Mitochondrial Regulation of Stem Cells in Bone Homeostasis
Mitochondria have emerged as key contributors to the organismal homeostasis, in which mitochondrial regulation of stem cells is becoming increasingly important. Originated from mesenchymal stem cell (MSC) and hematopoietic stem cell (HSC) lineage commitments and interactions, bone is a representativ...
Saved in:
Published in | Trends in molecular medicine Vol. 26; no. 1; pp. 89 - 104 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
01.01.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 1471-4914 1471-499X 1471-499X |
DOI | 10.1016/j.molmed.2019.04.008 |
Cover
Loading…
Abstract | Mitochondria have emerged as key contributors to the organismal homeostasis, in which mitochondrial regulation of stem cells is becoming increasingly important. Originated from mesenchymal stem cell (MSC) and hematopoietic stem cell (HSC) lineage commitments and interactions, bone is a representative organ where the mitochondrial essentiality to stem cell function has most recently been discovered, underlying skeletal health, aging, and diseases. Furthermore, mitochondrial medications based on modulating stem cell specification are emerging to provide promising therapies to counteract bone aging and pathologies. Here we review the cutting-edge knowledge regarding mitochondrial regulation of stem cells in bone homeostasis, highlighting mechanistic insights as well as mitochondrial strategies for augmented bone healing and tissue regeneration.
Mitochondrial bioenergetics, quality control systems, and metabolite signaling have continuously been revealed to modulate stem cell commitments in bone.Increasing evidence suggests that mitochondrial compromise, including metabolic decline, oxidative stress, structural disruption, and quality control failure, is a key contributor to stem cell dysfunction in bone aging and diseases.Recent studies have demonstrated that stem cell-based mitochondrial therapeutics through metabolic modulation agents and antioxidants have the potential to alleviate bone aging and pathologies, while they also show promise to realize bone regeneration.A better understanding of mitochondrial modulation of stem cell specification in bone will provide novel insights into how bone stem cells are regulated and how the bone homeostasis is maintained. |
---|---|
AbstractList | Mitochondria have emerged as key contributors to the organismal homeostasis, in which mitochondrial regulation of stem cells is becoming increasingly important. Originated from mesenchymal stem cell (MSC) and hematopoietic stem cell (HSC) lineage commitments and interactions, bone is a representative organ where the mitochondrial essentiality to stem cell function has most recently been discovered, underlying skeletal health, aging, and diseases. Furthermore, mitochondrial medications based on modulating stem cell specification are emerging to provide promising therapies to counteract bone aging and pathologies. Here we review the cutting-edge knowledge regarding mitochondrial regulation of stem cells in bone homeostasis, highlighting mechanistic insights as well as mitochondrial strategies for augmented bone healing and tissue regeneration. Mitochondria have emerged as key contributors to the organismal homeostasis, in which mitochondrial regulation of stem cells is becoming increasingly important. Originated from mesenchymal stem cell (MSC) and hematopoietic stem cell (HSC) lineage commitments and interactions, bone is a representative organ where the mitochondrial essentiality to stem cell function has most recently been discovered, underlying skeletal health, aging, and diseases. Furthermore, mitochondrial medications based on modulating stem cell specification are emerging to provide promising therapies to counteract bone aging and pathologies. Here we review the cutting-edge knowledge regarding mitochondrial regulation of stem cells in bone homeostasis, highlighting mechanistic insights as well as mitochondrial strategies for augmented bone healing and tissue regeneration. Mitochondrial bioenergetics, quality control systems, and metabolite signaling have continuously been revealed to modulate stem cell commitments in bone.Increasing evidence suggests that mitochondrial compromise, including metabolic decline, oxidative stress, structural disruption, and quality control failure, is a key contributor to stem cell dysfunction in bone aging and diseases.Recent studies have demonstrated that stem cell-based mitochondrial therapeutics through metabolic modulation agents and antioxidants have the potential to alleviate bone aging and pathologies, while they also show promise to realize bone regeneration.A better understanding of mitochondrial modulation of stem cell specification in bone will provide novel insights into how bone stem cells are regulated and how the bone homeostasis is maintained. Mitochondria have emerged as key contributors to the organismal homeostasis, in which mitochondrial regulation of stem cells is becoming increasingly important. Originated from mesenchymal stem cell (MSC) and hematopoietic stem cell (HSC) lineage commitments and interactions, bone is a representative organ where the mitochondrial essentiality to stem cell function has most recently been discovered, underlying skeletal health, aging, and diseases. Furthermore, mitochondrial medications based on modulating stem cell specification are emerging to provide promising therapies to counteract bone aging and pathologies. Here we review the cutting-edge knowledge regarding mitochondrial regulation of stem cells in bone homeostasis, highlighting mechanistic insights as well as mitochondrial strategies for augmented bone healing and tissue regeneration.Mitochondria have emerged as key contributors to the organismal homeostasis, in which mitochondrial regulation of stem cells is becoming increasingly important. Originated from mesenchymal stem cell (MSC) and hematopoietic stem cell (HSC) lineage commitments and interactions, bone is a representative organ where the mitochondrial essentiality to stem cell function has most recently been discovered, underlying skeletal health, aging, and diseases. Furthermore, mitochondrial medications based on modulating stem cell specification are emerging to provide promising therapies to counteract bone aging and pathologies. Here we review the cutting-edge knowledge regarding mitochondrial regulation of stem cells in bone homeostasis, highlighting mechanistic insights as well as mitochondrial strategies for augmented bone healing and tissue regeneration. |
Author | Sui, Bing-Dong Zheng, Chen-Xi Hu, Cheng-Hu Jin, Yan Qiu, Xin-Yu |
Author_xml | – sequence: 1 givenname: Chen-Xi surname: Zheng fullname: Zheng, Chen-Xi organization: State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi’ an, Shaanxi 710032, China – sequence: 2 givenname: Bing-Dong surname: Sui fullname: Sui, Bing-Dong organization: State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi’ an, Shaanxi 710032, China – sequence: 3 givenname: Xin-Yu surname: Qiu fullname: Qiu, Xin-Yu organization: State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi’ an, Shaanxi 710032, China – sequence: 4 givenname: Cheng-Hu surname: Hu fullname: Hu, Cheng-Hu email: chenghu@xiterm.com organization: State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi’ an, Shaanxi 710032, China – sequence: 5 givenname: Yan orcidid: 0000-0002-2586-1152 surname: Jin fullname: Jin, Yan email: yanjin@fmmu.edu.cn organization: State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi’ an, Shaanxi 710032, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31126872$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkF1LHDEUhoNY_Gr_gchc9man52TjTCJSaBetBUuhH9C7kE3OaNbMxCbZgv--sau98GavksDzvjnnOWS7U5yIsWOEFgG7d6t2jGEk13JA1YJoAeQOO0DR40wo9Wv3_x3FPjvMeQWAp30v99j-HJF3sucH7OyLL9Hexsklb0LzjW7WwRQfpyYOzfdCY7OgEHLjp-Zj_b-5iiPFXEz2-TV7NZiQ6c3TecR-Xl78WFzNrr9--rz4cD2zQmKZWX6qEC2vL4Ow7FQHPclBdl0nQZHjSljVDc4B0RyAu0qbXkpnh6VYgpofsbeb3vsUf68pFz36bOtUZqK4zprzOUcQwLGiJ0_oelnV6PvkR5Me9PO-FTjbADbFnBMN2vryb9-SjA8aQT_K1Su9kasf5WoQusqtYfEi_Ny_JfZ-E6Mq6Y-npLP1NFlyPpEt2kW_reD8RYENfvLWhDt62B7_C6GlqGE |
CitedBy_id | crossref_primary_10_1002_advs_202406428 crossref_primary_10_1016_j_freeradbiomed_2023_01_026 crossref_primary_10_1038_s41467_024_49159_3 crossref_primary_10_1002_adfm_202402463 crossref_primary_10_1016_j_drudis_2021_03_002 crossref_primary_10_3389_fcell_2024_1378035 crossref_primary_10_1007_s10103_021_03439_2 crossref_primary_10_1016_j_biomaterials_2024_122650 crossref_primary_10_1073_pnas_2313656121 crossref_primary_10_3390_ijms241310661 crossref_primary_10_7554_eLife_59079 crossref_primary_10_1016_j_archger_2024_105522 crossref_primary_10_1021_acs_nanolett_4c01101 crossref_primary_10_1021_acsami_2c20715 crossref_primary_10_1186_s12929_024_01039_0 crossref_primary_10_4252_wjsc_v13_i7_737 crossref_primary_10_1002_smtd_202100763 crossref_primary_10_1002_ptr_7610 crossref_primary_10_1021_acsapm_4c03332 crossref_primary_10_1016_j_jff_2024_106458 crossref_primary_10_1007_s10499_023_01359_2 crossref_primary_10_1089_ars_2023_0489 crossref_primary_10_3390_nu15092222 crossref_primary_10_1002_adfm_202403145 crossref_primary_10_1002_adfm_202212669 crossref_primary_10_1007_s12015_022_10357_5 crossref_primary_10_1016_j_bioactmat_2020_06_010 crossref_primary_10_1055_a_1332_0171 crossref_primary_10_1186_s13020_022_00576_w crossref_primary_10_1016_j_bbadis_2023_166795 crossref_primary_10_1016_j_scib_2024_02_036 crossref_primary_10_1002_adhm_202302475 crossref_primary_10_1186_s12967_024_05191_x crossref_primary_10_1016_j_envpol_2021_118043 crossref_primary_10_1002_jcb_30670 crossref_primary_10_1016_j_jbc_2022_102286 crossref_primary_10_3389_fgene_2024_1439171 crossref_primary_10_1007_s00774_021_01263_w crossref_primary_10_34133_research_0602 crossref_primary_10_3389_fbioe_2024_1505102 crossref_primary_10_3724_abbs_2023063 crossref_primary_10_1016_j_jff_2025_106671 crossref_primary_10_1016_j_heliyon_2024_e26759 crossref_primary_10_1002_advs_202406287 crossref_primary_10_1007_s00774_022_01354_2 crossref_primary_10_1038_s41598_024_84926_8 crossref_primary_10_1007_s11914_022_00763_6 crossref_primary_10_1021_acs_jafc_2c08505 crossref_primary_10_1111_1756_185X_14451 crossref_primary_10_3389_fendo_2021_675385 crossref_primary_10_1007_s11914_024_00874_2 crossref_primary_10_1016_j_xpro_2022_101674 crossref_primary_10_1113_EP090988 crossref_primary_10_3390_biom14010012 crossref_primary_10_1038_s41418_021_00858_0 crossref_primary_10_1002_jbm_a_36997 crossref_primary_10_1089_dna_2021_0206 crossref_primary_10_3390_ijms232214040 crossref_primary_10_1002_jcp_31286 crossref_primary_10_2174_011574888X277276231215110316 crossref_primary_10_1186_s12951_023_02214_5 crossref_primary_10_1538_expanim_22_0129 crossref_primary_10_1016_j_bioactmat_2024_02_014 crossref_primary_10_2147_IJN_S470419 crossref_primary_10_1002_adtp_202400078 crossref_primary_10_3389_fendo_2023_1151691 crossref_primary_10_3390_ijms21186723 crossref_primary_10_1038_s41368_022_00193_1 crossref_primary_10_1016_j_jare_2024_03_022 crossref_primary_10_1016_j_joen_2020_06_027 crossref_primary_10_1038_s41598_021_87785_9 crossref_primary_10_1093_rb_rbae082 crossref_primary_10_3389_fmicb_2022_952892 |
