Alloy design for laser powder bed fusion additive manufacturing: a critical review
Metal additive manufacturing (AM) has been extensively studied in recent decades. Despite the significant progress achieved in manufacturing complex shapes and structures, challenges such as severe cracking when using existing alloys for laser powder bed fusion (L-PBF) AM have persisted. These chall...
Saved in:
Cover
Loading…
Abstract | Metal additive manufacturing (AM) has been extensively studied in recent decades. Despite the significant progress achieved in manufacturing complex shapes and structures, challenges such as severe cracking when using existing alloys for laser powder bed fusion (L-PBF) AM have persisted. These challenges arise because commercial alloys are primarily designed for conventional casting or forging processes, overlooking the fast cooling rates, steep temperature gradients and multiple thermal cycles of L-PBF. To address this, there is an urgent need to develop novel alloys specifically tailored for L-PBF technologies. This review provides a comprehensive summary of the strategies employed in alloy design for L-PBF. It aims to guide future research on designing novel alloys dedicated to L-PBF instead of adapting existing alloys. The review begins by discussing the features of the L-PBF processes, focusing on rapid solidification and intrinsic heat treatment. Next, the printability of the four main existing alloys (Fe-, Ni-, Al- and Ti-based alloys) is critically assessed, with a comparison of their conventional weldability. It was found that the weldability criteria are not always applicable in estimating printability. Furthermore, the review presents recent advances in alloy development and associated strategies, categorizing them into crack mitigation-oriented, microstructure manipulation-oriented and machine learning-assisted approaches. Lastly, an outlook and suggestions are given to highlight the issues that need to be addressed in future work.
Process features and typical defects of L-PBF are summarized.
Printability of Fe-based, Ni-based, Al-based and Ti-based alloys is summarized and discussed.
The application of weldability criteria in assessing printability during L-PBF for each alloy is evaluated.
Strategies used in alloy design for L-PBF are summarized and categorized into crack mitigation-oriented, microstructure manipulation-oriented and machine learning-assisted approaches. |
---|---|
AbstractList | Metal additive manufacturing(AM)has been extensively studied in recent decades.Despite the significant progress achieved in manufacturing complex shapes and structures,challenges such as severe cracking when using existing alloys for laser powder bed fusion(L-PBF)AM have persisted.These challenges arise because commercial alloys are primarily designed for conventional casting or forging processes,overlooking the fast cooling rates,steep temperature gradients and multiple thermal cycles of L-PBF.To address this,there is an urgent need to develop novel alloys specifically tailored for L-PBF technologies.This review provides a comprehensive summary of the strategies employed in alloy design for L-PBF.It aims to guide future research on designing novel alloys dedicated to L-PBF instead of adapting existing alloys.The review begins by discussing the features of the L-PBF processes,focusing on rapid solidification and intrinsic heat treatment.Next,the printability of the four main existing alloys(Fe-,Ni-,Al-and Ti-based alloys)is critically assessed,with a comparison of their conventional weldability.It was found that the weldability criteria are not always applicable in estimating printability.Furthermore,the review presents recent advances in alloy development and associated strategies,categorizing them into crack mitigation-oriented,microstructure manipulation-oriented and machine learning-assisted approaches.Lastly,an outlook and suggestions are given to highlight the issues that need to be addressed in future work. Metal additive manufacturing (AM) has been extensively studied in recent decades. Despite the significant progress achieved in manufacturing complex shapes and structures, challenges such as severe cracking when using existing alloys for laser powder bed fusion (L-PBF) AM have persisted. These challenges arise because commercial alloys are primarily designed for conventional casting or forging processes, overlooking the fast cooling rates, steep temperature gradients and multiple thermal cycles of L-PBF. To address this, there is an urgent need to develop novel alloys specifically tailored for L-PBF technologies. This review provides a comprehensive summary of the strategies employed in alloy design for L-PBF. It aims to guide future research on designing novel alloys dedicated to L-PBF instead of adapting existing alloys. The review begins by discussing the features of the L-PBF processes, focusing on rapid solidification and intrinsic heat treatment. Next, the printability of the four main existing alloys (Fe-, Ni-, Al- and Ti-based alloys) is critically assessed, with a comparison of their conventional weldability. It was found that the weldability criteria are not always applicable in estimating printability. Furthermore, the review presents recent advances in alloy development and associated strategies, categorizing them into crack mitigation-oriented, microstructure manipulation-oriented and machine learning-assisted approaches. Lastly, an outlook and suggestions are given to highlight the issues that need to be addressed in future work. Process features and typical defects of L-PBF are summarized. Printability of Fe-based, Ni-based, Al-based and Ti-based alloys is summarized and discussed. The application of weldability criteria in assessing printability during L-PBF for each alloy is evaluated. Strategies used in alloy design for L-PBF are summarized and categorized into crack mitigation-oriented, microstructure manipulation-oriented and machine learning-assisted approaches. |
Author | Wang, Xiebin Liu, Zhuangzhuang Zhou, Qihang Li, Guichuan Vanmeensel, Kim Xie, Jianxin Liang, Xiaokang |
AuthorAffiliation | Key Laboratory for Advanced Materials Processing(MOE),Institute for Advanced Materials and Technology,University of Science and Technology Beijing,Beijing 100083,People's Republic of China;Beijing Advanced Innovation Center for Materials Genome Engineering,University of Science and Technology Beijing,Beijing 100083,People's Republic of China;Beijing Laboratory of Metallic Materials and Processing for Modern Transportation,Institute for Advanced Materials and Technology,University of Science and Technology Beijing,Beijing 100083,People's Republic of China%Key Laboratory for Advanced Materials Processing(MOE),Institute for Advanced Materials and Technology,University of Science and Technology Beijing,Beijing 100083,People's Republic of China%Capital Aerospace Machinery Corporation Limited,Beijing 100076,People's Republic of China%Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials(Ministry of Education),Shandong University,Jingshi Road 17923,Jinan 250061,Peop |
AuthorAffiliation_xml | – name: Key Laboratory for Advanced Materials Processing(MOE),Institute for Advanced Materials and Technology,University of Science and Technology Beijing,Beijing 100083,People's Republic of China;Beijing Advanced Innovation Center for Materials Genome Engineering,University of Science and Technology Beijing,Beijing 100083,People's Republic of China;Beijing Laboratory of Metallic Materials and Processing for Modern Transportation,Institute for Advanced Materials and Technology,University of Science and Technology Beijing,Beijing 100083,People's Republic of China%Key Laboratory for Advanced Materials Processing(MOE),Institute for Advanced Materials and Technology,University of Science and Technology Beijing,Beijing 100083,People's Republic of China%Capital Aerospace Machinery Corporation Limited,Beijing 100076,People's Republic of China%Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials(Ministry of Education),Shandong University,Jingshi Road 17923,Jinan 250061,People's Republic of China%Department of Materials Engineering,KU Leuven,Leuven 3001,Belgium |
Author_xml | – sequence: 1 givenname: Zhuangzhuang orcidid: 0000-0002-9732-7338 surname: Liu fullname: Liu, Zhuangzhuang organization: Beijing Laboratory of Metallic Materials and Processing for Modern Transportation, Institute for Advanced Materials and Technology, University of Science and Technology Beijing , Beijing 100083, People’s Republic of China – sequence: 2 givenname: Qihang surname: Zhou fullname: Zhou, Qihang organization: Key Laboratory for Advanced Materials Processing (MOE), Institute for Advanced Materials and Technology, University of Science and Technology Beijing , Beijing 100083, People’s Republic of China – sequence: 3 givenname: Xiaokang surname: Liang fullname: Liang, Xiaokang organization: Capital Aerospace Machinery Corporation Limited , Beijing 100076, People’s Republic of China – sequence: 4 givenname: Xiebin orcidid: 0000-0001-5132-6797 surname: Wang fullname: Wang, Xiebin organization: Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University , Jingshi Road 17923, Jinan 250061, People’s Republic of China – sequence: 5 givenname: Guichuan surname: Li fullname: Li, Guichuan organization: KU Leuven Department of Materials Engineering, Leuven 3001, Belgium – sequence: 6 givenname: Kim surname: Vanmeensel fullname: Vanmeensel, Kim organization: KU Leuven Department of Materials Engineering, Leuven 3001, Belgium – sequence: 7 givenname: Jianxin surname: Xie fullname: Xie, Jianxin organization: Beijing Laboratory of Metallic Materials and Processing for Modern Transportation, Institute for Advanced Materials and Technology, University of Science and Technology Beijing , Beijing 100083, People’s Republic of China |
BookMark | eNp9kd1rFDEUxYNUsNa--xjwQR9cm--Z-FaKH4WCIPoc7k5uliyzkzGZ6bL965t1qgVRn264-Z3DSc5zcjKkAQl5ydk7ztr2QhjJV4217AI8N7p5Qk5_r04ezq1R6hk5LyWumebSNEbxU_L1su_TgXoscTPQkDLtoWCmY9r7OtboaZhLTAMF7-MUb5HuYJgDdNOc47B5T4F2uV500NOMtxH3L8jTAH3B84d5Rr5__PDt6vPq5sun66vLm1WnWj6tOo2tEhat1FIL2SBYJgAU91a1qjFaKiXQGgatFr4JVgjpJRr0InilrTwj14uvT7B1Y447yAeXILqfi5Q3DnIN1qNjgQXNDYfg10q3AhhDI5XF0PHWW1693ixeexgCDBu3TXMeanq39Xd37rAXTCgmGBMVfbWgY04_ZizTIyss51xyq1mlzEJ1OZWSMbguTjDVj5wyxN5x5o7NuWM17liTW5qrQvaH8NfL_iN5vUhiGh_DxC3unHHCMXHM7UYfKvn2L-Q_je8BREi1rw |
CODEN | IJEMKF |
CitedBy_id | crossref_primary_10_1080_17452759_2024_2424463 crossref_primary_10_1002_adem_202401608 crossref_primary_10_3788_IRLA20240432 crossref_primary_10_1016_j_compositesb_2024_111940 crossref_primary_10_1016_j_coco_2024_102244 crossref_primary_10_1088_2631_7990_ad88e3 crossref_primary_10_3390_cryst14090749 crossref_primary_10_3390_app15052550 crossref_primary_10_1088_1361_648X_ad4aab crossref_primary_10_3390_jmmp8060288 crossref_primary_10_1088_2631_7990_ad4e1d crossref_primary_10_3390_met14040425 crossref_primary_10_1016_j_matdes_2025_113594 crossref_primary_10_1016_j_msea_2025_148076 crossref_primary_10_1016_j_cja_2024_08_052 crossref_primary_10_1016_j_surfcoat_2024_131487 crossref_primary_10_1016_j_jmrt_2024_06_038 crossref_primary_10_1088_2631_7990_ad7f2e crossref_primary_10_1088_2631_7990_ad5424 |
