A model for state-of-health estimation of lithium ion batteries based on charging profiles
Using an equivalent circuit model to characterize the constant-current part of a charging/discharging profile, a model is developed to estimate the state-of-health of lithium ion batteries. The model is an incremental capacity analysis-based model, which applies a capacity model to define the depend...
Saved in:
Published in | Energy (Oxford) Vol. 177; pp. 57 - 65 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Oxford
Elsevier Ltd
15.06.2019
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Using an equivalent circuit model to characterize the constant-current part of a charging/discharging profile, a model is developed to estimate the state-of-health of lithium ion batteries. The model is an incremental capacity analysis-based model, which applies a capacity model to define the dependence of the state of charge on the open circuit voltage as the battery ages. It can be learning-free, with the parameters subject to certain constraints, and is able to give efficient and reliable estimates of the state-of-health for various lithium ion batteries at any aging status. When applied to a fresh LiFePO4 cell, the state-of-health estimated by this model (learning-unrequired or learning-required) shows a close correspondence to the available measured data, with an absolute difference of 0.31% or 0.12% at most, even for significant temperature fluctuation. In addition, NASA battery datasets are employed to demonstrate the versatility and applicability of the model to different chemistries and cell designs.
•An ICA-based model is proposed to estimate SOH of LIBs.•The ICA-based model can be learning-required or learning-unrequired.•This model can give reliable estimates of SOH for various LIBs at any aging status.•The accuracy of the model is validated by experimental results of LFP and NCA batteries. |
---|---|
AbstractList | Using an equivalent circuit model to characterize the constant-current part of a charging/discharging profile, a model is developed to estimate the state-of-health of lithium ion batteries. The model is an incremental capacity analysis-based model, which applies a capacity model to define the dependence of the state of charge on the open circuit voltage as the battery ages. It can be learning-free, with the parameters subject to certain constraints, and is able to give efficient and reliable estimates of the state-of-health for various lithium ion batteries at any aging status. When applied to a fresh LiFePO4 cell, the state-of-health estimated by this model (learning-unrequired or learning-required) shows a close correspondence to the available measured data, with an absolute difference of 0.31% or 0.12% at most, even for significant temperature fluctuation. In addition, NASA battery datasets are employed to demonstrate the versatility and applicability of the model to different chemistries and cell designs. Using an equivalent circuit model to characterize the constant-current part of a charging/discharging profile, a model is developed to estimate the state-of-health of lithium ion batteries. The model is an incremental capacity analysis-based model, which applies a capacity model to define the dependence of the state of charge on the open circuit voltage as the battery ages. It can be learning-free, with the parameters subject to certain constraints, and is able to give efficient and reliable estimates of the state-of-health for various lithium ion batteries at any aging status. When applied to a fresh LiFePO 4 cell, the state-of-health estimated by this model (learning-unrequired or learning-required)shows a close correspondence to the available measured data, with an absolute difference of 0.31% or 0.12% at most, even for significant temperature fluctuation. In addition, NASA battery datasets are employed to demonstrate the versatility and applicability of the model to different chemistries and cell designs. Using an equivalent circuit model to characterize the constant-current part of a charging/discharging profile, a model is developed to estimate the state-of-health of lithium ion batteries. The model is an incremental capacity analysis-based model, which applies a capacity model to define the dependence of the state of charge on the open circuit voltage as the battery ages. It can be learning-free, with the parameters subject to certain constraints, and is able to give efficient and reliable estimates of the state-of-health for various lithium ion batteries at any aging status. When applied to a fresh LiFePO4 cell, the state-of-health estimated by this model (learning-unrequired or learning-required) shows a close correspondence to the available measured data, with an absolute difference of 0.31% or 0.12% at most, even for significant temperature fluctuation. In addition, NASA battery datasets are employed to demonstrate the versatility and applicability of the model to different chemistries and cell designs. •An ICA-based model is proposed to estimate SOH of LIBs.•The ICA-based model can be learning-required or learning-unrequired.•This model can give reliable estimates of SOH for various LIBs at any aging status.•The accuracy of the model is validated by experimental results of LFP and NCA batteries. |
Author | Yan, Jinying Bian, Xiaolei Liu, Longcheng |
Author_xml | – sequence: 1 givenname: Xiaolei surname: Bian fullname: Bian, Xiaolei email: xiaoleib@kth.se organization: Department of Chemical Engineering, KTH-Royal Institute of Technology, 100 44 Stockholm, Sweden – sequence: 2 givenname: Longcheng surname: Liu fullname: Liu, Longcheng organization: Department of Chemical Engineering, KTH-Royal Institute of Technology, 100 44 Stockholm, Sweden – sequence: 3 givenname: Jinying surname: Yan fullname: Yan, Jinying organization: Department of Chemical Engineering, KTH-Royal Institute of Technology, 100 44 Stockholm, Sweden |
BackLink | https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-252451$$DView record from Swedish Publication Index https://research.chalmers.se/publication/534539$$DView record from Swedish Publication Index |
BookMark | eNqFkTuP1DAUhS20SMwO_AOKSDQ0yfqdhAJptDwWaSUKHgXNlePcTDxk4sF2QPvv8RBEsRJQ-aHvHJ17zyW5mP2MhDxltGKU6atDhTOG_V3FKWsrKita0wdkw5palLpu1AXZUKFpqaTkj8hljAdKqWradkO-7Iqj73EqBh-KmEzC0g_liGZKY4ExuaNJzs-FH4rJpdEtx-L87ExKGBzGfIvYF_nLjibs3bwvTsEPbsL4mDwczBTxye9zSz69ef3x-qa8ff_23fXutrSyYansmB0Up4Yp1aPmlDe2btpOD73oat3UmnNuaNNby7QRNeMDdkKb3qLUgjIjtuTD6ht_4Gnp4BRy6HAH3jgIGNEEO0JONx0xRIgIDUdpeytAtbwHaVBD25kWWC0Zq1uB2MnsWv7V9ZX7vAMf9vA1jcAVl4pl_vnK5_G_LXlzcHTR4jSZGf0SgXNRK9oIKjL67B568EuY844yJTVXimZsS-RK2eBjDDj8icAonGuHA6y1w7l2oBJy7Vn24p7MuvSrwxSMm_4nfrmKMff13WGAaB3OFnsX0Cbovfu3wU9GUc2E |