Cites_doi | 10.1016/j.stem.2017.03.008 10.1016/j.semcdb.2016.02.011 10.1002/jbmr.2302 10.1172/JCI96221 10.1161/CIRCRESAHA.110.232306 10.1016/j.cell.2015.10.001 10.1016/j.stem.2016.08.008 10.1111/jpi.12415 10.1007/s00018-018-2817-9 10.1038/s41591-018-0166-8 10.1038/nm.1979 10.1089/rej.2014.1551 10.1016/j.cell.2015.05.029 10.1002/jbmr.1824 10.1038/s41413-018-0029-4 10.1152/physrev.00033.2015 10.1016/j.cmet.2010.05.005 10.1002/jbmr.460 10.1016/j.stem.2018.04.001 10.1182/blood-2004-09-3662 10.1002/jbmr.2584 10.1038/nature08991 10.1016/j.biomaterials.2017.10.046 10.1016/j.freeradbiomed.2009.10.039 10.1002/emmm.201201606 10.7150/thno.23620 10.1016/S0092-8674(00)80611-X 10.1016/j.cell.2013.11.037 10.1038/nm.3146 10.1038/ncb3593 10.1111/acel.12709 10.1038/s41591-018-0165-9 10.1038/cddis.2013.501 10.1016/j.stem.2010.11.028 10.1038/nature02517 10.1016/j.cmet.2011.08.007 10.1146/annurev-pathol-011110-130203 10.1016/j.cmet.2014.07.011 10.1111/j.1474-9726.2010.00658.x 10.1002/stem.2392 10.1002/jbmr.489 10.1016/j.stem.2016.04.015 10.1038/cdd.2017.144 10.1038/nature10783 10.1038/nature09262 10.1016/j.cmet.2013.01.002 10.1038/ncb3517 10.1016/j.cmet.2012.11.007 10.1016/j.biopsych.2017.04.011 10.1038/nature17624 10.1016/j.biomaterials.2017.10.033 10.4161/auto.22971 10.1002/jbmr.3059 10.1371/journal.pone.0183506 10.1016/j.cell.2014.11.042 10.1038/ncb3491 10.1007/s10522-015-9609-5 10.1016/j.cmet.2018.01.011 10.1016/j.cellsig.2011.05.017 10.1002/stem.1435 10.1016/j.cell.2006.11.013 10.1371/journal.pone.0155709 10.1038/nm.3787 10.1002/jbmr.1981 10.1172/JCI67603 10.1152/physrev.00022.2016 10.1002/jbmr.1976 10.1359/jbmr.071023 10.1182/blood-2009-12-260083 10.1016/j.freeradbiomed.2017.07.030 10.1016/j.bone.2009.10.042 10.2217/nnm.14.161 10.1038/s41419-018-0791-7 10.1016/j.stem.2017.02.009 10.1002/stem.2248 10.1126/scitranslmed.aag2809 10.1038/nm.4477 10.1016/j.ejphar.2013.07.033 10.1016/j.tcb.2018.02.007 10.1016/j.cell.2012.02.035 10.1038/nature08313 10.1016/j.actbio.2015.10.031 10.1038/nature05354 10.1126/science.1106653 10.1016/j.cmet.2019.01.016 10.7150/thno.17949 10.1016/j.bbrc.2016.05.135 10.1038/srep30186 10.1002/stem.2274 10.1080/15548627.2019.1596482 10.1128/MCB.00293-14 10.1007/s00198-009-0897-y 10.1038/s41419-019-1434-3 10.1016/j.cell.2013.08.032 10.1038/ncomms4773 10.1359/jbmr.090732 10.1038/s41467-017-02490-4 10.1002/jbmr.2974 10.1016/j.cmet.2018.02.022 10.1016/j.arr.2013.12.002 10.1038/nm.1910 10.1002/stem.1811 10.1016/j.freeradbiomed.2013.08.005 10.1016/j.cmet.2016.06.014 10.1038/nm.3774 10.1038/s41578-018-0027-6 10.1359/jbmr.060415 10.1016/j.bone.2010.04.593 10.1002/jbmr.3413 10.1073/pnas.0705070104 10.1089/scd.2015.0193 10.1002/stem.2460 10.1016/j.stem.2012.11.022 10.1634/stemcells.2007-0509 10.1016/j.molcel.2012.11.022 10.1002/jbmr.3477 10.1002/stem.1388 10.1080/15548627.2016.1247143 10.1161/HYPERTENSIONAHA.117.10787 10.1038/s41467-017-01527-y 10.1016/j.cell.2015.07.016 10.1172/JCI89935 10.1038/nrm.2016.93 10.1038/srep07990 10.1016/j.cmet.2008.06.011 10.1016/j.actbio.2017.06.020 10.1002/jbmr.3398 10.1126/scitranslmed.aan5372 10.1016/j.stem.2012.10.011 10.1074/jbc.M112.385369 10.1038/nature18303 10.1016/j.ceb.2017.12.010 10.1002/jcp.24947 10.1074/jbc.RA118.004102 10.1111/acel.12220 10.1016/j.stem.2012.02.003 10.1002/advs.201700755 10.1084/jem.20140643 10.1124/pr.115.011502 10.1002/jbmr.3193 10.1038/s41598-017-03187-w 10.1016/j.stem.2018.06.009 10.1038/s41467-017-02171-2 10.1016/j.cell.2018.01.002 |
ContentType | Journal Article |
Copyright | 2019 Elsevier Ltd Copyright © 2019 Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2019 Elsevier Ltd – notice: Copyright © 2019 Elsevier Ltd. All rights reserved. |
DBID | AAYXX CITATION NPM 7X8 |
DOI | 10.1016/j.molmed.2019.04.008 |
DatabaseName | CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Biology |
EISSN | 1471-499X |
EndPage | 104 |
ExternalDocumentID | 31126872 10_1016_j_molmed_2019_04_008 S1471491419300978 |
Genre | Journal Article Review |
GroupedDBID | --- --K --M .1- .FO .~1 0R~ 123 1B1 1P~ 1RT 1~. 1~5 29Q 4.4 457 4G. 53G 5VS 7-5 71M 8P~ AAEDT AAEDW AAIKJ AAKOC AALRI AAMRU AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYWO ABBQC ABFNM ABGSF ABJNI ABMAC ABMZM ABUDA ABWVN ABXDB ACDAQ ACGFS ACIEU ACIWK ACPRK ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO ADUVX AEBSH AEIPS AEKER AENEX AEUPX AEVXI AFPUW AFRAH AFRHN AFTJW AFXIZ AGCQF AGHFR AGQPQ AGRDE AGUBO AGYEJ AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HVGLF HZ~ IHE J1W K-O KOM L7B M41 MO0 N9A O-L O9- O9. OAUVE OK~ OZT P-8 P-9 PC. Q38 R2- ROL RPZ SCC SDF SDG SDP SES SEW SPCBC SSH SSZ T5K Z5R ~G- AACTN AAIAV ABLVK ABYKQ AEHWI AFCTW AFKWA AJBFU AJOXV AMFUW DOVZS EFLBG LCYCR RCE RIG SSU AAYXX AGRNS CITATION NPM 7X8 |
ID | FETCH-LOGICAL-c481t-c25911c2c48a10b69607e8f8666809ed294c96fdd0ee3002d911a788dcfb4b093 |
IEDL.DBID | .~1 |
ISSN | 1471-4914 1471-499X |
IngestDate | Thu Jul 10 22:18:49 EDT 2025 Thu Apr 03 07:07:12 EDT 2025 Tue Jul 01 04:26:45 EDT 2025 Thu Apr 24 22:52:21 EDT 2025 Fri Feb 23 02:49:45 EST 2024 Tue Aug 26 16:33:15 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | stem cells bone differentiation osteoporosis regeneration mitochondria |
Language | English |
License | Copyright © 2019 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c481t-c25911c2c48a10b69607e8f8666809ed294c96fdd0ee3002d911a788dcfb4b093 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-2586-1152 |
PMID | 31126872 |
PQID | 2232104021 |
PQPubID | 23479 |
PageCount | 16 |
ParticipantIDs | proquest_miscellaneous_2232104021 pubmed_primary_31126872 crossref_citationtrail_10_1016_j_molmed_2019_04_008 crossref_primary_10_1016_j_molmed_2019_04_008 elsevier_sciencedirect_doi_10_1016_j_molmed_2019_04_008 elsevier_clinicalkey_doi_10_1016_j_molmed_2019_04_008 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2020 2020-01-00 2020-Jan 20200101 |
PublicationDateYYYYMMDD | 2020-01-01 |
PublicationDate_xml | – month: 01 year: 2020 text: January 2020 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Trends in molecular medicine |
PublicationTitleAlternate | Trends Mol Med |
PublicationYear | 2020 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Lee, Long (bb0305) 2018; 128 Lee (bb0430) 2005; 106 Schneider (bb0025) 2017; 20 Le Belle (bb0360) 2011; 8 Son (bb0415) 2016; 34 Baur (bb0505) 2006; 444 Wei (bb0050) 2018; 28 Wust (bb0120) 2018; 27 Morikawa (bb0630) 2013; 28 Mihaylova (bb0100) 2018; 22 Wei (bb0285) 2015; 161 Ming (bb0600) 2016; 476 Shum (bb0485) 2016; 11 Gu (bb0105) 2016; 19 Tresguerres (bb0525) 2014; 17 Feng, McDonald (bb0005) 2011; 6 Hong (bb0440) 2014; 34 Yu (bb0135) 2013; 12 Ma (bb0570) 2018; 17 Ishii (bb0330) 2009; 15 Shankar (bb0615) 2008; 23 Li (bb0480) 2015; 5 Rodriguez-Cuenca (bb0670) 2010; 48 Park-Min (bb0735) 2018; 75 Shum (bb0155) 2016; 25 Polat (bb0650) 2013; 718 Indo (bb0340) 2013; 28 Sui (bb0455) 2016; 6 Rossman (bb0665) 2018; 71 Lv (bb0210) 2018; 8 Jager (bb0245) 2007; 104 Trifunovic (bb0080) 2004; 429 Duca (bb0545) 2015; 21 Park (bb0035) 2012; 10 Zhou (bb0420) 2019; 10 Dai (bb0685) 2011; 108 Guo (bb0095) 2018; 24 Sui (bb0450) 2019; 196 Schmitt (bb0215) 2018; 27 Chen (bb0585) 2015; 212 Zhang (bb0335) 2018; 33 Liao (bb0490) 2016; 34 Hyslop (bb0690) 2016; 534 Liu (bb0515) 2012; 16 Wu (bb0680) 2019 Backesjo (bb0250) 2006; 21 Treiber (bb0190) 2011; 10 Rauch (bb0720) 2010; 11 Langdahl (bb0075) 2017; 32 Pearson (bb0520) 2008; 8 Qi (bb0575) 2017; 7 Bacman (bb0700) 2018; 24 Dutta (bb0565) 2013; 9 Schell (bb0110) 2017; 19 Worthley (bb0045) 2015; 160 Jin (bb0070) 2014; 20 Ding (bb0020) 2012; 481 Kim (bb0445) 2013; 17 Tevlin (bb0470) 2017; 9 Sui (bb0465) 2016; 17 Li (bb0605) 2017; 32 Zeng (bb0310) 2015; 30 Wu (bb0230) 1999; 98 Shares (bb0145) 2018; 293 Bartell (bb0375) 2014; 5 Yu (bb0405) 2019; 29 Kim (bb0370) 2017; 8 Yang (bb0065) 2014; 29 Tormos (bb0350) 2011; 14 Chen (bb0295) 2014; 13 Almeida (bb0010) 2017; 97 Miyazaki (bb0395) 2012; 287 Edwards (bb0260) 2013; 28 Tsay (bb0610) 2010; 116 Choi (bb0425) 2011; 23 Chocarro-Calvo (bb0180) 2013; 49 Bonkowski, Sinclair (bb0535) 2016; 17 Chen (bb0150) 2008; 26 Bae (bb0590) 2017; 127 Hsu (bb0055) 2016; 52 Takubo (bb0140) 2013; 12 Lu (bb0655) 2017; 7 Wongrakpanich (bb0705) 2014; 9 Ambrosi (bb0715) 2017; 20 Cha (bb0130) 2017; 19 Fu (bb0645) 2015; 230 Cogliati (bb0200) 2013; 155 Forni (bb0165) 2016; 34 Khacho (bb0355) 2016; 19 Sahni (bb0640) 2009; 20 Shadel, Horvath (bb0090) 2015; 163 Yoon (bb0265) 2014; 32 Owusu-Ansah, Banerjee (bb0365) 2009; 461 Coleman (bb0625) 2018; 10 Mendivil-Perez (bb0115) 2017; 63 Lucas (bb0325) 2018; 9 Gao (bb0170) 2018; 25 Bhattarai (bb0530) 2016; 29 Simic (bb0270) 2013; 5 Liu (bb0550) 2018; 6 Shi (bb0040) 2017; 8 Yang (bb0205) 2015; 5 Li (bb0290) 2018; 33 Mercken (bb0540) 2014; 13 Batoon (bb0015) 2019; 196 Gomes (bb0225) 2013; 155 Geissler (bb0620) 2013; 4 Nojiri (bb0635) 2011; 26 Molinuevo (bb0275) 2010; 25 Hu (bb0475) 2017; 61 Navein (bb0460) 2016; 25 Araujo (bb0555) 2017; 12 Kwak (bb0595) 2010; 46 Riddle, Clemens (bb0730) 2017; 97 Chava (bb0280) 2018; 9 Gammage (bb0695) 2018; 24 Snoeck (bb0060) 2017; 49 Yu (bb0235) 2018; 23 Scholtysek (bb0175) 2013; 19 Itkin (bb0345) 2016; 532 Nandagopal (bb0300) 2018; 172 Xia (bb0500) 2018; 3 Goiran (bb0675) 2018; 83 An (bb0160) 2010; 47 Tseng (bb0255) 2011; 26 Mendez-Ferrer (bb0030) 2010; 466 Hyeon (bb0385) 2013; 65 Lagouge (bb0510) 2006; 127 Iwabu (bb0240) 2010; 464 Donato (bb0125) 2017; 19 Birsoy (bb0400) 2015; 162 Baba (bb0320) 2018; 33 Kim (bb0390) 2017; 32 Nunnari, Suomalainen (bb0085) 2012; 148 Goettsch (bb0380) 2013; 123 Nishikawa (bb0315) 2015; 21 Zhang (bb0495) 2017; 12 Schriner (bb0660) 2005; 308 Hong (bb0435) 2017; 112 Tai (bb0560) 2017; 13 Wang (bb0725) 2013; 31 Hwang (bb0410) 2016; 24 Fu (bb0185) 2018; 5 Suliman, Piantadosi (bb0220) 2016; 68 Liu (bb0580) 2016; 34 Palomaki (bb0195) 2013; 31 Tang (bb0710) 2009; 15 Molinuevo (10.1016/j.molmed.2019.04.008_bb0275) 2010; 25 Shankar (10.1016/j.molmed.2019.04.008_bb0615) 2008; 23 Park-Min (10.1016/j.molmed.2019.04.008_bb0735) 2018; 75 Kim (10.1016/j.molmed.2019.04.008_bb0445) 2013; 17 Hong (10.1016/j.molmed.2019.04.008_bb0435) 2017; 112 Mercken (10.1016/j.molmed.2019.04.008_bb0540) 2014; 13 Langdahl (10.1016/j.molmed.2019.04.008_bb0075) 2017; 32 Nunnari (10.1016/j.molmed.2019.04.008_bb0085) 2012; 148 Donato (10.1016/j.molmed.2019.04.008_bb0125) 2017; 19 Bhattarai (10.1016/j.molmed.2019.04.008_bb0530) 2016; 29 Dutta (10.1016/j.molmed.2019.04.008_bb0565) 2013; 9 Dai (10.1016/j.molmed.2019.04.008_bb0685) 2011; 108 Indo (10.1016/j.molmed.2019.04.008_bb0340) 2013; 28 Li (10.1016/j.molmed.2019.04.008_bb0605) 2017; 32 Liu (10.1016/j.molmed.2019.04.008_bb0550) 2018; 6 Mihaylova (10.1016/j.molmed.2019.04.008_bb0100) 2018; 22 Yu (10.1016/j.molmed.2019.04.008_bb0405) 2019; 29 Forni (10.1016/j.molmed.2019.04.008_bb0165) 2016; 34 Hwang (10.1016/j.molmed.2019.04.008_bb0410) 2016; 24 Edwards (10.1016/j.molmed.2019.04.008_bb0260) 2013; 28 Tseng (10.1016/j.molmed.2019.04.008_bb0255) 2011; 26 Tang (10.1016/j.molmed.2019.04.008_bb0710) 2009; 15 Scholtysek (10.1016/j.molmed.2019.04.008_bb0175) 2013; 19 Lee (10.1016/j.molmed.2019.04.008_bb0430) 2005; 106 Zhang (10.1016/j.molmed.2019.04.008_bb0335) 2018; 33 Sui (10.1016/j.molmed.2019.04.008_bb0450) 2019; 196 Snoeck (10.1016/j.molmed.2019.04.008_bb0060) 2017; 49 Treiber (10.1016/j.molmed.2019.04.008_bb0190) 2011; 10 Son (10.1016/j.molmed.2019.04.008_bb0415) 2016; 34 Hong (10.1016/j.molmed.2019.04.008_bb0440) 2014; 34 Wu (10.1016/j.molmed.2019.04.008_bb0230) 1999; 98 Kim (10.1016/j.molmed.2019.04.008_bb0390) 2017; 32 Liu (10.1016/j.molmed.2019.04.008_bb0580) 2016; 34 Nojiri (10.1016/j.molmed.2019.04.008_bb0635) 2011; 26 Shares (10.1016/j.molmed.2019.04.008_bb0145) 2018; 293 Goettsch (10.1016/j.molmed.2019.04.008_bb0380) 2013; 123 Polat (10.1016/j.molmed.2019.04.008_bb0650) 2013; 718 Jager (10.1016/j.molmed.2019.04.008_bb0245) 2007; 104 Birsoy (10.1016/j.molmed.2019.04.008_bb0400) 2015; 162 Batoon (10.1016/j.molmed.2019.04.008_bb0015) 2019; 196 Gu (10.1016/j.molmed.2019.04.008_bb0105) 2016; 19 Jin (10.1016/j.molmed.2019.04.008_bb0070) 2014; 20 Yoon (10.1016/j.molmed.2019.04.008_bb0265) 2014; 32 Wang (10.1016/j.molmed.2019.04.008_bb0725) 2013; 31 Ding (10.1016/j.molmed.2019.04.008_bb0020) 2012; 481 Yang (10.1016/j.molmed.2019.04.008_bb0205) 2015; 5 Lagouge (10.1016/j.molmed.2019.04.008_bb0510) 2006; 127 Simic (10.1016/j.molmed.2019.04.008_bb0270) 2013; 5 Qi (10.1016/j.molmed.2019.04.008_bb0575) 2017; 7 Cha (10.1016/j.molmed.2019.04.008_bb0130) 2017; 19 Choi (10.1016/j.molmed.2019.04.008_bb0425) 2011; 23 Zhang (10.1016/j.molmed.2019.04.008_bb0495) 2017; 12 Miyazaki (10.1016/j.molmed.2019.04.008_bb0395) 2012; 287 Hyslop (10.1016/j.molmed.2019.04.008_bb0690) 2016; 534 Navein (10.1016/j.molmed.2019.04.008_bb0460) 2016; 25 Goiran (10.1016/j.molmed.2019.04.008_bb0675) 2018; 83 Shi (10.1016/j.molmed.2019.04.008_bb0040) 2017; 8 Fu (10.1016/j.molmed.2019.04.008_bb0645) 2015; 230 Liao (10.1016/j.molmed.2019.04.008_bb0490) 2016; 34 Coleman (10.1016/j.molmed.2019.04.008_bb0625) 2018; 10 Bacman (10.1016/j.molmed.2019.04.008_bb0700) 2018; 24 Lee (10.1016/j.molmed.2019.04.008_bb0305) 2018; 128 Yang (10.1016/j.molmed.2019.04.008_bb0065) 2014; 29 Tresguerres (10.1016/j.molmed.2019.04.008_bb0525) 2014; 17 Wei (10.1016/j.molmed.2019.04.008_bb0050) 2018; 28 Chocarro-Calvo (10.1016/j.molmed.2019.04.008_bb0180) 2013; 49 Tsay (10.1016/j.molmed.2019.04.008_bb0610) 2010; 116 Lucas (10.1016/j.molmed.2019.04.008_bb0325) 2018; 9 Nishikawa (10.1016/j.molmed.2019.04.008_bb0315) 2015; 21 Tormos (10.1016/j.molmed.2019.04.008_bb0350) 2011; 14 Duca (10.1016/j.molmed.2019.04.008_bb0545) 2015; 21 Bartell (10.1016/j.molmed.2019.04.008_bb0375) 2014; 5 Tai (10.1016/j.molmed.2019.04.008_bb0560) 2017; 13 