Cites_doi | 10.1007/s11595-011-0335-9 10.1080/02670836.2022.2068759 10.1016/j.addma.2017.05.007 10.1016/j.msea.2020.139533 10.1016/j.commatsci.2018.04.022 10.1016/j.actamat.2020.03.060 10.1016/j.msea.2004.03.074 10.1016/j.addma.2018.05.005 10.1016/j.addma.2021.102278 10.1016/S1359-6454(00)00368-2 10.1016/j.addma.2021.101966 10.1080/21663831.2021.1966537 10.3390/ma13092149 10.7502/j.issn.1674-3962.201905032 10.1016/j.apmate.2021.11.001 10.1016/j.msea.2011.11.092 10.7449/2012/Superalloys_2012_577_586 10.1016/j.addma.2021.102314 10.1038/s41524-019-0227-7 10.1016/j.addma.2019.05.028 10.1016/j.jallcom.2020.154481 10.1016/j.addma.2018.09.034 10.3390/met9010086 10.1016/j.commatsci.2022.111185 10.1007/978-3-030-51834-9_99 10.1016/j.jallcom.2009.03.016 10.1038/s41586-019-1783-1 10.1016/j.actamat.2018.03.017 10.1016/j.commatsci.2021.111181 10.1016/j.addma.2017.05.006 10.1016/j.jallcom.2021.159329 10.1016/j.jallcom.2022.168099 10.1016/j.msea.2015.06.088 10.1016/j.addma.2021.102155 10.1126/science.abg1487 10.1016/j.matchar.2021.111012 10.1016/j.addma.2022.102762 10.1088/2631-7990/ab9ead 10.1016/j.actamat.2014.12.054 10.1016/j.mtcomm.2022.103139 10.1016/j.msea.2020.139124 10.1016/j.jmatprotec.2016.08.003 10.1038/nmat5021 10.1038/nature23894 10.1016/j.heliyon.2022.e09041 10.3390/ma14206157 10.1080/02670836.2022.2130530 10.1007/s11661-000-0264-2 10.1016/j.bioactmat.2019.12.004 10.1016/j.addma.2021.101993 10.1016/j.actamat.2020.07.015 10.1016/j.matdes.2019.108191 10.1016/j.addma.2017.11.001 10.1038/s41467-020-16188-7 10.1088/2631-7990/ac6b61 10.1016/j.phpro.2011.03.035 10.1016/j.jallcom.2017.05.171 10.4236/wjet.2021.94054 10.3390/ma11081288 10.1016/j.commatsci.2018.04.027 10.1038/s41467-022-31969-y 10.1016/j.addma.2023.103500 10.1016/j.addma.2022.103068 10.1016/j.addma.2021.102336 10.1016/j.actamat.2020.116505 10.1016/j.addma.2019.100779 10.1016/j.addma.2021.102147 10.1016/j.matdes.2017.11.042 10.1038/s41467-022-28649-2 10.1016/j.addma.2020.101682 10.1016/j.actamat.2004.03.047 10.1016/j.msea.2015.12.101 10.1007/s00170-022-08673-8 10.1016/j.matdes.2021.109606 10.1016/j.jallcom.2021.159680 10.1016/j.jmst.2021.05.011 10.1016/j.actamat.2021.117612 10.1016/j.promfg.2019.07.030 10.1016/j.jmapro.2021.12.033 10.1080/17452759.2022.2068447 10.1016/j.matchar.2011.03.006 10.1016/S1359-6454(02)00258-6 10.1016/j.matdes.2016.07.009 10.1115/1.4050461 10.1016/j.msea.2017.09.041 10.1016/j.msea.2016.11.059 10.1115/1.4045415 10.1016/j.addma.2020.101619 10.1016/j.actamat.2019.03.010 10.1016/j.addma.2021.102031 10.1007/s11661-020-05692-6 10.1016/j.msea.2016.07.061 10.1002/0471434027 10.3390/met10070882 10.1016/j.jmst.2023.04.072 10.3390/ma13214930 10.18063/ijb.v8i1.478 10.1016/S1359-6454(02)00042-3 10.1016/j.addma.2021.102210 10.1016/j.actamat.2019.07.041 10.1016/j.addma.2022.103173 10.1016/j.msea.2017.11.063 10.1016/j.addma.2015.07.002 10.1016/j.jmbbm.2007.07.001 10.1007/s12540-018-00211-0 10.1088/2631-7990/ac466d 10.3929/ETHZ-A-010802372 10.1016/j.jtemb.2020.126508 10.1016/j.addma.2020.101829 10.1016/j.actamat.2020.10.010 10.1016/j.apmt.2021.101123 10.1016/j.pmatsci.2023.101109 10.1016/j.addma.2023.103603 10.1016/j.jmatprotec.2013.03.009 10.1016/j.addma.2014.12.006 10.1016/j.ijfatigue.2016.03.014 10.1016/j.jallcom.2017.02.086 10.1016/j.addma.2020.101270 10.1007/s11661-020-05992-x 10.1080/17452759.2020.1779999 10.1016/j.pmatsci.2019.100578 10.1016/j.actamat.2022.118307 10.1016/j.actbio.2009.11.011 10.1007/s11661-021-06279-5 10.1002/adem.201500419 10.1007/s11837-018-2994-x 10.1007/s11661-021-06568-z 10.1016/j.jmsy.2021.01.008 10.1016/j.actamat.2020.09.023 10.3390/mi8010023 10.1038/s41524-020-0334-5 10.1080/02670836.2022.2045549 10.1016/j.matdes.2018.107552 10.1016/j.actamat.2015.01.034 10.1016/j.actamat.2011.11.020 10.1016/j.actamat.2020.09.068 10.1126/science.abj3770 10.1016/j.addma.2022.103071 10.1016/j.matdes.2023.112031 10.1016/j.actamat.2016.07.019 10.1016/j.msea.2019.138633 10.1088/2631-7990/acb134 10.1016/j.actamat.2014.01.018 10.1016/j.addma.2022.103240 10.1016/j.msea.2021.141985 10.1016/j.msea.2004.03.075 10.1016/j.pnsc.2018.07.001 10.1016/j.actamat.2023.118736 10.1016/j.actamat.2018.04.053 10.1016/j.addma.2023.103649 10.1016/j.eng.2020.02.018 10.1016/j.addma.2022.103245 10.1016/j.pmatsci.2017.10.001 10.1016/j.mtla.2020.100941 10.3929/ethz-a-010584903 10.1016/j.addma.2021.102516 10.1080/10426914.2015.1026351 10.1016/j.addma.2019.101011 10.1007/s11831-019-09331-1 10.1038/ncomms11241 10.1016/j.addma.2020.101457 10.1179/1743284715Y.0000000108 10.1016/j.actamat.2016.02.014 10.1016/j.addma.2022.102876 10.1016/j.addma.2021.102176 10.1016/j.msea.2016.04.014 10.1016/j.actamat.2021.116698 10.1016/j.addma.2020.101308 10.1016/j.actamat.2021.117118 10.1016/j.pmatsci.2021.100795 10.1016/j.matlet.2018.11.033 10.1016/j.addma.2022.102871 10.1016/j.addma.2022.103016 10.1016/j.addma.2020.101708 10.1146/annurev-matsci-070115-031816 10.1016/j.msea.2015.05.035 10.1007/s11661-012-1562-1 10.1016/j.matdes.2019.108164 10.1080/17452759.2021.1990358 10.1007/s00170-017-0426-7 10.1016/j.pmatsci.2008.06.004 10.1016/j.addma.2021.101862 10.1007/s11771-021-4720-z 10.1007/s11661-016-3883-y 10.1007/s11661-999-0334-z 10.1016/j.addma.2019.05.027 10.1016/j.cirp.2016.04.057 10.1007/s00170-013-5431-x 10.1080/17452759.2021.1944229 10.1016/j.jmatprotec.2016.09.005 10.1016/j.addma.2017.02.002 10.3390/ma13225063 10.1016/j.addma.2020.101443 10.1016/j.addma.2017.12.002 10.1016/j.addma.2020.101360 10.1016/j.addma.2020.101198 10.1016/j.matdes.2015.10.065 10.1016/j.addma.2022.103262 10.1016/j.matdes.2021.110008 10.1016/j.addma.2019.02.020 10.1016/j.jallcom.2019.152021 10.1007/BF02643923 10.1016/j.jallcom.2018.05.179 10.1016/j.addma.2022.102914 10.3390/mi13081366 10.1007/s11665-021-06071-x 10.1016/j.actamat.2021.117271 10.1007/s40964-021-00189-z 10.1016/j.phpro.2011.03.050 10.18063/msam.v1i2.11 10.1016/j.addma.2021.102249 10.1088/2631-7990/abce04 10.1007/s11665-021-05800-6 10.3788/LOP56.190006 10.1016/j.jallcom.2018.06.032 10.1016/S1359-6462(01)01107-1 10.1016/j.addma.2020.101175 10.1016/j.matdes.2014.09.044 10.1557/jmr.2020.90 10.1016/j.jmst.2022.02.015 10.1016/j.msea.2023.144591 10.1038/s41586-020-2409-3 10.1108/RPJ-12-2019-0310 10.1016/j.scriptamat.2018.03.035 10.1016/j.addma.2022.102656 10.1002/srin.201900447 10.1016/j.pmatsci.2023.101108 10.3390/ma12071007 10.1088/2631-7990/abe0d0 10.1080/09506608.2021.1983351 10.18063/msam.v1i1.4 |
ContentType | Journal Article |
Copyright | 2024 The Author(s). Published by IOP Publishing Ltd on behalf of the IMMT 2024 The Author(s). Published by IOP Publishing Ltd on behalf of the IMMT. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
Copyright_xml | – notice: 2024 The Author(s). Published by IOP Publishing Ltd on behalf of the IMMT – notice: 2024 The Author(s). Published by IOP Publishing Ltd on behalf of the IMMT. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
DBID | O3W TSCCA AAYXX CITATION 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU D1I DWQXO HCIFZ KB. P5Z P62 PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 2B. 4A8 92I 93N PSX TCJ DOA |
DOI | 10.1088/2631-7990/ad1657 |
DatabaseName | Institute of Physics Open Access Journal Titles (WRLC) IOPscience (Open Access) CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One ProQuest Materials Science Collection ProQuest Central SciTech Premium Collection Materials Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Central Korea Materials Science Database ProQuest Central (New) ProQuest Materials Science Collection Advanced Technologies & Aerospace Collection ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: O3W name: Institute of Physics Open Access Journal Titles (WRLC) url: http://iopscience.iop.org/ sourceTypes: Enrichment Source Publisher – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2631-7990 |
EndPage | 62 |
ExternalDocumentID | oai_doaj_org_article_0f0f5161afdb4582a00e6349efc18d91 jdzz_yw202402002 10_1088_2631_7990_ad1657 ijemad1657 |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 52090041; 52104368 funderid: http://dx.doi.org/10.13039/501100001809 – fundername: National Major Science and Technology Projects of China grantid: J2019-VII-0010-0150 funderid: http://dx.doi.org/10.13039/501100013076 – fundername: National Key Research and Development Program of China grantid: 2022YFB4600302 funderid: http://dx.doi.org/10.13039/501100012166 |
GroupedDBID | -SC -S~ AAXDM ABHWH ABJCF ACHIP ADBBV AFKRA AKPSB ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ CAJEC CCPQU CJUJL EBS EJD GROUPED_DOAJ HCIFZ IJHAN IOP KB. N5L O3W OK1 PDBOC PIMPY TCJ TGT TSCCA U1G U5M AAFWJ AAYXX AFPKN CITATION PHGZM PHGZT Q-- 8FE 8FG ABUWG AZQEC D1I DWQXO P62 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 2B. 4A8 92I 93N CDYEO PSX PUEGO |
ID | FETCH-LOGICAL-c481t-c5e8429e93535237ea902aa41d94847653442e960a852d7f9223d3e6ed2fd4593 |
IEDL.DBID | O3W |
ISSN | 2631-8644 |
IngestDate | Wed Aug 27 01:23:59 EDT 2025 Thu May 29 04:04:38 EDT 2025 Fri Jul 25 10:41:39 EDT 2025 Thu Apr 24 23:02:51 EDT 2025 Tue Jul 01 02:55:53 EDT 2025 Sun Aug 18 15:20:26 EDT 2024 Tue Aug 20 22:16:37 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | alloy design crack mitigation printability laser powder bed fusion |
Language | English |
License | Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c481t-c5e8429e93535237ea902aa41d94847653442e960a852d7f9223d3e6ed2fd4593 |
Notes | IJEM-111114.R1 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-5132-6797 0000-0002-9732-7338 |
OpenAccessLink | https://iopscience.iop.org/article/10.1088/2631-7990/ad1657 |
PQID | 2911131950 |
PQPubID | 4916450 |
PageCount | 35 |
ParticipantIDs | iop_journals_10_1088_2631_7990_ad1657 wanfang_journals_jdzz_yw202402002 crossref_citationtrail_10_1088_2631_7990_ad1657 proquest_journals_2911131950 doaj_primary_oai_doaj_org_article_0f0f5161afdb4582a00e6349efc18d91 crossref_primary_10_1088_2631_7990_ad1657 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-04-01 |
PublicationDateYYYYMMDD | 2024-04-01 |
PublicationDate_xml | – month: 04 year: 2024 text: 2024-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Bristol |
PublicationPlace_xml | – name: Bristol |
PublicationTitle | International Journal of Extreme Manufacturing |
PublicationTitleAbbrev | IJEM |
PublicationTitleAlternate | Int. J. Extrem. Manuf |
PublicationTitle_FL | International Journal of Extreme Manufacturing |
PublicationYear | 2024 |
Publisher | IOP Publishing Beijing Advanced Innovation Center for Materials Genome Engineering,University of Science and Technology Beijing,Beijing 100083,People's Republic of China Key Laboratory for Advanced Materials Processing(MOE),Institute for Advanced Materials and Technology,University of Science and Technology Beijing,Beijing 100083,People's Republic of China Beijing Laboratory of Metallic Materials and Processing for Modern Transportation,Institute for Advanced Materials and Technology,University of Science and Technology Beijing,Beijing 100083,People's Republic of China%Key Laboratory for Advanced Materials Processing(MOE),Institute for Advanced Materials and Technology,University of Science and Technology Beijing,Beijing 100083,People's Republic of China%Capital Aerospace Machinery Corporation Limited,Beijing 100076,People's Republic of China%Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials(Ministry of Education),Shandong University,Jingshi Road 17923,Jinan 250061,People's Republic of China%Department of Materials Engineering,KU Leuven,Leuven 3001,Belgium |
Publisher_xml | – name: IOP Publishing – name: Key Laboratory for Advanced Materials Processing(MOE),Institute for Advanced Materials and Technology,University of Science and Technology Beijing,Beijing 100083,People's Republic of China – name: Beijing Advanced Innovation Center for Materials Genome Engineering,University of Science and Technology Beijing,Beijing 100083,People's Republic of China – name: Beijing Laboratory of Metallic Materials and Processing for Modern Transportation,Institute for Advanced Materials and Technology,University of Science and Technology Beijing,Beijing 100083,People's Republic of China%Key Laboratory for Advanced Materials Processing(MOE),Institute for Advanced Materials and Technology,University of Science and Technology Beijing,Beijing 100083,People's Republic of China%Capital Aerospace Machinery Corporation Limited,Beijing 100076,People's Republic of China%Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials(Ministry of Education),Shandong University,Jingshi Road 17923,Jinan 250061,People's Republic of China%Department of Materials Engineering,KU Leuven,Leuven 3001,Belgium |