CitedBy_id | crossref_primary_10_1016_j_ijheatmasstransfer_2023_124456 crossref_primary_10_1080_20464177_2024_2440983 crossref_primary_10_1016_j_est_2021_102271 crossref_primary_10_1016_j_measurement_2023_113412 crossref_primary_10_1109_ACCESS_2020_2979570 crossref_primary_10_1007_s43236_021_00300_1 crossref_primary_10_1016_j_est_2021_102592 crossref_primary_10_1016_j_est_2022_104492 crossref_primary_10_1039_D1EE01812D crossref_primary_10_1002_er_7160 crossref_primary_10_1007_s11581_024_05475_8 crossref_primary_10_1049_itr2_12064 crossref_primary_10_1016_j_est_2025_115714 crossref_primary_10_1109_TIE_2020_3001836 crossref_primary_10_1016_j_est_2023_107161 crossref_primary_10_1016_j_est_2024_114135 crossref_primary_10_1109_ACCESS_2022_3156657 crossref_primary_10_1007_s43236_021_00279_9 crossref_primary_10_1007_s43236_021_00318_5 crossref_primary_10_1016_j_est_2022_104618 crossref_primary_10_1016_j_est_2023_108732 crossref_primary_10_3390_batteries9050251 crossref_primary_10_1002_int_22309 crossref_primary_10_1049_cim2_12059 crossref_primary_10_1016_j_jtte_2023_06_001 crossref_primary_10_1016_j_energy_2024_133155 crossref_primary_10_1002_celc_202300393 crossref_primary_10_1007_s42835_022_01271_4 crossref_primary_10_1016_j_rser_2023_113967 crossref_primary_10_1109_TVT_2022_3203013 crossref_primary_10_21105_joss_02624 crossref_primary_10_1007_s43236_021_00253_5 crossref_primary_10_3390_en13205447 crossref_primary_10_1016_j_seta_2024_103766 crossref_primary_10_1109_ACCESS_2021_3130994 crossref_primary_10_1016_j_est_2024_114105 crossref_primary_10_3390_batteries8050039 crossref_primary_10_20964_2022_07_68 crossref_primary_10_1007_s43236_023_00605_3 crossref_primary_10_20964_2022_06_54 crossref_primary_10_1016_j_energy_2020_119233 crossref_primary_10_1016_j_est_2022_104904 crossref_primary_10_3390_batteries11030091 crossref_primary_10_1016_j_est_2021_103158 crossref_primary_10_1016_j_est_2022_104427 crossref_primary_10_1115_1_4065666 crossref_primary_10_1016_j_energy_2020_117778 crossref_primary_10_3390_batteries8040029 crossref_primary_10_1109_TTE_2020_3032737 crossref_primary_10_1016_j_ensm_2024_103270 crossref_primary_10_1016_j_jclepro_2021_128015 crossref_primary_10_3390_wevj13080148 crossref_primary_10_1115_1_4054128 crossref_primary_10_20964_2022_08_48 crossref_primary_10_1109_TTE_2020_2994543 crossref_primary_10_1002_ese3_1506 crossref_primary_10_1002_er_7053 crossref_primary_10_1016_j_simpat_2023_102749 crossref_primary_10_1016_j_est_2020_101400 crossref_primary_10_1002_er_6647 crossref_primary_10_1007_s43236_020_00146_z crossref_primary_10_1080_15435075_2020_1763360 crossref_primary_10_1016_j_energy_2022_123537 crossref_primary_10_1109_TTE_2023_3283572 crossref_primary_10_1016_j_est_2022_104560 crossref_primary_10_1016_j_electacta_2023_142588 crossref_primary_10_1109_JESTPE_2022_3143831 crossref_primary_10_1016_j_egyr_2022_10_242 crossref_primary_10_1016_j_rser_2025_115522 crossref_primary_10_1007_s12598_022_02138_3 crossref_primary_10_1007_s42835_021_00887_2 crossref_primary_10_1155_2024_5822106 crossref_primary_10_3390_en15134753 crossref_primary_10_1109_TIE_2020_3044779 crossref_primary_10_1115_1_4051567 crossref_primary_10_1016_j_apenergy_2023_121206 crossref_primary_10_1016_j_energy_2021_121986 crossref_primary_10_3390_batteries8090112 crossref_primary_10_3390_en12224338 crossref_primary_10_1016_j_apenergy_2020_115074 |
Cites_doi | 10.1016/j.jpowsour.2014.02.026 10.1021/cm503833b 10.1016/j.measurement.2014.11.031 10.1016/j.energy.2017.04.099 10.1016/j.rser.2014.10.047 10.1016/j.jpowsour.2015.11.070 10.1016/j.jpowsour.2017.03.001 10.1016/j.jpowsour.2009.05.036 10.1016/j.jpowsour.2014.02.052 10.1016/j.apenergy.2017.05.124 10.1016/j.ensm.2017.05.013 10.4028/www.scientific.net/AMR.805-806.1659 10.1016/j.jpowsour.2014.02.064 10.1016/j.energy.2017.06.094 10.1016/j.jpowsour.2017.10.092 10.1016/j.jpowsour.2013.10.114 10.1016/j.apenergy.2016.07.126 10.1016/j.energy.2016.11.114 10.1016/j.ijepes.2018.12.040 10.1016/j.jpowsour.2015.11.100 10.1016/j.jpowsour.2016.12.087 10.1016/j.jpowsour.2014.01.085 10.1016/j.neucom.2015.10.075 10.1016/j.jpowsour.2017.05.065 10.1016/j.energy.2016.02.163 10.1016/j.energy.2016.08.080 10.1016/j.energy.2014.12.031 10.1016/j.jpowsour.2013.05.040 10.1016/j.jpowsour.2017.11.094 10.1016/j.energy.2018.01.001 10.3390/en9110900 10.1016/j.energy.2018.03.023 10.1016/j.energy.2019.02.053 10.1016/j.energy.2017.08.017 10.1016/j.apenergy.2016.05.109 10.1016/j.jpowsour.2013.09.143 10.1016/j.jpowsour.2017.04.072 10.1016/j.jpowsour.2016.12.011 10.1016/j.jpowsour.2013.02.012 10.1016/j.jpowsour.2015.01.129 10.1016/j.jpowsour.2010.07.029 10.1016/j.jpowsour.2018.11.072 10.1016/j.rser.2017.05.001 10.1016/j.jpowsour.2014.07.116 10.1016/j.jpowsour.2013.06.076 10.1016/j.jpowsour.2018.06.036 10.1016/j.energy.2019.02.034 10.1149/1.1838857 10.1016/j.energy.2017.12.033 10.1016/j.jpowsour.2018.02.058 10.1016/j.jpowsour.2017.11.068 10.1016/j.microrel.2017.12.028 10.1126/science.1253292 10.1016/j.rser.2015.11.042 10.1016/j.energy.2012.01.009 10.1016/S0378-7753(01)00646-2 10.1016/j.jpowsour.2012.10.060 10.1016/j.jpowsour.2012.10.058 |
ContentType | Journal Article |
Copyright | 2019 Elsevier Ltd Copyright Elsevier BV Jun 15, 2019 |
Copyright_xml | – notice: 2019 Elsevier Ltd – notice: Copyright Elsevier BV Jun 15, 2019 |
DBID | AAYXX CITATION 7SP 7ST 7TB 8FD C1K F28 FR3 KR7 L7M SOI 7S9 L.6 ADTPV AOWAS D8V F1S |
DOI | 10.1016/j.energy.2019.04.070 |
DatabaseName | CrossRef Electronics & Communications Abstracts Environment Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace Environment Abstracts AGRICOLA AGRICOLA - Academic SwePub SwePub Articles SWEPUB Kungliga Tekniska Högskolan SWEPUB Chalmers tekniska högskola |
DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Engineering Research Database Environment Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Civil Engineering Abstracts AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Economics Environmental Sciences |
EISSN | 1873-6785 |
EndPage | 65 |
ExternalDocumentID | oai_research_chalmers_se_82e4cdc3_592d_4ae6_9ba9_17411793eeb4 oai_DiVA_org_kth_252451 10_1016_j_energy_2019_04_070 S0360544219306991 |
GroupedDBID | --K --M .DC .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AARJD AAXUO ABJNI ABMAC ABYKQ ACDAQ ACGFS ACIWK ACRLP ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHIDL AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SDF SDG SES SPC SPCBC SSR SSZ T5K TN5 XPP ZMT ~02 ~G- 29G 6TJ AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABFNM ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO ADXHL AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AHHHB AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FEDTE FGOYB G-2 HVGLF HZ~ R2- SAC SEW SSH WUQ 7SP 7ST 7TB 8FD C1K EFKBS F28 FR3 KR7 L7M SOI 7S9 L.6 ADTPV AOWAS D8V F1S |
