Genetic Contributions to Regional Variability in Human Brain Structure: Methods and Preliminary Results
Twin studies provide one approach for investigating and partitioning genetic and environmental contributions to phenotypic variability in human brain structure. Previous twin studies have found that cerebral volume, hemispheric volume, ventricular volume, and cortical gyral pattern variability were...
Saved in:
Published in | NeuroImage (Orlando, Fla.) Vol. 17; no. 1; pp. 256 - 271 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.09.2002
Elsevier Limited |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Twin studies provide one approach for investigating and partitioning genetic and environmental contributions to phenotypic variability in human brain structure. Previous twin studies have found that cerebral volume, hemispheric volume, ventricular volume, and cortical gyral pattern variability were heritable. We investigated the contributions of genetic and environmental factors to both global (brain volume and lateral ventricular volume) and regional (parcellated gray matter) variability in brain structure. We examined MR images from 10 pairs of healthy monozygotic and 10 pairs of same-sex dizygotic twins. Regional gray matter volume was estimated by automated image segmentation, transformation to standard space, and parcellation using a digital atlas. Heritability was estimated by path analysis. Estimated heritability for brain volume variability was high (0.66; 95% confidence interval 0.17, 1.0) but the major effects on lateral ventricular volume variability were common and unique environmental factors. We constructed a map of regional brain heritability and found large genetic effects shared in common between several bilateral brain regions, particularly paralimbic structures and temporal–parietal neocortex. We tested three specific hypotheses with regard to the genetic control of brain variability: (i) that the strength of the genetic effect is related to gyral ontogenesis, (ii) that there is greater genetic control of left than of right hemisphere variability, and (iii) that random or fluctuating asymmetry in bilateral structures is not heritable. We found no evidence in support of the first two hypotheses, but our results were consistent with the third hypothesis. Finally, we used principal component (PC) analysis of the genetic correlation matrix, to identify systems of anatomically distributed gray matter regions which shared major genetic effects in common. Frontal and parietal neocortical areas loaded positively on the first PC; some paralimbic and limbic areas loaded negatively. Bilateral insula, some frontal regions, and temporal neocortical regions functionally specialized for audition and language loaded strongly on the second PC. We conclude that large samples are required for powerful investigation of genetic effects in imaging data from twins. However, these preliminary results suggest that genetic effects on structure of the human brain are regionally variable and predominantly symmetric in paralimbic structures and lateral temporal cortex. |
---|---|
AbstractList | Twin studies provide one approach for investigating and partitioning genetic and environmental contributions to phenotypic variability in human brain structure. Previous twin studies have found that cerebral volume, hemispheric volume, ventricular volume, and cortical gyral pattern variability were heritable. We investigated the contributions of genetic and environmental factors to both global (brain volume and lateral ventricular volume) and regional (parcellated gray matter) variability in brain structure. We examined MR images from 10 pairs of healthy monozygotic and 10 pairs of same-sex dizygotic twins. Regional gray matter volume was estimated by automated image segmentation, transformation to standard space, and parcellation using a digital atlas. Heritability was estimated by path analysis. Estimated heritability for brain volume variability was high (0.66; 95% confidence interval 0.17, 1.0) but the major effects on lateral ventricular volume variability were common and unique environmental factors. We constructed a map of regional brain heritability and found large genetic effects shared in common between several bilateral brain regions, particularly paralimbic structures and temporal–parietal neocortex. We tested three specific hypotheses with regard to the genetic control of brain variability: (i) that the strength of the genetic effect is related to gyral ontogenesis, (ii) that there is greater genetic control of left than of right hemisphere variability, and (iii) that random or fluctuating asymmetry in bilateral structures is not heritable. We found no evidence in support of the first two hypotheses, but our results were consistent with the third hypothesis. Finally, we used principal component (PC) analysis of the genetic correlation matrix, to identify systems of anatomically distributed gray matter regions which shared major genetic effects in common. Frontal and parietal neocortical areas loaded positively on the first PC; some paralimbic and limbic areas loaded negatively. Bilateral insula, some frontal regions, and temporal neocortical regions functionally specialized for audition and language loaded strongly on the second PC. We conclude that large samples are