The Flavonoid Biosynthesis Network in Plants

Flavonoids are an important class of secondary metabolites widely found in plants, contributing to plant growth and development and having prominent applications in food and medicine. The biosynthesis of flavonoids has long been the focus of intense research in plant biology. Flavonoids are derived...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of molecular sciences Vol. 22; no. 23; p. 12824
Main Authors Liu, Weixin, Feng, Yi, Yu, Suhang, Fan, Zhengqi, Li, Xinlei, Li, Jiyuan, Yin, Hengfu
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 26.11.2021
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Flavonoids are an important class of secondary metabolites widely found in plants, contributing to plant growth and development and having prominent applications in food and medicine. The biosynthesis of flavonoids has long been the focus of intense research in plant biology. Flavonoids are derived from the phenylpropanoid metabolic pathway, and have a basic structure that comprises a C15 benzene ring structure of C6-C3-C6. Over recent decades, a considerable number of studies have been directed at elucidating the mechanisms involved in flavonoid biosynthesis in plants. In this review, we systematically summarize the flavonoid biosynthetic pathway. We further assemble an exhaustive map of flavonoid biosynthesis in plants comprising eight branches (stilbene, aurone, flavone, isoflavone, flavonol, phlobaphene, proanthocyanidin, and anthocyanin biosynthesis) and four important intermediate metabolites (chalcone, flavanone, dihydroflavonol, and leucoanthocyanidin). This review affords a comprehensive overview of the current knowledge regarding flavonoid biosynthesis, and provides the theoretical basis for further elucidating the pathways involved in the biosynthesis of flavonoids, which will aid in better understanding their functions and potential uses.
AbstractList Flavonoids are an important class of secondary metabolites widely found in plants, contributing to plant growth and development and having prominent applications in food and medicine. The biosynthesis of flavonoids has long been the focus of intense research in plant biology. Flavonoids are derived from the phenylpropanoid metabolic pathway, and have a basic structure that comprises a C15 benzene ring structure of C6-C3-C6. Over recent decades, a considerable number of studies have been directed at elucidating the mechanisms involved in flavonoid biosynthesis in plants. In this review, we systematically summarize the flavonoid biosynthetic pathway. We further assemble an exhaustive map of flavonoid biosynthesis in plants comprising eight branches (stilbene, aurone, flavone, isoflavone, flavonol, phlobaphene, proanthocyanidin, and anthocyanin biosynthesis) and four important intermediate metabolites (chalcone, flavanone, dihydroflavonol, and leucoanthocyanidin). This review affords a comprehensive overview of the current knowledge regarding flavonoid biosynthesis, and provides the theoretical basis for further elucidating the pathways involved in the biosynthesis of flavonoids, which will aid in better understanding their functions and potential uses.
Flavonoids are an important class of secondary metabolites widely found in plants, contributing to plant growth and development and having prominent applications in food and medicine. The biosynthesis of flavonoids has long been the focus of intense research in plant biology. Flavonoids are derived from the phenylpropanoid metabolic pathway, and have a basic structure that comprises a C15 benzene ring structure of C6-C3-C6. Over recent decades, a considerable number of studies have been directed at elucidating the mechanisms involved in flavonoid biosynthesis in plants. In this review, we systematically summarize the flavonoid biosynthetic pathway. We further assemble an exhaustive map of flavonoid biosynthesis in plants comprising eight branches (stilbene, aurone, flavone, isoflavone, flavonol, phlobaphene, proanthocyanidin, and anthocyanin biosynthesis) and four important intermediate metabolites (chalcone, flavanone, dihydroflavonol, and leucoanthocyanidin). This review affords a comprehensive overview of the current knowledge regarding flavonoid biosynthesis, and provides the theoretical basis for further elucidating the pathways involved in the biosynthesis of flavonoids, which will aid in better understanding their functions and potential uses.Flavonoids are an important class of secondary metabolites widely found in plants, contributing to plant growth and development and having prominent applications in food and medicine. The biosynthesis of flavonoids has long been the focus of intense research in plant biology. Flavonoids are derived from the phenylpropanoid metabolic pathway, and have a basic structure that comprises a C15 benzene ring structure of C6-C3-C6. Over recent decades, a considerable number of studies have been directed at elucidating the mechanisms involved in flavonoid biosynthesis in plants. In this review, we systematically summarize the flavonoid biosynthetic pathway. We further assemble an exhaustive map of flavonoid biosynthesis in plants comprising eight branches (stilbene, aurone, flavone, isoflavone, flavonol, phlobaphene, proanthocyanidin, and anthocyanin biosynthesis) and four important intermediate metabolites (chalcone, flavanone, dihydroflavonol, and leucoanthocyanidin). This review affords a comprehensive overview of the current knowledge regarding flavonoid biosynthesis, and provides the theoretical basis for further elucidating the pathways involved in the biosynthesis of flavonoids, which will aid in better understanding their functions and potential uses.
Author Feng, Yi
Liu, Weixin
Yin, Hengfu
Li, Jiyuan
Yu, Suhang
Li, Xinlei
Fan, Zhengqi
AuthorAffiliation 1 State Key Laboratory of Tree Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China; lwx060624@163.com (W.L.); fy11071107@163.com (Y.F.); yusuhang819@163.com (S.Y.); fzq_76@126.com (Z.F.); lixinlei2020@163.com (X.L.)
2 Key Laboratory of Forest Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
AuthorAffiliation_xml – name: 1 State Key Laboratory of Tree Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China; lwx060624@163.com (W.L.); fy11071107@163.com (Y.F.); yusuhang819@163.com (S.Y.); fzq_76@126.com (Z.F.); lixinlei2020@163.com (X.L.)
– name: 2 Key Laboratory of Forest Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
Author_xml – sequence: 1
  givenname: Weixin
  orcidid: 0000-0002-2076-3342
  surname: Liu
  fullname: Liu, Weixin
– sequence: 2
  givenname: Yi
  surname: Feng
  fullname: Feng, Yi
– sequence: 3
  givenname: Suhang
  surname: Yu
  fullname: Yu, Suhang
– sequence: 4
  givenname: Zhengqi
  surname: Fan
  fullname: Fan, Zhengqi
– sequence: 5
  givenname: Xinlei
  surname: Li
  fullname: Li, Xinlei
– sequence: 6
  givenname: Jiyuan
  surname: Li
  fullname: Li, Jiyuan
– sequence: 7
  givenname: Hengfu
  orcidid: 0000-0002-0720-5311
  surname: Yin
  fullname: Yin, Hengfu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34884627$$D View this record in MEDLINE/PubMed
BookMark eNp1kb1PwzAQxS1URD9gZEWRWBgI-CuOvSBBRQGpAoYyW07iUJfELnFS1P-elJaKVmK6k-53T_fe9UHHOqsBOEXwihABr82s9BhjgjDH9AD0EMU4hJDFnT99F_S9n0GICY7EEegSyjllOO6By8lUB6NCLZx1JgvujPNLW0-1Nz541vWXqz4CY4PXQtnaH4PDXBVen2zqALyN7ifDx3D88vA0vB2HKeWoDpOUojxjWmRZIhCKUYZ4JPKccU1TonIUk0TkiMSMw5wjypOM0EQwRlkiEq7IANysdedNUuos1bauVCHnlSlVtZROGbk7sWYq391CchbFlIhW4GIjULnPRvtalsanumhdaNd4iRnkEYk4xS16vofOXFPZ1t4PtYoVw5Y6-3vR9pTfIFsgXANp5byvdL5FEJSrR8mdR7U82eNTU6vauJUhU_yz9Q3ck5Xa
CitedBy_id crossref_primary_10_1007_s11101_024_10008_2
crossref_primary_10_3390_antiox14010074
crossref_primary_10_1016_j_scitotenv_2024_169920
crossref_primary_10_1016_j_fbio_2023_102360
crossref_primary_10_1007_s11694_024_02838_7
crossref_primary_10_1016_j_cj_2024_03_012
crossref_primary_10_1016_j_talanta_2024_126871
crossref_primary_10_1111_ppl_13950
crossref_primary_10_1016_j_fochx_2024_101143
crossref_primary_10_1016_j_scienta_2024_113309
crossref_primary_10_1007_s00425_022_04026_7
crossref_primary_10_1016_j_fochx_2024_101159
crossref_primary_10_1016_j_scienta_2024_113308
crossref_primary_10_1111_pbi_14522
crossref_primary_10_3390_plants14050753
crossref_primary_10_1007_s10725_022_00953_3
crossref_primary_10_3390_genes14101944
crossref_primary_10_1155_2024_1139944
crossref_primary_10_3390_agronomy13092397
crossref_primary_10_1016_j_foodres_2025_115759
crossref_primary_10_3389_fpls_2023_1274700
crossref_primary_10_1002_fft2_422
crossref_primary_10_1016_j_cropd_2025_100100
crossref_primary_10_6023_cjoc202403025
crossref_primary_10_7717_peerj_ochem_9
crossref_primary_10_1016_j_crbiot_2025_100274
crossref_primary_10_3390_ijms252111459
crossref_primary_10_1093_dnares_dsad028
crossref_primary_10_1007_s10725_024_01266_3
crossref_primary_10_1007_s43393_024_00317_0
crossref_primary_10_1016_j_scienta_2024_113311
crossref_primary_10_3390_ijms25147761
crossref_primary_10_1016_j_jhazmat_2024_136186
crossref_primary_10_3390_pharmaceutics15020628
crossref_primary_10_3390_cimb46120855
crossref_primary_10_3389_fevo_2023_1215191
crossref_primary_10_3390_antibiotics11101380
crossref_primary_10_1016_j_indcrop_2023_117796
crossref_primary_10_1016_j_jare_2024_11_019
crossref_primary_10_31857_S0016675823090047
crossref_primary_10_1016_j_plaphy_2025_109491
crossref_primary_10_3390_biom13010041
crossref_primary_10_3934_agrfood_2024039
crossref_primary_10_3389_fpls_2022_952758
crossref_primary_10_3389_fnut_2022_928805
crossref_primary_10_3389_fbioe_2023_1272811
crossref_primary_10_1007_s11103_024_01446_9
crossref_primary_10_1002_tpg2_20439
crossref_primary_10_1016_j_xplc_2024_101075
crossref_primary_10_1016_j_microc_2025_113170
crossref_primary_10_1016_j_phyplu_2024_100558
crossref_primary_10_3390_ijms24021299
crossref_primary_10_1016_j_indcrop_2024_119194
crossref_primary_10_32604_phyton_2024_047949
crossref_primary_10_3390_biomedicines12030644
crossref_primary_10_1016_j_amolm_2024_100048
crossref_primary_10_1515_jib_2024_0050
crossref_primary_10_3390_genes14030752
crossref_primary_10_1016_j_hpj_2024_08_002
crossref_primary_10_3390_ijms242317118
crossref_primary_10_1080_17429145_2023_2210163
crossref_primary_10_1093_plcell_koae167
crossref_primary_10_3390_ijms242216384
crossref_primary_10_1039_D4AY01654H
crossref_primary_10_1111_tpj_16854
crossref_primary_10_1186_s12870_023_04630_z
crossref_primary_10_1016_j_stress_2025_100746
crossref_primary_10_1016_j_phytochem_2023_113896
crossref_primary_10_3390_metabo13010124
crossref_primary_10_3390_ijms24021153
