The Flavonoid Biosynthesis Network in Plants
Flavonoids are an important class of secondary metabolites widely found in plants, contributing to plant growth and development and having prominent applications in food and medicine. The biosynthesis of flavonoids has long been the focus of intense research in plant biology. Flavonoids are derived...
Saved in:
Published in | International journal of molecular sciences Vol. 22; no. 23; p. 12824 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
26.11.2021
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Flavonoids are an important class of secondary metabolites widely found in plants, contributing to plant growth and development and having prominent applications in food and medicine. The biosynthesis of flavonoids has long been the focus of intense research in plant biology. Flavonoids are derived from the phenylpropanoid metabolic pathway, and have a basic structure that comprises a C15 benzene ring structure of C6-C3-C6. Over recent decades, a considerable number of studies have been directed at elucidating the mechanisms involved in flavonoid biosynthesis in plants. In this review, we systematically summarize the flavonoid biosynthetic pathway. We further assemble an exhaustive map of flavonoid biosynthesis in plants comprising eight branches (stilbene, aurone, flavone, isoflavone, flavonol, phlobaphene, proanthocyanidin, and anthocyanin biosynthesis) and four important intermediate metabolites (chalcone, flavanone, dihydroflavonol, and leucoanthocyanidin). This review affords a comprehensive overview of the current knowledge regarding flavonoid biosynthesis, and provides the theoretical basis for further elucidating the pathways involved in the biosynthesis of flavonoids, which will aid in better understanding their functions and potential uses. |
---|---|
AbstractList | Flavonoids are an important class of secondary metabolites widely found in plants, contributing to plant growth and development and having prominent applications in food and medicine. The biosynthesis of flavonoids has long been the focus of intense research in plant biology. Flavonoids are derived from the phenylpropanoid metabolic pathway, and have a basic structure that comprises a C15 benzene ring structure of C6-C3-C6. Over recent decades, a considerable number of studies have been directed at elucidating the mechanisms involved in flavonoid biosynthesis in plants. In this review, we systematically summarize the flavonoid biosynthetic pathway. We further assemble an exhaustive map of flavonoid biosynthesis in plants comprising eight branches (stilbene, aurone, flavone, isoflavone, flavonol, phlobaphene, proanthocyanidin, and anthocyanin biosynthesis) and four important intermediate metabolites (chalcone, flavanone, dihydroflavonol, and leucoanthocyanidin). This review affords a comprehensive overview of the current knowledge regarding flavonoid biosynthesis, and provides the theoretical basis for further elucidating the pathways involved in the biosynthesis of flavonoids, which will aid in better understanding their functions and potential uses. Flavonoids are an important class of secondary metabolites widely found in plants, contributing to plant growth and development and having prominent applications in food and medicine. The biosynthesis of flavonoids has long been the focus of intense research in plant biology. Flavonoids are derived from the phenylpropanoid metabolic pathway, and have a basic structure that comprises a C15 benzene ring structure of C6-C3-C6. Over recent decades, a considerable number of studies have been directed at elucidating the mechanisms involved in flavonoid biosynthesis in plants. In this review, we systematically summarize the flavonoid biosynthetic pathway. We further assemble an exhaustive map of flavonoid biosynthesis in plants comprising eight branches (stilbene, aurone, flavone, isoflavone, flavonol, phlobaphene, proanthocyanidin, and anthocyanin biosynthesis) and four important intermediate metabolites (chalcone, flavanone, dihydroflavonol, and leucoanthocyanidin). This review affords a comprehensive overview of the current knowledge regarding flavonoid biosynthesis, and provides the theoretical basis for further elucidating the pathways involved in the biosynthesis of flavonoids, which will aid in better understanding their functions and potential uses.Flavonoids are an important class of secondary metabolites widely found in plants, contributing to plant growth and development and having prominent applications in food and medicine. The biosynthesis of flavonoids has long been the focus of intense research in plant biology. Flavonoids are derived from the phenylpropanoid metabolic pathway, and have a basic structure that comprises a C15 benzene ring structure of C6-C3-C6. Over recent decades, a considerable number of studies have been directed at elucidating the mechanisms involved in flavonoid biosynthesis in plants. In this review, we systematically summarize the flavonoid biosynthetic pathway. We further assemble an exhaustive map of flavonoid biosynthesis in plants comprising eight branches (stilbene, aurone, flavone, isoflavone, flavonol, phlobaphene, proanthocyanidin, and anthocyanin biosynthesis) and four important intermediate metabolites (chalcone, flavanone, dihydroflavonol, and leucoanthocyanidin). This review affords a comprehensive overview of the current knowledge regarding flavonoid biosynthesis, and provides the theoretical basis for further elucidating the pathways involved in the biosynthesis of flavonoids, which will aid in better understanding their functions and potential uses. |
Author | Feng, Yi Liu, Weixin Yin, Hengfu Li, Jiyuan Yu, Suhang Li, Xinlei Fan, Zhengqi |
AuthorAffiliation | 1 State Key Laboratory of Tree Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China; lwx060624@163.com (W.L.); fy11071107@163.com (Y.F.); yusuhang819@163.com (S.Y.); fzq_76@126.com (Z.F.); lixinlei2020@163.com (X.L.) 2 Key Laboratory of Forest Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China |
AuthorAffiliation_xml | – name: 1 State Key Laboratory of Tree Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China; lwx060624@163.com (W.L.); fy11071107@163.com (Y.F.); yusuhang819@163.com (S.Y.); fzq_76@126.com (Z.F.); lixinlei2020@163.com (X.L.) – name: 2 Key Laboratory of Forest Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China |
Author_xml | – sequence: 1 givenname: Weixin orcidid: 0000-0002-2076-3342 surname: Liu fullname: Liu, Weixin – sequence: 2 givenname: Yi surname: Feng fullname: Feng, Yi – sequence: 3 givenname: Suhang surname: Yu fullname: Yu, Suhang – sequence: 4 givenname: Zhengqi surname: Fan fullname: Fan, Zhengqi – sequence: 5 givenname: Xinlei surname: Li fullname: Li, Xinlei – sequence: 6 givenname: Jiyuan surname: Li fullname: Li, Jiyuan – sequence: 7 givenname: Hengfu orcidid: 0000-0002-0720-5311 surname: Yin fullname: Yin, Hengfu |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34884627$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kb1PwzAQxS1URD9gZEWRWBgI-CuOvSBBRQGpAoYyW07iUJfELnFS1P-elJaKVmK6k-53T_fe9UHHOqsBOEXwihABr82s9BhjgjDH9AD0EMU4hJDFnT99F_S9n0GICY7EEegSyjllOO6By8lUB6NCLZx1JgvujPNLW0-1Nz541vWXqz4CY4PXQtnaH4PDXBVen2zqALyN7ifDx3D88vA0vB2HKeWoDpOUojxjWmRZIhCKUYZ4JPKccU1TonIUk0TkiMSMw5wjypOM0EQwRlkiEq7IANysdedNUuos1bauVCHnlSlVtZROGbk7sWYq391CchbFlIhW4GIjULnPRvtalsanumhdaNd4iRnkEYk4xS16vofOXFPZ1t4PtYoVw5Y6-3vR9pTfIFsgXANp5byvdL5FEJSrR8mdR7U82eNTU6vauJUhU_yz9Q3ck5Xa |
CitedBy_id | crossref_primary_10_1007_s11101_024_10008_2 crossref_primary_10_3390_antiox14010074 crossref_primary_10_1016_j_scitotenv_2024_169920 crossref_primary_10_1016_j_fbio_2023_102360 crossref_primary_10_1007_s11694_024_02838_7 crossref_primary_10_1016_j_cj_2024_03_012 crossref_primary_10_1016_j_talanta_2024_126871 crossref_primary_10_1111_ppl_13950 crossref_primary_10_1016_j_fochx_2024_101143 crossref_primary_10_1016_j_scienta_2024_113309 crossref_primary_10_1007_s00425_022_04026_7 crossref_primary_10_1016_j_fochx_2024_101159 crossref_primary_10_1016_j_scienta_2024_113308 crossref_primary_10_1111_pbi_14522 crossref_primary_10_3390_plants14050753 crossref_primary_10_1007_s10725_022_00953_3 crossref_primary_10_3390_genes14101944 crossref_primary_10_1155_2024_1139944 crossref_primary_10_3390_agronomy13092397 crossref_primary_10_1016_j_foodres_2025_115759 crossref_primary_10_3389_fpls_2023_1274700 crossref_primary_10_1002_fft2_422 crossref_primary_10_1016_j_cropd_2025_100100 crossref_primary_10_6023_cjoc202403025 crossref_primary_10_7717_peerj_ochem_9 crossref_primary_10_1016_j_crbiot_2025_100274 crossref_primary_10_3390_ijms252111459 crossref_primary_10_1093_dnares_dsad028 crossref_primary_10_1007_s10725_024_01266_3 crossref_primary_10_1007_s43393_024_00317_0 crossref_primary_10_1016_j_scienta_2024_113311 crossref_primary_10_3390_ijms25147761 crossref_primary_10_1016_j_jhazmat_2024_136186 crossref_primary_10_3390_pharmaceutics15020628 crossref_primary_10_3390_cimb46120855 crossref_primary_10_3389_fevo_2023_1215191 crossref_primary_10_3390_antibiotics11101380 crossref_primary_10_1016_j_indcrop_2023_117796 crossref_primary_10_1016_j_jare_2024_11_019 crossref_primary_10_31857_S0016675823090047 crossref_primary_10_1016_j_plaphy_2025_109491 crossref_primary_10_3390_biom13010041 crossref_primary_10_3934_agrfood_2024039 crossref_primary_10_3389_fpls_2022_952758 crossref_primary_10_3389_fnut_2022_928805 crossref_primary_10_3389_fbioe_2023_1272811 crossref_primary_10_1007_s11103_024_01446_9 crossref_primary_10_1002_tpg2_20439 crossref_primary_10_1016_j_xplc_2024_101075 crossref_primary_10_1016_j_microc_2025_113170 crossref_primary_10_1016_j_phyplu_2024_100558 crossref_primary_10_3390_ijms24021299 crossref_primary_10_1016_j_indcrop_2024_119194 crossref_primary_10_32604_phyton_2024_047949 crossref_primary_10_3390_biomedicines12030644 crossref_primary_10_1016_j_amolm_2024_100048 crossref_primary_10_1515_jib_2024_0050 crossref_primary_10_3390_genes14030752 crossref_primary_10_1016_j_hpj_2024_08_002 crossref_primary_10_3390_ijms242317118 