N -Glycan–dependent protein folding and endoplasmic reticulum retention regulate GPI-anchor processing
Glycosylphosphatidylinositol (GPI) anchoring of proteins is a conserved posttranslational modification in the endoplasmic reticulum (ER). Soon after GPI is attached, an acyl chain on the GPI inositol is removed by post-GPI attachment to proteins 1 (PGAP1), a GPI-inositol deacylase. This is crucial f...
Saved in:
Published in | The Journal of cell biology Vol. 217; no. 2; pp. 585 - 599 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Rockefeller University Press
05.02.2018
The Rockefeller University Press |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Glycosylphosphatidylinositol (GPI) anchoring of proteins is a conserved posttranslational modification in the endoplasmic reticulum (ER). Soon after GPI is attached, an acyl chain on the GPI inositol is removed by post-GPI attachment to proteins 1 (PGAP1), a GPI-inositol deacylase. This is crucial for switching GPI-anchored proteins (GPI-APs) from protein folding to transport states. We performed haploid genetic screens to identify factors regulating GPI-inositol deacylation, identifying seven genes. In particular, calnexin cycle impairment caused inefficient GPI-inositol deacylation. Calnexin was specifically associated with GPI-APs, dependent on N-glycan and GPI moieties, and assisted efficient GPI-inositol deacylation by PGAP1. Under chronic ER stress caused by misfolded GPI-APs, inositol-acylated GPI-APs were exposed on the cell surface. These results indicated that N-glycans participate in quality control and temporal ER retention of GPI-APs, ensuring their correct folding and GPI processing before exiting from the ER. Once the system is disrupted by ER stress, unprocessed GPI-APs become exposed on the cell surface. |
---|---|
AbstractList | Glycosylphosphatidylinositol (GPI) anchoring of proteins is a conserved posttranslational modification in the endoplasmic reticulum (ER). Soon after GPI is attached, an acyl chain on the GPI inositol is removed by post-GPI attachment to proteins 1 (PGAP1), a GPI-inositol deacylase. This is crucial for switching GPI-anchored proteins (GPI-APs) from protein folding to transport states. We performed haploid genetic screens to identify factors regulating GPI-inositol deacylation, identifying seven genes. In particular, calnexin cycle impairment caused inefficient GPI-inositol deacylation. Calnexin was specifically associated with GPI-APs, dependent on
-glycan and GPI moieties, and assisted efficient GPI-inositol deacylation by PGAP1. Under chronic ER stress caused by misfolded GPI-APs, inositol-acylated GPI-APs were exposed on the cell surface. These results indicated that
-glycans participate in quality control and temporal ER retention of GPI-APs, ensuring their correct folding and GPI processing before exiting from the ER. Once the system is disrupted by ER stress, unprocessed GPI-APs become exposed on the cell surface. N -Glycosylation and GPI anchoring of proteins occur in the endoplasmic reticulum (ER). Liu et al. revealed N -glycans participate in quality control and temporal ER retention of GPI-anchored proteins (GPI-APs), ensuring their correct folding and GPI processing before exiting from the ER. Chronic ER stress induced exposure of unprocessed GPI-APs on the cell surface. Glycosylphosphatidylinositol (GPI) anchoring of proteins is a conserved posttranslational modification in the endoplasmic reticulum (ER). Soon after GPI is attached, an acyl chain on the GPI inositol is removed by post-GPI attachment to proteins 1 (PGAP1), a GPI-inositol deacylase. This is crucial for switching GPI-anchored proteins (GPI-APs) from protein folding to transport states. We performed haploid genetic screens to identify factors regulating GPI-inositol deacylation, identifying seven genes. In particular, calnexin cycle impairment caused inefficient GPI-inositol deacylation. Calnexin was specifically associated with GPI-APs, dependent on N -glycan and GPI moieties, and assisted efficient GPI-inositol deacylation by PGAP1. Under chronic ER stress caused by misfolded GPI-APs, inositol-acylated GPI-APs were exposed on the cell surface. These results indicated that N -glycans participate in quality control and temporal ER retention of GPI-APs, ensuring their correct folding and GPI processing before exiting from the ER. Once the system is disrupted by ER stress, unprocessed GPI-APs become exposed on the cell surface. Glycosylphosphatidylinositol (GPI) anchoring of proteins is a conserved posttranslational modification in the endoplasmic reticulum (ER). Soon after GPI is attached, an acyl chain on the GPI inositol is removed by post-GPI attachment to proteins 1 (PGAP1), a GPI-inositol deacylase. This is crucial for switching GPI-anchored proteins (GPI-APs) from protein folding to transport states. We performed haploid genetic screens to identify factors regulating GPI-inositol deacylation, identifying seven genes. In particular, calnexin cycle impairment caused inefficient GPI-inositol deacylation. Calnexin was specifically associated with GPI-APs, dependent on N-glycan and GPI moieties, and assisted efficient GPI-inositol deacylation by PGAP1. Under chronic ER stress caused by misfolded