crossref_primary_10_1093_fqsafe_fyae014
crossref_primary_10_1080_12298093_2023_2273028
crossref_primary_10_3390_metabo13060716
crossref_primary_10_3389_fpls_2025_1540674
crossref_primary_10_48130_MPB_2023_0018
crossref_primary_10_3390_nu15132938
crossref_primary_10_1021_acs_jafc_3c01883
crossref_primary_10_1007_s12033_024_01338_9
crossref_primary_10_1016_j_plaphy_2023_107649
crossref_primary_10_3389_fpls_2023_1130047
crossref_primary_10_3390_plants14060883
crossref_primary_10_3389_fphar_2024_1322083
crossref_primary_10_1016_j_envexpbot_2023_105583
crossref_primary_10_1007_s00572_024_01155_7
crossref_primary_10_3390_antiox13121472
crossref_primary_10_1002_adfm_202422664
crossref_primary_10_3390_molecules29102252
crossref_primary_10_1016_j_foodchem_2023_135581
crossref_primary_10_1016_j_foodchem_2024_139207
crossref_primary_10_3390_plants13233389
crossref_primary_10_3390_ijms24010247
crossref_primary_10_1093_jaoacint_qsad024
crossref_primary_10_1093_hr_uhae068
crossref_primary_10_1016_j_indcrop_2023_117622
crossref_primary_10_1016_j_jare_2024_10_015
crossref_primary_10_3389_fpls_2024_1424956
crossref_primary_10_3390_ijms231810217
crossref_primary_10_3390_ijms241813901
crossref_primary_10_1016_j_jplph_2023_154043
crossref_primary_10_1016_j_jafr_2024_101197
crossref_primary_10_1016_j_phymed_2023_155259
crossref_primary_10_1021_acs_jafc_4c11168
crossref_primary_10_1186_s12870_024_05909_5
crossref_primary_10_3390_horticulturae9121351
crossref_primary_10_3390_horticulturae10040420
crossref_primary_10_3389_fchem_2022_1005360
crossref_primary_10_3389_fpls_2022_933849
crossref_primary_10_1021_acsomega_2c03820
crossref_primary_10_1016_j_pld_2023_02_001
crossref_primary_10_3390_ijms23094652
crossref_primary_10_3390_cancers16061092
crossref_primary_10_1016_j_foodchem_2024_141754
crossref_primary_10_3390_molecules27248852
crossref_primary_10_1016_j_fbio_2023_102878
crossref_primary_10_2174_0113892010271172231108190233
crossref_primary_10_1016_j_scienta_2024_113809
crossref_primary_10_1016_j_plaphy_2025_109673
crossref_primary_10_3390_plants14070989
crossref_primary_10_3390_sym15081532
crossref_primary_10_3390_plants11212938
crossref_primary_10_3390_metabo13080895
crossref_primary_10_3390_foods13244025
crossref_primary_10_1002_ptr_8376
crossref_primary_10_3390_agriculture15020222
crossref_primary_10_3390_biology11071078
crossref_primary_10_3390_molecules29040852
crossref_primary_10_3390_antiox11122362
crossref_primary_10_3390_genes14091684
crossref_primary_10_1016_j_ijbiomac_2022_11_303
crossref_primary_10_1186_s13104_023_06375_2
crossref_primary_10_3390_cimb45020072
crossref_primary_10_3390_molecules28031043
crossref_primary_10_3390_ijms232315194
crossref_primary_10_1007_s00210_024_03018_6
crossref_primary_10_1021_acs_jafc_4c02472
crossref_primary_10_3390_ijms231810642
crossref_primary_10_3390_plants14060849
crossref_primary_10_3390_agronomy14010221
crossref_primary_10_3390_jof10020119
crossref_primary_10_1093_nar_gkad980
crossref_primary_10_1093_aob_mcae152
crossref_primary_10_3390_plants12183285
crossref_primary_10_1016_j_scitotenv_2024_171278
crossref_primary_10_3390_horticulturae11020215
crossref_primary_10_1080_10942912_2023_2200480
crossref_primary_10_1021_acs_jafc_4c12289
crossref_primary_10_1016_j_fbio_2023_102892
crossref_primary_10_1016_j_ejmcr_2022_100077
crossref_primary_10_3390_f14050979
crossref_primary_10_1002_ptr_8470
crossref_primary_10_1016_j_stress_2024_100384
crossref_primary_10_3390_ijms242417368
crossref_primary_10_2174_0115733998285798240217084632
crossref_primary_10_3390_antiox11091769
crossref_primary_10_3390_microorganisms13030608
crossref_primary_10_1093_ijfood_vvaf007
crossref_primary_10_3390_metabo12121296
crossref_primary_10_1007_s10725_024_01125_1
crossref_primary_10_3390_molecules28207042
crossref_primary_10_3389_fmicb_2024_1360988
crossref_primary_10_3390_plants13212990
crossref_primary_10_3390_horticulturae10111229
crossref_primary_10_1007_s11240_024_02804_7
crossref_primary_10_1021_acs_chemrestox_3c00229
crossref_primary_10_3390_plants13202944
crossref_primary_10_3389_fpls_2024_1471729
crossref_primary_10_3390_toxics13020075
crossref_primary_10_3389_fpls_2024_1427731
crossref_primary_10_1177_09731296231204152
crossref_primary_10_1016_j_pbi_2023_102353
crossref_primary_10_1038_s41598_024_75736_z
crossref_primary_10_3390_molecules27061873
crossref_primary_10_3390_biom13030531
crossref_primary_10_3390_ijms25126291
crossref_primary_10_1016_j_ijbiomac_2024_135545
crossref_primary_10_1155_2024_1323945
crossref_primary_10_1002_pca_3423
crossref_primary_10_1021_acs_jafc_3c03884
crossref_primary_10_1007_s10068_024_01799_3
crossref_primary_10_1016_j_heliyon_2024_e32239
crossref_primary_10_26599_FSHW_2025_9250498
crossref_primary_10_3390_f14010069
crossref_primary_10_3390_molecules28010083
crossref_primary_10_1186_s12870_024_05631_2
crossref_primary_10_1007_s00425_024_04337_x
crossref_primary_10_1186_s12870_024_06014_3
crossref_primary_10_1111_1751_7915_14180
crossref_primary_10_1080_1028415X_2023_2296165
crossref_primary_10_3390_horticulturae9121295
crossref_primary_10_5091_plecevo_128527
crossref_primary_10_3390_ijms26072841
crossref_primary_10_1016_j_jplph_2023_154145
crossref_primary_10_1093_plphys_kiaf070
crossref_primary_10_1039_D4QO02379J
crossref_primary_10_1111_ppl_14501
crossref_primary_10_3389_fpls_2022_1002302
crossref_primary_10_1016_j_biocontrol_2025_105729
crossref_primary_10_3389_fpls_2023_1154535
crossref_primary_10_1016_j_heliyon_2024_e32563
crossref_primary_10_3390_molecules28237719
crossref_primary_10_3390_plants14020161
crossref_primary_10_3390_ijms23073854
crossref_primary_10_1016_j_plaphy_2024_109156
crossref_primary_10_1016_j_apsoil_2024_105671
crossref_primary_10_3390_app12041786
crossref_primary_10_3390_ijms24108670
crossref_primary_10_1016_j_molp_2023_09_015
crossref_primary_10_1186_s12870_024_05667_4
crossref_primary_10_7717_peerj_16056
crossref_primary_10_1002_jcp_31006
crossref_primary_10_1007_s00425_024_04521_z
crossref_primary_10_1021_acs_jafc_4c05717
crossref_primary_10_1134_S1022795423090041
crossref_primary_10_3389_fpls_2023_1073848
crossref_primary_10_30799_jnpr_114_25100101
crossref_primary_10_1016_j_heliyon_2024_e35966
crossref_primary_10_1038_s41598_024_64134_0
crossref_primary_10_2174_1573401318666221005124312
crossref_primary_10_3390_ijms25105546
crossref_primary_10_1016_j_foodchem_2022_134704
crossref_primary_10_1111_ppl_14129
crossref_primary_10_1016_j_indcrop_2022_115996
crossref_primary_10_2174_1381612829666230413085029
crossref_primary_10_3390_v15122340
crossref_primary_10_1016_j_jhazmat_2024_136969
crossref_primary_10_1080_10408398_2022_2115456
crossref_primary_10_1093_jxb_erae225
crossref_primary_10_1016_j_greenca_2024_11_005
crossref_primary_10_1111_tpj_17188
crossref_primary_10_1094_PHYTO_04_24_0125_R
crossref_primary_10_29312_remexca_v15i2_3638
crossref_primary_10_3390_ijms252211951
crossref_primary_10_1021_acs_jafc_2c04715
crossref_primary_10_1021_acs_jafc_4c08160
crossref_primary_10_32615_bp_2024_002
crossref_primary_10_7783_KJMCS_2025_33_1_51
crossref_primary_10_1007_s11356_025_36002_5
crossref_primary_10_3390_ijms24021755
crossref_primary_10_1016_j_postharvbio_2024_113155
crossref_primary_10_1186_s12870_024_05579_3
crossref_primary_10_1016_j_cj_2025_01_016
crossref_primary_10_1016_j_bej_2024_109584
crossref_primary_10_1016_j_fbio_2024_105497
crossref_primary_10_3390_agronomy13071926
crossref_primary_10_15625_2525_2518_21503
crossref_primary_10_3390_pharmaceutics15061656
crossref_primary_10_1016_j_heliyon_2024_e30868
crossref_primary_10_1016_j_jplph_2022_153856
crossref_primary_10_1007_s10142_023_01110_3
crossref_primary_10_3389_fpls_2024_1381071
crossref_primary_10_3389_fpls_2023_1229253
crossref_primary_10_3390_beverages9030067
crossref_primary_10_1016_j_fbio_2023_102817
crossref_primary_10_1016_j_jafr_2024_101328
crossref_primary_10_1111_pce_15183
crossref_primary_10_1016_j_indcrop_2024_119213
crossref_primary_10_3389_fpls_2025_1533263
crossref_primary_10_1016_j_csbj_2022_04_019
crossref_primary_10_3389_fpls_2022_877304
crossref_primary_10_1016_j_biortech_2024_131923
crossref_primary_10_1038_s41598_024_70600_6
crossref_primary_10_1007_s11030_023_10692_w
crossref_primary_10_1016_j_heliyon_2023_e21874
crossref_primary_10_1080_02652048_2024_2437375
crossref_primary_10_3390_fermentation9070627
crossref_primary_10_1007_s11033_024_09567_6
crossref_primary_10_1016_j_biotechadv_2023_108258
crossref_primary_10_1016_j_microc_2024_110058
crossref_primary_10_3390_ijms25116110
crossref_primary_10_1016_j_jplph_2024_154364
crossref_primary_10_1016_j_phytochem_2024_114231
crossref_primary_10_3390_microorganisms12112176
crossref_primary_10_1007_s11694_024_02527_5
crossref_primary_10_3390_molecules28010365
crossref_primary_10_3390_plants13060776
crossref_primary_10_1016_j_scienta_2024_113170
crossref_primary_10_1021_acs_jafc_3c02031
crossref_primary_10_3390_horticulturae8020129
crossref_primary_10_1016_j_plaphy_2024_108438
crossref_primary_10_3390_molecules27248777
crossref_primary_10_3389_fpls_2023_1082246
crossref_primary_10_1007_s12042_024_09371_3
crossref_primary_10_1016_j_bioorg_2023_106957
crossref_primary_10_1016_j_csbj_2024_02_028
crossref_primary_10_1186_s40538_022_00301_7
crossref_primary_10_3390_bioengineering10101127
crossref_primary_10_1016_j_phytochem_2024_114002
crossref_primary_10_1007_s12042_023_09341_1
crossref_primary_10_1016_j_lwt_2024_116986
crossref_primary_10_3390_agronomy13123006
crossref_primary_10_3389_fpls_2023_1183481
crossref_primary_10_31676_2073_4948_2024_78_21_28
crossref_primary_10_1016_j_scienta_2022_111682
crossref_primary_10_3390_metabo14120711
crossref_primary_10_3390_foods12020425
crossref_primary_10_3390_ijms252211903
crossref_primary_10_1016_j_indcrop_2025_120606
crossref_primary_10_12791_KSBEC_2023_32_3_217
crossref_primary_10_1016_j_jafr_2025_101651
crossref_primary_10_3389_fpls_2024_1468858
crossref_primary_10_1051_e3sconf_202343403026
crossref_primary_10_1007_s13562_023_00851_3
crossref_primary_10_1080_07388551_2022_2149386
crossref_primary_10_1093_treephys_tpae157
crossref_primary_10_3390_ijms252011135
crossref_primary_10_1016_j_foodchem_2025_143317
crossref_primary_10_1016_j_tetlet_2022_154336
crossref_primary_10_3390_ijms232113507
crossref_primary_10_3390_metabo13030423
crossref_primary_10_1093_gigascience_giad005
crossref_primary_10_3389_fpls_2024_1349456
crossref_primary_10_3390_ijms25094592
crossref_primary_10_1016_j_envexpbot_2024_106078
crossref_primary_10_1111_ppl_14104
crossref_primary_10_1016_j_plaphy_2024_109425
crossref_primary_10_1111_1750_3841_17308
crossref_primary_10_1007_s10725_024_01195_1
crossref_primary_10_3390_molecules29081822
