addma.2021.101993
10.1016/j.actamat.2020.07.015
10.1016/j.matdes.2019.108191
10.1016/j.addma.2017.11.001
10.1038/s41467-020-16188-7
10.1088/2631-7990/ac6b61
10.1016/j.phpro.2011.03.035
10.1016/j.jallcom.2017.05.171
10.4236/wjet.2021.94054
10.3390/ma11081288
10.1016/j.commatsci.2018.04.027
10.1038/s41467-022-31969-y
10.1016/j.addma.2023.103500
10.1016/j.addma.2022.103068
10.1016/j.addma.2021.102336
10.1016/j.actamat.2020.116505
10.1016/j.addma.2019.100779
10.1016/j.addma.2021.102147
10.1016/j.matdes.2017.11.042
10.1038/s41467-022-28649-2
10.1016/j.addma.2020.101682
10.1016/j.actamat.2004.03.047
10.1016/j.msea.2015.12.101
10.1007/s00170-022-08673-8
10.1016/j.matdes.2021.109606
10.1016/j.jallcom.2021.159680
10.1016/j.jmst.2021.05.011
10.1016/j.actamat.2021.117612
10.1016/j.promfg.2019.07.030
10.1016/j.jmapro.2021.12.033
10.1080/17452759.2022.2068447
10.1016/j.matchar.2011.03.006
10.1016/S1359-6454(02)00258-6
10.1016/j.matdes.2016.07.009
10.1115/1.4050461
10.1016/j.msea.2017.09.041
10.1016/j.msea.2016.11.059
10.1115/1.4045415
10.1016/j.addma.2020.101619
10.1016/j.actamat.2019.03.010
10.1016/j.addma.2021.102031
10.1007/s11661-020-05692-6
10.1016/j.msea.2016.07.061
10.1002/0471434027
10.3390/met10070882
10.1016/j.jmst.2023.04.072
10.3390/ma13214930
10.18063/ijb.v8i1.478
10.1016/S1359-6454(02)00042-3
10.1016/j.addma.2021.102210
10.1016/j.actamat.2019.07.041
10.1016/j.addma.2022.103173
10.1016/j.msea.2017.11.063
10.1016/j.addma.2015.07.002
10.1016/j.jmbbm.2007.07.001
10.1007/s12540-018-00211-0
10.1088/2631-7990/ac466d
10.3929/ETHZ-A-010802372
10.1016/j.jtemb.2020.126508
10.1016/j.addma.2020.101829
10.1016/j.actamat.2020.10.010
10.1016/j.apmt.2021.101123
10.1016/j.pmatsci.2023.101109
10.1016/j.addma.2023.103603
10.1016/j.jmatprotec.2013.03.009
10.1016/j.addma.2014.12.006
10.1016/j.ijfatigue.2016.03.014
10.1016/j.jallcom.2017.02.086
10.1016/j.addma.2020.101270
10.1007/s11661-020-05992-x
10.1080/17452759.2020.1779999
10.1016/j.pmatsci.2019.100578
10.1016/j.actamat.2022.118307
10.1016/j.actbio.2009.11.011
10.1007/s11661-021-06279-5
10.1002/adem.201500419
10.1007/s11837-018-2994-x
10.1007/s11661-021-06568-z
10.1016/j.jmsy.2021.01.008
10.1016/j.actamat.2020.09.023
10.3390/mi8010023
10.1038/s41524-020-0334-5
10.1080/02670836.2022.2045549
10.1016/j.matdes.2018.107552
10.1016/j.actamat.2015.01.034
10.1016/j.actamat.2011.11.020
10.1016/j.actamat.2020.09.068
10.1126/science.abj3770
10.1016/j.addma.2022.103071
10.1016/j.matdes.2023.112031
10.1016/j.actamat.2016.07.019
10.1016/j.msea.2019.138633
10.1088/2631-7990/acb134
10.1016/j.actamat.2014.01.018
10.1016/j.addma.2022.103240
10.1016/j.msea.2021.141985
10.1016/j.msea.2004.03.075
10.1016/j.pnsc.2018.07.001
10.1016/j.actamat.2023.118736
10.1016/j.actamat.2018.04.053
10.1016/j.addma.2023.103649
10.1016/j.eng.2020.02.018
10.1016/j.addma.2022.103245
10.1016/j.pmatsci.2017.10.001
10.1016/j.mtla.2020.100941
10.3929/ethz-a-010584903
10.1016/j.addma.2021.102516
10.1080/10426914.2015.1026351
10.1016/j.addma.2019.101011
10.1007/s11831-019-09331-1
10.1038/ncomms11241
10.1016/j.addma.2020.101457
10.1179/1743284715Y.0000000108
10.1016/j.actamat.2016.02.014
10.1016/j.addma.2022.102876
10.1016/j.addma.2021.102176
10.1016/j.msea.2016.04.014
10.1016/j.actamat.2021.116698
10.1016/j.addma.2020.101308
10.1016/j.actamat.2021.117118
10.1016/j.pmatsci.2021.100795
10.1016/j.matlet.2018.11.033
10.1016/j.addma.2022.102871
10.1016/j.addma.2022.103016
10.1016/j.addma.2020.101708
10.1146/annurev-matsci-070115-031816
10.1016/j.msea.2015.05.035
10.1007/s11661-012-1562-1
10.1016/j.matdes.2019.108164
10.1080/17452759.2021.1990358
10.1007/s00170-017-0426-7
10.1016/j.pmatsci.2008.06.004
10.1016/j.addma.2021.101862
10.1007/s11771-021-4720-z
10.1007/s11661-016-3883-y
10.1007/s11661-999-0334-z
10.1016/j.addma.2019.05.027
10.1016/j.cirp.2016.04.057
10.1007/s00170-013-5431-x
10.1080/17452759.2021.1944229
10.1016/j.jmatprotec.2016.09.005
10.1016/j.addma.2017.02.002
10.3390/ma13225063
10.1016/j.addma.2020.101443
10.1016/j.addma.2017.12.002
10.1016/j.addma.2020.101360
10.1016/j.addma.2020.101198
10.1016/j.matdes.2015.10.065
10.1016/j.addma.2022.103262
10.1016/j.matdes.2021.110008
10.1016/j.addma.2019.02.020
10.1016/j.jallcom.2019.152021
10.1007/BF02643923
10.1016/j.jallcom.2018.05.179
10.1016/j.addma.2022.102914
10.3390/mi13081366
10.1007/s11665-021-06071-x
10.1016/j.actamat.2021.117271
10.1007/s40964-021-00189-z
10.1016/j.phpro.2011.03.050
10.18063/msam.v1i2.11
10.1016/j.addma.2021.102249
10.1088/2631-7990/abce04
10.1007/s11665-021-05800-6
10.3788/LOP56.190006
10.1016/j.jallcom.2018.06.032
10.1016/S1359-6462(01)01107-1
10.1016/j.addma.2020.101175
10.1016/j.matdes.2014.09.044
10.1557/jmr.2020.90
10.1016/j.jmst.2022.02.015
10.1016/j.msea.2023.144591
10.1038/s41586-020-2409-3
10.1108/RPJ-12-2019-0310
10.1016/j.scriptamat.2018.03.035
10.1016/j.addma.2022.102656
10.1002/srin.201900447
10.1016/j.pmatsci.2023.101108
10.3390/ma12071007
10.1088/2631-7990/abe0d0
10.1080/09506608.2021.1983351
10.18063/msam.v1i1.4
ContentType Journal Article
Copyright 2024 The Author(s). Published by IOP Publishing Ltd on behalf of the IMMT
2024 The Author(s). Published by IOP Publishing Ltd on behalf of the IMMT. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: 2024 The Author(s). Published by IOP Publishing Ltd on behalf of the IMMT
– notice: 2024 The Author(s). Published by IOP Publishing Ltd on behalf of the IMMT. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID O3W
TSCCA
AAYXX
CITATION
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
D1I
DWQXO
HCIFZ
KB.
P5Z
P62
PDBOC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
2B.
4A8
92I
93N
PSX
TCJ
DOA
DOI 10.1088/2631-7990/ad1657
DatabaseName Institute of Physics Open Access Journal Titles (WRLC)
IOPscience (Open Access)
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One
ProQuest Materials Science Collection
ProQuest Central
SciTech Premium Collection
Materials Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
Materials Science Database
ProQuest Central (New)
ProQuest Materials Science Collection
Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Publicly Available Content Database

CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: O3W
  name: Institute of Physics Open Access Journal Titles (WRLC)
  url: http://iopscience.iop.org/
  sourceTypes:
    Enrichment Source
    Publisher
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
EISSN 2631-7990
EndPage 62
ExternalDocumentID oai_doaj_org_article_0f0f5161afdb4582a00e6349efc18d91
jdzz_yw202402002
10_1088_2631_7990_ad1657
ijemad1657
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 52090041; 52104368
  funderid: http://dx.doi.org/10.13039/501100001809
– fundername: National Major Science and Technology Projects of China
  grantid: J2019-VII-0010-0150
  funderid: http://dx.doi.org/10.13039/501100013076
– fundername: National Key Research and Development Program of China
  grantid: 2022YFB4600302
  funderid: http://dx.doi.org/10.13039/501100012166
GroupedDBID -SC
-S~
AAXDM
ABHWH
ABJCF
ACHIP
ADBBV
AFKRA
AKPSB
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
CAJEC
CCPQU
CJUJL
EBS
EJD
GROUPED_DOAJ
HCIFZ
IJHAN
IOP
KB.
N5L
O3W
OK1
PDBOC
PIMPY
TCJ
TGT
TSCCA
U1G
U5M
AAFWJ
AAYXX
AFPKN
CITATION
PHGZM
PHGZT
Q--
8FE
8FG
ABUWG
AZQEC
D1I
DWQXO
P62
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
2B.