required for powerful investigation of genetic effects in imaging data from twins. However, these preliminary results suggest that genetic effects on structure of the human brain are regionally variable and predominantly symmetric in paralimbic structures and lateral temporal cortex. Twin studies provide one approach for investigating and partitioning genetic and environmental contributions to phenotypic variability in human brain structure. Previous twin studies have found that cerebral volume, hemispheric volume, ventricular volume, and cortical gyral pattern variability were heritable. We investigated the contributions of genetic and environmental factors to both global (brain volume and lateral ventricular volume) and regional (parcellated gray matter) variability in brain structure. We examined MR images from 10 pairs of healthy monozygotic and 10 pairs of same-sex dizygotic twins. Regional gray matter volume was estimated by automated image segmentation, transformation to standard space, and parcellation using a digital atlas. Heritability was estimated by path analysis. Estimated heritability for brain volume variability was high (0.66; 95% confidence interval 0.17, 1.0) but the major effects on lateral ventricular volume variability were common and unique environmental factors. We constructed a map of regional brain heritability and found large genetic effects shared in common between several bilateral brain regions, particularly paralimbic structures and temporal-parietal neocortex. We tested three specific hypotheses with regard to the genetic control of brain variability: (i) that the strength of the genetic effect is related to gyral ontogenesis, (ii) that there is greater genetic control of left than of right hemisphere variability, and (iii) that random or fluctuating asymmetry in bilateral structures is not heritable. We found no evidence in support of the first two hypotheses, but our results were consistent with the third hypothesis. Finally, we used principal component (PC) analysis of the genetic correlation matrix, to identify systems of anatomically distributed gray matter regions which shared major genetic effects in common. Frontal and parietal neocortical areas loaded positively on the first PC; some paralimbic and limbic areas loaded negatively. Bilateral insula, some frontal regions, and temporal neocortical regions functionally specialized for audition and language loaded strongly on the second PC. We conclude that large samples are required for powerful investigation of genetic effects in imaging data from twins. However, these preliminary re. sults suggest that genetic effects on structure of the human brain are regionally variable and predominantly symmetric in paralimbic structures and lateral temporal cortex.Twin studies provide one approach for investigating and partitioning genetic and environmental contributions to phenotypic variability in human brain structure. Previous twin studies have found that cerebral volume, hemispheric volume, ventricular volume, and cortical gyral pattern variability were heritable. We investigated the contributions of genetic and environmental factors to both global (brain volume and lateral ventricular volume) and regional (parcellated gray matter) variability in brain structure. We examined MR images from 10 pairs of healthy monozygotic and 10 pairs of same-sex dizygotic twins. Regional gray matter volume was estimated by automated image segmentation, transformation to standard space, and parcellation using a digital atlas. Heritability was estimated by path analysis. Estimated heritability for brain volume variability was high (0.66; 95% confidence interval 0.17, 1.0) but the major effects on lateral ventricular volume variability were common and unique environmental factors. We constructed a map of regional brain heritability and found large genetic effects shared in common between several bilateral brain regions, particularly paralimbic structures and temporal-parietal neocortex. We tested three specific hypotheses with regard to the genetic control of brain variability: (i) that the strength of the genetic effect is related to gyral ontogenesis, (ii) that there is greater genetic control of left than of right hemisphere variability, and (iii) that random or fluctuating asymmetry in bilateral structures is not heritable. We found no evidence in support of the first two hypotheses, but our results were consistent with the third hypothesis. Finally, we used principal component (PC) analysis of the genetic correlation matrix, to identify systems of anatomically distributed gray matter regions which shared major genetic effects in common. Frontal and parietal neocortical areas loaded positively on the first PC; some paralimbic and limbic areas loaded negatively. Bilateral insula, some frontal regions, and temporal neocortical regions functionally specialized for audition and language loaded strongly on the second PC. We conclude that large samples are required for powerful investigation of genetic effects in imaging data from twins. However, these preliminary re. sults suggest that genetic effects on structure of the human brain are regionally variable and predominantly symmetric in paralimbic structures and lateral temporal cortex. Twin studies provide one approach for investigating and partitioning genetic