crossref_primary_10_3389_fpls_2022_1045857
crossref_primary_10_3390_ijms25042057
crossref_primary_10_1111_jipb_13627
crossref_primary_10_3390_agronomy13051296
crossref_primary_10_1051_e3sconf_202343403037
crossref_primary_10_3389_fpls_2023_1210309
crossref_primary_10_1089_rej_2023_0065
crossref_primary_10_3390_ijms25126354
crossref_primary_10_1111_pce_15398
crossref_primary_10_3390_jof10040254
crossref_primary_10_1111_jipb_13743
crossref_primary_10_3389_fpls_2023_1141617
crossref_primary_10_3390_genes13030410
crossref_primary_10_1016_j_indcrop_2024_119786
crossref_primary_10_1111_tpj_17240
crossref_primary_10_3390_ijms252011021
crossref_primary_10_3390_ijms252312754
crossref_primary_10_3390_plants13060788
crossref_primary_10_1016_j_plaphy_2025_109733
crossref_primary_10_1111_ppl_70006
crossref_primary_10_3390_molecules29030717
crossref_primary_10_3390_agriculture13050949
crossref_primary_10_1111_ppl_14084
crossref_primary_10_3390_molecules29133145
crossref_primary_10_1071_FP22244
crossref_primary_10_3390_genes15121496
crossref_primary_10_1016_j_indcrop_2023_116843
crossref_primary_10_1080_10942912_2025_2479629
crossref_primary_10_1002_fft2_494
crossref_primary_10_3390_cimb45040221
crossref_primary_10_1016_j_plaphy_2023_03_001
crossref_primary_10_3390_ijms252312705
crossref_primary_10_1007_s00425_023_04136_w
crossref_primary_10_48130_BPR_2023_0015
crossref_primary_10_1111_nph_18958
crossref_primary_10_3389_fpls_2022_955075
crossref_primary_10_3390_metabo12080691
crossref_primary_10_3390_genes16030328
crossref_primary_10_3390_horticulturae9101071
crossref_primary_10_1016_j_scienta_2024_113147
crossref_primary_10_3390_molecules29071485
crossref_primary_10_1016_j_lwt_2023_115276
crossref_primary_10_1186_s12870_023_04395_5
crossref_primary_10_3390_metabo15020098
crossref_primary_10_1186_s42483_024_00296_z
crossref_primary_10_3390_ijms25158376
crossref_primary_10_3390_metabo13050585
crossref_primary_10_1186_s13020_024_01013_w
crossref_primary_10_3390_ijms25021222
crossref_primary_10_1016_j_indcrop_2024_120285
crossref_primary_10_1016_j_pmpp_2024_102250
crossref_primary_10_1080_07388551_2024_2336529
crossref_primary_10_1016_j_fbio_2024_104446
crossref_primary_10_3389_fpls_2023_1272363
crossref_primary_10_3390_molecules28010426
crossref_primary_10_1016_j_fbio_2024_104565
crossref_primary_10_1016_j_ctmp_2024_200192
crossref_primary_10_1038_s41598_025_88144_8
crossref_primary_10_1080_08905436_2024_2420981
crossref_primary_10_3390_ijms25179273
crossref_primary_10_3390_foods13071080
crossref_primary_10_3390_ijms25084137
crossref_primary_10_17221_38_2022_CJGPB
crossref_primary_10_3390_molecules29225351
crossref_primary_10_3389_fpls_2023_1067920
crossref_primary_10_3390_plants13162191
crossref_primary_10_1016_j_postharvbio_2024_113324
crossref_primary_10_1016_j_foodres_2025_116110
crossref_primary_10_1111_pbi_70033
crossref_primary_10_1016_j_gene_2023_147740
crossref_primary_10_3389_fnut_2024_1495655
crossref_primary_10_1016_j_agrcom_2025_100071
crossref_primary_10_1007_s11240_024_02856_9
crossref_primary_10_3389_fpls_2023_1191029
crossref_primary_10_1016_j_ijbiomac_2024_134910
crossref_primary_10_1615_IntJMedMushrooms_2024053563
crossref_primary_10_1016_j_hermed_2024_100899
crossref_primary_10_1016_j_jhip_2024_10_001
crossref_primary_10_1007_s11101_024_10025_1
crossref_primary_10_3389_fpls_2022_900035
crossref_primary_10_1016_j_plaphy_2024_108665
crossref_primary_10_1038_s41598_024_81319_9
crossref_primary_10_3390_genes15111465
crossref_primary_10_3390_ijms26020668
crossref_primary_10_1007_s00299_025_03453_6
crossref_primary_10_3389_fpls_2023_1144265
crossref_primary_10_1111_nph_19602
crossref_primary_10_3390_ijms25021308
crossref_primary_10_7717_peerj_15319
crossref_primary_10_3390_ijms24043884
crossref_primary_10_1186_s12870_024_04919_7
crossref_primary_10_3390_genes15030329
crossref_primary_10_1080_1062936X_2024_2394498
crossref_primary_10_1016_j_plantsci_2023_111599
crossref_primary_10_3390_molecules30051058
crossref_primary_10_1007_s11101_022_09832_1
crossref_primary_10_1016_j_procbio_2024_01_004
crossref_primary_10_1093_hr_uhad166
crossref_primary_10_1038_s41598_025_85266_x
crossref_primary_10_48130_mpb_0024_0005
crossref_primary_10_1186_s12870_024_05332_w
crossref_primary_10_3390_pharmaceutics14091793
crossref_primary_10_1016_j_heliyon_2024_e36146
crossref_primary_10_1016_j_envexpbot_2023_105402
crossref_primary_10_18311_jnr_2024_43768
crossref_primary_10_1039_D3MD00448A
crossref_primary_10_3389_fpls_2025_1525226
crossref_primary_10_3390_plants13111524
crossref_primary_10_1186_s12864_024_10938_3
crossref_primary_10_1071_CP23147
crossref_primary_10_3390_ijms252413325
crossref_primary_10_3390_plants11101318
crossref_primary_10_3390_agronomy14071494
crossref_primary_10_1016_j_ijbiomac_2025_139897
crossref_primary_10_3390_horticulturae9010082
crossref_primary_10_1080_07352689_2023_2227485
crossref_primary_10_1007_s44372_024_00080_5
crossref_primary_10_1093_hr_uhad277
crossref_primary_10_1093_hr_uhae125
crossref_primary_10_1016_j_focha_2024_100775
crossref_primary_10_1093_hr_uhae366
crossref_primary_10_3390_foods11162527
crossref_primary_10_1007_s10265_022_01426_4
crossref_primary_10_3390_horticulturae9060620
crossref_primary_10_1002_yea_3850
crossref_primary_10_1007_s12298_023_01338_0
crossref_primary_10_1016_j_plaphy_2024_108964
crossref_primary_10_1016_j_heliyon_2023_e18688
crossref_primary_10_3390_agronomy13092192
crossref_primary_10_3390_f13071094
crossref_primary_10_3390_ijms232113475
crossref_primary_10_3390_nu17020205
crossref_primary_10_3389_fpls_2024_1477605
crossref_primary_10_1371_journal_pone_0308013
crossref_primary_10_1186_s12870_023_04173_3
crossref_primary_10_3390_agronomy14030519
crossref_primary_10_48130_mpb_0024_0027
crossref_primary_10_1007_s42729_024_02159_0
crossref_primary_10_3390_ijms241813874
crossref_primary_10_3389_fpls_2024_1409601
crossref_primary_10_1016_j_ecoenv_2022_113780
crossref_primary_10_1016_j_plaphy_2024_108860
crossref_primary_10_1016_j_heliyon_2023_e20747
crossref_primary_10_3390_ijms26062390
crossref_primary_10_3390_agronomy14030521
crossref_primary_10_32604_phyton_2025_061462
crossref_primary_10_1080_09540105_2023_2265688
crossref_primary_10_1111_tpj_16439
crossref_primary_10_48130_frures_0024_0042
crossref_primary_10_1186_s12870_024_05519_1
crossref_primary_10_1155_2023_8899240
crossref_primary_10_1007_s11240_024_02865_8
crossref_primary_10_1186_s12864_023_09260_1
Cites_doi 10.1038/s41438-021-00463-9
10.1111/pbi.13397
10.1093/jxb/err425
10.1007/s00425-010-1344-1
10.3389/fpls.2021.640746
10.1038/s41438-021-00595-y
10.1146/annurev.arplant.57.032905.105252
10.1007/s00299-020-02647-4
10.1080/13880209.2018.1492620
10.1271/bbb.70692
10.1186/s12870-017-1200-6
10.1111/j.1365-313X.2007.03373.x
10.1111/tpj.12792
10.1186/s12864-021-07658-3
10.1016/j.plaphy.2021.01.044
10.1093/jxb/erv413
10.1007/s11427-019-1604-3
10.3390/molecules20022388
10.1105/tpc.20.00048
10.1007/s00709-020-01599-6
10.5511/plantbiotechnology.11.0106b
10.1104/pp.113.3.755
10.1111/j.1399-3054.2005.00531.x
10.1016/j.foodchem.2014.03.105
10.1016/j.plaphy.2019.07.009
10.1093/pcp/pct111
10.1016/j.molp.2018.12.021
10.1016/j.phytochem.2017.06.017
10.1104/pp.19.00254
10.1371/journal.pgen.1006770
10.1038/s41438-020-00457-z
10.3390/plants9020215
10.1104/pp.105.072579
10.1105/tpc.16.00855
10.1007/s00425-010-1175-0
10.1270/jsbbs.17072
10.1002/bab.1839
10.3390/ijms21031011
10.1007/s12033-018-0130-3
10.1111/ppl.13385
10.1016/j.biotechadv.2018.11.005
10.1016/j.molp.2017.08.009
10.1016/j.tplants.2019.09.011
10.1016/S0304-4238(03)00093-1
10.1111/pbi.12118
10.1073/pnas.0604246103
10.1007/s11103-018-0802-1
10.1038/330677a0
10.1016/j.molp.2019.04.002
10.1038/s41438-020-0254-z
10.1007/s00425-017-2771-z
10.1021/acssynbio.0c00289
10.3390/ijms22063103
10.1016/S1016-8478(23)14034-9
10.1038/s42003-021-01889-6
10.1186/1471-2229-12-196
10.1016/j.bbrc.2018.04.088
10.1007/s11103-018-0771-4
10.1021/jf405324j
10.5511/plantbiotechnology.23.509
10.1093/jxb/eri251
10.1016/j.plantsci.2009.05.012
10.21273/JASHS.116.5.865
10.3389/fpls.2021.616396
10.1186/s12864-021-07434-3
10.1021/acs.jafc.7b04177
10.1111/j.1469-8137.2004.01217.x
10.1016/j.jbiotec.2017.01.006
10.1111/pbi.13302
10.1007/s10722-016-0399-7
10.1111/1541-4337.12476
10.1016/j.plaphy.2015.11.011
10.2187/bss.17.24
10.3390/plants10112311
10.1038/s41438-018-0032-3
10.1007/s00344-017-9766-7
10.3390/nu12030761
10.1111/nph.12610
10.1126/science.290.5494.1163
10.1105/tpc.16.00003
10.3389/fpls.2021.691384
10.1007/BF00029856
10.2135/cropsci2012.05.0267
10.1128/AEM.01448-15
10.1038/s41438-021-00472-8
10.1016/j.plantsci.2020.110591
10.1038/s41598-020-76633-x
10.1016/j.plantsci.2020.110632
10.1093/pcp/pcu097
10.1016/j.jep.2013.05.007
10.1016/j.pmpp.2007.02.004
10.1038/s41438-021-00609-9
10.1099/mic.0.28136-0
10.3390/ijms10125350
10.3390/plants10010090
10.1074/jbc.RA120.014543
10.1093/pcp/pcz101
10.1111/jipb.13054
10.1016/j.jpba.2019.113014
10.1111/nph.15795
10.1016/j.plaphy.2021.06.007
10.1016/S0168-9452(02)00433-8
10.3389/fpls.2019.01330
10.1038/s41598-020-58341-8
10.1038/s41438-021-00555-6
10.1146/annurev.arplant.57.032905.105248
10.1074/jbc.RA117.000564
10.1016/j.plantsci.2020.110473
10.1111/nph.17112
10.3389/fpls.2021.701780
10.1038/s41438-021-00591-2
10.1016/j.biopha.2019.108612
10.1016/j.foodchem.2020.128292
10.1016/j.phytochem.2010.04.016
10.1093/pcp/pct110
10.1016/j.febslet.2005.09.073
10.1074/jbc.M502239200
10.1186/s12870-016-0813-5
10.3390/molecules22020292
10.1105/tpc.12.1.65
10.1038/s41438-020-0327-z
10.3389/fpls.2021.670103
10.1007/s00122-020-03688-9
10.1038/s41438-021-00545-8
10.1016/j.tplants.2010.06.005
10.1104/pp.112.202705
10.1104/pp.106.095018
10.1007/s11627-020-10053-4
10.1104/pp.109.152801
10.1016/S1389-1723(02)80184-0
10.1016/S0014-5793(01)02529-7
10.1104/pp.126.2.485
10.1126/sciadv.1501780
10.1016/j.tplants.2014.12.001
10.3389/fpls.2020.619598
10.1016/j.plaphy.2017.01.019
10.1104/pp.107.100305
10.1111/j.1365-313X.2005.02625.x
10.1093/pcp/pcw213
10.1039/b718040n
10.1016/j.cell.2020.04.019
10.1111/nph.17397
10.1111/1750-3841.13548
10.1126/sciadv.1602785
10.1007/s00299-020-02517-z
10.1038/s41477-018-0292-9
10.3390/antiox2030132
10.1016/j.tplants.2006.11.006
10.3390/metabo11070433
10.1021/acs.jafc.7b05766
10.1016/j.ejmech.2019.01.078
10.1038/srep19245
10.1186/1471-2229-10-155
ContentType Journal Article
Copyright 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2021 by the authors. 2021
Copyright_xml – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2021 by the authors. 2021
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
8G5
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
GUQSH
K9.