4A8
92I
93N
CDYEO
PSX
PUEGO
ID FETCH-LOGICAL-c481t-c5e8429e93535237ea902aa41d94847653442e960a852d7f9223d3e6ed2fd4593
IEDL.DBID O3W
ISSN 2631-8644
IngestDate Wed Aug 27 01:23:59 EDT 2025
Thu May 29 04:04:38 EDT 2025
Fri Jul 25 10:41:39 EDT 2025
Thu Apr 24 23:02:51 EDT 2025
Tue Jul 01 02:55:53 EDT 2025
Sun Aug 18 15:20:26 EDT 2024
Tue Aug 20 22:16:37 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords alloy design
crack mitigation
printability
laser powder bed fusion
Language English
License Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c481t-c5e8429e93535237ea902aa41d94847653442e960a852d7f9223d3e6ed2fd4593
Notes IJEM-111114.R1
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5132-6797
0000-0002-9732-7338
OpenAccessLink https://iopscience.iop.org/article/10.1088/2631-7990/ad1657
PQID 2911131950
PQPubID 4916450
PageCount 35
ParticipantIDs iop_journals_10_1088_2631_7990_ad1657
wanfang_journals_jdzz_yw202402002
crossref_citationtrail_10_1088_2631_7990_ad1657
proquest_journals_2911131950
doaj_primary_oai_doaj_org_article_0f0f5161afdb4582a00e6349efc18d91
crossref_primary_10_1088_2631_7990_ad1657
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-04-01
PublicationDateYYYYMMDD 2024-04-01
PublicationDate_xml – month: 04
  year: 2024
  text: 2024-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Bristol
PublicationPlace_xml – name: Bristol
PublicationTitle International Journal of Extreme Manufacturing
PublicationTitleAbbrev IJEM
PublicationTitleAlternate Int. J. Extrem. Manuf
PublicationTitle_FL International Journal of Extreme Manufacturing
PublicationYear 2024
Publisher IOP Publishing
Beijing Advanced Innovation Center for Materials Genome Engineering,University of Science and Technology Beijing,Beijing 100083,People's Republic of China
Key Laboratory for Advanced Materials Processing(MOE),Institute for Advanced Materials and Technology,University of Science and Technology Beijing,Beijing 100083,People's Republic of China
Beijing Laboratory of Metallic Materials and Processing for Modern Transportation,Institute for Advanced Materials and Technology,University of Science and Technology Beijing,Beijing 100083,People's Republic of China%Key Laboratory for Advanced Materials Processing(MOE),Institute for Advanced Materials and Technology,University of Science and Technology Beijing,Beijing 100083,People's Republic of China%Capital Aerospace Machinery Corporation Limited,Beijing 100076,People's Republic of China%Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials(Ministry of Education),Shandong University,Jingshi Road 17923,Jinan 250061,People's Republic of China%Department of Materials Engineering,KU Leuven,Leuven 3001,Belgium
Publisher_xml – name: IOP Publishing
– name: Key Laboratory for Advanced Materials Processing(MOE),Institute for Advanced Materials and Technology,University of Science and Technology Beijing,Beijing 100083,People's Republic of China
– name: Beijing Advanced Innovation Center for Materials Genome Engineering,University of Science and Technology Beijing,Beijing 100083,People's Republic of China
– name: Beijing Laboratory of Metallic Materials and Processing for Modern Transportation,Institute for Advanced Materials and Technology,University of Science and Technology Beijing,Beijing 100083,People's Republic of China%Key Laboratory for Advanced Materials Processing(MOE),Institute for Advanced Materials and Technology,University of Science and Technology Beijing,Beijing 100083,People's Republic of China%Capital Aerospace Machinery Corporation Limited,Beijing 100076,People's Republic of China%Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials(Ministry of Education),Shandong University,Jingshi Road 17923,Jinan 250061,People's Republic of China%Department of Materials Engineering,KU Leuven,Leuven 3001,Belgium
References Jiang (ijemad1657bib225) 2022; 98
Guo (ijemad1657bib194) 2022; 59
Sing (ijemad1657bib213) 2021; 16
Stoll (ijemad1657bib92) 2016
Li (ijemad1657bib154) 2023; 864
Noecker (ijemad1657bib68) 2009; 88
Zhou (ijemad1657bib127) 2019; 28
Bayat (ijemad1657bib24) 2021; 47
Kimura (ijemad1657bib146) 2016; 89
Gotelid (ijemad1657bib105) 2021; 27
Zhang (ijemad1657bib56) 2021; 38
Schwendner (ijemad1657bib240) 2001; 45
Wilson-Heid (ijemad1657bib75) 2021; 39
Chen (ijemad1657bib237) 2021; 3
Ramirez (ijemad1657bib66) 2004; 380
Yu (ijemad1657bib210) 2022; 1
Zhang (ijemad1657bib53) 2021; 374
Panwisawas (ijemad1657bib58) 2020; 11
Bauer (ijemad1657bib109) 2015
Tao (ijemad1657bib158) 2020; 34
Liu (ijemad1657bib31) 2019; 164
Colombo-Pulgarin (ijemad1657bib171) 2021; 30
Yin (ijemad1657bib2) 2022; 67
Kürnsteiner (ijemad1657bib196) 2020; 582
Manca (ijemad1657bib204) 2019; 25
Zhang (ijemad1657bib54) 2018; 152
Jia (ijemad1657bib203) 2018; 151
Rashed (ijemad1657bib47) 2021; 37
Saby (ijemad1657bib81) 2021; 44
Chen (ijemad1657bib161) 2022; 59
Niinomi (ijemad1657bib169) 2008; 1
Zhang (ijemad1657bib73) 2021; 46
Sun (ijemad1657bib188) 2022; 13
Narayana (ijemad1657bib199) 2019; 811
Bajaj (ijemad1657bib39) 2020; 772
Nong (ijemad1657bib80) 2021; 174
Rees (ijemad1657bib139) 2023; 231
Sun (ijemad1657bib48) 2020; 33
Shamsaei (ijemad1657bib21) 2015; 8
Casati (ijemad1657bib142) 2017; 48A
Plocher (ijemad1657bib10) 2019; 183
Khairallah (ijemad1657bib52) 2016; 108
Griffiths (ijemad1657bib183) 2020; 36
Karg (ijemad1657bib141) 2017; 8
Vilaro (ijemad1657bib49) 2012; 534
Marchese (ijemad1657bib111) 2020; 10
Yong (ijemad1657bib215) 2022; 204
Volpato (ijemad1657bib98) 2022; 55
Hunt (ijemad1657bib181) 1979; vol 3
Huang (ijemad1657bib176) 2021; 28
Croteau (ijemad1657bib206) 2018; 153
Ghoussoub (ijemad1657bib116) 2022; 53
Qi (ijemad1657bib145) 2020; 35
Carroll (ijemad1657bib207) 2015; 87
Wang (ijemad1657bib195) 2018; 17
Singh (ijemad1657bib187) 2017; 719
Sun (ijemad1657bib42) 2022; 1
Aversa (ijemad1657bib184) 2019; 12
Zhang (ijemad1657bib222) 2020; 200
Tytko (ijemad1657bib17) 2012; 60
Martin (ijemad1657bib69) 2017; 549
Zhang (ijemad1657bib27) 2020; 2
Wang (ijemad1657bib79) 2020; 91
Kendig (ijemad1657bib201) 2002; 50
Chen (ijemad1657bib117) 2018; 28
Mostafaei (ijemad1657bib38) 2023; 136
Collins (ijemad1657bib16) 2016; 46
Peng (ijemad1657bib114) 2020; 13
Narasimharaju (ijemad1657bib86) 2022; 75
Hu (ijemad1657bib219) 2021; 52
Shao (ijemad1657bib8) 2019; 29
Geetha (ijemad1657bib166) 2009; 54
Tang (ijemad1657bib72) 2021; 202
Liu (ijemad1657bib50) 2011; 26
Chlebus (ijemad1657bib165) 2011; 62
Vanzetti (ijemad1657bib148) 2021; 14
Dreano (ijemad1657bib217) 2022; 55
Guo (ijemad1657bib96) 2017; 240
Yang (ijemad1657bib157) 2014; 70
Carrozza (ijemad1657bib178) 2021; 870
Xu (ijemad1657bib63) 2022; 240
Leo (ijemad1657bib78) 2019; 41
Kimura (ijemad1657bib129) 2021; 872
Ramirez (ijemad1657bib67) 2004; 380
Li (ijemad1657bib134) 2020; 193
Mukherjee (ijemad1657bib238) 2018; 150
Snow (ijemad1657bib234) 2021; 59
Rao (ijemad1657bib147) 2016; 109
Sabzi (ijemad1657bib88) 2020; 34
Zhu (ijemad1657bib40) 2019; 56
Scibior (ijemad1657bib163) 2020; 61
Farup (ijemad1657bib62) 2000; 31
Christofidou (ijemad1657bib108) 2020
Flemings (ijemad1657bib132) 1974; 5
Haafkens (ijemad1657bib101) 1982; 61
Fu (ijemad1657bib64) 2022; 122
Zhang (ijemad1657bib190) 2019; 576
Zhou (ijemad1657bib107) 2022; 58
Chakraborty (ijemad1657bib113) 2022; 30
Kou (ijemad1657bib65) 2003; 431
Sing (ijemad1657bib33) 2022; 8
Bartkowiak (ijemad1657bib137) 2011
Catchpole-Smith (ijemad1657bib100) 2017; 15
Montero-Sistiaga (ijemad1657bib156) 2016; 238
Wang (ijemad1657bib224) 2019; 5
Meng (ijemad1657bib9) 2020; 27
Aboulkhair (ijemad1657bib36) 2019; 106
Li (ijemad1657bib121) 2022
Soundararajan (ijemad1657bib25) 2021; 47
Wang (ijemad1657bib220) 2020; 39
Gou (ijemad1657bib198) 2020; 829
Asgari (ijemad1657bib118) 2017; 707
Zhang (ijemad1657bib208) 2019; 184
Khan (ijemad1657bib135) 2022; 60
Xue (ijemad1657bib226) 2016; 7
Stopyra (ijemad1657bib120) 2020; 35
ASME (ijemad1657bib37) 2018
Sanchez-Mata (ijemad1657bib112) 2018; 11
Zhang (ijemad1657bib71) 2022; 1
Jackson (ijemad1657bib99) 2018
Meiners (ijemad1657bib3) 1998
Sing (ijemad1657bib14) 2021; 119
Opprecht (ijemad1657bib125) 2020; 197
Zhang (ijemad1657bib110) 2021; 826
Li (ijemad1657bib44) 2022; 13
Kou (ijemad1657bib131) 2015; 88
Huang (ijemad1657bib232) 2021; 203
Zhao (ijemad1657bib103) 2023; 247
Rajasekhar (ijemad1657bib90) 2015; 3
Mehta (ijemad1657bib153) 2021; 41
Chen (ijemad1657bib229) 2020; 13
Zhang (ijemad1657bib128) 2016; 656
Batalha (ijemad1657bib173) 2020; 35
Yan (ijemad1657bib95) 2019; 9
Zhou (ijemad1657bib172) 2018; 762
Duan (ijemad1657bib175) 2021; 37
Sing (ijemad1657bib1) 2020; 15
Mukherjee (ijemad1657bib239) 2018; 150
Carter (ijemad1657bib60) 2012
Sui (ijemad1657bib209) 2022; 4
Ghayoor (ijemad1657bib74) 2020; 32
Li (ijemad1657bib4) 2020; 6
Zhang (ijemad1657bib35) 2023; 936
Tshephe (ijemad1657bib32) 2022; 8
Hauser (ijemad1657bib122) 2021; 41
Ojo (ijemad1657bib28) 2023; 39
Zhang (ijemad1657bib34) 2016; 18
Snow (ijemad1657bib11) 2020; 36
Karthik (ijemad1657bib76) 2021; 47
Buchbinder (ijemad1657bib119) 2011; 12
Kose (ijemad1657bib93) 2021; 30
Scime (ijemad1657bib236) 2018; 24
Feng (ijemad1657bib228) 2023; 167
Herzog (ijemad1657bib12) 2016; 117
Zhang (ijemad1657bib211) 2022; 17
Vrancken (ijemad1657bib70) 2014; 68
Wang (ijemad1657bib160) 2022; 52
Wang (ijemad1657bib61) 2004; 52
Qu (ijemad1657bib59) 2022; 13
Bartolomeu (ijemad1657bib43) 2017; 16
Ozel (ijemad1657bib233) 2020; 142
Mojumder (ijemad1657bib22) 2023; 68
Liu (ijemad1657bib230) 2020; 201
Mutua (ijemad1657bib83) 2018; 139
Zhao (ijemad1657bib130) 2022; 56
Lu (ijemad1657bib159) 2023; 71
Bartlett (ijemad1657bib55) 2019; 27
Blakey-Milner (ijemad1657bib6) 2021; 209
Hyer (ijemad1657bib133) 2021; 208
Wen (ijemad1657bib216) 2019; 170
Ertay (ijemad1657bib235) 2021; 143
Maleki (ijemad1657bib29) 2021; 37
Mathers (ijemad1657bib124) 2002
Qi (ijemad1657bib144) 2021; 47
Kontis (ijemad1657bib18) 2019; 177
Alhassan (ijemad1657bib87) 2021; 9
Ummethala (ijemad1657bib174) 2020; 14
Alipour (ijemad1657bib19) 2022; 60
Geenen (ijemad1657bib94) 2019; 28
Sweet (ijemad1657bib186) 2013; 44
Rappaz (ijemad1657bib180) 1999; 30
Javidrad (ijemad1657bib106) 2020; 51
Du (ijemad1657bib218) 2021; 24
Riener (ijemad1657bib155) 2022; 119
Omiyale (ijemad1657bib5) 2022; 38
Fan (ijemad1657bib177) 2020; 788
Karunakaran (ijemad1657bib41) 2020; 5
Wei (ijemad1657bib13) 2021; 3
Xu (ijemad1657bib182) 2020; 13
Proebstle (ijemad1657bib97) 2016; 674
Liu (ijemad1657bib214) 2020; 6
Mondal (ijemad1657bib221) 2022; 226
Kotadia (ijemad1657bib20) 2021; 46
Easton (ijemad1657bib192) 2001; 49
Wu (ijemad1657bib140) 2022; 54
Grigoriev (ijemad1657bib241) 2017; 704
Li (ijemad1657bib168) 2015; 642
Tonelli (ijemad1657bib126) 2021; 6
Tan (ijemad1657bib193) 2022; 49
Kim (ijemad1657bib89) 2022; 60
Bermingham (ijemad1657bib191) 2009; 481
Nie (ijemad1657bib212) 2018; 764
Li (ijemad1657bib227) 2022; 205
Thapliyal (ijemad1657bib189) 2021; 219
Li (ijemad1657bib123) 2021; 47
Wang (ijemad1657bib46) 2023; 5
Simonelli (ijemad1657bib200) 2020; 51
Spierings (ijemad1657bib202) 2016; 65
Zhang (ijemad1657bib45) 2022; 4
Yadollahi (ijemad1657bib57) 2017; 94
Mu (ijemad1657bib30) 2023; 136
Carter (ijemad1657bib115) 2016; 32
Markanday (ijemad1657bib104) 2022; 6
Oh (ijemad1657bib162) 2021; 9
Pereira (ijemad1657bib149) 2020; 778
Mereddy (ijemad1657bib197) 2018; 70
Lu (ijemad1657bib231) 2022; 17
Wang (ijemad1657bib143) 2018; 711
DebRoy (ijemad1657bib15) 2018; 92
Zhao (ijemad1657bib85) 2015; 30
Kimura (ijemad1657bib151) 2017; 682
Galati (ijemad1657bib23) 2018; 19
Issariyapat (ijemad1657bib164) 2023; 73
Cain (ijemad1657bib170) 2015; 5
Tomus (ijemad1657bib102) 2017; 16
Bandyopadhyay (ijemad1657bib167) 2010; 6
Zhang (ijemad1657bib179) 2002; 50
Mazur (ijemad1657bib82) 2017; 93
Galy (ijemad1657bib136) 2018; 22
Olakanmi (ijemad1657bib152) 2013; 213
Sun (ijemad1657bib185) 2021; 204
Mei (ijemad1657bib84) 2022; 58
Read (ijemad1657bib150) 2015; 65
Sabooni (ijemad1657bib77) 2021; 46
Liu (ijemad1657bib91) 2016; 666
Gu (ijemad1657bib7) 2021; 372
Zhang (ijemad1657bib223) 2021; 215
Dizon (ijemad1657bib26) 2018; 20
Manca (ijemad1657bib205) 2019; 236
Chlebus (ijemad1657bib51) 2015; 639
Karg (ijemad1657bib138) 2014
References_xml – volume: 26
  start-page: 908
  year: 2011
  ident: ijemad1657bib50
  article-title: Effect of intermediate heat treatment temperature on microstructure and notch sensitivity of laser solid formed Inconel 718 superalloy
  publication-title: J. Wuhan Univ. Technol. Mater. Sci. Ed.