ID | FETCH-LOGICAL-c481t-b1cf520a155de62028c789b6fd3b76876222a08dcc16a3712feb36adce46301a3 |
IEDL.DBID | .~1 |
ISSN | 0360-5442 1873-6785 |
IngestDate | Thu Aug 21 07:31:20 EDT 2025 Thu Aug 21 06:53:00 EDT 2025 Tue Aug 05 11:04:56 EDT 2025 Wed Aug 13 09:05:56 EDT 2025 Thu Apr 24 22:55:21 EDT 2025 Tue Jul 01 00:43:09 EDT 2025 Fri Feb 23 02:23:57 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Incremental capacity analysis Lithium ion battery Equivalent circuit model State of health |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c481t-b1cf520a155de62028c789b6fd3b76876222a08dcc16a3712feb36adce46301a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PQID | 2246255030 |
PQPubID | 2045484 |
PageCount | 9 |
ParticipantIDs | swepub_primary_oai_research_chalmers_se_82e4cdc3_592d_4ae6_9ba9_17411793eeb4 swepub_primary_oai_DiVA_org_kth_252451 proquest_miscellaneous_2237508303 proquest_journals_2246255030 crossref_primary_10_1016_j_energy_2019_04_070 crossref_citationtrail_10_1016_j_energy_2019_04_070 elsevier_sciencedirect_doi_10_1016_j_energy_2019_04_070 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-06-15 |
PublicationDateYYYYMMDD | 2019-06-15 |
PublicationDate_xml | – month: 06 year: 2019 text: 2019-06-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford |
PublicationTitle | Energy (Oxford) |
PublicationYear | 2019 |
Publisher | Elsevier Ltd Elsevier BV |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
References | Cai, Yang, Deng, Zhao, Deng (bib22) 2018; 147 Xiong, Tian, Mu, Wang (bib34) 2017; 207 Klass, Behm, Lindbergh (bib35) 2014; 270 Weng, Sun, Peng (bib55) 2014; 258 Khodadoost Arani, Gharehpetian G, Abedi (bib3) 2019; 107 Abada, Marlair, Lecocq, Petit, Sauvant-Moynot, Huet (bib13) 2016; 306 Li, Jiang, Wang, Chen, Zhang, Zhang (bib37) 2016; 177 Tanim, Rahn, Wang (bib19) 2015; 80 Chen, Zheng, Jiang, Zhang, Jiang, Chen (bib46) 2017; 138 Cui, Zuo, Du, Gao, Yang, Cheng (bib11) 2018; 144 Berecibar, Garmendia, Gandiaga, Crego, Villarreal (bib33) 2016; 103 Zheng, Zhu, Dah-Chuan Lu, Wang, He (bib16) 2018; 150 Luin, Petelin, Al-Mansour (bib4) 2019; 174 Feng, Ouyang, Liu, Lu, Xia, He (bib12) 2018; 10 Farmann, Waag, Marongiu, Sauer (bib38) 2015; 281 Arora, White (bib9) 1998; 145 Dubarry, Liaw (bib42) 2009; 194 Schwunk, Armbruster, Straub, Kehl, Vetter (bib58) 2013; 239 Xiong, Gong, Mi, Sun (bib54) 2013; 243 Zhang, Wang, Liu, Chen (bib36) 2018; 376 Rezvanizaniani, Liu, Chen, Lee (bib23) 2014; 256 Waag, Fleischer, Sauer (bib14) 2014; 258 Dubarry, AD, Liaw (bib39) 2014; 1 Dubarry, Liaw, Chen, Chyan, Han, Sie (bib40) 2011; 196 Weng, Cui, Sun, Peng (bib44) 2013; 235 Ecker, Nieto, Käbitz, Schmalstieg, Blanke, Warnecke (bib57) 2014; 248 Li, Eseye, Zhang, Zheng (bib5) 2017; 2 Dai, Yu, Wei, Sun (bib8) 2017; 129 Palacin, de Guibert (bib10) 2016; 351 Torai, Nakagomi, Yoshitake, Yamaguchi, Oyama (bib45) 2016; 306 Liu, Zhou, Pan, Peng, Peng (bib61) 2015; 63 Tang, Zou, Yao, Chen, Liu, He (bib50) 2018; 396 Takei, Kumai, Kobayashi, Miyashiro, Terada, Iwahori (bib59) 2001; 97–98 Cheng, Zhang, Zhang (bib51) 2013; 805–806 Li, Huang, Liaw, Zhang (bib31) 2017; 348 Barré, Deguilhem, Grolleau, Gérard, Suard, Riu (bib32) 2013; 241 Li, Abdel-Monem, Gopalakrishnan, Berecibar, Nanini-Maury, Omar (bib21) 2018; 373 Zheng, Gao, Ouyang, Lu, Zhou, Han (bib30) 2018; 383 Guo, Qiu, Hou, Liaw, Zhang (bib48) 2014; 249 Berecibar, Gandiaga, Villarreal, Omar, Van Mierlo, Van den Bossche (bib17) 2016; 56 Lu, Han, Li, Hua, Ouyang (bib26) 2013; 226 Li, Lai, Wang, Lyu, Wang (bib18) 2016; 114 Birkl, Roberts, McTurk, Bruce, Howey (bib56) 2017; 341 Robert, Bünzli, Berg, Novák (bib62) 2015; 27 Weng, Feng, Sun, Peng (bib47) 2016; 180 Saha, Goebel (bib49) 2007 Duong, Raghavan (bib60) 2018; 81 Zhao, Cai, Yang, Deng, Qiang (bib20) 2017; 135 Cuma, Koroglu (bib24) 2015; 42 Guo, Cheng, Yang (bib1) 2019; 412 Macicior, Oyarbide, Miguel, Cantero, Canales, Etxeberria (bib53) 2013 Hannan, Lipu, Hussain, Mohamed (bib25) 2017; 78 Propp, Auger, Fotouhi, Longo, Knap (bib29) 2017; 343 Zhang, Jiang, Zhang, Liu, Wang, Loh (bib43) 2016; 9 Du, Ouyang, Chen (bib7) 2017; 120 Dubarry, Truchot, Liaw (bib41) 2014; 258 Eseye, Zhang, Zheng, Wei (bib6) 2016 Zheng, Ouyang, Han, Lu, Li (bib27) 2018; 377 He, Zhang, Xiong, Xu, Guo (bib52) 2012; 39 Wang, Liu, Cai, Wang (bib63) 2016; 175 Felix Keck, Vassallo, Li (bib2) 2019; 173 Anseán, Dubarry, Devie, Liaw, García, Viera (bib15) 2017; 356 Manane, Yazami (bib28) 2017; 359 Guo (10.1016/j.energy.2019.04.070_bib1) 2019; 412 Anseán (10.1016/j.energy.2019.04.070_bib15) 2017; 356 Zheng (10.1016/j.energy.2019.04.070_bib30) 2018; 383 Robert (10.1016/j.energy.2019.04.070_bib62) 2015; 27 Schwunk (10.1016/j.energy.2019.04.070_bib58) 2013; 239 Zhang (10.1016/j.energy.2019.04.070_bib43) 2016; 9 Torai (10.1016/j.energy.2019.04.070_bib45) 2016; 306 Weng (10.1016/j.energy.2019.04.070_bib47) 2016; 180 Guo (10.1016/j.energy.2019.04.070_bib48) 2014; 249 Li (10.1016/j.energy.2019.04.070_bib21) 2018; 373 Dubarry (10.1016/j.energy.2019.04.070_bib42) 2009; 194 Cuma (10.1016/j.energy.2019.04.070_bib24) 2015; 42 Rezvanizaniani (10.1016/j.energy.2019.04.070_bib23) 2014; 256 Dubarry (10.1016/j.energy.2019.04.070_bib41) 2014; 258 Weng (10.1016/j.energy.2019.04.070_bib44) 2013; 235 Arora (10.1016/j.energy.2019.04.070_bib9) 1998; 145 Li (10.1016/j.energy.2019.04.070_bib18) 2016; 114 Hannan (10.1016/j.energy.2019.04.070_bib25) 2017; 78 Feng (10.1016/j.energy.2019.04.070_bib12) 2018; 10 Zheng (10.1016/j.energy.2019.04.070_bib27) 2018; 377 Dubarry (10.1016/j.energy.2019.04.070_bib39) 2014; 1 Wang (10.1016/j.energy.2019.04.070_bib63) 2016; 175 Berecibar (10.1016/j.energy.2019.04.070_bib17) 2016; 56 Abada (10.1016/j.energy.2019.04.070_bib13) 2016; 306 Felix Keck (10.1016/j.energy.2019.04.070_bib2) 2019; 173 Cai (10.1016/j.energy.2019.04.070_bib22) 2018; 147 Saha (10.1016/j.energy.2019.04.070_bib49) 2007 Waag (10.1016/j.energy.2019.04.070_bib14) 2014; 258 Zhao (10.1016/j.energy.2019.04.070_bib20) 2017; 135 Chen (10.1016/j.energy.2019.04.070_bib46) 2017; 138 Klass (10.1016/j.energy.2019.04.070_bib35) 2014; 270 Manane (10.1016/j.energy.2019.04.070_bib28) 2017; 359 Eseye (10.1016/j.energy.2019.04.070_bib6) 2016 Zheng (10.1016/j.energy.2019.04.070_bib16) 2018; 150 Berecibar (10.1016/j.energy.2019.04.070_bib33) 2016; 103 Cheng (10.1016/j.energy.2019.04.070_bib51) 2013; 805–806 Weng (10.1016/j.energy.2019.04.070_bib55) 2014; 258 Duong (10.1016/j.energy.2019.04.070_bib60) 2018; 81 Dubarry (10.1016/j.energy.2019.04.070_bib40) 2011; 196 He (10.1016/j.energy.2019.04.070_bib52) 2012; 39 Propp (10.1016/j.energy.2019.04.070_bib29) 2017; 343 Xiong (10.1016/j.energy.2019.04.070_bib34) 2017; 207 Du (10.1016/j.energy.2019.04.070_bib7) 