M0S
M1P
M2O
MBDVC
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOI 10.3390/ijms222312824
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
ProQuest Central
ProQuest One
ProQuest Central Korea
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Research Library
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
Research Library
Research Library (Corporate)
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
Research Library Prep
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Research Library
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE
MEDLINE - Academic

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1422-0067
ExternalDocumentID PMC8657439
34884627
10_3390_ijms222312824
Genre Journal Article
Review
GrantInformation_xml – fundername: Zhejiang Science and Technology Major Program on Agricultural New Variety Breeding
  grantid: 2021C02071-2
– fundername: National Key R&D Program of China
  grantid: 2019YFD1000
GroupedDBID ---
29J
2WC
53G
5GY
5VS
7X7
88E
8FE
8FG
8FH
8FI
8FJ
8G5
A8Z
AADQD
AAFWJ
AAHBH
AAYXX
ABDBF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
AEAQA
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BCNDV
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DIK
DU5
DWQXO
E3Z
EBD
EBS
EJD
ESX
F5P
FRP
FYUFA
GNUQQ
GUQSH
GX1
HH5
HMCUK
HYE
IAO
IHR
ITC
KQ8
LK8
M1P
M2O
M48
MODMG
O5R
O5S
OK1
OVT
P2P
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RPM
TR2
TUS
UKHRP
~8M
3V.
ABJCF
BBNVY
BHPHI
CGR
CUY
CVF
ECM
EIF
GROUPED_DOAJ
HCIFZ
KB.
M7P
M~E
NPM
PDBOC
7XB
8FK
K9.
MBDVC
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
ID FETCH-LOGICAL-c481t-bc41fd6e9ddb91171d1859ff68e4c3af173b9f137680f8148bd34b96646b9b8a3
IEDL.DBID M48
ISSN 1422-0067
1661-6596
IngestDate Thu Aug 21 14:03:03 EDT 2025
Mon Jul 21 11:23:27 EDT 2025
Fri Jul 25 10:10:00 EDT 2025
Wed Feb 19 02:27:51 EST 2025
Thu Apr 24 23:10:39 EDT 2025
Tue Jul 01 02:47:42 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 23
Keywords molecular structure
biosynthetic enzyme
flavonoids
gene regulation
biosynthesis
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c481t-bc41fd6e9ddb91171d1859ff68e4c3af173b9f137680f8148bd34b96646b9b8a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-2076-3342
0000-0002-0720-5311
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/ijms222312824
PMID 34884627
PQID 2608128220
PQPubID 2032341
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8657439
proquest_miscellaneous_2608535842
proquest_journals_2608128220
pubmed_primary_34884627
crossref_primary_10_3390_ijms222312824
crossref_citationtrail_10_3390_ijms222312824
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20211126
PublicationDateYYYYMMDD 2021-11-26
PublicationDate_xml – month: 11
  year: 2021
  text: 20211126
  day: 26
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle International journal of molecular sciences
PublicationTitleAlternate Int J Mol Sci
PublicationYear 2021
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Cao (ref_148) 2021; 12
ref_138
Cavaiuolo (ref_9) 2013; 2
Li (ref_159) 2020; 7
Schijlen (ref_28) 2007; 144
ref_14
Bomati (ref_29) 2005; 280
Grotewold (ref_8) 2006; 57
Ren (ref_160) 2021; 8
ref_96
Wang (ref_118) 2020; 53
Wu (ref_60) 2021; 48
ref_16
Giampieri (ref_125) 2018; 66
Bosse (ref_74) 2021; 166
Parage (ref_34) 2012; 160
Togami (ref_32) 2011; 28
Boucherle (ref_48) 2017; 142
Jiang (ref_55) 2015; 66
Chong (ref_36) 2009; 177
Zuk (ref_59) 2019; 142
Gonzalez (ref_154) 2008; 53
Brugliera (ref_126) 2013; 54
Winefield (ref_94) 2005; 124
Meng (ref_107) 2019; 10
Zhang (ref_11) 2020; 18
Shimada (ref_115) 2005; 56
LaFountain (ref_116) 2021; 231
Wen (ref_103) 2021; 172
Dong (ref_144) 2020; 56
Imran (ref_15) 2019; 112
Peng (ref_37) 2013; 148
Yang (ref_40) 2018; 293
Liu (ref_72) 2020; 9
Meyer (ref_114) 1987; 330
Tuerck (ref_88) 1994; 6
(ref_4) 2001; 126
Yao (ref_85) 2021; 11
Luo (ref_161) 2021; 8
Ono (ref_46) 2006; 45
Sun (ref_7) 2020; 179
Suprun (ref_39) 2020; 67
Jiang (ref_112) 2020; 300
Liang (ref_163) 2020; 32
ref_73
Irmisch (ref_111) 2019; 180
Pandey (ref_75) 2014; 12
Ono (ref_47) 2006; 103
Wang (ref_25) 2020; 229
Nakayama (ref_49) 2001; 499
Nakayama (ref_44) 2002; 94
Kallscheuer (ref_167) 2017; 258
Cao (ref_98) 2018; 45
Mizutani (ref_24) 1997; 113
Veremeichik (ref_77) 2021; 342
Yu (ref_108) 2021; 258
Xin (ref_145) 2020; 296
ref_83
Noda (ref_6) 2017; 3
Iwashina (ref_10) 2003; 17
ref_82
Nishihara (ref_56) 2005; 579
Lepiniec (ref_135) 2006; 57
Ono (ref_45) 2007; 1
Yuan (ref_143) 2012; 63
Yang (ref_132) 2014; 160
Veitch (ref_128) 2008; 25
Zhang (ref_27) 2017; 29
ref_89
Lin (ref_51) 2021; 8
Wang (ref_17) 2018; 56
Fang (ref_69) 2020; 45
Petti (ref_134) 2014; 62
Zhang (ref_149) 2021; 8
Zhang (ref_104) 2021; 49
Wang (ref_97) 2020; 18
Zhang (ref_66) 2007; 144
Xiong (ref_133) 2019; 18
Totsuka (ref_153) 2018; 68
Shimada (ref_30) 2006; 23
Cassani (ref_87) 2016; 64
Li (ref_22) 2015; 169
Gao (ref_101) 2020; 36
Chapman (ref_109) 2021; 296
Li (ref_150) 2020; 7
Lu (ref_165) 2021; 12
Noda (ref_166) 2013; 54
Wu (ref_61) 2016; 6
Landoni (ref_86) 2020; 10
Dong (ref_1) 2020; 63
Yagishita (ref_129) 2016; 81
Xu (ref_151) 2018; 500
Jun (ref_139) 2018; 4
Dinkins (ref_58) 2021; 40
Casas (ref_57) 2016; 28
Artigot (ref_78) 2013; 53
Han (ref_105) 2010; 153
Wohl (ref_21) 2020; 39
Yun (ref_63) 2008; 72
Naing (ref_123) 2018; 98
Li (ref_152) 2017; 112
Yoshida (ref_33) 2004; 99
Ibraheem (ref_130) 2015; 20
Xie (ref_119) 2018; 66
Dubos (ref_147) 2010; 15
Zhou (ref_158) 2015; 82
Nabavi (ref_2) 2018; 38
Barros (ref_19) 2020; 25
Su (ref_142) 2021; 43
ref_64
Martens (ref_136) 2010; 71
Jiao (ref_164) 2020; 181
Chadzinikolau (ref_23) 2010; 64
Zhu (ref_53) 2021; 12
ref_62
Ni (ref_156) 2019; 99
Zhang (ref_169) 2020; 63
Hoshino (ref_50) 2019; 60
Pourcel (ref_12) 2007; 12
Sekhon (ref_90) 2006; 69
Wang (ref_65) 2020; 298
He (ref_79) 2011; 233
Fang (ref_110) 2018; 39
Deng (ref_26) 2013; 201
Bruce (ref_92) 2000; 12
ref_117
Mou (ref_100) 2021; 8
Vadivel (ref_80) 2021; 4
Zhang (ref_127) 2020; 55
ref_35
Ma (ref_81) 2007; 38
Lim (ref_168) 2015; 81
Lam (ref_67) 2019; 223
ref_113
Busche (ref_99) 2021; 12
Halbwirth (ref_91) 2003; 164
Wang (ref_162) 2017; 37
Ye (ref_170) 2021; 8
Sasaki (ref_3) 2015; 56
Wu (ref_93) 2021; 11
Nakayama (ref_43) 2000; 290
Tan (ref_13) 2019; 12
Chao (ref_54) 2021; 161
Sparvoli (ref_38) 1994; 24
Nakatsuka (ref_131) 2010; 232
Yin (ref_52) 2019; 61
Alsayari (ref_42) 2019; 166
Tanaka (ref_5) 2009; 10
ref_106
Sohn (ref_76) 2021; 12
Cheng (ref_20) 1991; 116
Uchida (ref_84) 2017; 58
Zhao (ref_157) 2021; 8
Dixon (ref_141) 2005; 165
Zhao (ref_68) 2016; 2
Zhou (ref_31) 2009; 45
ref_41
Xu (ref_146) 2015; 20
Zhao (ref_70) 2019; 12
Williams (ref_18) 2005; 151
Xu (ref_124) 2008; 26
Zhao (ref_71) 2018; 11
Xu (ref_102) 2020; 40
Gao (ref_155) 2018; 5
McGhie (ref_140) 2012; 63
Wang (ref_137) 2018; 247
Feng (ref_120) 2020; 134
Chen (ref_121) 2021; 8
Song (ref_95) 2016; 98
Solfanelli (ref_122) 2006; 140
References_xml – volume: 8
  start-page: 25
  year: 2021
  ident: ref_51
  article-title: R2R3-MYB transcription factors, StmiR858 and sucrose mediate potato flavonol biosynthesis
  publication-title: Hortic. Res.
  doi: 10.1038/s41438-021-00463-9
– volume: 63
  start-page: 695
  year: 2012
  ident: ref_140
  article-title: Transcriptional analysis of apple fruit proanthocyanidin biosynthesis
  publication-title: J. Exp. Bot.
– volume: 49
  start-page: 2057
  year: 2021
  ident: ref_104
  article-title: Research Advances of Genes Responsible for Flower Colors in Orchidaceae
  publication-title: Acta Hortic. Sin.