crossref_primary_10_1080_17429145_2023_2210163 crossref_primary_10_1093_plcell_koae167 crossref_primary_10_3390_ijms242216384 crossref_primary_10_1039_D4AY01654H crossref_primary_10_1111_tpj_16854 crossref_primary_10_1186_s12870_023_04630_z crossref_primary_10_1016_j_stress_2025_100746 crossref_primary_10_1016_j_phytochem_2023_113896 crossref_primary_10_3390_metabo13010124 crossref_primary_10_3390_ijms24021153 crossref_primary_10_1093_fqsafe_fyae014 crossref_primary_10_1080_12298093_2023_2273028 crossref_primary_10_3390_metabo13060716 crossref_primary_10_3389_fpls_2025_1540674 crossref_primary_10_48130_MPB_2023_0018 crossref_primary_10_3390_nu15132938 crossref_primary_10_1021_acs_jafc_3c01883 crossref_primary_10_1007_s12033_024_01338_9 crossref_primary_10_1016_j_plaphy_2023_107649 crossref_primary_10_3389_fpls_2023_1130047 crossref_primary_10_3390_plants14060883 crossref_primary_10_3389_fphar_2024_1322083 crossref_primary_10_1016_j_envexpbot_2023_105583 crossref_primary_10_1007_s00572_024_01155_7 crossref_primary_10_3390_antiox13121472 crossref_primary_10_1002_adfm_202422664 crossref_primary_10_3390_molecules29102252 crossref_primary_10_1016_j_foodchem_2023_135581 crossref_primary_10_1016_j_foodchem_2024_139207 crossref_primary_10_3390_plants13233389 crossref_primary_10_3390_ijms24010247 crossref_primary_10_1093_jaoacint_qsad024 crossref_primary_10_1093_hr_uhae068 crossref_primary_10_1016_j_indcrop_2023_117622 crossref_primary_10_1016_j_jare_2024_10_015 crossref_primary_10_3389_fpls_2024_1424956 crossref_primary_10_3390_ijms231810217 crossref_primary_10_3390_ijms241813901 crossref_primary_10_1016_j_jplph_2023_154043 crossref_primary_10_1016_j_jafr_2024_101197 crossref_primary_10_1016_j_phymed_2023_155259 crossref_primary_10_1021_acs_jafc_4c11168 crossref_primary_10_1186_s12870_024_05909_5 crossref_primary_10_3390_horticulturae9121351 crossref_primary_10_3390_horticulturae10040420 crossref_primary_10_3389_fchem_2022_1005360 crossref_primary_10_3389_fpls_2022_933849 crossref_primary_10_1021_acsomega_2c03820 crossref_primary_10_1016_j_pld_2023_02_001 crossref_primary_10_3390_ijms23094652 crossref_primary_10_3390_cancers16061092 crossref_primary_10_1016_j_foodchem_2024_141754 crossref_primary_10_3390_molecules27248852 crossref_primary_10_1016_j_fbio_2023_102878 crossref_primary_10_2174_0113892010271172231108190233 crossref_primary_10_1016_j_scienta_2024_113809 crossref_primary_10_1016_j_plaphy_2025_109673 crossref_primary_10_3390_plants14070989 crossref_primary_10_3390_sym15081532 crossref_primary_10_3390_plants11212938 crossref_primary_10_3390_metabo13080895 crossref_primary_10_3390_foods13244025 crossref_primary_10_1002_ptr_8376 crossref_primary_10_3390_agriculture15020222 crossref_primary_10_3390_biology11071078 crossref_primary_10_3390_molecules29040852 crossref_primary_10_3390_antiox11122362 crossref_primary_10_3390_genes14091684 crossref_primary_10_1016_j_ijbiomac_2022_11_303 crossref_primary_10_1186_s13104_023_06375_2 crossref_primary_10_3390_cimb45020072 crossref_primary_10_3390_molecules28031043 crossref_primary_10_3390_ijms232315194 crossref_primary_10_1007_s00210_024_03018_6 crossref_primary_10_1021_acs_jafc_4c02472 crossref_primary_10_3390_ijms231810642 crossref_primary_10_3390_plants14060849 crossref_primary_10_3390_agronomy14010221 crossref_primary_10_3390_jof10020119 crossref_primary_10_1093_nar_gkad980 crossref_primary_10_1093_aob_mcae152 crossref_primary_10_3390_plants12183285 crossref_primary_10_1016_j_scitotenv_2024_171278 crossref_primary_10_3390_horticulturae11020215 crossref_primary_10_1080_10942912_2023_2200480 crossref_primary_10_1021_acs_jafc_4c12289 crossref_primary_10_1016_j_fbio_2023_102892 crossref_primary_10_1016_j_ejmcr_2022_100077 crossref_primary_10_3390_f14050979 crossref_primary_10_1002_ptr_8470 crossref_primary_10_1016_j_stress_2024_100384 crossref_primary_10_3390_ijms242417368 crossref_primary_10_2174_0115733998285798240217084632 crossref_primary_10_3390_antiox11091769 crossref_primary_10_3390_microorganisms13030608 crossref_primary_10_1093_ijfood_vvaf007 crossref_primary_10_3390_metabo12121296 crossref_primary_10_1007_s10725_024_01125_1 crossref_primary_10_3390_molecules28207042 crossref_primary_10_3389_fmicb_2024_1360988 crossref_primary_10_3390_plants13212990 crossref_primary_10_3390_horticulturae10111229 crossref_primary_10_1007_s11240_024_02804_7 crossref_primary_10_1021_acs_chemrestox_3c00229 crossref_primary_10_3390_plants13202944 crossref_primary_10_3389_fpls_2024_1471729 crossref_primary_10_3390_toxics13020075 crossref_primary_10_3389_fpls_2024_1427731 crossref_primary_10_1177_09731296231204152 crossref_primary_10_1016_j_pbi_2023_102353 crossref_primary_10_1038_s41598_024_75736_z crossref_primary_10_3390_molecules27061873 crossref_primary_10_3390_biom13030531 crossref_primary_10_3390_ijms25126291 crossref_primary_10_1016_j_ijbiomac_2024_135545 crossref_primary_10_1155_2024_1323945 crossref_primary_10_1002_pca_3423 crossref_primary_10_1021_acs_jafc_3c03884 crossref_primary_10_1007_s10068_024_01799_3 crossref_primary_10_1016_j_heliyon_2024_e32239 crossref_primary_10_26599_FSHW_2025_9250498 crossref_primary_10_3390_f14010069 crossref_primary_10_3390_molecules28010083 crossref_primary_10_1186_s12870_024_05631_2 crossref_primary_10_1007_s00425_024_04337_x crossref_primary_10_1186_s12870_024_06014_3 crossref_primary_10_1111_1751_7915_14180 crossref_primary_10_1080_1028415X_2023_2296165 crossref_primary_10_3390_horticulturae9121295 crossref_primary_10_5091_plecevo_128527 crossref_primary_10_3390_ijms26072841 crossref_primary_10_1016_j_jplph_2023_154145 crossref_primary_10_1093_plphys_kiaf070 crossref_primary_10_1039_D4QO02379J crossref_primary_10_1111_ppl_14501 crossref_primary_10_3389_fpls_2022_1002302 crossref_primary_10_1016_j_biocontrol_2025_105729 crossref_primary_10_3389_fpls_2023_1154535 crossref_primary_10_1016_j_heliyon_2024_e32563 crossref_primary_10_3390_molecules28237719 crossref_primary_10_3390_plants14020161 crossref_primary_10_3390_ijms23073854 crossref_primary_10_1016_j_plaphy_2024_109156 crossref_primary_10_1016_j_apsoil_2024_105671 crossref_primary_10_3390_app12041786 crossref_primary_10_3390_ijms24108670 crossref_primary_10_1016_j_molp_2023_09_015 crossref_primary_10_1186_s12870_024_05667_4 crossref_primary_10_7717_peerj_16056 crossref_primary_10_1002_jcp_31006 crossref_primary_10_1007_s00425_024_04521_z crossref_primary_10_1021_acs_jafc_4c05717 crossref_primary_10_1134_S1022795423090041 crossref_primary_10_3389_fpls_2023_1073848 crossref_primary_10_30799_jnpr_114_25100101 crossref_primary_10_1016_j_heliyon_2024_e35966 crossref_primary_10_1038_s41598_024_64134_0 crossref_primary_10_2174_1573401318666221005124312 crossref_primary_10_3390_ijms25105546 crossref_primary_10_1016_j_foodchem_2022_134704 crossref_primary_10_1111_ppl_14129 crossref_primary_10_1016_j_indcrop_2022_115996 crossref_primary_10_2174_1381612829666230413085029 crossref_primary_10_3390_v15122340 crossref_primary_10_1016_j_jhazmat_2024_136969 crossref_primary_10_1080_10408398_2022_2115456 crossref_primary_10_1093_jxb_erae225 crossref_primary_10_1016_j_greenca_2024_11_005 crossref_primary_10_1111_tpj_17188 crossref_primary_10_1094_PHYTO_04_24_0125_R crossref_primary_10_29312_remexca_v15i2_3638 crossref_primary_10_3390_ijms252211951 crossref_primary_10_1021_acs_jafc_2c04715 crossref_primary_10_1021_acs_jafc_4c08160 crossref_primary_10_32615_bp_2024_002 crossref_primary_10_7783_KJMCS_2025_33_1_51 crossref_primary_10_1007_s11356_025_36002_5 crossref_primary_10_3390_ijms24021755 crossref_primary_10_1016_j_postharvbio_2024_113155 crossref_primary_10_1186_s12870_024_05579_3 crossref_primary_10_1016_j_cj_2025_01_016 crossref_primary_10_1016_j_bej_2024_109584 crossref_primary_10_1016_j_fbio_2024_105497 crossref_primary_10_3390_agronomy13071926 crossref_primary_10_15625_2525_2518_21503 crossref_primary_10_3390_pharmaceutics15061656 crossref_primary_10_1016_j_heliyon_2024_e30868 crossref_primary_10_1016_j_jplph_2022_153856 crossref_primary_10_1007_s10142_023_01110_3 crossref_primary_10_3389_fpls_2024_1381071 crossref_primary_10_3389_fpls_2023_1229253 crossref_primary_10_3390_beverages9030067 crossref_primary_10_1016_j_fbio_2023_102817 crossref_primary_10_1016_j_jafr_2024_101328 crossref_primary_10_1111_pce_15183 crossref_primary_10_1016_j_indcrop_2024_119213 crossref_primary_10_3389_fpls_2025_1533263 crossref_primary_10_1016_j_csbj_2022_04_019 crossref_primary_10_3389_fpls_2022_877304 crossref_primary_10_1016_j_biortech_2024_131923 crossref_primary_10_1038_s41598_024_70600_6 crossref_primary_10_1007_s11030_023_10692_w crossref_primary_10_1016_j_heliyon_2023_e21874 crossref_primary_10_1080_02652048_2024_2437375 crossref_primary_10_3390_fermentation9070627 crossref_primary_10_1007_s11033_024_09567_6 crossref_primary_10_1016_j_biotechadv_2023_108258 crossref_primary_10_1016_j_microc_2024_110058 crossref_primary_10_3390_ijms25116110 crossref_primary_10_1016_j_jplph_2024_154364 crossref_primary_10_1016_j_phytochem_2024_114231 crossref_primary_10_3390_microorganisms12112176 crossref_primary_10_1007_s11694_024_02527_5 crossref_primary_10_3390_molecules28010365 crossref_primary_10_3390_plants13060776 crossref_primary_10_1016_j_scienta_2024_113170 crossref_primary_10_1021_acs_jafc_3c02031 crossref_primary_10_3390_horticulturae8020129 crossref_primary_10_1016_j_plaphy_2024_108438 crossref_primary_10_3390_molecules27248777 crossref_primary_10_3389_fpls_2023_1082246 crossref_primary_10_1007_s12042_024_09371_3 crossref_primary_10_1016_j_bioorg_2023_106957 crossref_primary_10_1016_j_csbj_2024_02_028 crossref_primary_10_1186_s40538_022_00301_7 crossref_primary_10_3390_bioengineering10101127 crossref_primary_10_1016_j_phytochem_2024_114002 crossref_primary_10_1007_s12042_023_09341_1 crossref_primary_10_1016_j_lwt_2024_116986 crossref_primary_10_3390_agronomy13123006 crossref_primary_10_3389_fpls_2023_1183481 crossref_primary_10_31676_2073_4948_2024_78_21_28 crossref_primary_10_1016_j_scienta_2022_111682 crossref_primary_10_3390_metabo14120711 crossref_primary_10_3390_foods12020425 