  doi: 10.1007/s11595-011-0335-9
– volume: 6
  start-page: 1
  year: 2022
  ident: ijemad1657bib104
  article-title: Applications of alloy design to cracking resistance of additively manufactured Ni-based alloys
  publication-title: Mater. Sci. Technol.
  doi: 10.1080/02670836.2022.2068759
– volume: 16
  start-page: 81
  year: 2017
  ident: ijemad1657bib43
  article-title: 316L stainless steel mechanical and tribological behavior-a comparison between selective laser melting, hot pressing and conventional casting
  publication-title: Addit. Manuf.
  doi: 10.1016/j.addma.2017.05.007
– volume: 788
  year: 2020
  ident: ijemad1657bib177
  article-title: Effects of direct aging on near-alpha Ti-6Al-2Sn-4Zr-2Mo (Ti-6242) titanium alloy fabricated by selective laser melting (SLM)
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2020.139533
– volume: 150
  start-page: 304
  year: 2018
  ident: ijemad1657bib238
  article-title: Heat and fluid flow in additive manufacturing—Part I: modeling of powder bed fusion
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/j.commatsci.2018.04.022
– volume: 193
  start-page: 83
  year: 2020
  ident: ijemad1657bib134
  article-title: Developing a high-strength Al-Mg-Si-Sc-Zr alloy for selective laser melting: crack-inhibiting and multiple strengthening mechanisms
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2020.03.060
– volume: 380
  start-page: 259
  year: 2004
  ident: ijemad1657bib66
  article-title: High temperature behavior of Ni-base weld metal—part I. Ductility and microstructural characterization
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2004.03.074
– volume: 22
  start-page: 165
  year: 2018
  ident: ijemad1657bib136
  article-title: Main defects observed in aluminum alloy parts produced by SLM: from causes to consequences
  publication-title: Addit. Manuf.
  doi: 10.1016/j.addma.2018.05.005
– volume: 47
  year: 2021
  ident: ijemad1657bib24
  article-title: A review of multi-scale and multi-physics simulations of metal additive manufacturing processes with focus on modeling strategies
  publication-title: Addit. Manuf.
  doi: 10.1016/j.addma.2021.102278
– volume: 49
  start-page: 1867
  year: 2001
  ident: ijemad1657bib192
  article-title: A model of grain refinement incorporating alloy constitution and potency of heterogeneous nucleant particles
  publication-title: Acta Mater.
  doi: 10.1016/S1359-6454(00)00368-2
– volume: 41
  year: 2021
  ident: ijemad1657bib153
  article-title: Additive manufacturing and mechanical properties of the dense and crack free Zr-modified aluminum alloy 6061 fabricated by the laser-powder bed fusion
  publication-title: Addit. Manuf.
  doi: 10.1016/j.addma.2021.101966
– volume: 9
  start-page: 429
  year: 2021
  ident: ijemad1657bib162
  article-title: High speed synchrotron x-ray diffraction experiments resolve microstructure and phase transformation in laser processed Ti-6Al-4V
  publication-title: Mater. Res. Lett.
  doi: 10.1080/21663831.2021.1966537
– volume: 13
  start-page: 2149
  year: 2020
  ident: ijemad1657bib114
  article-title: Cracking behavior of René 104 Nickel-based superalloy prepared by selective laser melting using different scanning strategies
  publication-title: Materials
  doi: 10.3390/ma13092149
– volume: 39
  start-page: 269
  year: 2020
  ident: ijemad1657bib220
  article-title: Machine learning assisted high-throughput experiments accelerates the composition design of hard high-entropy alloy Co_xCr_yTi_zMo_uW_v
  publication-title: Mater. China
  doi: 10.7502/j.issn.1674-3962.201905032
– year: 2002
  ident: ijemad1657bib124
– volume: 1
  year: 2022
  ident: ijemad1657bib71
  article-title: Design of titanium alloys by additive manufacturing: a critical review
  publication-title: Adv. Powder Mater.
  doi: 10.1016/j.apmate.2021.11.001
– volume: 534
  start-page: 446
  year: 2012
  ident: ijemad1657bib49
  article-title: Microstructural and mechanical approaches of the selective laser melting process applied to a nickel-base superalloy
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2011.11.092
– year: 2012
  ident: ijemad1657bib60
  article-title: Laser powder bed fabrication of nickel-base superalloys: influence of parameters; characterisation, quantification and mitigation of cracking
  doi: 10.7449/2012/Superalloys_2012_577_586
– volume: 47
  year: 2021
  ident: ijemad1657bib76
  article-title: Delayed deformation-induced martensite transformation and enhanced cryogenic tensile properties in laser additive manufactured 316L austenitic stainless steel
  publication-title: Addit. Manuf.
  doi: 10.1016/j.addma.2021.102314
– volume: 5
  start-page: 87
  year: 2019
  ident: ijemad1657bib224
  article-title: A property-oriented design strategy for high performance copper alloys via machine learning
  publication-title: npj Comput. Mater.
  doi: 10.1038/s41524-019-0227-7
– volume: 28
  start-page: 585
  year: 2019
  ident: ijemad1657bib94
  article-title: Microstructure, mechanical, and tribological properties of M3:2 high-speed steel processed by selective laser melting, hot-isostatic pressing, and casting
  publication-title: Addit. Manuf.
  doi: 10.1016/j.addma.2019.05.028
– volume: 829
  year: 2020
  ident: ijemad1657bib198
  article-title: Effects of trace Nb addition on microstructure and properties of Ti–6Al–4V thin-wall structure prepared via cold metal transfer additive manufacturing
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2020.154481
– volume: 24
  start-page: 273
  year: 2018
  ident: ijemad1657bib236
  article-title: A multi-scale convolutional neural network for autonomous anomaly detection and classification in a laser powder bed fusion additive manufacturing process
  publication-title: Addit. Manuf.
  doi: 10.1016/j.addma.2018.09.034
– volume: 9
  start-page: 86
  year: 2019
  ident: ijemad1657bib95
  article-title: A comprehensive study of steel powders (316L, H13, P20 and 18Ni300) for their selective laser melting additive manufacturing
  publication-title: Metals
  doi: 10.3390/met9010086
– volume: 205
  year: 2022
  ident: ijemad1657bib227
  article-title: Hardness prediction of high entropy alloys with machine learning and material descriptors selection by improved genetic algorithm
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/j.commatsci.2022.111185
– year: 2020
  ident: ijemad1657bib108
  article-title: Microstructural control and optimization of Haynes 282 manufactured through laser powder bed fusion
  doi: 10.1007/978-3-030-51834-9_99
– volume: 481
  start-page: L20
  year: 2009
  ident: ijemad1657bib191
  article-title: Beryllium as a grain refiner in titanium alloys
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2009.03.016
– volume: 576
  start-page: 91
  year: 2019
  ident: ijemad1657bib190
  article-title: Additive manufacturing of ultrafine-grained high-strength titanium alloys
  publication-title: Nature
  doi: 10.1038/s41586-019-1783-1
– volume: 152
  start-page: 200
  year: 2018
  ident: ijemad1657bib54
  article-title: Effect of heat treatment on the microstructural evolution of a nickel-based superalloy additive-manufactured by laser powder bed fusion
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2018.03.017
– volume: 204
  year: 2022
  ident: ijemad1657bib215
  article-title: Improving prediction accuracy of high-performance materials via modified machine learning strategy
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/j.commatsci.2021.111181
– volume: 16
  start-page: 65
  year: 2017
  ident: ijemad1657bib102
  article-title: Effect of minor alloying elements on crack-formation characteristics of Hastelloy-X manufactured by selective laser melting
  publication-title: Addit. Manuf.
  doi: 10.1016/j.addma.2017.05.006
– volume: 870
  year: 2021
  ident: ijemad1657bib178
  article-title: A study on the microstructure and mechanical properties of the Ti-6Al-2Sn-4Zr-6Mo alloy produced via laser powder bed fusion
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2021.159329
– volume: 936
  year: 2023
  ident: ijemad1657bib35
  article-title: Powder bed fusion manufacturing of beta-type titanium alloys for biomedical implant applications: a review
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2022.168099
– volume: 642
  start-page: 268
  year: 2015
  ident: ijemad1657bib168
  article-title: Processing and properties of topologically optimised biomedical Ti-24Nb-4Zr-8Sn scaffolds manufactured by selective laser melting
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2015.06.088
– volume: 46
  year: 2021
  ident: ijemad1657bib20
  article-title: A review of laser powder bed fusion additive manufacturing of aluminium alloys: microstructure and properties
  publication-title: Addit. Manuf.
  doi: 10.1016/j.addma.2021.102155
– volume: 372
  start-page: 932abg1487
  year: 2021
  ident: ijemad1657bib7
  article-title: Material-structure-performance integrated laser-metal additive manufacturing
  publication-title: Science
  doi: 10.1126/science.abg1487
– volume: 174
  year: 2021
  ident: ijemad1657bib80
  article-title: Effect of scanning strategy on the microstructure, texture, and mechanical properties of 15-5PH stainless steel processed by selective laser melting
  publication-title: Mater. Charact.
  doi: 10.1016/j.matchar.2021.111012
– volume: 54
  year: 2022
  ident: ijemad1657bib140
  article-title: Hot cracking evolution and formation mechanism in 2195 Al-Li alloy printed by laser powder bed fusion
  publication-title: Addit. Manuf.
  doi: 10.1016/j.addma.2022.102762
– volume: 2
  year: 2020
  ident: ijemad1657bib27
  article-title: A review on microstructures and properties of high entropy alloys manufactured by selective laser melting
  publication-title: Int. J. Extreme Manuf.