Palomaki (10.1016/j.molmed.2019.04.008_bb0195) 2013; 31 Wongrakpanich (10.1016/j.molmed.2019.04.008_bb0705) 2014; 9 Zeng (10.1016/j.molmed.2019.04.008_bb0310) 2015; 30 Gammage (10.1016/j.molmed.2019.04.008_bb0695) 2018; 24 Rauch (10.1016/j.molmed.2019.04.008_bb0720) 2010; 11 Tevlin (10.1016/j.molmed.2019.04.008_bb0470) 2017; 9 Yu (10.1016/j.molmed.2019.04.008_bb0235) 2018; 23 Chen (10.1016/j.molmed.2019.04.008_bb0150) 2008; 26 Kwak (10.1016/j.molmed.2019.04.008_bb0595) 2010; 46 Lv (10.1016/j.molmed.2019.04.008_bb0210) 2018; 8 Araujo (10.1016/j.molmed.2019.04.008_bb0555) 2017; 12 Worthley (10.1016/j.molmed.2019.04.008_bb0045) 2015; 160 Ambrosi (10.1016/j.molmed.2019.04.008_bb0715) 2017; 20 Ma (10.1016/j.molmed.2019.04.008_bb0570) 2018; 17 Almeida (10.1016/j.molmed.2019.04.008_bb0010) 2017; 97 Chava (10.1016/j.molmed.2019.04.008_bb0280) 2018; 9 Schneider (10.1016/j.molmed.2019.04.008_bb0025) 2017; 20 Shum (10.1016/j.molmed.2019.04.008_bb0485) 2016; 11 Wust (10.1016/j.molmed.2019.04.008_bb0120) 2018; 27 Liu (10.1016/j.molmed.2019.04.008_bb0515) 2012; 16 Li (10.1016/j.molmed.2019.04.008_bb0480) 2015; 5 Trifunovic (10.1016/j.molmed.2019.04.008_bb0080) 2004; 429 Gomes (10.1016/j.molmed.2019.04.008_bb0225) 2013; 155 Sui (10.1016/j.molmed.2019.04.008_bb0465) 2016; 17 Baur (10.1016/j.molmed.2019.04.008_bb0505) 2006; 444 Schriner (10.1016/j.molmed.2019.04.008_bb0660) 2005; 308 Schell (10.1016/j.molmed.2019.04.008_bb0110) 2017; 19 Ming (10.1016/j.molmed.2019.04.008_bb0600) 2016; 476 Riddle (10.1016/j.molmed.2019.04.008_bb0730) 2017; 97 Sui (10.1016/j.molmed.2019.04.008_bb0455) 2016; 6 Zhou (10.1016/j.molmed.2019.04.008_bb0420) 2019; 10 Hsu (10.1016/j.molmed.2019.04.008_bb0055) 2016; 52 Geissler (10.1016/j.molmed.2019.04.008_bb0620) 2013; 4 Chen (10.1016/j.molmed.2019.04.008_bb0295) 2014; 13 Le Belle (10.1016/j.molmed.2019.04.008_bb0360) 2011; 8 Rossman (10.1016/j.molmed.2019.04.008_bb0665) 2018; 71 Xia (10.1016/j.molmed.2019.04.008_bb0500) 2018; 3 Backesjo (10.1016/j.molmed.2019.04.008_bb0250) 2006; 21 Iwabu (10.1016/j.molmed.2019.04.008_bb0240) 2010; 464 Li (10.1016/j.molmed.2019.04.008_bb0290) 2018; 33 Mendivil-Perez (10.1016/j.molmed.2019.04.008_bb0115) 2017; 63 Owusu-Ansah (10.1016/j.molmed.2019.04.008_bb0365) 2009; 461 Hu (10.1016/j.molmed.2019.04.008_bb0475) 2017; 61 Guo (10.1016/j.molmed.2019.04.008_bb0095) 2018; 24 Suliman (10.1016/j.molmed.2019.04.008_bb0220) 2016; 68 Bae (10.1016/j.molmed.2019.04.008_bb0590) 2017; 127 Wu (10.1016/j.molmed.2019.04.008_bb0680) 2019 Park (10.1016/j.molmed.2019.04.008_bb0035) 2012; 10 Schmitt (10.1016/j.molmed.2019.04.008_bb0215) 2018; 27 Mendez-Ferrer (10.1016/j.molmed.2019.04.008_bb0030) 2010; 466 Pearson (10.1016/j.molmed.2019.04.008_bb0520) 2008; 8 Sahni (10.1016/j.molmed.2019.04.008_bb0640) 2009; 20 Ishii (10.1016/j.molmed.2019.04.008_bb0330) 2009; 15 Yu (10.1016/j.molmed.2019.04.008_bb0135) 2013; 12 Itkin (10.1016/j.molmed.2019.04.008_bb0345) 2016; 532 Hyeon (10.1016/j.molmed.2019.04.008_bb0385) 2013; 65 An (10.1016/j.molmed.2019.04.008_bb0160) 2010; 47 Nandagopal (10.1016/j.molmed.2019.04.008_bb0300) 2018; 172 Takubo (10.1016/j.molmed.2019.04.008_bb0140) 2013; 12 Cogliati (10.1016/j.molmed.2019.04.008_bb0200) 2013; 155 Lu (10.1016/j.molmed.2019.04.008_bb0655) 2017; 7 Khacho (10.1016/j.molmed.2019.04.008_bb0355) 2016; 19 Feng (10.1016/j.molmed.2019.04.008_bb0005) 2011; 6 Baba (10.1016/j.molmed.2019.04.008_bb0320) 2018; 33 Shadel (10.1016/j.molmed.2019.04.008_bb0090) 2015; 163 Rodriguez-Cuenca (10.1016/j.molmed.2019.04.008_bb0670) 2010; 48 Bonkowski (10.1016/j.molmed.2019.04.008_bb0535) 2016; 17 Chen (10.1016/j.molmed.2019.04.008_bb0585) 2015; 212 Gao (10.1016/j.molmed.2019.04.008_bb0170) 2018; 25 Wei (10.1016/j.molmed.2019.04.008_bb0285) 2015; 161 Fu (10.1016/j.molmed.2019.04.008_bb0185) 2018; 5 Kim (10.1016/j.molmed.2019.04.008_bb0370) 2017; 8 Shum (10.1016/j.molmed.2019.04.008_bb0155) 2016; 25 Morikawa (10.1016/j.molmed.2019.04.008_bb0630) 2013; 28 |
References_xml | – volume: 19 start-page: 608 year: 2013 end-page: 613 ident: bb0175 article-title: PPARβ/δ governs Wnt signaling and bone turnover publication-title: Nat. Med. – volume: 10 start-page: 239 year: 2011 end-page: 254 ident: bb0190 article-title: Accelerated aging phenotype in mice with conditional deficiency for mitochondrial superoxide dismutase in the connective tissue publication-title: Aging Cell – volume: 230 start-page: 2184 year: 2015 end-page: 2201 ident: bb0645 article-title: Alpha-lipoic acid promotes osteoblastic formation in H publication-title: J. Cell. Physiol. – volume: 123 start-page: 4731 year: 2013 end-page: 4738 ident: bb0380 article-title: NADPH oxidase 4 limits bone mass by promoting osteoclastogenesis publication-title: J. Clin. Invest. – volume: 26 start-page: 960 year: 2008 end-page: 968 ident: bb0150 article-title: Coordinated changes of mitochondrial biogenesis and antioxidant enzymes during osteogenic differentiation of human mesenchymal stem cells publication-title: Stem Cells – volume: 24 start-page: 1696 year: 2018 end-page: 1700 ident: bb0700 article-title: MitoTALEN reduces mutant mtDNA load and restores tRNA publication-title: Nat. Med. – volume: 17 start-page: 249 year: 2013 end-page: 260 ident: bb0445 article-title: Tmem64 modulates calcium signaling during RANKL-mediated osteoclast differentiation publication-title: Cell Metab. – volume: 61 start-page: 233 year: 2017 end-page: 248 ident: bb0475 article-title: Adiponectin improves the osteointegration of titanium implant under diabetic conditions by reversing mitochondrial dysfunction via the AMPK pathway publication-title: Acta Biomater. – volume: 28 start-page: 2392 year: 2013 end-page: 2399 ident: bb0340 article-title: Metabolic regulation of osteoclast differentiation and function publication-title: J. Bone Miner. Res. – volume: 160 start-page: 269 year: 2015 end-page: 284 ident: bb0045 article-title: Gremlin 1 identifies a skeletal stem cell with bone, cartilage, and reticular stromal potential publication-title: Cell – volume: 12 start-page: 62 year: 2013 end-page: 74 ident: bb0135 article-title: Metabolic regulation by the mitochondrial phosphatase PTPMT1 is required for hematopoietic stem cell differentiation publication-title: Cell Stem Cell – volume: 5 year: 2015 ident: bb0480 article-title: FFA-ROS-P53-mediated mitochondrial apoptosis contributes to reduction of osteoblastogenesis and bone mass in type 2 diabetes mellitus publication-title: Sci. Rep. – volume: 48 start-page: 161 year: 2010 end-page: 172 ident: bb0670 article-title: Consequences of long-term oral administration of the mitochondria-targeted antioxidant MitoQ to wild-type mice publication-title: Free Radic. Biol. Med. – volume: 163 start-page: 560 year: 2015 end-page: 569 ident: bb0090 article-title: Mitochondrial ROS signaling in organismal homeostasis publication-title: Cell – volume: 3 start-page: 174 year: 2018 end-page: 193 ident: bb0500 article-title: Tissue repair and regeneration with endogenous stem cells publication-title: Nat. Rev. Mater. – volume: 127 start-page: 2555 year: 2017 end-page: 2568 ident: bb0590 article-title: MYC-dependent oxidative metabolism regulates osteoclastogenesis via nuclear receptor ERRα publication-title: J. Clin. Invest. – volume: 466 start-page: 829 year: 2010 end-page: 834 ident: bb0030 article-title: Mesenchymal and haematopoietic stem cells form a unique bone marrow niche publication-title: Nature – volume: 172 start-page: 869 year: 2018 end-page: 880 ident: bb0300 article-title: Dynamic ligand discrimination in the Notch signaling pathway publication-title: Cell – volume: 46 start-page: 724 year: 2010 end-page: 731 ident: bb0595 article-title: Inhibition of osteoclast differentiation and bone resorption by rotenone, through down-regulation of RANKL-induced c-Fos and NFATc1 expression publication-title: Bone – volume: 7 start-page: 3331 year: 2017 ident: bb0655 article-title: The osteogenesis-promoting effects of alpha-lipoic acid against glucocorticoid-induced osteoporosis through the NOX4, NF-kappaB, JNK and PI3K/AKT pathways publication-title: Sci. Rep. – volume: 481 start-page: 457 year: 2012 end-page: 462 ident: bb0020 article-title: Endothelial and perivascular cells maintain haematopoietic stem cells publication-title: Nature – volume: 15 start-page: 259 year: 2009 end-page: 266 ident: bb0330 article-title: Coordination of PGC-1β and iron uptake in mitochondrial biogenesis and osteoclast activation publication-title: Nat. Med. – volume: 24 start-page: 494 year: 2016 end-page: 501 ident: bb0410 article-title: Psat1-dependent fluctuations in α-ketoglutarate affect the timing of ESC differentiation publication-title: Cell Metab. – volume: 9 start-page: 754 year: 2018 ident: bb0280 article-title: A novel phosphorylation by AMP-activated kinase regulates RUNX2 from ubiquitination in osteogenesis over adipogenesis publication-title: Cell Death Dis. – volume: 71 start-page: 1056 year: 2018 end-page: 1063 ident: bb0665 article-title: Chronic supplementation with a mitochondrial antioxidant (MitoQ) improves vascular function in healthy older adults publication-title: Hypertension – volume: 461 start-page: 537 year: 2009 end-page: 541 ident: bb0365 article-title: Reactive oxygen species prime publication-title: Nature – volume: 7 start-page: 4498 year: 2017 end-page: 4516 ident: bb0575 article-title: Autophagy maintains the function of bone marrow mesenchymal stem cells to prevent estrogen deficiency-induced osteoporosis publication-title: Theranostics – volume: 29 start-page: 2577 year: 2014 end-page: 2583 ident: bb0065 article-title: Association between global biomarkers of oxidative stress and hip fracture in postmenopausal women: a prospective study publication-title: J. Bone Miner. Res. – volume: 49 start-page: 91 year: 2017 end-page: 98 ident: bb0060 article-title: Mitochondrial regulation of hematopoietic stem cells publication-title: Curr. Opin. Cell Biol. – volume: 532 start-page: 323 year: 2016 end-page: 328 ident: bb0345 article-title: Distinct bone marrow blood vessels differentially regulate haematopoiesis publication-title: Nature – volume: 12 year: 2017 ident: bb0495 article-title: Drp1-dependent mitochondrial fission mediates osteogenic dysfunction in inflammation through elevated production of reactive oxygen species publication-title: PLoS One – volume: 19 start-page: 445 year: 2017 end-page: 456 ident: bb0130 article-title: Metabolic control of primed human pluripotent stem cell fate and function by the miR-200c-SIRT2 axis publication-title: Nat. Cell Biol. – volume: 27 start-page: 657 year: 2018 end-page: 666 ident: bb0215 article-title: Circadian control of DRP1 activity regulates mitochondrial dynamics and bioenergetics publication-title: Cell Metab. – volume: 32 start-page: 2041 year: 2017 end-page: 2048 ident: bb0075 article-title: Mitochondrial point mutation m.3243A>G associates with lower bone mineral density, thinner cortices, and reduced bone strength: a case-control study publication-title: J. Bone Miner. Res. – volume: 34 start-page: 3515 year: 2014 end-page: 3524 ident: bb0440 article-title: TRP14 inhibits osteoclast differentiation via its catalytic activity publication-title: Mol. Cell. Biol. – volume: 97 start-page: 135 year: 2017 end-page: 187 ident: bb0010 article-title: Estrogens and androgens in skeletal physiology and pathophysiology publication-title: Physiol. Rev. – volume: 32 start-page: 962 year: 2017 end-page: 973 ident: bb0605 article-title: BMI-1 mediates estrogen-deficiency-induced bone loss by inhibiting reactive oxygen species accumulation and T cell activation publication-title: J. Bone Miner. Res. – volume: 97 start-page: 667 year: 2017 end-page: 698 ident: bb0730 article-title: Bone cell bioenergetics and skeletal energy homeostasis publication-title: Physiol. Rev. – volume: 8 start-page: 59 year: 2011 end-page: 71 ident: bb0360 article-title: Proliferative neural stem cells have high endogenous ROS levels that regulate self-renewal and neurogenesis in a PI3K/Akt-dependant manner publication-title: Cell Stem Cell – volume: 26 start-page: 2552 year: 2011 end-page: 2563 ident: bb0255 article-title: Resveratrol promotes osteogenesis of human mesenchymal stem cells by upregulating publication-title: J. Bone Miner. Res. – volume: 20 start-page: 785 year: 2017 end-page: 800 ident: bb0025 article-title: Gli1 publication-title: Cell Stem Cell – volume: 5 start-page: 430 year: 2013 end-page: 440 ident: bb0270 article-title: SIRT1 regulates