crossref_primary_10_3390_ijms252211903 crossref_primary_10_1016_j_indcrop_2025_120606 crossref_primary_10_12791_KSBEC_2023_32_3_217 crossref_primary_10_1016_j_jafr_2025_101651 crossref_primary_10_3389_fpls_2024_1468858 crossref_primary_10_1051_e3sconf_202343403026 crossref_primary_10_1007_s13562_023_00851_3 crossref_primary_10_1080_07388551_2022_2149386 crossref_primary_10_1093_treephys_tpae157 crossref_primary_10_3390_ijms252011135 crossref_primary_10_1016_j_foodchem_2025_143317 crossref_primary_10_1016_j_tetlet_2022_154336 crossref_primary_10_3390_ijms232113507 crossref_primary_10_3390_metabo13030423 crossref_primary_10_1093_gigascience_giad005 crossref_primary_10_3389_fpls_2024_1349456 crossref_primary_10_3390_ijms25094592 crossref_primary_10_1016_j_envexpbot_2024_106078 crossref_primary_10_1111_ppl_14104 crossref_primary_10_1016_j_plaphy_2024_109425 crossref_primary_10_1111_1750_3841_17308 crossref_primary_10_1007_s10725_024_01195_1 crossref_primary_10_3390_molecules29081822 crossref_primary_10_3389_fpls_2022_1045857 crossref_primary_10_3390_ijms25042057 crossref_primary_10_1111_jipb_13627 crossref_primary_10_3390_agronomy13051296 crossref_primary_10_1051_e3sconf_202343403037 crossref_primary_10_3389_fpls_2023_1210309 crossref_primary_10_1089_rej_2023_0065 crossref_primary_10_3390_ijms25126354 crossref_primary_10_1111_pce_15398 crossref_primary_10_3390_jof10040254 crossref_primary_10_1111_jipb_13743 crossref_primary_10_3389_fpls_2023_1141617 crossref_primary_10_3390_genes13030410 crossref_primary_10_1016_j_indcrop_2024_119786 crossref_primary_10_1111_tpj_17240 crossref_primary_10_3390_ijms252011021 crossref_primary_10_3390_ijms252312754 crossref_primary_10_3390_plants13060788 crossref_primary_10_1016_j_plaphy_2025_109733 crossref_primary_10_1111_ppl_70006 crossref_primary_10_3390_molecules29030717 crossref_primary_10_3390_agriculture13050949 crossref_primary_10_1111_ppl_14084 crossref_primary_10_3390_molecules29133145 crossref_primary_10_1071_FP22244 crossref_primary_10_3390_genes15121496 crossref_primary_10_1016_j_indcrop_2023_116843 crossref_primary_10_1080_10942912_2025_2479629 crossref_primary_10_1002_fft2_494 crossref_primary_10_3390_cimb45040221 crossref_primary_10_1016_j_plaphy_2023_03_001 crossref_primary_10_3390_ijms252312705 crossref_primary_10_1007_s00425_023_04136_w crossref_primary_10_48130_BPR_2023_0015 crossref_primary_10_1111_nph_18958 crossref_primary_10_3389_fpls_2022_955075 crossref_primary_10_3390_metabo12080691 crossref_primary_10_3390_genes16030328 crossref_primary_10_3390_horticulturae9101071 crossref_primary_10_1016_j_scienta_2024_113147 crossref_primary_10_3390_molecules29071485 crossref_primary_10_1016_j_lwt_2023_115276 crossref_primary_10_1186_s12870_023_04395_5 crossref_primary_10_3390_metabo15020098 crossref_primary_10_1186_s42483_024_00296_z crossref_primary_10_3390_ijms25158376 crossref_primary_10_3390_metabo13050585 crossref_primary_10_1186_s13020_024_01013_w crossref_primary_10_3390_ijms25021222 crossref_primary_10_1016_j_indcrop_2024_120285 crossref_primary_10_1016_j_pmpp_2024_102250 crossref_primary_10_1080_07388551_2024_2336529 crossref_primary_10_1016_j_fbio_2024_104446 crossref_primary_10_3389_fpls_2023_1272363 crossref_primary_10_3390_molecules28010426 crossref_primary_10_1016_j_fbio_2024_104565 crossref_primary_10_1016_j_ctmp_2024_200192 crossref_primary_10_1038_s41598_025_88144_8 crossref_primary_10_1080_08905436_2024_2420981 crossref_primary_10_3390_ijms25179273 crossref_primary_10_3390_foods13071080 crossref_primary_10_3390_ijms25084137 crossref_primary_10_17221_38_2022_CJGPB crossref_primary_10_3390_molecules29225351 crossref_primary_10_3389_fpls_2023_1067920 crossref_primary_10_3390_plants13162191 crossref_primary_10_1016_j_postharvbio_2024_113324 crossref_primary_10_1016_j_foodres_2025_116110 crossref_primary_10_1111_pbi_70033 crossref_primary_10_1016_j_gene_2023_147740 crossref_primary_10_3389_fnut_2024_1495655 crossref_primary_10_1016_j_agrcom_2025_100071 crossref_primary_10_1007_s11240_024_02856_9 crossref_primary_10_3389_fpls_2023_1191029 crossref_primary_10_1016_j_ijbiomac_2024_134910 crossref_primary_10_1615_IntJMedMushrooms_2024053563 crossref_primary_10_1016_j_hermed_2024_100899 crossref_primary_10_1016_j_jhip_2024_10_001 crossref_primary_10_1007_s11101_024_10025_1 crossref_primary_10_3389_fpls_2022_900035 crossref_primary_10_1016_j_plaphy_2024_108665 crossref_primary_10_1038_s41598_024_81319_9 crossref_primary_10_3390_genes15111465 crossref_primary_10_3390_ijms26020668 crossref_primary_10_1007_s00299_025_03453_6 crossref_primary_10_3389_fpls_2023_1144265 crossref_primary_10_1111_nph_19602 crossref_primary_10_3390_ijms25021308 crossref_primary_10_7717_peerj_15319 crossref_primary_10_3390_ijms24043884 crossref_primary_10_1186_s12870_024_04919_7 crossref_primary_10_3390_genes15030329 crossref_primary_10_1080_1062936X_2024_2394498 crossref_primary_10_1016_j_plantsci_2023_111599 crossref_primary_10_3390_molecules30051058 crossref_primary_10_1007_s11101_022_09832_1 crossref_primary_10_1016_j_procbio_2024_01_004 crossref_primary_10_1093_hr_uhad166 crossref_primary_10_1038_s41598_025_85266_x crossref_primary_10_48130_mpb_0024_0005 crossref_primary_10_1186_s12870_024_05332_w crossref_primary_10_3390_pharmaceutics14091793 crossref_primary_10_1016_j_heliyon_2024_e36146 crossref_primary_10_1016_j_envexpbot_2023_105402 crossref_primary_10_18311_jnr_2024_43768 crossref_primary_10_1039_D3MD00448A crossref_primary_10_3389_fpls_2025_1525226 crossref_primary_10_3390_plants13111524 crossref_primary_10_1186_s12864_024_10938_3 crossref_primary_10_1071_CP23147 crossref_primary_10_3390_ijms252413325 crossref_primary_10_3390_plants11101318 crossref_primary_10_3390_agronomy14071494 crossref_primary_10_1016_j_ijbiomac_2025_139897 crossref_primary_10_3390_horticulturae9010082 crossref_primary_10_1080_07352689_2023_2227485 crossref_primary_10_1007_s44372_024_00080_5 crossref_primary_10_1093_hr_uhad277 crossref_primary_10_1093_hr_uhae125 crossref_primary_10_1016_j_focha_2024_100775 crossref_primary_10_1093_hr_uhae366 crossref_primary_10_3390_foods11162527 crossref_primary_10_1007_s10265_022_01426_4 crossref_primary_10_3390_horticulturae9060620 crossref_primary_10_1002_yea_3850 crossref_primary_10_1007_s12298_023_01338_0 crossref_primary_10_1016_j_plaphy_2024_108964 crossref_primary_10_1016_j_heliyon_2023_e18688 crossref_primary_10_3390_agronomy13092192 crossref_primary_10_3390_f13071094 crossref_primary_10_3390_ijms232113475 crossref_primary_10_3390_nu17020205 crossref_primary_10_3389_fpls_2024_1477605 crossref_primary_10_1371_journal_pone_0308013 crossref_primary_10_1186_s12870_023_04173_3 crossref_primary_10_3390_agronomy14030519 crossref_primary_10_48130_mpb_0024_0027 crossref_primary_10_1007_s42729_024_02159_0 crossref_primary_10_3390_ijms241813874 crossref_primary_10_3389_fpls_2024_1409601 crossref_primary_10_1016_j_ecoenv_2022_113780 crossref_primary_10_1016_j_plaphy_2024_108860 crossref_primary_10_1016_j_heliyon_2023_e20747 crossref_primary_10_3390_ijms26062390 crossref_primary_10_3390_agronomy14030521 crossref_primary_10_32604_phyton_2025_061462 crossref_primary_10_1080_09540105_2023_2265688 crossref_primary_10_1111_tpj_16439 crossref_primary_10_48130_frures_0024_0042 crossref_primary_10_1186_s12870_024_05519_1 crossref_primary_10_1155_2023_8899240 crossref_primary_10_1007_s11240_024_02865_8 crossref_primary_10_1186_s12864_023_09260_1 |
Cites_doi | 10.1038/s41438-021-00463-9 10.1111/pbi.13397 10.1093/jxb/err425 10.1007/s00425-010-1344-1 10.3389/fpls.2021.640746 10.1038/s41438-021-00595-y 10.1146/annurev.arplant.57.032905.105252 10.1007/s00299-020-02647-4 10.1080/13880209.2018.1492620 10.1271/bbb.70692 10.1186/s12870-017-1200-6 10.1111/j.1365-313X.2007.03373.x 10.1111/tpj.12792 10.1186/s12864-021-07658-3 10.1016/j.plaphy.2021.01.044 10.1093/jxb/erv413 10.1007/s11427-019-1604-3 10.3390/molecules20022388 10.1105/tpc.20.00048 10.1007/s00709-020-01599-6 10.5511/plantbiotechnology.11.0106b 10.1104/pp.113.3.755 10.1111/j.1399-3054.2005.00531.x 10.1016/j.foodchem.2014.03.105 10.1016/j.plaphy.2019.07.009 10.1093/pcp/pct111 10.1016/j.molp.2018.12.021 10.1016/j.phytochem.2017.06.017 10.1104/pp.19.00254 10.1371/journal.pgen.1006770 10.1038/s41438-020-00457-z 10.3390/plants9020215 10.1104/pp.105.072579 10.1105/tpc.16.00855 10.1007/s00425-010-1175-0 10.1270/jsbbs.17072 10.1002/bab.1839 10.3390/ijms21031011 10.1007/s12033-018-0130-3 10.1111/ppl.13385 10.1016/j.biotechadv.2018.11.005 10.1016/j.molp.2017.08.009 10.1016/j.tplants.2019.09.011 10.1016/S0304-4238(03)00093-1 10.1111/pbi.12118 10.1073/pnas.0604246103 10.1007/s11103-018-0802-1 10.1038/330677a0 10.1016/j.molp.2019.04.002 10.1038/s41438-020-0254-z 10.1007/s00425-017-2771-z 10.1021/acssynbio.0c00289 10.3390/ijms22063103 10.1016/S1016-8478(23)14034-9 10.1038/s42003-021-01889-6 10.1186/1471-2229-12-196 10.1016/j.bbrc.2018.04.088 10.1007/s11103-018-0771-4 10.1021/jf405324j 10.5511/plantbiotechnology.23.509 10.1093/jxb/eri251 10.1016/j.plantsci.2009.05.012 10.21273/JASHS.116.5.865 10.3389/fpls.2021.616396 10.1186/s12864-021-07434-3 10.1021/acs.jafc.7b04177 10.1111/j.1469-8137.2004.01217.x 10.1016/j.jbiotec.2017.01.006 10.1111/pbi.13302 10.1007/s10722-016-0399-7 10.1111/1541-4337.12476 10.1016/j.plaphy.2015.11.011 10.2187/bss.17.24 10.3390/plants10112311 10.1038/s41438-018-0032-3 10.1007/s00344-017-9766-7 10.3390/nu12030761 10.1111/nph.12610 10.1126/science.290.5494.1163 10.1105/tpc.16.00003 10.3389/fpls.2021.691384 10.1007/BF00029856 10.2135/cropsci2012.05.0267 10.1128/AEM.01448-15 10.1038/s41438-021-00472-8 10.1016/j.plantsci.2020.110591 10.1038/s41598-020-76633-x 10.1016/j.plantsci.2020.110632 10.1093/pcp/pcu097 10.1016/j.jep.2013.05.007 10.1016/j.pmpp.2007.02.004 10.1038/s41438-021-00609-9 10.1099/mic.0.28136-0 10.3390/ijms10125350 10.3390/plants10010090 10.1074/jbc.RA120.014543 10.1093/pcp/pcz101 10.1111/jipb.13054 10.1016/j.jpba.2019.113014 10.1111/nph.15795 10.1016/j.plaphy.2021.06.007 10.1016/S0168-9452(02)00433-8 10.3389/fpls.2019.01330 10.1038/s41598-020-58341-8 10.1038/s41438-021-00555-6 10.1146/annurev.arplant.57.032905.105248 10.1074/jbc.RA117.000564 10.1016/j.plantsci.2020.110473 10.1111/nph.17112 10.3389/fpls.2021.701780 10.1038/s41438-021-00591-2 10.1016/j.biopha.2019.108612 10.1016/j.foodchem.2020.128292 10.1016/j.phytochem.2010.04.016 10.1093/pcp/pct110 10.1016/j.febslet.2005.09.073 10.1074/jbc.M502239200 10.1186/s12870-016-0813-5 10.3390/molecules22020292 10.1105/tpc.12.1.65 10.1038/s41438-020-0327-z 10.3389/fpls.2021.670103 10.1007/s00122-020-03688-9 10.1038/s41438-021-00545-8 10.1016/j.tplants.2010.06.005 10.1104/pp.112.202705 10.1104/pp.106.095018 10.1007/s11627-020-10053-4 10.1104/pp.109.152801 10.1016/S1389-1723(02)80184-0 10.1016/S0014-5793(01)02529-7 10.1104/pp.126.2.485 10.1126/sciadv.1501780 10.1016/j.tplants.2014.12.001 10.3389/fpls.2020.619598 10.1016/j.plaphy.2017.01.019 10.1104/pp.107.100305 10.1111/j.1365-313X.2005.02625.x 10.1093/pcp/pcw213 10.1039/b718040n 10.1016/j.cell.2020.04.019 10.1111/nph.17397 10.1111/1750-3841.13548 10.1126/sciadv.1602785 10.1007/s00299-020-02517-z 10.1038/s41477-018-0292-9 10.3390/antiox2030132 10.1016/j.tplants.2006.11.006 10.3390/metabo11070433 10.1021/acs.jafc.7b05766 10.1016/j.ejmech.2019.01.078 10.1038/srep19245 10.1186/1471-2229-10-155 |