References | Jiang (ijemad1657bib225) 2022; 98 Guo (ijemad1657bib194) 2022; 59 Sing (ijemad1657bib213) 2021; 16 Stoll (ijemad1657bib92) 2016 Li (ijemad1657bib154) 2023; 864 Noecker (ijemad1657bib68) 2009; 88 Zhou (ijemad1657bib127) 2019; 28 Bayat (ijemad1657bib24) 2021; 47 Kimura (ijemad1657bib146) 2016; 89 Gotelid (ijemad1657bib105) 2021; 27 Zhang (ijemad1657bib56) 2021; 38 Schwendner (ijemad1657bib240) 2001; 45 Wilson-Heid (ijemad1657bib75) 2021; 39 Chen (ijemad1657bib237) 2021; 3 Ramirez (ijemad1657bib66) 2004; 380 Yu (ijemad1657bib210) 2022; 1 Zhang (ijemad1657bib53) 2021; 374 Panwisawas (ijemad1657bib58) 2020; 11 Bauer (ijemad1657bib109) 2015 Tao (ijemad1657bib158) 2020; 34 Liu (ijemad1657bib31) 2019; 164 Colombo-Pulgarin (ijemad1657bib171) 2021; 30 Yin (ijemad1657bib2) 2022; 67 Kürnsteiner (ijemad1657bib196) 2020; 582 Manca (ijemad1657bib204) 2019; 25 Zhang (ijemad1657bib54) 2018; 152 Jia (ijemad1657bib203) 2018; 151 Rashed (ijemad1657bib47) 2021; 37 Saby (ijemad1657bib81) 2021; 44 Chen (ijemad1657bib161) 2022; 59 Niinomi (ijemad1657bib169) 2008; 1 Zhang (ijemad1657bib73) 2021; 46 Sun (ijemad1657bib188) 2022; 13 Narayana (ijemad1657bib199) 2019; 811 Bajaj (ijemad1657bib39) 2020; 772 Nong (ijemad1657bib80) 2021; 174 Rees (ijemad1657bib139) 2023; 231 Sun (ijemad1657bib48) 2020; 33 Shamsaei (ijemad1657bib21) 2015; 8 Casati (ijemad1657bib142) 2017; 48A Plocher (ijemad1657bib10) 2019; 183 Khairallah (ijemad1657bib52) 2016; 108 Griffiths (ijemad1657bib183) 2020; 36 Karg (ijemad1657bib141) 2017; 8 Vilaro (ijemad1657bib49) 2012; 534 Marchese (ijemad1657bib111) 2020; 10 Yong (ijemad1657bib215) 2022; 204 Volpato (ijemad1657bib98) 2022; 55 Hunt (ijemad1657bib181) 1979; vol 3 Huang (ijemad1657bib176) 2021; 28 Croteau (ijemad1657bib206) 2018; 153 Ghoussoub (ijemad1657bib116) 2022; 53 Qi (ijemad1657bib145) 2020; 35 Carroll (ijemad1657bib207) 2015; 87 Wang (ijemad1657bib195) 2018; 17 Singh (ijemad1657bib187) 2017; 719 Sun (ijemad1657bib42) 2022; 1 Aversa (ijemad1657bib184) 2019; 12 Zhang (ijemad1657bib222) 2020; 200 Tytko (ijemad1657bib17) 2012; 60 Martin (ijemad1657bib69) 2017; 549 Zhang (ijemad1657bib27) 2020; 2 Wang (ijemad1657bib79) 2020; 91 Kendig (ijemad1657bib201) 2002; 50 Chen (ijemad1657bib117) 2018; 28 Mostafaei (ijemad1657bib38) 2023; 136 Collins (ijemad1657bib16) 2016; 46 Peng (ijemad1657bib114) 2020; 13 Narasimharaju (ijemad1657bib86) 2022; 75 Hu (ijemad1657bib219) 2021; 52 Shao (ijemad1657bib8) 2019; 29 Geetha (ijemad1657bib166) 2009; 54 Tang (ijemad1657bib72) 2021; 202 Liu (ijemad1657bib50) 2011; 26 Chlebus (ijemad1657bib165) 2011; 62 Vanzetti (ijemad1657bib148) 2021; 14 Dreano (ijemad1657bib217) 2022; 55 Guo (ijemad1657bib96) 2017; 240 Yang (ijemad1657bib157) 2014; 70 Carrozza (ijemad1657bib178) 2021; 870 Xu (ijemad1657bib63) 2022; 240 Leo (ijemad1657bib78) 2019; 41 Kimura (ijemad1657bib129) 2021; 872 Ramirez (ijemad1657bib67) 2004; 380 Li (ijemad1657bib134) 2020; 193 Mukherjee (ijemad1657bib238) 2018; 150 Snow (ijemad1657bib234) 2021; 59 Rao (ijemad1657bib147) 2016; 109 Sabzi (ijemad1657bib88) 2020; 34 Zhu (ijemad1657bib40) 2019; 56 Scibior (ijemad1657bib163) 2020; 61 Farup (ijemad1657bib62) 2000; 31 Christofidou (ijemad1657bib108) 2020 Flemings (ijemad1657bib132) 1974; 5 Haafkens (ijemad1657bib101) 1982; 61 Fu (ijemad1657bib64) 2022; 122 Zhang (ijemad1657bib190) 2019; 576 Zhou (ijemad1657bib107) 2022; 58 Chakraborty (ijemad1657bib113) 2022; 30 Kou (ijemad1657bib65) 2003; 431 Sing (ijemad1657bib33) 2022; 8 Bartkowiak (ijemad1657bib137) 2011 Catchpole-Smith (ijemad1657bib100) 2017; 15 Montero-Sistiaga (ijemad1657bib156) 2016; 238 Wang (ijemad1657bib224) 2019; 5 Meng (ijemad1657bib9) 2020; 27 Aboulkhair (ijemad1657bib36) 2019; 106 Li (ijemad1657bib121) 2022 Soundararajan (ijemad1657bib25) 2021; 47 Wang (ijemad1657bib220) 2020; 39 Gou (ijemad1657bib198) 2020; 829 Asgari (ijemad1657bib118) 2017; 707 Zhang (ijemad1657bib208) 2019; 184 Khan (ijemad1657bib135) 2022; 60 Xue (ijemad1657bib226) 2016; 7 Stopyra (ijemad1657bib120) 2020; 35 ASME (ijemad1657bib37) 2018 Sanchez-Mata (ijemad1657bib112) 2018; 11 Zhang (ijemad1657bib71) 2022; 1 Jackson (ijemad1657bib99) 2018 Meiners (ijemad1657bib3) 1998 Sing (ijemad1657bib14) 2021; 119 Opprecht (ijemad1657bib125) 2020; 197 Zhang (ijemad1657bib110) 2021; 826 Li (ijemad1657bib44) 2022; 13 Kou (ijemad1657bib131) 2015; 88 Huang (ijemad1657bib232) 2021; 203 Zhao (ijemad1657bib103) 2023; 247 Rajasekhar (ijemad1657bib90) 2015; 3 Mehta (ijemad1657bib153) 2021; 41 Chen (ijemad1657bib229) 2020; 13 Zhang (ijemad1657bib128) 2016; 656 Batalha (ijemad1657bib173) 2020; 35 Yan (ijemad1657bib95) 2019; 9 Zhou (ijemad1657bib172) 2018; 762 Duan (ijemad1657bib175) 2021; 37 Sing (ijemad1657bib1) 2020; 15 Mukherjee (ijemad1657bib239) 2018; 150 Carter (ijemad1657bib60) 2012 Sui (ijemad1657bib209) 2022; 4 Ghayoor (ijemad1657bib74) 2020; 32 Li (ijemad1657bib4) 2020; 6 Zhang (ijemad1657bib35) 2023; 936 Tshephe (ijemad1657bib32) 2022; 8 Hauser (ijemad1657bib122) 2021; 41 Ojo (ijemad1657bib28) 2023; 39 Zhang (ijemad1657bib34) 2016; 18 Snow (ijemad1657bib11) 2020; 36 Karthik (ijemad1657bib76) 2021; 47 Buchbinder (ijemad1657bib119) 2011; 12 Kose (ijemad1657bib93) 2021; 30 Scime (ijemad1657bib236) 2018; 24 Feng (ijemad1657bib228) 2023; 167 Herzog (ijemad1657bib12) 2016; 117 Zhang (ijemad1657bib211) 2022; 17 Vrancken (ijemad1657bib70) 2014; 68 Wang (ijemad1657bib160) 2022; 52 Wang (ijemad1657bib61) 2004; 52 Qu (ijemad1657bib59) 2022; 13 Bartolomeu (ijemad1657bib43) 2017; 16 Ozel (ijemad1657bib233) 2020; 142 Mojumder (ijemad1657bib22) 2023; 68 Liu (ijemad1657bib230) 2020; 201 Mutua (ijemad1657bib83) 2018; 139 Zhao (ijemad1657bib130) 2022; 56 Lu (ijemad1657bib159) 2023; 71 Bartlett (ijemad1657bib55) 2019; 27 Blakey-Milner (ijemad1657bib6) 2021; 209 Hyer (ijemad1657bib133) 2021; 208 Wen (ijemad1657bib216) 2019; 170 Ertay (ijemad1657bib235) 2021; 143 Maleki (ijemad1657bib29) 2021; 37 Mathers (ijemad1657bib124) 2002 Qi (ijemad1657bib144) 2021; 47 Kontis (ijemad1657bib18) 2019; 177 Alhassan (ijemad1657bib87) 2021; 9 Ummethala (ijemad1657bib174) 2020; 14 Alipour (ijemad1657bib19) 2022; 60 Geenen (ijemad1657bib94) 2019; 28 Sweet (ijemad1657bib186) 2013; 44 Rappaz (ijemad1657bib180) 1999; 30 Javidrad (ijemad1657bib106) 2020; 51 Du (ijemad1657bib218) 2021; 24 Riener (ijemad1657bib155) 2022; 119 Omiyale (ijemad1657bib5) 2022; 38 Fan (ijemad1657bib177) 2020; 788 Karunakaran (ijemad1657bib41) 2020; 5 Wei (ijemad1657bib13) 2021; 3 Xu (ijemad1657bib182) 2020; 13 Proebstle (ijemad1657bib97) 2016; 674 Liu (ijemad1657bib214) 2020; 6 Mondal (ijemad1657bib221) 2022; 226 Kotadia (ijemad1657bib20) 2021; 46 Easton (ijemad1657bib192) 2001; 49 Wu (ijemad1657bib140) 2022; 54 Grigoriev (ijemad1657bib241) 2017; 704 Li (ijemad1657bib168) 2015; 642 Tonelli (ijemad1657bib126) 2021; 6 Tan (ijemad1657bib193) 2022; 49 Kim (ijemad1657bib89) 2022; 60 Bermingham (ijemad1657bib191) 2009; 481 Nie (ijemad1657bib212) 2018; 764 Li (ijemad1657bib227) 2022; 205 Thapliyal (ijemad1657bib189) 2021; 219 Li (ijemad1657bib123) 2021; 47 Wang (ijemad1657bib46) 2023; 5 Simonelli (ijemad1657bib200) 2020; 51 Spierings (ijemad1657bib202) 2016; 65 Zhang (ijemad1657bib45) 2022; 4 Yadollahi (ijemad1657bib57) 2017; 94 Mu (ijemad1657bib30) 2023; 136 Carter (ijemad1657bib115) 2016; 32 Markanday (ijemad1657bib104) 2022; 6 Oh (ijemad1657bib162) 2021; 9 Pereira (ijemad1657bib149) 2020; 778 Mereddy (ijemad1657bib197) 2018; 70 Lu (ijemad1657bib231) 2022; 17 Wang (ijemad1657bib143) 2018; 711 DebRoy (ijemad1657bib15) 2018; 92 Zhao (ijemad1657bib85) 2015; 30 Kimura (ijemad1657bib151) 2017; 682 Galati (ijemad1657bib23) 2018; 19 Issariyapat (ijemad1657bib164) 2023; 73 Cain (ijemad1657bib170) 2015; 5 Tomus (ijemad1657bib102) 2017; 16 Bandyopadhyay (ijemad1657bib167) 2010; 6 Zhang (ijemad1657bib179) 2002; 50 Mazur (ijemad1657bib82) 2017; 93 Galy (ijemad1657bib136) 2018; 22 Olakanmi (ijemad1657bib152) 2013; 213 Sun (ijemad1657bib185) 2021; 204 Mei (ijemad1657bib84) 2022; 58 Read (ijemad1657bib150) 2015; 65 Sabooni (ijemad1657bib77) 2021; 46 Liu (ijemad1657bib91) 2016; 666 Gu (ijemad1657bib7) 2021; 372 Zhang (ijemad1657bib223) 2021; 215 Dizon (ijemad1657bib26) 2018; 20 Manca (ijemad1657bib205) 2019; 236 Chlebus (ijemad1657bib51) 2015; 639 Karg (ijemad1657bib138) 2014 |
References_xml | – volume: 26 start-page: 908 year: 2011 ident: ijemad1657bib50 article-title: Effect of intermediate heat treatment temperature on microstructure and notch sensitivity of laser solid formed Inconel 718 superalloy publication-title: J. Wuhan Univ. Technol. Mater. Sci. Ed. doi: 10.1007/s11595-011-0335-9 – volume: 6 start-page: 1 year: 2022 ident: ijemad1657bib104 article-title: Applications of alloy design to cracking resistance of additively manufactured Ni-based alloys publication-title: Mater. Sci. Technol. doi: 10.1080/02670836.2022.2068759 – volume: 16 start-page: 81 year: 2017 ident: ijemad1657bib43 article-title: 316L stainless steel mechanical and tribological behavior-a comparison between selective laser melting, hot pressing and conventional casting publication-title: Addit. Manuf. doi: 10.1016/j.addma.2017.05.007 – volume: 788 year: 2020 ident: ijemad1657bib177 article-title: Effects of direct aging on near-alpha Ti-6Al-2Sn-4Zr-2Mo (Ti-6242) titanium alloy fabricated by selective laser melting (SLM) publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2020.139533 – volume: 150 start-page: 304 year: 2018 ident: ijemad1657bib238 article-title: Heat and fluid flow in additive manufacturing—Part I: modeling of powder bed fusion publication-title: Comput. Mater. Sci. doi: 10.1016/j.commatsci.2018.04.022 – volume: 193 start-page: 83 year: 2020 ident: ijemad1657bib134 article-title: Developing a high-strength Al-Mg-Si-Sc-Zr alloy for selective laser melting: crack-inhibiting and multiple strengthening mechanisms publication-title: Acta Mater. doi: 10.1016/j.actamat.2020.03.060 – volume: 380 start-page: 259 year: 2004 ident: ijemad1657bib66 article-title: High temperature behavior of Ni-base weld metal—part I. Ductility and microstructural characterization publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2004.03.074 – volume: 22 start-page: 165 year: 2018 ident: ijemad1657bib136 article-title: Main defects observed in aluminum alloy parts produced by SLM: from causes to consequences publication-title: Addit. Manuf. doi: 10.1016/j.addma.2018.05.005 – volume: 47 year: 2021 ident: ijemad1657bib24 article-title: A review of multi-scale and multi-physics simulations of metal additive manufacturing processes with focus on modeling strategies publication-title: Addit. Manuf. doi: 10.1016/j.addma.2021.102278 – volume: 49 start-page: 1867 year: 2001 ident: ijemad1657bib192 article-title: A model of grain refinement incorporating alloy constitution and potency of heterogeneous nucleant particles publication-title: Acta Mater. doi: 10.1016/S1359-6454(00)00368-2 – volume: 41 year: 2021 ident: ijemad1657bib153 article-title: Additive manufacturing and mechanical properties of the dense and crack free Zr-modified aluminum alloy 6061 fabricated by the laser-powder bed fusion publication-title: Addit. Manuf. doi: 10.1016/j.addma.2021.101966 – volume: 9 start-page: 429 year: 2021 ident: ijemad1657bib162 article-title: High speed synchrotron x-ray diffraction experiments resolve microstructure and phase transformation in laser processed Ti-6Al-4V publication-title: Mater. Res. Lett. doi: 10.1080/21663831.2021.1966537 – volume: 13 start-page: 2149 year: 2020 ident: ijemad1657bib114 article-title: Cracking behavior of René 104 Nickel-based superalloy prepared by selective laser melting using different scanning strategies publication-title: Materials doi: 10.3390/ma13092149 – volume: 39 start-page: 269 year: 2020 ident: ijemad1657bib220 article-title: Machine learning assisted high-throughput experiments accelerates the composition design of hard high-entropy alloy Co_xCr_yTi_zMo_uW_v publication-title: Mater. China doi: 