and environmental contributions to phenotypic variability in human brain structure. Previous twin studies have found that cerebral volume, hemispheric volume, ventricular volume, and cortical gyral pattern variability were heritable. We investigated the contributions of genetic and environmental factors to both global (brain volume and lateral ventricular volume) and regional (parcellated gray matter) variability in brain structure. We examined MR images from 10 pairs of healthy monozygotic and 10 pairs of same-sex dizygotic twins. Regional gray matter volume was estimated by automated image segmentation, transformation to standard space, and parcellation using a digital atlas. Heritability was estimated by path analysis. Estimated heritability for brain volume variability was high (0.66; 95% confidence interval 0.17, 1.0) but the major effects on lateral ventricular volume variability were common and unique environmental factors. We constructed a map of regional brain heritability and found large genetic effects shared in common between several bilateral brain regions, particularly paralimbic structures and temporal-parietal neocortex. We tested three specific hypotheses with regard to the genetic control of brain variability: (i) that the strength of the genetic effect is related to gyral ontogenesis, (ii) that there is greater genetic control of left than of right hemisphere variability, and (iii) that random or fluctuating asymmetry in bilateral structures is not heritable. We found no evidence in support of the first two hypotheses, but our results were consistent with the third hypothesis. Finally, we used principal component (PC) analysis of the genetic correlation matrix, to identify systems of anatomically distributed gray matter regions which shared major genetic effects in common. Frontal and parietal neocortical areas loaded positively on the first PC; some paralimbic and limbic areas loaded negatively. Bilateral insula, some frontal regions, and temporal neocortical regions functionally specialized for audition and language loaded strongly on the second PC. We conclude that large samples are required for powerful investigation of genetic effects in imaging data from twins. However, these preliminary re. sults suggest that genetic effects on structure of the human brain are regionally variable and predominantly symmetric in paralimbic structures and lateral temporal cortex. |
Author | Wright, I.C. Murray, R.M. Bullmore, E.T. Sham, P. Weinberger, D.R. |
Author_xml | – sequence: 1 givenname: I.C. surname: Wright fullname: Wright, I.C. organization: Institute of Psychiatry, King's College London, London, United Kingdom – sequence: 2 givenname: P. surname: Sham fullname: Sham, P. organization: Institute of Psychiatry, King's College London, London, United Kingdom – sequence: 3 givenname: R.M. surname: Murray fullname: Murray, R.M. organization: Institute of Psychiatry, King's College London, London, United Kingdom – sequence: 4 givenname: D.R. surname: Weinberger fullname: Weinberger, D.R. organization: National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland – sequence: 5 givenname: E.T. surname: Bullmore fullname: Bullmore, E.T. organization: Institute of Psychiatry, King's College London, London, United Kingdom |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/12482082$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kc2LFDEUxIOsuB969SgBwVuPSTrppL3poLvCiqKL15BOvx6zppM1SQvz35tmVg8D6-nVoX4Fr-ocnYQYAKHnlGwoId3r4ObdhhHCNpR27SN0Rkkvml5IdrJq0TaK0v4Uned8SwjpKVdP0CllXDGi2BnaXUKA4izexlCSG5biYsi4RPwVdlUaj7-b5MzgvCt77AK-WmYT8Ltkqv5W0mLLkuAN_gTlRxwzNmHEXxJ4N7tg0r7G5MWX_BQ9nozP8Oz-XqCbD-9vtlfN9efLj9u3143lipZmGMDadpC2F3aYWsnlJImw7djajlnJJ05boRQXMJCOqZEPHCY1TWIcqaWsvUCvDrF3Kf5aIBc9u2zBexMgLllLJru260k1vjwy3sYl1XezpoJ0QvVKyup6ce9ahhlGfZfcXJ_Sf_urBn4w2BRzTjBp64pZOyy1IK8p0etMep1JrzPpdaaKbY6wf8kPAeoAQO3ut4Oks3UQLIwugS16jO5htDtCrXfBWeN_wv5_4B-xNLq9 |
CitedBy_id | crossref_primary_10_1002_hbm_20381 crossref_primary_10_1002_hbm_20660 crossref_primary_10_1093_cercor_bhaa391 crossref_primary_10_1016_j_biopsych_2010_06_002 crossref_primary_10_1093_cercor_bhm180 crossref_primary_10_1007_s00330_015_3893_y crossref_primary_10_1007_s10519_006_9133_0 crossref_primary_10_1093_cercor_bhm211 crossref_primary_10_1111_gbb_12182 crossref_primary_10_1375_twin_14_3_268 crossref_primary_10_1002_hbm_24611 crossref_primary_10_1016_j_jad_2018_05_017 crossref_primary_10_1523_JNEUROSCI_1722_05_2005 crossref_primary_10_1007_s11065_010_9151_9 crossref_primary_10_1038_sj_bjp_0707655 crossref_primary_10_1038_s42003_020_01163_1 crossref_primary_10_1002_hbm_22550 crossref_primary_10_1016_j_neuroimage_2013_06_027 crossref_primary_10_1002_hbm_20494 crossref_primary_10_1038_s41422_018_0053_3 crossref_primary_10_1586_ern_09_36 crossref_primary_10_1007_s11682_013_9269_5 crossref_primary_10_1016_j_neuroimage_2009_01_021 crossref_primary_10_1002_hbm_20407 crossref_primary_10_1016_j_biopsych_2019_04_013 crossref_primary_10_1002_hbm_20926 crossref_primary_10_1093_cercor_bhaa207 crossref_primary_10_1016_j_neuroimage_2006_04_232 crossref_primary_10_1002_hbm_20400 crossref_primary_10_1002_hbm_20401 crossref_primary_10_1017_S0033291712001341 crossref_primary_10_1002_hbm_20404 crossref_primary_10_1097_WNR_0b013e328355a62a crossref_primary_10_1002_hbm_23276 crossref_primary_10_1038_s41380_018_0205_3 