  doi: 10.1088/2631-7990/ab9ead
– volume: 87
  start-page: 309
  year: 2015
  ident: ijemad1657bib207
  article-title: Anisotropic tensile behavior of Ti–6Al–4V components fabricated with directed energy deposition additive manufacturing
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2014.12.054
– volume: 30
  year: 2022
  ident: ijemad1657bib113
  article-title: Micro-cracking mechanism of RENÉ 108 thin-wall components built by laser powder bed fusion additive manufacturing
  publication-title: Mater. Today Commun.
  doi: 10.1016/j.mtcomm.2022.103139
– volume: 778
  year: 2020
  ident: ijemad1657bib149
  article-title: Comparison of AlSi7Mg0.6 alloy obtained by selective laser melting and investment casting processes: microstructure and mechanical properties in as-built/as-cast and heat-treated conditions
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2020.139124
– volume: 238
  start-page: 437
  year: 2016
  ident: ijemad1657bib156
  article-title: Changing the alloy composition of Al7075 for better processability by selective laser melting
  publication-title: J. Mater. Process. Technol.
  doi: 10.1016/j.jmatprotec.2016.08.003
– year: 2018
  ident: ijemad1657bib37
  article-title: Additive manufacturing of nickel-based superalloys
– volume: 17
  start-page: 63
  year: 2018
  ident: ijemad1657bib195
  article-title: Additively manufactured hierarchical stainless steels with high strength and ductility
  publication-title: Nat. Mater.
  doi: 10.1038/nmat5021
– volume: 549
  start-page: 365
  year: 2017
  ident: ijemad1657bib69
  article-title: 3D printing of high-strength aluminium alloys
  publication-title: Nature
  doi: 10.1038/nature23894
– volume: 8
  year: 2022
  ident: ijemad1657bib32
  article-title: Additive manufacturing of titanium-based alloys-a review of methods, properties, challenges, and prospects
  publication-title: Heliyon
  doi: 10.1016/j.heliyon.2022.e09041
– volume: 14
  start-page: 6157
  year: 2021
  ident: ijemad1657bib148
  article-title: Short heat treatments for the F357 aluminum alloy processed by laser powder bed fusion
  publication-title: Materials
  doi: 10.3390/ma14206157
– volume: 39
  start-page: 1
  year: 2023
  ident: ijemad1657bib28
  article-title: Post-processing treatments-microstructure-performance interrelationship of metal additive manufactured aerospace alloys: a review
  publication-title: Mater. Sci. Technol.
  doi: 10.1080/02670836.2022.2130530
– volume: 31
  start-page: 1461
  year: 2000
  ident: ijemad1657bib62
  article-title: Two-phase modeling of mushy zone parameters associated with hot tearing
  publication-title: Metall. Mater. Trans. A
  doi: 10.1007/s11661-000-0264-2
– volume: 5
  start-page: 44
  year: 2020
  ident: ijemad1657bib41
  article-title: Additive manufacturing of magnesium alloys
  publication-title: Bioact. Mater.
  doi: 10.1016/j.bioactmat.2019.12.004
– volume: 41
  year: 2021
  ident: ijemad1657bib122
  article-title: Porosity in wire arc additive manufacturing of aluminium alloys
  publication-title: Addit. Manuf.
  doi: 10.1016/j.addma.2021.101993
– volume: 197
  start-page: 40
  year: 2020
  ident: ijemad1657bib125
  article-title: A solution to the hot cracking problem for aluminium alloys manufactured by laser beam melting
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2020.07.015
– volume: 184
  year: 2019
  ident: ijemad1657bib208
  article-title: Effects of boron addition on microstructures and mechanical properties of Ti-6Al-4V manufactured by direct laser deposition
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2019.108191
– volume: 19
  start-page: 1
  year: 2018
  ident: ijemad1657bib23
  article-title: A literature review of powder-based electron beam melting focusing on numerical simulations
  publication-title: Addit. Manuf.
  doi: 10.1016/j.addma.2017.11.001
– volume: 11
  start-page: 2327
  year: 2020
  ident: ijemad1657bib58
  article-title: Metal 3D printing as a disruptive technology for superalloys
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-16188-7
– volume: 4
  year: 2022
  ident: ijemad1657bib209
  article-title: Study of the intrinsic mechanisms of nickel additive for grain refinement and strength enhancement of laser aided additively manufactured Ti-6Al-4V
  publication-title: Int. J. Extreme Manuf.
  doi: 10.1088/2631-7990/ac6b61
– volume: 12
  start-page: 271
  year: 2011
  ident: ijemad1657bib119
  article-title: High power selective laser melting (HP SLM) of aluminum parts
  publication-title: Phys. Proc.
  doi: 10.1016/j.phpro.2011.03.035
– volume: 719
  start-page: 151
  year: 2017
  ident: ijemad1657bib187
  article-title: Laser metal deposition of nickel coated Al 7050 alloy
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2017.05.171
– volume: 9
  start-page: 782
  year: 2021
  ident: ijemad1657bib87
  article-title: Carbon equivalent fundamentals in evaluating the weldability of microalloy and low alloy steels
  publication-title: World J. Eng. Technol.
  doi: 10.4236/wjet.2021.94054
– volume: 11
  start-page: 1288
  year: 2018
  ident: ijemad1657bib112
  article-title: Fabrication of crack-free nickel-based superalloy considered non-weldable during laser powder bed fusion
  publication-title: Materials
  doi: 10.3390/ma11081288
– year: 2022
  ident: ijemad1657bib121
– volume: 150
  start-page: 369
  year: 2018
  ident: ijemad1657bib239
  article-title: Heat and fluid flow in additive manufacturing–Part II: powder bed fusion of stainless steel, and titanium, nickel and aluminum base alloys
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/j.commatsci.2018.04.027
– volume: 13
  start-page: 4361
  year: 2022
  ident: ijemad1657bib188
  article-title: Thermodynamics-guided alloy and process design for additive manufacturing
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-31969-y
– volume: 68
  year: 2023
  ident: ijemad1657bib22
  article-title: Linking process parameters with lack-of-fusion porosity for laser powder bed fusion metal additive manufacturing
  publication-title: Addit. Manuf.
  doi: 10.1016/j.addma.2023.103500
– volume: 59
  year: 2022
  ident: ijemad1657bib194
  article-title: Phase transformation dynamics guided alloy development for additive manufacturing
  publication-title: Addit. Manuf.
  doi: 10.1016/j.addma.2022.103068
– volume: 47
  year: 2021
  ident: ijemad1657bib25
  article-title: Review on modeling techniques for powder bed fusion processes based on physical principles
  publication-title: Addit. Manuf.
  doi: 10.1016/j.addma.2021.102336
– volume: 204
  year: 2021
  ident: ijemad1657bib185
  article-title: Reducing hot tearing by grain boundary segregation engineering in additive manufacturing: example of an AlxCoCrFeNi high-entropy alloy
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2020.116505
– volume: 29
  year: 2019
  ident: ijemad1657bib8
  article-title: Overview: additive manufacturing enabled accelerated design of Ni-based alloys for improved fatigue life
  publication-title: Addit. Manuf.
  doi: 10.1016/j.addma.2019.100779
– volume: 46
  year: 2021
  ident: ijemad1657bib73
  article-title: Microstructure, surface quality, residual stress, fatigue behavior and damage mechanisms of selective laser melted 304L stainless steel considering building direction
  publication-title: Addit. Manuf.
  doi: 10.1016/j.addma.2021.102147
– volume: 139
  start-page: 486
  year: 2018
  ident: ijemad1657bib83
  article-title: Optimization of selective laser melting parameters and influence of post heat treatment on microstructure and mechanical properties of maraging steel
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2017.11.042
– volume: 13
  start-page: 1
  year: 2022
  ident: ijemad1657bib59
  article-title: Controlling process instability for defect lean metal additive manufacturing
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-28649-2
– volume: 37
  year: 2021
  ident: ijemad1657bib47
  article-title: Enhancing the bond strength in the meta-crystal lattice of architected materials by harnessing the non-equilibrium solidification in metal additive manufacturing
  publication-title: Addit. Manuf.
  doi: 10.1016/j.addma.2020.101682
– volume: 52
  start-page: 3173
  year: 2004
  ident: ijemad1657bib61
  article-title: Solidification cracking of superalloy single- and bi-crystals Acta Mater.
  doi: 10.1016/j.actamat.2004.03.047
– volume: 656
  start-page: 47
  year: 2016
  ident: ijemad1657bib128
  article-title: Selective laser melting of high strength Al-Cu-Mg alloys: processing, microstructure and mechanical properties
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2015.12.101
– volume: 119
  start-page: 4963
  year: 2022
  ident: ijemad1657bib155
  article-title: Processability of high-strength aluminum 6182 series alloy via laser powder bed fusion (LPBF)
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-022-08673-8
– volume: 61
  start-page: 11
  year: 1982
  ident: ijemad1657bib101
  article-title: A new approach to the weldability of nickel-base As-cast and power metallurgy superalloys
  publication-title: Weld. J.
– volume: 203
  year: 2021
  ident: ijemad1657bib232
  article-title: A machine learning guided investigation of quality repeatability in metal laser powder bed fusion additive manufacturing
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2021.109606
– volume: 872
  year: 2021
  ident: ijemad1657bib129
  article-title: Microstructures and mechanical properties of aluminum-transition metal binary alloys (Al-Fe, Al-Mn, and Al-Cr) processed by laser powder bed fusion
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2021.159680
– volume: 98
  start-page: 33
  year: 2022
  ident: ijemad1657bib225
  article-title: Discovery of aluminum alloys with ultra-strength and high-toughness via a property-oriented design strategy
  publication-title: J. Mater. Sci. Technol.
  doi: 10.1016/j.jmst.2021.05.011
– volume: 226
  year: 2022
  ident: ijemad1657bib221
  article-title: Crack free metal printing using physics informed machine learning
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2021.117612
– volume: 41
  start-page: 66
  year: 2019
  ident: ijemad1657bib78
  article-title: Analysis of microstructure and defects in 17-4 PH stainless steel sample manufactured by selective laser melting
  publication-title: Proc. Manuf.
  doi: 10.1016/j.promfg.2019.07.030
– volume: 75
  start-page: 375
  year: 2022
  ident: ijemad1657bib86
  article-title: A comprehensive review on laser powder bed fusion of steels: processing, microstructure, defects and control methods, mechanical properties, current challenges and future trends
  publication-title: J. Manuf. Process.
  doi: 10.1016/j.jmapro.2021.12.033
– volume: 17
  start-page: 787
  year: 2022
  ident: ijemad1657bib231
  article-title: Knowledge transfer using Bayesian learning for predicting the process-property relationship of Inconel alloys obtained by laser powder bed fusion
  publication-title: Virtual Phys. Prototyp.
  doi: 10.1080/17452759.2022.2068447
– volume: 62
  start-page: 488
  year: 2011
  ident: ijemad1657bib165
  article-title: Microstructure and mechanical behaviour of Ti-6Al-7Nb alloy produced by selective laser melting
  publication-title: Mater. Charact.
  doi: 10.1016/j.matchar.2011.03.006
– volume: 50
  start-page: 4165
  year: 2002
  ident: ijemad1657bib201
  article-title: Strengthening mechanisms of an Al-Mg-Sc-Zr alloy
  publication-title: Acta Mater.
  doi: 10.1016/S1359-6454(02)00258-6
– volume: 109
  start-page: 334
  year: 2016
  ident: ijemad1657bib147
  article-title: The influence of processing parameters on aluminium alloy A357 manufactured by selective laser melting
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2016.07.009
– year: 2018
  ident: ijemad1657bib99
– volume: 143
  year: 2021
  ident: ijemad1657bib235
  article-title: Toward sub-surface pore prediction capabilities for laser powder bed fusion using data science
  publication-title: Trans. ASME, J. Manuf. Sci. Eng.
  doi: 10.1115/1.4050461
– volume: 707
  start-page: 148
  year: 2017
  ident: ijemad1657bib118
  article-title: On microstructure and mechanical properties of additively manufactured AlSi10Mg_200C using recycled powder
  publication-title: Mater. Sci. Eng.