GPI-APs, inositol-acylated GPI-APs were exposed on the cell surface. These results indicated that N-glycans participate in quality control and temporal ER retention of GPI-APs, ensuring their correct folding and GPI processing before exiting from the ER. Once the system is disrupted by ER stress, unprocessed GPI-APs become exposed on the cell surface.Glycosylphosphatidylinositol (GPI) anchoring of proteins is a conserved posttranslational modification in the endoplasmic reticulum (ER). Soon after GPI is attached, an acyl chain on the GPI inositol is removed by post-GPI attachment to proteins 1 (PGAP1), a GPI-inositol deacylase. This is crucial for switching GPI-anchored proteins (GPI-APs) from protein folding to transport states. We performed haploid genetic screens to identify factors regulating GPI-inositol deacylation, identifying seven genes. In particular, calnexin cycle impairment caused inefficient GPI-inositol deacylation. Calnexin was specifically associated with GPI-APs, dependent on N-glycan and GPI moieties, and assisted efficient GPI-inositol deacylation by PGAP1. Under chronic ER stress caused by misfolded GPI-APs, inositol-acylated GPI-APs were exposed on the cell surface. These results indicated that N-glycans participate in quality control and temporal ER retention of GPI-APs, ensuring their correct folding and GPI processing before exiting from the ER. Once the system is disrupted by ER stress, unprocessed GPI-APs become exposed on the cell surface. Glycosylphosphatidylinositol (GPI) anchoring of proteins is a conserved posttranslational modification in the endoplasmic reticulum (ER). Soon after GPI is attached, an acyl chain on the GPI inositol is removed by post-GPI attachment to proteins 1 (PGAP1), a GPI-inositol deacylase. This is crucial for switching GPI-anchored proteins (GPI-APs) from protein folding to transport states. We performed haploid genetic screens to identify factors regulating GPI-inositol deacylation, identifying seven genes. In particular, calnexin cycle impairment caused inefficient GPI-inositol deacylation. Calnexin was specifically associated with GPI-APs, dependent on N-glycan and GPI moieties, and assisted efficient GPI-inositol deacylation by PGAP1. Under chronic ER stress caused by misfolded GPI-APs, inositol-acylated GPI-APs were exposed on the cell surface. These results indicated that N-glycans participate in quality control and temporal ER retention of GPI-APs, ensuring their correct folding and GPI processing before exiting from the ER. Once the system is disrupted by ER stress, unprocessed GPI-APs become exposed on the cell surface. |
Author | Nakamura, Shota Liu, Yi-Shi Murakami, Yoshiko Kinoshita, Taroh Kitajima, Toshihiko Rong, Yao Gao, Xiao-Dong Fujita, Morihisa Guo, Xin-Yu Motooka, Daisuke Hirata, Tetsuya |
AuthorAffiliation | 3 World Premier International Immunology Frontier Research Center, Osaka University, Osaka, Japan 2 Research Institute for Microbial Diseases, Osaka University, Osaka, Japan 1 Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Jiangsu, China |
AuthorAffiliation_xml | – name: 3 World Premier International Immunology Frontier Research Center, Osaka University, Osaka, Japan – name: 1 Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Jiangsu, China – name: 2 Research Institute for Microbial Diseases, Osaka University, Osaka, Japan |
Author_xml | – sequence: 1 givenname: Yi-Shi orcidid: 0000-0001-5640-1899 surname: Liu fullname: Liu, Yi-Shi – sequence: 2 givenname: Xin-Yu surname: Guo fullname: Guo, Xin-Yu – sequence: 3 givenname: Tetsuya surname: Hirata fullname: Hirata, Tetsuya – sequence: 4 givenname: Yao surname: Rong fullname: Rong, Yao – sequence: 5 givenname: Daisuke surname: Motooka fullname: Motooka, Daisuke – sequence: 6 givenname: Toshihiko orcidid: 0000-0001-9677-5086 surname: Kitajima fullname: Kitajima, Toshihiko – sequence: 7 givenname: Yoshiko orcidid: 0000-0002-4870-5734 surname: Murakami fullname: Murakami, Yoshiko – sequence: 8 givenname: Xiao-Dong orcidid: 0000-0002-8575-5095 surname: Gao fullname: Gao, Xiao-Dong – sequence: 9 givenname: Shota surname: Nakamura fullname: Nakamura, Shota – sequence: 10 givenname: Taroh orcidid: 0000-0001-7166-7257 surname: Kinoshita fullname: Kinoshita, Taroh – sequence: 11 givenname: Morihisa orcidid: 0000-0002-0344-2408 surname: Fujita fullname: Fujita, Morihisa |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29255114$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kc9q3DAQh0VJaDZpj70WQy-5ONXIkv9cCiWk20BoemjPQiuNd7XIkivZhdz6DnnDPEllki5toCcNzDcfM_qdkiMfPBLyBugF0LZ6v9ebC0ahoTVU4gVZgeC0bIHTI7KilEHZCSZOyGlKe0opb3j1kpywjgkBwFdk96Uo1-5OK__w697giN6gn4oxhgmtL_rgjPXbQnlT5FYYnUqD1UXEyerZzcNS5QEbfK62s1MTFuuv16Xyehfi4tGYUla8Ise9cglfP71n5Punq2-Xn8ub2_X15cebUvMWplIhct4bVeuK9abpmlrXmoMQjeaqA4FMUDAKjFEae83oZsOZaEXbV1Ax7Ksz8uHRO86bAY3Oy0Xl5BjtoOKdDMrKfzve7uQ2_JSipbQFyILzJ0EMP2ZMkxxs0uic8hjmJKFr2obxrmYZffcM3Yc5-nyeZFlW5S-mC_X2740Oq_wJIQPlI6BjSClif0CAyiVkmUOWh5AzXz3jtZ3UkkE-yLr_TP0GAE6tdg |