differentiation of mesenchymal stem cells by deacetylating β-catenin publication-title: EMBO Mol. Med. – volume: 30 start-page: 2287 year: 2015 end-page: 2299 ident: bb0310 article-title: Alternative NF-κB regulates RANKL-induced osteoclast differentiation and mitochondrial biogenesis via independent mechanisms publication-title: J. Bone Miner. Res. – volume: 34 start-page: 2157 year: 2016 end-page: 2168 ident: bb0580 article-title: Chronic high dose alcohol induces osteopenia via activation of mTOR signaling in bone marrow mesenchymal stem cells publication-title: Stem Cells – volume: 127 start-page: 1109 year: 2006 end-page: 1122 ident: bb0510 article-title: Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1α publication-title: Cell – volume: 17 start-page: 679 year: 2016 end-page: 690 ident: bb0535 article-title: Slowing ageing by design: the rise of NAD publication-title: Nat. Rev. Mol. Cell Biol. – volume: 15 start-page: 757 year: 2009 end-page: 765 ident: bb0710 article-title: TGF-β1-induced migration of bone mesenchymal stem cells couples bone resorption with formation publication-title: Nat. Med. – volume: 25 start-page: 229 year: 2018 end-page: 240 ident: bb0170 article-title: SIRT3/SOD2 maintains osteoblast differentiation and bone formation by regulating mitochondrial stress publication-title: Cell Death Differ. – volume: 9 start-page: 328 year: 2013 end-page: 344 ident: bb0565 article-title: Upregulated autophagy protects cardiomyocytes from oxidative stress-induced toxicity publication-title: Autophagy – volume: 106 start-page: 852 year: 2005 end-page: 859 ident: bb0430 article-title: A crucial role for reactive oxygen species in RANKL-induced osteoclast differentiation publication-title: Blood – volume: 23 start-page: 1633 year: 2011 end-page: 1639 ident: bb0425 article-title: Reactive oxygen species regulate M-CSF-induced monocyte/macrophage proliferation through SHP1 oxidation publication-title: Cell. Signal. – volume: 8 start-page: 157 year: 2008 end-page: 168 ident: bb0520 article-title: Resveratrol delays age-related deterioration and mimics transcriptional aspects of dietary restriction without extending life span publication-title: Cell Metab. – volume: 52 start-page: 119 year: 2016 end-page: 131 ident: bb0055 article-title: Mitochondria in mesenchymal stem cell biology and cell therapy: from cellular differentiation to mitochondrial transfer publication-title: Semin. Cell Dev. Biol. – volume: 49 start-page: 474 year: 2013 end-page: 486 ident: bb0180 article-title: Glucose-induced β-catenin acetylation enhances Wnt signaling in cancer publication-title: Mol. Cell – volume: 83 start-page: 416 year: 2018 end-page: 427 ident: bb0675 article-title: β-Amyloid precursor protein intracellular domain controls mitochondrial function by modulating phosphatase and tensin homolog–induced kinase 1 transcription in cells and in Alzheimer mice models publication-title: Biol. Psychiatry – volume: 9 start-page: 55 year: 2018 ident: bb0325 article-title: Short-chain fatty acids regulate systemic bone mass and protect from pathological bone loss publication-title: Nat. Commun. – volume: 155 start-page: 1624 year: 2013 end-page: 1638 ident: bb0225 article-title: Declining NAD publication-title: Cell – volume: 161 start-page: 1576 year: 2015 end-page: 1591 ident: bb0285 article-title: Glucose uptake and Runx2 synergize to orchestrate osteoblast differentiation and bone formation publication-title: Cell – volume: 17 start-page: 267 year: 2016 end-page: 279 ident: bb0465 article-title: Mitochondrial metabolic failure in telomere attrition-provoked aging of bone marrow mesenchymal stem cells publication-title: Biogerontology – volume: 128 start-page: 5573 year: 2018 end-page: 5586 ident: bb0305 article-title: Notch signaling suppresses glucose metabolism in mesenchymal progenitors to restrict osteoblast differentiation publication-title: J. Clin. Invest. – volume: 29 start-page: 398 year: 2016 end-page: 408 ident: bb0530 article-title: Resveratrol prevents alveolar bone loss in an experimental rat model of periodontitis publication-title: Acta Biomater. – volume: 24 start-page: 360 year: 2018 end-page: 367 ident: bb0095 article-title: Antagonism of PPARγ signaling expands human hematopoietic stem and progenitor cells by enhancing glycolysis publication-title: Nat. Med. – volume: 10 start-page: 198 year: 2019 ident: bb0420 article-title: TIGAR promotes neural stem cell differentiation through acetyl-CoA-mediated histone acetylation publication-title: Cell Death Dis. – volume: 28 start-page: 551 year: 2018 end-page: 559 ident: bb0050 article-title: The force is strong with this one: metabolism (over)powers stem cell fate publication-title: Trends Cell Biol. – volume: 148 start-page: 1145 year: 2012 end-page: 1159 ident: bb0085 article-title: Mitochondria: in sickness and in health publication-title: Cell – volume: 68 start-page: 20 year: 2016 end-page: 48 ident: bb0220 article-title: Mitochondrial quality control as a therapeutic target publication-title: Pharmacol. Rev. – volume: 16 start-page: 738 year: 2012 end-page: 750 ident: bb0515 article-title: Resveratrol rescues SIRT1-dependent adult stem cell decline and alleviates progeroid features in laminopathy-based progeria publication-title: Cell Metab. – volume: 534 start-page: 383 year: 2016 end-page: 386 ident: bb0690 article-title: Towards clinical application of pronuclear transfer to prevent mitochondrial DNA disease publication-title: Nature – volume: 98 start-page: 115 year: 1999 end-page: 124 ident: bb0230 article-title: Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1 publication-title: Cell – volume: 9 start-page: 2531 year: 2014 end-page: 2543 ident: bb0705 article-title: Mitochondria-targeting particles publication-title: Nanomedicine (Lond) – volume: 28 start-page: 2368 year: 2013 end-page: 2380 ident: bb0630 article-title: Cytoplasmic reactive oxygen species and SOD1 regulate bone mass during mechanical unloading publication-title: J. Bone Miner. Res. – volume: 308 start-page: 1909 year: 2005 end-page: 1911 ident: bb0660 article-title: Extension of murine life span by overexpression of catalase targeted to mitochondria publication-title: Science – volume: 108 start-page: 837 year: 2011 end-page: 846 ident: bb0685 article-title: Mitochondrial oxidative stress mediates angiotensin II-induced cardiac hypertrophy and Gαq overexpression-induced heart failure publication-title: Circ. Res. – volume: 155 start-page: 160 year: 2013 end-page: 171 ident: bb0200 article-title: Mitochondrial cristae shape determines respiratory chain supercomplexes assembly and respiratory efficiency publication-title: Cell – volume: 10 year: 2018 ident: bb0625 article-title: Targeting mitochondrial responses to intra-articular fracture to prevent posttraumatic osteoarthritis publication-title: Sci. Transl. Med. – volume: 22 start-page: 769 year: 2018 end-page: 778 ident: bb0100 article-title: Fasting activates fatty acid oxidation to enhance intestinal stem cell function during homeostasis and aging publication-title: Cell Stem Cell – volume: 34 start-page: 2840 year: 2016 end-page: 2851 ident: bb0415 article-title: Restoration of mitochondrial NAD publication-title: Stem Cells – volume: 33 start-page: 1183 year: 2018 end-page: 1195 ident: bb0290 article-title: Mst1/2 kinases modulate glucose uptake for osteoblast differentiation and bone formation publication-title: J. Bone Miner. Res. – volume: 29 start-page: 966 year: 2019 end-page: 978 ident: bb0405 article-title: Glutamine metabolism regulates proliferation and lineage allocation in skeletal stem cells publication-title: Cell Metab. – volume: 13 start-page: 55 year: 2014 end-page: 64 ident: bb0295 article-title: Role of SIRT1 and AMPK in mesenchymal stem cells differentiation publication-title: Ageing Res. Rev. – volume: 9 year: 2017 ident: bb0470 article-title: Pharmacological rescue of diabetic skeletal stem cell niches publication-title: Sci. Transl. Med. – volume: 65 start-page: 789 year: 2013 end-page: 799 ident: bb0385 article-title: Nrf2 deficiency induces oxidative stress and promotes RANKL-induced osteoclast differentiation publication-title: Free Radic. Biol. Med. – volume: 47 start-page: 140 year: 2010 end-page: 150 ident: bb0160 article-title: Enhanced mitochondrial biogenesis contributes to Wnt induced osteoblastic differentiation of C3H10T1/2 cells publication-title: Bone – volume: 8 start-page: 1519 year: 2017 ident: bb0370 article-title: DJ-1 controls bone homeostasis through the regulation of osteoclast differentiation publication-title: Nat. Commun. – volume: 12 start-page: 49 year: 2013 end-page: 61 ident: bb0140 article-title: Regulation of glycolysis by Pdk functions as a metabolic checkpoint for cell cycle quiescence in hematopoietic stem cells publication-title: Cell Stem Cell – volume: 19 start-page: 476 year: 2016 end-page: 490 ident: bb0105 article-title: Glycolytic metabolism plays a functional role in regulating human pluripotent stem cell state publication-title: Cell Stem Cell – volume: 25 start-page: 114 year: 2016 end-page: 122 ident: bb0155 article-title: Energy metabolism in mesenchymal stem cells during osteogenic differentiation publication-title: Stem Cells Dev. – volume: 20 start-page: 771 year: 2017 end-page: 784 ident: bb0715 article-title: Adipocyte accumulation in the bone marrow during obesity and aging impairs stem cell-based hematopoietic and bone regeneration publication-title: Cell Stem Cell – volume: 12 year: 2017 ident: bb0555 article-title: Effects of metformin on inflammation, oxidative stress, and bone loss in a rat model of periodontitis publication-title: PLoS One – volume: 429 start-page: 417 year: 2004 end-page: 423 ident: bb0080 article-title: Premature ageing in mice expressing defective mitochondrial DNA polymerase publication-title: Nature – volume: 34 start-page: 1054 year: 2016 end-page: 1067 ident: bb0490 article-title: TNF-α inhibits FoxO1 by upregulating miR-705 to aggravate oxidative damage in bone marrow-derived mesenchymal stem cells during osteoporosis publication-title: Stem Cells – volume: 196 start-page: 18 year: 2019 end-page: 30 ident: bb0450 article-title: Stem cell-based bone regeneration in diseased microenvironments: challenges and solutions publication-title: Biomaterials – volume: 63 year: 2017 ident: bb0115 article-title: Melatonin enhances neural stem cell differentiation and engraftment by increasing mitochondrial function publication-title: J. Pineal Res. – volume: 13 start-page: 787 year: 2014 end-page: 796 ident: bb0540 article-title: SRT2104 extends survival of male mice on a standard diet and preserves bone and muscle mass publication-title: Aging Cell – volume: 20 start-page: 1853 year: 2009 end-page: 1861 ident: bb0640 article-title: Protective effect of total and supplemental vitamin C intake on the risk of hip fracture – a 17-year follow-up from the Framingham osteoporosis study publication-title: Osteoporos. Int. – volume: 32 start-page: 397 year: 2017 end-page: 406 ident: bb0390 article-title: SOD2 and Sirt3 control osteoclastogenesis by regulating mitochondrial ROS publication-title: J. Bone Miner. Res. – volume: 27 start-page: 1026 year: 2018 end-page: 1039 ident: bb0120 article-title: Metabolic maturation during muscle stem cell differentiation is achieved by publication-title: Cell Metab. – volume: 25 start-page: 211 year: 2010 end-page: 221 ident: bb0275 article-title: Effect of metformin on bone marrow progenitor cell differentiation: publication-title: J. Bone Miner. Res. – volume: 476 start-page: 412 year: 2016 end-page: 419 ident: bb0600 article-title: Mitochondria related peptide MOTS-c suppresses ovariectomy-induced bone loss via AMPK activation publication-title: Biochem. Biophys. Res. Commun. – volume: 17 start-page: 439 year: 2014 end-page: 445 ident: bb0525 article-title: Resveratrol as anti-aging therapy for age-related bone loss publication-title: Rejuvenation Res. – volume: 21 start-page: 281 year: 2015 end-page: 287 ident: bb0315 article-title: DNA methyltransferase 3a regulates osteoclast differentiation by coupling to an S-adenosylmethionine-producing metabolic pathway publication-title: Nat. Med. – volume: 6 start-page: 27 year: 2018 ident: bb0550 article-title: prevents bone ageing sensitivity by specifically regulating senescence and differentiation in mesenchymal stem cells publication-title: Bone Res. – year: 2019 ident: bb0680 article-title: Deficiency of mitophagy