ContentType | Journal Article |
Copyright | 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2021 by the authors. 2021 |
Copyright_xml | – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2021 by the authors. 2021 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK 8G5 ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH GNUQQ GUQSH K9. M0S M1P M2O MBDVC PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS Q9U 7X8 5PM |
DOI | 10.3390/ijms222312824 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC ProQuest Central ProQuest One ProQuest Central Korea Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Research Library ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database Research Library Research Library (Corporate) ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database Research Library Prep ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Research Library ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE MEDLINE - Academic Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1422-0067 |
ExternalDocumentID | PMC8657439 34884627 10_3390_ijms222312824 |
Genre | Journal Article Review |
GrantInformation_xml | – fundername: Zhejiang Science and Technology Major Program on Agricultural New Variety Breeding grantid: 2021C02071-2 – fundername: National Key R&D Program of China grantid: 2019YFD1000 |
GroupedDBID | --- 29J 2WC 53G 5GY 5VS 7X7 88E 8FE 8FG 8FH 8FI 8FJ 8G5 A8Z AADQD AAFWJ AAHBH AAYXX ABDBF ABUWG ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV AEAQA AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BCNDV BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DIK DU5 DWQXO E3Z EBD EBS EJD ESX F5P FRP FYUFA GNUQQ GUQSH GX1 HH5 HMCUK HYE IAO IHR ITC KQ8 LK8 M1P M2O M48 MODMG O5R O5S OK1 OVT P2P PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RNS RPM TR2 TUS UKHRP ~8M 3V. ABJCF BBNVY BHPHI CGR CUY CVF ECM EIF GROUPED_DOAJ HCIFZ KB. M7P M~E NPM PDBOC 7XB 8FK K9. MBDVC PJZUB PKEHL PPXIY PQEST PQUKI PRINS Q9U 7X8 5PM |
ID | FETCH-LOGICAL-c481t-bc41fd6e9ddb91171d1859ff68e4c3af173b9f137680f8148bd34b96646b9b8a3 |
IEDL.DBID | M48 |
ISSN | 1422-0067 1661-6596 |
IngestDate | Thu Aug 21 14:03:03 EDT 2025 Mon Jul 21 11:23:27 EDT 2025 Fri Jul 25 10:10:00 EDT 2025 Wed Feb 19 02:27:51 EST 2025 Thu Apr 24 23:10:39 EDT 2025 Tue Jul 01 02:47:42 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 23 |
Keywords | molecular structure biosynthetic enzyme flavonoids gene regulation biosynthesis |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c481t-bc41fd6e9ddb91171d1859ff68e4c3af173b9f137680f8148bd34b96646b9b8a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-2076-3342 0000-0002-0720-5311 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/ijms222312824 |
PMID | 34884627 |
PQID | 2608128220 |
PQPubID | 2032341 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8657439 proquest_miscellaneous_2608535842 proquest_journals_2608128220 pubmed_primary_34884627 crossref_primary_10_3390_ijms222312824 crossref_citationtrail_10_3390_ijms222312824 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20211126 |
PublicationDateYYYYMMDD | 2021-11-26 |
PublicationDate_xml | – month: 11 year: 2021 text: 20211126 day: 26 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | International journal of molecular sciences |
PublicationTitleAlternate | Int J Mol Sci |
PublicationYear | 2021 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Cao (ref_148) 2021; 12 ref_138 Cavaiuolo (ref_9) 2013; 2 Li (ref_159) 2020; 7 Schijlen (ref_28) 2007; 144 ref_14 Bomati (ref_29) 2005; 280 Grotewold (ref_8) 2006; 57 Ren (ref_160) 2021; 8 ref_96 Wang (ref_118) 2020; 53 Wu (ref_60) 2021; 48 ref_16 Giampieri (ref_125) 2018; 66 Bosse (ref_74) 2021; 166 Parage (ref_34) 2012; 160 Togami (ref_32) 2011; 28 Boucherle (ref_48) 2017; 142 Jiang (ref_55) 2015; 66 Chong (ref_36) 2009; 177 Zuk (ref_59) 2019; 142 Gonzalez (ref_154) 2008; 53 Brugliera (ref_126) 2013; 54 Winefield (ref_94) 2005; 124 Meng (ref_107) 2019; 10 Zhang (ref_11) 2020; 18 Shimada (ref_115) 2005; 56 LaFountain (ref_116) 2021; 231 Wen (ref_103) 2021; 172 Dong (ref_144) 2020; 56 Imran (ref_15) 2019; 112 Peng (ref_37) 2013; 148 Yang (ref_40) 2018; 293 Liu (ref_72) 2020; 9 Meyer (ref_114) 1987; 330 Tuerck (ref_88) 1994; 6 (ref_4) 2001; 126 Yao (ref_85) 2021; 11 Luo (ref_161) 2021; 8 Ono (ref_46) 2006; 45 Sun (ref_7) 2020; 179 Suprun (ref_39) 2020; 67 Jiang (ref_112) 2020; 300 Liang (ref_163) 2020; 32 ref_73 Irmisch (ref_111) 2019; 180 Pandey (ref_75) 2014; 12 Ono (ref_47) 2006; 103 Wang (ref_25) 2020; 229 Nakayama (ref_49) 2001; 499 Nakayama (ref_44) 2002; 94 Kallscheuer (ref_167) 2017; 258 Cao (ref_98) 2018; 45 Mizutani (ref_24) 1997; 113 Veremeichik (ref_77) 2021; 342 Yu (ref_108) 2021; 258 Xin (ref_145) 2020; 296 ref_83 Noda (ref_6) 2017; 3 Iwashina (ref_10) 2003; 17 ref_82 Nishihara (ref_56) 2005; 579 Lepiniec (ref_135) 2006; 57 Ono (ref_45) 2007; 1 Yuan (ref_143) 2012; 63 Yang (ref_132) 2014; 160 Veitch (ref_128) 2008; 25 Zhang (ref_27) 2017; 29 ref_89 Lin (ref_51) 2021; 8 Wang (ref_17) 2018; 56 Fang (ref_69) 2020; 45 Petti (ref_134) 2014; 62 Zhang (ref_149) 2021; 8 Zhang (ref_104) 2021; 49 Wang (ref_97) 2020; 18 Zhang (ref_66) 2007; 144 Xiong (ref_133) 2019; 18 Totsuka (ref_153) 2018; 68 Shimada (ref_30) 2006; 23 Cassani (ref_87) 2016; 64 Li (ref_22) 2015; 169 Gao (ref_101) 2020; 36 Chapman (ref_109) 2021; 296 Li (ref_150) 2020; 7 Lu (ref_165) 2021; 12 Noda (ref_166) 2013; 54 Wu (ref_61) 2016; 6 Landoni (ref_86) 2020; 10 Dong (ref_1) 2020; 63 Yagishita (ref_129) 2016; 81 Xu (ref_151) 2018; 500 Jun (ref_139) 2018; 4 Dinkins (ref_58) 2021; 40 Casas (ref_57) 2016; 28 Artigot (ref_78) 2013; 53 Han (ref_105) 2010; 153 Wohl (ref_21) 2020; 39 Yun (ref_63) 2008; 72 Naing (ref_123) 2018; 98 Li (ref_152) 2017; 112 Yoshida (ref_33) 2004; 99 Ibraheem (ref_130) 2015; 20 Xie (ref_119) 2018; 66 Dubos (ref_147) 2010; 15 Zhou (ref_158) 2015; 82 Nabavi (ref_2) 2018; 38 Barros (ref_19) 2020; 25 Su (ref_142) 2021; 43 ref_64 Martens (ref_136) 2010; 71 Jiao (ref_164) 2020; 181 Chadzinikolau (ref_23) 2010; 64 Zhu (ref_53) 2021; 12 ref_62 Ni (ref_156) 2019; 99 Zhang (ref_169) 2020; 63 Hoshino (ref_50) 2019; 60 Pourcel (ref_12) 2007; 12 Sekhon (ref_90) 2006; 69 Wang (ref_65) 2020; 298 He (ref_79) 2011; 233 Fang (ref_110) 2018; 39 Deng (ref_26) 2013; 201 Bruce (ref_92) 2000; 12 ref_117 Mou (ref_100) 2021; 8 Vadivel (ref_80) 2021; 4 Zhang (ref_127) 2020; 55 ref_35 Ma (ref_81) 2007; 38 Lim (ref_168) 2015; 81 Lam (ref_67) 2019; 223 ref_113 Busche (ref_99) 2021; 12 Halbwirth (ref_91) 2003; 164 Wang (ref_162) 2017; 37 Ye (ref_170) 2021; 8 Sasaki (ref_3) 2015; 56 Wu (ref_93) 2021; 11 Nakayama (ref_43) 2000; 290 Tan (ref_13) 2019; 12 Chao (ref_54) 2021; 161 Sparvoli (ref_38) 1994; 24 Nakatsuka (ref_131) 2010; 232 Yin (ref_52) 2019; 61 Alsayari (ref_42) 2019; 166 Tanaka (ref_5) 2009; 10 ref_106 Sohn (ref_76) 2021; 12 Cheng (ref_20) 1991; 116 Uchida (ref_84) 2017; 58 Zhao (ref_157) 2021; 8 Dixon (ref_141) 2005; 165 Zhao (ref_68) 2016; 2 Zhou (ref_31) 2009; 45 ref_41 Xu (ref_146) 2015; 20 Zhao (ref_70) 2019; 12 Williams (ref_18) 2005; 151 Xu (ref_124) 2008; 26 Zhao (ref_71) 2018; 11 Xu (ref_102) 2020; 40 Gao (ref_155) 2018; 5 McGhie (ref_140) 2012; 63 Wang (ref_137) 2018; 247 Feng (ref_120) 2020; 134 Chen (ref_121) 2021; 8 Song (ref_95) 2016; 98 Solfanelli (ref_122) 2006; 140 |
References_xml | – volume: 8 start-page: 25 year: 2021 ident: ref_51 article-title: R2R3-MYB transcription factors, StmiR858 and sucrose mediate potato flavonol biosynthesis publication-title: Hortic. Res. doi: 10.1038/s41438-021-00463-9 – volume: 63 start-page: 695 year: 2012 ident: ref_140 article-title: Transcriptional analysis of apple fruit proanthocyanidin biosynthesis publication-title: J. Exp. Bot. – volume: 49 start-page: 2057 year: 2021 ident: ref_104 article-title: Research Advances of Genes Responsible for Flower Colors in Orchidaceae publication-title: Acta Hortic. Sin. – volume: 18 start-page: 2170 year: 2020 ident: ref_97 article-title: Transgenic expression of flavanone 3-hydroxylase redirects flavonoid biosynthesis and alleviates anthracnose susceptibility in sorghum publication-title: Plant Biotechnol. J. doi: 10.1111/pbi.13397 – volume: 63 start-page: 2513 year: 2012 ident: ref_143 article-title: Molecular cloning and characterization of PtrLAR3, a gene encoding leucoanthocyanidin reductase from Populus trichocarpa, and its constitutive expression enhances fungal resistance in transgenic plants publication-title: J. Exp. Bot. doi: 10.1093/jxb/err425 – volume: 233 start-page: 843 year: 2011 ident: ref_79 article-title: A genomic approach to isoflavone biosynthesis in kudzu (Pueraria lobata) publication-title: Planta doi: 10.1007/s00425-010-1344-1 – volume: 12 start-page: 640746 year: 2021 ident: ref_165 article-title: Isolation and Functional Analysis of Genes Involved in Polyacylated Anthocyanin Biosynthesis