2017; 120 Tanim (10.1016/j.energy.2019.04.070_bib19) 2015; 80 Zhang (10.1016/j.energy.2019.04.070_bib36) 2018; 376 Xiong (10.1016/j.energy.2019.04.070_bib54) 2013; 243 Lu (10.1016/j.energy.2019.04.070_bib26) 2013; 226 Barré (10.1016/j.energy.2019.04.070_bib32) 2013; 241 Macicior (10.1016/j.energy.2019.04.070_bib53) 2013 Takei (10.1016/j.energy.2019.04.070_bib59) 2001; 97–98 Farmann (10.1016/j.energy.2019.04.070_bib38) 2015; 281 Li (10.1016/j.energy.2019.04.070_bib37) 2016; 177 Khodadoost Arani (10.1016/j.energy.2019.04.070_bib3) 2019; 107 Luin (10.1016/j.energy.2019.04.070_bib4) 2019; 174 Liu (10.1016/j.energy.2019.04.070_bib61) 2015; 63 Palacin (10.1016/j.energy.2019.04.070_bib10) 2016; 351 Birkl (10.1016/j.energy.2019.04.070_bib56) 2017; 341 Li (10.1016/j.energy.2019.04.070_bib5) 2017; 2 Dai (10.1016/j.energy.2019.04.070_bib8) 2017; 129 Li (10.1016/j.energy.2019.04.070_bib31) 2017; 348 Ecker (10.1016/j.energy.2019.04.070_bib57) 2014; 248 Tang (10.1016/j.energy.2019.04.070_bib50) 2018; 396 Cui (10.1016/j.energy.2019.04.070_bib11) 2018; 144 |
References_xml | – volume: 235 start-page: 36 year: 2013 end-page: 44 ident: bib44 article-title: On-board state of health monitoring of lithium-ion batteries using incremental capacity analysis with support vector regression publication-title: J Power Sources – year: 2007 ident: bib49 article-title: Battery data set. NASA ames prognostics data repository – volume: 207 start-page: 372 year: 2017 end-page: 383 ident: bib34 article-title: A systematic model-based degradation behavior recognition and health monitoring method for lithium-ion batteries publication-title: Appl Energy – volume: 42 start-page: 517 year: 2015 end-page: 531 ident: bib24 article-title: A comprehensive review on estimation strategies used in hybrid and battery electric vehicles publication-title: Renew Sustain Energy Rev – volume: 1 start-page: 242 year: 2014 end-page: 249 ident: bib39 article-title: The value of battery diagnostics and Prognostics.pdf publication-title: J Energy Power Sources – volume: 81 start-page: 232 year: 2018 end-page: 243 ident: bib60 article-title: Heuristic Kalman optimized particle filter for remaining useful life prediction of lithium-ion battery publication-title: Microelectron Reliab – volume: 80 start-page: 731 year: 2015 end-page: 739 ident: bib19 article-title: State of charge estimation of a lithium ion cell based on a temperature dependent and electrolyte enhanced single particle model publication-title: Energy – volume: 138 start-page: 1199 year: 2017 end-page: 1208 ident: bib46 article-title: Practical failure recognition model of lithium-ion batteries based on partial charging process publication-title: Energy – volume: 135 start-page: 40 year: 2017 end-page: 52 ident: bib20 article-title: State of charge estimation based on a new dual-polarization-resistance model for electric vehicles publication-title: Energy – volume: 348 start-page: 281 year: 2017 end-page: 301 ident: bib31 article-title: On state-of-charge determination for lithium-ion batteries publication-title: J Power Sources – volume: 175 start-page: 421 year: 2016 end-page: 426 ident: bib63 article-title: Stochastic dynamic modeling of lithium battery via expectation maximization algorithm publication-title: Neurocomputing – volume: 258 start-page: 228 year: 2014 end-page: 237 ident: bib55 article-title: A unified open-circuit-voltage model of lithium-ion batteries for state-of-charge estimation and state-of-health monitoring publication-title: J Power Sources – year: 2013 ident: bib53 article-title: Iterative capacity estimation of LiFePO4 cell over the lifecycle based on SoC estimation correction publication-title: EVS27 international battery, hybrid and fuel cell electric vehicle symposium – volume: 39 start-page: 310 year: 2012 end-page: 318 ident: bib52 article-title: Online model-based estimation of state-of-charge and open-circuit voltage of lithium-ion batteries in electric vehicles publication-title: Energy – volume: 281 start-page: 114 year: 2015 end-page: 130 ident: bib38 article-title: Critical review of on-board capacity estimation techniques for lithium-ion batteries in electric and hybrid electric vehicles publication-title: J Power Sources – volume: 150 start-page: 759 year: 2018 end-page: 769 ident: bib16 article-title: Incremental capacity analysis and differential voltage analysis based state of charge and capacity estimation for lithium-ion batteries publication-title: Energy – volume: 343 start-page: 254 year: 2017 end-page: 267 ident: bib29 article-title: Kalman-variant estimators for state of charge in lithium-sulfur batteries publication-title: J Power Sources – volume: 351 start-page: 1253292 year: 2016 ident: bib10 article-title: Why do batteries fail? publication-title: Science – volume: 10 start-page: 246 year: 2018 end-page: 267 ident: bib12 article-title: Thermal runaway mechanism of lithium ion battery for electric vehicles: a review publication-title: Energy Storage Mater – volume: 173 start-page: 647 year: 2019 end-page: 657 ident: bib2 article-title: The impact of battery energy storage for renewable energy power grids in Australia publication-title: Energy – volume: 147 start-page: 621 year: 2018 end-page: 635 ident: bib22 article-title: Online identification of lithium-ion battery state-of-health based on fast wavelet transform and cross D-Markov machine publication-title: Energy – volume: 373 start-page: 40 year: 2018 end-page: 53 ident: bib21 article-title: A quick on-line state of health estimation method for Li-ion battery with incremental capacity curves processed by Gaussian filter publication-title: J Power Sources – volume: 27 start-page: 526 year: 2015 end-page: 536 ident: bib62 article-title: Activation mechanism of LiNi0.80Co0.15Al0.05O2: surface and bulk operando electrochemical, differential electrochemical mass spectrometry, and X-ray diffraction analyses publication-title: Chem Mater – volume: 180 start-page: 360 year: 2016 end-page: 368 ident: bib47 article-title: State-of-health monitoring of lithium-ion battery modules and packs via incremental capacity peak tracking publication-title: Appl Energy – volume: 144 start-page: 647 year: 2018 end-page: 656 ident: bib11 article-title: State of health diagnosis model for lithium ion batteries based on real-time impedance and open circuit voltage parameters identification method publication-title: Energy – volume: 63 start-page: 143 year: 2015 end-page: 151 ident: bib61 article-title: Lithium-ion battery remaining useful life estimation with an optimized Relevance Vector Machine algorithm with incremental learning publication-title: Measurement – volume: 306 start-page: 178 year: 2016 end-page: 192 ident: bib13 article-title: Safety