receptor FUNDC1 impairs mitochondrial quality and aggravates dietary-induced obesity and metabolic syndrome publication-title: Autophagy – volume: 11 start-page: 517 year: 2010 end-page: 531 ident: bb0720 article-title: Glucocorticoids suppress bone formation by attenuating osteoblast differentiation via the monomeric glucocorticoid receptor publication-title: Cell Metab. – volume: 21 start-page: 506 year: 2015 end-page: 511 ident: bb0545 article-title: Metformin activates a duodenal Ampk-dependent pathway to lower hepatic glucose production in rats publication-title: Nat. Med. – volume: 26 start-page: 2682 year: 2011 end-page: 2694 ident: bb0635 article-title: Cytoplasmic superoxide causes bone fragility owing to low-turnover osteoporosis and impaired collagen cross-linking publication-title: J. Bone Miner. Res. – volume: 10 start-page: 259 year: 2012 end-page: 272 ident: bb0035 article-title: Endogenous bone marrow MSCs are dynamic, fate-restricted participants in bone maintenance and regeneration publication-title: Cell Stem Cell – volume: 23 start-page: 193 year: 2018 end-page: 209 ident: bb0235 article-title: PGC-1α controls skeletal stem cell fate and bone-fat balance in osteoporosis and skeletal aging by inducing TAZ publication-title: Cell Stem Cell – volume: 75 start-page: 2519 year: 2018 end-page: 2528 ident: bb0735 article-title: Mechanisms involved in normal and pathological osteoclastogenesis publication-title: Cell. Mol. Life Sci. – volume: 162 start-page: 540 year: 2015 end-page: 551 ident: bb0400 article-title: An essential role of the mitochondrial electron transport chain in cell proliferation is to enable aspartate synthesis publication-title: Cell – volume: 444 start-page: 337 year: 2006 end-page: 342 ident: bb0505 article-title: Resveratrol improves health and survival of mice on a high-calorie diet publication-title: Nature – volume: 718 start-page: 469 year: 2013 end-page: 474 ident: bb0650 article-title: The effect of alpha-lipoic acid in ovariectomy and inflammation-mediated osteoporosis on the skeletal status of rat bone publication-title: Eur. J. Pharmacol. – volume: 287 start-page: 37808 year: 2012 end-page: 37823 ident: bb0395 article-title: Intracellular and extracellular ATP coordinately regulate the inverse correlation between osteoclast survival and bone resorption publication-title: J. Biol. Chem. – volume: 212 start-page: 73 year: 2015 end-page: 91 ident: bb0585 article-title: mTOR inhibition rescues osteopenia in mice with systemic sclerosis publication-title: J. Exp. Med. – volume: 20 start-page: 483 year: 2014 end-page: 498 ident: bb0070 article-title: Mitochondrial complex I activity suppresses inflammation and enhances bone resorption by shifting macrophage-osteoclast polarization publication-title: Cell Metab. – volume: 464 start-page: 1313 year: 2010 end-page: 1319 ident: bb0240 article-title: Adiponectin and AdipoR1 regulate PGC-1α and mitochondria by Ca publication-title: Nature – volume: 33 start-page: 1785 year: 2018 end-page: 1798 ident: bb0320 article-title: Folliculin regulates osteoclastogenesis through metabolic regulation publication-title: J. Bone Miner. Res. – volume: 5 year: 2018 ident: bb0185 article-title: Runx2/Osterix and zinc uptake synergize to orchestrate osteogenic differentiation and citrate containing bone apatite formation publication-title: Adv. Sci. – volume: 8 start-page: 2387 year: 2018 end-page: 2406 ident: bb0210 article-title: Resveratrol counteracts bone loss via mitofilin-mediated osteogenic improvement of mesenchymal stem cells in senescence-accelerated mice publication-title: Theranostics – volume: 21 start-page: 993 year: 2006 end-page: 1002 ident: bb0250 article-title: Activation of Sirt1 decreases adipocyte formation during osteoblast differentiation of mesenchymal stem cells publication-title: J. Bone Miner. Res. – volume: 13 start-page: 99 year: 2017 end-page: 113 ident: bb0560 article-title: Autophagy impairment with lysosomal and mitochondrial dysfunction is an important characteristic of oxidative stress-induced senescence publication-title: Autophagy – volume: 24 start-page: 1691 year: 2018 end-page: 1695 ident: bb0695 article-title: Genome editing in mitochondria corrects a pathogenic mtDNA mutation publication-title: Nat. Med. – volume: 23 start-page: 338 year: 2008 end-page: 349 ident: bb0615 article-title: Chronic ethanol consumption inhibits postlactational anabolic bone rebuilding in female rats publication-title: J. Bone Miner. Res. – volume: 11 year: 2016 ident: bb0485 article-title: Cyclophilin D knock-out mice show enhanced resistance to osteoporosis and to metabolic changes observed in aging bone publication-title: PLoS One – volume: 17 year: 2018 ident: bb0570 article-title: Autophagy controls mesenchymal stem cell properties and senescence during bone aging publication-title: Aging Cell – volume: 31 start-page: 1383 year: 2013 end-page: 1395 ident: bb0725 article-title: IFN-γ and TNF-α synergistically induce mesenchymal stem cell impairment and tumorigenesis via NFκB signaling publication-title: Stem Cells – volume: 196 start-page: 51 year: 2019 end-page: 66 ident: bb0015 article-title: CD169 publication-title: Biomaterials – volume: 28 start-page: 960 year: 2013 end-page: 969 ident: bb0260 article-title: Silent information regulator (Sir)T1 inhibits NF-κB signaling to maintain normal skeletal remodeling publication-title: J. Bone Miner. Res. – volume: 8 start-page: 2043 year: 2017 ident: bb0040 article-title: Gli1 identifies osteogenic progenitors for bone formation and fracture repair publication-title: Nat. Commun. – volume: 31 start-page: 1902 year: 2013 end-page: 1909 ident: bb0195 article-title: HIF-1α is upregulated in human mesenchymal stem cells publication-title: Stem Cells – volume: 104 start-page: 12017 year: 2007 end-page: 12022 ident: bb0245 article-title: AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1α publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 14 start-page: 537 year: 2011 end-page: 544 ident: bb0350 article-title: Mitochondrial complex III ROS regulate adipocyte differentiation publication-title: Cell Metab. – volume: 6 start-page: 121 year: 2011 end-page: 145 ident: bb0005 article-title: Disorders of bone remodeling publication-title: Annu. Rev. Pathol. – volume: 19 start-page: 232 year: 2016 end-page: 247 ident: bb0355 article-title: Mitochondrial dynamics impacts stem cell identity and fate decisions by regulating a nuclear transcriptional program publication-title: Cell Stem Cell – volume: 34 start-page: 743 year: 2016 end-page: 755 ident: bb0165 article-title: Murine mesenchymal stem cell commitment to differentiation is regulated by mitochondrial dynamics publication-title: Stem Cells – volume: 5 start-page: 3773 year: 2014 ident: bb0375 article-title: FoxO proteins restrain osteoclastogenesis and bone resorption by attenuating H publication-title: Nat. Commun. – volume: 116 start-page: 2582 year: 2010 end-page: 2589 ident: bb0610 article-title: Bone loss caused by iron overload in a murine model: importance of oxidative stress publication-title: Blood – volume: 19 start-page: 1027 year: 2017 end-page: 1036 ident: bb0110 article-title: Control of intestinal stem cell function and proliferation by mitochondrial pyruvate metabolism publication-title: Nat. Cell Biol. – volume: 5 start-page: 7990 year: 2015 ident: bb0205 article-title: Suppression of Mic60 compromises mitochondrial transcription and oxidative phosphorylation publication-title: Sci. Rep. – volume: 32 start-page: 3219 year: 2014 end-page: 3231 ident: bb0265 article-title: SIRT1 directly regulates SOX2 to maintain self-renewal and multipotency in bone marrow-derived mesenchymal stem cells publication-title: Stem Cells – volume: 19 start-page: 341 year: 2017 end-page: 351 ident: bb0125 article-title: The TDH-GCN5L1-Fbxo15-KBP axis limits mitochondrial biogenesis in mouse embryonic stem cells publication-title: Nat. Cell Biol. – volume: 25 start-page: 2404 year: 2016 end-page: 2416 ident: bb0460 article-title: Disrupted mitochondrial function in the Opa3 publication-title: Hum. Mol. Genet. – volume: 293 start-page: 16019 year: 2018 end-page: 16027 ident: bb0145 article-title: Active mitochondria support osteogenic differentiation by stimulating β-catenin acetylation publication-title: J. Biol. Chem. – volume: 33 start-page: 1114 year: 2018 end-page: 1125 ident: bb0335 article-title: PGC1β organizes the osteoclast cytoskeleton by mitochondrial biogenesis and activation publication-title: J. Bone Miner. Res. – volume: 6 start-page: 30186 year: 2016 ident: bb0455 article-title: Mesenchymal progenitors in osteopenias of diverse pathologies: differential characteristics in the common shift from osteoblastogenesis to adipogenesis publication-title: Sci. Rep. – volume: 4 start-page: e970 year: 2013 ident: bb0620 article-title: In serum veritas–in serum sanitas? Cell non-autonomous aging compromises differentiation and survival of mesenchymal stromal cells via the oxidative stress pathway publication-title: Cell Death Dis. – volume: 112 start-page: 191 year: 2017 end-page: 199 ident: bb0435 article-title: Euphorbia factor L1 inhibits osteoclastogenesis by regulating cellular redox status and induces Fas-mediated apoptosis in osteoclast publication-title: Free Radic. Biol. Med. – volume: 20 start-page: 785 year: 2017 ident: 10.1016/j.molmed.2019.04.008_bb0025 article-title: Gli1+ mesenchymal stromal cells are a key driver of bone marrow fibrosis and an important cellular therapeutic target publication-title: Cell Stem Cell doi: 10.1016/j.stem.2017.03.008 – volume: 52 start-page: 119 year: 2016 ident: 10.1016/j.molmed.2019.04.008_bb0055 article-title: Mitochondria in mesenchymal stem cell biology and cell therapy: from cellular differentiation to mitochondrial transfer publication-title: Semin. Cell Dev. Biol. doi: 10.1016/j.semcdb.2016.02.011 – volume: 29 start-page: 2577 year: 2014 ident: 10.1016/j.molmed.2019.04.008_bb0065 article-title: Association between global biomarkers of oxidative stress and hip fracture in postmenopausal women: a prospective study publication-title: J. Bone Miner. Res. doi: 10.1002/jbmr.2302 – volume: 128 start-page: 5573 year: 2018 ident: 10.1016/j.molmed.2019.04.008_bb0305 article-title: Notch signaling suppresses glucose metabolism in mesenchymal progenitors to restrict osteoblast differentiation publication-title: J. Clin. Invest. doi: 10.1172/JCI96221 – volume: 108 start-page: 837 year: 2011 ident: 10.1016/j.molmed.2019.04.008_bb0685 article-title: Mitochondrial oxidative stress mediates angiotensin II-induced cardiac hypertrophy and Gαq overexpression-induced heart failure publication-title: Circ. Res. doi: 10.1161/CIRCRESAHA.110.232306 – volume: 12 year: 2017 ident: 10.1016/j.molmed.2019.04.008_bb0495 article-title: Drp1-dependent mitochondrial fission mediates osteogenic dysfunction in inflammation through elevated production of reactive oxygen species publication-title: PLoS One – volume: 163 start-page: 560 year: 2015 ident: 10.1016/j.molmed.2019.04.008_bb0090 article-title: Mitochondrial ROS signaling in organismal homeostasis publication-title: Cell doi: 10.1016/j.cell.2015.10.001 – volume: 19 start-page: 476 year: 2016 ident: 10.1016/j.molmed.2019.04.008_bb0105 article-title: Glycolytic metabolism plays a functional role in regulating human pluripotent stem cell state publication-title: Cell Stem Cell doi: 10.1016/j.stem.2016.08.008 – volume: 63 year: 2017 ident: 10.1016/j.molmed.2019.04.008_bb0115 article-title: Melatonin enhances neural stem cell differentiation and engraftment by increasing mitochondrial function publication-title: J. Pineal Res. doi: 10.1111/jpi.12415 – volume: 75 start-page: 2519 year: 2018 ident: 10.1016/j.molmed.2019.04.008_bb0735 article-title: Mechanisms involved in normal and pathological osteoclastogenesis publication-title: Cell. Mol. Life Sci. doi: 10.1007/s00018-018-2817-9 – volume: 24 start-page: 1696 year: 2018 ident: 10.1016/j.molmed.2019.04.008_bb0700 article-title: MitoTALEN reduces mutant mtDNA load and restores tRNAAla levels in a mouse model of heteroplasmic mtDNA mutation publication-title: Nat. Med. doi: 10.1038/s41591-018-0166-8 – volume: 15 start-page: 757 year: 2009 ident: 10.1016/j.molmed.2019.04.008_bb0710 article-title: TGF-β1-induced migration of bone mesenchymal stem cells couples bone resorption with formation publication-title: Nat. Med. doi: 10.1038/nm.1979 – volume: 17 start-page: 439 year: 2014 