in Blue Senecio cruentus publication-title: Front. Plant Sci. doi: 10.3389/fpls.2021.640746 – volume: 8 start-page: 163 year: 2021 ident: ref_161 article-title: SlBBX20 interacts with the COP9 signalosome subunit SlCSN5-2 to regulate anthocyanin biosynthesis by activating SlDFR expression in tomato publication-title: Hortic. Res. doi: 10.1038/s41438-021-00595-y – volume: 57 start-page: 405 year: 2006 ident: ref_135 article-title: Genetics and biochemistry of seed flavonoids publication-title: Annu. Rev. Plant Biol. doi: 10.1146/annurev.arplant.57.032905.105252 – volume: 40 start-page: 517 year: 2021 ident: ref_58 article-title: Isoflavone levels, nodulation and gene expression profiles of a CRISPR/Cas9 deletion mutant in the isoflavone synthase gene of red clover publication-title: Plant Cell Rep. doi: 10.1007/s00299-020-02647-4 – volume: 56 start-page: 465 year: 2018 ident: ref_17 article-title: A comprehensive review on phytochemistry, pharmacology, and flavonoid biosynthesis of Scutellaria baicalensis publication-title: Pharm. Biol. doi: 10.1080/13880209.2018.1492620 – volume: 72 start-page: 968 year: 2008 ident: ref_63 article-title: Expression of parsley flavone synthase I establishes the flavone biosynthetic pathway in Arabidopsis thaliana publication-title: Biosci. Biotechnol. Biochem. doi: 10.1271/bbb.70692 – ident: ref_138 doi: 10.1186/s12870-017-1200-6 – volume: 48 start-page: 1 year: 2021 ident: ref_60 article-title: Research progress on flower color of waterlily (Nymphaea) publication-title: Acta Hortic. Sin. – volume: 53 start-page: 814 year: 2008 ident: ref_154 article-title: Regulation of the anthocyanin biosynthetic pathway by the TTG1/bHLH/Myb transcriptional complex in Arabidopsis seedlings publication-title: Plant J. doi: 10.1111/j.1365-313X.2007.03373.x – volume: 82 start-page: 105 year: 2015 ident: ref_158 article-title: Molecular genetics of blood-fleshed peach reveals activation of anthocyanin biosynthesis by NAC transcription factors publication-title: Plant J. doi: 10.1111/tpj.12792 – ident: ref_35 doi: 10.1186/s12864-021-07658-3 – volume: 161 start-page: 65 year: 2021 ident: ref_54 article-title: Functional characterization of two chalcone isomerase (CHI) revealing their responsibility for anthocyanins accumulation in mulberry publication-title: Plant Physiol. Biochem. doi: 10.1016/j.plaphy.2021.01.044 – volume: 66 start-page: 7165 year: 2015 ident: ref_55 article-title: Role of a chalcone isomerase-like protein in flavonoid biosynthesis in Arabidopsis thaliana publication-title: J. Exp. Bot. doi: 10.1093/jxb/erv413 – volume: 63 start-page: 1037 year: 2020 ident: ref_169 article-title: A UV-B-responsive glycosyltransferase, OsUGT706C2, modulates flavonoid metabolism in rice publication-title: Sci. China Life Sci. doi: 10.1007/s11427-019-1604-3 – volume: 20 start-page: 2388 year: 2015 ident: ref_130 article-title: A sorghum MYB transcription factor induces 3-deoxyanthocyanidins and enhances resistance against leaf blights in maize publication-title: Molecules doi: 10.3390/molecules20022388 – volume: 32 start-page: 3224 year: 2020 ident: ref_163 article-title: Brassinosteroid-Activated BRI1-EMS-SUPPRESSOR 1 Inhibits Flavonoid Biosynthesis and Coordinates Growth and UV-B Stress Responses in Plants publication-title: Plant Cell doi: 10.1105/tpc.20.00048 – volume: 258 start-page: 803 year: 2021 ident: ref_108 article-title: Ectopic expression of DoFLS1 from Dendrobium officinale enhances flavonol accumulation and abiotic stress tolerance in Arabidopsis thaliana publication-title: Protoplasma doi: 10.1007/s00709-020-01599-6 – volume: 28 start-page: 231 year: 2011 ident: ref_32 article-title: Isolation of cDNAs encoding tetrahydroxychalcone 2′-glucosyltransferase activity from carnation, cyclamen, and catharanthus publication-title: Plant Biotechnol. doi: 10.5511/plantbiotechnology.11.0106b – volume: 113 start-page: 755 year: 1997 ident: ref_24 article-title: Isolation of a cDNA and a Genomic Clone Encoding Cinnamate 4-Hydroxylase from Arabidopsis and Its Expression Manner in Planta publication-title: Plant Physiol. doi: 10.1104/pp.113.3.755 – volume: 124 start-page: 419 year: 2005 ident: ref_94 article-title: Investigation of the biosynthesis of 3-deoxyanthocyanins in Sinningia cardinalis publication-title: Physiol. Plant. doi: 10.1111/j.1399-3054.2005.00531.x – volume: 160 start-page: 246 year: 2014 ident: ref_132 article-title: Thermal stability of 3-deoxyanthocyanidin pigments publication-title: Food Chem. doi: 10.1016/j.foodchem.2014.03.105 – volume: 142 start-page: 234 year: 2019 ident: ref_59 article-title: Temporal biosynthesis of flavone constituents in flax growth stages publication-title: Plant Physiol. Biochem. doi: 10.1016/j.plaphy.2019.07.009 – volume: 54 start-page: 1684 year: 2013 ident: ref_166 article-title: Genetic engineering of novel bluer-colored chrysanthemums produced by accumulation of delphinidin-based anthocyanins publication-title: Plant Cell Physiol. doi: 10.1093/pcp/pct111 – volume: 12 start-page: 521 year: 2019 ident: ref_13 article-title: A Crucial Role of GA-Regulated Flavonol Biosynthesis in Root Growth of Arabidopsis publication-title: Mol. Plant doi: 10.1016/j.molp.2018.12.021 – volume: 142 start-page: 92 year: 2017 ident: ref_48 article-title: Occurrences, biosynthesis and properties of aurones as high-end evolutionary products publication-title: Phytochemistry doi: 10.1016/j.phytochem.2017.06.017 – volume: 180 start-page: 1277 year: 2019 ident: ref_111 article-title: Flavonol Biosynthesis Genes and Their Use in Engineering the Plant Antidiabetic Metabolite Montbretin A publication-title: Plant Physiol. doi: 10.1104/pp.19.00254 – ident: ref_73 doi: 10.1371/journal.pgen.1006770 – volume: 8 start-page: 22 year: 2021 ident: ref_160 article-title: The apple 14-3-3 protein MdGRF11 interacts with the BTB protein MdBT2 to regulate nitrate deficiency-induced anthocyanin accumulation publication-title: Hortic. Res. doi: 10.1038/s41438-020-00457-z – ident: ref_62 doi: 10.3390/plants9020215 – volume: 140 start-page: 637 year: 2006 ident: ref_122 article-title: Sucrose-specific induction of the anthocyanin biosynthetic pathway in Arabidopsis publication-title: Plant Physiol. doi: 10.1104/pp.105.072579 – volume: 29 start-page: 1157 year: 2017 ident: ref_27 article-title: A Proteolytic Regulator Controlling Chalcone Synthase Stability and Flavonoid Biosynthesis in Arabidopsis publication-title: Plant Cell doi: 10.1105/tpc.16.00855 – volume: 232 start-page: 383 year: 2010 ident: ref_131 article-title: UDP-glucose:3-deoxyanthocyanidin 5-O-glucosyltransferase from Sinningia cardinalis publication-title: Planta doi: 10.1007/s00425-010-1175-0 – volume: 68 start-page: 139 year: 2018 ident: ref_153 article-title: Repressed expression of a gene for a basic helix-loop-helix protein causes a white flower phenotype in carnation publication-title: Breed. Sci. doi: 10.1270/jsbbs.17072 – volume: 67 start-page: 234 year: 2020 ident: ref_39 article-title: Effect of spruce PjSTS1a, PjSTS2, or PjSTS3 gene overexpression on stilbene biosynthesis in callus cultures of Vitis amurensis Rupr publication-title: Biotechnol. Appl. Biochem. doi: 10.1002/bab.1839 – ident: ref_113 doi: 10.3390/ijms21031011 – volume: 61 start-page: 32 year: 2019 ident: ref_52 article-title: The Research Progress of Chalcone Isomerase (CHI) in Plants publication-title: Mol. Biotechnol. doi: 10.1007/s12033-018-0130-3 – volume: 172 start-page: 1750 year: 2021 ident: ref_103 article-title: Color variation in young and senescent leaves of Formosan sweet gum (Liquidambar formosana) by the gene regulation of anthocyanidin biosynthesis publication-title: Physiol. Plant. doi: 10.1111/ppl.13385 – volume: 38 start-page: 107316 year: 2018 ident: ref_2 article-title: Flavonoid biosynthetic pathways in plants: Versatile targets for metabolic engineering publication-title: Biotechnol. Adv. doi: 10.1016/j.biotechadv.2018.11.005 – volume: 11 start-page: 135 year: 2018 ident: ref_71 article-title: Two CYP82D Enzymes Function as Flavone Hydroxylases in the Biosynthesis of Root-Specific 4’-Deoxyflavones in Scutellaria baicalensis publication-title: Mol. Plant doi: 10.1016/j.molp.2017.08.009 – volume: 25 start-page: 66 year: 2020 ident: ref_19 article-title: Plant Phenylalanine/Tyrosine Ammonia-lyases publication-title: Trends Plant Sci. doi: 10.1016/j.tplants.2019.09.011 – volume: 99 start-page: 175 year: 2004 ident: ref_33 article-title: Variation in chalcononaringenin 2′-O-glucoside content in the petals of carnations (Dianthus caryophyllus) bearing yellow flowers publication-title: Sci. Hortic. doi: 10.1016/S0304-4238(03)00093-1 – volume: 12 start-page: 69 year: 2014 ident: ref_75 article-title: Co-expression of Arabidopsis transcription factor, AtMYB12, and soybean isoflavone synthase, GmIFS1, genes in tobacco leads to enhanced biosynthesis of isoflavones and flavonols resulting in osteoprotective activity publication-title: Plant Biotechnol. J. doi: 10.1111/pbi.12118 – volume: 103 start-page: 11075 year: 2006 ident: ref_47 article-title: Yellow flowers generated by expression of the aurone biosynthetic pathway publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0604246103 – volume: 99 start-page: 67 year: 2019 ident: ref_156 article-title: Ethylene response factors Pp4ERF24 and Pp12ERF96 regulate blue light-induced anthocyanin biosynthesis in ‘Red Zaosu’ pear fruits by interacting with MYB114 publication-title: Plant Mol. Biol. doi: 10.1007/s11103-018-0802-1 – volume: 330 start-page: 677 year: 1987 ident: ref_114 article-title: A new petunia flower colour generated by transformation of a mutant with a maize gene publication-title: Nature doi: 10.1038/330677a0 – volume: 12 start-page: 935 year: 2019 ident: ref_70 article-title: The Reference Genome Sequence of Scutellaria baicalensis Provides Insights into the Evolution of Wogonin Biosynthesis publication-title: Mol. Plant doi: 10.1016/j.molp.2019.04.002 – volume: 7 start-page: 37 year: 2020 ident: ref_159 article-title: PyWRKY26 and PybHLH3 cotargeted the PyMYB114 