10.7502/j.issn.1674-3962.201905032 – year: 2002 ident: ijemad1657bib124 – volume: 1 year: 2022 ident: ijemad1657bib71 article-title: Design of titanium alloys by additive manufacturing: a critical review publication-title: Adv. Powder Mater. doi: 10.1016/j.apmate.2021.11.001 – volume: 534 start-page: 446 year: 2012 ident: ijemad1657bib49 article-title: Microstructural and mechanical approaches of the selective laser melting process applied to a nickel-base superalloy publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2011.11.092 – year: 2012 ident: ijemad1657bib60 article-title: Laser powder bed fabrication of nickel-base superalloys: influence of parameters; characterisation, quantification and mitigation of cracking doi: 10.7449/2012/Superalloys_2012_577_586 – volume: 47 year: 2021 ident: ijemad1657bib76 article-title: Delayed deformation-induced martensite transformation and enhanced cryogenic tensile properties in laser additive manufactured 316L austenitic stainless steel publication-title: Addit. Manuf. doi: 10.1016/j.addma.2021.102314 – volume: 5 start-page: 87 year: 2019 ident: ijemad1657bib224 article-title: A property-oriented design strategy for high performance copper alloys via machine learning publication-title: npj Comput. Mater. doi: 10.1038/s41524-019-0227-7 – volume: 28 start-page: 585 year: 2019 ident: ijemad1657bib94 article-title: Microstructure, mechanical, and tribological properties of M3:2 high-speed steel processed by selective laser melting, hot-isostatic pressing, and casting publication-title: Addit. Manuf. doi: 10.1016/j.addma.2019.05.028 – volume: 829 year: 2020 ident: ijemad1657bib198 article-title: Effects of trace Nb addition on microstructure and properties of Ti–6Al–4V thin-wall structure prepared via cold metal transfer additive manufacturing publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2020.154481 – volume: 24 start-page: 273 year: 2018 ident: ijemad1657bib236 article-title: A multi-scale convolutional neural network for autonomous anomaly detection and classification in a laser powder bed fusion additive manufacturing process publication-title: Addit. Manuf. doi: 10.1016/j.addma.2018.09.034 – volume: 9 start-page: 86 year: 2019 ident: ijemad1657bib95 article-title: A comprehensive study of steel powders (316L, H13, P20 and 18Ni300) for their selective laser melting additive manufacturing publication-title: Metals doi: 10.3390/met9010086 – volume: 205 year: 2022 ident: ijemad1657bib227 article-title: Hardness prediction of high entropy alloys with machine learning and material descriptors selection by improved genetic algorithm publication-title: Comput. Mater. Sci. doi: 10.1016/j.commatsci.2022.111185 – year: 2020 ident: ijemad1657bib108 article-title: Microstructural control and optimization of Haynes 282 manufactured through laser powder bed fusion doi: 10.1007/978-3-030-51834-9_99 – volume: 481 start-page: L20 year: 2009 ident: ijemad1657bib191 article-title: Beryllium as a grain refiner in titanium alloys publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2009.03.016 – volume: 576 start-page: 91 year: 2019 ident: ijemad1657bib190 article-title: Additive manufacturing of ultrafine-grained high-strength titanium alloys publication-title: Nature doi: 10.1038/s41586-019-1783-1 – volume: 152 start-page: 200 year: 2018 ident: ijemad1657bib54 article-title: Effect of heat treatment on the microstructural evolution of a nickel-based superalloy additive-manufactured by laser powder bed fusion publication-title: Acta Mater. doi: 10.1016/j.actamat.2018.03.017 – volume: 204 year: 2022 ident: ijemad1657bib215 article-title: Improving prediction accuracy of high-performance materials via modified machine learning strategy publication-title: Comput. Mater. Sci. doi: 10.1016/j.commatsci.2021.111181 – volume: 16 start-page: 65 year: 2017 ident: ijemad1657bib102 article-title: Effect of minor alloying elements on crack-formation characteristics of Hastelloy-X manufactured by selective laser melting publication-title: Addit. Manuf. doi: 10.1016/j.addma.2017.05.006 – volume: 870 year: 2021 ident: ijemad1657bib178 article-title: A study on the microstructure and mechanical properties of the Ti-6Al-2Sn-4Zr-6Mo alloy produced via laser powder bed fusion publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2021.159329 – volume: 936 year: 2023 ident: ijemad1657bib35 article-title: Powder bed fusion manufacturing of beta-type titanium alloys for biomedical implant applications: a review publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2022.168099 – volume: 642 start-page: 268 year: 2015 ident: ijemad1657bib168 article-title: Processing and properties of topologically optimised biomedical Ti-24Nb-4Zr-8Sn scaffolds manufactured by selective laser melting publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2015.06.088 – volume: 46 year: 2021 ident: ijemad1657bib20 article-title: A review of laser powder bed fusion additive manufacturing of aluminium alloys: microstructure and properties publication-title: Addit. Manuf. doi: 10.1016/j.addma.2021.102155 – volume: 372 start-page: 932abg1487 year: 2021 ident: ijemad1657bib7 article-title: Material-structure-performance integrated laser-metal additive manufacturing publication-title: Science doi: 10.1126/science.abg1487 – volume: 174 year: 2021 ident: ijemad1657bib80 article-title: Effect of scanning strategy on the microstructure, texture, and mechanical properties of 15-5PH stainless steel processed by selective laser melting publication-title: Mater. Charact. doi: 10.1016/j.matchar.2021.111012 – volume: 54 year: 2022 ident: ijemad1657bib140 article-title: Hot cracking evolution and formation mechanism in 2195 Al-Li alloy printed by laser powder bed fusion publication-title: Addit. Manuf. doi: 10.1016/j.addma.2022.102762 – volume: 2 year: 2020 ident: ijemad1657bib27 article-title: A review on microstructures and properties of high entropy alloys manufactured by selective laser melting publication-title: Int. J. Extreme Manuf. doi: 10.1088/2631-7990/ab9ead – volume: 87 start-page: 309 year: 2015 ident: ijemad1657bib207 article-title: Anisotropic tensile behavior of Ti–6Al–4V components fabricated with directed energy deposition additive manufacturing publication-title: Acta Mater. doi: 10.1016/j.actamat.2014.12.054 – volume: 30 year: 2022 ident: ijemad1657bib113 article-title: Micro-cracking mechanism of RENÉ 108 thin-wall components built by laser powder bed fusion additive manufacturing publication-title: Mater. Today Commun. doi: 10.1016/j.mtcomm.2022.103139 – volume: 778 year: 2020 ident: ijemad1657bib149 article-title: Comparison of AlSi7Mg0.6 alloy obtained by selective laser melting and investment casting processes: microstructure and mechanical properties in as-built/as-cast and heat-treated conditions publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2020.139124 – volume: 238 start-page: 437 year: 2016 ident: ijemad1657bib156 article-title: Changing the alloy composition of Al7075 for better processability by selective laser melting publication-title: J. Mater. Process. Technol. doi: 10.1016/j.jmatprotec.2016.08.003 – year: 2018 ident: ijemad1657bib37 article-title: Additive manufacturing of nickel-based superalloys – volume: 17 start-page: 63 year: 2018 ident: ijemad1657bib195 article-title: Additively manufactured hierarchical stainless steels with high strength and ductility publication-title: Nat. Mater. doi: 10.1038/nmat5021 – volume: 549 start-page: 365 year: 2017 ident: ijemad1657bib69 article-title: 3D printing of high-strength aluminium alloys publication-title: Nature doi: 10.1038/nature23894 – volume: 8 year: 2022 ident: ijemad1657bib32 article-title: Additive manufacturing of titanium-based alloys-a review of methods, properties, challenges, and prospects publication-title: Heliyon doi: 10.1016/j.heliyon.2022.e09041 – volume: 14 start-page: 6157 year: 2021 ident: ijemad1657bib148 article-title: Short heat treatments for the F357 aluminum alloy processed by laser powder bed fusion publication-title: Materials doi: 10.3390/ma14206157 – volume: 39 start-page: 1 year: 2023 ident: ijemad1657bib28 article-title: Post-processing treatments-microstructure-performance interrelationship of metal additive manufactured aerospace alloys: a review publication-title: Mater. Sci. Technol. doi: 10.1080/02670836.2022.2130530 – volume: 31 start-page: 1461 year: 2000 ident: ijemad1657bib62 article-title: Two-phase modeling of mushy zone parameters associated with hot tearing publication-title: Metall. Mater. Trans. A doi: 10.1007/s11661-000-0264-2 – volume: 5 start-page: 44 year: 2020 ident: ijemad1657bib41 article-title: Additive manufacturing of magnesium alloys publication-title: Bioact. Mater. doi: 10.1016/j.bioactmat.2019.12.004 – volume: 41 year: 2021 ident: ijemad1657bib122 article-title: Porosity in wire arc additive manufacturing of aluminium alloys publication-title: Addit. Manuf. doi: 10.1016/j.addma.2021.101993 – volume: 197 start-page: 40 year: 2020 ident: ijemad1657bib125 article-title: A solution to the hot cracking problem for aluminium alloys manufactured by laser beam melting publication-title: Acta Mater. doi: 10.1016/j.actamat.2020.07.015 – volume: 184 year: 2019 ident: ijemad1657bib208 article-title: Effects of boron addition on microstructures and mechanical properties of Ti-6Al-4V manufactured by direct laser deposition publication-title: Mater. Des. doi: 10.1016/j.matdes.2019.108191 – volume: 19 start-page: 1 year: 2018 ident: ijemad1657bib23 article-title: A literature review of powder-based electron beam melting focusing on numerical simulations publication-title: Addit. Manuf. doi: 10.1016/j.addma.2017.11.001 – volume: 11 start-page: 2327 year: 2020 ident: ijemad1657bib58 article-title: Metal 3D printing as a disruptive technology for superalloys publication-title: Nat. Commun. doi: 10.1038/s41467-020-16188-7 – volume: 4 year: 2022 ident: ijemad1657bib209 article-title: Study of the intrinsic mechanisms of nickel additive for grain refinement and strength enhancement of laser aided additively manufactured Ti-6Al-4V publication-title: Int. J. Extreme Manuf. doi: 10.1088/2631-7990/ac6b61 – volume: 12 start-page: 271 year: 2011 ident: ijemad1657bib119 article-title: High power selective laser melting (HP SLM) of aluminum parts publication-title: Phys. Proc. doi: 10.1016/j.phpro.2011.03.035 – volume: 719 start-page: 151 year: 2017 ident: ijemad1657bib187 article-title: Laser metal deposition of nickel coated Al 7050 alloy publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2017.05.171 – volume: 9 start-page: 782 year: 2021 ident: ijemad1657bib87 article-title: Carbon equivalent fundamentals in evaluating the weldability of microalloy and low alloy steels publication-title: World J. Eng. Technol. doi: 10.4236/wjet.2021.94054 – volume: 11 start-page: 1288 year: 2018 ident: ijemad1657bib112 article-title: Fabrication of crack-free nickel-based superalloy considered non-weldable during laser powder bed fusion publication-title: Materials doi: 10.3390/ma11081288 – year: 2022 ident: ijemad1657bib121 – volume: 150 start-page: 369 year: 2018 ident: ijemad1657bib239 article-title: Heat and fluid flow in additive manufacturing–Part II: powder bed fusion of stainless steel, and titanium, nickel and aluminum base alloys publication-title: Comput. Mater. Sci. doi: 10.1016/j.commatsci.2018.04.027 – volume: 13 start-page: 4361 year: 2022 ident: ijemad1657bib188 article-title: Thermodynamics-guided alloy and process design for additive manufacturing publication-title: Nat. Commun. doi: 10.1038/s41467-022-31969-y – volume: 68 year: 2023 ident: ijemad1657bib22 article-title: Linking process parameters with lack-of-fusion porosity for laser powder bed fusion metal additive manufacturing publication-title: Addit. Manuf. doi: 10.1016/j.addma.2023.103500 – volume: 59 year: 2022 ident: ijemad1657bib194 article-title: Phase transformation