focused modeling of lithium-ion batteries: a review publication-title: J Power Sources – volume: 103 start-page: 784 year: 2016 end-page: 796 ident: bib33 article-title: State of health estimation algorithm of LiFePO4 battery packs based on differential voltage curves for battery management system application publication-title: Energy – volume: 129 start-page: 16 year: 2017 end-page: 27 ident: bib8 article-title: State of charge estimation for lithium-ion pouch batteries based on stress measurement publication-title: Energy – volume: 2 year: 2017 ident: bib5 article-title: Optimal energy management for industrial microgrids with high-penetration renewables publication-title: Protect Contr Modern Power Syst – start-page: 494 year: 2016 end-page: 498 ident: bib6 article-title: Optimal energy management strategy for an isolated industrial microgrid using a modifed particle swarm optimization publication-title: 2016 IEEE international conference on power and renewable energy – volume: 383 start-page: 50 year: 2018 end-page: 58 ident: bib30 article-title: State-of-charge inconsistency estimation of lithium-ion battery pack using mean-difference model and extended Kalman filter publication-title: J Power Sources – volume: 174 start-page: 24 year: 2019 end-page: 32 ident: bib4 article-title: Microsimulation of electric vehicle energy consumption publication-title: Energy – volume: 258 start-page: 321 year: 2014 end-page: 339 ident: bib14 article-title: Critical review of the methods for monitoring of lithium-ion batteries in electric and hybrid vehicles publication-title: J Power Sources – volume: 97–98 start-page: 697 year: 2001 end-page: 701 ident: bib59 publication-title: J Power Sources – volume: 107 start-page: 745 year: 2019 end-page: 757 ident: bib3 article-title: Review on energy storage systems control methods in microgrids publication-title: Int J Electr Power Energy Syst – volume: 412 start-page: 442 year: 2019 end-page: 450 ident: bib1 article-title: A data-driven remaining capacity estimation approach for lithium-ion batteries based on charging health feature extraction publication-title: J Power Sources – volume: 270 start-page: 262 year: 2014 end-page: 272 ident: bib35 article-title: A support vector machine-based state-of-health estimation method for lithium-ion batteries under electric vehicle operation publication-title: J Power Sources – volume: 805–806 start-page: 1659 year: 2013 end-page: 1663 ident: bib51 article-title: Online state-of-charge estimation of Li-ion battery based on the second-order RC model publication-title: Adv Mater Res – volume: 376 start-page: 191 year: 2018 end-page: 199 ident: bib36 article-title: A novel approach of battery pack state of health estimation using artificial intelligence optimization algorithm publication-title: J Power Sources – volume: 114 start-page: 1266 year: 2016 end-page: 1276 ident: bib18 article-title: A method for SOC estimation based on simplified mechanistic model for LiFePO4 battery publication-title: Energy – volume: 56 start-page: 572 year: 2016 end-page: 587 ident: bib17 article-title: Critical review of state of health estimation methods of Li-ion batteries for real applications publication-title: Renew Sustain Energy Rev – volume: 258 start-page: 408 year: 2014 end-page: 419 ident: bib41 article-title: Cell degradation in commercial LiFePO4 cells with high-power and high-energy designs publication-title: J Power Sources – volume: 306 start-page: 62 year: 2016 end-page: 69 ident: bib45 article-title: State-of-health estimation of LiFePO 4/graphite batteries based on a model using differential capacity publication-title: J Power Sources – volume: 241 start-page: 680 year: 2013 end-page: 689 ident: bib32 article-title: A review on lithium-ion battery ageing mechanisms and estimations for automotive applications publication-title: J Power Sources – volume: 396 start-page: 453 year: 2018 end-page: 458 ident: bib50 article-title: A fast estimation algorithm for lithium-ion battery state of health publication-title: J Power Sources – volume: 377 start-page: 161 year: 2018 end-page: 188 ident: bib27 article-title: Investigating the error sources of the online state of charge estimation methods for lithium-ion batteries in electric vehicles publication-title: J Power Sources – volume: 177 start-page: 537 year: 2016 end-page: 543 ident: bib37 article-title: A capacity model based on charging process for state of health estimation of lithium ion batteries publication-title: Appl Energy – volume: 120 start-page: 584 year: 2017 end-page: 596 ident: bib7 article-title: Prospects for Chinese electric vehicle technologies in 2016–2020: ambition and rationality publication-title: Energy – volume: 341 start-page: 373 year: 2017 end-page: 386 ident: bib56 article-title: Degradation diagnostics for lithium ion cells publication-title: J Power Sources – volume: 256 start-page: 110 year: 2014 end-page: 124 ident: bib23 article-title: Review and recent advances in battery health monitoring and prognostics technologies for electric vehicle (EV) safety and mobility publication-title: J Power Sources – volume: 359 start-page: 422 year: 2017 end-page: 426 ident: bib28 article-title: Accurate state of charge assessment of lithium-manganese dioxide primary batteries publication-title: J Power Sources – volume: 9 start-page: 900 year: 2016 ident: bib43 article-title: A generalized SOC-OCV model for lithium-ion batteries and the SOC estimation for LNMCO battery publication-title: Energies – volume: 248 start-page: 839 year: 2014 end-page: 851 ident: bib57 article-title: Calendar and cycle life study of Li(NiMnCo)O2-based 18650 lithium-ion batteries publication-title: J Power Sources – volume: 78 start-page: 834 year: 2017 end-page: 854 ident: bib25 article-title: A review of lithium-ion battery state of charge estimation and management system in electric vehicle applications: challenges and recommendations publication-title: Renew Sustain Energy Rev – volume: 196 start-page: 3420 year: 2011 end-page: 3425 ident: bib40 article-title: Identifying battery aging mechanisms in large format Li ion cells publication-title: J Power Sources – volume: 243 start-page: 805 year: 2013 end-page: 816 ident: bib54 article-title: A robust state-of-charge estimator for multiple types of lithium-ion batteries using adaptive extended Kalman filter publication-title: J Power Sources – volume: 356 start-page: 36 year: 2017 end-page: 46 ident: bib15 article-title: Operando lithium plating quantification and early detection of a commercial LiFePO 4 cell cycled under dynamic driving schedule publication-title: J Power Sources – volume: 145 start-page: 3647 year: 1998 end-page: 3665 ident: bib9 article-title: Capacity fade