promoter to regulate anthocyanin biosynthesis and transport in red-skinned pears publication-title: Hortic. Res. doi: 10.1038/s41438-020-0254-z – volume: 247 start-page: 139 year: 2018 ident: ref_137 article-title: Evolutionary and functional characterization of leucoanthocyanidin reductases from Camellia sinensis publication-title: Planta doi: 10.1007/s00425-017-2771-z – volume: 9 start-page: 3042 year: 2020 ident: ref_72 article-title: De Novo Biosynthesis of Multiple Pinocembrin Derivatives in Saccharomyces cerevisiae publication-title: ACS Synth. Biol. doi: 10.1021/acssynbio.0c00289 – ident: ref_117 doi: 10.3390/ijms22063103 – volume: 26 start-page: 536 year: 2008 ident: ref_124 article-title: Molecular cloning and function analysis of an anthocyanidin synthase gene from Ginkgo biloba, and its expression in abiotic stress responses publication-title: Mol. Cells doi: 10.1016/S1016-8478(23)14034-9 – volume: 4 start-page: 356 year: 2021 ident: ref_80 article-title: A combinatorial action of GmMYB176 and GmbZIP5 controls isoflavonoid biosynthesis in soybean (Glycine max) publication-title: Commun. Biol. doi: 10.1038/s42003-021-01889-6 – ident: ref_89 doi: 10.1186/1471-2229-12-196 – volume: 500 start-page: 405 year: 2018 ident: ref_151 article-title: Overexpression of a repressor MdMYB15L negatively regulates anthocyanin and cold tolerance in red-fleshed callus publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2018.04.088 – volume: 98 start-page: 1 year: 2018 ident: ref_123 article-title: Roles of R2R3-MYB transcription factors in transcriptional regulation of anthocyanin biosynthesis in horticultural plants publication-title: Plant Mol. Biol. doi: 10.1007/s11103-018-0771-4 – volume: 62 start-page: 1227 year: 2014 ident: ref_134 article-title: Mutagenesis breeding for increased 3-deoxyanthocyanidin accumulation in leaves of Sorghum bicolor (L.) Moench: A source of natural food pigment publication-title: J. Agric. Food Chem. doi: 10.1021/jf405324j – volume: 23 start-page: 509 year: 2006 ident: ref_30 article-title: Isolation and characterization of a cDNA encoding polyketide reductase in Lotus japonicus publication-title: Plant Biotechnol. doi: 10.5511/plantbiotechnology.23.509 – volume: 56 start-page: 2573 year: 2005 ident: ref_115 article-title: A comprehensive analysis of six dihydroflavonol 4-reductases encoded by a gene cluster of the Lotus japonicus genome publication-title: J. Exp. Bot. doi: 10.1093/jxb/eri251 – volume: 53 start-page: 4904 year: 2020 ident: ref_118 article-title: Light Regulation of Anthocyanin Biosynthesis in Horticultural Crops publication-title: Sci. Agric. Sin. – volume: 177 start-page: 143 year: 2009 ident: ref_36 article-title: Metabolism and roles of stilbenes in plants publication-title: Plant Sci. doi: 10.1016/j.plantsci.2009.05.012 – volume: 116 start-page: 865 year: 1991 ident: ref_20 article-title: Activity of Phenylalanine Ammonia-Lyase (PAL) and Concentrations of Anthocyanins and Phenolics in Developing Strawberry Fruit publication-title: J. Am. Soc. Hortic. Sci. doi: 10.21273/JASHS.116.5.865 – volume: 12 start-page: 616396 year: 2021 ident: ref_53 article-title: Identification and Characterization of Chalcone Isomerase Genes Involved in Flavonoid Production in Dracaena cambodiana publication-title: Front. Plant Sci. doi: 10.3389/fpls.2021.616396 – ident: ref_64 doi: 10.1186/s12864-021-07434-3 – volume: 66 start-page: 581 year: 2018 ident: ref_125 article-title: Overexpression of the Anthocyanidin Synthase (ANS) Gene in Strawberry Enhances Antioxidant Capacity and Cytotoxic Effects on Human Hepatic Cancer Cells publication-title: J. Agric. Food Chem. doi: 10.1021/acs.jafc.7b04177 – volume: 165 start-page: 9 year: 2005 ident: ref_141 article-title: Proanthocyanidins-a final frontier in flavonoid research? publication-title: New Phytol. doi: 10.1111/j.1469-8137.2004.01217.x – volume: 40 start-page: 185 year: 2020 ident: ref_102 article-title: Cloning and Expression Analysis of a Flavanone 3-hydroxylase Gene from Ampelopsis grossedentata publication-title: Acta Bot. Boreali-Occident. Sin. – volume: 258 start-page: 190 year: 2017 ident: ref_167 article-title: Functional expression of plant-derived O-methyltransferase, flavanone 3-hydroxylase, and flavonol synthase in Corynebacterium glutamicum for production of pterostilbene, kaempferol, and quercetin publication-title: J. Biotechnol. doi: 10.1016/j.jbiotec.2017.01.006 – volume: 18 start-page: 1384 year: 2020 ident: ref_11 article-title: Multiplex CRISPR/Cas9-mediated metabolic engineering increases soya bean isoflavone content and resistance to soya bean mosaic virus publication-title: Plant Biotechnol. J. doi: 10.1111/pbi.13302 – volume: 169 start-page: 2409 year: 2015 ident: ref_22 article-title: Four Isoforms of Arabidopsis 4-Coumarate: CoA Ligase Have Overlapping yet Distinct Roles in Phenylpropanoid Metabolism publication-title: Plant Physiol. – volume: 64 start-page: 761 year: 2016 ident: ref_87 article-title: Genetic studies regarding the control of seed pigmentation of an ancient European pointed maize (Zea mays L.) rich in phlobaphenes: The “Nero Spinoso” from the Camonica valley publication-title: Genet. Resour. Crop. Evol. doi: 10.1007/s10722-016-0399-7 – volume: 18 start-page: 1533 year: 2019 ident: ref_133 article-title: 3-Deoxyanthocyanidin Colorant: Nature, Health, Synthesis, and Food Applications publication-title: Compr. Rev. Food Sci. Food Saf. doi: 10.1111/1541-4337.12476 – volume: 98 start-page: 89 year: 2016 ident: ref_95 article-title: Molecular cloning and identification of a flavanone 3-hydroxylase gene from Lycium chinense, and its overexpression enhances drought stress in tobacco publication-title: Plant Physiol. Biochem. doi: 10.1016/j.plaphy.2015.11.011 – volume: 17 start-page: 24 year: 2003 ident: ref_10 article-title: Flavonoid Function and Activity to Plants and Other Organisms publication-title: Biol. Sci. Space doi: 10.2187/bss.17.24 – ident: ref_82 doi: 10.3390/plants10112311 – volume: 5 start-page: 27 year: 2018 ident: ref_155 article-title: Tomato SlAN11 regulates flavonoid biosynthesis and seed dormancy by interaction with bHLH proteins but not with MYB proteins publication-title: Hortic. Res. doi: 10.1038/s41438-018-0032-3 – volume: 37 start-page: 719 year: 2017 ident: ref_162 article-title: Nitrogen Affects Anthocyanin Biosynthesis by Regulating MdLOB52 Downstream of MdARF19 in Callus Cultures of Red-Fleshed Apple (Malus sieversii f. niedzwetzkyana) publication-title: J. Plant Growth Regul. doi: 10.1007/s00344-017-9766-7 – ident: ref_14 doi: 10.3390/nu12030761 – volume: 201 start-page: 1469 year: 2013 ident: ref_26 article-title: Functional diversification of duplicated chalcone synthase genes in anthocyanin biosynthesis of Gerbera hybrida publication-title: New Phytol. doi: 10.1111/nph.12610 – volume: 290 start-page: 1163 year: 2000 ident: ref_43 article-title: Aureusidin Synthase: A Polyphenol Oxidase Homolog Responsible for Flower Coloration publication-title: Science doi: 10.1126/science.290.5494.1163 – volume: 28 start-page: 1297 year: 2016 ident: ref_57 article-title: Identification and Characterization of Maize salmon silks Genes Involved in Insecticidal Maysin Biosynthesis publication-title: Plant Cell doi: 10.1105/tpc.16.00003 – volume: 12 start-page: 691384 year: 2021 ident: ref_148 article-title: Genome-Wide Analysis of MYB Gene Family in Chinese Bayberry (Morella rubra) and Identification of Members Regulating Flavonoid Biosynthesis publication-title: Front. Plant Sci. doi: 10.3389/fpls.2021.691384 – volume: 24 start-page: 743 year: 1994 ident: ref_38 article-title: Cloning and molecular analysis of structural genes involved in flavonoid and stilbene biosynthesis in grape (Vitis vinifera L.) publication-title: Plant Mol. Biol. doi: 10.1007/BF00029856 – volume: 53 start-page: 1096 year: 2013 ident: ref_78 article-title: Expression of Key Genes of the Isoflavonoid Pathway in Hypocotyls and Cotyledons During Soybean Seed Maturation publication-title: Crop. Sci. doi: 10.2135/cropsci2012.05.0267 – volume: 81 start-page: 6276 year: 2015 ident: ref_168 article-title: Development of a Recombinant Escherichia coli Strain for Overproduction of the Plant Pigment Anthocyanin publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.01448-15 – volume: 45 start-page: 4819 year: 2020 ident: ref_69 article-title: Study advance in biosynthesis of flavone from Scutellaria publication-title: China J. Chin. Mater. Med. – volume: 8 start-page: 56 year: 2021 ident: ref_100 article-title: Multiomics-based dissection of citrus flavonoid metabolism using a Citrus reticulata x Poncirus trifoliata population publication-title: Hortic. Res. doi: 10.1038/s41438-021-00472-8 – volume: 298 start-page: 110591 year: 2020 ident: ref_65 article-title: The moss flavone synthase I positively regulates the tolerance of plants to drought stress and UV-B radiation publication-title: Plant Sci. doi: 10.1016/j.plantsci.2020.110591 – volume: 11 start-page: 9 year: 2021 ident: ref_85 article-title: Hormonal and transcriptional analyses provides new insights into the molecular mechanisms underlying root thickening and isoflavonoid biosynthesis in Callerya speciosa (Champ. ex Benth.) Schot publication-title: Sci. Rep. doi: 10.1038/s41598-020-76633-x – volume: 300 start-page: 110632 year: 2020 ident: ref_112 article-title: Functional characterization of three flavonol synthase genes from Camellia sinensis: Roles in flavonol accumulation publication-title: Plant Sci. doi: 10.1016/j.plantsci.2020.110632 – volume: 56 start-page: 28 year: 2015 ident: ref_3 article-title: Achievements and Perspectives in Biochemistry Concerning Anthocyanin Modification for Blue Flower Coloration publication-title: Plant Cell Physiol. doi: 10.1093/pcp/pcu097 – volume: 148 start-page: 729 year: 2013 ident: ref_37 article-title: Botany, phytochemistry, pharmacology, and potential application of Polygonum cuspidatum Sieb.et Zucc.: A review publication-title: J. Ethnopharmacol. doi: 10.1016/j.jep.2013.05.007 – volume: 69 start-page: 