dynamics guided alloy development for additive manufacturing publication-title: Addit. Manuf. doi: 10.1016/j.addma.2022.103068 – volume: 47 year: 2021 ident: ijemad1657bib25 article-title: Review on modeling techniques for powder bed fusion processes based on physical principles publication-title: Addit. Manuf. doi: 10.1016/j.addma.2021.102336 – volume: 204 year: 2021 ident: ijemad1657bib185 article-title: Reducing hot tearing by grain boundary segregation engineering in additive manufacturing: example of an AlxCoCrFeNi high-entropy alloy publication-title: Acta Mater. doi: 10.1016/j.actamat.2020.116505 – volume: 29 year: 2019 ident: ijemad1657bib8 article-title: Overview: additive manufacturing enabled accelerated design of Ni-based alloys for improved fatigue life publication-title: Addit. Manuf. doi: 10.1016/j.addma.2019.100779 – volume: 46 year: 2021 ident: ijemad1657bib73 article-title: Microstructure, surface quality, residual stress, fatigue behavior and damage mechanisms of selective laser melted 304L stainless steel considering building direction publication-title: Addit. Manuf. doi: 10.1016/j.addma.2021.102147 – volume: 139 start-page: 486 year: 2018 ident: ijemad1657bib83 article-title: Optimization of selective laser melting parameters and influence of post heat treatment on microstructure and mechanical properties of maraging steel publication-title: Mater. Des. doi: 10.1016/j.matdes.2017.11.042 – volume: 13 start-page: 1 year: 2022 ident: ijemad1657bib59 article-title: Controlling process instability for defect lean metal additive manufacturing publication-title: Nat. Commun. doi: 10.1038/s41467-022-28649-2 – volume: 37 year: 2021 ident: ijemad1657bib47 article-title: Enhancing the bond strength in the meta-crystal lattice of architected materials by harnessing the non-equilibrium solidification in metal additive manufacturing publication-title: Addit. Manuf. doi: 10.1016/j.addma.2020.101682 – volume: 52 start-page: 3173 year: 2004 ident: ijemad1657bib61 article-title: Solidification cracking of superalloy single- and bi-crystals Acta Mater. doi: 10.1016/j.actamat.2004.03.047 – volume: 656 start-page: 47 year: 2016 ident: ijemad1657bib128 article-title: Selective laser melting of high strength Al-Cu-Mg alloys: processing, microstructure and mechanical properties publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2015.12.101 – volume: 119 start-page: 4963 year: 2022 ident: ijemad1657bib155 article-title: Processability of high-strength aluminum 6182 series alloy via laser powder bed fusion (LPBF) publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-022-08673-8 – volume: 61 start-page: 11 year: 1982 ident: ijemad1657bib101 article-title: A new approach to the weldability of nickel-base As-cast and power metallurgy superalloys publication-title: Weld. J. – volume: 203 year: 2021 ident: ijemad1657bib232 article-title: A machine learning guided investigation of quality repeatability in metal laser powder bed fusion additive manufacturing publication-title: Mater. Des. doi: 10.1016/j.matdes.2021.109606 – volume: 872 year: 2021 ident: ijemad1657bib129 article-title: Microstructures and mechanical properties of aluminum-transition metal binary alloys (Al-Fe, Al-Mn, and Al-Cr) processed by laser powder bed fusion publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2021.159680 – volume: 98 start-page: 33 year: 2022 ident: ijemad1657bib225 article-title: Discovery of aluminum alloys with ultra-strength and high-toughness via a property-oriented design strategy publication-title: J. Mater. Sci. Technol. doi: 10.1016/j.jmst.2021.05.011 – volume: 226 year: 2022 ident: ijemad1657bib221 article-title: Crack free metal printing using physics informed machine learning publication-title: Acta Mater. doi: 10.1016/j.actamat.2021.117612 – volume: 41 start-page: 66 year: 2019 ident: ijemad1657bib78 article-title: Analysis of microstructure and defects in 17-4 PH stainless steel sample manufactured by selective laser melting publication-title: Proc. Manuf. doi: 10.1016/j.promfg.2019.07.030 – volume: 75 start-page: 375 year: 2022 ident: ijemad1657bib86 article-title: A comprehensive review on laser powder bed fusion of steels: processing, microstructure, defects and control methods, mechanical properties, current challenges and future trends publication-title: J. Manuf. Process. doi: 10.1016/j.jmapro.2021.12.033 – volume: 17 start-page: 787 year: 2022 ident: ijemad1657bib231 article-title: Knowledge transfer using Bayesian learning for predicting the process-property relationship of Inconel alloys obtained by laser powder bed fusion publication-title: Virtual Phys. Prototyp. doi: 10.1080/17452759.2022.2068447 – volume: 62 start-page: 488 year: 2011 ident: ijemad1657bib165 article-title: Microstructure and mechanical behaviour of Ti-6Al-7Nb alloy produced by selective laser melting publication-title: Mater. Charact. doi: 10.1016/j.matchar.2011.03.006 – volume: 50 start-page: 4165 year: 2002 ident: ijemad1657bib201 article-title: Strengthening mechanisms of an Al-Mg-Sc-Zr alloy publication-title: Acta Mater. doi: 10.1016/S1359-6454(02)00258-6 – volume: 109 start-page: 334 year: 2016 ident: ijemad1657bib147 article-title: The influence of processing parameters on aluminium alloy A357 manufactured by selective laser melting publication-title: Mater. Des. doi: 10.1016/j.matdes.2016.07.009 – year: 2018 ident: ijemad1657bib99 – volume: 143 year: 2021 ident: ijemad1657bib235 article-title: Toward sub-surface pore prediction capabilities for laser powder bed fusion using data science publication-title: Trans. ASME, J. Manuf. Sci. Eng. doi: 10.1115/1.4050461 – volume: 707 start-page: 148 year: 2017 ident: ijemad1657bib118 article-title: On microstructure and mechanical properties of additively manufactured AlSi10Mg_200C using recycled powder publication-title: Mater. Sci. Eng. doi: 10.1016/j.msea.2017.09.041 – volume: 682 start-page: 593 year: 2017 ident: ijemad1657bib151 article-title: Effect of silicon content on densification, mechanical and thermal properties of Al-xSi binary alloys fabricated using selective laser melting publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2016.11.059 – volume: 142 year: 2020 ident: ijemad1657bib233 article-title: Focus variation measurement and prediction of surface texture parameters using machine learning in laser powder bed fusion publication-title: Trans. ASME, J. Manuf. Sci. Eng. doi: 10.1115/1.4045415 – volume: 37 year: 2021 ident: ijemad1657bib29 article-title: Surface post-treatments for metal additive manufacturing: progress, challenges, and opportunities publication-title: Addit. Manuf. doi: 10.1016/j.addma.2020.101619 – volume: 170 start-page: 109 year: 2019 ident: ijemad1657bib216 article-title: Machine learning assisted design of high entropy alloys with desired property publication-title: Acta Mater. doi: 10.1016/j.actamat.2019.03.010 – volume: 44 year: 2021 ident: ijemad1657bib81 article-title: Laser powder bed fusion printability of cobalt-free steel powders for manufacturing injection molds publication-title: Addit. Manuf. doi: 10.1016/j.addma.2021.102031 – volume: 51 start-page: 2444 year: 2020 ident: ijemad1657bib200 article-title: The influence of iron in minimizing the microstructural anisotropy of Ti-6Al-4V produced by laser powder-bed fusion publication-title: Metall. Mater. Trans. A doi: 10.1007/s11661-020-05692-6 – volume: 674 start-page: 299 year: 2016 ident: ijemad1657bib97 article-title: Superior creep strength of a nickel-based superalloy produced by selective laser melting publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2016.07.061 – volume: 431 start-page: 223 year: 2003 ident: ijemad1657bib65 article-title: USA welding metallurgy publication-title: New Jersey doi: 10.1002/0471434027 – volume: 10 start-page: 882 year: 2020 ident: ijemad1657bib111 article-title: The influence of the process parameters on the densification and microstructure development of laser powder bed fused Inconel 939 publication-title: Metals doi: 10.3390/met10070882 – volume: 167 start-page: 1 year: 2023 ident: ijemad1657bib228 article-title: Simultaneous enhancement in mechanical and corrosion properties of Al-Mg-Si alloys using machine learning publication-title: J. Mater. Sci. Technol. doi: 10.1016/j.jmst.2023.04.072 – volume: 13 start-page: 4930 year: 2020 ident: ijemad1657bib182 article-title: A novel γ′-strengthened nickel-based superalloy for laser powder bed fusion publication-title: Materials doi: 10.3390/ma13214930 – volume: 8 start-page: 1 year: 2022 ident: ijemad1657bib33 article-title: Perspectives on additive manufacturing enabled beta-titanium alloys for biomedical applications publication-title: Int. J. Bioprinting doi: 10.18063/ijb.v8i1.478 – volume: 50 start-page: 1869 year: 2002 ident: ijemad1657bib179 article-title: Hot tearing of nickel-based superalloys during directional solidification publication-title: Acta Mater. doi: 10.1016/S1359-6454(02)00042-3 – volume: 47 year: 2021 ident: ijemad1657bib123 article-title: Exploiting the rapid solidification potential of laser powder bed fusion in high strength and crack-free Al-Cu-Mg-Mn-Zr alloys publication-title: Addit. Manuf. doi: 10.1016/j.addma.2021.102210 – volume: 177 start-page: 209 year: 2019 ident: ijemad1657bib18 article-title: Atomic-scale grain boundary engineering to overcome hot-cracking in additively-manufactured superalloys publication-title: Acta Mater. doi: 10.1016/j.actamat.2019.07.041 – volume: 59 year: 2022 ident: ijemad1657bib161 article-title: Microstructural engineering of a dual-phase Ti-Al-V-Fe alloy via in situ alloying during laser powder bed fusion publication-title: Addit. Manuf. doi: 10.1016/j.addma.2022.103173 – volume: 711 start-page: 562 year: 2018 ident: ijemad1657bib143 article-title: Microstructure and mechanical properties of a heat-treatable Al-3.5Cu-1.5Mg-1Si alloy produced by selective laser melting publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2017.11.063 – volume: 8 start-page: 12 year: 2015 ident: ijemad1657bib21 article-title: An overview of direct laser deposition for additive manufacturing; part II: mechanical behavior, process parameter optimization and control publication-title: Addit. Manuf. doi: 10.1016/j.addma.2015.07.002 – volume: 1 start-page: 30 year: 2008 ident: ijemad1657bib169 article-title: Mechanical biocompatibilities of titanium alloys for biomedical applications publication-title: J. Mech. Behav. Biomed. Mater. doi: 10.1016/j.jmbbm.2007.07.001 – volume: 25 start-page: 633 year: 2019 ident: ijemad1657bib204 article-title: Microstructure and properties of novel heat resistant Al–Ce–Cu alloy for additive manufacturing publication-title: Met. Mater. Int. doi: 10.1007/s12540-018-00211-0 – volume: 4 year: 2022 ident: ijemad1657bib45 article-title: Understanding the Rayleigh instability in humping phenomenon during laser powder bed fusion process publication-title: Int. J. Extreme Manuf. doi: 10.1088/2631-7990/ac466d – year: 2014 ident: ijemad1657bib138 article-title: Processability of high strength aluminum-copper alloys AW-2022 and 2024 by laser beam melting in powder bed – year: 2016 ident: ijemad1657bib92 article-title: SLM processing of 14 Ni (200 Grade) maraging steel DDMC doi: 10.3929/ETHZ-A-010802372 – volume: 61 year: 2020 ident: ijemad1657bib163 article-title: Vanadium: risks and possible benefits in the light of a comprehensive overview of its pharmacotoxicological mechanisms and multi-applications with a summary of further research trends publication-title: J. Trace Elem. Med. Biol. doi: 10.1016/j.jtemb.2020.126508 – volume: 38 year: 2021 ident: ijemad1657bib56 article-title: A novel crack-free Ti-modified Al-Cu-Mg alloy designed for selective laser melting publication-title: Addit. Manuf. doi: 10.1016/j.addma.2020.101829 – volume: 201 start-page: 316 year: 2020 ident: ijemad1657bib230 article-title: Machine-learning assisted laser powder bed fusion process optimization for AlSi10Mg: new microstructure description indices and fracture mechanisms publication-title: Acta Mater. doi: 10.1016/j.actamat.2020.10.010 – volume: 24 year: 2021 ident: ijemad1657bib218 article-title: Physics-informed machine learning and mechanistic modeling of additive manufacturing to reduce defects publication-title: Appl. Mater. Today doi: 10.1016/j.apmt.2021.101123 – volume: 136 year: 2023 ident: ijemad1657bib30 article-title: Application of electrochemical polishing in surface treatment of additively manufactured structures: a review publication-title: Prog. Mater. Sci. doi: 10.1016/j.pmatsci.2023.101109 – volume: 71 year: 2023 ident: ijemad1657bib159 article-title: Tailoring hierarchical microstructures to improve the strength and plasticity of a laser powder bed fusion additively manufactured Ti-6Al-4V alloy publication-title: Addit. Manuf. doi: 10.1016/j.addma.2023.103603 – volume: 88 start-page: 62S year: 2009 ident: ijemad1657bib68 article-title: Metallurgical investigation into ductility dip cracking in Ni-based alloys: part II publication-title: Weld. J. – volume: 213 start-page: 1387 year: 2013 ident: ijemad1657bib152 article-title: Selective laser sintering/melting (SLS/SLM) of pure Al, Al-Mg, and Al-Si powders: effect of processing conditions and powder properties publication-title: J. Mater. Process. Technol. doi: 10.1016/j.jmatprotec.2013.03.009 – volume: 5 start-page: 68 year: 2015 ident: ijemad1657bib170 article-title: Crack propagation and fracture toughness of Ti6A14V alloy produced by selective laser melting publication-title: Addit. Manuf. doi: 10.1016/j.addma.2014.12.006 – volume: 94 start-page: 218 year: 2017 ident: ijemad1657bib57 article-title: Effects of building orientation and heat treatment on fatigue behavior of selective laser melted 17-4 PH stainless steel publication-title: Int. J. Fatigue doi: 10.1016/j.ijfatigue.2016.03.014 – volume: 704 start-page: 434 year: 2017 ident: ijemad1657bib241 article-title: In-situ synthesis of Ti2AlNb-based intermetallic alloy by selective laser melting publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2017.02.086 – volume: 35 year: 2020 ident: ijemad1657bib120 article-title: Laser powder bed fusion of AA7075 alloy: influence of process parameters on porosity and hot cracking publication-title: Addit. Manuf. doi: 10.1016/j.addma.2020.101270 – volume: 51 start-page: 5880 year: 2020 ident: ijemad1657bib106 article-title: Effect of the volume energy density and heat treatment on the defect, microstructure, and hardness of L-PBF Inconel 625 publication-title: Metall. Mater. Trans. A doi: 10.1007/s11661-020-05992-x – volume: 15 start-page: 359 year: 2020 ident: ijemad1657bib1 article-title: Laser powder bed fusion for metal additive manufacturing: perspectives on recent developments publication-title: Virtual Phys. Prototyp. doi: 10.1080/17452759.2020.1779999 – volume: 106 year: 2019 ident: ijemad1657bib36 article-title: 3D printing of aluminium alloys: additive manufacturing of aluminium alloys using selective laser melting publication-title: Prog. Mater. Sci. doi: 10.1016/j.pmatsci.2019.100578 – volume: vol 3 start-page: 275 year: 1979 ident: ijemad1657bib181 – volume: 240 year: 2022 ident: ijemad1657bib63 article-title: Modelling of additive manufacturability of nickel-based superalloys for laser powder bed fusion publication-title: Acta Mater. doi: 10.1016/j.actamat.2022.118307 – volume: 6 start-page: 1640 year: 2010 ident: ijemad1657bib167 article-title: Influence of porosity on mechanical properties and in vivo response of Ti6Al4V implants publication-title: Acta Biomater. doi: 10.1016/j.actbio.2009.11.011 – volume: 52 start-page: 2873 year: 2021 ident: ijemad1657bib219 article-title: Prediction of mechanical properties of wrought aluminium alloys using feature engineering assisted machine learning approach publication-title: Metall. Mater. Trans. A doi: 10.1007/s11661-021-06279-5 – volume: 18 start-page: 463 year: 2016 ident: ijemad1657bib34 article-title: Selective laser melting of titanium alloys and titanium matrix composites for biomedical applications: a review publication-title: Adv. Eng. Mater. doi: 10.1002/adem.201500419 – volume: 70 start-page: 1670 year: 2018 ident: ijemad1657bib197 article-title: Trace carbon addition to refine microstructure and enhance properties of additive-manufactured Ti-6Al-4V publication-title: JOM doi: 10.1007/s11837-018-2994-x – volume: 53 start-page: 962 year: 2022 ident: ijemad1657bib116 article-title: On the influence of alloy composition on the additive manufacturability of Ni-based superalloys publication-title: Metall. Mater. Trans. A doi: 10.1007/s11661-021-06568-z – volume: 59 start-page: 12 year: 2021 ident: ijemad1657bib234 article-title: Toward in-situ flaw detection in laser powder bed fusion additive manufacturing through layerwise imagery and machine learning publication-title: J. Manuf. Syst. doi: 10.1016/j.jmsy.2021.01.008 – volume: 202 start-page: 417 year: 2021 ident: ijemad1657bib72 article-title: Alloys-by-design: application to new superalloys for additive manufacturing publication-title: Acta Mater. doi: 10.1016/j.actamat.2020.09.023 – volume: 8 start-page: 23 year: 2017 ident: ijemad1657bib141 article-title: Effects of process conditions on the mechanical behavior of aluminium wrought alloy EN AW-2219 (AlCu6Mn) additively manufactured by laser beam melting in powder bed publication-title: Micromachines doi: 10.3390/mi8010023 – volume: 6 start-page: 62 year: 2020 ident: ijemad1657bib214 article-title: Machine learning assisted design of γ′-strengthened Co-base superalloys with multi-performance optimization publication-title: npj Comput. Mater. doi: 10.1038/s41524-020-0334-5 – volume: 38 start-page: 391 year: 2022 ident: ijemad1657bib5 article-title: Wire arc additive manufacturing of aluminium alloys for aerospace and automotive applications: a review publication-title: Mater. Sci. Technol. doi: 10.1080/02670836.2022.2045549 – volume: 164 year: 2019 ident: ijemad1657bib31 article-title: Additive manufacturing of Ti6Al4V alloy: a review publication-title: Mater. Des. doi: 10.1016/j.matdes.2018.107552 – volume: 88 start-page: 366 year: 2015 ident: ijemad1657bib131 article-title: A criterion for cracking during solidification publication-title: Acta Mater. doi: 10.1016/j.actamat.2015.01.034 – volume: 60 start-page: 1731 year: 2012 ident: ijemad1657bib17 article-title: Microstructural evolution of a Ni-based superalloy (617B) at 700 °C studied by electron microscopy and atom probe tomography publication-title: Acta Mater. doi: 10.1016/j.actamat.2011.11.020 – volume: 200 start-page: 803 year: 2020 ident: ijemad1657bib222 article-title: Dramatically enhanced combination of ultimate tensile strength and electric conductivity of alloys via machine learning screening publication-title: Acta Mater. doi: 10.1016/j.actamat.2020.09.068 – volume: 374 start-page: 478 year: 2021 ident: ijemad1657bib53 article-title: In situ design of advanced titanium alloy with concentration modulations by additive manufacturing publication-title: Science doi: 10.1126/science.abj3770 – volume: 58 year: 2022 ident: ijemad1657bib84 article-title: Effect of aging temperature on microstructure evolution and strengthening behavior of L-PBF 18Ni(300) maraging steel publication-title: Addit. Manuf. doi: 10.1016/j.addma.2022.103071 – volume: 3 start-page: 280 year: 2015 ident: ijemad1657bib90 article-title: Effect of welding process and post weld heat treatments on microstructure and mechanical properties of AISI 431 martensitic stainless steel publication-title: Int. J. Tech. Res. Appl. – volume: 231 year: 2023 ident: ijemad1657bib139 article-title: In situ x-ray imaging of hot cracking and porosity during LPBF of Al-2139 with TiB2 additions and varied process parameters publication-title: Mater. Des. doi: 10.1016/j.matdes.2023.112031 – volume: 117 start-page: 371 year: 2016 ident: ijemad1657bib12 article-title: Additive manufacturing of metals publication-title: Acta Mater. doi: 10.1016/j.actamat.2016.07.019 – volume: 772 year: 2020 ident: ijemad1657bib39 article-title: Steels in additive manufacturing: a review of their microstructure and properties publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2019.138633 – volume: 5 year: 2023 ident: ijemad1657bib46 article-title: Laser machining fundamentals: micro, nano, atomic and close-to-atomic scales publication-title: Int. J. Extreme Manuf. doi: 10.1088/2631-7990/acb134 – volume: 68 start-page: 150 year: 2014 ident: ijemad1657bib70 article-title: Microstructure and mechanical properties of a novel β titanium metallic composite by selective laser melting publication-title: Acta Mater. doi: 10.1016/j.actamat.2014.01.018 – volume: 60 year: 2022 ident: ijemad1657bib135 article-title: Rapid calculation of part scale residual stress-powder bed fusion of stainless steel, and aluminum, titanium, nickel alloys publication-title: Addit. Manuf. doi: 10.1016/j.addma.2022.103240 – volume: 826 year: 2021 ident: ijemad1657bib110 article-title: Selective laser melting of IN738 superalloy with a low Mn plus Si content: effect of energy input on characteristics of molten pool, metallurgical defects, microstructures and mechanical properties publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2021.141985 – volume: 380 start-page: 245 year: 2004 ident: ijemad1657bib67 article-title: High temperature behavior of Ni-base weld metal—part II–insight into the mechanism for ductility dip cracking publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2004.03.075 – volume: 28 start-page: 496 year: 2018 ident: ijemad1657bib117 article-title: Anisotropy of nickel-based superalloy K418 fabricated by selective laser melting publication-title: Prog. Nat. Sci. Mater. Int. doi: 10.1016/j.pnsc.2018.07.001 – volume: 247 year: 2023 ident: ijemad1657bib103 article-title: New alloy design approach to inhibiting hot cracking in laser additive manufactured nickel-based superalloys publication-title: Acta Mater. doi: 10.1016/j.actamat.2023.118736 – volume: 153 start-page: 35 year: 2018 ident: ijemad1657bib206 article-title: Microstructure and mechanical properties of Al-Mg-Zr alloys processed by selective laser melting publication-title: Acta Mater. doi: 10.1016/j.actamat.2018.04.053 – volume: 73 year: 2023 ident: ijemad1657bib164 article-title: Microstructure refinement and strengthening mechanisms of additively manufactured Ti-Zr alloys prepared from pre-mixed feedstock publication-title: Addit. Manuf. doi: 10.1016/j.addma.2023.103649 – volume: 6 start-page: 1222 year: 2020 ident: ijemad1657bib4 article-title: Advances in medical applications of additive manufacturing publication-title: Engineering doi: 10.1016/j.eng.2020.02.018 – volume: 60 year: 2022 ident: ijemad1657bib19 article-title: The trajectory of additively manufactured titanium alloys with superior mechanical properties and engineered microstructures publication-title: Addit. Manuf. doi: 10.1016/j.addma.2022.103245 – volume: 92 start-page: 112 year: 2018 ident: ijemad1657bib15 article-title: Additive manufacturing of metallic components—process, structure and properties publication-title: Prog. Mater. Sci. doi: 10.1016/j.pmatsci.2017.10.001 – volume: 14 year: 2020 ident: ijemad1657bib174 article-title: Selective laser melting of high-strength, low-modulus Ti–35Nb–7Zr–5Ta alloy publication-title: Materialia doi: 10.1016/j.mtla.2020.100941 – year: 2015 ident: ijemad1657bib109 article-title: Microstructure and mechanical characterisation of SLM processed Haynes® 230® doi: 10.3929/ethz-a-010584903 – volume: 49 year: 2022 ident: ijemad1657bib193 article-title: Demonstrating the roles of solute and nucleant in grain refinement of additively manufactured aluminium alloys publication-title: Addit. Manuf. doi: 10.1016/j.addma.2021.102516 – volume: 30 start-page: 1283 year: 2015 ident: ijemad1657bib85 article-title: Fabrication and characterization of AISI 420 stainless steel using selective laser melting publication-title: Mater. Manuf. Process. doi: 10.1080/10426914.2015.1026351 – volume: 32 year: 2020 ident: ijemad1657bib74 article-title: Selective laser melting of 304L stainless steel: role of volumetric energy density on the microstructure, texture and mechanical properties publication-title: Addit. Manuf. doi: 10.1016/j.addma.2019.101011 – volume: 27 start-page: 805 year: 2020 ident: ijemad1657bib9 article-title: From topology optimization design to additive manufacturing: today’s success and tomorrow’s roadmap publication-title: Arch. Comput. Methods Eng. doi: 10.1007/s11831-019-09331-1 – year: 1998 ident: ijemad1657bib3 article-title: Shaped body especially prototype or replacement part production – volume: 7 year: 2016 ident: ijemad1657bib226 article-title: Accelerated search for materials with targeted properties by adaptive design publication-title: Nat. Commun. doi: 10.1038/ncomms11241 – volume: 36 year: 2020 ident: ijemad1657bib11 article-title: Invited review article: review of the formation and impact of flaws in powder bed fusion additive manufacturing publication-title: Addit. Manuf. doi: 10.1016/j.addma.2020.101457 – volume: 32 start-page: 657 year: 2016 ident: ijemad1657bib115 article-title: Process optimisation of selective laser melting using energy density model for nickel based superalloys publication-title: Mater. Sci. Technol. doi: 10.1179/1743284715Y.0000000108 – volume: 108 start-page: 36 year: 2016 ident: ijemad1657bib52 article-title: Laser powder-bed fusion additive manufacturing: physics of complex melt flow and formation mechanisms of pores, spatter, and denudation zones publication-title: Acta Mater. doi: 10.1016/j.actamat.2016.02.014 – volume: 55 year: 2022 ident: ijemad1657bib217 article-title: Computational design of a crack-free aluminum alloy for additive manufacturing publication-title: Addit. Manuf. doi: 10.1016/j.addma.2022.102876 – volume: 46 year: 2021 ident: ijemad1657bib77 article-title: Laser powder bed fusion of 17-4 PH stainless steel: a comparative study on the effect of heat treatment on the microstructure evolution and mechanical properties publication-title: Addit. Manuf. doi: 10.1016/j.addma.2021.102176 – volume: 666 start-page: 27 year: 2016 ident: ijemad1657bib91 article-title: Effects of heat treatment on microstructure and tensile properties of laser melting deposited AISI 431 martensitic stainless steel publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2016.04.014 – volume: 208 year: 2021 ident: ijemad1657bib133 article-title: Composition-dependent solidification cracking of aluminum-silicon alloys during laser powder bed fusion publication-title: Acta Mater. doi: 10.1016/j.actamat.2021.116698 – volume: 35 year: 2020 ident: ijemad1657bib145 article-title: Laser powder bed fusion of a near-eutectic Al-Fe binary alloy: processing and microstructure publication-title: Addit. Manuf. doi: 10.1016/j.addma.2020.101308 – volume: 215 year: 2021 ident: ijemad1657bib223 article-title: Machine learning assisted composition effective design for precipitation strengthened copper alloys publication-title: Acta Mater. doi: 10.1016/j.actamat.2021.117118 – volume: 119 year: 2021 ident: ijemad1657bib14 article-title: Emerging metallic systems for additive manufacturing: in-situ alloying and multi-metal processing in laser powder bed fusion publication-title: Prog. Mater. Sci. doi: 10.1016/j.pmatsci.2021.100795 – volume: 236 start-page: 676 year: 2019 ident: ijemad1657bib205 article-title: Novel heat-resistant Al-Si-Ni-Fe alloy manufactured by selective laser melting publication-title: Mater. Lett. doi: 10.1016/j.matlet.2018.11.033 – volume: 55 year: 2022 ident: ijemad1657bib98 article-title: A comprehensive literature review on laser powder bed fusion of Inconel superalloys publication-title: Addit. Manuf. doi: 10.1016/j.addma.2022.102871 – volume: 58 year: 2022 ident: ijemad1657bib107 article-title: Effect of carbon content on the microstructure, tensile properties and cracking susceptibility of IN738 superalloy processed by laser powder bed fusion publication-title: Addit. Manuf. doi: 10.1016/j.addma.2022.103016 – volume: 37 year: 2021 ident: ijemad1657bib175 article-title: A high strength and low modulus metastable β Ti-12Mo-6Zr-2Fe alloy fabricated by laser powder bed fusion in-situ alloying publication-title: Addit. Manuf. doi: 10.1016/j.addma.2020.101708 – volume: 46 start-page: 63 year: 2016 ident: ijemad1657bib16 article-title: Microstructural control of additively manufactured metallic materials publication-title: Annu. Rev. Mater. Res. doi: 10.1146/annurev-matsci-070115-031816 – volume: 639 start-page: 647 year: 2015 ident: ijemad1657bib51 article-title: Effect of heat treatment on the microstructure and mechanical properties of Inconel 718 processed by selective laser melting publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2015.05.035 – volume: 44 start-page: 5396 year: 2013 ident: ijemad1657bib186 article-title: Hot tear susceptibility of Al-Mg-Si-Fe alloys with varying iron contents publication-title: Metall. Mater. Trans. A doi: 10.1007/s11661-012-1562-1 – volume: 183 year: 2019 ident: ijemad1657bib10 article-title: Review on design and structural optimisation in additive manufacturing: towards next-generation lightweight structures publication-title: Mater. Des. doi: 10.1016/j.matdes.2019.108164 – volume: 17 start-page: 406 year: 2022 ident: ijemad1657bib211 article-title: Influence of erbium addition on the defects of selective laser-melted 7075 aluminium alloy publication-title: Virtual Phys. Prototyp. doi: 10.1080/17452759.2021.1990358 – volume: 93 start-page: 881 year: 2017 ident: ijemad1657bib82 article-title: Numerical and experimental evaluation of a conformally cooled H13 steel injection mould manufactured with selective laser melting publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-017-0426-7 – volume: 54 start-page: 397 year: 2009 ident: ijemad1657bib166 article-title: Ti based biomaterials, the ultimate choice for orthopaedic implants—a review publication-title: Prog. Mater. Sci. doi: 10.1016/j.pmatsci.2008.06.004 – volume: 39 year: 2021 ident: ijemad1657bib75 article-title: Combined effects of porosity and stress state on the failure behavior of laser powder bed fusion stainless steel 316L publication-title: Addit. Manuf. doi: 10.1016/j.addma.2021.101862 – volume: 28 start-page: 1601 year: 2021 ident: ijemad1657bib176 article-title: Selective laser melted near-beta titanium alloy Ti-5Al-5Mo-5V-1Cr-1Fe: microstructure and mechanical properties publication-title: J. Cent. South Univ. doi: 10.1007/s11771-021-4720-z – volume: 48A start-page: 575 year: 2017 ident: ijemad1657bib142 article-title: Aging behavior of high-strength Al alloy 2618 produced by selective laser melting publication-title: Metall. Mater. Trans. A doi: 10.1007/s11661-016-3883-y – volume: 30 start-page: 449 year: 1999 ident: ijemad1657bib180 article-title: A new hot-tearing criterion publication-title: Metall. Mater. Trans. A doi: 10.1007/s11661-999-0334-z – volume: 28 start-page: 485 year: 2019 ident: ijemad1657bib127 article-title: Microstructure and mechanical properties of Zr-modified aluminum alloy 5083 manufactured by laser powder bed fusion publication-title: Addit. Manuf. doi: 10.1016/j.addma.2019.05.027 – volume: 65 start-page: 213 year: 2016 ident: ijemad1657bib202 article-title: Microstructure and mechanical properties of as-processed scandium-modified aluminium using selective laser melting publication-title: CIRP Ann. doi: 10.1016/j.cirp.2016.04.057 – volume: 70 start-page: 1803 year: 2014 ident: ijemad1657bib157 article-title: Comparison and analysis of main effect elements of machining distortion for aluminum alloy and titanium alloy aircraft monolithic component publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-013-5431-x – volume: 16 start-page: 372 year: 2021 ident: ijemad1657bib213 article-title: Perspectives of using machine learning in laser powder bed fusion for metal additive manufacturing publication-title: Virtual Phys. Prototyp. doi: 10.1080/17452759.2021.1944229 – volume: 240 start-page: 12 year: 2017 ident: ijemad1657bib96 article-title: Study on microstructure, mechanical properties and machinability of efficiently additive manufactured AISI 316L stainless steel by high-power direct laser deposition publication-title: J. Mater. Process. Technol. doi: 10.1016/j.jmatprotec.2016.09.005 – volume: 15 start-page: 113 year: 2017 ident: ijemad1657bib100 article-title: Fractal scan strategies for selective laser melting of ‘unweldable’ nickel superalloys publication-title: Addit. Manuf. doi: 10.1016/j.addma.2017.02.002 – volume: 13 start-page: 5063 year: 2020 ident: ijemad1657bib229 article-title: Predicting the printability in selective laser melting with a supervised machine learning method publication-title: Materials doi: 10.3390/ma13225063 – volume: 36 year: 2020 ident: ijemad1657bib183 article-title: Combining alloy and process modification for micro-crack mitigation in an additively manufactured Ni-base superalloy publication-title: Addit. Manuf. doi: 10.1016/j.addma.2020.101443 – volume: 20 start-page: 44 year: 2018 ident: ijemad1657bib26 article-title: Mechanical characterization of 3D-printed polymers publication-title: Addit. Manuf. doi: 10.1016/j.addma.2017.12.002 – volume: 34 year: 2020 ident: ijemad1657bib88 article-title: Controlling crack formation and porosity in laser powder bed fusion: alloy design and process optimisation publication-title: Addit. Manuf. doi: 10.1016/j.addma.2020.101360 – volume: 34 year: 2020 ident: ijemad1657bib158 article-title: Selective laser melting of CP-Ti to overcome the low cost and high performance trade-off publication-title: Addit. Manuf. doi: 10.1016/j.addma.2020.101198 – volume: 89 start-page: 1294 year: 2016 ident: ijemad1657bib146 article-title: Microstructures and mechanical properties of A356 (AlSi7Mg0.3) aluminum alloy fabricated by selective laser melting publication-title: Mater. Des. doi: 10.1016/j.matdes.2015.10.065 – volume: 60 year: 2022 ident: ijemad1657bib89 article-title: Effect of repeated laser scanning on the microstructure evolution of carbon-bearing martensitic steel manufactured by laser powder bed fusion: quenching-partitioning drives carbon-stabilized austenite formation publication-title: Addit. Manuf. doi: 10.1016/j.addma.2022.103262 – volume: 209 year: 2021 ident: ijemad1657bib6 article-title: Metal additive manufacturing in aerospace: a review publication-title: Mater. Des. doi: 10.1016/j.matdes.2021.110008 – volume: 27 start-page: 131 year: 2019 ident: ijemad1657bib55 article-title: An overview of residual stresses in metal powder bed fusion publication-title: Addit. Manuf. doi: 10.1016/j.addma.2019.02.020 – volume: 811 year: 2019 ident: ijemad1657bib199 article-title: Microstructural response of β-stabilized Ti–6Al–4V manufactured by direct energy deposition publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2019.152021 – volume: 5 start-page: 2121 year: 1974 ident: ijemad1657bib132 article-title: Solidification processing publication-title: Metall. Mater. Trans. B doi: 10.1007/BF02643923 – volume: 762 start-page: 289 year: 2018 ident: ijemad1657bib172 article-title: Anisotropic mechanical behavior of biomedical Ti-13Nb-13Zr alloy manufactured by selective laser melting publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2018.05.179 – volume: 56 year: 2022 ident: ijemad1657bib130 article-title: Review on the correlation between microstructure and mechanical performance for laser powder bed fusion AlSi10Mg publication-title: Addit. Manuf. doi: 10.1016/j.addma.2022.102914 – volume: 13 start-page: 1366 year: 2022 ident: ijemad1657bib44 article-title: A review of spatter in laser powder bed fusion additive manufacturing: in situ detection, generation, effects, and countermeasures