crossref_primary_10_1016_j_bbr_2008_07_029 crossref_primary_10_1016_j_cortex_2015_02_019 crossref_primary_10_1016_j_neuroimage_2013_05_054 crossref_primary_10_1007_s11682_014_9296_x crossref_primary_10_1126_science_1214463 crossref_primary_10_1109_TMI_2007_897396 crossref_primary_10_1111_j_1467_7687_2009_00858_x crossref_primary_10_1375_twin_10_5_683 crossref_primary_10_1098_rsos_170057 crossref_primary_10_1016_j_neuroimage_2009_09_003 crossref_primary_10_1073_pnas_0602639103 crossref_primary_10_1002_hbm_20398 crossref_primary_10_1016_j_biopsycho_2008_02_005 crossref_primary_10_1523_JNEUROSCI_1255_14_2015 crossref_primary_10_1038_nrn1405 crossref_primary_10_1097_WAD_0b013e31819cadd8 crossref_primary_10_1007_s00429_015_1060_5 crossref_primary_10_1016_j_pscychresns_2014_05_014 crossref_primary_10_1093_cercor_bhad202 crossref_primary_10_3389_fnagi_2022_1034073 crossref_primary_10_1038_sj_mp_4001701 crossref_primary_10_1038_srep26682 crossref_primary_10_1002_ajmg_b_30338 crossref_primary_10_1016_j_neuroimage_2015_12_039 crossref_primary_10_1093_cercor_bhy157 crossref_primary_10_1016_j_ajp_2019_02_009 crossref_primary_10_1016_j_neuroscience_2009_04_006 crossref_primary_10_1179_1743132814Y_0000000359 crossref_primary_10_1371_journal_pone_0033964 crossref_primary_10_1016_j_tig_2006_04_004 crossref_primary_10_1146_annurev_anthro_35_081705_123210 crossref_primary_10_1016_j_neuroimage_2009_05_022 crossref_primary_10_1016_S0165_0173_03_00205_4 crossref_primary_10_1016_j_biopsych_2009_09_032 crossref_primary_10_1146_annurev_neuro_28_061604_135655 crossref_primary_10_1002_hbm_20549 crossref_primary_10_1016_j_jtbi_2008_05_028 crossref_primary_10_1016_j_neuroimage_2010_01_007 crossref_primary_10_1016_j_schres_2010_08_005 crossref_primary_10_1109_TMI_2012_2185830 crossref_primary_10_1007_s10519_010_9332_6 crossref_primary_10_1016_j_neurobiolaging_2010_02_007 crossref_primary_10_1017_S0954579408000552 crossref_primary_10_1093_icb_icv029 crossref_primary_10_1016_j_biopsych_2014_05_009 crossref_primary_10_1016_j_schres_2019_11_004 crossref_primary_10_1111_j_1399_5618_2004_00113_x crossref_primary_10_3389_fnagi_2022_831002 crossref_primary_10_1523_JNEUROSCI_1312_06_2006 crossref_primary_10_1016_j_neuroimage_2015_09_046 crossref_primary_10_1186_1471_2342_5_7 crossref_primary_10_1371_journal_pone_0071723 crossref_primary_10_1093_brain_awm205 crossref_primary_10_1093_cercor_bhm254 crossref_primary_10_1093_beheco_arv088 crossref_primary_10_1016_j_neuroimage_2015_10_057 crossref_primary_10_1073_pnas_0610848104 crossref_primary_10_1002_ar_b_20010 crossref_primary_10_3390_medicina58111687 crossref_primary_10_1016_j_biopsych_2004_06_033 crossref_primary_10_1016_j_neuroimage_2004_09_016 crossref_primary_10_1093_brain_aws138 crossref_primary_10_1016_j_biopsych_2004_04_007 crossref_primary_10_1007_s11065_015_9281_1 crossref_primary_10_1016_j_euroneuro_2012_11_010 crossref_primary_10_1177_1367006912456585 crossref_primary_10_1016_j_nicl_2019_101652 crossref_primary_10_1038_s41380_018_0330_z crossref_primary_10_1371_journal_pone_0175800 crossref_primary_10_1002_evan_10122 crossref_primary_10_1016_j_neuroimage_2010_03_017 crossref_primary_10_1038_s41598_017_03962_9 crossref_primary_10_1016_j_neurobiolaging_2010_06_002 crossref_primary_10_3389_fphy_2019_00160 crossref_primary_10_1111_j_1469_7610_2011_02381_x crossref_primary_10_1093_scan_nsv156 crossref_primary_10_1002_pchj_227 crossref_primary_10_1016_j_neurobiolaging_2013_10_079 crossref_primary_10_1111_j_1601_183X_2006_00196_x crossref_primary_10_1002_hbm_21054 crossref_primary_10_1093_cercor_bhz215 crossref_primary_10_3390_brainsci9090240 crossref_primary_10_7763_IJBBB_2013_V3_188 crossref_primary_10_1007_s00221_021_06057_0 crossref_primary_10_1016_j_biopsych_2006_11_031 crossref_primary_10_1016_j_neuroimage_2022_118894 crossref_primary_10_1017_thg_2012_12 crossref_primary_10_1111_nyas_12088 crossref_primary_10_1017_thg_2012_11 crossref_primary_10_1093_schbul_sbn017 crossref_primary_10_1038_nrn3465 crossref_primary_10_1097_WCO_0b013e32832d9b86 crossref_primary_10_1111_j_1601_183X_2009_00558_x crossref_primary_10_1007_s00429_015_1177_6 crossref_primary_10_1162_jocn_a_00531 crossref_primary_10_1016_j_neuroimage_2009_09_043 crossref_primary_10_3389_fpsyt_2024_1349989 crossref_primary_10_1016_j_bbr_2011_08_016 crossref_primary_10_1016_j_neuroimage_2012_04_043 crossref_primary_10_1016_j_neuroimage_2021_118570 crossref_primary_10_1002_hbm_23503 crossref_primary_10_1007_s11682_013_9260_1 crossref_primary_10_7197_cmj_1075449 crossref_primary_10_1111_j_1460_9568_2004_03236_x crossref_primary_10_1038_srep32760 crossref_primary_10_1016_j_neuroimage_2007_09_019 crossref_primary_10_1192_bjp_182_5_381 crossref_primary_10_1016_j_biopsych_2006_11_027 crossref_primary_10_1080_09540260701486233 crossref_primary_10_1002_ajmg_b_32162 crossref_primary_10_1016_j_brainres_2009_12_069 crossref_primary_10_1016_j_arr_2013_10_003 crossref_primary_10_1111_j_1469_7610_2006_01676_x crossref_primary_10_1002_hbm_20466 crossref_primary_10_1016_j_neuroscience_2012_06_030 crossref_primary_10_1016_j_neuroimage_2012_12_015 crossref_primary_10_2217_fnl_11_35 crossref_primary_10_1016_j_neuroimage_2014_04_072 |
ContentType | Journal Article |
Copyright | 2002 Elsevier Science (USA) Copyright Elsevier Limited Sep 1, 2002 |