– volume: 18
  start-page: 2170
  year: 2020
  ident: ref_97
  article-title: Transgenic expression of flavanone 3-hydroxylase redirects flavonoid biosynthesis and alleviates anthracnose susceptibility in sorghum
  publication-title: Plant Biotechnol. J.
  doi: 10.1111/pbi.13397
– volume: 63
  start-page: 2513
  year: 2012
  ident: ref_143
  article-title: Molecular cloning and characterization of PtrLAR3, a gene encoding leucoanthocyanidin reductase from Populus trichocarpa, and its constitutive expression enhances fungal resistance in transgenic plants
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/err425
– volume: 233
  start-page: 843
  year: 2011
  ident: ref_79
  article-title: A genomic approach to isoflavone biosynthesis in kudzu (Pueraria lobata)
  publication-title: Planta
  doi: 10.1007/s00425-010-1344-1
– volume: 12
  start-page: 640746
  year: 2021
  ident: ref_165
  article-title: Isolation and Functional Analysis of Genes Involved in Polyacylated Anthocyanin Biosynthesis in Blue Senecio cruentus
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2021.640746
– volume: 8
  start-page: 163
  year: 2021
  ident: ref_161
  article-title: SlBBX20 interacts with the COP9 signalosome subunit SlCSN5-2 to regulate anthocyanin biosynthesis by activating SlDFR expression in tomato
  publication-title: Hortic. Res.
  doi: 10.1038/s41438-021-00595-y
– volume: 57
  start-page: 405
  year: 2006
  ident: ref_135
  article-title: Genetics and biochemistry of seed flavonoids
  publication-title: Annu. Rev. Plant Biol.
  doi: 10.1146/annurev.arplant.57.032905.105252
– volume: 40
  start-page: 517
  year: 2021
  ident: ref_58
  article-title: Isoflavone levels, nodulation and gene expression profiles of a CRISPR/Cas9 deletion mutant in the isoflavone synthase gene of red clover
  publication-title: Plant Cell Rep.
  doi: 10.1007/s00299-020-02647-4
– volume: 56
  start-page: 465
  year: 2018
  ident: ref_17
  article-title: A comprehensive review on phytochemistry, pharmacology, and flavonoid biosynthesis of Scutellaria baicalensis
  publication-title: Pharm. Biol.
  doi: 10.1080/13880209.2018.1492620
– volume: 72
  start-page: 968
  year: 2008
  ident: ref_63
  article-title: Expression of parsley flavone synthase I establishes the flavone biosynthetic pathway in Arabidopsis thaliana
  publication-title: Biosci. Biotechnol. Biochem.
  doi: 10.1271/bbb.70692
– ident: ref_138
  doi: 10.1186/s12870-017-1200-6
– volume: 48
  start-page: 1
  year: 2021
  ident: ref_60
  article-title: Research progress on flower color of waterlily (Nymphaea)
  publication-title: Acta Hortic. Sin.
– volume: 53
  start-page: 814
  year: 2008
  ident: ref_154
  article-title: Regulation of the anthocyanin biosynthetic pathway by the TTG1/bHLH/Myb transcriptional complex in Arabidopsis seedlings
  publication-title: Plant J.
  doi: 10.1111/j.1365-313X.2007.03373.x
– volume: 82
  start-page: 105
  year: 2015
  ident: ref_158
  article-title: Molecular genetics of blood-fleshed peach reveals activation of anthocyanin biosynthesis by NAC transcription factors
  publication-title: Plant J.
  doi: 10.1111/tpj.12792
– ident: ref_35
  doi: 10.1186/s12864-021-07658-3
– volume: 161
  start-page: 65
  year: 2021
  ident: ref_54
  article-title: Functional characterization of two chalcone isomerase (CHI) revealing their responsibility for anthocyanins accumulation in mulberry
  publication-title: Plant Physiol. Biochem.
  doi: 10.1016/j.plaphy.2021.01.044
– volume: 66
  start-page: 7165
  year: 2015
  ident: ref_55
  article-title: Role of a chalcone isomerase-like protein in flavonoid biosynthesis in Arabidopsis thaliana
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/erv413
– volume: 63
  start-page: 1037
  year: 2020
  ident: ref_169
  article-title: A UV-B-responsive glycosyltransferase, OsUGT706C2, modulates flavonoid metabolism in rice
  publication-title: Sci. China Life Sci.
  doi: 10.1007/s11427-019-1604-3
– volume: 20
  start-page: 2388
  year: 2015
  ident: ref_130
  article-title: A sorghum MYB transcription factor induces 3-deoxyanthocyanidins and enhances resistance against leaf blights in maize
  publication-title: Molecules
  doi: 10.3390/molecules20022388
– volume: 32
  start-page: 3224
  year: 2020
  ident: ref_163
  article-title: Brassinosteroid-Activated BRI1-EMS-SUPPRESSOR 1 Inhibits Flavonoid Biosynthesis and Coordinates Growth and UV-B Stress Responses in Plants
  publication-title: Plant Cell
  doi: 10.1105/tpc.20.00048
– volume: 258
  start-page: 803
  year: 2021
  ident: ref_108
  article-title: Ectopic expression of DoFLS1 from Dendrobium officinale enhances flavonol accumulation and abiotic stress tolerance in Arabidopsis thaliana
  publication-title: Protoplasma
  doi: 10.1007/s00709-020-01599-6
– volume: 28
  start-page: 231
  year: 2011
  ident: ref_32
  article-title: Isolation of cDNAs encoding tetrahydroxychalcone 2′-glucosyltransferase activity from carnation, cyclamen, and catharanthus
  publication-title: Plant Biotechnol.
  doi: 10.5511/plantbiotechnology.11.0106b
– volume: 113
  start-page: 755
  year: 1997
  ident: ref_24
  article-title: Isolation of a cDNA and a Genomic Clone Encoding Cinnamate 4-Hydroxylase from Arabidopsis and Its Expression Manner in Planta
  publication-title: Plant Physiol.
  doi: 10.1104/pp.113.3.755
– volume: 124
  start-page: 419
  year: 2005
  ident: ref_94
  article-title: Investigation of the biosynthesis of 3-deoxyanthocyanins in Sinningia cardinalis
  publication-title: Physiol. Plant.
  doi: 10.1111/j.1399-3054.2005.00531.x
– volume: 160
  start-page: 246
  year: 2014
  ident: ref_132
  article-title: Thermal stability of 3-deoxyanthocyanidin pigments
  publication-title: Food Chem.
  doi: 10.1016/j.foodchem.2014.03.105
– volume: 142
  start-page: 234
  year: 2019
  ident: ref_59
  article-title: Temporal biosynthesis of flavone constituents in flax growth stages
  publication-title: Plant Physiol. Biochem.
  doi: 10.1016/j.plaphy.2019.07.009
– volume: 54
  start-page: 1684
  year: 2013
  ident: ref_166
  article-title: Genetic engineering of novel bluer-colored chrysanthemums produced by accumulation of delphinidin-based anthocyanins
  publication-title: Plant Cell Physiol.
  doi: 10.1093/pcp/pct111
– volume: 12
  start-page: 521
  year: 2019
  ident: ref_13
  article-title: A Crucial Role of GA-Regulated Flavonol Biosynthesis in Root Growth of Arabidopsis
  publication-title: Mol. Plant
  doi: 10.1016/j.molp.2018.12.021
– volume: 142
  start-page: 92
  year: 2017
  ident: ref_48
  article-title: Occurrences, biosynthesis and properties of aurones as high-end evolutionary products
  publication-title: Phytochemistry
  doi: 10.1016/j.phytochem.2017.06.017
– volume: 180
  start-page: 1277
  year: 2019
  ident: ref_111
  article-title: Flavonol Biosynthesis Genes and Their Use in Engineering the Plant Antidiabetic Metabolite Montbretin A
  publication-title: Plant Physiol.
  doi: 10.1104/pp.19.00254
– ident: ref_73
  doi: 10.1371/journal.pgen.1006770
– volume: 8
  start-page: 22
  year: 2021
  ident: ref_160
  article-title: The apple 14-3-3 protein MdGRF11 interacts with the BTB protein MdBT2 to regulate nitrate deficiency-induced anthocyanin accumulation
  publication-title: Hortic. Res.
  doi: 10.1038/s41438-020-00457-z
– ident: ref_62
  doi: 10.3390/plants9020215
– volume: 140
  start-page: 637
  year: 2006
  ident: ref_122
  article-title: Sucrose-specific induction of the anthocyanin biosynthetic pathway in Arabidopsis
  publication-title: Plant Physiol.
  doi: 10.1104/pp.105.072579
– volume: 29
  start-page: 1157
  year: 2017
  ident: ref_27
  article-title: A Proteolytic Regulator Controlling Chalcone Synthase Stability and Flavonoid Biosynthesis in Arabidopsis
  publication-title: Plant Cell
  doi: 10.1105/tpc.16.00855
– volume: 232
  start-page: 383
  year: 2010
  ident: ref_131
  article-title: UDP-glucose:3-deoxyanthocyanidin 5-O-glucosyltransferase from Sinningia cardinalis
  publication-title: Planta
  doi: 10.1007/s00425-010-1175-0
– volume: 68
  start-page: 139
  year: 2018
  ident: ref_153
  article-title: Repressed expression of a gene for a basic helix-loop-helix protein causes a white flower phenotype in carnation
  publication-title: Breed. Sci.
  doi: 10.1270/jsbbs.17072
– volume: 67
  start-page: 234
  year: 2020
  ident: ref_39
  article-title: Effect of spruce PjSTS1a, PjSTS2, or PjSTS3 gene overexpression on stilbene biosynthesis in callus cultures of Vitis amurensis Rupr
  publication-title: Biotechnol. Appl. Biochem.
  doi: 10.1002/bab.1839
– ident: ref_113
  doi: 10.3390/ijms21031011
– volume: 61
  start-page: 32
  year: 2019
  ident: ref_52
  article-title: The Research Progress of Chalcone Isomerase (CHI) in Plants
  publication-title: Mol. Biotechnol.
  doi: 10.1007/s12033-018-0130-3
– volume: 172
  start-page: 1750
  year: 2021
  ident: ref_103
  article-title: Color variation in young and senescent leaves of Formosan sweet gum (Liquidambar formosana) by the gene regulation of anthocyanidin biosynthesis
  publication-title: Physiol. Plant.
  doi: 10.1111/ppl.13385
– volume: 38
  start-page: 107316
  year: 2018
  ident: ref_2
  article-title: Flavonoid biosynthetic pathways in plants: Versatile targets for metabolic engineering
  publication-title: Biotechnol. Adv.
  doi: 10.1016/j.biotechadv.2018.11.005
– volume: 11
  start-page: 135
  year: 2018
  ident: ref_71
  article-title: Two CYP82D Enzymes Function as Flavone Hydroxylases in the Biosynthesis of Root-Specific 4’-Deoxyflavones in Scutellaria baicalensis
  publication-title: Mol. Plant
  doi: 10.1016/j.molp.2017.08.009
– volume: 25
  start-page: 66
  year: 2020
  ident: ref_19
  article-title: Plant Phenylalanine/Tyrosine Ammonia-lyases
  publication-title: Trends Plant Sci.
  doi: 10.1016/j.tplants.2019.09.011
– volume: 99
  start-page: 175
  year: 2004
  ident: ref_33
  article-title: Variation in chalcononaringenin 2′-O-glucoside content in the petals of carnations (Dianthus caryophyllus) bearing yellow flowers
  publication-title: Sci. Hortic.
  doi: 10.1016/S0304-4238(03)00093-1
– volume: 12
  start-page: 69
  year: 2014
  ident: ref_75
  article-title: Co-expression of Arabidopsis transcription factor, AtMYB12, and soybean isoflavone synthase, GmIFS1, genes in tobacco leads to enhanced biosynthesis of isoflavones and flavonols resulting in osteoprotective activity
  publication-title: Plant Biotechnol. J.
  doi: 10.1111/pbi.12118
– volume: 103
  start-page: 11075
  year: 2006
  ident: ref_47
  article-title: Yellow flowers generated by expression of the aurone biosynthetic pathway
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0604246103
– volume: 99
  start-page: 67
  year: 2019
  ident: ref_156
  article-title: Ethylene response factors Pp4ERF24 and Pp12ERF96 regulate blue light-induced anthocyanin biosynthesis in ‘Red Zaosu’ pear fruits by interacting with MYB114
  publication-title: Plant Mol. Biol.
  doi: 10.1007/s11103-018-0802-1
– volume: 330
  start-page: 677
  year: 1987
  ident: ref_114
  article-title: A new petunia flower colour generated by transformation of a mutant with a maize gene
  publication-title: Nature
  doi: 10.1038/330677a0
– volume: 12
  start-page: 935
  year: 2019
  ident: ref_70
  article-title: The Reference Genome Sequence of Scutellaria baicalensis Provides Insights into the Evolution of Wogonin Biosynthesis
  publication-title: Mol. Plant
  doi: 10.1016/j.molp.2019.04.002
– volume: 7
  start-page: 37
  year: 2020
  ident: ref_159
  article-title: PyWRKY26 and PybHLH3 cotargeted the PyMYB114 promoter to regulate anthocyanin biosynthesis and transport in red-skinned pears
  publication-title: Hortic. Res.