ident: 10.1016/j.molmed.2019.04.008_bb0525 article-title: Resveratrol as anti-aging therapy for age-related bone loss publication-title: Rejuvenation Res. doi: 10.1089/rej.2014.1551 – volume: 25 start-page: 2404 year: 2016 ident: 10.1016/j.molmed.2019.04.008_bb0460 article-title: Disrupted mitochondrial function in the Opa3L122P mouse model for Costeff syndrome impairs skeletal integrity publication-title: Hum. Mol. Genet. – volume: 161 start-page: 1576 year: 2015 ident: 10.1016/j.molmed.2019.04.008_bb0285 article-title: Glucose uptake and Runx2 synergize to orchestrate osteoblast differentiation and bone formation publication-title: Cell doi: 10.1016/j.cell.2015.05.029 – volume: 28 start-page: 960 year: 2013 ident: 10.1016/j.molmed.2019.04.008_bb0260 article-title: Silent information regulator (Sir)T1 inhibits NF-κB signaling to maintain normal skeletal remodeling publication-title: J. Bone Miner. Res. doi: 10.1002/jbmr.1824 – volume: 6 start-page: 27 year: 2018 ident: 10.1016/j.molmed.2019.04.008_bb0550 article-title: Alpl prevents bone ageing sensitivity by specifically regulating senescence and differentiation in mesenchymal stem cells publication-title: Bone Res. doi: 10.1038/s41413-018-0029-4 – volume: 97 start-page: 135 year: 2017 ident: 10.1016/j.molmed.2019.04.008_bb0010 article-title: Estrogens and androgens in skeletal physiology and pathophysiology publication-title: Physiol. Rev. doi: 10.1152/physrev.00033.2015 – volume: 11 start-page: 517 year: 2010 ident: 10.1016/j.molmed.2019.04.008_bb0720 article-title: Glucocorticoids suppress bone formation by attenuating osteoblast differentiation via the monomeric glucocorticoid receptor publication-title: Cell Metab. doi: 10.1016/j.cmet.2010.05.005 – volume: 26 start-page: 2552 year: 2011 ident: 10.1016/j.molmed.2019.04.008_bb0255 article-title: Resveratrol promotes osteogenesis of human mesenchymal stem cells by upregulating RUNX2 gene expression via the SIRT1/FOXO3A axis publication-title: J. Bone Miner. Res. doi: 10.1002/jbmr.460 – volume: 22 start-page: 769 year: 2018 ident: 10.1016/j.molmed.2019.04.008_bb0100 article-title: Fasting activates fatty acid oxidation to enhance intestinal stem cell function during homeostasis and aging publication-title: Cell Stem Cell doi: 10.1016/j.stem.2018.04.001 – volume: 106 start-page: 852 year: 2005 ident: 10.1016/j.molmed.2019.04.008_bb0430 article-title: A crucial role for reactive oxygen species in RANKL-induced osteoclast differentiation publication-title: Blood doi: 10.1182/blood-2004-09-3662 – volume: 30 start-page: 2287 year: 2015 ident: 10.1016/j.molmed.2019.04.008_bb0310 article-title: Alternative NF-κB regulates RANKL-induced osteoclast differentiation and mitochondrial biogenesis via independent mechanisms publication-title: J. Bone Miner. Res. doi: 10.1002/jbmr.2584 – volume: 464 start-page: 1313 year: 2010 ident: 10.1016/j.molmed.2019.04.008_bb0240 article-title: Adiponectin and AdipoR1 regulate PGC-1α and mitochondria by Ca2+ and AMPK/SIRT1 publication-title: Nature doi: 10.1038/nature08991 – volume: 196 start-page: 18 year: 2019 ident: 10.1016/j.molmed.2019.04.008_bb0450 article-title: Stem cell-based bone regeneration in diseased microenvironments: challenges and solutions publication-title: Biomaterials doi: 10.1016/j.biomaterials.2017.10.046 – volume: 48 start-page: 161 year: 2010 ident: 10.1016/j.molmed.2019.04.008_bb0670 article-title: Consequences of long-term oral administration of the mitochondria-targeted antioxidant MitoQ to wild-type mice publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2009.10.039 – volume: 5 start-page: 430 year: 2013 ident: 10.1016/j.molmed.2019.04.008_bb0270 article-title: SIRT1 regulates differentiation of mesenchymal stem cells by deacetylating β-catenin publication-title: EMBO Mol. Med. doi: 10.1002/emmm.201201606 – volume: 8 start-page: 2387 year: 2018 ident: 10.1016/j.molmed.2019.04.008_bb0210 article-title: Resveratrol counteracts bone loss via mitofilin-mediated osteogenic improvement of mesenchymal stem cells in senescence-accelerated mice publication-title: Theranostics doi: 10.7150/thno.23620 – volume: 98 start-page: 115 year: 1999 ident: 10.1016/j.molmed.2019.04.008_bb0230 article-title: Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1 publication-title: Cell doi: 10.1016/S0092-8674(00)80611-X – volume: 155 start-page: 1624 year: 2013 ident: 10.1016/j.molmed.2019.04.008_bb0225 article-title: Declining NAD+ induces a pseudohypoxic state disrupting nuclear-mitochondrial communication during aging publication-title: Cell doi: 10.1016/j.cell.2013.11.037 – volume: 19 start-page: 608 year: 2013 ident: 10.1016/j.molmed.2019.04.008_bb0175 article-title: PPARβ/δ governs Wnt signaling and bone turnover publication-title: Nat. Med. doi: 10.1038/nm.3146 – volume: 19 start-page: 1027 year: 2017 ident: 10.1016/j.molmed.2019.04.008_bb0110 article-title: Control of intestinal stem cell function and proliferation by mitochondrial pyruvate metabolism publication-title: Nat. Cell Biol. doi: 10.1038/ncb3593 – volume: 17 year: 2018 ident: 10.1016/j.molmed.2019.04.008_bb0570 article-title: Autophagy controls mesenchymal stem cell properties and senescence during bone aging publication-title: Aging Cell doi: 10.1111/acel.12709 – volume: 24 start-page: 1691 year: 2018 ident: 10.1016/j.molmed.2019.04.008_bb0695 article-title: Genome editing in mitochondria corrects a pathogenic mtDNA mutation in vivo publication-title: Nat. Med. doi: 10.1038/s41591-018-0165-9 – volume: 4 start-page: e970 year: 2013 ident: 10.1016/j.molmed.2019.04.008_bb0620 article-title: In serum veritas–in serum sanitas? Cell non-autonomous aging compromises differentiation and survival of mesenchymal stromal cells via the oxidative stress pathway publication-title: Cell Death Dis. doi: 10.1038/cddis.2013.501 – volume: 8 start-page: 59 year: 2011 ident: 10.1016/j.molmed.2019.04.008_bb0360 article-title: Proliferative neural stem cells have high endogenous ROS levels that regulate self-renewal and neurogenesis in a PI3K/Akt-dependant manner publication-title: Cell Stem Cell doi: 10.1016/j.stem.2010.11.028 – volume: 429 start-page: 417 year: 2004 ident: 10.1016/j.molmed.2019.04.008_bb0080 article-title: Premature ageing in mice expressing defective mitochondrial DNA polymerase publication-title: Nature doi: 10.1038/nature02517 – volume: 14 start-page: 537 year: 2011 ident: 10.1016/j.molmed.2019.04.008_bb0350 article-title: Mitochondrial complex III ROS regulate adipocyte differentiation publication-title: Cell Metab. doi: 10.1016/j.cmet.2011.08.007 – volume: 6 start-page: 121 year: 2011 ident: 10.1016/j.molmed.2019.04.008_bb0005 article-title: Disorders of bone remodeling publication-title: Annu. Rev. Pathol. doi: 10.1146/annurev-pathol-011110-130203 – volume: 20 start-page: 483 year: 2014 ident: 10.1016/j.molmed.2019.04.008_bb0070 article-title: Mitochondrial complex I activity suppresses inflammation and enhances bone resorption by shifting macrophage-osteoclast polarization publication-title: Cell Metab. doi: 10.1016/j.cmet.2014.07.011 – volume: 10 start-page: 239 year: 2011 ident: 10.1016/j.molmed.2019.04.008_bb0190 article-title: Accelerated aging phenotype in mice with conditional deficiency for mitochondrial superoxide dismutase in the connective tissue publication-title: Aging Cell doi: 10.1111/j.1474-9726.2010.00658.x – volume: 34 start-page: 2157 year: 2016 ident: 10.1016/j.molmed.2019.04.008_bb0580 article-title: Chronic high dose alcohol induces osteopenia via activation of mTOR signaling in bone marrow mesenchymal stem cells publication-title: Stem Cells doi: 10.1002/stem.2392 – volume: 26 start-page: 2682 year: 2011 ident: 10.1016/j.molmed.2019.04.008_bb0635 article-title: Cytoplasmic superoxide causes bone fragility owing to low-turnover osteoporosis and impaired collagen cross-linking publication-title: J. Bone Miner. Res. doi: 10.1002/jbmr.489 – volume: 19 start-page: 232 year: 2016 ident: 10.1016/j.molmed.2019.04.008_bb0355 article-title: Mitochondrial dynamics impacts stem cell identity and fate decisions by regulating a nuclear transcriptional program publication-title: Cell Stem Cell doi: 10.1016/j.stem.2016.04.015 – volume: 25 start-page: 229 year: 2018 ident: 10.1016/j.molmed.2019.04.008_bb0170 article-title: SIRT3/SOD2 maintains osteoblast differentiation and bone formation by regulating mitochondrial stress publication-title: Cell Death Differ. doi: 10.1038/cdd.2017.144 – volume: 481 start-page: 457 year: 2012 ident: 10.1016/j.molmed.2019.04.008_bb0020 article-title: Endothelial and perivascular cells maintain haematopoietic stem cells publication-title: Nature doi: 10.1038/nature10783 – volume: 466 start-page: 829 year: 2010 ident: 10.1016/j.molmed.2019.04.008_bb0030 article-title: Mesenchymal and haematopoietic stem cells form a unique bone marrow niche publication-title: Nature doi: 10.1038/nature09262 – volume: 17 start-page: 249 year: 2013 ident: 10.1016/j.molmed.2019.04.008_bb0445 article-title: Tmem64 modulates calcium signaling during RANKL-mediated osteoclast differentiation publication-title: Cell Metab. doi: 10.1016/j.cmet.2013.01.002 – volume: 19 start-page: 445 year: 2017 ident: 10.1016/j.molmed.2019.04.008_bb0130 article-title: Metabolic control of primed human pluripotent stem cell fate and function by the miR-200c-SIRT2 axis publication-title: Nat. Cell Biol. doi: 10.1038/ncb3517 – volume: 16 start-page: 738 year: 2012 ident: 10.1016/j.molmed.2019.04.008_bb0515 article-title: Resveratrol rescues SIRT1-dependent adult stem cell decline and alleviates progeroid features in laminopathy-based progeria publication-title: Cell Metab. doi: 10.1016/j.cmet.2012.11.007 – volume: 83 start-page: 416 year: 2018 ident: 10.1016/j.molmed.2019.04.008_bb0675 article-title: β-Amyloid precursor protein intracellular domain controls mitochondrial function by modulating phosphatase and tensin homolog–induced kinase 1 transcription in cells and in Alzheimer mice models publication-title: Biol. Psychiatry doi: 10.1016/j.biopsych.2017.04.011 – volume: 532 start-page: 323 year: 2016 ident: 10.1016/j.molmed.2019.04.008_bb0345 article-title: Distinct bone marrow blood vessels differentially regulate haematopoiesis publication-title: Nature doi: 10.1038/nature17624 – volume: 196 start-page: 51 year: 2019 ident: 10.1016/j.molmed.2019.04.008_bb0015 article-title: CD169+ macrophages are critical for osteoblast maintenance and promote intramembranous and endochondral ossification during bone repair publication-title: Biomaterials doi: 10.1016/j.biomaterials.2017.10.033 – volume: 9 start-page: 328 year: 2013 ident: 10.1016/j.molmed.2019.04.008_bb0565 article-title: Upregulated autophagy protects cardiomyocytes from oxidative stress-induced toxicity publication-title: Autophagy doi: 10.4161/auto.22971 – volume: 32 start-page: 962 year: 2017 ident: 10.1016/j.molmed.2019.04.008_bb0605 article-title: BMI-1 mediates estrogen-deficiency-induced bone loss by inhibiting reactive oxygen species accumulation and T cell activation publication-title: J. Bone Miner. Res. doi: 10.1002/jbmr.3059 – volume: 12 year: 2017 ident: 10.1016/j.molmed.2019.04.008_bb0555 article-title: Effects of metformin on inflammation, oxidative stress, and bone loss in a rat model of periodontitis publication-title: PLoS One doi: 10.1371/journal.pone.0183506 – volume: 160 start-page: 269 year: 2015 ident: 10.1016/j.molmed.2019.04.008_bb0045 article-title: Gremlin 1 identifies a skeletal stem cell with bone, cartilage, and reticular stromal potential publication-title: Cell doi: 10.1016/j.cell.2014.11.042 – volume: 19 start-page: 341 year: 2017 ident: 10.1016/j.molmed.2019.04.008_bb0125 article-title: The TDH-GCN5L1-Fbxo15-KBP axis limits mitochondrial biogenesis in mouse embryonic stem cells publication-title: Nat. Cell Biol. doi: 10.1038/ncb3491 – volume: 17 start-page: 267 year: 2016 ident: 10.1016/j.molmed.2019.04.008_bb0465 article-title: Mitochondrial metabolic failure in telomere attrition-provoked aging of bone marrow mesenchymal stem cells publication-title: Biogerontology doi: 10.1007/s10522-015-9609-5 – volume: 27 start-page: 657 year: 2018 ident: 10.1016/j.molmed.2019.04.008_bb0215 article-title: Circadian control of DRP1 activity regulates mitochondrial dynamics and bioenergetics publication-title: Cell Metab. doi: 10.1016/j.cmet.2018.01.011 – volume: 23 start-page: 1633 year: 2011 ident: 10.1016/j.molmed.2019.04.008_bb0425 article-title: Reactive oxygen species regulate M-CSF-induced