CitedBy_id | crossref_primary_10_1371_journal_pone_0250805 crossref_primary_10_5650_oleoscience_24_513 crossref_primary_10_1007_s10529_021_03153_7 crossref_primary_10_3389_fimmu_2024_1467858 crossref_primary_10_15252_embr_202154352 crossref_primary_10_1016_j_celrep_2022_110768 crossref_primary_10_3389_fcell_2021_720536 crossref_primary_10_1007_s00439_022_02433_0 crossref_primary_10_1083_jcb_202108160 crossref_primary_10_1016_j_jbc_2023_105211 crossref_primary_10_1038_s41467_023_44568_2 crossref_primary_10_1093_glycob_cwae061 crossref_primary_10_1093_jb_mvad041 crossref_primary_10_1080_09168451_2018_1482193 crossref_primary_10_1371_journal_pgen_1011406 crossref_primary_10_1016_j_bbrc_2021_06_093 crossref_primary_10_1093_bbb_zbad112 crossref_primary_10_1098_rsob_190290 crossref_primary_10_1089_ars_2018_7523 crossref_primary_10_3390_ijms20143506 crossref_primary_10_1016_j_jlr_2024_100570 crossref_primary_10_1073_pnas_2115083119 crossref_primary_10_1016_j_devcel_2021_02_023 crossref_primary_10_1016_j_jbc_2022_102444 crossref_primary_10_1038_s41467_023_41281_y crossref_primary_10_1093_jb_mvae085 crossref_primary_10_1089_ars_2019_7931 crossref_primary_10_3390_cells11182775 crossref_primary_10_1038_s42003_021_02337_1 crossref_primary_10_1016_j_humimm_2024_111162 crossref_primary_10_1016_j_biotechadv_2022_107970 crossref_primary_10_1053_j_seminhematol_2018_04_004 crossref_primary_10_1093_bbb_zbad081 crossref_primary_10_1016_j_jbiosc_2020_10_004 crossref_primary_10_1016_j_cub_2021_06_078 crossref_primary_10_3390_ijms23095208 crossref_primary_10_1093_plphys_kiab181 crossref_primary_10_1016_j_freeradbiomed_2018_05_076 crossref_primary_10_1038_s41580_023_00616_9 crossref_primary_10_1093_plphys_kiab384 crossref_primary_10_2323_jgam_2020_04_002 crossref_primary_10_1074_jbc_RA120_015577 crossref_primary_10_3389_fcvm_2022_928566 crossref_primary_10_1002_1873_3468_14083 crossref_primary_10_1021_acs_jproteome_4c00378 crossref_primary_10_1186_s12885_024_11908_4 crossref_primary_10_1007_s00216_022_03934_7 crossref_primary_10_1038_s41398_018_0359_4 crossref_primary_10_1042_BST20191142 crossref_primary_10_1016_j_jbc_2023_104982 crossref_primary_10_1038_s41598_024_61991_7 crossref_primary_10_1007_s10719_024_10171_w crossref_primary_10_1016_j_cbd_2021_100800 crossref_primary_10_3389_fgene_2023_1070605 |
Cites_doi | 10.1083/jcb.201602010 10.1091/mbc.E06-10-0885 10.1371/journal.pone.0138553 10.1194/jlr.R062760 10.1016/j.cell.2014.06.026 10.1002/ajmg.a.34102 10.1002/j.1460-2075.1983.tb01509.x 10.1093/jb/mvm249 10.1091/mbc.E05-05-0443 10.1093/jb/mvn090 10.1016/j.mcp.2015.05.012 10.1093/clinchem/38.12.2517 10.1186/gb-2010-11-10-r106 10.15252/embr.201643504 10.1093/bioinformatics/btu638 10.1038/ncb2383 10.1096/fj.06-075820 10.1091/mbc.E03-03-0193 10.1074/jbc.270.11.6088 10.1083/jcb.201012074 10.1006/geno.1998.5577 10.1091/mbc.E14-11-1568 10.1073/pnas.87.7.2466 10.1016/j.bbalip.2012.01.004 10.1016/0076-6879(94)30027-5 10.1021/bi602462q 10.4049/jimmunol.144.3.1030 10.1371/journal.pgen.1004320 10.1093/jb/mvt045 10.1016/j.ceb.2016.03.021 10.1038/nature10348 10.1089/ars.2015.6478 10.1016/S1097-2765(01)00318-5 10.1002/j.1460-2075.1995.tb00057.x 10.1038/nmeth.2812 10.1210/en.2013-1167 10.1126/science.aac7557 10.1371/journal.pone.0030619 10.1074/jbc.M705601200 10.1371/journal.pone.0006191 10.1016/j.cell.2009.08.040 10.1186/s12883-016-0602-7 10.1074/jbc.274.42.29862 10.1038/nrm1052 10.1073/pnas.95.16.9512 10.1016/j.bbamcr.2013.04.001 10.1111/tra.12358 10.1074/jbc.M313755200 10.1146/annurev.biochem.73.011303.073752 10.1093/emboj/cdf508 10.1242/jcs.096727 10.1242/bio.20121982 10.1016/j.semcdb.2014.12.001 10.1074/jbc.M006927200 |
ContentType | Journal Article |
Copyright | 2018 Liu et al. Copyright Rockefeller University Press Feb 2018 2018 Liu et al. 2018 |
Copyright_xml | – notice: 2018 Liu et al. – notice: Copyright Rockefeller University Press Feb 2018 – notice: 2018 Liu et al. 2018 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QL 7QP 7QR 7TK 7TM 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
DOI | 10.1083/jcb.201706135 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Technology Research Database Nucleic Acids Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Genetics Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic Virology and AIDS Abstracts CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
DocumentTitleAlternate | Functional linkage between N-glycan and GPI |
EISSN | 1540-8140 |
EndPage | 599 |
ExternalDocumentID | PMC5800811 29255114 10_1083_jcb_201706135 |
Genre | Research Support, Non-U.S. Gov't Journal Article Feature |
GrantInformation_xml | – fundername: ; grantid: JP16H04756 – fundername: ; grantid: BK20140141 – fundername: ; grantid: 31400693; 31770853 |
GroupedDBID | --- -DZ -~X .55 123 18M 29K 2WC 34G 36B 39C 4.4 53G 85S AAYXX ABDNZ ABOCM ABPPZ ABRJW ABZEH ACGFO ACGOD ACIWK ACKOT ACNCT ACPRK ACYGS ADBBV AEILP AENEX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BKOMP BTFSW C45 CITATION CS3 D-I D0L DIK DU5 E3Z EBS EJD EMB F5P F9R FRP GX1 H13 HF~ HYE IH2 JZ9 KQ8 N9A NHB O5R O5S OK1 P2P PQQKQ R.V RHI RNS RXW SJN TAE TN5 TR2 TRP TWZ UBX UHB UKR UPT W8F WH7 WOQ X7M YKV YNH YOC YQT YSK YWH YZZ ZCA ~KM CGR CUY CVF ECM EIF NPM RHF RPM VQA YIN 7QL 7QP 7QR 7TK 7TM 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c481t-aee44fda6c32fd7976c6c41557c4a915e2501da1ddacefc20bb425858f3132ef3 |
ISSN | 0021-9525 1540-8140 |
IngestDate | Thu Aug 21 13:37:21 EDT 2025 Fri Jul 11 16:45:29 EDT 2025 Mon Jun 30 08:49:44 EDT 2025 Wed Feb 19 02:33:59 EST 2025 Thu Apr 24 23:13:04 EDT 2025 Tue Jul 01 02:00:45 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | 2018 Liu et al. This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms/). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 International license, as described at https://creativecommons.org/licenses/by-nc-sa/4.0/). |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c481t-aee44fda6c32fd7976c6c41557c4a915e2501da1ddacefc20bb425858f3132ef3 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 Y.-S. Liu, X.-Y. Guo, and T. Hirata contributed equally to this paper. |
ORCID | 0000-0002-8575-5095 0000-0001-9677-5086 0000-0001-5640-1899 0000-0001-7166-7257 0000-0002-4870-5734 0000-0002-0344-2408 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC5800811 |
PMID | 29255114 |
PQID | 2008351102 |
PQPubID | 48855 |
PageCount | 15 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5800811 proquest_miscellaneous_1978724962 proquest_journals_2008351102 pubmed_primary_29255114 crossref_primary_10_1083_jcb_201706135 crossref_citationtrail_10_1083_jcb_201706135 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20180205 |
PublicationDateYYYYMMDD | 2018-02-05 |
PublicationDate_xml | – month: 2 year: 2018 text: 20180205 day: 5 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | The Journal of cell biology |
PublicationTitleAlternate | J Cell Biol |
PublicationYear | 2018 |
Publisher | Rockefeller University Press The Rockefeller University Press |
Publisher_xml | – name: Rockefeller University Press – name: The Rockefeller University Press |
References | Dikiy (2023072316475936300_bib10) 2007; 46 Zoltewicz (2023072316475936300_bib55) 2009; 4 Tanaka (2023072316475936300_bib46) 2004; 279 Ellgaard (2023072316475936300_bib11) 2003; 4 Fujita (2023072316475936300_bib14) 2006; 17 Heigwer (2023072316475936300_bib20) 2014; 11 Helenius (2023072316475936300_bib22) 2004; 73 Sikorska (2023072316475936300_bib45) 2016; 213 Anders (2023072316475936300_bib2) 2010; 11 Patel (2023072316475936300_bib38) 2012; 7 Carette (2023072316475936300_bib6) 2011; 477 Menon (2023072316475936300_bib34) 1994; 230 Lamriben (2023072316475936300_bib30) 2016; 17 Granzow (2023072316475936300_bib17) 2015; 29 Vallée (2023072316475936300_bib51) 2000; 275 Thastrup (2023072316475936300_bib48) 1990; 87 Schröter (2023072316475936300_bib44) 1999; 274 Hirata (2023072316475936300_bib24) 2015; 26 Murakami (2023072316475936300_bib36) 2003; 14 Heinz (2023072316475936300_bib21) 1995; 14 Chen (2023072316475936300_bib7) 1998; 95 Ueda (2023072316475936300_bib50) 2007; 282 Satpute-Krishnan (2023072316475936300_bib42) 2014; 158 Christianson (2023072316475936300_bib9) 2011; 14 Hirayama (2023072316475936300_bib25) 2008; 143 Treumann (2023072316475936300_bib49) 1995; 270 Aebi (2023072316475936300_bib1) 2013; 1833 Kettwig (2023072316475936300_bib28) 2016; 16 Prevost (2023072316475936300_bib40) 2013; 154 Maeda (2023072316475936300_bib32) 2007; 18 Fujita (2023072316475936300_bib15) 2009; 139 Ferguson (2023072316475936300_bib12) 2009 Murakami (2023072316475936300_bib37) 2014; 10 Hamieh (2023072316475936300_bib19) 2017; 18 Schrag (2023072316475936300_bib43) 2001; 8 Cherepanova (2023072316475936300_bib8) 2016; 41 Fujita (2023072316475936300_bib13) 2012; 1821 Kinoshita (2023072316475936300_bib29) 2008; 144 Anders (2023072316475936300_bib3) 2014 Boukhzar (2023072316475936300_bib5) 2016; 24 Peyrieras (2023072316475936300_bib39) 1983; 2 Blomen (2023072316475936300_bib4) 2015; 350 Rong (2023072316475936300_bib41) 2015; 10 Grumolato (2023072316475936300_bib18) 2008; 22 Walter (2023072316475936300_bib52) 1990; 144 Wong (2023072316475936300_bib53) 1992; 38 McKean (2023072316475936300_bib33) 2012; 1 Lang (2023072316475936300_bib31) 2012; 125 Fujita (2023072316475936300_bib16) 2011; 194 Hirata (2023072316475936300_bib23) 2013; 154 Horn (2023072316475936300_bib27) 2011; 155 Muñiz (2023072316475936300_bib35) 2016; 57 Tannous (2023072316475936300_bib47) 2015; 41 Hong (2023072316475936300_bib26) 2002; 21 Yoshiura (2023072316475936300_bib54) 1998; 54 23694781 - J Biochem. 2013 Sep;154(3):257-64 28928140 - EMBO Rep. 2017 Nov;18(11):1935-1946 21727194 - J Cell Biol. 2011 Jul 11;194(1):61-75 20979621 - Genome Biol. 2010;11(10):R106 1333918 - Clin Chem. 1992 Dec;38(12):2517-25 10514467 - J Biol Chem. 1999 Oct 15;274(42):29862-73 26450970 - J Lipid Res. 2016 Mar;57(3):352-60 27206732 - BMC Neurol. 2016 May 21;16:74 24784135 - PLoS Genet. 2014 May 01;10 (5):e1004320 26383639 - PLoS One. 2015 Sep 18;10(9):e0138553 9689111 - Proc Natl Acad Sci U S A. 1998 Aug 4;95(16):9512-7 22265715 - Biochim Biophys Acta. 2012 Aug;1821(8):1050-8 27325793 - J Cell Biol. 2016 Jun 20;213(6):693-704 23583305 - Biochim Biophys Acta. 2013 Nov;1833(11):2430-7 14517336 - Mol Biol Cell. 2003 Oct;14(10):4285-95 17711852 - J Biol Chem. 2007 Oct 19;282(42):30373-80 26866473 - Antioxid Redox Signal. 2016 Apr 10;24(11):557-74 23913443 - Endocrinology. 2013 Oct;154(10):3796-806 21866103 - Nature. 2011 Aug 24;477(7364):340-3 26157166 - Mol Biol Cell. 2015 Sep 1;26(17):3071-84 21739589 - Am J Med Genet A. 2011 Aug;155A(8):1917-22 23213481 - Biol Open. 2012 Sep 15;1(9):874-83 9828125 - Genomics. 1998 Dec 1;54(2):231-40 25260700 - Bioinformatics. 2015 Jan 15;31(2):166-9 24481216 - Nat Methods. 2014 Feb;11(2):122-3 25083867 - Cell. 2014 Jul 31;158(3):522-33 27085638 - Curr Opin Cell Biol. 2016 Aug;41:57-65 2138778 - Proc Natl Acad Sci U S A. 1990 Apr;87(7):2466-70 19593386 - PLoS One. 2009 Jul 10;4(7):e6191 12612637 - Nat Rev Mol Cell Biol. 2003 Mar;4(3):181-91 18635593 - J Biochem. 2008 Sep;144(3):287-94 26050939 - Mol Cell Probes. 2015 Oct;29(5):323-9 7664726 - EMBO J. 1995 Aug 15;14(16):3855-63 11583625 - Mol Cell. 2001 Sep;8(3):633-44 15189166 - Annu Rev Biochem. 2004;73:1019-49 26676362 - Traffic. 2016 Apr;17 (4):308-26 6227481 - EMBO J. 1983;2(6):823-32 22119785 - Nat Cell Biol. 2011 Nov 27;14 (1):93-105 7890742 - J Biol Chem. 1995 Mar 17;270(11):6088-99 14734546 - J Biol Chem. 2004 Apr 2;279(14 ):14256-63 12356721 - EMBO J. 2002 Oct 1;21(19):5047-56 22312429 - PLoS One. 2012;7(2):e30619 18198219 - FASEB J. 2008 Jun;22(6):1756-68 16319176 - Mol Biol Cell. 2006 Feb;17 (2):834-50 19837036 - Cell. 2009 Oct 16;139(2):352-65 26472760 - Science. 2015 Nov 27;350(6264):1092-6 8139510 - Methods Enzymol. 1994;230:418-42 17314402 - Mol Biol Cell. 2007 Apr;18(4):1497-506 25534658 - Semin Cell Dev Biol. 2015 May;41:79-89 1688588 - J Immunol. 1990 Feb 1;144(3):1030-6 18182384 - J Biochem. 2008 Apr;143(4):555-67 22375059 - J Cell Sci. 2012 Apr 15;125(Pt 8):1958-69 10995765 - J Biol Chem. 2000 Dec 29;275(52):41287-98 17503775 - Biochemistry. 2007 Jun 12;46(23):6871-82 |
References_xml | – volume: 213 start-page: 693 year: 2016 ident: 2023072316475936300_bib45 article-title: Limited ER quality control for GPI-anchored proteins publication-title: J. Cell Biol. doi: 10.1083/jcb.201602010 – volume: 18 start-page: 1497 year: 2007 ident: 2023072316475936300_bib32 article-title: Fatty acid remodeling of GPI-anchored proteins is required for their raft association publication-title: Mol. Biol. Cell. doi: 10.1091/mbc.E06-10-0885 – volume: 10 start-page: e0138553 year: 2015 ident: 2023072316475936300_bib41 article-title: Genome-Wide Screening of Genes Required for Glycosylphosphatidylinositol Biosynthesis publication-title: PLoS One. doi: 10.1371/journal.pone.0138553 – volume: 57 start-page: 352 year: 2016 ident: 2023072316475936300_bib35 article-title: Trafficking of glycosylphosphatidylinositol anchored proteins from the endoplasmic reticulum to the cell surface publication-title: J. Lipid Res. doi: 10.1194/jlr.R062760 – volume: 158 start-page: 522 year: 2014 ident: 2023072316475936300_bib42 article-title: ER stress-induced clearance of misfolded GPI-anchored proteins via the secretory pathway publication-title: Cell. doi: 10.1016/j.cell.2014.06.026 – volume: 155 start-page: 1917 year: 2011 ident: 2023072316475936300_bib27 article-title: Hyperphosphatasia-mental retardation syndrome due to PIGV mutations: expanded clinical spectrum publication-title: Am. J. Med. Genet. A. doi: 10.1002/ajmg.a.34102 – volume: 2 start-page: 823 year: 1983 ident: 2023072316475936300_bib39 article-title: Effects of the glucosidase inhibitors nojirimycin and deoxynojirimycin on the biosynthesis of membrane and secretory glycoproteins publication-title: EMBO J. doi: 10.1002/j.1460-2075.1983.tb01509.x – volume: 143 start-page: 555 year: 2008 ident: 2023072316475936300_bib25 article-title: O-mannosylation is required for degradation of the endoplasmic reticulum-associated degradation substrate Gas1*p via the ubiquitin/proteasome pathway in Saccharomyces cerevisiae publication-title: J. Biochem. doi: 10.1093/jb/mvm249 – volume: 17 start-page: 834 year: 2006 ident: 2023072316475936300_bib14 article-title: Inositol deacylation by Bst1p is required for the quality control of glycosylphosphatidylinositol-anchored proteins publication-title: Mol. Biol. Cell. doi: 10.1091/mbc.E05-05-0443 – volume: 144 start-page: 287 year: 2008 ident: 2023072316475936300_bib29 article-title: Biosynthesis, remodelling and functions of mammalian GPI-anchored proteins: recent progress publication-title: J. Biochem. doi: 10.1093/jb/mvn090 – volume: 29 start-page: 323 year: 2015 ident: 2023072316475936300_bib17 article-title: Loss of function of PGAP1 as a cause of severe encephalopathy identified by Whole Exome Sequencing: Lessons of the bioinformatics pipeline publication-title: Mol. Cell. Probes. doi: 10.1016/j.mcp.2015.05.012 – volume: 38 start-page: 2517 year: 1992 ident: 2023072316475936300_bib53 article-title: Phospholipase resistance of the glycosyl-phosphatidylinositol membrane anchor on human alkaline phosphatase publication-title: Clin. Chem. doi: 10.1093/clinchem/38.12.2517 – volume: 11 start-page: R106 year: 2010 ident: 2023072316475936300_bib2 article-title: Differential expression analysis for sequence count data publication-title: Genome Biol. doi: 10.1186/gb-2010-11-10-r106 – volume: 18 start-page: 1935 year: 2017 ident: 2023072316475936300_bib19 article-title: Selenoprotein T is a novel OST subunit that regulates UPR signaling and hormone secretion publication-title: EMBO Rep. doi: 10.15252/embr.201643504 – year: 2014 ident: 2023072316475936300_bib3 article-title: HTSeq — A Python framework to work with high-throughput sequencing data publication-title: Bioinformatics. doi: 10.1093/bioinformatics/btu638 – volume: 14 start-page: 93 year: 2011 ident: 2023072316475936300_bib9 article-title: Defining human ERAD networks through an integrative mapping strategy publication-title: Nat. Cell Biol. doi: 10.1038/ncb2383 – volume: 22 start-page: 1756 year: 2008 ident: 2023072316475936300_bib18 article-title: Selenoprotein T is a PACAP-regulated gene involved in intracellular Ca2+ mobilization and neuroendocrine secretion publication-title: FASEB J. doi: 10.1096/fj.06-075820 – volume: 14 start-page: 4285 year: 2003 ident: 2023072316475936300_bib36 article-title: PIG-W is critical for inositol acylation but not for flipping of glycosylphosphatidylinositol-anchor publication-title: Mol. Biol. Cell. doi: 10.1091/mbc.E03-03-0193 – volume: 270 start-page: 6088 year: 1995 ident: 2023072316475936300_bib49 article-title: Primary structure of CD52 publication-title: J. Biol. Chem. doi: 10.1074/jbc.270.11.6088 – volume: 194 start-page: 61 year: 2011 ident: 2023072316475936300_bib16 article-title: Sorting of GPI-anchored proteins into ER exit sites by p24 proteins is dependent on remodeled GPI publication-title: J. Cell Biol. doi: 10.1083/jcb.201012074 – volume: 54 start-page: 231 year: 1998 ident: 2023072316475936300_bib54 article-title: Characterization of a novel gene disrupted by a balanced chromosomal translocation t(2;19)(q11.2;q13.3) in a family with cleft lip and palate publication-title: Genomics. doi: 10.1006/geno.1998.5577 – volume: 26 start-page: 3071 year: 2015 ident: 2023072316475936300_bib24 article-title: Post-Golgi anterograde transport requires GARP-dependent endosome-to-TGN retrograde transport publication-title: Mol. Biol. Cell. doi: 10.1091/mbc.E14-11-1568 – volume: 87 start-page: 2466 year: 1990 ident: 2023072316475936300_bib48 article-title: Thapsigargin, a tumor promoter, discharges intracellular Ca2+ stores by specific inhibition of the endoplasmic reticulum Ca2(+)-ATPase publication-title: Proc. Natl. Acad. Sci. USA. doi: 10.1073/pnas.87.7.2466 – volume: 1821 start-page: 1050 year: 2012 ident: 2023072316475936300_bib13 article-title: GPI-anchor remodeling: potential functions of GPI-anchors in intracellular trafficking and membrane dynamics publication-title: Biochim. Biophys. Acta. doi: 10.1016/j.bbalip.2012.01.004 – volume: 230 start-page: 418 year: 1994 ident: 2023072316475936300_bib34 article-title: Structural analysis of glycosylphosphatidylinositol anchors publication-title: Methods Enzymol. doi: 10.1016/0076-6879(94)30027-5 – volume: 46 start-page: 6871 year: 2007 ident: 2023072316475936300_bib10 article-title: SelT, SelW, SelH, and Rdx12: genomics and molecular insights into the functions of selenoproteins of a novel thioredoxin-like family publication-title: Biochemistry. doi: 10.1021/bi602462q – volume: 144 start-page: 1030 year: 1990 ident: 2023072316475936300_bib52 article-title: Structural basis for variations in the sensitivity of human decay accelerating factor to phosphatidylinositol-specific phospholipase C cleavage publication-title: J. Immunol. doi: 10.4049/jimmunol.144.3.1030 – volume: 10 start-page: e1004320 year: 2014 ident: 2023072316475936300_bib37 article-title: Null mutation in PGAP1 impairing Gpi-anchor maturation in patients with intellectual disability and encephalopathy publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1004320 – volume: 154 start-page: 257 year: 2013 ident: 2023072316475936300_bib23 article-title: Glycosylphosphatidylinositol mannosyltransferase II is the rate-limiting enzyme in glycosylphosphatidylinositol biosynthesis under limited dolichol-phosphate mannose availability publication-title: J. Biochem. doi: 10.1093/jb/mvt045 – volume: 41 start-page: 57 year: 2016 ident: 2023072316475936300_bib8 article-title: N-linked glycosylation and homeostasis of the endoplasmic reticulum publication-title: Curr. Opin. Cell Biol. doi: 10.1016/j.ceb.2016.03.021 – volume: 477 start-page: 340 year: 2011 ident: 2023072316475936300_bib6 article-title: Ebola virus entry requires the cholesterol transporter Niemann-Pick C1 publication-title: Nature. doi: 10.1038/nature10348 – volume: 24 start-page: 557 year: 2016 ident: 2023072316475936300_bib5 article-title: Selenoprotein T Exerts an Essential Oxidoreductase Activity That Protects Dopaminergic Neurons in Mouse Models of Parkinson’s Disease publication-title: Antioxid. Redox Signal. doi: 10.1089/ars.2015.6478 – volume: 8 start-page: 633 year: 2001 ident: 2023072316475936300_bib43 article-title: The Structure of calnexin, an ER chaperone involved in quality control of protein folding publication-title: Mol. Cell. doi: 10.1016/S1097-2765(01)00318-5 – volume: 14 start-page: 3855 year: 1995 ident: 2023072316475936300_bib21 article-title: Crystal structure of the phosphatidylinositol-specific phospholipase C from Bacillus cereus in complex with myo-inositol publication-title: EMBO J. doi: 10.1002/j.1460-2075.1995.tb00057.x – volume: 11 start-page: 122 year: 2014 ident: 2023072316475936300_bib20 article-title: E-CRISP: fast CRISPR target site identification publication-title: Nat. Methods doi: 10.1038/nmeth.2812 – volume: 154 start-page: 3796 year: 2013 ident: 2023072316475936300_bib40 article-title: The PACAP-regulated gene selenoprotein T is abundantly expressed in mouse and human β-cells and its targeted inactivation impairs glucose tolerance publication-title: Endocrinology. doi: 10.1210/en.2013-1167 – volume: 350 start-page: 1092 year: 2015 ident: 2023072316475936300_bib4 article-title: Gene essentiality and synthetic lethality in haploid human cells publication-title: Science. doi: 10.1126/science.aac7557 – volume: 7 start-page: e30619 year: 2012 ident: 2023072316475936300_bib38 article-title: NGS QC Toolkit: A toolkit for quality control of next generation sequencing data publication-title: PLoS One. doi: 10.1371/journal.pone.0030619 – volume: 282 start-page: 30373 year: 2007 ident: 2023072316475936300_bib50 article-title: PGAP1 knock-out mice show otocephaly and male infertility publication-title: J. Biol. Chem. doi: 10.1074/jbc.M705601200 – volume: 4 start-page: e6191 year: 2009 ident: 2023072316475936300_bib55 article-title: Wnt signaling is regulated by endoplasmic reticulum retention publication-title: PLoS One. doi: 10.1371/journal.pone.0006191 – volume: 139 start-page: 352 year: 2009 ident: 2023072316475936300_bib15 article-title: GPI glycan remodeling by PGAP5 regulates transport of GPI-anchored proteins from the ER to the Golgi publication-title: Cell. doi: 10.1016/j.cell.2009.08.040 – volume: 16 start-page: 74 year: 2016 ident: 2023072316475936300_bib28 article-title: Compound heterozygous variants in PGAP1 causing severe psychomotor retardation, brain atrophy, recurrent apneas and delayed myelination: a case report and literature review publication-title: BMC Neurol. doi: 10.1186/s12883-016-0602-7 – volume: 274 start-page: 29862 year: 1999 ident: 2023072316475936300_bib44 article-title: Male-specific modification of human CD52 publication-title: J. Biol. Chem. doi: 10.1074/jbc.274.42.29862 – volume: 4 start-page: 181 year: 2003 ident: 2023072316475936300_bib11 article-title: Quality control in the endoplasmic reticulum publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm1052 – volume: 95 start-page: 9512 year: 1998 ident: 2023072316475936300_bib7 article-title: Mammalian glycophosphatidylinositol anchor transfer to proteins and posttransfer deacylation publication-title: Proc. Natl. Acad. Sci. USA. doi: 10.1073/pnas.95.16.9512 – volume: 1833 start-page: 2430 year: 2013 ident: 2023072316475936300_bib1 article-title: N-linked protein glycosylation in the ER publication-title: Biochim. Biophys. Acta. doi: 10.1016/j.bbamcr.2013.04.001 – volume: 17 start-page: 308 year: 2016 ident: 2023072316475936300_bib30 article-title: N-Glycan-based ER Molecular Chaperone and Protein Quality Control System: The Calnexin Binding Cycle publication-title: Traffic. doi: 10.1111/tra.12358 – volume: 279 start-page: 14256 year: 2004 ident: 2023072316475936300_bib46 article-title: Inositol deacylation of glycosylphosphatidylinositol-anchored proteins is mediated by mammalian PGAP1 and yeast Bst1p publication-title: J. Biol. Chem. doi: 10.1074/jbc.M313755200 – volume-title: Essentials of Glycobiology. year: 2009 ident: 2023072316475936300_bib12 article-title: Glycosylphosphatidylinositol Anchors – volume: 73 start-page: 1019 year: 2004 ident: 2023072316475936300_bib22 article-title: Roles of N-linked glycans in the endoplasmic reticulum publication-title: Annu. Rev. Biochem. doi: 10.1146/annurev.biochem.73.011303.073752 – volume: 21 start-page: 5047 year: 2002 ident: 2023072316475936300_bib26 article-title: Requirement of N-glycan on GPI-anchored proteins for efficient binding of aerolysin but not Clostridium septicum alpha-toxin publication-title: EMBO J. doi: 10.1093/emboj/cdf508 – volume: 125 start-page: 1958 year: 2012 ident: 2023072316475936300_bib31 article-title: Different effects of Sec61α, Sec62 and Sec63 depletion on transport of polypeptides into the endoplasmic reticulum of mammalian cells publication-title: J. Cell Sci. doi: 10.1242/jcs.096727 – volume: 1 start-page: 874 year: 2012 ident: 2023072316475936300_bib33 article-title: Defects in GPI biosynthesis perturb Cripto signaling during forebrain development in two new mouse models of holoprosencephaly publication-title: Biol. Open. doi: 10.1242/bio.20121982 – volume: 41 start-page: 79 year: 2015 ident: 2023072316475936300_bib47 article-title: N-linked sugar-regulated protein folding and quality control in the ER publication-title: Semin. Cell Dev. Biol. doi: 10.1016/j.semcdb.2014.12.001 – volume: 275 start-page: 41287 year: 2000 ident: 2023072316475936300_bib51 article-title: Structural basis for catalysis and inhibition of N-glycan processing class I alpha 1,2-mannosidases publication-title: J. Biol. Chem. doi: 10.1074/jbc.M006927200 – reference: 23213481 - Biol Open. 2012 Sep 15;1(9):874-83 – reference: 23913443 - Endocrinology. 2013 Oct;154(10):3796-806 – reference: 14734546 - J Biol Chem. 2004 Apr 2;279(14 ):14256-63 – reference: 26866473 - Antioxid Redox Signal. 2016 Apr 10;24(11):557-74 – reference: 26050939 - Mol Cell Probes. 2015 Oct;29(5):323-9 – reference: 22375059 - J Cell Sci. 2012 Apr 15;125(Pt 8):1958-69 – reference: 12612637 - Nat Rev Mol Cell Biol. 2003 Mar;4(3):181-91 – reference: 26472760 - Science. 2015 Nov 27;350(6264):1092-6 – reference: 25260700 - Bioinformatics. 2015 Jan 15;31(2):166-9 – reference: 22265715 - Biochim Biophys Acta. 2012 Aug;1821(8):1050-8 – reference: 9828125 - Genomics. 1998 Dec 1;54(2):231-40 – reference: 18198219 - FASEB J. 2008 Jun;22(6):1756-68 – reference: 23583305 - Biochim Biophys Acta. 2013 Nov;1833(11):2430-7 – reference: 11583625 - Mol Cell. 2001 Sep;8(3):633-44 – reference: 22312429 - PLoS One. 2012;7(2):e30619 – reference: 1333918 - Clin Chem. 1992 Dec;38(12):2517-25 – reference: 16319176 - Mol Biol Cell. 2006 Feb;17 (2):834-50 – reference: 22119785 - Nat Cell Biol. 2011 Nov 27;14 (1):93-105 – reference: 20979621 - Genome Biol. 2010;11(10):R106 – reference: 17503775 - Biochemistry. 2007 Jun 12;46(23):6871-82 – reference: 10995765 - J Biol Chem. 2000 Dec 29;275(52):41287-98 – reference: 19837036 - Cell. 2009 Oct 16;139(2):352-65 – reference: 27206732 - BMC Neurol. 2016 May 21;16:74 – reference: 18182384 - J Biochem. 2008 Apr;143(4):555-67 – reference: 17314402 - Mol Biol Cell. 2007 Apr;18(4):1497-506 – reference: 24481216 - Nat Methods. 2014 Feb;11(2):122-3 – reference: 2138778 - Proc Natl Acad Sci U S A. 1990 Apr;87(7):2466-70 – reference: 21739589 - Am J Med Genet A. 2011 Aug;155A(8):1917-22 – reference: 26383639 - PLoS One. 2015 Sep 18;10(9):e0138553 – reference: 7664726 - EMBO J. 1995 Aug 15;14(16):3855-63 – reference: 18635593 - J Biochem. 2008 Sep;144(3):287-94 – reference: 25534658 - Semin Cell Dev Biol. 2015 May;41:79-89 – reference: 19593386 - PLoS One. 2009 Jul 10;4(7):e6191 – reference: 15189166 - Annu Rev Biochem. 2004;73:1019-49 – reference: 8139510 - Methods Enzymol. 1994;230:418-42 – reference: 26157166 - Mol Biol Cell. 2015 Sep 1;26(17):3071-84 – reference: 1688588 - J Immunol. 1990 Feb 1;144(3):1030-6 – reference: 9689111 - Proc Natl Acad Sci U S A. 1998 Aug 4;95(16):9512-7 – reference: 26450970 - J Lipid Res. 2016 Mar;57(3):352-60 – reference: 14517336 - Mol Biol Cell. 2003 Oct;14(10):4285-95 – reference: 17711852 - J Biol Chem. 2007 Oct 19;282(42):30373-80 – reference: 28928140 - EMBO Rep. 2017 Nov;18(11):1935-1946 – reference: 21727194 - J Cell Biol. 2011 Jul 11;194(1):61-75 – reference: 7890742 - J Biol Chem. 1995 Mar 17;270(11):6088-99 – reference: 27085638 - Curr Opin Cell Biol. 2016 Aug;41:57-65 – reference: 24784135 - PLoS Genet. 2014 May 01;10 (5):e1004320 – reference: 10514467 - J Biol Chem. 1999 Oct 15;274(42):29862-73 – reference: 6227481 - EMBO J. 1983;2(6):823-32 – reference: 12356721 - EMBO J. 2002 Oct 1;21(19):5047-56 – reference: 25083867 - Cell. 2014 Jul 31;158(3):522-33 – reference: 26676362 - Traffic. 2016 Apr;17 (4):308-26 – reference: 23694781 - J Biochem. 2013 Sep;154(3):257-64 – reference: 21866103 - Nature. 2011 Aug 24;477(7364):340-3 – reference: 27325793 - J Cell Biol. 2016 Jun 20;213(6):693-704 |
SSID | ssj0004743 |
Score | 2.4865737 |
Snippet | Glycosylphosphatidylinositol (GPI) anchoring of proteins is a conserved posttranslational modification in the endoplasmic reticulum (ER). Soon after GPI is... N -Glycosylation and GPI anchoring of proteins occur in the endoplasmic reticulum (ER). Liu et al. revealed N -glycans participate in quality control and... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 585 |
SubjectTerms | Anchoring Calnexin Cell Line Cell surface Deacylation Endoplasmic reticulum Endoplasmic Reticulum - metabolism Folding Genes Genetic screening Glycan Glycosylphosphatidylinositol Glycosylphosphatidylinositols - metabolism HEK293 Cells Humans Membrane Proteins - genetics Membrane Proteins - metabolism N-glycans Phosphoric Monoester Hydrolases - genetics Phosphoric Monoester Hydrolases - metabolism Polysaccharides Polysaccharides - metabolism Protein Folding Protein transport Proteins Quality control Retention Stress response |
Title | N -Glycan–dependent protein folding and endoplasmic reticulum retention regulate GPI-anchor processing |
URI | https://www.ncbi.nlm.nih.gov/pubmed/29255114 https://www.proquest.com/docview/2008351102 https://www.proquest.com/docview/1978724962 https://pubmed.ncbi.nlm.nih.gov/PMC5800811 |
Volume | 217 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jj9MwFLZgEBIXxE5hQEZCXIqhTu0sR4RmGGAoWyt1TpHtOGrQkFZtcii_nmfHcVI6SAOXKLItJ_L7_PzZfgtCz2XIE0nFmOShlsQEVCJxyCOSqEhTLjOtmHFO_jQJT2bsw5zPO_t5611SyVfq14V-Jf8jVSgDuRov2X-QrO8UCuAd5AtPkDA8LyXjCXl3voWxIW0q22po4y4UxnrQ3irZuwGoWq6AJf-04Zqr5sTPvDlTx3WTjx7w8uU9ARQsluvhqnEgaBe2Hx2oehTWnPoPXRgnb9lT1FatF-T7ovDWPbU9kZ0XJTmru9NuQJ_lrlNdbeqtXyC-OTPhM7HsH0rQ2Nox874eZSNzuthcuegLypzyDRrPTYeyoKdKeZPKZ0_FA2c0Kl5JY5cXGTrCu7Wsvb-ffE6PZ6en6fRoPr2KrgWwhzDpLT5-7YWSd94X7V-5AKzQ_eudzncJy94u5E9j2h47md5CN51M8JsGI7fRFV3eQdebRKPbu0jvIwU7pGCHFAxIwT2kYI8U7JGCW6TgDim4Q8o9NDs-mr49IS7BBlEsphURWjOWZyJU4yDPImCmKlSGYUaKiYRyDfyYZoJmmVA6V8FISlDxMY9zE_BT5-P76KBclvohwioQJjqBDvNEs1hpyZOYCk2ZBMooRDRAL9tRTJWLPm-SoJyn1goiHqcw6Kkf9AF64ZuvmrArf2t42IokdTNzY1OrmgvyUTBAz3w16E0zLUSpl_UmpQksVQFLQmjzoJGg_1KQwEabUjZA0Y5sfQMTk323piwWNjY7jw3Jpo8u8d3H6EY3dQ7RQbWu9RNguJV8apH6Gz50q5o |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=N-Glycan-dependent+protein+folding+and+endoplasmic+reticulum+retention+regulate+GPI-anchor+processing&rft.jtitle=The+Journal+of+cell+biology&rft.au=Liu%2C+Yi-Shi&rft.au=Guo%2C+Xin-Yu&rft.au=Hirata%2C+Tetsuya&rft.au=Rong%2C+Yao&rft.date=2018-02-05&rft.issn=1540-8140&rft.eissn=1540-8140&rft.volume=217&rft.issue=2&rft.spage=585&rft_id=info:doi/10.1083%2Fjcb.201706135&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9525&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9525&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9525&client=summon |