  doi: 10.1038/s41438-020-0254-z
– volume: 247
  start-page: 139
  year: 2018
  ident: ref_137
  article-title: Evolutionary and functional characterization of leucoanthocyanidin reductases from Camellia sinensis
  publication-title: Planta
  doi: 10.1007/s00425-017-2771-z
– volume: 9
  start-page: 3042
  year: 2020
  ident: ref_72
  article-title: De Novo Biosynthesis of Multiple Pinocembrin Derivatives in Saccharomyces cerevisiae
  publication-title: ACS Synth. Biol.
  doi: 10.1021/acssynbio.0c00289
– ident: ref_117
  doi: 10.3390/ijms22063103
– volume: 26
  start-page: 536
  year: 2008
  ident: ref_124
  article-title: Molecular cloning and function analysis of an anthocyanidin synthase gene from Ginkgo biloba, and its expression in abiotic stress responses
  publication-title: Mol. Cells
  doi: 10.1016/S1016-8478(23)14034-9
– volume: 4
  start-page: 356
  year: 2021
  ident: ref_80
  article-title: A combinatorial action of GmMYB176 and GmbZIP5 controls isoflavonoid biosynthesis in soybean (Glycine max)
  publication-title: Commun. Biol.
  doi: 10.1038/s42003-021-01889-6
– ident: ref_89
  doi: 10.1186/1471-2229-12-196
– volume: 500
  start-page: 405
  year: 2018
  ident: ref_151
  article-title: Overexpression of a repressor MdMYB15L negatively regulates anthocyanin and cold tolerance in red-fleshed callus
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2018.04.088
– volume: 98
  start-page: 1
  year: 2018
  ident: ref_123
  article-title: Roles of R2R3-MYB transcription factors in transcriptional regulation of anthocyanin biosynthesis in horticultural plants
  publication-title: Plant Mol. Biol.
  doi: 10.1007/s11103-018-0771-4
– volume: 62
  start-page: 1227
  year: 2014
  ident: ref_134
  article-title: Mutagenesis breeding for increased 3-deoxyanthocyanidin accumulation in leaves of Sorghum bicolor (L.) Moench: A source of natural food pigment
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/jf405324j
– volume: 23
  start-page: 509
  year: 2006
  ident: ref_30
  article-title: Isolation and characterization of a cDNA encoding polyketide reductase in Lotus japonicus
  publication-title: Plant Biotechnol.
  doi: 10.5511/plantbiotechnology.23.509
– volume: 56
  start-page: 2573
  year: 2005
  ident: ref_115
  article-title: A comprehensive analysis of six dihydroflavonol 4-reductases encoded by a gene cluster of the Lotus japonicus genome
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/eri251
– volume: 53
  start-page: 4904
  year: 2020
  ident: ref_118
  article-title: Light Regulation of Anthocyanin Biosynthesis in Horticultural Crops
  publication-title: Sci. Agric. Sin.
– volume: 177
  start-page: 143
  year: 2009
  ident: ref_36
  article-title: Metabolism and roles of stilbenes in plants
  publication-title: Plant Sci.
  doi: 10.1016/j.plantsci.2009.05.012
– volume: 116
  start-page: 865
  year: 1991
  ident: ref_20
  article-title: Activity of Phenylalanine Ammonia-Lyase (PAL) and Concentrations of Anthocyanins and Phenolics in Developing Strawberry Fruit
  publication-title: J. Am. Soc. Hortic. Sci.
  doi: 10.21273/JASHS.116.5.865
– volume: 12
  start-page: 616396
  year: 2021
  ident: ref_53
  article-title: Identification and Characterization of Chalcone Isomerase Genes Involved in Flavonoid Production in Dracaena cambodiana
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2021.616396
– ident: ref_64
  doi: 10.1186/s12864-021-07434-3
– volume: 66
  start-page: 581
  year: 2018
  ident: ref_125
  article-title: Overexpression of the Anthocyanidin Synthase (ANS) Gene in Strawberry Enhances Antioxidant Capacity and Cytotoxic Effects on Human Hepatic Cancer Cells
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/acs.jafc.7b04177
– volume: 165
  start-page: 9
  year: 2005
  ident: ref_141
  article-title: Proanthocyanidins-a final frontier in flavonoid research?
  publication-title: New Phytol.
  doi: 10.1111/j.1469-8137.2004.01217.x
– volume: 40
  start-page: 185
  year: 2020
  ident: ref_102
  article-title: Cloning and Expression Analysis of a Flavanone 3-hydroxylase Gene from Ampelopsis grossedentata
  publication-title: Acta Bot. Boreali-Occident. Sin.
– volume: 258
  start-page: 190
  year: 2017
  ident: ref_167
  article-title: Functional expression of plant-derived O-methyltransferase, flavanone 3-hydroxylase, and flavonol synthase in Corynebacterium glutamicum for production of pterostilbene, kaempferol, and quercetin
  publication-title: J. Biotechnol.
  doi: 10.1016/j.jbiotec.2017.01.006
– volume: 18
  start-page: 1384
  year: 2020
  ident: ref_11
  article-title: Multiplex CRISPR/Cas9-mediated metabolic engineering increases soya bean isoflavone content and resistance to soya bean mosaic virus
  publication-title: Plant Biotechnol. J.
  doi: 10.1111/pbi.13302
– volume: 169
  start-page: 2409
  year: 2015
  ident: ref_22
  article-title: Four Isoforms of Arabidopsis 4-Coumarate: CoA Ligase Have Overlapping yet Distinct Roles in Phenylpropanoid Metabolism
  publication-title: Plant Physiol.
– volume: 64
  start-page: 761
  year: 2016
  ident: ref_87
  article-title: Genetic studies regarding the control of seed pigmentation of an ancient European pointed maize (Zea mays L.) rich in phlobaphenes: The “Nero Spinoso” from the Camonica valley
  publication-title: Genet. Resour. Crop. Evol.
  doi: 10.1007/s10722-016-0399-7
– volume: 18
  start-page: 1533
  year: 2019
  ident: ref_133
  article-title: 3-Deoxyanthocyanidin Colorant: Nature, Health, Synthesis, and Food Applications
  publication-title: Compr. Rev. Food Sci. Food Saf.
  doi: 10.1111/1541-4337.12476
– volume: 98
  start-page: 89
  year: 2016
  ident: ref_95
  article-title: Molecular cloning and identification of a flavanone 3-hydroxylase gene from Lycium chinense, and its overexpression enhances drought stress in tobacco
  publication-title: Plant Physiol. Biochem.
  doi: 10.1016/j.plaphy.2015.11.011
– volume: 17
  start-page: 24
  year: 2003
  ident: ref_10
  article-title: Flavonoid Function and Activity to Plants and Other Organisms
  publication-title: Biol. Sci. Space
  doi: 10.2187/bss.17.24
– ident: ref_82
  doi: 10.3390/plants10112311
– volume: 5
  start-page: 27
  year: 2018
  ident: ref_155
  article-title: Tomato SlAN11 regulates flavonoid biosynthesis and seed dormancy by interaction with bHLH proteins but not with MYB proteins
  publication-title: Hortic. Res.
  doi: 10.1038/s41438-018-0032-3
– volume: 37
  start-page: 719
  year: 2017
  ident: ref_162
  article-title: Nitrogen Affects Anthocyanin Biosynthesis by Regulating MdLOB52 Downstream of MdARF19 in Callus Cultures of Red-Fleshed Apple (Malus sieversii f. niedzwetzkyana)
  publication-title: J. Plant Growth Regul.
  doi: 10.1007/s00344-017-9766-7
– ident: ref_14
  doi: 10.3390/nu12030761
– volume: 201
  start-page: 1469
  year: 2013
  ident: ref_26
  article-title: Functional diversification of duplicated chalcone synthase genes in anthocyanin biosynthesis of Gerbera hybrida
  publication-title: New Phytol.
  doi: 10.1111/nph.12610
– volume: 290
  start-page: 1163
  year: 2000
  ident: ref_43
  article-title: Aureusidin Synthase: A Polyphenol Oxidase Homolog Responsible for Flower Coloration
  publication-title: Science
  doi: 10.1126/science.290.5494.1163
– volume: 28
  start-page: 1297
  year: 2016
  ident: ref_57
  article-title: Identification and Characterization of Maize salmon silks Genes Involved in Insecticidal Maysin Biosynthesis
  publication-title: Plant Cell
  doi: 10.1105/tpc.16.00003
– volume: 12
  start-page: 691384
  year: 2021
  ident: ref_148
  article-title: Genome-Wide Analysis of MYB Gene Family in Chinese Bayberry (Morella rubra) and Identification of Members Regulating Flavonoid Biosynthesis
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2021.691384
– volume: 24
  start-page: 743
  year: 1994
  ident: ref_38
  article-title: Cloning and molecular analysis of structural genes involved in flavonoid and stilbene biosynthesis in grape (Vitis vinifera L.)
  publication-title: Plant Mol. Biol.
  doi: 10.1007/BF00029856
– volume: 53
  start-page: 1096
  year: 2013
  ident: ref_78
  article-title: Expression of Key Genes of the Isoflavonoid Pathway in Hypocotyls and Cotyledons During Soybean Seed Maturation
  publication-title: Crop. Sci.
  doi: 10.2135/cropsci2012.05.0267
– volume: 81
  start-page: 6276
  year: 2015
  ident: ref_168
  article-title: Development of a Recombinant Escherichia coli Strain for Overproduction of the Plant Pigment Anthocyanin
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.01448-15
– volume: 45
  start-page: 4819
  year: 2020
  ident: ref_69
  article-title: Study advance in biosynthesis of flavone from Scutellaria
  publication-title: China J. Chin. Mater. Med.
– volume: 8
  start-page: 56
  year: 2021
  ident: ref_100
  article-title: Multiomics-based dissection of citrus flavonoid metabolism using a Citrus reticulata x Poncirus trifoliata population
  publication-title: Hortic. Res.
  doi: 10.1038/s41438-021-00472-8
– volume: 298
  start-page: 110591
  year: 2020
  ident: ref_65
  article-title: The moss flavone synthase I positively regulates the tolerance of plants to drought stress and UV-B radiation
  publication-title: Plant Sci.
  doi: 10.1016/j.plantsci.2020.110591
– volume: 11
  start-page: 9
  year: 2021
  ident: ref_85
  article-title: Hormonal and transcriptional analyses provides new insights into the molecular mechanisms underlying root thickening and isoflavonoid biosynthesis in Callerya speciosa (Champ. ex Benth.) Schot
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-76633-x
– volume: 300
  start-page: 110632
  year: 2020
  ident: ref_112
  article-title: Functional characterization of three flavonol synthase genes from Camellia sinensis: Roles in flavonol accumulation
  publication-title: Plant Sci.
  doi: 10.1016/j.plantsci.2020.110632
– volume: 56
  start-page: 28
  year: 2015
  ident: ref_3
  article-title: Achievements and Perspectives in Biochemistry Concerning Anthocyanin Modification for Blue Flower Coloration
  publication-title: Plant Cell Physiol.
  doi: 10.1093/pcp/pcu097
– volume: 148
  start-page: 729
  year: 2013
  ident: ref_37
  article-title: Botany, phytochemistry, pharmacology, and potential application of Polygonum cuspidatum Sieb.et Zucc.: A review
  publication-title: J. Ethnopharmacol.
  doi: 10.1016/j.jep.2013.05.007
– volume: 69
  start-page: 109
  year: 2006
  ident: ref_90
  article-title: Characterization of Fusarium-induced expression of flavonoids and PR genes in maize
  publication-title: Physiol. Mol. Plant Pathol.
  doi: 10.1016/j.pmpp.2007.02.004
– volume: 8
  start-page: 173
  year: 2021
  ident: ref_121
  article-title: Competition between anthocyanin and kaempferol glycosides biosynthesis affects pollen tube growth and seed set of Malus
  publication-title: Hortic. Res.