  doi: 10.1016/j.msea.2017.09.041
– volume: 682
  start-page: 593
  year: 2017
  ident: ijemad1657bib151
  article-title: Effect of silicon content on densification, mechanical and thermal properties of Al-xSi binary alloys fabricated using selective laser melting
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2016.11.059
– volume: 142
  year: 2020
  ident: ijemad1657bib233
  article-title: Focus variation measurement and prediction of surface texture parameters using machine learning in laser powder bed fusion
  publication-title: Trans. ASME, J. Manuf. Sci. Eng.
  doi: 10.1115/1.4045415
– volume: 37
  year: 2021
  ident: ijemad1657bib29
  article-title: Surface post-treatments for metal additive manufacturing: progress, challenges, and opportunities
  publication-title: Addit. Manuf.
  doi: 10.1016/j.addma.2020.101619
– volume: 170
  start-page: 109
  year: 2019
  ident: ijemad1657bib216
  article-title: Machine learning assisted design of high entropy alloys with desired property
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2019.03.010
– volume: 44
  year: 2021
  ident: ijemad1657bib81
  article-title: Laser powder bed fusion printability of cobalt-free steel powders for manufacturing injection molds
  publication-title: Addit. Manuf.
  doi: 10.1016/j.addma.2021.102031
– volume: 51
  start-page: 2444
  year: 2020
  ident: ijemad1657bib200
  article-title: The influence of iron in minimizing the microstructural anisotropy of Ti-6Al-4V produced by laser powder-bed fusion
  publication-title: Metall. Mater. Trans. A
  doi: 10.1007/s11661-020-05692-6
– volume: 674
  start-page: 299
  year: 2016
  ident: ijemad1657bib97
  article-title: Superior creep strength of a nickel-based superalloy produced by selective laser melting
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2016.07.061
– volume: 431
  start-page: 223
  year: 2003
  ident: ijemad1657bib65
  article-title: USA welding metallurgy
  publication-title: New Jersey
  doi: 10.1002/0471434027
– volume: 10
  start-page: 882
  year: 2020
  ident: ijemad1657bib111
  article-title: The influence of the process parameters on the densification and microstructure development of laser powder bed fused Inconel 939
  publication-title: Metals
  doi: 10.3390/met10070882
– volume: 167
  start-page: 1
  year: 2023
  ident: ijemad1657bib228
  article-title: Simultaneous enhancement in mechanical and corrosion properties of Al-Mg-Si alloys using machine learning
  publication-title: J. Mater. Sci. Technol.
  doi: 10.1016/j.jmst.2023.04.072
– volume: 13
  start-page: 4930
  year: 2020
  ident: ijemad1657bib182
  article-title: A novel γ′-strengthened nickel-based superalloy for laser powder bed fusion
  publication-title: Materials
  doi: 10.3390/ma13214930
– volume: 8
  start-page: 1
  year: 2022
  ident: ijemad1657bib33
  article-title: Perspectives on additive manufacturing enabled beta-titanium alloys for biomedical applications
  publication-title: Int. J. Bioprinting
  doi: 10.18063/ijb.v8i1.478
– volume: 50
  start-page: 1869
  year: 2002
  ident: ijemad1657bib179
  article-title: Hot tearing of nickel-based superalloys during directional solidification
  publication-title: Acta Mater.
  doi: 10.1016/S1359-6454(02)00042-3
– volume: 47
  year: 2021
  ident: ijemad1657bib123
  article-title: Exploiting the rapid solidification potential of laser powder bed fusion in high strength and crack-free Al-Cu-Mg-Mn-Zr alloys
  publication-title: Addit. Manuf.
  doi: 10.1016/j.addma.2021.102210
– volume: 177
  start-page: 209
  year: 2019
  ident: ijemad1657bib18
  article-title: Atomic-scale grain boundary engineering to overcome hot-cracking in additively-manufactured superalloys
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2019.07.041
– volume: 59
  year: 2022
  ident: ijemad1657bib161
  article-title: Microstructural engineering of a dual-phase Ti-Al-V-Fe alloy via in situ alloying during laser powder bed fusion
  publication-title: Addit. Manuf.
  doi: 10.1016/j.addma.2022.103173
– volume: 711
  start-page: 562
  year: 2018
  ident: ijemad1657bib143
  article-title: Microstructure and mechanical properties of a heat-treatable Al-3.5Cu-1.5Mg-1Si alloy produced by selective laser melting
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2017.11.063
– volume: 8
  start-page: 12
  year: 2015
  ident: ijemad1657bib21
  article-title: An overview of direct laser deposition for additive manufacturing; part II: mechanical behavior, process parameter optimization and control
  publication-title: Addit. Manuf.
  doi: 10.1016/j.addma.2015.07.002
– volume: 1
  start-page: 30
  year: 2008
  ident: ijemad1657bib169
  article-title: Mechanical biocompatibilities of titanium alloys for biomedical applications
  publication-title: J. Mech. Behav. Biomed. Mater.
  doi: 10.1016/j.jmbbm.2007.07.001
– volume: 25
  start-page: 633
  year: 2019
  ident: ijemad1657bib204
  article-title: Microstructure and properties of novel heat resistant Al–Ce–Cu alloy for additive manufacturing
  publication-title: Met. Mater. Int.
  doi: 10.1007/s12540-018-00211-0
– volume: 4
  year: 2022
  ident: ijemad1657bib45
  article-title: Understanding the Rayleigh instability in humping phenomenon during laser powder bed fusion process
  publication-title: Int. J. Extreme Manuf.
  doi: 10.1088/2631-7990/ac466d
– year: 2014
  ident: ijemad1657bib138
  article-title: Processability of high strength aluminum-copper alloys AW-2022 and 2024 by laser beam melting in powder bed
– year: 2016
  ident: ijemad1657bib92
  article-title: SLM processing of 14 Ni (200 Grade) maraging steel DDMC
  doi: 10.3929/ETHZ-A-010802372
– volume: 61
  year: 2020
  ident: ijemad1657bib163
  article-title: Vanadium: risks and possible benefits in the light of a comprehensive overview of its pharmacotoxicological mechanisms and multi-applications with a summary of further research trends
  publication-title: J. Trace Elem. Med. Biol.
  doi: 10.1016/j.jtemb.2020.126508
– volume: 38
  year: 2021
  ident: ijemad1657bib56
  article-title: A novel crack-free Ti-modified Al-Cu-Mg alloy designed for selective laser melting
  publication-title: Addit. Manuf.
  doi: 10.1016/j.addma.2020.101829
– volume: 201
  start-page: 316
  year: 2020
  ident: ijemad1657bib230
  article-title: Machine-learning assisted laser powder bed fusion process optimization for AlSi10Mg: new microstructure description indices and fracture mechanisms
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2020.10.010
– volume: 24
  year: 2021
  ident: ijemad1657bib218
  article-title: Physics-informed machine learning and mechanistic modeling of additive manufacturing to reduce defects
  publication-title: Appl. Mater. Today
  doi: 10.1016/j.apmt.2021.101123
– volume: 136
  year: 2023
  ident: ijemad1657bib30
  article-title: Application of electrochemical polishing in surface treatment of additively manufactured structures: a review
  publication-title: Prog. Mater. Sci.
  doi: 10.1016/j.pmatsci.2023.101109
– volume: 71
  year: 2023
  ident: ijemad1657bib159
  article-title: Tailoring hierarchical microstructures to improve the strength and plasticity of a laser powder bed fusion additively manufactured Ti-6Al-4V alloy
  publication-title: Addit. Manuf.
  doi: 10.1016/j.addma.2023.103603
– volume: 88
  start-page: 62S
  year: 2009
  ident: ijemad1657bib68
  article-title: Metallurgical investigation into ductility dip cracking in Ni-based alloys: part II
  publication-title: Weld. J.
– volume: 213
  start-page: 1387
  year: 2013
  ident: ijemad1657bib152
  article-title: Selective laser sintering/melting (SLS/SLM) of pure Al, Al-Mg, and Al-Si powders: effect of processing conditions and powder properties
  publication-title: J. Mater. Process. Technol.
  doi: 10.1016/j.jmatprotec.2013.03.009
– volume: 5
  start-page: 68
  year: 2015
  ident: ijemad1657bib170
  article-title: Crack propagation and fracture toughness of Ti6A14V alloy produced by selective laser melting
  publication-title: Addit. Manuf.
  doi: 10.1016/j.addma.2014.12.006
– volume: 94
  start-page: 218
  year: 2017
  ident: ijemad1657bib57
  article-title: Effects of building orientation and heat treatment on fatigue behavior of selective laser melted 17-4 PH stainless steel
  publication-title: Int. J. Fatigue
  doi: 10.1016/j.ijfatigue.2016.03.014
– volume: 704
  start-page: 434
  year: 2017
  ident: ijemad1657bib241
  article-title: In-situ synthesis of Ti2AlNb-based intermetallic alloy by selective laser melting
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2017.02.086
– volume: 35
  year: 2020
  ident: ijemad1657bib120
  article-title: Laser powder bed fusion of AA7075 alloy: influence of process parameters on porosity and hot cracking
  publication-title: Addit. Manuf.
  doi: 10.1016/j.addma.2020.101270
– volume: 51
  start-page: 5880
  year: 2020
  ident: ijemad1657bib106
  article-title: Effect of the volume energy density and heat treatment on the defect, microstructure, and hardness of L-PBF Inconel 625
  publication-title: Metall. Mater. Trans. A
  doi: 10.1007/s11661-020-05992-x
– volume: 15
  start-page: 359
  year: 2020
  ident: ijemad1657bib1
  article-title: Laser powder bed fusion for metal additive manufacturing: perspectives on recent developments
  publication-title: Virtual Phys. Prototyp.
  doi: 10.1080/17452759.2020.1779999
– volume: 106
  year: 2019
  ident: ijemad1657bib36
  article-title: 3D printing of aluminium alloys: additive manufacturing of aluminium alloys using selective laser melting
  publication-title: Prog. Mater. Sci.
  doi: 10.1016/j.pmatsci.2019.100578
– volume: vol 3
  start-page: 275
  year: 1979
  ident: ijemad1657bib181
– volume: 240
  year: 2022
  ident: ijemad1657bib63
  article-title: Modelling of additive manufacturability of nickel-based superalloys for laser powder bed fusion
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2022.118307
– volume: 6
  start-page: 1640
  year: 2010
  ident: ijemad1657bib167
  article-title: Influence of porosity on mechanical properties and in vivo response of Ti6Al4V implants
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2009.11.011
– volume: 52
  start-page: 2873
  year: 2021
  ident: ijemad1657bib219
  article-title: Prediction of mechanical properties of wrought aluminium alloys using feature engineering assisted machine learning approach
  publication-title: Metall. Mater. Trans. A
  doi: 10.1007/s11661-021-06279-5
– volume: 18
  start-page: 463
  year: 2016
  ident: ijemad1657bib34
  article-title: Selective laser melting of titanium alloys and titanium matrix composites for biomedical applications: a review
  publication-title: Adv. Eng. Mater.
  doi: 10.1002/adem.201500419
– volume: 70
  start-page: 1670
  year: 2018
  ident: ijemad1657bib197
  article-title: Trace carbon addition to refine microstructure and enhance properties of additive-manufactured Ti-6Al-4V
  publication-title: JOM
  doi: 10.1007/s11837-018-2994-x
– volume: 53
  start-page: 962
  year: 2022
  ident: ijemad1657bib116
  article-title: On the influence of alloy composition on the additive manufacturability of Ni-based superalloys
  publication-title: Metall. Mater. Trans. A
  doi: 10.1007/s11661-021-06568-z
– volume: 59
  start-page: 12
  year: 2021
  ident: ijemad1657bib234
  article-title: Toward in-situ flaw detection in laser powder bed fusion additive manufacturing through layerwise imagery and machine learning
  publication-title: J. Manuf. Syst.