mechanisms and side reactions in lithium-ion batteries publication-title: J Electrochem Soc – volume: 239 start-page: 705 year: 2013 end-page: 710 ident: bib58 article-title: Particle filter for state of charge and state of health estimation for lithium–iron phosphate batteries publication-title: J Power Sources – volume: 226 start-page: 272 year: 2013 end-page: 288 ident: bib26 article-title: A review on the key issues for lithium-ion battery management in electric vehicles publication-title: J Power Sources – volume: 194 start-page: 541 year: 2009 end-page: 549 ident: bib42 article-title: Identify capacity fading mechanism in a commercial LiFePO4 cell publication-title: J Power Sources – volume: 249 start-page: 457 year: 2014 end-page: 462 ident: bib48 article-title: State of health estimation for lithium ion batteries based on charging curves publication-title: J Power Sources – volume: 258 start-page: 228 year: 2014 ident: 10.1016/j.energy.2019.04.070_bib55 article-title: A unified open-circuit-voltage model of lithium-ion batteries for state-of-charge estimation and state-of-health monitoring publication-title: J Power Sources doi: 10.1016/j.jpowsour.2014.02.026 – volume: 1 start-page: 242 year: 2014 ident: 10.1016/j.energy.2019.04.070_bib39 article-title: The value of battery diagnostics and Prognostics.pdf publication-title: J Energy Power Sources – volume: 27 start-page: 526 issue: 2 year: 2015 ident: 10.1016/j.energy.2019.04.070_bib62 article-title: Activation mechanism of LiNi0.80Co0.15Al0.05O2: surface and bulk operando electrochemical, differential electrochemical mass spectrometry, and X-ray diffraction analyses publication-title: Chem Mater doi: 10.1021/cm503833b – volume: 63 start-page: 143 year: 2015 ident: 10.1016/j.energy.2019.04.070_bib61 article-title: Lithium-ion battery remaining useful life estimation with an optimized Relevance Vector Machine algorithm with incremental learning publication-title: Measurement doi: 10.1016/j.measurement.2014.11.031 – volume: 129 start-page: 16 year: 2017 ident: 10.1016/j.energy.2019.04.070_bib8 article-title: State of charge estimation for lithium-ion pouch batteries based on stress measurement publication-title: Energy doi: 10.1016/j.energy.2017.04.099 – volume: 42 start-page: 517 year: 2015 ident: 10.1016/j.energy.2019.04.070_bib24 article-title: A comprehensive review on estimation strategies used in hybrid and battery electric vehicles publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2014.10.047 – volume: 306 start-page: 62 year: 2016 ident: 10.1016/j.energy.2019.04.070_bib45 article-title: State-of-health estimation of LiFePO 4/graphite batteries based on a model using differential capacity publication-title: J Power Sources doi: 10.1016/j.jpowsour.2015.11.070 – volume: 348 start-page: 281 year: 2017 ident: 10.1016/j.energy.2019.04.070_bib31 article-title: On state-of-charge determination for lithium-ion batteries publication-title: J Power Sources doi: 10.1016/j.jpowsour.2017.03.001 – volume: 194 start-page: 541 issue: 1 year: 2009 ident: 10.1016/j.energy.2019.04.070_bib42 article-title: Identify capacity fading mechanism in a commercial LiFePO4 cell publication-title: J Power Sources doi: 10.1016/j.jpowsour.2009.05.036 – volume: 258 start-page: 408 year: 2014 ident: 10.1016/j.energy.2019.04.070_bib41 article-title: Cell degradation in commercial LiFePO4 cells with high-power and high-energy designs publication-title: J Power Sources doi: 10.1016/j.jpowsour.2014.02.052 – volume: 207 start-page: 372 year: 2017 ident: 10.1016/j.energy.2019.04.070_bib34 article-title: A systematic model-based degradation behavior recognition and health monitoring method for lithium-ion batteries publication-title: Appl Energy doi: 10.1016/j.apenergy.2017.05.124 – volume: 10 start-page: 246 year: 2018 ident: 10.1016/j.energy.2019.04.070_bib12 article-title: Thermal runaway mechanism of lithium ion battery for electric vehicles: a review publication-title: Energy Storage Mater doi: 10.1016/j.ensm.2017.05.013 – volume: 805–806 start-page: 1659 year: 2013 ident: 10.1016/j.energy.2019.04.070_bib51 article-title: Online state-of-charge estimation of Li-ion battery based on the second-order RC model publication-title: Adv Mater Res doi: 10.4028/www.scientific.net/AMR.805-806.1659 – volume: 258 start-page: 321 year: 2014 ident: 10.1016/j.energy.2019.04.070_bib14 article-title: Critical review of the methods for monitoring of lithium-ion batteries in electric and hybrid vehicles publication-title: J Power Sources doi: 10.1016/j.jpowsour.2014.02.064 – volume: 135 start-page: 40 year: 2017 ident: 10.1016/j.energy.2019.04.070_bib20 article-title: State of charge estimation based on a new dual-polarization-resistance model for electric vehicles publication-title: Energy doi: 10.1016/j.energy.2017.06.094 – volume: 373 start-page: 40 year: 2018 ident: 10.1016/j.energy.2019.04.070_bib21 article-title: A quick on-line state of health estimation method for Li-ion battery with incremental capacity curves processed by Gaussian filter publication-title: J Power Sources doi: 10.1016/j.jpowsour.2017.10.092 – volume: 249 start-page: 457 year: 2014 ident: 10.1016/j.energy.2019.04.070_bib48 article-title: State of health estimation for lithium ion batteries based on charging curves publication-title: J Power Sources doi: 10.1016/j.jpowsour.2013.10.114 – volume: 180 start-page: 360 year: 2016 ident: 10.1016/j.energy.2019.04.070_bib47 article-title: State-of-health monitoring of lithium-ion battery modules and packs via incremental capacity peak tracking publication-title: Appl Energy doi: 10.1016/j.apenergy.2016.07.126 – volume: 120 start-page: 584 year: 2017 ident: 10.1016/j.energy.2019.04.070_bib7 article-title: Prospects for Chinese electric vehicle technologies in 2016–2020: ambition and rationality publication-title: Energy doi: 10.1016/j.energy.2016.11.114 – volume: 107 start-page: 745 year: 2019 ident: 10.1016/j.energy.2019.04.070_bib3 article-title: Review on energy storage systems control methods in microgrids publication-title: Int J Electr Power Energy Syst doi: 10.1016/j.ijepes.2018.12.040 – volume: 306 start-page: 178 year: 2016 ident: 10.1016/j.energy.2019.04.070_bib13 article-title: Safety focused modeling of lithium-ion batteries: a review publication-title: J Power Sources doi: 10.1016/j.jpowsour.2015.11.100 – volume: 343 start-page: 254 year: 2017 ident: 10.1016/j.energy.2019.04.070_bib29 article-title: Kalman-variant estimators for state of charge in lithium-sulfur batteries publication-title: J Power Sources doi: 10.1016/j.jpowsour.2016.12.087 – volume: 256 start-page: 110 year: 2014 ident: 10.1016/j.energy.2019.04.070_bib23 article-title: Review and recent advances in battery health monitoring