publication-title: Micromachines doi: 10.3390/mi13081366 – volume: 30 start-page: 7417 year: 2021 ident: ijemad1657bib93 article-title: Dissimilar laser beam welding of AISI 420 martensitic stainless steel to AISI 2205 duplex stainless steel: effect of post-weld heat treatment on microstructure and mechanical properties publication-title: J. Mater. Eng. Perform. doi: 10.1007/s11665-021-06071-x – volume: 219 year: 2021 ident: ijemad1657bib189 article-title: Segregation engineering of grain boundaries of a metastable Fe-Mn-Co-Cr-Si high entropy alloy with laser-powder bed fusion additive manufacturing publication-title: Acta Mater. doi: 10.1016/j.actamat.2021.117271 – volume: 6 start-page: 479 year: 2021 ident: ijemad1657bib126 article-title: AA5083 (Al–Mg) plates produced by wire-and-arc additive manufacturing: effect of specimen orientation on microstructure and tensile properties publication-title: Prog. Addit. Manuf. doi: 10.1007/s40964-021-00189-z – year: 2011 ident: ijemad1657bib137 article-title: New developments of laser processing aluminium alloys via additive manufacturing technique doi: 10.1016/j.phpro.2011.03.050 – volume: 1 start-page: 11 year: 2022 ident: ijemad1657bib42 article-title: Influence of powder morphology on laser absorption behavior and printability of nanoparticle-coated 90W-Ni-Fe powder during laser powder bed fusion publication-title: Mater. Sci. Addit. Manuf. doi: 10.18063/msam.v1i2.11 – volume: 47 year: 2021 ident: ijemad1657bib144 article-title: High strength Al-Li alloy development for laser powder bed fusion publication-title: Addit. Manuf. doi: 10.1016/j.addma.2021.102249 – volume: 3 year: 2021 ident: ijemad1657bib13 article-title: An overview of laser-based multiple metallic material additive manufacturing: from macro- to micro-scales publication-title: Int. J. Extreme Manuf. doi: 10.1088/2631-7990/abce04 – volume: 30 start-page: 6365 year: 2021 ident: ijemad1657bib171 article-title: Beta titanium alloys processed by laser powder bed fusion: a review publication-title: J. Mater. Eng. Perform. doi: 10.1007/s11665-021-05800-6 – volume: 56 start-page: 1006 year: 2019 ident: ijemad1657bib40 article-title: Research progress and prospect of laser additive manufacturing technique for magnesium alloy publication-title: Laser Optoelectron. Prog. doi: 10.3788/LOP56.190006 – volume: 764 start-page: 977 year: 2018 ident: ijemad1657bib212 article-title: Effect of Zr content on formability, microstructure and mechanical properties of selective laser melted Zr modified Al-4.24 Cu-1.97 Mg-0.56 Mn alloys publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2018.06.032 – volume: 45 start-page: 1123 year: 2001 ident: ijemad1657bib240 article-title: Direct laser deposition of alloys from elemental powder blends publication-title: Scr. Mater. doi: 10.1016/S1359-6462(01)01107-1 – volume: 33 year: 2020 ident: ijemad1657bib48 article-title: Numerical modelling of heat transfer, mass transport and microstructure formation in a high deposition rate laser directed energy deposition process publication-title: Addit. Manuf. doi: 10.1016/j.addma.2020.101175 – volume: 65 start-page: 417 year: 2015 ident: ijemad1657bib150 article-title: Selective laser melting of AlSi10Mg alloy: process optimisation and mechanical properties development publication-title: Mater. Des. doi: 10.1016/j.matdes.2014.09.044 – volume: 35 start-page: 1143 year: 2020 ident: ijemad1657bib173 article-title: Processing a biocompatible Ti-35Nb-7Zr-5Ta alloy by selective laser melting publication-title: J. Mater. Res. doi: 10.1557/jmr.2020.90 – volume: 122 start-page: 165 year: 2022 ident: ijemad1657bib64 article-title: Multi-scale defects in powder-based additively manufactured metals and alloys publication-title: J. Mater. Sci. Technol. doi: 10.1016/j.jmst.2022.02.015 – volume: 864 year: 2023 ident: ijemad1657bib154 article-title: Design high-strength Al-Mg-Si alloy fabricated by laser powder bed fusion: cracking suppression and strengthening mechanism publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2023.144591 – volume: 582 start-page: 515 year: 2020 ident: ijemad1657bib196 article-title: High-strength Damascus steel by additive manufacturing publication-title: Nature doi: 10.1038/s41586-020-2409-3 – volume: 27 start-page: 1617 year: 2021 ident: ijemad1657bib105 article-title: Effect of post-processing on microstructure and mechanical properties of alloy 718 fabricated using powder bed fusion additive manufacturing processes publication-title: Rapid Prototyp. J. doi: 10.1108/RPJ-12-2019-0310 – volume: 151 start-page: 42 year: 2018 ident: ijemad1657bib203 article-title: Characterisation of AlScZr and AlErZr alloys processed by rapid laser melting publication-title: Scr. Mater. doi: 10.1016/j.scriptamat.2018.03.035 – volume: 52 year: 2022 ident: ijemad1657bib160 article-title: Developing ductile and isotropic Ti alloy with tailored composition for laser powder bed fusion publication-title: Addit. Manuf. doi: 10.1016/j.addma.2022.102656 – volume: 91 year: 2020 ident: ijemad1657bib79 article-title: Effect of manufacturing parameters on the mechanical and corrosion behavior of selective laser-melted 15-5PH stainless steel publication-title: Steel Res. Int. doi: 10.1002/srin.201900447 – volume: 136 year: 2023 ident: ijemad1657bib38 article-title: Additive manufacturing of nickel-based superalloys: a state-of-the-art review on process-structure-defect-property relationship publication-title: Prog. Mater. Sci. doi: 10.1016/j.pmatsci.2023.101108 – volume: 12 start-page: 1007 year: 2019 ident: ijemad1657bib184 article-title: New aluminum alloys specifically designed for laser powder bed fusion: a review publication-title: Materials doi: 10.3390/ma12071007 – volume: 3 year: 2021 ident: ijemad1657bib237 article-title: Defect inspection technologies for additive manufacturing publication-title: Int. J. Extreme Manuf. doi: 10.1088/2631-7990/abe0d0 – volume: 67 start-page: 487 year: 2022 ident: ijemad1657bib2 article-title: Laser additive manufacturing of steels publication-title: Int. Mater. Rev. doi: 10.1080/09506608.2021.1983351 – volume: 1 start-page: 4 year: 2022 ident: ijemad1657bib210 article-title: Processing and characterization of crack-free 7075 aluminum alloys with elemental Zr modification by laser powder bed fusion publication-title: Mater. Sci. Addit. Manuf. doi: 10.18063/msam.v1i1.4 |
SSID | ssib051367641 ssib044084502 ssj0002505388 ssib044740885 |
Score | 2.4388905 |
SecondaryResourceType | review_article |
Snippet | Metal additive manufacturing (AM) has been extensively studied in recent decades. Despite the significant progress achieved in manufacturing complex shapes and... Metal additive manufacturing(AM)has been extensively studied in recent decades.Despite the significant progress achieved in manufacturing complex shapes and... |
SourceID | doaj wanfang proquest crossref iop |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 22002 |
SubjectTerms | Additive manufacturing alloy design Alloy development Alloy powders Alloys Cooling rate crack mitigation Heat treating Heat treatment Iron Laser beam welding laser powder bed fusion Machine learning Manufacturing Powder beds printability Rapid solidification Titanium base alloys Weldability |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA4iCF5EUbG-iKAHD2XbPLqpNxVFPHgQBW8hTSairN1l3WXRX-9MW3W96MVTaTtJ28kk30wzD8YOHWgZlIxp5oxCA0WrFGFIp4BgDcGXlJSNvC1uiqt7df2gH-ZKfZFPWJseuGVcL4tZ1KiWuBgq2uNxWQaFVCVEn5vQxK0LxLw5Y4rWYAJ2aUy3L4kzqScKmad9XHt7LuQFodEcDjXp-hFdnoajH5rm0szV0dWPc5BzucpWOl2Rn7bvuMYWoF5nt6eDwfCNh8bzgqPKyVH_hTEfDWcBDxUEHqf0C4yTqxAtZvzF1VMKYGgiEk-4476rb8DbwJUNdn95cXd-lXaFEVKvTD5JvQaDOAKlpOQssg-uzIRzKg-lQrQptFRKANomzmgR-rFEHSBIQOaLGJQu5SZbrIc1bDGOHKmwYYVmh1c-itJ7mSsNqBbmfTxPWO-TTdZ3WcOpeMXANrvXxlhirCXG2paxCTv-ajFqM2b8QntGnP-io1zXzQWUANtJgP1LAhJ2hONmu7n3-svD-A-6p2d4sYUVloKNM2FHISZs93Pwv-kE4YGkcrkJO-gE4vvuc3h_t28zQbniqJvt__ikHbZMHbYeQrtscTKewh4qP5Nqv5HzDxH8-8g priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS9xAEF9apdCXYmlLY7VswT70IVyyH7ldX0SLIj5IkQq-LZv9EOVM0vOOQ__6ziR7d_pyTyHJbAKzO_ObmZ2dIeTABsm94DEvrBLgoEiRAwzJPABYB-80FmXDbIvL6vxaXNzImxRwe0xplUud2Ctq3zqMkY8YSiXHpqVH3b8cu0bh7mpqofGWbIMKVuB8bZ-cXv65WkVZEOC5Uml_EiRqxCpe5mPQwSPrywpR6QUe9WX7AWXu2u6VxfluYZtom9sX0HO2Qz4km5EeD5P8kbwJzSdydTyZtE_U9xkYFExPCnZwmNKuXXi41MHTOMdQGMWUIVRq9ME2czzI0J9MPKSWutTngA4HWD6T67PTv7_P89QgIXdClbPcyaAAT4LmWKSFj4PVBbNWlF4LQJ1KciFYAB_FKsn8OGqwBTwPMAkseiE1_0K2mrYJXwkFjtQwsAb3wwkXmXaOl0IGMA_LMdxnZLRkk3Gpejg2sZiYfhdbKYOMNchYMzA2I79WI7qhcsYG2hPk_IoOa173D9rprUkiZIpYRAkGqo2-xt0-WxSh4kKH6ErldZmRnzBvJsng44af0Vd0d_fhwVSGGTx0XDDT-ZiRveXkr-nWKzAjP9KCWL-998_P5mnBsGYcfmZ38ye-kfdIOuQA7ZGt2XQe9sG8mdXf0xr-D3Db9JE priority: 102 providerName: ProQuest |
Title | Alloy design for laser powder bed fusion additive manufacturing: a critical review |
URI | https://iopscience.iop.org/article/10.1088/2631-7990/ad1657 https://www.proquest.com/docview/2911131950 https://d.wanfangdata.com.cn/periodical/jdzz-yw202402002 https://doaj.org/article/0f0f5161afdb4582a00e6349efc18d91 |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LbxMxELb6EBIXBAJEoI2MBAcOS3b92PWWU4sSChJtVVHRm-X1A1Glm6gkitoDv50Zr5MQCVVc9mmvd8eP-bye-YaQN8ZL7gQPWW6UgAmKFBmoIZl5UNbe2RpJ2dDa4qQ8vhBfLuXlFvmw8oWZTNPQ_x4OO6LgToTJIE4NWMmLrIJRdGBcUcpqm-xyVSqceZ3y78vGhJGUhVxzWwlRwZU1UYuMXGUJC-CwjViAxziVsQAFQCEta_6r0A01Ftn-QTnBG28A1QcL0wbT_vhLY40ek0cJatLD7sOekC3fPiXnh-Px5Ja6aLhBAbFSgM_-hk4nCwe7xjsa5vgHjaKlEY6F9Nq0c_R_iA6NB9RQm8Ij0M7v5Rm5GA2_fTzOUlyFzApVzDIrvQI15GuO3C688qbOmTGicLUAZVVKLgTzMLUxSjJXhRoghOMe6o4FJ2TNn5OddtL6F4SCRBrI2MCsxQobWG0tL4T0gCqLCs57ZLAUk7aJdBxjX4x1XPxWSqNgNQpWd4LtkXerHNOOcOOetEco-VU6pMqOF6DZ6NRsdB7yIAHXmuAaXCQ0ee5LLmofbKFcXfTIW6g3nbrur3sKoxvpfl75a11qptFXOWd66kKP7C0rf52OoTrhGG23R16nBrG-e-Xu7vTtgiHVHD7m5X--zSvyEPN0NkR7ZGd2M_f7AI9mTZ9sq9GnPtk9Gp6cnffjTwbYfj49g-3X38N-7CZ_AP7nA4M |
linkProvider | IOP Publishing |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwFLaqIgQXBAJEoICR6IFDNImXjIOEUFmGKS09oFbqzTheqlbTJExnNJr-KH4j72WZaS9z6ylKYjvR81s-228h5L3xkjvBQ5wYJWCBIkUMZkjGHoy1dzbHpGzobXGUjU_Ez1N5ukX-9bEw6FbZ68RGUbvK4h75gKFUcixa-rn-G2PVKDxd7UtotGxx4JcLWLJdfdr_BvO7y9jo-_HXcdxVFYitUOksttIrUMI-55jZhA-9yRNmjEhdLkBVZ5ILwTwAe6Mkc8OQgwF13MOfs-CExORLoPLvCc5zlCg1-rHa00E4wZXqTkNBfgcs42k8BI0_MC7N0AbesH5NkQCwaedVfQvf3l-YMpjy7IahGz0mjzqESvdalnpCtnz5lPzem0yqJXWNvwcFoEsBdfsprauFg0vhHQ1z3Hij6KCEKpRemnKOYRNNHORHaqjtqirQNlzmGTm5E8I9J9tlVfoXhAJFCuhYwGLHChtYbi1PhfQARtMh3Edk0JNJ2y5XOZbMmOjmzFwpjYTVSFjdEjYiH1Y96jZPx4a2X5Dyq3aYYbt5UE3PdCewOglJkACHTXAFni2aJPEZF7kPNlUuTyOyC_OmO4m_2vAxeqvd-YW_1JlmGkOcE6ZrFyKy00_-ut2a3yPyrmOI9dsLd32tlwuGGepwmJebh3hLHoyPfx3qw_2jg1fkIXZrvY92yPZsOvevAVjNijcNN1Py567F5z-x3i3e |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELagCMQFgQARKNRIcOAQNvEjsbmVtqvyUEGIit4sxw9Etc2uyq5W7a9nxvF2WQlVnPKy42Q88XyOZ74h5JUNknvBY1lZJWCCIkUJZkiWAYx18E4jKRt6Wxw1h8fi44k8yXlOUyzMdJaH_rewOxAFDyLMDnFqxBpely2MoiPr6wYm9DMfb5JbkjcN5m74wn-sFAqzKQu55rcSooUza7IWmfjKMh7AoRvxAE-5KlMjCsBCXtr8V8Mbpiwx_oOBgqfeAKu3l7aPtv_5l9Ua3yf3Mtyku8PLPSA3Qv-QfNudTKYX1CfnDQqolQKEDud0Nl162HTB07jAv2gUvY1wPKRntl9gDEQKanxHLXU5RQIdYl8ekePxwfe9wzLnViidUPW8dDIoMEVBc-R34W2wumLWitprAQarkVwIFmB6Y5Vkvo0aYITnAfqPRS-k5o_JVj_twxNCQSIdVOxg5uKEi0w7x2shAyDLuoXjgoxWYjIuE49j_ouJSQvgShkUrEHBmkGwBXlzVWM2kG5cU_Y9Sv6qHNJlpxOgOiarjqliFSVgWxt9hwuFtqpCw4UO0dXK67ogr6HfTP58f1_TGN0o9-s0nJnGMIPxyhUzoIkF2V51_rocQ5PCMeNuQV5mhVhfPfWXl-ZiyZBuDm_z9D-fZofc-bo_Np8_HH16Ru5i9cGlaJtszc8X4TmgpXn3In0RfwC6wwHD |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Alloy+design+for+laser+powder+bed+fusion+additive+manufacturing%3A+a+critical+review&rft.jtitle=International+Journal+of+Extreme+Manufacturing&rft.au=Liu%2C+Zhuangzhuang&rft.au=Zhou%2C+Qihang&rft.au=Liang%2C+Xiaokang&rft.au=Wang%2C+Xiebin&rft.date=2024-04-01&rft.pub=IOP+Publishing&rft.issn=2631-8644&rft.eissn=2631-7990&rft.volume=6&rft.issue=2&rft_id=info:doi/10.1088%2F2631-7990%2Fad1657&rft.externalDocID=ijemad1657 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fjdzz-yw%2Fjdzz-yw.jpg |