109 year: 2006 ident: ref_90 article-title: Characterization of Fusarium-induced expression of flavonoids and PR genes in maize publication-title: Physiol. Mol. Plant Pathol. doi: 10.1016/j.pmpp.2007.02.004 – volume: 8 start-page: 173 year: 2021 ident: ref_121 article-title: Competition between anthocyanin and kaempferol glycosides biosynthesis affects pollen tube growth and seed set of Malus publication-title: Hortic. Res. doi: 10.1038/s41438-021-00609-9 – volume: 151 start-page: 2543 year: 2005 ident: ref_18 article-title: The gene stlA encodes a phenylalanine ammonia-lyase that is involved in the production of a stilbene antibiotic in Photorhabdus luminescens TT01 publication-title: Microbiology doi: 10.1099/mic.0.28136-0 – volume: 10 start-page: 5350 year: 2009 ident: ref_5 article-title: Recent Progress of Flower Colour Modification by Biotechnology publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms10125350 – ident: ref_41 doi: 10.3390/plants10010090 – volume: 296 start-page: 100222 year: 2021 ident: ref_109 article-title: Flavonols modulate lateral root emergence by scavenging reactive oxygen species in Arabidopsis thaliana publication-title: J. Biol. Chem. doi: 10.1074/jbc.RA120.014543 – volume: 60 start-page: 1871 year: 2019 ident: ref_50 article-title: Generation of Yellow Flowers of the Japanese Morning Glory by Engineering Its Flavonoid Biosynthetic Pathway toward Aurones publication-title: Plant Cell Physiol. doi: 10.1093/pcp/pcz101 – volume: 63 start-page: 180 year: 2020 ident: ref_1 article-title: Contribution of phenylpropanoid metabolism to plant development and plant-environment interactions publication-title: J. Integr. Plant Biol. doi: 10.1111/jipb.13054 – volume: 179 start-page: 113014 year: 2020 ident: ref_7 article-title: A spatially-resolved approach to visualize the distribution and biosynthesis of flavones in Scutellaria baicalensis Georgi publication-title: J. Pharm. Biomed. Anal. doi: 10.1016/j.jpba.2019.113014 – volume: 223 start-page: 204 year: 2019 ident: ref_67 article-title: Recruitment of specific flavonoid B-ring hydroxylases for two independent biosynthesis pathways of flavone-derived metabolites in grasses publication-title: New Phytol. doi: 10.1111/nph.15795 – volume: 39 start-page: 335 year: 2018 ident: ref_110 article-title: Research Progress on Key Genes of Flavonol Biosynthesis in Plants publication-title: Sci. Technol. Food Ind. – volume: 1 start-page: 66 year: 2007 ident: ref_45 article-title: Molecular Breeding of Novel Yellow Flowers by Engineering the Aurone Biosynthetic Pathway publication-title: Transgenic Plant J. – volume: 166 start-page: 512 year: 2021 ident: ref_74 article-title: Physiological impact of flavonoids on nodulation and ureide metabolism in legume plants publication-title: Plant Physiol. Biochem. doi: 10.1016/j.plaphy.2021.06.007 – volume: 164 start-page: 489 year: 2003 ident: ref_91 article-title: Biochemical formation of anthocyanins in silk tissue of Zea mays publication-title: Plant Sci. doi: 10.1016/S0168-9452(02)00433-8 – volume: 10 start-page: 1330 year: 2019 ident: ref_107 article-title: Functional Differentiation of Duplicated Flavonoid 3-O-Glycosyltransferases in the Flavonol and Anthocyanin Biosynthesis of Freesia hybrida publication-title: Front. Plant Sci. doi: 10.3389/fpls.2019.01330 – volume: 10 start-page: 1417 year: 2020 ident: ref_86 article-title: Phlobaphenes modify pericarp thickness in maize and accumulation of the fumonisin mycotoxins publication-title: Sci. Rep. doi: 10.1038/s41598-020-58341-8 – volume: 8 start-page: 116 year: 2021 ident: ref_149 article-title: CRISPR/Cas9-mediated targeted mutation reveals a role for AN4 rather than DPL in regulating venation formation in the corolla tube of Petunia hybrida publication-title: Hortic. Res. doi: 10.1038/s41438-021-00555-6 – volume: 57 start-page: 761 year: 2006 ident: ref_8 article-title: The genetics and biochemistry of floral pigments publication-title: Annu. Rev. Plant Biol. doi: 10.1146/annurev.arplant.57.032905.105248 – volume: 293 start-page: 28 year: 2018 ident: ref_40 article-title: Stilbenoid prenyltransferases define key steps in the diversification of peanut phytoalexins publication-title: J. Biol. Chem. doi: 10.1074/jbc.RA117.000564 – volume: 45 start-page: 111 year: 2009 ident: ref_31 article-title: Advances in Study on Formation Mechanism and Genetic Engineering of Yellow Flowers publication-title: Sci. Silvae Sin. – volume: 296 start-page: 110473 year: 2020 ident: ref_145 article-title: Mulberry genes MnANR and MnLAR confer transgenic plants with resistance to Botrytis cinerea publication-title: Plant Sci. doi: 10.1016/j.plantsci.2020.110473 – volume: 229 start-page: 3237 year: 2020 ident: ref_25 article-title: NF-Y plays essential roles in flavonoid biosynthesis by modulating histone modifications in tomato publication-title: New Phytol. doi: 10.1111/nph.17112 – volume: 12 start-page: 701780 year: 2021 ident: ref_99 article-title: Functional Characterisation of Banana (Musa spp.) 2-Oxoglutarate-Dependent Dioxygenases Involved in Flavonoid Biosynthesis publication-title: Front. Plant Sci. doi: 10.3389/fpls.2021.701780 – volume: 8 start-page: 157 year: 2021 ident: ref_170 article-title: Integrative iTRAQ-based proteomic and transcriptomic analysis reveals the accumulation patterns of key metabolites associated with oil quality during seed ripening of Camellia oleifera publication-title: Hortic. Res. doi: 10.1038/s41438-021-00591-2 – volume: 112 start-page: 108612 year: 2019 ident: ref_15 article-title: Luteolin, a flavonoid, as an anticancer agent: A review publication-title: Biomed. Pharmacother. doi: 10.1016/j.biopha.2019.108612 – volume: 342 start-page: 128292 year: 2021 ident: ref_77 article-title: Isoflavonoid biosynthesis in cultivated and wild soybeans grown in the field under adverse climate conditions publication-title: Food Chem. doi: 10.1016/j.foodchem.2020.128292 – volume: 71 start-page: 1040 year: 2010 ident: ref_136 article-title: Multifunctional flavonoid dioxygenases: Flavonol and anthocyanin biosynthesis in Arabidopsis thaliana L. publication-title: Phytochemistry doi: 10.1016/j.phytochem.2010.04.016 – volume: 64 start-page: 79 year: 2010 ident: ref_23 article-title: Effect of urban pollution on 4-coumarate: CoA ligase and flavonoid accumulation in Berberis thunbergii publication-title: Dendrobiology – volume: 54 start-page: 1696 year: 2013 ident: ref_126 article-title: Violet/blue chrysanthemums—Metabolic engineering of the anthocyanin biosynthetic pathway results in novel petal colors publication-title: Plant Cell Physiol. doi: 10.1093/pcp/pct110 – volume: 579 start-page: 6074 year: 2005 ident: ref_56 article-title: Flavonoid components and flower color change in transgenic tobacco plants by suppression of chalcone isomerase gene publication-title: FEBS Lett. doi: 10.1016/j.febslet.2005.09.073 – volume: 280 start-page: 30496 year: 2005 ident: ref_29 article-title: Structural Elucidation of Chalcone Reductase and Implications for Deoxychalcone Biosynthesis publication-title: J. Biol. Chem. doi: 10.1074/jbc.M502239200 – ident: ref_96 doi: 10.1186/s12870-016-0813-5 – volume: 55 start-page: 216 year: 2020 ident: ref_127 article-title: Recent Advances on Blue Flower Formation publication-title: Chin. Bull. Bot. – ident: ref_16 doi: 10.3390/molecules22020292 – volume: 12 start-page: 65 year: 2000 ident: ref_92 article-title: Expression Profiling of the Maize Flavonoid Pathway Genes Controlled by Estradiol-Inducible Transcription Factors CRC and P publication-title: Plant Cell doi: 10.1105/tpc.12.1.65 – volume: 7 start-page: 103 year: 2020 ident: ref_150 article-title: CsMYB60 directly and indirectly activates structural genes to promote the biosynthesis of flavonols and proanthocyanidins in cucumber publication-title: Hortic. Res. doi: 10.1038/s41438-020-0327-z – volume: 12 start-page: 670103 year: 2021 ident: ref_76 article-title: Metabolic Engineering of Isoflavones: An Updated Overview publication-title: Front. Plant Sci. doi: 10.3389/fpls.2021.670103 – volume: 134 start-page: 159 year: 2020 ident: ref_120 article-title: The dihydroflavonol 4-reductase BoDFR1 drives anthocyanin accumulation in pink-leaved ornamental kale publication-title: Theor. Appl. Genet. doi: 10.1007/s00122-020-03688-9 – volume: 8 start-page: 110 year: 2021 ident: ref_157 article-title: CsbZIP1-CsMYB12 mediates the production of bitter-tasting flavonols in tea plants (Camellia sinensis) through a coordinated activator-repressor network publication-title: Hortic. Res. doi: 10.1038/s41438-021-00545-8 – volume: 15 start-page: 573 year: 2010 ident: ref_147 article-title: MYB transcription factors in Arabidopsis publication-title: Trends Plant Sci. doi: 10.1016/j.tplants.2010.06.005 – volume: 160 start-page: 1407 year: 2012 ident: ref_34 article-title: Structural, functional, and evolutionary analysis of the unusually large stilbene synthase gene family in grapevine publication-title: Plant Physiol. doi: 10.1104/pp.112.202705 – volume: 144 start-page: 741 year: 2007 ident: ref_66 article-title: Flavone synthases from Medicago truncatula are flavanone-2-hydroxylases and are important for nodulation publication-title: Plant Physiol. doi: 10.1104/pp.106.095018 – volume: 56 start-page: 548 year: 2020 ident: ref_144 article-title: Overexpression of the OvBAN gene enhances the proanthocyanidin content in transgenic alfalfa (Medicago sativa L.) publication-title: In Vitr. Cell. Dev. Biol.