and prognostics technologies for electric vehicle (EV) safety and mobility publication-title: J Power Sources doi: 10.1016/j.jpowsour.2014.01.085 – volume: 175 start-page: 421 year: 2016 ident: 10.1016/j.energy.2019.04.070_bib63 article-title: Stochastic dynamic modeling of lithium battery via expectation maximization algorithm publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.10.075 – volume: 359 start-page: 422 year: 2017 ident: 10.1016/j.energy.2019.04.070_bib28 article-title: Accurate state of charge assessment of lithium-manganese dioxide primary batteries publication-title: J Power Sources doi: 10.1016/j.jpowsour.2017.05.065 – start-page: 494 year: 2016 ident: 10.1016/j.energy.2019.04.070_bib6 article-title: Optimal energy management strategy for an isolated industrial microgrid using a modifed particle swarm optimization – volume: 103 start-page: 784 year: 2016 ident: 10.1016/j.energy.2019.04.070_bib33 article-title: State of health estimation algorithm of LiFePO4 battery packs based on differential voltage curves for battery management system application publication-title: Energy doi: 10.1016/j.energy.2016.02.163 – volume: 114 start-page: 1266 year: 2016 ident: 10.1016/j.energy.2019.04.070_bib18 article-title: A method for SOC estimation based on simplified mechanistic model for LiFePO4 battery publication-title: Energy doi: 10.1016/j.energy.2016.08.080 – volume: 80 start-page: 731 year: 2015 ident: 10.1016/j.energy.2019.04.070_bib19 article-title: State of charge estimation of a lithium ion cell based on a temperature dependent and electrolyte enhanced single particle model publication-title: Energy doi: 10.1016/j.energy.2014.12.031 – volume: 241 start-page: 680 year: 2013 ident: 10.1016/j.energy.2019.04.070_bib32 article-title: A review on lithium-ion battery ageing mechanisms and estimations for automotive applications publication-title: J Power Sources doi: 10.1016/j.jpowsour.2013.05.040 – year: 2007 ident: 10.1016/j.energy.2019.04.070_bib49 – year: 2013 ident: 10.1016/j.energy.2019.04.070_bib53 article-title: Iterative capacity estimation of LiFePO4 cell over the lifecycle based on SoC estimation correction – volume: 377 start-page: 161 year: 2018 ident: 10.1016/j.energy.2019.04.070_bib27 article-title: Investigating the error sources of the online state of charge estimation methods for lithium-ion batteries in electric vehicles publication-title: J Power Sources doi: 10.1016/j.jpowsour.2017.11.094 – volume: 147 start-page: 621 year: 2018 ident: 10.1016/j.energy.2019.04.070_bib22 article-title: Online identification of lithium-ion battery state-of-health based on fast wavelet transform and cross D-Markov machine publication-title: Energy doi: 10.1016/j.energy.2018.01.001 – volume: 9 start-page: 900 issue: 11 year: 2016 ident: 10.1016/j.energy.2019.04.070_bib43 article-title: A generalized SOC-OCV model for lithium-ion batteries and the SOC estimation for LNMCO battery publication-title: Energies doi: 10.3390/en9110900 – volume: 2 issue: 1 year: 2017 ident: 10.1016/j.energy.2019.04.070_bib5 article-title: Optimal energy management for industrial microgrids with high-penetration renewables publication-title: Protect Contr Modern Power Syst – volume: 150 start-page: 759 year: 2018 ident: 10.1016/j.energy.2019.04.070_bib16 article-title: Incremental capacity analysis and differential voltage analysis based state of charge and capacity estimation for lithium-ion batteries publication-title: Energy doi: 10.1016/j.energy.2018.03.023 – volume: 173 start-page: 647 year: 2019 ident: 10.1016/j.energy.2019.04.070_bib2 article-title: The impact of battery energy storage for renewable energy power grids in Australia publication-title: Energy doi: 10.1016/j.energy.2019.02.053 – volume: 138 start-page: 1199 year: 2017 ident: 10.1016/j.energy.2019.04.070_bib46 article-title: Practical failure recognition model of lithium-ion batteries based on partial charging process publication-title: Energy doi: 10.1016/j.energy.2017.08.017 – volume: 177 start-page: 537 year: 2016 ident: 10.1016/j.energy.2019.04.070_bib37 article-title: A capacity model based on charging process for state of health estimation of lithium ion batteries publication-title: Appl Energy doi: 10.1016/j.apenergy.2016.05.109 – volume: 248 start-page: 839 year: 2014 ident: 10.1016/j.energy.2019.04.070_bib57 article-title: Calendar and cycle life study of Li(NiMnCo)O2-based 18650 lithium-ion batteries publication-title: J Power Sources doi: 10.1016/j.jpowsour.2013.09.143 – volume: 356 start-page: 36 year: 2017 ident: 10.1016/j.energy.2019.04.070_bib15 article-title: Operando lithium plating quantification and early detection of a commercial LiFePO 4 cell cycled under dynamic driving schedule publication-title: J Power Sources doi: 10.1016/j.jpowsour.2017.04.072 – volume: 341 start-page: 373 year: 2017 ident: 10.1016/j.energy.2019.04.070_bib56 article-title: Degradation diagnostics for lithium ion cells publication-title: J Power Sources doi: 10.1016/j.jpowsour.2016.12.011 – volume: 235 start-page: 36 year: 2013 ident: 10.1016/j.energy.2019.04.070_bib44 article-title: On-board state of health monitoring of lithium-ion batteries using incremental capacity analysis with support vector regression publication-title: J Power Sources doi: 10.1016/j.jpowsour.2013.02.012 – volume: 281 start-page: 114 year: 2015 ident: 10.1016/j.energy.2019.04.070_bib38 article-title: Critical review of on-board capacity estimation techniques for lithium-ion batteries in electric and hybrid electric vehicles publication-title: J Power Sources doi: 10.1016/j.jpowsour.2015.01.129 – volume: 196 start-page: 3420 issue: 7 year: 2011 ident: 10.1016/j.energy.2019.04.070_bib40 article-title: Identifying battery aging mechanisms in large format Li ion cells publication-title: J Power Sources doi: 10.1016/j.jpowsour.2010.07.029 – volume: 412 start-page: 442 year: 2019 ident: 10.1016/j.energy.2019.04.070_bib1 article-title: A data-driven remaining capacity estimation approach for lithium-ion batteries based on charging health feature extraction publication-title: J Power Sources doi: 10.1016/j.jpowsour.2018.11.072 – volume: 78 start-page: 834 year: 2017 ident: 10.1016/j.energy.2019.04.070_bib25 article-title: A review of lithium-ion battery state of charge estimation and management system in electric vehicle applications: challenges and recommendations publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2017.05.001 – volume: 270 start-page: 262 year: 2014 ident: 10.1016/j.energy.2019.04.070_bib35 article-title: A support vector machine-based state-of-health estimation method for lithium-ion batteries under electric vehicle operation publication-title: J Power Sources doi: 10.1016/j.jpowsour.2014.07.116 – volume: 243 start-page: 805 year: 2013 ident: 10.1016/j.energy.2019.04.070_bib54 article-title: A robust state-of-charge estimator for multiple types of lithium-ion batteries using adaptive extended Kalman filter publication-title: J Power Sources doi: 10.1016/j.jpowsour.2013.06.076 – volume: 396 start-page: 453 year: 2018 ident: 10.1016/j.energy.2019.04.070_bib50 article-title: A fast estimation algorithm for lithium-ion battery state of health publication-title: J Power Sources doi: 10.1016/j.jpowsour.2018.06.036 – volume: 174 start-page: 24 year: 2019 ident: 10.1016/j.energy.2019.04.070_bib4 article-title: Microsimulation of electric vehicle energy consumption publication-title: Energy doi: 10.1016/j.energy.2019.02.034 – volume: 145 start-page: 3647 year: 1998 ident: 10.1016/j.energy.2019.04.070_bib9 article-title: Capacity fade mechanisms and side reactions in lithium-ion batteries publication-title: J Electrochem Soc doi: 10.1149/1.1838857 – volume: 144 start-page: 647 year: 2018 ident: 10.1016/j.energy.2019.04.070_bib11 article-title: State of health diagnosis model for lithium ion batteries based on real-time impedance and open circuit voltage parameters identification method publication-title: Energy doi: 10.1016/j.energy.2017.12.033 – volume: 383 start-page: 50 year: 2018 ident: 10.1016/j.energy.2019.04.070_bib30 article-title: State-of-charge inconsistency estimation of lithium-ion battery pack using mean-difference model and extended Kalman filter publication-title: J Power Sources doi: 10.1016/j.jpowsour.2018.02.058 – volume: 376 start-page: 191 year: 2018 ident: 10.1016/j.energy.2019.04.070_bib36 article-title: A novel approach of battery pack state of health estimation using artificial intelligence optimization algorithm publication-title: J Power Sources doi: 10.1016/j.jpowsour.2017.11.068 – volume: 81 start-page: 232 year: 2018 ident: 10.1016/j.energy.2019.04.070_bib60 article-title: Heuristic Kalman optimized particle filter for remaining useful life prediction of lithium-ion battery publication-title: Microelectron Reliab doi: 10.1016/j.microrel.2017.12.028 – volume: 351 start-page: 1253292 issue: 6273 year: 2016 ident: 10.1016/j.energy.2019.04.070_bib10 article-title: Why do batteries fail? publication-title: Science doi: 10.1126/science.1253292 – volume: 56 start-page: 572 year: 2016 ident: 10.1016/j.energy.2019.04.070_bib17 article-title: Critical review of state of health estimation methods of Li-ion batteries for real applications publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2015.11.042 – volume: 39 start-page: 310 issue: 1 year: 2012 ident: 10.1016/j.energy.2019.04.070_bib52 article-title: Online model-based estimation of state-of-charge and open-circuit voltage of lithium-ion batteries in electric vehicles publication-title: Energy doi: 10.1016/j.energy.2012.01.009 – volume: 97–98 start-page: 697 year: 2001 ident: 10.1016/j.energy.2019.04.070_bib59 publication-title: J Power Sources doi: 10.1016/S0378-7753(01)00646-2 – volume: 226 start-page: 272 year: 2013 ident: 10.1016/j.energy.2019.04.070_bib26 article-title: A review on the key issues for lithium-ion battery management in electric vehicles publication-title: J Power Sources doi: 10.1016/j.jpowsour.2012.10.060 – volume: 239 start-page: 705 year: 2013 ident: 10.1016/j.energy.2019.04.070_bib58 article-title: Particle filter for state of charge and state of health estimation for lithium–iron phosphate batteries publication-title: J Power Sources doi: 10.1016/j.jpowsour.2012.10.058 |
SSID | ssj0005899 |
Score | 2.5501423 |
Snippet | Using an equivalent circuit model to characterize the constant-current part of a charging/discharging profile, a model is developed to estimate the... |
SourceID | swepub proquest crossref elsevier |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 57 |
SubjectTerms | Aging Charging Circuits data collection Dependence electric potential difference Equivalent circuit model Equivalent circuits Health Incremental capacity analysis Learning Lithium lithium batteries Lithium ion battery Lithium-ion batteries Open circuit voltage Organic chemistry Product design Rechargeable batteries State of health temperature Variation |
Title | A model for state-of-health estimation of lithium ion batteries based on charging profiles |
URI | https://dx.doi.org/10.1016/j.energy.2019.04.070 https://www.proquest.com/docview/2246255030 https://www.proquest.com/docview/2237508303 https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-252451 https://research.chalmers.se/publication/534539 |
Volume | 177 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELWqcoALgkLFQqmMhLiZTWLHiY-r0mr56gWKKi4jx3bY5WNTNbtXfjszjrMsUqVKHJNMomzGM36jnfeGsZetbZ1uZcD49plQIQRhWpWLOqgmk9I6ZYiN_PFczy_Uu8vyco-djFwYaqtMuX_I6TFbpzPT9DWnV8vl9BPmXsQbCkMOYa8ZGOyqolX--vdOm0cdZ0iSsSDrkT4Xe7xC5NdRg5eJgqc0svjm7WkXfu5KisZt6OwBu5_wI58Nr_iQ7YXVAbs70ov7A3Z4-pe6hoYpdvtH7OuMx7E3HGEqjzwi0bVi4EFy0toYSIy8azlC88Vy84vTYRMFOLGe5rTheY6noroSbnk8DfzuH7OLs9PPJ3ORJisIp-p8LZrctWWRWQQTPugCMYaratPo1ssG6w9MkEVhs9o7l2srq7xosebW1rugNGYEKw_Z_qpbhSeMu0rn3iiDwE8qiY_3ts7L4MpAlFbdTpgcPyi4JDtO0y9-wthf9h0GNwC5ATIF6IYJE9u7rgbZjVvsq9FX8M_yAdwZbrnzaHQtpPDtgVT2sNbCBDhhL7aXMfDo3xS7Ct2GbGRFWvqZnLBXw5LYvippdr9ZfplBd_0NfqwXUJSFKvMJ-3CDYVJ1WgB6j0bm9NAHqIugnHcSSlN4UDZoMI01gAUkifjJEBr19L9_9DN2j46o5S0vj9j--noTniO4WjfHMXqO2Z3Z2_fz8z-S_SYe |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9NAEF1V5VAuqBQqQgssEuK2xPau1_YxKq0CpL3QoorLaL3eJeEjrurkym9nZr0OQapUiWPsceR4PDNvlHlvGHvjjbfaS4fx3SRCOedE5VUqSqfqREpjVUVs5PMLPb1SH6_z6x12MnBhaKwy5v4-p4dsHY-M49Mc3ywW48-YexFvKAw5hL0VMdgfKAxfWmPw7vfWnEcZlkiStSDzgT8XhrxcINjRhFcVFE9pZ_Hd9Wkbf25rioY6dLbPHkUAySf9PT5mO255wPYGfnF3wA5P_3LX0DAGb_eEfZ3wsPeGI07lgUgkWi96IiQnsY2exchbzxGbzxfrX5w-1kGBExtqThWv4XgoyCthzeNx43f3lF2dnV6eTEVcrSCsKtOVqFPr8ywxiCYapzMEGbYoq1r7RtbYgGCGzDKTlI21qTaySDOPTbc2jXVKY0ow8pDtLtule8a4LXTaVKpC5CeVxK9vTJnmzuaOOK3aj5gcHijYqDtO6y9-wjBg9h16NwC5ARIF6IYRE5urbnrdjXvsi8FX8M_7A1ga7rnyeHAtxPjtgGT2sNnCDDhirzenMfLo7xSzdO2abGRBYvqJHLG3_SuxuVUS7X6_-DKB9vYb_FjNIcszlacjNrvDMMo6zQG9RztzOugclJlTtrES8iprQBmnoapNBdhBkoqfdK5Wz__7R79ie9PL8xnMPlx8OmIP6QzNv6X5Mdtd3a7dC0Raq_pliKQ_CyEnrA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+model+for+state-of-health+estimation+of+lithium+ion+batteries+based+on+charging+profiles&rft.jtitle=Energy+%28Oxford%29&rft.au=Bian%2C+Xiaolei&rft.au=Liu%2C+Longcheng&rft.au=Yan%2C+Jinying&rft.date=2019-06-15&rft.pub=Elsevier+Ltd&rft.issn=0360-5442&rft.volume=177&rft.spage=57&rft.epage=65&rft_id=info:doi/10.1016%2Fj.energy.2019.04.070&rft.externalDocID=S0360544219306991 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-5442&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-5442&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-5442&client=summon |