  doi: 10.1038/s41438-021-00609-9
– volume: 151
  start-page: 2543
  year: 2005
  ident: ref_18
  article-title: The gene stlA encodes a phenylalanine ammonia-lyase that is involved in the production of a stilbene antibiotic in Photorhabdus luminescens TT01
  publication-title: Microbiology
  doi: 10.1099/mic.0.28136-0
– volume: 10
  start-page: 5350
  year: 2009
  ident: ref_5
  article-title: Recent Progress of Flower Colour Modification by Biotechnology
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms10125350
– ident: ref_41
  doi: 10.3390/plants10010090
– volume: 296
  start-page: 100222
  year: 2021
  ident: ref_109
  article-title: Flavonols modulate lateral root emergence by scavenging reactive oxygen species in Arabidopsis thaliana
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.RA120.014543
– volume: 60
  start-page: 1871
  year: 2019
  ident: ref_50
  article-title: Generation of Yellow Flowers of the Japanese Morning Glory by Engineering Its Flavonoid Biosynthetic Pathway toward Aurones
  publication-title: Plant Cell Physiol.
  doi: 10.1093/pcp/pcz101
– volume: 63
  start-page: 180
  year: 2020
  ident: ref_1
  article-title: Contribution of phenylpropanoid metabolism to plant development and plant-environment interactions
  publication-title: J. Integr. Plant Biol.
  doi: 10.1111/jipb.13054
– volume: 179
  start-page: 113014
  year: 2020
  ident: ref_7
  article-title: A spatially-resolved approach to visualize the distribution and biosynthesis of flavones in Scutellaria baicalensis Georgi
  publication-title: J. Pharm. Biomed. Anal.
  doi: 10.1016/j.jpba.2019.113014
– volume: 223
  start-page: 204
  year: 2019
  ident: ref_67
  article-title: Recruitment of specific flavonoid B-ring hydroxylases for two independent biosynthesis pathways of flavone-derived metabolites in grasses
  publication-title: New Phytol.
  doi: 10.1111/nph.15795
– volume: 39
  start-page: 335
  year: 2018
  ident: ref_110
  article-title: Research Progress on Key Genes of Flavonol Biosynthesis in Plants
  publication-title: Sci. Technol. Food Ind.
– volume: 1
  start-page: 66
  year: 2007
  ident: ref_45
  article-title: Molecular Breeding of Novel Yellow Flowers by Engineering the Aurone Biosynthetic Pathway
  publication-title: Transgenic Plant J.
– volume: 166
  start-page: 512
  year: 2021
  ident: ref_74
  article-title: Physiological impact of flavonoids on nodulation and ureide metabolism in legume plants
  publication-title: Plant Physiol. Biochem.
  doi: 10.1016/j.plaphy.2021.06.007
– volume: 164
  start-page: 489
  year: 2003
  ident: ref_91
  article-title: Biochemical formation of anthocyanins in silk tissue of Zea mays
  publication-title: Plant Sci.
  doi: 10.1016/S0168-9452(02)00433-8
– volume: 10
  start-page: 1330
  year: 2019
  ident: ref_107
  article-title: Functional Differentiation of Duplicated Flavonoid 3-O-Glycosyltransferases in the Flavonol and Anthocyanin Biosynthesis of Freesia hybrida
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2019.01330
– volume: 10
  start-page: 1417
  year: 2020
  ident: ref_86
  article-title: Phlobaphenes modify pericarp thickness in maize and accumulation of the fumonisin mycotoxins
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-58341-8
– volume: 8
  start-page: 116
  year: 2021
  ident: ref_149
  article-title: CRISPR/Cas9-mediated targeted mutation reveals a role for AN4 rather than DPL in regulating venation formation in the corolla tube of Petunia hybrida
  publication-title: Hortic. Res.
  doi: 10.1038/s41438-021-00555-6
– volume: 57
  start-page: 761
  year: 2006
  ident: ref_8
  article-title: The genetics and biochemistry of floral pigments
  publication-title: Annu. Rev. Plant Biol.
  doi: 10.1146/annurev.arplant.57.032905.105248
– volume: 293
  start-page: 28
  year: 2018
  ident: ref_40
  article-title: Stilbenoid prenyltransferases define key steps in the diversification of peanut phytoalexins
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.RA117.000564
– volume: 45
  start-page: 111
  year: 2009
  ident: ref_31
  article-title: Advances in Study on Formation Mechanism and Genetic Engineering of Yellow Flowers
  publication-title: Sci. Silvae Sin.
– volume: 296
  start-page: 110473
  year: 2020
  ident: ref_145
  article-title: Mulberry genes MnANR and MnLAR confer transgenic plants with resistance to Botrytis cinerea
  publication-title: Plant Sci.
  doi: 10.1016/j.plantsci.2020.110473
– volume: 229
  start-page: 3237
  year: 2020
  ident: ref_25
  article-title: NF-Y plays essential roles in flavonoid biosynthesis by modulating histone modifications in tomato
  publication-title: New Phytol.
  doi: 10.1111/nph.17112
– volume: 12
  start-page: 701780
  year: 2021
  ident: ref_99
  article-title: Functional Characterisation of Banana (Musa spp.) 2-Oxoglutarate-Dependent Dioxygenases Involved in Flavonoid Biosynthesis
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2021.701780
– volume: 8
  start-page: 157
  year: 2021
  ident: ref_170
  article-title: Integrative iTRAQ-based proteomic and transcriptomic analysis reveals the accumulation patterns of key metabolites associated with oil quality during seed ripening of Camellia oleifera
  publication-title: Hortic. Res.
  doi: 10.1038/s41438-021-00591-2
– volume: 112
  start-page: 108612
  year: 2019
  ident: ref_15
  article-title: Luteolin, a flavonoid, as an anticancer agent: A review
  publication-title: Biomed. Pharmacother.
  doi: 10.1016/j.biopha.2019.108612
– volume: 342
  start-page: 128292
  year: 2021
  ident: ref_77
  article-title: Isoflavonoid biosynthesis in cultivated and wild soybeans grown in the field under adverse climate conditions
  publication-title: Food Chem.
  doi: 10.1016/j.foodchem.2020.128292
– volume: 71
  start-page: 1040
  year: 2010
  ident: ref_136
  article-title: Multifunctional flavonoid dioxygenases: Flavonol and anthocyanin biosynthesis in Arabidopsis thaliana L.
  publication-title: Phytochemistry
  doi: 10.1016/j.phytochem.2010.04.016
– volume: 64
  start-page: 79
  year: 2010
  ident: ref_23
  article-title: Effect of urban pollution on 4-coumarate: CoA ligase and flavonoid accumulation in Berberis thunbergii
  publication-title: Dendrobiology
– volume: 54
  start-page: 1696
  year: 2013
  ident: ref_126
  article-title: Violet/blue chrysanthemums—Metabolic engineering of the anthocyanin biosynthetic pathway results in novel petal colors
  publication-title: Plant Cell Physiol.
  doi: 10.1093/pcp/pct110
– volume: 579
  start-page: 6074
  year: 2005
  ident: ref_56
  article-title: Flavonoid components and flower color change in transgenic tobacco plants by suppression of chalcone isomerase gene
  publication-title: FEBS Lett.
  doi: 10.1016/j.febslet.2005.09.073
– volume: 280
  start-page: 30496
  year: 2005
  ident: ref_29
  article-title: Structural Elucidation of Chalcone Reductase and Implications for Deoxychalcone Biosynthesis
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M502239200
– ident: ref_96
  doi: 10.1186/s12870-016-0813-5
– volume: 55
  start-page: 216
  year: 2020
  ident: ref_127
  article-title: Recent Advances on Blue Flower Formation
  publication-title: Chin. Bull. Bot.
– ident: ref_16
  doi: 10.3390/molecules22020292
– volume: 12
  start-page: 65
  year: 2000
  ident: ref_92
  article-title: Expression Profiling of the Maize Flavonoid Pathway Genes Controlled by Estradiol-Inducible Transcription Factors CRC and P
  publication-title: Plant Cell
  doi: 10.1105/tpc.12.1.65
– volume: 7
  start-page: 103
  year: 2020
  ident: ref_150
  article-title: CsMYB60 directly and indirectly activates structural genes to promote the biosynthesis of flavonols and proanthocyanidins in cucumber
  publication-title: Hortic. Res.
  doi: 10.1038/s41438-020-0327-z
– volume: 12
  start-page: 670103
  year: 2021
  ident: ref_76
  article-title: Metabolic Engineering of Isoflavones: An Updated Overview
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2021.670103
– volume: 134
  start-page: 159
  year: 2020
  ident: ref_120
  article-title: The dihydroflavonol 4-reductase BoDFR1 drives anthocyanin accumulation in pink-leaved ornamental kale
  publication-title: Theor. Appl. Genet.
  doi: 10.1007/s00122-020-03688-9
– volume: 8
  start-page: 110
  year: 2021
  ident: ref_157
  article-title: CsbZIP1-CsMYB12 mediates the production of bitter-tasting flavonols in tea plants (Camellia sinensis) through a coordinated activator-repressor network
  publication-title: Hortic. Res.
  doi: 10.1038/s41438-021-00545-8
– volume: 15
  start-page: 573
  year: 2010
  ident: ref_147
  article-title: MYB transcription factors in Arabidopsis
  publication-title: Trends Plant Sci.
  doi: 10.1016/j.tplants.2010.06.005
– volume: 160
  start-page: 1407
  year: 2012
  ident: ref_34
  article-title: Structural, functional, and evolutionary analysis of the unusually large stilbene synthase gene family in grapevine
  publication-title: Plant Physiol.
  doi: 10.1104/pp.112.202705
– volume: 144
  start-page: 741
  year: 2007
  ident: ref_66
  article-title: Flavone synthases from Medicago truncatula are flavanone-2-hydroxylases and are important for nodulation
  publication-title: Plant Physiol.
  doi: 10.1104/pp.106.095018
– volume: 56
  start-page: 548
  year: 2020
  ident: ref_144
  article-title: Overexpression of the OvBAN gene enhances the proanthocyanidin content in transgenic alfalfa (Medicago sativa L.)
  publication-title: In Vitr. Cell. Dev. Biol.-Plant
  doi: 10.1007/s11627-020-10053-4
– volume: 153
  start-page: 806
  year: 2010
  ident: ref_105
  article-title: Ectopic expression of apple F3’H genes contributes to anthocyanin accumulation in the Arabidopsis tt7 mutant grown under nitrogen stress
  publication-title: Plant Physiol.
  doi: 10.1104/pp.109.152801
– volume: 43
  start-page: 219
  year: 2021
  ident: ref_142
  article-title: Advances in Biosynthesis and Regulation of Plant Proanthocyanidins
  publication-title: Chin. J. Cell Biol.
– volume: 94
  start-page: 487
  year: 2002
  ident: ref_44
  article-title: Enzymology of Aurone Biosynthesis
  publication-title: J. Biosci. Bioeng.
  doi: 10.1016/S1389-1723(02)80184-0
– volume: 499
  start-page: 107
  year: 2001
  ident: ref_49
  article-title: Specificity analysis and mechanism of aurone synthesis catalyzed by aureusidin synthase, a polyphenol oxidase homolog responsible for flower coloration
  publication-title: FEBS Lett.
  doi: 10.1016/S0014-5793(01)02529-7
– volume: 126
  start-page: 485
  year: 2001
  ident: ref_4
  article-title: Flavonoid Biosynthesis. A Colorful Model for Genetics, Biochemistry, Cell Biology, and Biotechnology
  publication-title: Plant Physiol.
  doi: 10.1104/pp.126.2.485
– volume: 36
  start-page: 2838
  year: 2020
  ident: ref_101
  article-title: Identification of flavonoids 3-hydroxylase from [Silybum marianum (L.) Gaertn] and its application in enhanced production of taxifolin
  publication-title: Chin. J. Biotechnol.
– volume: 6
  start-page: 1655
  year: 1994
  ident: ref_88
  article-title: Elements of the maize A1 promoter required for transactivation by the anthocyanin B/C1 or phlobaphene P regulatory genes
  publication-title: Plant Cell
– volume: 2
  start-page: e1501780
  year: 2016
  ident: ref_68
  article-title: A specialized flavone biosynthetic pathway has evolved in the medicinal plant, Scutellaria baicalensis
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1501780
– volume: 45
  start-page: 177
  year: 2018
  ident: ref_98
  article-title: Biosynthesis of Flavonol and Its Regulation in Plants
  publication-title: Acta Hortic. Sin.