  doi: 10.1016/j.jmsy.2021.01.008
– volume: 202
  start-page: 417
  year: 2021
  ident: ijemad1657bib72
  article-title: Alloys-by-design: application to new superalloys for additive manufacturing
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2020.09.023
– volume: 8
  start-page: 23
  year: 2017
  ident: ijemad1657bib141
  article-title: Effects of process conditions on the mechanical behavior of aluminium wrought alloy EN AW-2219 (AlCu6Mn) additively manufactured by laser beam melting in powder bed
  publication-title: Micromachines
  doi: 10.3390/mi8010023
– volume: 6
  start-page: 62
  year: 2020
  ident: ijemad1657bib214
  article-title: Machine learning assisted design of γ′-strengthened Co-base superalloys with multi-performance optimization
  publication-title: npj Comput. Mater.
  doi: 10.1038/s41524-020-0334-5
– volume: 38
  start-page: 391
  year: 2022
  ident: ijemad1657bib5
  article-title: Wire arc additive manufacturing of aluminium alloys for aerospace and automotive applications: a review
  publication-title: Mater. Sci. Technol.
  doi: 10.1080/02670836.2022.2045549
– volume: 164
  year: 2019
  ident: ijemad1657bib31
  article-title: Additive manufacturing of Ti6Al4V alloy: a review
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2018.107552
– volume: 88
  start-page: 366
  year: 2015
  ident: ijemad1657bib131
  article-title: A criterion for cracking during solidification
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2015.01.034
– volume: 60
  start-page: 1731
  year: 2012
  ident: ijemad1657bib17
  article-title: Microstructural evolution of a Ni-based superalloy (617B) at 700 °C studied by electron microscopy and atom probe tomography
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2011.11.020
– volume: 200
  start-page: 803
  year: 2020
  ident: ijemad1657bib222
  article-title: Dramatically enhanced combination of ultimate tensile strength and electric conductivity of alloys via machine learning screening
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2020.09.068
– volume: 374
  start-page: 478
  year: 2021
  ident: ijemad1657bib53
  article-title: In situ design of advanced titanium alloy with concentration modulations by additive manufacturing
  publication-title: Science
  doi: 10.1126/science.abj3770
– volume: 58
  year: 2022
  ident: ijemad1657bib84
  article-title: Effect of aging temperature on microstructure evolution and strengthening behavior of L-PBF 18Ni(300) maraging steel
  publication-title: Addit. Manuf.
  doi: 10.1016/j.addma.2022.103071
– volume: 3
  start-page: 280
  year: 2015
  ident: ijemad1657bib90
  article-title: Effect of welding process and post weld heat treatments on microstructure and mechanical properties of AISI 431 martensitic stainless steel
  publication-title: Int. J. Tech. Res. Appl.
– volume: 231
  year: 2023
  ident: ijemad1657bib139
  article-title: In situ x-ray imaging of hot cracking and porosity during LPBF of Al-2139 with TiB2 additions and varied process parameters
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2023.112031
– volume: 117
  start-page: 371
  year: 2016
  ident: ijemad1657bib12
  article-title: Additive manufacturing of metals
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2016.07.019
– volume: 772
  year: 2020
  ident: ijemad1657bib39
  article-title: Steels in additive manufacturing: a review of their microstructure and properties
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2019.138633
– volume: 5
  year: 2023
  ident: ijemad1657bib46
  article-title: Laser machining fundamentals: micro, nano, atomic and close-to-atomic scales
  publication-title: Int. J. Extreme Manuf.
  doi: 10.1088/2631-7990/acb134
– volume: 68
  start-page: 150
  year: 2014
  ident: ijemad1657bib70
  article-title: Microstructure and mechanical properties of a novel β titanium metallic composite by selective laser melting
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2014.01.018
– volume: 60
  year: 2022
  ident: ijemad1657bib135
  article-title: Rapid calculation of part scale residual stress-powder bed fusion of stainless steel, and aluminum, titanium, nickel alloys
  publication-title: Addit. Manuf.
  doi: 10.1016/j.addma.2022.103240
– volume: 826
  year: 2021
  ident: ijemad1657bib110
  article-title: Selective laser melting of IN738 superalloy with a low Mn plus Si content: effect of energy input on characteristics of molten pool, metallurgical defects, microstructures and mechanical properties
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2021.141985
– volume: 380
  start-page: 245
  year: 2004
  ident: ijemad1657bib67
  article-title: High temperature behavior of Ni-base weld metal—part II–insight into the mechanism for ductility dip cracking
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2004.03.075
– volume: 28
  start-page: 496
  year: 2018
  ident: ijemad1657bib117
  article-title: Anisotropy of nickel-based superalloy K418 fabricated by selective laser melting
  publication-title: Prog. Nat. Sci. Mater. Int.
  doi: 10.1016/j.pnsc.2018.07.001
– volume: 247
  year: 2023
  ident: ijemad1657bib103
  article-title: New alloy design approach to inhibiting hot cracking in laser additive manufactured nickel-based superalloys
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2023.118736
– volume: 153
  start-page: 35
  year: 2018
  ident: ijemad1657bib206
  article-title: Microstructure and mechanical properties of Al-Mg-Zr alloys processed by selective laser melting
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2018.04.053
– volume: 73
  year: 2023
  ident: ijemad1657bib164
  article-title: Microstructure refinement and strengthening mechanisms of additively manufactured Ti-Zr alloys prepared from pre-mixed feedstock
  publication-title: Addit. Manuf.
  doi: 10.1016/j.addma.2023.103649
– volume: 6
  start-page: 1222
  year: 2020
  ident: ijemad1657bib4
  article-title: Advances in medical applications of additive manufacturing
  publication-title: Engineering
  doi: 10.1016/j.eng.2020.02.018
– volume: 60
  year: 2022
  ident: ijemad1657bib19
  article-title: The trajectory of additively manufactured titanium alloys with superior mechanical properties and engineered microstructures
  publication-title: Addit. Manuf.
  doi: 10.1016/j.addma.2022.103245
– volume: 92
  start-page: 112
  year: 2018
  ident: ijemad1657bib15
  article-title: Additive manufacturing of metallic components—process, structure and properties
  publication-title: Prog. Mater. Sci.
  doi: 10.1016/j.pmatsci.2017.10.001
– volume: 14
  year: 2020
  ident: ijemad1657bib174
  article-title: Selective laser melting of high-strength, low-modulus Ti–35Nb–7Zr–5Ta alloy
  publication-title: Materialia
  doi: 10.1016/j.mtla.2020.100941
– year: 2015
  ident: ijemad1657bib109
  article-title: Microstructure and mechanical characterisation of SLM processed Haynes® 230®
  doi: 10.3929/ethz-a-010584903
– volume: 49
  year: 2022
  ident: ijemad1657bib193
  article-title: Demonstrating the roles of solute and nucleant in grain refinement of additively manufactured aluminium alloys
  publication-title: Addit. Manuf.
  doi: 10.1016/j.addma.2021.102516
– volume: 30
  start-page: 1283
  year: 2015
  ident: ijemad1657bib85
  article-title: Fabrication and characterization of AISI 420 stainless steel using selective laser melting
  publication-title: Mater. Manuf. Process.
  doi: 10.1080/10426914.2015.1026351
– volume: 32
  year: 2020
  ident: ijemad1657bib74
  article-title: Selective laser melting of 304L stainless steel: role of volumetric energy density on the microstructure, texture and mechanical properties
  publication-title: Addit. Manuf.
  doi: 10.1016/j.addma.2019.101011
– volume: 27
  start-page: 805
  year: 2020
  ident: ijemad1657bib9
  article-title: From topology optimization design to additive manufacturing: today’s success and tomorrow’s roadmap
  publication-title: Arch. Comput. Methods Eng.
  doi: 10.1007/s11831-019-09331-1
– year: 1998
  ident: ijemad1657bib3
  article-title: Shaped body especially prototype or replacement part production
– volume: 7
  year: 2016
  ident: ijemad1657bib226
  article-title: Accelerated search for materials with targeted properties by adaptive design
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms11241
– volume: 36
  year: 2020
  ident: ijemad1657bib11
  article-title: Invited review article: review of the formation and impact of flaws in powder bed fusion additive manufacturing
  publication-title: Addit. Manuf.
  doi: 10.1016/j.addma.2020.101457
– volume: 32
  start-page: 657
  year: 2016
  ident: ijemad1657bib115
  article-title: Process optimisation of selective laser melting using energy density model for nickel based superalloys
  publication-title: Mater. Sci. Technol.
  doi: 10.1179/1743284715Y.0000000108
– volume: 108
  start-page: 36
  year: 2016
  ident: ijemad1657bib52
  article-title: Laser powder-bed fusion additive manufacturing: physics of complex melt flow and formation mechanisms of pores, spatter, and denudation zones
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2016.02.014
– volume: 55
  year: 2022
  ident: ijemad1657bib217
  article-title: Computational design of a crack-free aluminum alloy for additive manufacturing
  publication-title: Addit. Manuf.
  doi: 10.1016/j.addma.2022.102876
– volume: 46
  year: 2021
  ident: ijemad1657bib77
  article-title: Laser powder bed fusion of 17-4 PH stainless steel: a comparative study on the effect of heat treatment on the microstructure evolution and mechanical properties
  publication-title: Addit. Manuf.
  doi: 10.1016/j.addma.2021.102176
– volume: 666
  start-page: 27
  year: 2016
  ident: ijemad1657bib91
  article-title: Effects of heat treatment on microstructure and tensile properties of laser melting deposited AISI 431 martensitic stainless steel
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2016.04.014
– volume: 208
  year: 2021
  ident: ijemad1657bib133
  article-title: Composition-dependent solidification cracking of aluminum-silicon alloys during laser powder bed fusion
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2021.116698
– volume: 35
  year: 2020
  ident: ijemad1657bib145
  article-title: Laser powder bed fusion of a near-eutectic Al-Fe binary alloy: processing and microstructure
  publication-title: Addit. Manuf.
  doi: 10.1016/j.addma.2020.101308
– volume: 215
  year: 2021
  ident: ijemad1657bib223
  article-title: Machine learning assisted composition effective design for precipitation strengthened copper alloys
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2021.117118
– volume: 119
  year: 2021
  ident: ijemad1657bib14
  article-title: Emerging metallic systems for additive manufacturing: in-situ alloying and multi-metal processing in laser powder bed fusion
  publication-title: Prog. Mater. Sci.
  doi: 10.1016/j.pmatsci.2021.100795
– volume: 236
  start-page: 676
  year: 2019
  ident: ijemad1657bib205
  article-title: Novel heat-resistant Al-Si-Ni-Fe alloy manufactured by selective laser melting
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2018.11.033
– volume: 55
  year: 2022
  ident: ijemad1657bib98
  article-title: A comprehensive literature review on laser powder bed fusion of Inconel superalloys
  publication-title: Addit. Manuf.
  doi: 10.1016/j.addma.2022.102871
– volume: 58
  year: 2022
  ident: ijemad1657bib107
  article-title: Effect of carbon content on the microstructure, tensile properties and cracking susceptibility of IN738 superalloy processed by laser powder bed fusion
  publication-title: Addit. Manuf.
  doi: 10.1016/j.addma.2022.103016
– volume: 37
  year: 2021
  ident: ijemad1657bib175
  article-title: A high strength and low modulus metastable β Ti-12Mo-6Zr-2Fe alloy fabricated by laser powder bed fusion in-situ alloying
  publication-title: Addit. Manuf.
  doi: 10.1016/j.addma.2020.101708
– volume: 46
  start-page: 63
  year: 2016
  ident: ijemad1657bib16
  article-title: Microstructural control of additively manufactured metallic materials
  publication-title: Annu. Rev. Mater. Res.
  doi: 10.1146/annurev-matsci-070115-031816
– volume: 639
  start-page: 647
  year: 2015
  ident: ijemad1657bib51
  article-title: Effect of heat treatment on the microstructure and mechanical properties of Inconel 718 processed by selective laser melting
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2015.05.035
– volume: 44
  start-page: 5396
  year: 2013
  ident: ijemad1657bib186
  article-title: Hot tear susceptibility of Al-Mg-Si-Fe alloys with varying iron contents
  publication-title: Metall. Mater. Trans. A
  doi: 10.1007/s11661-012-1562-1
– volume: 183
  year: 2019
  ident: ijemad1657bib10
  article-title: Review on design and structural optimisation in additive manufacturing: towards next-generation lightweight structures
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2019.108164
– volume: 17
  start-page: 406
  year: 2022
  ident: ijemad1657bib211
  article-title: Influence of erbium addition on the defects of selective laser-melted 7075 aluminium alloy
  publication-title: Virtual Phys. Prototyp.