-Plant doi: 10.1007/s11627-020-10053-4 – volume: 153 start-page: 806 year: 2010 ident: ref_105 article-title: Ectopic expression of apple F3’H genes contributes to anthocyanin accumulation in the Arabidopsis tt7 mutant grown under nitrogen stress publication-title: Plant Physiol. doi: 10.1104/pp.109.152801 – volume: 43 start-page: 219 year: 2021 ident: ref_142 article-title: Advances in Biosynthesis and Regulation of Plant Proanthocyanidins publication-title: Chin. J. Cell Biol. – volume: 94 start-page: 487 year: 2002 ident: ref_44 article-title: Enzymology of Aurone Biosynthesis publication-title: J. Biosci. Bioeng. doi: 10.1016/S1389-1723(02)80184-0 – volume: 499 start-page: 107 year: 2001 ident: ref_49 article-title: Specificity analysis and mechanism of aurone synthesis catalyzed by aureusidin synthase, a polyphenol oxidase homolog responsible for flower coloration publication-title: FEBS Lett. doi: 10.1016/S0014-5793(01)02529-7 – volume: 126 start-page: 485 year: 2001 ident: ref_4 article-title: Flavonoid Biosynthesis. A Colorful Model for Genetics, Biochemistry, Cell Biology, and Biotechnology publication-title: Plant Physiol. doi: 10.1104/pp.126.2.485 – volume: 36 start-page: 2838 year: 2020 ident: ref_101 article-title: Identification of flavonoids 3-hydroxylase from [Silybum marianum (L.) Gaertn] and its application in enhanced production of taxifolin publication-title: Chin. J. Biotechnol. – volume: 6 start-page: 1655 year: 1994 ident: ref_88 article-title: Elements of the maize A1 promoter required for transactivation by the anthocyanin B/C1 or phlobaphene P regulatory genes publication-title: Plant Cell – volume: 2 start-page: e1501780 year: 2016 ident: ref_68 article-title: A specialized flavone biosynthetic pathway has evolved in the medicinal plant, Scutellaria baicalensis publication-title: Sci. Adv. doi: 10.1126/sciadv.1501780 – volume: 45 start-page: 177 year: 2018 ident: ref_98 article-title: Biosynthesis of Flavonol and Its Regulation in Plants publication-title: Acta Hortic. Sin. – volume: 20 start-page: 176 year: 2015 ident: ref_146 article-title: Transcriptional control of flavonoid biosynthesis by MYB-bHLH-WDR complexes publication-title: Trends Plant Sci. doi: 10.1016/j.tplants.2014.12.001 – volume: 38 start-page: 392 year: 2007 ident: ref_81 article-title: The pathway of isoflavone biosynthesis and its regulation publication-title: J. Northeast. Agric. Univ. – volume: 11 start-page: 619598 year: 2021 ident: ref_93 article-title: Characterization of Maize Near-Isogenic Lines With Enhanced Flavonoid Expression to Be Used as Tools in Diet-Health Complexity publication-title: Front. Plant Sci. doi: 10.3389/fpls.2020.619598 – volume: 112 start-page: 335 year: 2017 ident: ref_152 article-title: Anthocyanin biosynthesis regulation of DhMYB2 and DhbHLH1 in Dendrobium hybrids petals publication-title: Plant Physiol. Biochem. doi: 10.1016/j.plaphy.2017.01.019 – volume: 144 start-page: 1520 year: 2007 ident: ref_28 article-title: RNA interference silencing of chalcone synthase, the first step in the flavonoid biosynthesis pathway, leads to parthenocarpic tomato fruits publication-title: Plant Physiol. doi: 10.1104/pp.107.100305 – volume: 45 start-page: 133 year: 2006 ident: ref_46 article-title: Localization of a flavonoid biosynthetic polyphenol oxidase in vacuoles publication-title: Plant J. doi: 10.1111/j.1365-313X.2005.02625.x – volume: 58 start-page: 398 year: 2017 ident: ref_84 article-title: The Missing Link in Leguminous Pterocarpan Biosynthesis is a Dirigent Domain-Containing Protein with Isoflavanol Dehydratase Activity publication-title: Plant Cell Physiol. doi: 10.1093/pcp/pcw213 – volume: 25 start-page: 555 year: 2008 ident: ref_128 article-title: Flavonoids and their glycosides, including anthocyanins publication-title: Nat. Prod. Rep. doi: 10.1039/b718040n – volume: 181 start-page: 1097 year: 2020 ident: ref_164 article-title: The Penium margaritaceum Genome: Hallmarks of the Origins of Land Plants publication-title: Cell doi: 10.1016/j.cell.2020.04.019 – volume: 231 start-page: 933 year: 2021 ident: ref_116 article-title: Repressors of anthocyanin biosynthesis publication-title: New Phytol. doi: 10.1111/nph.17397 – volume: 81 start-page: E2950 year: 2016 ident: ref_129 article-title: Photochromic Properties of 3-Deoxyanthocyanidin Pigments in Nontoxic Solvents publication-title: J. Food Sci. doi: 10.1111/1750-3841.13548 – volume: 3 start-page: e1602785 year: 2017 ident: ref_6 article-title: Generation of blue chrysanthemums by anthocyanin B-ring hydroxylation and glucosylation and its coloration mechanism publication-title: Sci. Adv. doi: 10.1126/sciadv.1602785 – volume: 39 start-page: 597 year: 2020 ident: ref_21 article-title: Functional expression and characterization of cinnamic acid 4-hydroxylase from the hornwort Anthoceros agrestis in Physcomitrella patens publication-title: Plant Cell Rep. doi: 10.1007/s00299-020-02517-z – volume: 4 start-page: 1034 year: 2018 ident: ref_139 article-title: Proanthocyanidin subunit composition determined by functionally diverged dioxygenases publication-title: Nature Plants doi: 10.1038/s41477-018-0292-9 – volume: 2 start-page: 132 year: 2013 ident: ref_9 article-title: The Antioxidants Changes in Ornamental Flowers during Development and Senescence publication-title: Antioxidants doi: 10.3390/antiox2030132 – volume: 12 start-page: 29 year: 2007 ident: ref_12 article-title: Flavonoid oxidation in plants: From biochemical properties to physiological functions publication-title: Trends Plant Sci. doi: 10.1016/j.tplants.2006.11.006 – ident: ref_83 doi: 10.3390/metabo11070433 – volume: 66 start-page: 3524 year: 2018 ident: ref_119 article-title: Reduction of Dihydrokaempferol by Vitis vinfera Dihydroflavonol 4-Reductase to Produce Orange Pelargonidin-Type Anthocyanins publication-title: J. Agric. Food Chem. doi: 10.1021/acs.jafc.7b05766 – volume: 166 start-page: 417 year: 2019 ident: ref_42 article-title: Aurone: A biologically attractive scaffold as anticancer agent publication-title: Eur. J. Med. Chem. doi: 10.1016/j.ejmech.2019.01.078 – volume: 6 start-page: 19245 year: 2016 ident: ref_61 article-title: Flavone synthases from Lonicera japonica and L. macranthoides reveal differential flavone accumulation publication-title: Sci. Rep. doi: 10.1038/srep19245 – ident: ref_106 doi: 10.1186/1471-2229-10-155 |
SSID | ssj0023259 |
Score | 2.7145553 |
SecondaryResourceType | review_article |
Snippet | Flavonoids are an important class of secondary metabolites widely found in plants, contributing to plant growth and development and having prominent... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 12824 |
SubjectTerms | Alzheimer's disease Biosynthesis Biosynthetic Pathways Carbon dioxide Enzymes Flavonoids Flavonoids - biosynthesis Gene expression Gene Expression Regulation, Plant Gene Regulatory Networks Hydrocarbons Lignin Metabolism Metabolites Pigments Plant Proteins - genetics Plant Proteins - metabolism Plants - metabolism Review |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fS8MwEA46EXwRf1udUkF8WtjSpGn7JCKOIbgnB3srTZNgZbbTdsL-ey9t11lFX5tLG-7S-75LjjuErjWQbo9oiTnQX8x0EOHICXwcczVw_TiSVJob3acxH03Y49Sd1gdueZ1WufKJpaOWWWzOyPvAuwGLAM4Gt_N3bLpGmdvVuoXGJtoypctMSpc3XQdc1CmbpRHAIFhLwKsamxTC_H7y-pYbaDSvZG1M-kU0f-ZLfgOg4R7arZmjfVeZeh9tqPQAbVe9JJeHqAcGt4ez6DNLs0Ta8DxfpsDu8iS3x1Wut52ktmlSVORHaDJ8eL4f4boVAo6ZTwosYgYK5SqQUoB78ogEnA205r5iMY008agINAFv4Q-0DyGOkJQJCGUYF4HwI3qMOmmWqlNkS6UdJ_YApCTMjZQAxQ6IDIA6SIhKPQv1VsoI47pOuGlXMQshXjC6C1u6s9BNIz6vCmT8JdhdaTas_5M8XFvVQlfNMOxwc20RpSpbVDIuBaLkWOikMkTzJQr-h3EHFu21TNQImOrZ7ZE0eSmraPvcNcHY2f_LOkc7jsliIQQ7vIs6xcdCXQANKcRlude-AMZ421k priority: 102 providerName: ProQuest |
Title | The Flavonoid Biosynthesis Network in Plants |
URI | https://www.ncbi.nlm.nih.gov/pubmed/34884627 https://www.proquest.com/docview/2608128220 https://www.proquest.com/docview/2608535842 https://pubmed.ncbi.nlm.nih.gov/PMC8657439 |
Volume | 22 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED_8QNmL-G39GBXEp1XXNk3SBxEVpwgOEQd7K02TYGV2um7i_nsvdqvO6YsvfUguFO6S_H4_ctwBHGgk3czV0qFIfx2iw9iJvZA7CVX1gCex9KV50b1t0usWuWkH7a-SQiMH5r9KO9NPqtXrHL2_Dk_xwJ8YxYmS_Th9es4NzOFV65FZmEdQYuaM3pLyQQF5QxAWJTanl1Rg0cd9TKhpLfMdnaYo58_MyW9Q1FiGpRGHtM-KoK_AjMpWYaHoKjlcgxqG3m504rdu1k2ljeP5MEOel6e53Syyvu00s027on6-Dq3G5cPFtTNqiuAkhLt9RyQEXUtVKKXAi4q5EhE31JpyRRI_1i7zRahdvDd4XXMUO0L6RKCoIVSEgsf-Bsxl3UxtgS2V9ryEIVxJXBsrQZE-ujJEEiFRnzILamNnRMmoYrhpXNGJUDkYN0YTbrTgsDR_KUpl_GW4O_ZsNA54hLqKm1mvbsF-OY173TxgxJnqDgqbwEfK5FmwWQSi_NM4ghawiRCVBqaO9uRMlj5-1tPmNDCybPvfK3eg4plUF9d1PLoLc_3eQO0hV-mLKsyyNsMvb1xVYf78snl3XzXoEVQ_9-cHYT_uFQ |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bT9swFD5inabxgtjGoFy2TNr2hNX4Uid-QAixVWVAn0DqWxbHtpYJEiAtqH-K38hx05R1E3vjNXYS-1z8fSd2zgH47JB0R9QZIpH-EuFUSlKmYpJJG3bjLDXc-B3d04Hsn4sfw-5wCe6bf2H8scpmTZwu1KbM_DfyDvJuxCKEs3D_6pr4qlF-d7UpoVGbxbGd3GHIVu0dfUP9fmGs9_3ssE9mVQVIJmI6IjoTODZplTEaPT2iBiFLOSdjKzKeOhpxrRxFx4tDF2O0oA0XGqMCIbXSccrxuS_gJQJv6D0qGj4GeJxNi7NRxDycu5J1Tk_OVdjJf19WHor9FMQiBv5DbP8-n_kH4PVWYWXGVIOD2rTewJIt3sKrunbl5B3sooEFvYv0tizK3AR4vZoUyCarvAoG9dnyIC8CXxRpVK3B-bMI6T20irKwGxAY6xjLIgRFg_emVqMiQ2oUUhWDUXDUht1GGEk2y0vuy2NcJBifeNklC7Jrw9d596s6IcdTHbcbySYzv6ySRytqw6d5M3qU3yZJC1uO6z5djsSMtWG9VsT8TRzXOyEZDjpaUNG8g8_WvdhS5L-mWbtj2fXB3-b_h_URXvfPTk-Sk6PB8RYsM3-ChlLC5Da0Rjdju4MUaKQ_TO0ugJ_PbegPXpMYRw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bT9RAFD4BDMQXoyCyiloS8InJdi6ddh6IMeKG64YHSfatdDozsQRbtItm_5q_jjPbdnEx8sZrO22n5zLfdzqn5wBsOyTdMXWGSKS_RDiVkYyphOTShlGSZ4Ybv6N7OpQH5-JoFI0W4E_3L4xPq-zWxOlCbarcfyPvI-9GLEI4C_uuTYs42x98vP5BfAcpv9PatdNoTOTYTn5j-FbvHe6jrncYG3z5-vmAtB0GSC4SOiY6FzhPaZUxGr0-pgbhSzknEytynjkac60cRSdMQpdg5KANFxojBCG10knG8b6L8CTmEfU-Fo_ugj3Opo3aKOIfykHJpr4n5yrsF5ffaw_L_nXEPB7-Q3Lv52r-BX6D5_CsZa3Bp8bMXsCCLVdhueljOVmDXTS2YHCV_arKqjABHq8nJTLLuqiDYZNnHhRl4BskjeuXcP4oQlqHpbIq7QYExjrG8hgB0uC1mdWo1JAahbTFYEQc92C3E0aatzXKfauMqxRjFS-7dE52PfgwG37dFOf438DNTrJp66N1emdRPdianUbv8lsmWWmrm2ZMxJGksR68ahQxexLHtU9IhpOO51Q0G-Ard8-fKYtv0wreiYx8IPj64Wm9hxU08fTkcHj8Bp4yn0xDKWFyE5bGP2_sW2RDY_1uanYBXDy2nd8CQt0cfQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Flavonoid+Biosynthesis+Network+in+Plants&rft.jtitle=International+journal+of+molecular+sciences&rft.au=Liu%2C+Weixin&rft.au=Feng%2C+Yi&rft.au=Yu%2C+Suhang&rft.au=Fan%2C+Zhengqi&rft.date=2021-11-26&rft.pub=MDPI&rft.eissn=1422-0067&rft.volume=22&rft.issue=23&rft_id=info:doi/10.3390%2Fijms222312824&rft_id=info%3Apmid%2F34884627&rft.externalDocID=PMC8657439 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1422-0067&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1422-0067&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1422-0067&client=summon |