Copyright_xml | – notice: 2002 Elsevier Science (USA) – notice: Copyright Elsevier Limited Sep 1, 2002 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7TK 7X7 7XB 88E 88G 8AO 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2M M7P P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ Q9U RC3 7X8 |
DOI | 10.1006/nimg.2002.1163 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Neurosciences Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Psychology Database (Alumni) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni Edition) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection Health & Medical Collection (Alumni Edition) Medical Database Psychology Database Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology ProQuest Central Basic Genetics Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest One Psychology ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Genetics Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Psychology Journals (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest Psychology Journals ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE ProQuest One Psychology |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1095-9572 |
EndPage | 271 |
ExternalDocumentID | 3244143591 12482082 10_1006_nimg_2002_1163 S1053811902911638 |
Genre | Research Support, Non-U.S. Gov't Twin Study Journal Article |
GroupedDBID | --- --K --M .1- .FO .~1 0R~ 123 1B1 1RT 1~. 1~5 29N 4.4 457 4G. 53G 5RE 5VS 7-5 71M 7X7 88E 8AO 8FE 8FH 8FI 8FJ 8P~ 9JM AABNK AAEDT AAEDW AAFWJ AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXLA AAXUO AAYWO ABBQC ABCQJ ABFNM ABFRF ABIVO ABJNI ABMAC ABMZM ABUWG ABXDB ACDAQ ACGFO ACGFS ACIEU ACPRK ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADFGL ADFRT ADMUD ADNMO ADVLN ADXHL AEBSH AEFWE AEIPS AEKER AENEX AEUPX AFJKZ AFKRA AFPKN AFPUW AFRHN AFTJW AFXIZ AGCQF AGHFR AGQPQ AGUBO AGWIK AGYEJ AHHHB AHMBA AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRLJ AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP ASPBG AVWKF AXJTR AZFZN AZQEC BBNVY BENPR BHPHI BKOJK BLXMC BNPGV BPHCQ BVXVI CAG CCPQU COF CS3 DM4 DU5 DWQXO EBS EFBJH EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN FYUFA G-2 G-Q GBLVA GNUQQ GROUPED_DOAJ HCIFZ HDW HEI HMCUK HMK HMO HMQ HVGLF HZ~ IHE J1W KOM LG5 LK8 LX8 M1P M29 M2M M2V M41 M7P MO0 MOBAO N9A O-L O9- OAUVE OK1 OVD OZT P-8 P-9 P2P PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PSYQQ PUEGO Q38 R2- ROL RPZ SAE SCC SDF SDG SDP SES SEW SNS SSH SSN SSZ T5K TEORI UKHRP UV1 WUQ XPP YK3 Z5R ZMT ZU3 ~G- 3V. 6I. AACTN AADPK AAIAV ABLVK ABYKQ AFKWA AJBFU AJOXV AMFUW C45 EFLBG LCYCR NCXOZ RIG ZA5 AAYXX AGRNS ALIPV CITATION 0SF CGR CUY CVF ECM EIF NPM 7TK 7XB 8FD 8FK FR3 K9. P64 PKEHL PQEST PQUKI PRINS Q9U RC3 7X8 |
ID | FETCH-LOGICAL-c481t-bbecc3b7c95cbf3747f705c3d3c62c74f41358845eb0628d4b4ef8ff5dd1c123 |
IEDL.DBID | AIKHN |
ISSN | 1053-8119 |
IngestDate | Thu Jul 10 17:28:46 EDT 2025 Wed Aug 13 07:51:57 EDT 2025 Wed Feb 19 01:30:31 EST 2025 Thu Apr 24 22:50:43 EDT 2025 Tue Jul 01 00:49:08 EDT 2025 Fri Feb 23 02:34:11 EST 2024 Tue Aug 26 16:31:45 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | path analysis twins MRI structural equation modeling brain anatomy asymmetry genetic correlation matrix heritability |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c481t-bbecc3b7c95cbf3747f705c3d3c62c74f41358845eb0628d4b4ef8ff5dd1c123 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 12482082 |
PQID | 1506589877 |
PQPubID | 2031077 |
PageCount | 16 |
ParticipantIDs | proquest_miscellaneous_72763690 proquest_journals_1506589877 pubmed_primary_12482082 crossref_citationtrail_10_1006_nimg_2002_1163 crossref_primary_10_1006_nimg_2002_1163 elsevier_sciencedirect_doi_10_1006_nimg_2002_1163 elsevier_clinicalkey_doi_10_1006_nimg_2002_1163 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2002-09-01 |
PublicationDateYYYYMMDD | 2002-09-01 |
PublicationDate_xml | – month: 09 year: 2002 text: 2002-09-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Amsterdam |
PublicationTitle | NeuroImage (Orlando, Fla.) |
PublicationTitleAlternate | Neuroimage |
PublicationYear | 2002 |
Publisher | Elsevier Inc Elsevier Limited |
Publisher_xml | – name: Elsevier Inc – name: Elsevier Limited |
References | Loehlin (RF23) 1996; 26 Morosan, Rademacher, Schleicher, Amunts, Schormann, Zilles (RF28) 2001; 13 Dempsey, Townsend, Martin, Neale (RF16) 1995; 74 Kingsolver, Wiernasz (RF21) 1991; 45 Egan, Goldberg, Kolachana, Callicott, Mazzanti, Straub, Goldman, Weinberger (RF17) 2001; 98 Thompson, Cannon, Narr, van Erp, Poutanen, Huttunen, Lönnquist, Standertskjöld-Nordenstam, Kaprio, Khaledy, Dail, Zoumalan, Toga (RF42) 2001; 4 Thompson, Schwarz, Lin, Khan, Toga (RF41) 1996; 16 Carey (RF11) 1998; 18 Friston, Holmes, Worsley (RF18) 1995; 2 Markow (RF25) 1992; 22 Todd, Health, Raichle, Botteron (RF43) 1999; 4 Bullmore, Long, Suckling, Fadili, Calvert, Zelaya, Carpenter, Brammer (RF9) 2001; 12 Potter, Nance (RF36) 1976; 44 Weickert, Weinberger (RF51) 1998; 24 Neale, Cardon (RF30) 1992 Bartley, Jones, Weinberger (RF4) 1997; 120 Wright, McGuire, Poline, Travere, Murray, Frith, Frackowiak, Friston (RF53) 1995; 2 Kieser (RF20) 1990 Nichols, Holmes (RF31) 2002; 15 Robb, Hanson, Karwoski, Larson, Workman, Stacy (RF38) 1989; 13 Vogel, Motulsky (RF49) 1986 McGuffin, Asherson, Owen, Farmer (RF26) 1994; 164 Talairach, Tournoux (RF40) 1988 Reveley, Reveley, Clifford, Murray (RF37) 1982; 1 Phillips (RF34) 1993; 341 Christian, Norton, Sorbel, Williams (RF15) 1995; 12 Sham (RF39) 1998 Pfefferbaum, Mathalon, Sullivan, Rawles, Zipursky, Lim (RF33) 1994; 51 Wright, Rabe-Hesketh, Woodruff, David, Murray, Bullmore (RF56) 2000; 157 Bollen (RF6) 1989 Van Beijsterveldt, Molenaar, de Geus, Boomsma (RF46) 1996; 58 Tramo, Loftus, Thomas, Green, Mott, Gazzaniga (RF44) 1995; 7 Chi, Dooling, Gilles (RF14) 1977; 1 Molenaar, Boomsma, Dolan (RF27) 1993; 23 Turelli (RF45) 1998; 42 Wright, Ellison, Sharma, Friston, Murray, McGuire (RF55) 1999; 35 Weinberger, Berman, Suddath, Torrey (RF52) 1992; 149 Waddington (RF50) 1940; 150 Vitt, Caldwell, Zani, Titus (RF48) 1997; 94 Loehlin (RF22) 1987 Baaré, Pol, Boomsma, Posthuma, de Geus, Schnack, van Haren, van Oel, Kahn (RF3) 2001; 11 Jolliffe (RF19) 1986 Neale (RF29) 1997 Wright, Sharma, Ellison, McGuire, Friston, Brammer, Murray, Bullmore (RF54) 1999; 9 Bullmore, Horwitz, Honey, Brammer, Williams, Sharma (RF8) 2000; 11 Cheverud (RF13) 1982; 36 Van Valen (RF47) 1962; 16 Olson, Miller (RF32) 1958 Bertolino, Callicot, Elman, Mattay, Tedeschi, Frank, Breier, Weinberger (RF5) 1998; 43 Carmelli, Sullivan, Swan, Pfefferbaum (RF12) 1999; 4 Lohmann, von Cramon, Steinmetz (RF24) 1999; 9 Atchley, Rutledge, Cowley (RF2) 1981; 35 Bullmore, Suckling, Overmeyer, Rabe-Hesketh, Taylor, Brammer (RF7) 1999; 18 Posthuma, Boomsma (RF35) 2000; 30 Armstrong, Schleicher, Omran, Curtis, Zilles (RF1) 1995; 5 Cannon, Mednick, Parnas (RF10) 1989; 46 |
References_xml | – year: 1992 ident: RF30 publication-title: Methodology for Genetic Studies of Twins and Families – volume: 2 start-page: 242 year: 1995 end-page: 252 ident: RF53 article-title: A voxel-based method for the statistical analysis of grey and white matter density in schizophrenia publication-title: NeuroImage – volume: 157 start-page: 16 year: 2000 end-page: 25 ident: RF56 article-title: Meta-analysis of regional brain volumes in schizophrenia publication-title: Am. J. Psychiatry – year: 1990 ident: RF20 publication-title: Human Adult Odontometrics: The Study of Variation in Adult Tooth Size – volume: 74 start-page: 1389 year: 1995 end-page: 1398 ident: RF16 article-title: Genetic covariance structure of incisor crown size in twins publication-title: J. Dental Res. – volume: 11 start-page: 816 year: 2001 end-page: 824 ident: RF3 article-title: Quantitative genetic modeling of variation in human brain morphology publication-title: Cereb. Cortex – volume: 45 start-page: 1480 year: 1991 end-page: 1492 ident: RF21 article-title: Development, function, and the quantitative genetics of wing melanin pattern in Pieris butterflies publication-title: Evolution – volume: 1 start-page: 86 year: 1977 end-page: 93 ident: RF14 article-title: Gyral development of the human brain publication-title: Ann. Neurol. – volume: 1 start-page: 540 year: 1982 end-page: 541 ident: RF37 article-title: Cerebral ventricular size in twins discordant for schizophrenia publication-title: Lancet – year: 1986 ident: RF49 publication-title: Human Genetics – year: 1998 ident: RF39 publication-title: Statistics in Human Genetics – volume: 42 start-page: 1342 year: 1998 end-page: 1347 ident: RF45 article-title: Phenotypic evolution, constant covariances, and the maintenance of additive variance publication-title: Evolution – volume: 36 start-page: 499 year: 1982 end-page: 516 ident: RF13 article-title: Phenotypic, genetic, and environmental morphological integration in the cranium publication-title: Evolution – volume: 23 start-page: 519 year: 1993 end-page: 524 ident: RF27 article-title: A third source of developmental differences publication-title: Behav. Genet. – volume: 7 start-page: 292 year: 1995 end-page: 301 ident: RF44 article-title: Surface area of human cerebral cortex and its gross morphological subdivisions: In vivo measurements in monozygotic twins suggest differential hemisphere effects of genetic factors publication-title: J. Cogn. Neurosci. – volume: 46 start-page: 883 year: 1989 end-page: 889 ident: RF10 article-title: Genetic and perinatal determinants of structural brain deficits in schizophrenia publication-title: Arch. Gen. Psychiatry – volume: 16 start-page: 4261 year: 1996 end-page: 4274 ident: RF41 article-title: Three-dimensional analysis of sulcal variability in the human brain publication-title: J. Neurosci. – year: 1986 ident: RF19 publication-title: Principal Components Analysis – volume: 13 start-page: 684 year: 2001 end-page: 701 ident: RF28 article-title: Human primary auditory cortex: Cytoarchitectonic subdivisions and mapping into a spatial reference system publication-title: NeuroImage – volume: 9 start-page: 366 year: 1999 end-page: 378 ident: RF54 article-title: Supra-regional brain systems and the neuropathology of schizophrenia publication-title: Cereb. Cortex – volume: 18 start-page: 32 year: 1999 end-page: 42 ident: RF7 article-title: Global, voxel and cluster tests, by theory and permutation, for a difference between two groups of structural MR images of the brain publication-title: IEEE Trans. Med. Imag. – year: 1987 ident: RF22 publication-title: Latent Variable Models: An Introduction to Factor, Path and Structural Analysis – year: 1958 ident: RF32 publication-title: Morphological Integration – volume: 16 start-page: 125 year: 1962 end-page: 142 ident: RF47 article-title: A