  doi: 10.1080/17452759.2021.1990358
– volume: 93
  start-page: 881
  year: 2017
  ident: ijemad1657bib82
  article-title: Numerical and experimental evaluation of a conformally cooled H13 steel injection mould manufactured with selective laser melting
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-017-0426-7
– volume: 54
  start-page: 397
  year: 2009
  ident: ijemad1657bib166
  article-title: Ti based biomaterials, the ultimate choice for orthopaedic implants—a review
  publication-title: Prog. Mater. Sci.
  doi: 10.1016/j.pmatsci.2008.06.004
– volume: 39
  year: 2021
  ident: ijemad1657bib75
  article-title: Combined effects of porosity and stress state on the failure behavior of laser powder bed fusion stainless steel 316L
  publication-title: Addit. Manuf.
  doi: 10.1016/j.addma.2021.101862
– volume: 28
  start-page: 1601
  year: 2021
  ident: ijemad1657bib176
  article-title: Selective laser melted near-beta titanium alloy Ti-5Al-5Mo-5V-1Cr-1Fe: microstructure and mechanical properties
  publication-title: J. Cent. South Univ.
  doi: 10.1007/s11771-021-4720-z
– volume: 48A
  start-page: 575
  year: 2017
  ident: ijemad1657bib142
  article-title: Aging behavior of high-strength Al alloy 2618 produced by selective laser melting
  publication-title: Metall. Mater. Trans. A
  doi: 10.1007/s11661-016-3883-y
– volume: 30
  start-page: 449
  year: 1999
  ident: ijemad1657bib180
  article-title: A new hot-tearing criterion
  publication-title: Metall. Mater. Trans. A
  doi: 10.1007/s11661-999-0334-z
– volume: 28
  start-page: 485
  year: 2019
  ident: ijemad1657bib127
  article-title: Microstructure and mechanical properties of Zr-modified aluminum alloy 5083 manufactured by laser powder bed fusion
  publication-title: Addit. Manuf.
  doi: 10.1016/j.addma.2019.05.027
– volume: 65
  start-page: 213
  year: 2016
  ident: ijemad1657bib202
  article-title: Microstructure and mechanical properties of as-processed scandium-modified aluminium using selective laser melting
  publication-title: CIRP Ann.
  doi: 10.1016/j.cirp.2016.04.057
– volume: 70
  start-page: 1803
  year: 2014
  ident: ijemad1657bib157
  article-title: Comparison and analysis of main effect elements of machining distortion for aluminum alloy and titanium alloy aircraft monolithic component
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-013-5431-x
– volume: 16
  start-page: 372
  year: 2021
  ident: ijemad1657bib213
  article-title: Perspectives of using machine learning in laser powder bed fusion for metal additive manufacturing
  publication-title: Virtual Phys. Prototyp.
  doi: 10.1080/17452759.2021.1944229
– volume: 240
  start-page: 12
  year: 2017
  ident: ijemad1657bib96
  article-title: Study on microstructure, mechanical properties and machinability of efficiently additive manufactured AISI 316L stainless steel by high-power direct laser deposition
  publication-title: J. Mater. Process. Technol.
  doi: 10.1016/j.jmatprotec.2016.09.005
– volume: 15
  start-page: 113
  year: 2017
  ident: ijemad1657bib100
  article-title: Fractal scan strategies for selective laser melting of ‘unweldable’ nickel superalloys
  publication-title: Addit. Manuf.
  doi: 10.1016/j.addma.2017.02.002
– volume: 13
  start-page: 5063
  year: 2020
  ident: ijemad1657bib229
  article-title: Predicting the printability in selective laser melting with a supervised machine learning method
  publication-title: Materials
  doi: 10.3390/ma13225063
– volume: 36
  year: 2020
  ident: ijemad1657bib183
  article-title: Combining alloy and process modification for micro-crack mitigation in an additively manufactured Ni-base superalloy
  publication-title: Addit. Manuf.
  doi: 10.1016/j.addma.2020.101443
– volume: 20
  start-page: 44
  year: 2018
  ident: ijemad1657bib26
  article-title: Mechanical characterization of 3D-printed polymers
  publication-title: Addit. Manuf.
  doi: 10.1016/j.addma.2017.12.002
– volume: 34
  year: 2020
  ident: ijemad1657bib88
  article-title: Controlling crack formation and porosity in laser powder bed fusion: alloy design and process optimisation
  publication-title: Addit. Manuf.
  doi: 10.1016/j.addma.2020.101360
– volume: 34
  year: 2020
  ident: ijemad1657bib158
  article-title: Selective laser melting of CP-Ti to overcome the low cost and high performance trade-off
  publication-title: Addit. Manuf.
  doi: 10.1016/j.addma.2020.101198
– volume: 89
  start-page: 1294
  year: 2016
  ident: ijemad1657bib146
  article-title: Microstructures and mechanical properties of A356 (AlSi7Mg0.3) aluminum alloy fabricated by selective laser melting
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2015.10.065
– volume: 60
  year: 2022
  ident: ijemad1657bib89
  article-title: Effect of repeated laser scanning on the microstructure evolution of carbon-bearing martensitic steel manufactured by laser powder bed fusion: quenching-partitioning drives carbon-stabilized austenite formation
  publication-title: Addit. Manuf.
  doi: 10.1016/j.addma.2022.103262
– volume: 209
  year: 2021
  ident: ijemad1657bib6
  article-title: Metal additive manufacturing in aerospace: a review
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2021.110008
– volume: 27
  start-page: 131
  year: 2019
  ident: ijemad1657bib55
  article-title: An overview of residual stresses in metal powder bed fusion
  publication-title: Addit. Manuf.
  doi: 10.1016/j.addma.2019.02.020
– volume: 811
  year: 2019
  ident: ijemad1657bib199
  article-title: Microstructural response of β-stabilized Ti–6Al–4V manufactured by direct energy deposition
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2019.152021
– volume: 5
  start-page: 2121
  year: 1974
  ident: ijemad1657bib132
  article-title: Solidification processing
  publication-title: Metall. Mater. Trans. B
  doi: 10.1007/BF02643923
– volume: 762
  start-page: 289
  year: 2018
  ident: ijemad1657bib172
  article-title: Anisotropic mechanical behavior of biomedical Ti-13Nb-13Zr alloy manufactured by selective laser melting
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2018.05.179
– volume: 56
  year: 2022
  ident: ijemad1657bib130
  article-title: Review on the correlation between microstructure and mechanical performance for laser powder bed fusion AlSi10Mg
  publication-title: Addit. Manuf.
  doi: 10.1016/j.addma.2022.102914
– volume: 13
  start-page: 1366
  year: 2022
  ident: ijemad1657bib44
  article-title: A review of spatter in laser powder bed fusion additive manufacturing: in situ detection, generation, effects, and countermeasures
  publication-title: Micromachines
  doi: 10.3390/mi13081366
– volume: 30
  start-page: 7417
  year: 2021
  ident: ijemad1657bib93
  article-title: Dissimilar laser beam welding of AISI 420 martensitic stainless steel to AISI 2205 duplex stainless steel: effect of post-weld heat treatment on microstructure and mechanical properties
  publication-title: J. Mater. Eng. Perform.
  doi: 10.1007/s11665-021-06071-x
– volume: 219
  year: 2021
  ident: ijemad1657bib189
  article-title: Segregation engineering of grain boundaries of a metastable Fe-Mn-Co-Cr-Si high entropy alloy with laser-powder bed fusion additive manufacturing
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2021.117271
– volume: 6
  start-page: 479
  year: 2021
  ident: ijemad1657bib126
  article-title: AA5083 (Al–Mg) plates produced by wire-and-arc additive manufacturing: effect of specimen orientation on microstructure and tensile properties
  publication-title: Prog. Addit. Manuf.
  doi: 10.1007/s40964-021-00189-z
– year: 2011
  ident: ijemad1657bib137
  article-title: New developments of laser processing aluminium alloys via additive manufacturing technique
  doi: 10.1016/j.phpro.2011.03.050
– volume: 1
  start-page: 11
  year: 2022
  ident: ijemad1657bib42
  article-title: Influence of powder morphology on laser absorption behavior and printability of nanoparticle-coated 90W-Ni-Fe powder during laser powder bed fusion
  publication-title: Mater. Sci. Addit. Manuf.
  doi: 10.18063/msam.v1i2.11
– volume: 47
  year: 2021
  ident: ijemad1657bib144
  article-title: High strength Al-Li alloy development for laser powder bed fusion
  publication-title: Addit. Manuf.
  doi: 10.1016/j.addma.2021.102249
– volume: 3
  year: 2021
  ident: ijemad1657bib13
  article-title: An overview of laser-based multiple metallic material additive manufacturing: from macro- to micro-scales
  publication-title: Int. J. Extreme Manuf.
  doi: 10.1088/2631-7990/abce04
– volume: 30
  start-page: 6365
  year: 2021
  ident: ijemad1657bib171
  article-title: Beta titanium alloys processed by laser powder bed fusion: a review
  publication-title: J. Mater. Eng. Perform.
  doi: 10.1007/s11665-021-05800-6
– volume: 56
  start-page: 1006
  year: 2019
  ident: ijemad1657bib40
  article-title: Research progress and prospect of laser additive manufacturing technique for magnesium alloy
  publication-title: Laser Optoelectron. Prog.
  doi: 10.3788/LOP56.190006
– volume: 764
  start-page: 977
  year: 2018
  ident: ijemad1657bib212
  article-title: Effect of Zr content on formability, microstructure and mechanical properties of selective laser melted Zr modified Al-4.24 Cu-1.97 Mg-0.56 Mn alloys
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2018.06.032
– volume: 45
  start-page: 1123
  year: 2001
  ident: ijemad1657bib240
  article-title: Direct laser deposition of alloys from elemental powder blends
  publication-title: Scr. Mater.
  doi: 10.1016/S1359-6462(01)01107-1
– volume: 33
  year: 2020
  ident: ijemad1657bib48
  article-title: Numerical modelling of heat transfer, mass transport and microstructure formation in a high deposition rate laser directed energy deposition process
  publication-title: Addit. Manuf.
  doi: 10.1016/j.addma.2020.101175
– volume: 65
  start-page: 417
  year: 2015
  ident: ijemad1657bib150
  article-title: Selective laser melting of AlSi10Mg alloy: process optimisation and mechanical properties development
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2014.09.044
– volume: 35
  start-page: 1143
  year: 2020
  ident: ijemad1657bib173
  article-title: Processing a biocompatible Ti-35Nb-7Zr-5Ta alloy by selective laser melting
  publication-title: J. Mater. Res.
  doi: 10.1557/jmr.2020.90
– volume: 122
  start-page: 165
  year: 2022
  ident: ijemad1657bib64
  article-title: Multi-scale defects in powder-based additively manufactured metals and alloys
  publication-title: J. Mater. Sci. Technol.
  doi: 10.1016/j.jmst.2022.02.015
– volume: 864
  year: 2023
  ident: ijemad1657bib154
  article-title: Design high-strength Al-Mg-Si alloy fabricated by laser powder bed fusion: cracking suppression and strengthening mechanism
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2023.144591
– volume: 582
  start-page: 515
  year: 2020
  ident: ijemad1657bib196
  article-title: High-strength Damascus steel by additive manufacturing
  publication-title: Nature
  doi: 10.1038/s41586-020-2409-3
– volume: 27
  start-page: 1617
  year: 2021
  ident: ijemad1657bib105
  article-title: Effect of post-processing on microstructure and mechanical properties of alloy 718 fabricated using powder bed fusion additive manufacturing processes
  publication-title: Rapid Prototyp. J.
  doi: 10.1108/RPJ-12-2019-0310
– volume: 151
  start-page: 42
  year: 2018
  ident: ijemad1657bib203
  article-title: Characterisation of AlScZr and AlErZr alloys processed by rapid laser melting
  publication-title: Scr. Mater.