monocyte/macrophage proliferation through SHP1 oxidation publication-title: Cell. Signal. doi: 10.1016/j.cellsig.2011.05.017 – volume: 31 start-page: 1902 year: 2013 ident: 10.1016/j.molmed.2019.04.008_bb0195 article-title: HIF-1α is upregulated in human mesenchymal stem cells publication-title: Stem Cells doi: 10.1002/stem.1435 – volume: 127 start-page: 1109 year: 2006 ident: 10.1016/j.molmed.2019.04.008_bb0510 article-title: Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1α publication-title: Cell doi: 10.1016/j.cell.2006.11.013 – volume: 11 year: 2016 ident: 10.1016/j.molmed.2019.04.008_bb0485 article-title: Cyclophilin D knock-out mice show enhanced resistance to osteoporosis and to metabolic changes observed in aging bone publication-title: PLoS One doi: 10.1371/journal.pone.0155709 – volume: 21 start-page: 506 year: 2015 ident: 10.1016/j.molmed.2019.04.008_bb0545 article-title: Metformin activates a duodenal Ampk-dependent pathway to lower hepatic glucose production in rats publication-title: Nat. Med. doi: 10.1038/nm.3787 – volume: 28 start-page: 2368 year: 2013 ident: 10.1016/j.molmed.2019.04.008_bb0630 article-title: Cytoplasmic reactive oxygen species and SOD1 regulate bone mass during mechanical unloading publication-title: J. Bone Miner. Res. doi: 10.1002/jbmr.1981 – volume: 123 start-page: 4731 year: 2013 ident: 10.1016/j.molmed.2019.04.008_bb0380 article-title: NADPH oxidase 4 limits bone mass by promoting osteoclastogenesis publication-title: J. Clin. Invest. doi: 10.1172/JCI67603 – volume: 97 start-page: 667 year: 2017 ident: 10.1016/j.molmed.2019.04.008_bb0730 article-title: Bone cell bioenergetics and skeletal energy homeostasis publication-title: Physiol. Rev. doi: 10.1152/physrev.00022.2016 – volume: 28 start-page: 2392 year: 2013 ident: 10.1016/j.molmed.2019.04.008_bb0340 article-title: Metabolic regulation of osteoclast differentiation and function publication-title: J. Bone Miner. Res. doi: 10.1002/jbmr.1976 – volume: 23 start-page: 338 year: 2008 ident: 10.1016/j.molmed.2019.04.008_bb0615 article-title: Chronic ethanol consumption inhibits postlactational anabolic bone rebuilding in female rats publication-title: J. Bone Miner. Res. doi: 10.1359/jbmr.071023 – volume: 116 start-page: 2582 year: 2010 ident: 10.1016/j.molmed.2019.04.008_bb0610 article-title: Bone loss caused by iron overload in a murine model: importance of oxidative stress publication-title: Blood doi: 10.1182/blood-2009-12-260083 – volume: 112 start-page: 191 year: 2017 ident: 10.1016/j.molmed.2019.04.008_bb0435 article-title: Euphorbia factor L1 inhibits osteoclastogenesis by regulating cellular redox status and induces Fas-mediated apoptosis in osteoclast publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2017.07.030 – volume: 46 start-page: 724 year: 2010 ident: 10.1016/j.molmed.2019.04.008_bb0595 article-title: Inhibition of osteoclast differentiation and bone resorption by rotenone, through down-regulation of RANKL-induced c-Fos and NFATc1 expression publication-title: Bone doi: 10.1016/j.bone.2009.10.042 – volume: 9 start-page: 2531 year: 2014 ident: 10.1016/j.molmed.2019.04.008_bb0705 article-title: Mitochondria-targeting particles publication-title: Nanomedicine (Lond) doi: 10.2217/nnm.14.161 – volume: 9 start-page: 754 year: 2018 ident: 10.1016/j.molmed.2019.04.008_bb0280 article-title: A novel phosphorylation by AMP-activated kinase regulates RUNX2 from ubiquitination in osteogenesis over adipogenesis publication-title: Cell Death Dis. doi: 10.1038/s41419-018-0791-7 – volume: 20 start-page: 771 year: 2017 ident: 10.1016/j.molmed.2019.04.008_bb0715 article-title: Adipocyte accumulation in the bone marrow during obesity and aging impairs stem cell-based hematopoietic and bone regeneration publication-title: Cell Stem Cell doi: 10.1016/j.stem.2017.02.009 – volume: 34 start-page: 743 year: 2016 ident: 10.1016/j.molmed.2019.04.008_bb0165 article-title: Murine mesenchymal stem cell commitment to differentiation is regulated by mitochondrial dynamics publication-title: Stem Cells doi: 10.1002/stem.2248 – volume: 9 year: 2017 ident: 10.1016/j.molmed.2019.04.008_bb0470 article-title: Pharmacological rescue of diabetic skeletal stem cell niches publication-title: Sci. Transl. Med. doi: 10.1126/scitranslmed.aag2809 – volume: 24 start-page: 360 year: 2018 ident: 10.1016/j.molmed.2019.04.008_bb0095 article-title: Antagonism of PPARγ signaling expands human hematopoietic stem and progenitor cells by enhancing glycolysis publication-title: Nat. Med. doi: 10.1038/nm.4477 – volume: 718 start-page: 469 year: 2013 ident: 10.1016/j.molmed.2019.04.008_bb0650 article-title: The effect of alpha-lipoic acid in ovariectomy and inflammation-mediated osteoporosis on the skeletal status of rat bone publication-title: Eur. J. Pharmacol. doi: 10.1016/j.ejphar.2013.07.033 – volume: 28 start-page: 551 year: 2018 ident: 10.1016/j.molmed.2019.04.008_bb0050 article-title: The force is strong with this one: metabolism (over)powers stem cell fate publication-title: Trends Cell Biol. doi: 10.1016/j.tcb.2018.02.007 – volume: 148 start-page: 1145 year: 2012 ident: 10.1016/j.molmed.2019.04.008_bb0085 article-title: Mitochondria: in sickness and in health publication-title: Cell doi: 10.1016/j.cell.2012.02.035 – volume: 461 start-page: 537 year: 2009 ident: 10.1016/j.molmed.2019.04.008_bb0365 article-title: Reactive oxygen species prime Drosophila haematopoietic progenitors for differentiation publication-title: Nature doi: 10.1038/nature08313 – volume: 29 start-page: 398 year: 2016 ident: 10.1016/j.molmed.2019.04.008_bb0530 article-title: Resveratrol prevents alveolar bone loss in an experimental rat model of periodontitis publication-title: Acta Biomater. doi: 10.1016/j.actbio.2015.10.031 – volume: 444 start-page: 337 year: 2006 ident: 10.1016/j.molmed.2019.04.008_bb0505 article-title: Resveratrol improves health and survival of mice on a high-calorie diet publication-title: Nature doi: 10.1038/nature05354 – volume: 308 start-page: 1909 year: 2005 ident: 10.1016/j.molmed.2019.04.008_bb0660 article-title: Extension of murine life span by overexpression of catalase targeted to mitochondria publication-title: Science doi: 10.1126/science.1106653 – volume: 29 start-page: 966 year: 2019 ident: 10.1016/j.molmed.2019.04.008_bb0405 article-title: Glutamine metabolism regulates proliferation and lineage allocation in skeletal stem cells publication-title: Cell Metab. doi: 10.1016/j.cmet.2019.01.016 – volume: 7 start-page: 4498 year: 2017 ident: 10.1016/j.molmed.2019.04.008_bb0575 article-title: Autophagy maintains the function of bone marrow mesenchymal stem cells to prevent estrogen deficiency-induced osteoporosis publication-title: Theranostics doi: 10.7150/thno.17949 – volume: 476 start-page: 412 year: 2016 ident: 10.1016/j.molmed.2019.04.008_bb0600 article-title: Mitochondria related peptide MOTS-c suppresses ovariectomy-induced bone loss via AMPK activation publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2016.05.135 – volume: 6 start-page: 30186 year: 2016 ident: 10.1016/j.molmed.2019.04.008_bb0455 article-title: Mesenchymal progenitors in osteopenias of diverse pathologies: differential characteristics in the common shift from osteoblastogenesis to adipogenesis publication-title: Sci. Rep. doi: 10.1038/srep30186 – volume: 34 start-page: 1054 year: 2016 ident: 10.1016/j.molmed.2019.04.008_bb0490 article-title: TNF-α inhibits FoxO1 by upregulating miR-705 to aggravate oxidative damage in bone marrow-derived mesenchymal stem cells during osteoporosis publication-title: Stem Cells doi: 10.1002/stem.2274 – year: 2019 ident: 10.1016/j.molmed.2019.04.008_bb0680 article-title: Deficiency of mitophagy receptor FUNDC1 impairs mitochondrial quality and aggravates dietary-induced obesity and metabolic syndrome publication-title: Autophagy doi: 10.1080/15548627.2019.1596482 – volume: 34 start-page: 3515 year: 2014 ident: 10.1016/j.molmed.2019.04.008_bb0440 article-title: TRP14 inhibits osteoclast differentiation via its catalytic activity publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.00293-14 – volume: 20 start-page: 1853 year: 2009 ident: 10.1016/j.molmed.2019.04.008_bb0640 article-title: Protective effect of total and supplemental vitamin C intake on the risk of hip fracture – a 17-year follow-up from the Framingham osteoporosis study publication-title: Osteoporos. Int. doi: 10.1007/s00198-009-0897-y – volume: 10 start-page: 198 year: 2019 ident: 10.1016/j.molmed.2019.04.008_bb0420 article-title: TIGAR promotes neural stem cell differentiation through acetyl-CoA-mediated histone acetylation publication-title: Cell Death Dis. doi: 10.1038/s41419-019-1434-3 – volume: 155 start-page: 160 year: 2013 ident: 10.1016/j.molmed.2019.04.008_bb0200 article-title: Mitochondrial cristae shape determines respiratory chain supercomplexes assembly and respiratory efficiency publication-title: Cell doi: 10.1016/j.cell.2013.08.032 – volume: 5 start-page: 3773 year: 2014 ident: 10.1016/j.molmed.2019.04.008_bb0375 article-title: FoxO proteins restrain osteoclastogenesis and bone resorption by attenuating H2O2 accumulation publication-title: Nat. Commun. doi: 10.1038/ncomms4773 – volume: 25 start-page: 211 year: 2010 ident: 10.1016/j.molmed.2019.04.008_bb0275 article-title: Effect of metformin on bone marrow progenitor cell differentiation: in vivo and in vitro studies publication-title: J. Bone Miner. Res. doi: 10.1359/jbmr.090732 – volume: 9 start-page: 55 year: 2018 ident: 10.1016/j.molmed.2019.04.008_bb0325 article-title: Short-chain fatty acids regulate systemic bone mass and protect from pathological bone loss publication-title: Nat. Commun. doi: 10.1038/s41467-017-02490-4 – volume: 32 start-page: 397 year: 2017 ident: 10.1016/j.molmed.2019.04.008_bb0390 article-title: SOD2 and Sirt3 control osteoclastogenesis by regulating mitochondrial ROS publication-title: J. Bone Miner. Res. doi: 10.1002/jbmr.2974 – volume: 27 start-page: 1026 year: 2018 ident: 10.1016/j.molmed.2019.04.008_bb0120 article-title: Metabolic maturation during muscle stem cell differentiation is achieved by miR-1/133a-mediated inhibition of the Dlk1-Dio3 mega gene cluster publication-title: Cell Metab. doi: 10.1016/j.cmet.2018.02.022 – volume: 13 start-page: 55 year: 2014 ident: 10.1016/j.molmed.2019.04.008_bb0295 article-title: Role of SIRT1 and AMPK in mesenchymal stem cells differentiation publication-title: Ageing Res. Rev. doi: 10.1016/j.arr.2013.12.002 – volume: 15 start-page: 259 year: 2009 ident: 10.1016/j.molmed.2019.04.008_bb0330 article-title: Coordination of PGC-1β and iron uptake in mitochondrial biogenesis and osteoclast activation publication-title: Nat. Med. doi: 10.1038/nm.1910 – volume: 32 start-page: 3219 year: 2014 ident: 10.1016/j.molmed.2019.04.008_bb0265 article-title: SIRT1 directly regulates SOX2 to maintain self-renewal and multipotency in bone marrow-derived mesenchymal stem cells publication-title: Stem Cells doi: 10.1002/stem.1811 – volume: 65 start-page: 789 year: 2013 ident: 10.1016/j.molmed.2019.04.008_bb0385 article-title: Nrf2 deficiency induces oxidative stress and promotes RANKL-induced osteoclast differentiation publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2013.08.005 – volume: 24 start-page: 494 year: 2016 ident: 10.1016/j.molmed.2019.04.008_bb0410 article-title: Psat1-dependent fluctuations in α-ketoglutarate affect the timing of ESC differentiation publication-title: Cell Metab. doi: 10.1016/j.cmet.2016.06.014 – volume: 21 start-page: 281 year: 2015 ident: 10.1016/j.molmed.2019.04.008_bb0315 article-title: DNA methyltransferase 3a regulates osteoclast differentiation by coupling to an S-adenosylmethionine-producing metabolic pathway publication-title: Nat. Med. doi: 10.1038/nm.3774 – volume: 3 start-page: 174 year: 2018 ident: 10.1016/j.molmed.2019.04.008_bb0500 article-title: Tissue repair and regeneration with endogenous stem cells publication-title: Nat. Rev. Mater. doi: 10.1038/s41578-018-0027-6 – volume: 21 start-page: 993 year: 2006 ident: 10.1016/j.molmed.2019.04.008_bb0250 article-title: Activation of Sirt1 decreases adipocyte formation during osteoblast differentiation of mesenchymal stem cells publication-title: J. Bone Miner. Res. doi: 10.1359/jbmr.060415 – volume: 47 start-page: 140 year: 2010 ident: 10.1016/j.molmed.2019.04.008_bb0160 article-title: Enhanced mitochondrial biogenesis contributes to Wnt induced osteoblastic differentiation of C3H10T1/2 cells publication-title: Bone doi: 