study of fluctuating asymmetry publication-title: Evolution – volume: 341 start-page: 1008 year: 1993 end-page: 1009 ident: RF34 article-title: Twin studies in medical research: Can they tell us whether diseases are genetically determined? publication-title: Lancet – volume: 11 start-page: 289 year: 2000 end-page: 301 ident: RF8 article-title: How good is good enough in path analysis of fMRI data? publication-title: NeuroImage – year: 1997 ident: RF29 publication-title: Mx: Statistical Modeling – volume: 4 start-page: 527 year: 1999 end-page: 528 ident: RF43 article-title: Heritability of human brain morphometry publication-title: Mol. Psychiatry – volume: 5 start-page: 56 year: 1995 end-page: 63 ident: RF1 article-title: The ontogeny of human gyrification publication-title: Cereb. Cortex – volume: 12 start-page: 61 year: 2001 end-page: 78 ident: RF9 article-title: Colored noise and computational inference in neurophysiological (fMRI) time series analysis: Resampling methods in time and wavelet domains publication-title: Human Brain Mapp. – volume: 58 start-page: 562 year: 1996 end-page: 573 ident: RF46 article-title: Heritability of human brain functioning as assessed by electroencephalography publication-title: Am. J. Human Genet. – volume: 12 start-page: 27 year: 1995 end-page: 35 ident: RF15 article-title: Comparison of analysis of variance and maximum likelihood based path analysis of twin data: Partitioning genetic and environmental sources of covariance publication-title: Genet. Epidemiol. – volume: 4 start-page: 1253 year: 2001 end-page: 1258 ident: RF42 article-title: Genetic influences on brain structure publication-title: Nat. Neurosci. – volume: 30 start-page: 147 year: 2000 end-page: 158 ident: RF35 article-title: A note on the statistical power in extended twin designs publication-title: Behav. Genet. – volume: 4 start-page: 299 year: 1999 ident: RF12 article-title: Evidence for heritability of brain structure in elderly male twins publication-title: Mol. Psychiatry – volume: 26 start-page: 65 year: 1996 end-page: 69 ident: RF23 article-title: The Cholesky approach: A cautionary note publication-title: Behav. Genet. – volume: 94 start-page: 3828 year: 1997 end-page: 3832 ident: RF48 article-title: The role of habitat shift in the evolution of lizard morphology: Evidence from tropical publication-title: Proc. Natl. Acad. Sci. USA – volume: 18 start-page: 329 year: 1998 end-page: 338 ident: RF11 article-title: Inference about genetic correlations publication-title: Behav. Genet. – volume: 164 start-page: 593 year: 1994 end-page: 599 ident: RF26 article-title: The strength of the genetic effect: Is there room for an environmental influence in the aetiology of schizophrenia? publication-title: Br. J. Psychiatry – volume: 35 start-page: 1 year: 1999 end-page: 14 ident: RF55 article-title: Mapping of gray matter changes in schizophrenia publication-title: Schizophrenia Res. – volume: 2 start-page: 189 year: 1995 end-page: 210 ident: RF18 article-title: Statistical parametric maps in functional imaging: A general approach publication-title: Human Brain Mapp. – volume: 22 start-page: 295 year: 1992 end-page: 305 ident: RF25 article-title: Genetics and developmental stability: An integrative conjecture on aetiology and neurobiology of schizophrenia publication-title: Psychol. Med. – volume: 150 start-page: 563 year: 1940 end-page: 565 ident: RF50 article-title: Canalization of development and the inheritance of acquired characters publication-title: Nature – volume: 24 start-page: 303 year: 1998 end-page: 316 ident: RF51 article-title: A candidate molecule approach to defining developmental pathology in schizophrenia publication-title: Schizophrenia Bull. – volume: 9 start-page: 754 year: 1999 end-page: 763 ident: RF24 article-title: Sulcal variability of twins publication-title: Cereb. Cortex – volume: 120 start-page: 257 year: 1997 end-page: 269 ident: RF4 article-title: Genetic variability of human brain size and cortical gyral patterns publication-title: Brain – volume: 35 start-page: 1037 year: 1981 end-page: 1055 ident: RF2 article-title: Genetic components of size and shape. II. Multivariate covariance patterns in the rat and mouse skull publication-title: Evolution – volume: 44 start-page: 391 year: 1976 end-page: 396 ident: RF36 article-title: A twin study of dental dimension: I. Discordance, asymmetry and mirror imagery publication-title: Am. J. Phys. Anthropol. – year: 1988 ident: RF40 publication-title: Co-Planar Stereotaxic Atlas of the Human Brain – volume: 15 start-page: 1 year: 2002 end-page: 25 ident: RF31 article-title: Nonparametric permutation tests for functional neuroimaging: A primer with examples publication-title: Human Brain Mapp. – volume: 98 start-page: 6917 year: 2001 end-page: 6922 ident: RF17 article-title: Effect of COMT Val (108/158) Met genotype on frontal lobe function and risk for schizophrenia publication-title: Proc. Natl. Acad. Sci. USA – volume: 51 start-page: 874 year: 1994 end-page: 887 ident: RF33 article-title: A quantitative magnetic resonance imaging study of changes in brain morphology from infancy to late adulthood publication-title: Arch. Neurol. – year: 1989 ident: RF6 publication-title: Structural Equations with Latent Variables – volume: 13 start-page: 433 year: 1989 end-page: 454 ident: RF38 article-title: ANALYZE—a comprehensive, operator-interactive software package for multidimensional medical image display and analysis publication-title: Comput. Med. Imaging Graph. – volume: 43 start-page: 641 year: 1998 end-page: 648 ident: RF5 article-title: Regionally specific neuronal pathology in untreated patients with schizophrenia: A proton magnetic resonance spectroscopic imaging study publication-title: Biol. Psychiatry – volume: 149 start-page: 890 year: 1992 end-page: 897 ident: RF52 article-title: Evidence of dysfunction of a prefrontal-limbic network in schizophrenia: A magnetic resonance imaging and regional cerebral blood flow study of discordant monozygotic twins publication-title: Am. J. Psychiatry |