  doi: 10.1016/j.scriptamat.2018.03.035
– volume: 52
  year: 2022
  ident: ijemad1657bib160
  article-title: Developing ductile and isotropic Ti alloy with tailored composition for laser powder bed fusion
  publication-title: Addit. Manuf.
  doi: 10.1016/j.addma.2022.102656
– volume: 91
  year: 2020
  ident: ijemad1657bib79
  article-title: Effect of manufacturing parameters on the mechanical and corrosion behavior of selective laser-melted 15-5PH stainless steel
  publication-title: Steel Res. Int.
  doi: 10.1002/srin.201900447
– volume: 136
  year: 2023
  ident: ijemad1657bib38
  article-title: Additive manufacturing of nickel-based superalloys: a state-of-the-art review on process-structure-defect-property relationship
  publication-title: Prog. Mater. Sci.
  doi: 10.1016/j.pmatsci.2023.101108
– volume: 12
  start-page: 1007
  year: 2019
  ident: ijemad1657bib184
  article-title: New aluminum alloys specifically designed for laser powder bed fusion: a review
  publication-title: Materials
  doi: 10.3390/ma12071007
– volume: 3
  year: 2021
  ident: ijemad1657bib237
  article-title: Defect inspection technologies for additive manufacturing
  publication-title: Int. J. Extreme Manuf.
  doi: 10.1088/2631-7990/abe0d0
– volume: 67
  start-page: 487
  year: 2022
  ident: ijemad1657bib2
  article-title: Laser additive manufacturing of steels
  publication-title: Int. Mater. Rev.
  doi: 10.1080/09506608.2021.1983351
– volume: 1
  start-page: 4
  year: 2022
  ident: ijemad1657bib210
  article-title: Processing and characterization of crack-free 7075 aluminum alloys with elemental Zr modification by laser powder bed fusion
  publication-title: Mater. Sci. Addit. Manuf.
  doi: 10.18063/msam.v1i1.4
SSID ssib051367641
ssib044084502
ssj0002505388
ssib044740885
Score 2.4388905
SecondaryResourceType review_article
Snippet Metal additive manufacturing (AM) has been extensively studied in recent decades. Despite the significant progress achieved in manufacturing complex shapes and...
Metal additive manufacturing(AM)has been extensively studied in recent decades.Despite the significant progress achieved in manufacturing complex shapes and...
SourceID doaj
wanfang
proquest
crossref
iop
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 22002
SubjectTerms Additive manufacturing
alloy design
Alloy development
Alloy powders
Alloys
Cooling rate
crack mitigation
Heat treating
Heat treatment
Iron
Laser beam welding
laser powder bed fusion
Machine learning
Manufacturing
Powder beds
printability
Rapid solidification
Titanium base alloys
Weldability
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA4iCF5EUbG-iKAHD2XbPLqpNxVFPHgQBW8hTSairN1l3WXRX-9MW3W96MVTaTtJ28kk30wzD8YOHWgZlIxp5oxCA0WrFGFIp4BgDcGXlJSNvC1uiqt7df2gH-ZKfZFPWJseuGVcL4tZ1KiWuBgq2uNxWQaFVCVEn5vQxK0LxLw5Y4rWYAJ2aUy3L4kzqScKmad9XHt7LuQFodEcDjXp-hFdnoajH5rm0szV0dWPc5BzucpWOl2Rn7bvuMYWoF5nt6eDwfCNh8bzgqPKyVH_hTEfDWcBDxUEHqf0C4yTqxAtZvzF1VMKYGgiEk-4476rb8DbwJUNdn95cXd-lXaFEVKvTD5JvQaDOAKlpOQssg-uzIRzKg-lQrQptFRKANomzmgR-rFEHSBIQOaLGJQu5SZbrIc1bDGOHKmwYYVmh1c-itJ7mSsNqBbmfTxPWO-TTdZ3WcOpeMXANrvXxlhirCXG2paxCTv-ajFqM2b8QntGnP-io1zXzQWUANtJgP1LAhJ2hONmu7n3-svD-A-6p2d4sYUVloKNM2FHISZs93Pwv-kE4YGkcrkJO-gE4vvuc3h_t28zQbniqJvt__ikHbZMHbYeQrtscTKewh4qP5Nqv5HzDxH8-8g
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS9xAEF9apdCXYmlLY7VswT70IVyyH7ldX0SLIj5IkQq-LZv9EOVM0vOOQ__6ziR7d_pyTyHJbAKzO_ObmZ2dIeTABsm94DEvrBLgoEiRAwzJPABYB-80FmXDbIvL6vxaXNzImxRwe0xplUud2Ctq3zqMkY8YSiXHpqVH3b8cu0bh7mpqofGWbIMKVuB8bZ-cXv65WkVZEOC5Uml_EiRqxCpe5mPQwSPrywpR6QUe9WX7AWXu2u6VxfluYZtom9sX0HO2Qz4km5EeD5P8kbwJzSdydTyZtE_U9xkYFExPCnZwmNKuXXi41MHTOMdQGMWUIVRq9ME2czzI0J9MPKSWutTngA4HWD6T67PTv7_P89QgIXdClbPcyaAAT4LmWKSFj4PVBbNWlF4LQJ1KciFYAB_FKsn8OGqwBTwPMAkseiE1_0K2mrYJXwkFjtQwsAb3wwkXmXaOl0IGMA_LMdxnZLRkk3Gpejg2sZiYfhdbKYOMNchYMzA2I79WI7qhcsYG2hPk_IoOa173D9rprUkiZIpYRAkGqo2-xt0-WxSh4kKH6ErldZmRnzBvJsng44af0Vd0d_fhwVSGGTx0XDDT-ZiRveXkr-nWKzAjP9KCWL-998_P5mnBsGYcfmZ38ye-kfdIOuQA7ZGt2XQe9sG8mdXf0xr-D3Db9JE
  priority: 102
  providerName: ProQuest
Title Alloy design for laser powder bed fusion additive manufacturing: a critical review
URI https://iopscience.iop.org/article/10.1088/2631-7990/ad1657
https://www.proquest.com/docview/2911131950
https://d.wanfangdata.com.cn/periodical/jdzz-yw202402002
https://doaj.org/article/0f0f5161afdb4582a00e6349efc18d91
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LbxMxELb6EBIXBAJEoI2MBAcOS3b92PWWU4sSChJtVVHRm-X1A1Glm6gkitoDv50Zr5MQCVVc9mmvd8eP-bye-YaQN8ZL7gQPWW6UgAmKFBmoIZl5UNbe2RpJ2dDa4qQ8vhBfLuXlFvmw8oWZTNPQ_x4OO6LgToTJIE4NWMmLrIJRdGBcUcpqm-xyVSqceZ3y78vGhJGUhVxzWwlRwZU1UYuMXGUJC-CwjViAxziVsQAFQCEta_6r0A01Ftn-QTnBG28A1QcL0wbT_vhLY40ek0cJatLD7sOekC3fPiXnh-Px5Ja6aLhBAbFSgM_-hk4nCwe7xjsa5vgHjaKlEY6F9Nq0c_R_iA6NB9RQm8Ij0M7v5Rm5GA2_fTzOUlyFzApVzDIrvQI15GuO3C688qbOmTGicLUAZVVKLgTzMLUxSjJXhRoghOMe6o4FJ2TNn5OddtL6F4SCRBrI2MCsxQobWG0tL4T0gCqLCs57ZLAUk7aJdBxjX4x1XPxWSqNgNQpWd4LtkXerHNOOcOOetEco-VU6pMqOF6DZ6NRsdB7yIAHXmuAaXCQ0ee5LLmofbKFcXfTIW6g3nbrur3sKoxvpfl75a11qptFXOWd66kKP7C0rf52OoTrhGG23R16nBrG-e-Xu7vTtgiHVHD7m5X--zSvyEPN0NkR7ZGd2M_f7AI9mTZ9sq9GnPtk9Gp6cnffjTwbYfj49g-3X38N-7CZ_AP7nA4M
linkProvider IOP Publishing
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwFLaqIgQXBAJEoICR6IFDNImXjIOEUFmGKS09oFbqzTheqlbTJExnNJr-KH4j72WZaS9z6ylKYjvR81s-228h5L3xkjvBQ5wYJWCBIkUMZkjGHoy1dzbHpGzobXGUjU_Ez1N5ukX-9bEw6FbZ68RGUbvK4h75gKFUcixa-rn-G2PVKDxd7UtotGxx4JcLWLJdfdr_BvO7y9jo-_HXcdxVFYitUOksttIrUMI-55jZhA-9yRNmjEhdLkBVZ5ILwTwAe6Mkc8OQgwF13MOfs-CExORLoPLvCc5zlCg1-rHa00E4wZXqTkNBfgcs42k8BI0_MC7N0AbesH5NkQCwaedVfQvf3l-YMpjy7IahGz0mjzqESvdalnpCtnz5lPzem0yqJXWNvwcFoEsBdfsprauFg0vhHQ1z3Hij6KCEKpRemnKOYRNNHORHaqjtqirQNlzmGTm5E8I9J9tlVfoXhAJFCuhYwGLHChtYbi1PhfQARtMh3Edk0JNJ2y5XOZbMmOjmzFwpjYTVSFjdEjYiH1Y96jZPx4a2X5Dyq3aYYbt5UE3PdCewOglJkACHTXAFni2aJPEZF7kPNlUuTyOyC_OmO4m_2vAxeqvd-YW_1JlmGkOcE6ZrFyKy00_-ut2a3yPyrmOI9dsLd32tlwuGGepwmJebh3hLHoyPfx3qw_2jg1fkIXZrvY92yPZsOvevAVjNijcNN1Py567F5z-x3i3e
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELagCMQFgQARKNRIcOAQNvEjsbmVtqvyUEGIit4sxw9Etc2uyq5W7a9nxvF2WQlVnPKy42Q88XyOZ74h5JUNknvBY1lZJWCCIkUJZkiWAYx18E4jKRt6Wxw1h8fi44k8yXlOUyzMdJaH_rewOxAFDyLMDnFqxBpely2MoiPr6wYm9DMfb5JbkjcN5m74wn-sFAqzKQu55rcSooUza7IWmfjKMh7AoRvxAE-5KlMjCsBCXtr8V8Mbpiwx_oOBgqfeAKu3l7aPtv_5l9Ua3yf3Mtyku8PLPSA3Qv-QfNudTKYX1CfnDQqolQKEDud0Nl162HTB07jAv2gUvY1wPKRntl9gDEQKanxHLXU5RQIdYl8ekePxwfe9wzLnViidUPW8dDIoMEVBc-R34W2wumLWitprAQarkVwIFmB6Y5Vkvo0aYITnAfqPRS-k5o_JVj_twxNCQSIdVOxg5uKEi0w7x2shAyDLuoXjgoxWYjIuE49j_ouJSQvgShkUrEHBmkGwBXlzVWM2kG5cU_Y9Sv6qHNJlpxOgOiarjqliFSVgWxt9hwuFtqpCw4UO0dXK67ogr6HfTP58f1_TGN0o9-s0nJnGMIPxyhUzoIkF2V51_rocQ5PCMeNuQV5mhVhfPfWXl-ZiyZBuDm_z9D-fZofc-bo_Np8_HH16Ru5i9cGlaJtszc8X4TmgpXn3In0RfwC6wwHD
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Alloy+design+for+laser+powder+bed+fusion+additive+manufacturing%3A+a+critical+review&rft.jtitle=International+Journal+of+Extreme+Manufacturing&rft.au=Liu%2C+Zhuangzhuang&rft.au=Zhou%2C+Qihang&rft.au=Liang%2C+Xiaokang&rft.au=Wang%2C+Xiebin&rft.date=2024-04-01&rft.pub=IOP+Publishing&rft.issn=2631-8644&rft.eissn=2631-7990&rft.volume=6&rft.issue=2&rft_id=info:doi/10.1088%2F2631-7990%2Fad1657&rft.externalDocID=ijemad1657
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fjdzz-yw%2Fjdzz-yw.jpg