10.1016/j.bone.2010.04.593 – volume: 33 start-page: 1183 year: 2018 ident: 10.1016/j.molmed.2019.04.008_bb0290 article-title: Mst1/2 kinases modulate glucose uptake for osteoblast differentiation and bone formation publication-title: J. Bone Miner. Res. doi: 10.1002/jbmr.3413 – volume: 104 start-page: 12017 year: 2007 ident: 10.1016/j.molmed.2019.04.008_bb0245 article-title: AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1α publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0705070104 – volume: 25 start-page: 114 year: 2016 ident: 10.1016/j.molmed.2019.04.008_bb0155 article-title: Energy metabolism in mesenchymal stem cells during osteogenic differentiation publication-title: Stem Cells Dev. doi: 10.1089/scd.2015.0193 – volume: 34 start-page: 2840 year: 2016 ident: 10.1016/j.molmed.2019.04.008_bb0415 article-title: Restoration of mitochondrial NAD+ levels delays stem cell senescence and facilitates reprogramming of aged somatic cells publication-title: Stem Cells doi: 10.1002/stem.2460 – volume: 12 start-page: 62 year: 2013 ident: 10.1016/j.molmed.2019.04.008_bb0135 article-title: Metabolic regulation by the mitochondrial phosphatase PTPMT1 is required for hematopoietic stem cell differentiation publication-title: Cell Stem Cell doi: 10.1016/j.stem.2012.11.022 – volume: 26 start-page: 960 year: 2008 ident: 10.1016/j.molmed.2019.04.008_bb0150 article-title: Coordinated changes of mitochondrial biogenesis and antioxidant enzymes during osteogenic differentiation of human mesenchymal stem cells publication-title: Stem Cells doi: 10.1634/stemcells.2007-0509 – volume: 49 start-page: 474 year: 2013 ident: 10.1016/j.molmed.2019.04.008_bb0180 article-title: Glucose-induced β-catenin acetylation enhances Wnt signaling in cancer publication-title: Mol. Cell doi: 10.1016/j.molcel.2012.11.022 – volume: 33 start-page: 1785 year: 2018 ident: 10.1016/j.molmed.2019.04.008_bb0320 article-title: Folliculin regulates osteoclastogenesis through metabolic regulation publication-title: J. Bone Miner. Res. doi: 10.1002/jbmr.3477 – volume: 31 start-page: 1383 year: 2013 ident: 10.1016/j.molmed.2019.04.008_bb0725 article-title: IFN-γ and TNF-α synergistically induce mesenchymal stem cell impairment and tumorigenesis via NFκB signaling publication-title: Stem Cells doi: 10.1002/stem.1388 – volume: 13 start-page: 99 year: 2017 ident: 10.1016/j.molmed.2019.04.008_bb0560 article-title: Autophagy impairment with lysosomal and mitochondrial dysfunction is an important characteristic of oxidative stress-induced senescence publication-title: Autophagy doi: 10.1080/15548627.2016.1247143 – volume: 71 start-page: 1056 year: 2018 ident: 10.1016/j.molmed.2019.04.008_bb0665 article-title: Chronic supplementation with a mitochondrial antioxidant (MitoQ) improves vascular function in healthy older adults publication-title: Hypertension doi: 10.1161/HYPERTENSIONAHA.117.10787 – volume: 8 start-page: 1519 year: 2017 ident: 10.1016/j.molmed.2019.04.008_bb0370 article-title: DJ-1 controls bone homeostasis through the regulation of osteoclast differentiation publication-title: Nat. Commun. doi: 10.1038/s41467-017-01527-y – volume: 162 start-page: 540 year: 2015 ident: 10.1016/j.molmed.2019.04.008_bb0400 article-title: An essential role of the mitochondrial electron transport chain in cell proliferation is to enable aspartate synthesis publication-title: Cell doi: 10.1016/j.cell.2015.07.016 – volume: 127 start-page: 2555 year: 2017 ident: 10.1016/j.molmed.2019.04.008_bb0590 article-title: MYC-dependent oxidative metabolism regulates osteoclastogenesis via nuclear receptor ERRα publication-title: J. Clin. Invest. doi: 10.1172/JCI89935 – volume: 17 start-page: 679 year: 2016 ident: 10.1016/j.molmed.2019.04.008_bb0535 article-title: Slowing ageing by design: the rise of NAD+ and sirtuin-activating compounds publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm.2016.93 – volume: 5 start-page: 7990 year: 2015 ident: 10.1016/j.molmed.2019.04.008_bb0205 article-title: Suppression of Mic60 compromises mitochondrial transcription and oxidative phosphorylation publication-title: Sci. Rep. doi: 10.1038/srep07990 – volume: 8 start-page: 157 year: 2008 ident: 10.1016/j.molmed.2019.04.008_bb0520 article-title: Resveratrol delays age-related deterioration and mimics transcriptional aspects of dietary restriction without extending life span publication-title: Cell Metab. doi: 10.1016/j.cmet.2008.06.011 – volume: 61 start-page: 233 year: 2017 ident: 10.1016/j.molmed.2019.04.008_bb0475 article-title: Adiponectin improves the osteointegration of titanium implant under diabetic conditions by reversing mitochondrial dysfunction via the AMPK pathway in vivo and in vitro publication-title: Acta Biomater. doi: 10.1016/j.actbio.2017.06.020 – volume: 33 start-page: 1114 year: 2018 ident: 10.1016/j.molmed.2019.04.008_bb0335 article-title: PGC1β organizes the osteoclast cytoskeleton by mitochondrial biogenesis and activation publication-title: J. Bone Miner. Res. doi: 10.1002/jbmr.3398 – volume: 10 year: 2018 ident: 10.1016/j.molmed.2019.04.008_bb0625 article-title: Targeting mitochondrial responses to intra-articular fracture to prevent posttraumatic osteoarthritis publication-title: Sci. Transl. Med. doi: 10.1126/scitranslmed.aan5372 – volume: 12 start-page: 49 year: 2013 ident: 10.1016/j.molmed.2019.04.008_bb0140 article-title: Regulation of glycolysis by Pdk functions as a metabolic checkpoint for cell cycle quiescence in hematopoietic stem cells publication-title: Cell Stem Cell doi: 10.1016/j.stem.2012.10.011 – volume: 287 start-page: 37808 year: 2012 ident: 10.1016/j.molmed.2019.04.008_bb0395 article-title: Intracellular and extracellular ATP coordinately regulate the inverse correlation between osteoclast survival and bone resorption publication-title: J. Biol. Chem. doi: 10.1074/jbc.M112.385369 – volume: 5 year: 2015 ident: 10.1016/j.molmed.2019.04.008_bb0480 article-title: FFA-ROS-P53-mediated mitochondrial apoptosis contributes to reduction of osteoblastogenesis and bone mass in type 2 diabetes mellitus publication-title: Sci. Rep. – volume: 534 start-page: 383 year: 2016 ident: 10.1016/j.molmed.2019.04.008_bb0690 article-title: Towards clinical application of pronuclear transfer to prevent mitochondrial DNA disease publication-title: Nature doi: 10.1038/nature18303 – volume: 49 start-page: 91 year: 2017 ident: 10.1016/j.molmed.2019.04.008_bb0060 article-title: Mitochondrial regulation of hematopoietic stem cells publication-title: Curr. Opin. Cell Biol. doi: 10.1016/j.ceb.2017.12.010 – volume: 230 start-page: 2184 year: 2015 ident: 10.1016/j.molmed.2019.04.008_bb0645 article-title: Alpha-lipoic acid promotes osteoblastic formation in H2O2-treated MC3T3-E1 cells and prevents bone loss in ovariectomized rats publication-title: J. Cell. Physiol. doi: 10.1002/jcp.24947 – volume: 293 start-page: 16019 year: 2018 ident: 10.1016/j.molmed.2019.04.008_bb0145 article-title: Active mitochondria support osteogenic differentiation by stimulating β-catenin acetylation publication-title: J. Biol. Chem. doi: 10.1074/jbc.RA118.004102 – volume: 13 start-page: 787 year: 2014 ident: 10.1016/j.molmed.2019.04.008_bb0540 article-title: SRT2104 extends survival of male mice on a standard diet and preserves bone and muscle mass publication-title: Aging Cell doi: 10.1111/acel.12220 – volume: 10 start-page: 259 year: 2012 ident: 10.1016/j.molmed.2019.04.008_bb0035 article-title: Endogenous bone marrow MSCs are dynamic, fate-restricted participants in bone maintenance and regeneration publication-title: Cell Stem Cell doi: 10.1016/j.stem.2012.02.003 – volume: 5 year: 2018 ident: 10.1016/j.molmed.2019.04.008_bb0185 article-title: Runx2/Osterix and zinc uptake synergize to orchestrate osteogenic differentiation and citrate containing bone apatite formation publication-title: Adv. Sci. doi: 10.1002/advs.201700755 – volume: 212 start-page: 73 year: 2015 ident: 10.1016/j.molmed.2019.04.008_bb0585 article-title: mTOR inhibition rescues osteopenia in mice with systemic sclerosis publication-title: J. Exp. Med. doi: 10.1084/jem.20140643 – volume: 68 start-page: 20 year: 2016 ident: 10.1016/j.molmed.2019.04.008_bb0220 article-title: Mitochondrial quality control as a therapeutic target publication-title: Pharmacol. Rev. doi: 10.1124/pr.115.011502 – volume: 32 start-page: 2041 year: 2017 ident: 10.1016/j.molmed.2019.04.008_bb0075 article-title: Mitochondrial point mutation m.3243A>G associates with lower bone mineral density, thinner cortices, and reduced bone strength: a case-control study publication-title: J. Bone Miner. Res. doi: 10.1002/jbmr.3193 – volume: 7 start-page: 3331 year: 2017 ident: 10.1016/j.molmed.2019.04.008_bb0655 article-title: The osteogenesis-promoting effects of alpha-lipoic acid against glucocorticoid-induced osteoporosis through the NOX4, NF-kappaB, JNK and PI3K/AKT pathways publication-title: Sci. Rep. doi: 10.1038/s41598-017-03187-w – volume: 23 start-page: 193 year: 2018 ident: 10.1016/j.molmed.2019.04.008_bb0235 article-title: PGC-1α controls skeletal stem cell fate and bone-fat balance in osteoporosis and skeletal aging by inducing TAZ publication-title: Cell Stem Cell doi: 10.1016/j.stem.2018.06.009 – volume: 8 start-page: 2043 year: 2017 ident: 10.1016/j.molmed.2019.04.008_bb0040 article-title: Gli1 identifies osteogenic progenitors for bone formation and fracture repair publication-title: Nat. Commun. doi: 10.1038/s41467-017-02171-2 – volume: 172 start-page: 869 year: 2018 ident: 10.1016/j.molmed.2019.04.008_bb0300 article-title: Dynamic ligand discrimination in the Notch signaling pathway publication-title: Cell doi: 10.1016/j.cell.2018.01.002 |
SSID | ssj0015778 |
Score | 2.567117 |
SecondaryResourceType | review_article |
Snippet | Mitochondria have emerged as key contributors to the organismal homeostasis, in which mitochondrial regulation of stem cells is becoming increasingly... Mitochondria have emerged as key contributors to the organismal homeostasis, in which mitochondrial regulation of stem cells is becoming increasingly... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 89 |
SubjectTerms | bone differentiation mitochondria osteoporosis regeneration stem cells |
Title | Mitochondrial Regulation of Stem Cells in Bone Homeostasis |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S1471491419300978 https://dx.doi.org/10.1016/j.molmed.2019.04.008 https://www.ncbi.nlm.nih.gov/pubmed/31126872 https://www.proquest.com/docview/2232104021 |
Volume | 26 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTxsxEB5FVFS9IBpoG14yEleTtde76-WWRqAASg6lSNws22tLQWETNcmBC7-d8T4iVaKi4rirGXl3xh5_Y88D4CyOfWQSnVKDWJQKbjk1QmrqjdE6k7nWJpxDjifp6F7cPCQPHRi2uTAhrLKx_bVNr6x186bfSLO_mE77dwztqsiZQAhSZSOEDHaRhbC-85dNmAdLssoaB2IaqNv0uSrG6ymE_Yd6oSyvCp6GJpNvb0__gp_VNnS1CzsNfiSD-hO_QseVXdiuO0o-d-HzuLkr34OLMS5WNG5lEeYY-VU3nUc1kLkndyv3RIZuNluSaUl-zktHQsP0OWLF5XS5D_dXl7-HI9p0SqBWSLaiFp0YxizHJ80ik6JbkjnpJfomMspdwXNh89QXReQcCosXSI2akIX1Rpgoj7_BVolD_QASWWdyRIksRaYk8TqRjjtf-ERLw2Pbg7gVkLJNGfHQzWKm2nixR1WLVQWxqkgoFGsP6IZrUZfReIc-aWWv2hRRNGoK7fw7fNmG769p9B-cp62KFa6wcG2iSzdfLxUCKPSL0c9mPfhe637zD3HIwJIZP_jwuIfwhQcXvjrVOYKt1Z-1O0acszIn1UQ-gU-D69vR5BXJI_rE |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT-MwEB6xRSx7WfGmy8tIXK3GjpM4e4NqUXm0Bx4SN8t2bKmopIiWA_9-x3lUQmIF2mMij5zM2J-_sT0zACdx7COT6JQa5KJUcMupEVJTb4zWmcy1NmEfcjhKB_fi8iF5WIJ-GwsTrlU22F9jeoXWzZteo83e83jcu2WIqyJnAilIFY3wDZZDdirRgeXTi6vBaHGYkGQVIIf2NAi0EXTVNa-ncPM_pAxleZXzNNSZ_HiF-hcDrVai8zX42VBIclp_5TosuXIDVuqikm8b8H3YHJdvwu8hzlfEt7IIw4zc1HXn0RJk6snt3D2RvptMZmRckrNp6UiomT5Fujgbz7bg_vzPXX9Am2IJ1ArJ5tSiH8OY5fikWWRS9EwyJ71E90RGuSt4Lmye-qKInEN98QJbozFkYb0RJsrjbeiU2NUukMg6kyNRZCkKJYnXiXTc-cInWhoe2y7ErYKUbTKJh4IWE9VeGXtUtVpVUKuKhEK1doEupJ7rTBqftE9a3as2ShRxTSHUfyKXLeTejaQvSB63JlY4ycLJiS7d9HWmkEOha4yuNuvCTm37xT_EIQhLZvzXf_d7BKuDu-G1ur4YXe3BDx48-mqTZx8685dXd4C0Z24Om2H9F2UQ_XU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mitochondrial+Regulation+of+Stem+Cells+in+Bone+Homeostasis&rft.jtitle=Trends+in+molecular+medicine&rft.au=Zheng%2C+Chen-Xi&rft.au=Sui%2C+Bing-Dong&rft.au=Qiu%2C+Xin-Yu&rft.au=Hu%2C+Cheng-Hu&rft.date=2020-01-01&rft.issn=1471-4914&rft.volume=26&rft.issue=1&rft.spage=89&rft.epage=104&rft_id=info:doi/10.1016%2Fj.molmed.2019.04.008&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_molmed_2019_04_008 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-4914&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-4914&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-4914&client=summon |