– volume: 20
  start-page: 176
  year: 2015
  ident: ref_146
  article-title: Transcriptional control of flavonoid biosynthesis by MYB-bHLH-WDR complexes
  publication-title: Trends Plant Sci.
  doi: 10.1016/j.tplants.2014.12.001
– volume: 38
  start-page: 392
  year: 2007
  ident: ref_81
  article-title: The pathway of isoflavone biosynthesis and its regulation
  publication-title: J. Northeast. Agric. Univ.
– volume: 11
  start-page: 619598
  year: 2021
  ident: ref_93
  article-title: Characterization of Maize Near-Isogenic Lines With Enhanced Flavonoid Expression to Be Used as Tools in Diet-Health Complexity
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2020.619598
– volume: 112
  start-page: 335
  year: 2017
  ident: ref_152
  article-title: Anthocyanin biosynthesis regulation of DhMYB2 and DhbHLH1 in Dendrobium hybrids petals
  publication-title: Plant Physiol. Biochem.
  doi: 10.1016/j.plaphy.2017.01.019
– volume: 144
  start-page: 1520
  year: 2007
  ident: ref_28
  article-title: RNA interference silencing of chalcone synthase, the first step in the flavonoid biosynthesis pathway, leads to parthenocarpic tomato fruits
  publication-title: Plant Physiol.
  doi: 10.1104/pp.107.100305
– volume: 45
  start-page: 133
  year: 2006
  ident: ref_46
  article-title: Localization of a flavonoid biosynthetic polyphenol oxidase in vacuoles
  publication-title: Plant J.
  doi: 10.1111/j.1365-313X.2005.02625.x
– volume: 58
  start-page: 398
  year: 2017
  ident: ref_84
  article-title: The Missing Link in Leguminous Pterocarpan Biosynthesis is a Dirigent Domain-Containing Protein with Isoflavanol Dehydratase Activity
  publication-title: Plant Cell Physiol.
  doi: 10.1093/pcp/pcw213
– volume: 25
  start-page: 555
  year: 2008
  ident: ref_128
  article-title: Flavonoids and their glycosides, including anthocyanins
  publication-title: Nat. Prod. Rep.
  doi: 10.1039/b718040n
– volume: 181
  start-page: 1097
  year: 2020
  ident: ref_164
  article-title: The Penium margaritaceum Genome: Hallmarks of the Origins of Land Plants
  publication-title: Cell
  doi: 10.1016/j.cell.2020.04.019
– volume: 231
  start-page: 933
  year: 2021
  ident: ref_116
  article-title: Repressors of anthocyanin biosynthesis
  publication-title: New Phytol.
  doi: 10.1111/nph.17397
– volume: 81
  start-page: E2950
  year: 2016
  ident: ref_129
  article-title: Photochromic Properties of 3-Deoxyanthocyanidin Pigments in Nontoxic Solvents
  publication-title: J. Food Sci.
  doi: 10.1111/1750-3841.13548
– volume: 3
  start-page: e1602785
  year: 2017
  ident: ref_6
  article-title: Generation of blue chrysanthemums by anthocyanin B-ring hydroxylation and glucosylation and its coloration mechanism
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1602785
– volume: 39
  start-page: 597
  year: 2020
  ident: ref_21
  article-title: Functional expression and characterization of cinnamic acid 4-hydroxylase from the hornwort Anthoceros agrestis in Physcomitrella patens
  publication-title: Plant Cell Rep.
  doi: 10.1007/s00299-020-02517-z
– volume: 4
  start-page: 1034
  year: 2018
  ident: ref_139
  article-title: Proanthocyanidin subunit composition determined by functionally diverged dioxygenases
  publication-title: Nature Plants
  doi: 10.1038/s41477-018-0292-9
– volume: 2
  start-page: 132
  year: 2013
  ident: ref_9
  article-title: The Antioxidants Changes in Ornamental Flowers during Development and Senescence
  publication-title: Antioxidants
  doi: 10.3390/antiox2030132
– volume: 12
  start-page: 29
  year: 2007
  ident: ref_12
  article-title: Flavonoid oxidation in plants: From biochemical properties to physiological functions
  publication-title: Trends Plant Sci.
  doi: 10.1016/j.tplants.2006.11.006
– ident: ref_83
  doi: 10.3390/metabo11070433
– volume: 66
  start-page: 3524
  year: 2018
  ident: ref_119
  article-title: Reduction of Dihydrokaempferol by Vitis vinfera Dihydroflavonol 4-Reductase to Produce Orange Pelargonidin-Type Anthocyanins
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/acs.jafc.7b05766
– volume: 166
  start-page: 417
  year: 2019
  ident: ref_42
  article-title: Aurone: A biologically attractive scaffold as anticancer agent
  publication-title: Eur. J. Med. Chem.
  doi: 10.1016/j.ejmech.2019.01.078
– volume: 6
  start-page: 19245
  year: 2016
  ident: ref_61
  article-title: Flavone synthases from Lonicera japonica and L. macranthoides reveal differential flavone accumulation
  publication-title: Sci. Rep.
  doi: 10.1038/srep19245
– ident: ref_106
  doi: 10.1186/1471-2229-10-155
SSID ssj0023259
Score 2.7145553
SecondaryResourceType review_article
Snippet Flavonoids are an important class of secondary metabolites widely found in plants, contributing to plant growth and development and having prominent...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 12824
SubjectTerms Alzheimer's disease
Biosynthesis
Biosynthetic Pathways
Carbon dioxide
Enzymes
Flavonoids
Flavonoids - biosynthesis
Gene expression
Gene Expression Regulation, Plant
Gene Regulatory Networks
Hydrocarbons
Lignin
Metabolism
Metabolites
Pigments
Plant Proteins - genetics
Plant Proteins - metabolism
Plants - metabolism
Review
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fS8MwEA46EXwRf1udUkF8WtjSpGn7JCKOIbgnB3srTZNgZbbTdsL-ey9t11lFX5tLG-7S-75LjjuErjWQbo9oiTnQX8x0EOHICXwcczVw_TiSVJob3acxH03Y49Sd1gdueZ1WufKJpaOWWWzOyPvAuwGLAM4Gt_N3bLpGmdvVuoXGJtoypctMSpc3XQdc1CmbpRHAIFhLwKsamxTC_H7y-pYbaDSvZG1M-kU0f-ZLfgOg4R7arZmjfVeZeh9tqPQAbVe9JJeHqAcGt4ez6DNLs0Ta8DxfpsDu8iS3x1Wut52ktmlSVORHaDJ8eL4f4boVAo6ZTwosYgYK5SqQUoB78ogEnA205r5iMY008agINAFv4Q-0DyGOkJQJCGUYF4HwI3qMOmmWqlNkS6UdJ_YApCTMjZQAxQ6IDIA6SIhKPQv1VsoI47pOuGlXMQshXjC6C1u6s9BNIz6vCmT8JdhdaTas_5M8XFvVQlfNMOxwc20RpSpbVDIuBaLkWOikMkTzJQr-h3EHFu21TNQImOrZ7ZE0eSmraPvcNcHY2f_LOkc7jsliIQQ7vIs6xcdCXQANKcRlude-AMZ421k
  priority: 102
  providerName: ProQuest
Title The Flavonoid Biosynthesis Network in Plants
URI https://www.ncbi.nlm.nih.gov/pubmed/34884627
https://www.proquest.com/docview/2608128220
https://www.proquest.com/docview/2608535842
https://pubmed.ncbi.nlm.nih.gov/PMC8657439
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED_8QNmL-G39GBXEp1XXNk3SBxEVpwgOEQd7K02TYGV2um7i_nsvdqvO6YsvfUguFO6S_H4_ctwBHGgk3czV0qFIfx2iw9iJvZA7CVX1gCex9KV50b1t0usWuWkH7a-SQiMH5r9KO9NPqtXrHL2_Dk_xwJ8YxYmS_Th9es4NzOFV65FZmEdQYuaM3pLyQQF5QxAWJTanl1Rg0cd9TKhpLfMdnaYo58_MyW9Q1FiGpRGHtM-KoK_AjMpWYaHoKjlcgxqG3m504rdu1k2ljeP5MEOel6e53Syyvu00s027on6-Dq3G5cPFtTNqiuAkhLt9RyQEXUtVKKXAi4q5EhE31JpyRRI_1i7zRahdvDd4XXMUO0L6RKCoIVSEgsf-Bsxl3UxtgS2V9ryEIVxJXBsrQZE-ujJEEiFRnzILamNnRMmoYrhpXNGJUDkYN0YTbrTgsDR_KUpl_GW4O_ZsNA54hLqKm1mvbsF-OY173TxgxJnqDgqbwEfK5FmwWQSi_NM4ghawiRCVBqaO9uRMlj5-1tPmNDCybPvfK3eg4plUF9d1PLoLc_3eQO0hV-mLKsyyNsMvb1xVYf78snl3XzXoEVQ_9-cHYT_uFQ
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bT9swFD5inabxgtjGoFy2TNr2hNX4Uid-QAixVWVAn0DqWxbHtpYJEiAtqH-K38hx05R1E3vjNXYS-1z8fSd2zgH47JB0R9QZIpH-EuFUSlKmYpJJG3bjLDXc-B3d04Hsn4sfw-5wCe6bf2H8scpmTZwu1KbM_DfyDvJuxCKEs3D_6pr4qlF-d7UpoVGbxbGd3GHIVu0dfUP9fmGs9_3ssE9mVQVIJmI6IjoTODZplTEaPT2iBiFLOSdjKzKeOhpxrRxFx4tDF2O0oA0XGqMCIbXSccrxuS_gJQJv6D0qGj4GeJxNi7NRxDycu5J1Tk_OVdjJf19WHor9FMQiBv5DbP8-n_kH4PVWYWXGVIOD2rTewJIt3sKrunbl5B3sooEFvYv0tizK3AR4vZoUyCarvAoG9dnyIC8CXxRpVK3B-bMI6T20irKwGxAY6xjLIgRFg_emVqMiQ2oUUhWDUXDUht1GGEk2y0vuy2NcJBifeNklC7Jrw9d596s6IcdTHbcbySYzv6ySRytqw6d5M3qU3yZJC1uO6z5djsSMtWG9VsT8TRzXOyEZDjpaUNG8g8_WvdhS5L-mWbtj2fXB3-b_h_URXvfPTk-Sk6PB8RYsM3-ChlLC5Da0Rjdju4MUaKQ_TO0ugJ_PbegPXpMYRw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bT9RAFD4BDMQXoyCyiloS8InJdi6ddh6IMeKG64YHSfatdDozsQRbtItm_5q_jjPbdnEx8sZrO22n5zLfdzqn5wBsOyTdMXWGSKS_RDiVkYyphOTShlGSZ4Ybv6N7OpQH5-JoFI0W4E_3L4xPq-zWxOlCbarcfyPvI-9GLEI4C_uuTYs42x98vP5BfAcpv9PatdNoTOTYTn5j-FbvHe6jrncYG3z5-vmAtB0GSC4SOiY6FzhPaZUxGr0-pgbhSzknEytynjkac60cRSdMQpdg5KANFxojBCG10knG8b6L8CTmEfU-Fo_ugj3Opo3aKOIfykHJpr4n5yrsF5ffaw_L_nXEPB7-Q3Lv52r-BX6D5_CsZa3Bp8bMXsCCLVdhueljOVmDXTS2YHCV_arKqjABHq8nJTLLuqiDYZNnHhRl4BskjeuXcP4oQlqHpbIq7QYExjrG8hgB0uC1mdWo1JAahbTFYEQc92C3E0aatzXKfauMqxRjFS-7dE52PfgwG37dFOf438DNTrJp66N1emdRPdianUbv8lsmWWmrm2ZMxJGksR68ahQxexLHtU9IhpOO51Q0G-Ard8-fKYtv0wreiYx8IPj64Wm9hxU08fTkcHj8Bp4yn0xDKWFyE5bGP2_sW2RDY_1uanYBXDy2nd8CQt0cfQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Flavonoid+Biosynthesis+Network+in+Plants&rft.jtitle=International+journal+of+molecular+sciences&rft.au=Liu%2C+Weixin&rft.au=Feng%2C+Yi&rft.au=Yu%2C+Suhang&rft.au=Fan%2C+Zhengqi&rft.date=2021-11-26&rft.pub=MDPI&rft.eissn=1422-0067&rft.volume=22&rft.issue=23&rft_id=info:doi/10.3390%2Fijms222312824&rft_id=info%3Apmid%2F34884627&rft.externalDocID=PMC8657439
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1422-0067&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1422-0067&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1422-0067&client=summon