SSID | ssj0009148 |
Score | 2.1658602 |
Snippet | Twin studies provide one approach for investigating and partitioning genetic and environmental contributions to phenotypic variability in human brain... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 256 |
SubjectTerms | Algorithms Analysis of Variance asymmetry Brain - anatomy & histology Brain - growth & development brain anatomy Cerebral Ventricles - anatomy & histology Female Functional Laterality - physiology genetic correlation matrix Genetics Gestational Age heritability Humans Image Interpretation, Computer-Assisted Magnetic Resonance Imaging MRI path analysis Phenotype Pregnancy Principal Component Analysis structural equation modeling twins Twins, Dizygotic Twins, Monozygotic |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LaxsxEBZNCiGX0EeSOnVbHQo9Ce-uXutcSltqQsElpGnxTaweawLOOvXah_z7zGi19sk5ryRYjTT6ZqT5PkI-K117EbKMFdZ7CFDGORvrUDLhlOMFlypUmIec_lZXf8WvmZylhFubnlX2PjE6ar90mCMfIROeLCFC1l8f_jNUjcLb1SShcUBeInUZPunSM70j3c1FVwonOSuhQU_amKlRc3c_jw8UwGcovu9Q2gc64-EzeUVOEmqk3zozvyYvQvOGHE3TvfhbMkf2aPhGkWyql7Bq6XpJb8I8JvvoPwiKO07uR3rX0Ji8p99RIIL-iRyym1W4pNMoKN3SqvH0ehUWUfNr9QjDtJvFuj0lt5Oftz-uWJJQYE6U-ZpZNBG32o2lszWH2KHWmXTcc6cKp0UNZxiWqspgsZjSCytCXda19D53cKidkcNm2YR3hHqIZjNbARrUOTSXlSyRrNApCwgnZPWAsH4KjUv04qhysTAdMbIyOOWoelkYnPIB-bJt_9ARa-xtOeotYvpyUXBwBnz-3h75tkcCEh1AeLbPsDe2Sdu4NbtFNyCftp9hA-KtStWE5aY1AAAVV-NsQM67JbL7nUIAviqLi-eHfk-Oo8RMfLg2JIdg8_ABkM7afozL-QkH5vv6 priority: 102 providerName: ProQuest |
Title | Genetic Contributions to Regional Variability in Human Brain Structure: Methods and Preliminary Results |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S1053811902911638 https://dx.doi.org/10.1006/nimg.2002.1163 https://www.ncbi.nlm.nih.gov/pubmed/12482082 https://www.proquest.com/docview/1506589877 https://www.proquest.com/docview/72763690 |
Volume | 17 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV05b9swFCZyAEWXokkvt6nLoUAnRQcvqVtiJHDT2jCctPBGiIcMA64cWPaQpb-9jxTlIIM7dJEA8QD1-PgOku97CH3mojLUJkmUKWPAQSnSqBA2j6jmmmSEcVu6fcjRmA9_0psZmx2gQRcL465VBtnfynQvrcOXOFAzvl8s4luwDEDdgELLYMECGx2i44wUHFj7-OLb9-H4EXs3pW1EHCORa9BhNyY8rhe_5_6ewrnrYp9u2md7eh10_RK9CMYjvmjHd4IObH2Kno3C8fgrNHcg0lCGHeZUl8mqwZsVntq53_PDv8A3bqG5H_Cixn4PH1-6PBH41kPJbtf2Kx75vNINLmuDJ2u79Km_1g_QTbNdbprX6O766m4wjEImhUjTPN1Eys0UUUIXTKuKgAtRiYRpYojmmRa0AlXmIlaZVS6m0lBFbZVXFTMm1aDb3qCjelXbdwgbcGoTVYJRKFKozkqWO8xCzRUYOjapeijqSCh1QBl3yS6WssVH5tKR3CW_zKQjeQ992dW_b_E19taMuxmRXdQoyDkJon9vi3TX4glP_bPNWTfZMqzmRjoURpYXuRA99GlXDOvQHa6UtV1tGwl2ICe8SHrobcsij7-TUTCz8uz9fwznA3ru08_4S21n6AgYwX4EK2ij-ujw_E8KTzETfeD4wfTHpB84H96XV-PJ9C_KAAnT |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFD6aOgl4QdwpDOYHEE9Rk_iSBAkhBps6tlbTKGhvVmI71aSSjqYV6o_iP3KOk7RP3duefVFiHx9_x_b5PoB3KimtcGEYxIW1GKBkUZAlLg2EUYbHXCqX0znkaKyGP8X3K3m1B_-6XBh6Vtn5RO-o7dzQGfmAmPBkihFy8vnmT0CqUXS72kloNGZx5tZ_MWSrP51-w_l9H8cnx5Ovw6BVFQiMSKNlUNBX8yIxmTRFyRFOl0koDbfcqNgkokS3Ttmb0hWUX2hFIVyZlqW0NjIR8Rygx98XHCOZHuwfHY8vLrcsv5Focu8kD9IoyjqWyFANquvfU_8iAp2U4rt2wV0o1-92J4_gYQtT2ZfGrh7DnquewL1RexH_FKZEV41ljNitOs2smi3n7NJN_eki-4VReEMCvmbXFfO3BeyIFCnYD09au1q4j2zkFaxrlleWXSzczIuMLdbYTb2aLetnMLmL0X0OvWpeuZfALIbPYZEj_EwirC5zmRI7olEFQioXln0IuiHUpuUzJ1mNmW6YmJWmISeZzVjTkPfhw6b-TcPksbPmoJsR3eWnokfVuMnsbBFtWrTIpUEkt7Y56CZbt36j1lsr78PhphhXPF3j5JWbr2qNiFNxlYV9eNGYyPZ3YoGALo1f3d71IdwfTkbn-vx0fPYaHnh9G_9q7gB6OP_uDcKsZfG2NW4G-o6X03_swjrU |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELaqIlVcEG8ChfoA4mRlvV7bu0gIASVqKakqKCg3a9ePqFLYlGwilJ_Gv2PGu5uc0lvPfki2x-NvbM_3EfJa6eAynyQsrZyDAKXgrNA-Z5lVVqRCKl_iPeT4XJ38zL5O5GSP_OtzYfBbZe8To6N2c4t35ENkwpM5RMh6GLpvERfHow_XfxgqSOFLay-n0ZrImV__hfCteX96DGv9Jk1HXy4_n7BOYYDZLOdLVuEIRKVtIW0VBEDroBNphRNWpVZnAVw8ZnJKX2GuocuqzIc8BOkctxw5D8D739FCctxieqK3fL88a7PwpGA550XPF5moYX31exr_RoC7UmLXebgL78Zzb3Sf3OsAK_3YWtgDsufrh-Rg3D3JPyJTJK6GMoo8V716VkOXc_rdT-M9I_0F8XhLB76mVzWN7wb0E2pT0B-Rvna18O_oOGpZN7SsHb1Y-FmUG1usoZtmNVs2j8nlbcztE7Jfz2v_jFAHgXRSlQBENYfqspQ58iRaVQG48kkYENZPobEdszkKbMxMy8msDE45Cm6mBqd8QN5u6l-3nB47aw77FTF9pir4VgPHzc4WfNOiwzAtNrmxzWG_2KbzII3Z2vuAHG2KYe_jg05Z-_mqMYA9lVBFMiBPWxPZDifNANrl6fObuz4iB7CJzLfT87MX5G4Uuonf5w7JPiy_fwl4a1m9ipZNibnlnfQfFZQ9pA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Genetic+Contributions+to+Regional+Variability+in+Human+Brain+Structure%3A+Methods+and+Preliminary+Results&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Wright%2C+I.C.&rft.au=Sham%2C+P.&rft.au=Murray%2C+R.M.&rft.au=Weinberger%2C+D.R.&rft.date=2002-09-01&rft.pub=Elsevier+Inc&rft.issn=1053-8119&rft.volume=17&rft.issue=1&rft.spage=256&rft.epage=271&rft_id=info:doi/10.1006%2Fnimg.2002.1163&rft.externalDocID=S1053811902911638 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon |