N -Glycan–dependent protein folding and endoplasmic reticulum retention regulate GPI-anchor processing

Glycosylphosphatidylinositol (GPI) anchoring of proteins is a conserved posttranslational modification in the endoplasmic reticulum (ER). Soon after GPI is attached, an acyl chain on the GPI inositol is removed by post-GPI attachment to proteins 1 (PGAP1), a GPI-inositol deacylase. This is crucial f...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of cell biology Vol. 217; no. 2; pp. 585 - 599
Main Authors Liu, Yi-Shi, Guo, Xin-Yu, Hirata, Tetsuya, Rong, Yao, Motooka, Daisuke, Kitajima, Toshihiko, Murakami, Yoshiko, Gao, Xiao-Dong, Nakamura, Shota, Kinoshita, Taroh, Fujita, Morihisa
Format Journal Article
LanguageEnglish
Published United States Rockefeller University Press 05.02.2018
The Rockefeller University Press
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Glycosylphosphatidylinositol (GPI) anchoring of proteins is a conserved posttranslational modification in the endoplasmic reticulum (ER). Soon after GPI is attached, an acyl chain on the GPI inositol is removed by post-GPI attachment to proteins 1 (PGAP1), a GPI-inositol deacylase. This is crucial for switching GPI-anchored proteins (GPI-APs) from protein folding to transport states. We performed haploid genetic screens to identify factors regulating GPI-inositol deacylation, identifying seven genes. In particular, calnexin cycle impairment caused inefficient GPI-inositol deacylation. Calnexin was specifically associated with GPI-APs, dependent on N-glycan and GPI moieties, and assisted efficient GPI-inositol deacylation by PGAP1. Under chronic ER stress caused by misfolded GPI-APs, inositol-acylated GPI-APs were exposed on the cell surface. These results indicated that N-glycans participate in quality control and temporal ER retention of GPI-APs, ensuring their correct folding and GPI processing before exiting from the ER. Once the system is disrupted by ER stress, unprocessed GPI-APs become exposed on the cell surface.
AbstractList Glycosylphosphatidylinositol (GPI) anchoring of proteins is a conserved posttranslational modification in the endoplasmic reticulum (ER). Soon after GPI is attached, an acyl chain on the GPI inositol is removed by post-GPI attachment to proteins 1 (PGAP1), a GPI-inositol deacylase. This is crucial for switching GPI-anchored proteins (GPI-APs) from protein folding to transport states. We performed haploid genetic screens to identify factors regulating GPI-inositol deacylation, identifying seven genes. In particular, calnexin cycle impairment caused inefficient GPI-inositol deacylation. Calnexin was specifically associated with GPI-APs, dependent on -glycan and GPI moieties, and assisted efficient GPI-inositol deacylation by PGAP1. Under chronic ER stress caused by misfolded GPI-APs, inositol-acylated GPI-APs were exposed on the cell surface. These results indicated that -glycans participate in quality control and temporal ER retention of GPI-APs, ensuring their correct folding and GPI processing before exiting from the ER. Once the system is disrupted by ER stress, unprocessed GPI-APs become exposed on the cell surface.
N -Glycosylation and GPI anchoring of proteins occur in the endoplasmic reticulum (ER). Liu et al. revealed N -glycans participate in quality control and temporal ER retention of GPI-anchored proteins (GPI-APs), ensuring their correct folding and GPI processing before exiting from the ER. Chronic ER stress induced exposure of unprocessed GPI-APs on the cell surface. Glycosylphosphatidylinositol (GPI) anchoring of proteins is a conserved posttranslational modification in the endoplasmic reticulum (ER). Soon after GPI is attached, an acyl chain on the GPI inositol is removed by post-GPI attachment to proteins 1 (PGAP1), a GPI-inositol deacylase. This is crucial for switching GPI-anchored proteins (GPI-APs) from protein folding to transport states. We performed haploid genetic screens to identify factors regulating GPI-inositol deacylation, identifying seven genes. In particular, calnexin cycle impairment caused inefficient GPI-inositol deacylation. Calnexin was specifically associated with GPI-APs, dependent on N -glycan and GPI moieties, and assisted efficient GPI-inositol deacylation by PGAP1. Under chronic ER stress caused by misfolded GPI-APs, inositol-acylated GPI-APs were exposed on the cell surface. These results indicated that N -glycans participate in quality control and temporal ER retention of GPI-APs, ensuring their correct folding and GPI processing before exiting from the ER. Once the system is disrupted by ER stress, unprocessed GPI-APs become exposed on the cell surface.
Glycosylphosphatidylinositol (GPI) anchoring of proteins is a conserved posttranslational modification in the endoplasmic reticulum (ER). Soon after GPI is attached, an acyl chain on the GPI inositol is removed by post-GPI attachment to proteins 1 (PGAP1), a GPI-inositol deacylase. This is crucial for switching GPI-anchored proteins (GPI-APs) from protein folding to transport states. We performed haploid genetic screens to identify factors regulating GPI-inositol deacylation, identifying seven genes. In particular, calnexin cycle impairment caused inefficient GPI-inositol deacylation. Calnexin was specifically associated with GPI-APs, dependent on N-glycan and GPI moieties, and assisted efficient GPI-inositol deacylation by PGAP1. Under chronic ER stress caused by misfolded GPI-APs, inositol-acylated GPI-APs were exposed on the cell surface. These results indicated that N-glycans participate in quality control and temporal ER retention of GPI-APs, ensuring their correct folding and GPI processing before exiting from the ER. Once the system is disrupted by ER stress, unprocessed GPI-APs become exposed on the cell surface.Glycosylphosphatidylinositol (GPI) anchoring of proteins is a conserved posttranslational modification in the endoplasmic reticulum (ER). Soon after GPI is attached, an acyl chain on the GPI inositol is removed by post-GPI attachment to proteins 1 (PGAP1), a GPI-inositol deacylase. This is crucial for switching GPI-anchored proteins (GPI-APs) from protein folding to transport states. We performed haploid genetic screens to identify factors regulating GPI-inositol deacylation, identifying seven genes. In particular, calnexin cycle impairment caused inefficient GPI-inositol deacylation. Calnexin was specifically associated with GPI-APs, dependent on N-glycan and GPI moieties, and assisted efficient GPI-inositol deacylation by PGAP1. Under chronic ER stress caused by misfolded GPI-APs, inositol-acylated GPI-APs were exposed on the cell surface. These results indicated that N-glycans participate in quality control and temporal ER retention of GPI-APs, ensuring their correct folding and GPI processing before exiting from the ER. Once the system is disrupted by ER stress, unprocessed GPI-APs become exposed on the cell surface.
Glycosylphosphatidylinositol (GPI) anchoring of proteins is a conserved posttranslational modification in the endoplasmic reticulum (ER). Soon after GPI is attached, an acyl chain on the GPI inositol is removed by post-GPI attachment to proteins 1 (PGAP1), a GPI-inositol deacylase. This is crucial for switching GPI-anchored proteins (GPI-APs) from protein folding to transport states. We performed haploid genetic screens to identify factors regulating GPI-inositol deacylation, identifying seven genes. In particular, calnexin cycle impairment caused inefficient GPI-inositol deacylation. Calnexin was specifically associated with GPI-APs, dependent on N-glycan and GPI moieties, and assisted efficient GPI-inositol deacylation by PGAP1. Under chronic ER stress caused by misfolded GPI-APs, inositol-acylated GPI-APs were exposed on the cell surface. These results indicated that N-glycans participate in quality control and temporal ER retention of GPI-APs, ensuring their correct folding and GPI processing before exiting from the ER. Once the system is disrupted by ER stress, unprocessed GPI-APs become exposed on the cell surface.
Author Nakamura, Shota
Liu, Yi-Shi
Murakami, Yoshiko
Kinoshita, Taroh
Kitajima, Toshihiko
Rong, Yao
Gao, Xiao-Dong
Fujita, Morihisa
Guo, Xin-Yu
Motooka, Daisuke
Hirata, Tetsuya
AuthorAffiliation 3 World Premier International Immunology Frontier Research Center, Osaka University, Osaka, Japan
2 Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
1 Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Jiangsu, China
AuthorAffiliation_xml – name: 3 World Premier International Immunology Frontier Research Center, Osaka University, Osaka, Japan
– name: 1 Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Jiangsu, China
– name: 2 Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
Author_xml – sequence: 1
  givenname: Yi-Shi
  orcidid: 0000-0001-5640-1899
  surname: Liu
  fullname: Liu, Yi-Shi
– sequence: 2
  givenname: Xin-Yu
  surname: Guo
  fullname: Guo, Xin-Yu
– sequence: 3
  givenname: Tetsuya
  surname: Hirata
  fullname: Hirata, Tetsuya
– sequence: 4
  givenname: Yao
  surname: Rong
  fullname: Rong, Yao
– sequence: 5
  givenname: Daisuke
  surname: Motooka
  fullname: Motooka, Daisuke
– sequence: 6
  givenname: Toshihiko
  orcidid: 0000-0001-9677-5086
  surname: Kitajima
  fullname: Kitajima, Toshihiko
– sequence: 7
  givenname: Yoshiko
  orcidid: 0000-0002-4870-5734
  surname: Murakami
  fullname: Murakami, Yoshiko
– sequence: 8
  givenname: Xiao-Dong
  orcidid: 0000-0002-8575-5095
  surname: Gao
  fullname: Gao, Xiao-Dong
– sequence: 9
  givenname: Shota
  surname: Nakamura
  fullname: Nakamura, Shota
– sequence: 10
  givenname: Taroh
  orcidid: 0000-0001-7166-7257
  surname: Kinoshita
  fullname: Kinoshita, Taroh
– sequence: 11
  givenname: Morihisa
  orcidid: 0000-0002-0344-2408
  surname: Fujita
  fullname: Fujita, Morihisa
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29255114$$D View this record in MEDLINE/PubMed
BookMark eNp1kc9q3DAQh0VJaDZpj70WQy-5ONXIkv9cCiWk20BoemjPQiuNd7XIkivZhdz6DnnDPEllki5toCcNzDcfM_qdkiMfPBLyBugF0LZ6v9ebC0ahoTVU4gVZgeC0bIHTI7KilEHZCSZOyGlKe0opb3j1kpywjgkBwFdk96Uo1-5OK__w697giN6gn4oxhgmtL_rgjPXbQnlT5FYYnUqD1UXEyerZzcNS5QEbfK62s1MTFuuv16Xyehfi4tGYUla8Ise9cglfP71n5Punq2-Xn8ub2_X15cebUvMWplIhct4bVeuK9abpmlrXmoMQjeaqA4FMUDAKjFEae83oZsOZaEXbV1Ax7Ksz8uHRO86bAY3Oy0Xl5BjtoOKdDMrKfzve7uQ2_JSipbQFyILzJ0EMP2ZMkxxs0uic8hjmJKFr2obxrmYZffcM3Yc5-nyeZFlW5S-mC_X2740Oq_wJIQPlI6BjSClif0CAyiVkmUOWh5AzXz3jtZ3UkkE-yLr_TP0GAE6tdg
CitedBy_id crossref_primary_10_1371_journal_pone_0250805
crossref_primary_10_5650_oleoscience_24_513
crossref_primary_10_1007_s10529_021_03153_7
crossref_primary_10_3389_fimmu_2024_1467858
crossref_primary_10_15252_embr_202154352
crossref_primary_10_1016_j_celrep_2022_110768
crossref_primary_10_3389_fcell_2021_720536
crossref_primary_10_1007_s00439_022_02433_0
crossref_primary_10_1083_jcb_202108160
crossref_primary_10_1016_j_jbc_2023_105211
crossref_primary_10_1038_s41467_023_44568_2
crossref_primary_10_1093_glycob_cwae061
crossref_primary_10_1093_jb_mvad041
crossref_primary_10_1080_09168451_2018_1482193
crossref_primary_10_1371_journal_pgen_1011406
crossref_primary_10_1016_j_bbrc_2021_06_093
crossref_primary_10_1093_bbb_zbad112
crossref_primary_10_1098_rsob_190290
crossref_primary_10_1089_ars_2018_7523
crossref_primary_10_3390_ijms20143506
crossref_primary_10_1016_j_jlr_2024_100570
crossref_primary_10_1073_pnas_2115083119
crossref_primary_10_1016_j_devcel_2021_02_023
crossref_primary_10_1016_j_jbc_2022_102444
crossref_primary_10_1038_s41467_023_41281_y
crossref_primary_10_1093_jb_mvae085
crossref_primary_10_1089_ars_2019_7931
crossref_primary_10_3390_cells11182775
crossref_primary_10_1038_s42003_021_02337_1
crossref_primary_10_1016_j_humimm_2024_111162
crossref_primary_10_1016_j_biotechadv_2022_107970
crossref_primary_10_1053_j_seminhematol_2018_04_004
crossref_primary_10_1093_bbb_zbad081
crossref_primary_10_1016_j_jbiosc_2020_10_004
crossref_primary_10_1016_j_cub_2021_06_078
crossref_primary_10_3390_ijms23095208
crossref_primary_10_1093_plphys_kiab181
crossref_primary_10_1016_j_freeradbiomed_2018_05_076
crossref_primary_10_1038_s41580_023_00616_9
crossref_primary_10_1093_plphys_kiab384
crossref_primary_10_2323_jgam_2020_04_002
crossref_primary_10_1074_jbc_RA120_015577
crossref_primary_10_3389_fcvm_2022_928566
crossref_primary_10_1002_1873_3468_14083
crossref_primary_10_1021_acs_jproteome_4c00378
crossref_primary_10_1186_s12885_024_11908_4
crossref_primary_10_1007_s00216_022_03934_7
crossref_primary_10_1038_s41398_018_0359_4
crossref_primary_10_1042_BST20191142
crossref_primary_10_1016_j_jbc_2023_104982
crossref_primary_10_1038_s41598_024_61991_7
crossref_primary_10_1007_s10719_024_10171_w
crossref_primary_10_1016_j_cbd_2021_100800
crossref_primary_10_3389_fgene_2023_1070605
Cites_doi 10.1083/jcb.201602010
10.1091/mbc.E06-10-0885
10.1371/journal.pone.0138553
10.1194/jlr.R062760
10.1016/j.cell.2014.06.026
10.1002/ajmg.a.34102
10.1002/j.1460-2075.1983.tb01509.x
10.1093/jb/mvm249
10.1091/mbc.E05-05-0443
10.1093/jb/mvn090
10.1016/j.mcp.2015.05.012
10.1093/clinchem/38.12.2517
10.1186/gb-2010-11-10-r106
10.15252/embr.201643504
10.1093/bioinformatics/btu638
10.1038/ncb2383
10.1096/fj.06-075820
10.1091/mbc.E03-03-0193
10.1074/jbc.270.11.6088
10.1083/jcb.201012074
10.1006/geno.1998.5577
10.1091/mbc.E14-11-1568
10.1073/pnas.87.7.2466
10.1016/j.bbalip.2012.01.004
10.1016/0076-6879(94)30027-5
10.1021/bi602462q
10.4049/jimmunol.144.3.1030
10.1371/journal.pgen.1004320
10.1093/jb/mvt045
10.1016/j.ceb.2016.03.021
10.1038/nature10348
10.1089/ars.2015.6478
10.1016/S1097-2765(01)00318-5
10.1002/j.1460-2075.1995.tb00057.x
10.1038/nmeth.2812
10.1210/en.2013-1167
10.1126/science.aac7557
10.1371/journal.pone.0030619
10.1074/jbc.M705601200
10.1371/journal.pone.0006191
10.1016/j.cell.2009.08.040
10.1186/s12883-016-0602-7
10.1074/jbc.274.42.29862
10.1038/nrm1052
10.1073/pnas.95.16.9512
10.1016/j.bbamcr.2013.04.001
10.1111/tra.12358
10.1074/jbc.M313755200
10.1146/annurev.biochem.73.011303.073752
10.1093/emboj/cdf508
10.1242/jcs.096727
10.1242/bio.20121982
10.1016/j.semcdb.2014.12.001
10.1074/jbc.M006927200
ContentType Journal Article
Copyright 2018 Liu et al.
Copyright Rockefeller University Press Feb 2018
2018 Liu et al. 2018
Copyright_xml – notice: 2018 Liu et al.
– notice: Copyright Rockefeller University Press Feb 2018
– notice: 2018 Liu et al. 2018
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7QP
7QR
7TK
7TM
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
DOI 10.1083/jcb.201706135
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Technology Research Database
Nucleic Acids Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Genetics Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic
Virology and AIDS Abstracts
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
DocumentTitleAlternate Functional linkage between N-glycan and GPI
EISSN 1540-8140
EndPage 599
ExternalDocumentID PMC5800811
29255114
10_1083_jcb_201706135
Genre Research Support, Non-U.S. Gov't
Journal Article
Feature
GrantInformation_xml – fundername: ;
  grantid: JP16H04756
– fundername: ;
  grantid: BK20140141
– fundername: ;
  grantid: 31400693; 31770853
GroupedDBID ---
-DZ
-~X
.55
123
18M
29K
2WC
34G
36B
39C
4.4
53G
85S
AAYXX
ABDNZ
ABOCM
ABPPZ
ABRJW
ABZEH
ACGFO
ACGOD
ACIWK
ACKOT
ACNCT
ACPRK
ACYGS
ADBBV
AEILP
AENEX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BKOMP
BTFSW
C45
CITATION
CS3
D-I
D0L
DIK
DU5
E3Z
EBS
EJD
EMB
F5P
F9R
FRP
GX1
H13
HF~
HYE
IH2
JZ9
KQ8
N9A
NHB
O5R
O5S
OK1
P2P
PQQKQ
R.V
RHI
RNS
RXW
SJN
TAE
TN5
TR2
TRP
TWZ
UBX
UHB
UKR
UPT
W8F
WH7
WOQ
X7M
YKV
YNH
YOC
YQT
YSK
YWH
YZZ
ZCA
~KM
CGR
CUY
CVF
ECM
EIF
NPM
RHF
RPM
VQA
YIN
7QL
7QP
7QR
7TK
7TM
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c481t-aee44fda6c32fd7976c6c41557c4a915e2501da1ddacefc20bb425858f3132ef3
ISSN 0021-9525
1540-8140
IngestDate Thu Aug 21 13:37:21 EDT 2025
Fri Jul 11 16:45:29 EDT 2025
Mon Jun 30 08:49:44 EDT 2025
Wed Feb 19 02:33:59 EST 2025
Thu Apr 24 23:13:04 EDT 2025
Tue Jul 01 02:00:45 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License 2018 Liu et al.
This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms/). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 International license, as described at https://creativecommons.org/licenses/by-nc-sa/4.0/).
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c481t-aee44fda6c32fd7976c6c41557c4a915e2501da1ddacefc20bb425858f3132ef3
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
Y.-S. Liu, X.-Y. Guo, and T. Hirata contributed equally to this paper.
ORCID 0000-0002-8575-5095
0000-0001-9677-5086
0000-0001-5640-1899
0000-0001-7166-7257
0000-0002-4870-5734
0000-0002-0344-2408
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC5800811
PMID 29255114
PQID 2008351102
PQPubID 48855
PageCount 15
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5800811
proquest_miscellaneous_1978724962
proquest_journals_2008351102
pubmed_primary_29255114
crossref_primary_10_1083_jcb_201706135
crossref_citationtrail_10_1083_jcb_201706135
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20180205
PublicationDateYYYYMMDD 2018-02-05
PublicationDate_xml – month: 2
  year: 2018
  text: 20180205
  day: 5
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle The Journal of cell biology
PublicationTitleAlternate J Cell Biol
PublicationYear 2018
Publisher Rockefeller University Press
The Rockefeller University Press
Publisher_xml – name: Rockefeller University Press
– name: The Rockefeller University Press
References Dikiy (2023072316475936300_bib10) 2007; 46
Zoltewicz (2023072316475936300_bib55) 2009; 4
Tanaka (2023072316475936300_bib46) 2004; 279
Ellgaard (2023072316475936300_bib11) 2003; 4
Fujita (2023072316475936300_bib14) 2006; 17
Heigwer (2023072316475936300_bib20) 2014; 11
Helenius (2023072316475936300_bib22) 2004; 73
Sikorska (2023072316475936300_bib45) 2016; 213
Anders (2023072316475936300_bib2) 2010; 11
Patel (2023072316475936300_bib38) 2012; 7
Carette (2023072316475936300_bib6) 2011; 477
Menon (2023072316475936300_bib34) 1994; 230
Lamriben (2023072316475936300_bib30) 2016; 17
Granzow (2023072316475936300_bib17) 2015; 29
Vallée (2023072316475936300_bib51) 2000; 275
Thastrup (2023072316475936300_bib48) 1990; 87
Schröter (2023072316475936300_bib44) 1999; 274
Hirata (2023072316475936300_bib24) 2015; 26
Murakami (2023072316475936300_bib36) 2003; 14
Heinz (2023072316475936300_bib21) 1995; 14
Chen (2023072316475936300_bib7) 1998; 95
Ueda (2023072316475936300_bib50) 2007; 282
Satpute-Krishnan (2023072316475936300_bib42) 2014; 158
Christianson (2023072316475936300_bib9) 2011; 14
Hirayama (2023072316475936300_bib25) 2008; 143
Treumann (2023072316475936300_bib49) 1995; 270
Aebi (2023072316475936300_bib1) 2013; 1833
Kettwig (2023072316475936300_bib28) 2016; 16
Prevost (2023072316475936300_bib40) 2013; 154
Maeda (2023072316475936300_bib32) 2007; 18
Fujita (2023072316475936300_bib15) 2009; 139
Ferguson (2023072316475936300_bib12) 2009
Murakami (2023072316475936300_bib37) 2014; 10
Hamieh (2023072316475936300_bib19) 2017; 18
Schrag (2023072316475936300_bib43) 2001; 8
Cherepanova (2023072316475936300_bib8) 2016; 41
Fujita (2023072316475936300_bib13) 2012; 1821
Kinoshita (2023072316475936300_bib29) 2008; 144
Anders (2023072316475936300_bib3) 2014
Boukhzar (2023072316475936300_bib5) 2016; 24
Peyrieras (2023072316475936300_bib39) 1983; 2
Blomen (2023072316475936300_bib4) 2015; 350
Rong (2023072316475936300_bib41) 2015; 10
Grumolato (2023072316475936300_bib18) 2008; 22
Walter (2023072316475936300_bib52) 1990; 144
Wong (2023072316475936300_bib53) 1992; 38
McKean (2023072316475936300_bib33) 2012; 1
Lang (2023072316475936300_bib31) 2012; 125
Fujita (2023072316475936300_bib16) 2011; 194
Hirata (2023072316475936300_bib23) 2013; 154
Horn (2023072316475936300_bib27) 2011; 155
Muñiz (2023072316475936300_bib35) 2016; 57
Tannous (2023072316475936300_bib47) 2015; 41
Hong (2023072316475936300_bib26) 2002; 21
Yoshiura (2023072316475936300_bib54) 1998; 54
23694781 - J Biochem. 2013 Sep;154(3):257-64
28928140 - EMBO Rep. 2017 Nov;18(11):1935-1946
21727194 - J Cell Biol. 2011 Jul 11;194(1):61-75
20979621 - Genome Biol. 2010;11(10):R106
1333918 - Clin Chem. 1992 Dec;38(12):2517-25
10514467 - J Biol Chem. 1999 Oct 15;274(42):29862-73
26450970 - J Lipid Res. 2016 Mar;57(3):352-60
27206732 - BMC Neurol. 2016 May 21;16:74
24784135 - PLoS Genet. 2014 May 01;10 (5):e1004320
26383639 - PLoS One. 2015 Sep 18;10(9):e0138553
9689111 - Proc Natl Acad Sci U S A. 1998 Aug 4;95(16):9512-7
22265715 - Biochim Biophys Acta. 2012 Aug;1821(8):1050-8
27325793 - J Cell Biol. 2016 Jun 20;213(6):693-704
23583305 - Biochim Biophys Acta. 2013 Nov;1833(11):2430-7
14517336 - Mol Biol Cell. 2003 Oct;14(10):4285-95
17711852 - J Biol Chem. 2007 Oct 19;282(42):30373-80
26866473 - Antioxid Redox Signal. 2016 Apr 10;24(11):557-74
23913443 - Endocrinology. 2013 Oct;154(10):3796-806
21866103 - Nature. 2011 Aug 24;477(7364):340-3
26157166 - Mol Biol Cell. 2015 Sep 1;26(17):3071-84
21739589 - Am J Med Genet A. 2011 Aug;155A(8):1917-22
23213481 - Biol Open. 2012 Sep 15;1(9):874-83
9828125 - Genomics. 1998 Dec 1;54(2):231-40
25260700 - Bioinformatics. 2015 Jan 15;31(2):166-9
24481216 - Nat Methods. 2014 Feb;11(2):122-3
25083867 - Cell. 2014 Jul 31;158(3):522-33
27085638 - Curr Opin Cell Biol. 2016 Aug;41:57-65
2138778 - Proc Natl Acad Sci U S A. 1990 Apr;87(7):2466-70
19593386 - PLoS One. 2009 Jul 10;4(7):e6191
12612637 - Nat Rev Mol Cell Biol. 2003 Mar;4(3):181-91
18635593 - J Biochem. 2008 Sep;144(3):287-94
26050939 - Mol Cell Probes. 2015 Oct;29(5):323-9
7664726 - EMBO J. 1995 Aug 15;14(16):3855-63
11583625 - Mol Cell. 2001 Sep;8(3):633-44
15189166 - Annu Rev Biochem. 2004;73:1019-49
26676362 - Traffic. 2016 Apr;17 (4):308-26
6227481 - EMBO J. 1983;2(6):823-32
22119785 - Nat Cell Biol. 2011 Nov 27;14 (1):93-105
7890742 - J Biol Chem. 1995 Mar 17;270(11):6088-99
14734546 - J Biol Chem. 2004 Apr 2;279(14 ):14256-63
12356721 - EMBO J. 2002 Oct 1;21(19):5047-56
22312429 - PLoS One. 2012;7(2):e30619
18198219 - FASEB J. 2008 Jun;22(6):1756-68
16319176 - Mol Biol Cell. 2006 Feb;17 (2):834-50
19837036 - Cell. 2009 Oct 16;139(2):352-65
26472760 - Science. 2015 Nov 27;350(6264):1092-6
8139510 - Methods Enzymol. 1994;230:418-42
17314402 - Mol Biol Cell. 2007 Apr;18(4):1497-506
25534658 - Semin Cell Dev Biol. 2015 May;41:79-89
1688588 - J Immunol. 1990 Feb 1;144(3):1030-6
18182384 - J Biochem. 2008 Apr;143(4):555-67
22375059 - J Cell Sci. 2012 Apr 15;125(Pt 8):1958-69
10995765 - J Biol Chem. 2000 Dec 29;275(52):41287-98
17503775 - Biochemistry. 2007 Jun 12;46(23):6871-82
References_xml – volume: 213
  start-page: 693
  year: 2016
  ident: 2023072316475936300_bib45
  article-title: Limited ER quality control for GPI-anchored proteins
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.201602010
– volume: 18
  start-page: 1497
  year: 2007
  ident: 2023072316475936300_bib32
  article-title: Fatty acid remodeling of GPI-anchored proteins is required for their raft association
  publication-title: Mol. Biol. Cell.
  doi: 10.1091/mbc.E06-10-0885
– volume: 10
  start-page: e0138553
  year: 2015
  ident: 2023072316475936300_bib41
  article-title: Genome-Wide Screening of Genes Required for Glycosylphosphatidylinositol Biosynthesis
  publication-title: PLoS One.
  doi: 10.1371/journal.pone.0138553
– volume: 57
  start-page: 352
  year: 2016
  ident: 2023072316475936300_bib35
  article-title: Trafficking of glycosylphosphatidylinositol anchored proteins from the endoplasmic reticulum to the cell surface
  publication-title: J. Lipid Res.
  doi: 10.1194/jlr.R062760
– volume: 158
  start-page: 522
  year: 2014
  ident: 2023072316475936300_bib42
  article-title: ER stress-induced clearance of misfolded GPI-anchored proteins via the secretory pathway
  publication-title: Cell.
  doi: 10.1016/j.cell.2014.06.026
– volume: 155
  start-page: 1917
  year: 2011
  ident: 2023072316475936300_bib27
  article-title: Hyperphosphatasia-mental retardation syndrome due to PIGV mutations: expanded clinical spectrum
  publication-title: Am. J. Med. Genet. A.
  doi: 10.1002/ajmg.a.34102
– volume: 2
  start-page: 823
  year: 1983
  ident: 2023072316475936300_bib39
  article-title: Effects of the glucosidase inhibitors nojirimycin and deoxynojirimycin on the biosynthesis of membrane and secretory glycoproteins
  publication-title: EMBO J.
  doi: 10.1002/j.1460-2075.1983.tb01509.x
– volume: 143
  start-page: 555
  year: 2008
  ident: 2023072316475936300_bib25
  article-title: O-mannosylation is required for degradation of the endoplasmic reticulum-associated degradation substrate Gas1*p via the ubiquitin/proteasome pathway in Saccharomyces cerevisiae
  publication-title: J. Biochem.
  doi: 10.1093/jb/mvm249
– volume: 17
  start-page: 834
  year: 2006
  ident: 2023072316475936300_bib14
  article-title: Inositol deacylation by Bst1p is required for the quality control of glycosylphosphatidylinositol-anchored proteins
  publication-title: Mol. Biol. Cell.
  doi: 10.1091/mbc.E05-05-0443
– volume: 144
  start-page: 287
  year: 2008
  ident: 2023072316475936300_bib29
  article-title: Biosynthesis, remodelling and functions of mammalian GPI-anchored proteins: recent progress
  publication-title: J. Biochem.
  doi: 10.1093/jb/mvn090
– volume: 29
  start-page: 323
  year: 2015
  ident: 2023072316475936300_bib17
  article-title: Loss of function of PGAP1 as a cause of severe encephalopathy identified by Whole Exome Sequencing: Lessons of the bioinformatics pipeline
  publication-title: Mol. Cell. Probes.
  doi: 10.1016/j.mcp.2015.05.012
– volume: 38
  start-page: 2517
  year: 1992
  ident: 2023072316475936300_bib53
  article-title: Phospholipase resistance of the glycosyl-phosphatidylinositol membrane anchor on human alkaline phosphatase
  publication-title: Clin. Chem.
  doi: 10.1093/clinchem/38.12.2517
– volume: 11
  start-page: R106
  year: 2010
  ident: 2023072316475936300_bib2
  article-title: Differential expression analysis for sequence count data
  publication-title: Genome Biol.
  doi: 10.1186/gb-2010-11-10-r106
– volume: 18
  start-page: 1935
  year: 2017
  ident: 2023072316475936300_bib19
  article-title: Selenoprotein T is a novel OST subunit that regulates UPR signaling and hormone secretion
  publication-title: EMBO Rep.
  doi: 10.15252/embr.201643504
– year: 2014
  ident: 2023072316475936300_bib3
  article-title: HTSeq — A Python framework to work with high-throughput sequencing data
  publication-title: Bioinformatics.
  doi: 10.1093/bioinformatics/btu638
– volume: 14
  start-page: 93
  year: 2011
  ident: 2023072316475936300_bib9
  article-title: Defining human ERAD networks through an integrative mapping strategy
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb2383
– volume: 22
  start-page: 1756
  year: 2008
  ident: 2023072316475936300_bib18
  article-title: Selenoprotein T is a PACAP-regulated gene involved in intracellular Ca2+ mobilization and neuroendocrine secretion
  publication-title: FASEB J.
  doi: 10.1096/fj.06-075820
– volume: 14
  start-page: 4285
  year: 2003
  ident: 2023072316475936300_bib36
  article-title: PIG-W is critical for inositol acylation but not for flipping of glycosylphosphatidylinositol-anchor
  publication-title: Mol. Biol. Cell.
  doi: 10.1091/mbc.E03-03-0193
– volume: 270
  start-page: 6088
  year: 1995
  ident: 2023072316475936300_bib49
  article-title: Primary structure of CD52
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.270.11.6088
– volume: 194
  start-page: 61
  year: 2011
  ident: 2023072316475936300_bib16
  article-title: Sorting of GPI-anchored proteins into ER exit sites by p24 proteins is dependent on remodeled GPI
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.201012074
– volume: 54
  start-page: 231
  year: 1998
  ident: 2023072316475936300_bib54
  article-title: Characterization of a novel gene disrupted by a balanced chromosomal translocation t(2;19)(q11.2;q13.3) in a family with cleft lip and palate
  publication-title: Genomics.
  doi: 10.1006/geno.1998.5577
– volume: 26
  start-page: 3071
  year: 2015
  ident: 2023072316475936300_bib24
  article-title: Post-Golgi anterograde transport requires GARP-dependent endosome-to-TGN retrograde transport
  publication-title: Mol. Biol. Cell.
  doi: 10.1091/mbc.E14-11-1568
– volume: 87
  start-page: 2466
  year: 1990
  ident: 2023072316475936300_bib48
  article-title: Thapsigargin, a tumor promoter, discharges intracellular Ca2+ stores by specific inhibition of the endoplasmic reticulum Ca2(+)-ATPase
  publication-title: Proc. Natl. Acad. Sci. USA.
  doi: 10.1073/pnas.87.7.2466
– volume: 1821
  start-page: 1050
  year: 2012
  ident: 2023072316475936300_bib13
  article-title: GPI-anchor remodeling: potential functions of GPI-anchors in intracellular trafficking and membrane dynamics
  publication-title: Biochim. Biophys. Acta.
  doi: 10.1016/j.bbalip.2012.01.004
– volume: 230
  start-page: 418
  year: 1994
  ident: 2023072316475936300_bib34
  article-title: Structural analysis of glycosylphosphatidylinositol anchors
  publication-title: Methods Enzymol.
  doi: 10.1016/0076-6879(94)30027-5
– volume: 46
  start-page: 6871
  year: 2007
  ident: 2023072316475936300_bib10
  article-title: SelT, SelW, SelH, and Rdx12: genomics and molecular insights into the functions of selenoproteins of a novel thioredoxin-like family
  publication-title: Biochemistry.
  doi: 10.1021/bi602462q
– volume: 144
  start-page: 1030
  year: 1990
  ident: 2023072316475936300_bib52
  article-title: Structural basis for variations in the sensitivity of human decay accelerating factor to phosphatidylinositol-specific phospholipase C cleavage
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.144.3.1030
– volume: 10
  start-page: e1004320
  year: 2014
  ident: 2023072316475936300_bib37
  article-title: Null mutation in PGAP1 impairing Gpi-anchor maturation in patients with intellectual disability and encephalopathy
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1004320
– volume: 154
  start-page: 257
  year: 2013
  ident: 2023072316475936300_bib23
  article-title: Glycosylphosphatidylinositol mannosyltransferase II is the rate-limiting enzyme in glycosylphosphatidylinositol biosynthesis under limited dolichol-phosphate mannose availability
  publication-title: J. Biochem.
  doi: 10.1093/jb/mvt045
– volume: 41
  start-page: 57
  year: 2016
  ident: 2023072316475936300_bib8
  article-title: N-linked glycosylation and homeostasis of the endoplasmic reticulum
  publication-title: Curr. Opin. Cell Biol.
  doi: 10.1016/j.ceb.2016.03.021
– volume: 477
  start-page: 340
  year: 2011
  ident: 2023072316475936300_bib6
  article-title: Ebola virus entry requires the cholesterol transporter Niemann-Pick C1
  publication-title: Nature.
  doi: 10.1038/nature10348
– volume: 24
  start-page: 557
  year: 2016
  ident: 2023072316475936300_bib5
  article-title: Selenoprotein T Exerts an Essential Oxidoreductase Activity That Protects Dopaminergic Neurons in Mouse Models of Parkinson’s Disease
  publication-title: Antioxid. Redox Signal.
  doi: 10.1089/ars.2015.6478
– volume: 8
  start-page: 633
  year: 2001
  ident: 2023072316475936300_bib43
  article-title: The Structure of calnexin, an ER chaperone involved in quality control of protein folding
  publication-title: Mol. Cell.
  doi: 10.1016/S1097-2765(01)00318-5
– volume: 14
  start-page: 3855
  year: 1995
  ident: 2023072316475936300_bib21
  article-title: Crystal structure of the phosphatidylinositol-specific phospholipase C from Bacillus cereus in complex with myo-inositol
  publication-title: EMBO J.
  doi: 10.1002/j.1460-2075.1995.tb00057.x
– volume: 11
  start-page: 122
  year: 2014
  ident: 2023072316475936300_bib20
  article-title: E-CRISP: fast CRISPR target site identification
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.2812
– volume: 154
  start-page: 3796
  year: 2013
  ident: 2023072316475936300_bib40
  article-title: The PACAP-regulated gene selenoprotein T is abundantly expressed in mouse and human β-cells and its targeted inactivation impairs glucose tolerance
  publication-title: Endocrinology.
  doi: 10.1210/en.2013-1167
– volume: 350
  start-page: 1092
  year: 2015
  ident: 2023072316475936300_bib4
  article-title: Gene essentiality and synthetic lethality in haploid human cells
  publication-title: Science.
  doi: 10.1126/science.aac7557
– volume: 7
  start-page: e30619
  year: 2012
  ident: 2023072316475936300_bib38
  article-title: NGS QC Toolkit: A toolkit for quality control of next generation sequencing data
  publication-title: PLoS One.
  doi: 10.1371/journal.pone.0030619
– volume: 282
  start-page: 30373
  year: 2007
  ident: 2023072316475936300_bib50
  article-title: PGAP1 knock-out mice show otocephaly and male infertility
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M705601200
– volume: 4
  start-page: e6191
  year: 2009
  ident: 2023072316475936300_bib55
  article-title: Wnt signaling is regulated by endoplasmic reticulum retention
  publication-title: PLoS One.
  doi: 10.1371/journal.pone.0006191
– volume: 139
  start-page: 352
  year: 2009
  ident: 2023072316475936300_bib15
  article-title: GPI glycan remodeling by PGAP5 regulates transport of GPI-anchored proteins from the ER to the Golgi
  publication-title: Cell.
  doi: 10.1016/j.cell.2009.08.040
– volume: 16
  start-page: 74
  year: 2016
  ident: 2023072316475936300_bib28
  article-title: Compound heterozygous variants in PGAP1 causing severe psychomotor retardation, brain atrophy, recurrent apneas and delayed myelination: a case report and literature review
  publication-title: BMC Neurol.
  doi: 10.1186/s12883-016-0602-7
– volume: 274
  start-page: 29862
  year: 1999
  ident: 2023072316475936300_bib44
  article-title: Male-specific modification of human CD52
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.274.42.29862
– volume: 4
  start-page: 181
  year: 2003
  ident: 2023072316475936300_bib11
  article-title: Quality control in the endoplasmic reticulum
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm1052
– volume: 95
  start-page: 9512
  year: 1998
  ident: 2023072316475936300_bib7
  article-title: Mammalian glycophosphatidylinositol anchor transfer to proteins and posttransfer deacylation
  publication-title: Proc. Natl. Acad. Sci. USA.
  doi: 10.1073/pnas.95.16.9512
– volume: 1833
  start-page: 2430
  year: 2013
  ident: 2023072316475936300_bib1
  article-title: N-linked protein glycosylation in the ER
  publication-title: Biochim. Biophys. Acta.
  doi: 10.1016/j.bbamcr.2013.04.001
– volume: 17
  start-page: 308
  year: 2016
  ident: 2023072316475936300_bib30
  article-title: N-Glycan-based ER Molecular Chaperone and Protein Quality Control System: The Calnexin Binding Cycle
  publication-title: Traffic.
  doi: 10.1111/tra.12358
– volume: 279
  start-page: 14256
  year: 2004
  ident: 2023072316475936300_bib46
  article-title: Inositol deacylation of glycosylphosphatidylinositol-anchored proteins is mediated by mammalian PGAP1 and yeast Bst1p
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M313755200
– volume-title: Essentials of Glycobiology.
  year: 2009
  ident: 2023072316475936300_bib12
  article-title: Glycosylphosphatidylinositol Anchors
– volume: 73
  start-page: 1019
  year: 2004
  ident: 2023072316475936300_bib22
  article-title: Roles of N-linked glycans in the endoplasmic reticulum
  publication-title: Annu. Rev. Biochem.
  doi: 10.1146/annurev.biochem.73.011303.073752
– volume: 21
  start-page: 5047
  year: 2002
  ident: 2023072316475936300_bib26
  article-title: Requirement of N-glycan on GPI-anchored proteins for efficient binding of aerolysin but not Clostridium septicum alpha-toxin
  publication-title: EMBO J.
  doi: 10.1093/emboj/cdf508
– volume: 125
  start-page: 1958
  year: 2012
  ident: 2023072316475936300_bib31
  article-title: Different effects of Sec61α, Sec62 and Sec63 depletion on transport of polypeptides into the endoplasmic reticulum of mammalian cells
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.096727
– volume: 1
  start-page: 874
  year: 2012
  ident: 2023072316475936300_bib33
  article-title: Defects in GPI biosynthesis perturb Cripto signaling during forebrain development in two new mouse models of holoprosencephaly
  publication-title: Biol. Open.
  doi: 10.1242/bio.20121982
– volume: 41
  start-page: 79
  year: 2015
  ident: 2023072316475936300_bib47
  article-title: N-linked sugar-regulated protein folding and quality control in the ER
  publication-title: Semin. Cell Dev. Biol.
  doi: 10.1016/j.semcdb.2014.12.001
– volume: 275
  start-page: 41287
  year: 2000
  ident: 2023072316475936300_bib51
  article-title: Structural basis for catalysis and inhibition of N-glycan processing class I alpha 1,2-mannosidases
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M006927200
– reference: 23213481 - Biol Open. 2012 Sep 15;1(9):874-83
– reference: 23913443 - Endocrinology. 2013 Oct;154(10):3796-806
– reference: 14734546 - J Biol Chem. 2004 Apr 2;279(14 ):14256-63
– reference: 26866473 - Antioxid Redox Signal. 2016 Apr 10;24(11):557-74
– reference: 26050939 - Mol Cell Probes. 2015 Oct;29(5):323-9
– reference: 22375059 - J Cell Sci. 2012 Apr 15;125(Pt 8):1958-69
– reference: 12612637 - Nat Rev Mol Cell Biol. 2003 Mar;4(3):181-91
– reference: 26472760 - Science. 2015 Nov 27;350(6264):1092-6
– reference: 25260700 - Bioinformatics. 2015 Jan 15;31(2):166-9
– reference: 22265715 - Biochim Biophys Acta. 2012 Aug;1821(8):1050-8
– reference: 9828125 - Genomics. 1998 Dec 1;54(2):231-40
– reference: 18198219 - FASEB J. 2008 Jun;22(6):1756-68
– reference: 23583305 - Biochim Biophys Acta. 2013 Nov;1833(11):2430-7
– reference: 11583625 - Mol Cell. 2001 Sep;8(3):633-44
– reference: 22312429 - PLoS One. 2012;7(2):e30619
– reference: 1333918 - Clin Chem. 1992 Dec;38(12):2517-25
– reference: 16319176 - Mol Biol Cell. 2006 Feb;17 (2):834-50
– reference: 22119785 - Nat Cell Biol. 2011 Nov 27;14 (1):93-105
– reference: 20979621 - Genome Biol. 2010;11(10):R106
– reference: 17503775 - Biochemistry. 2007 Jun 12;46(23):6871-82
– reference: 10995765 - J Biol Chem. 2000 Dec 29;275(52):41287-98
– reference: 19837036 - Cell. 2009 Oct 16;139(2):352-65
– reference: 27206732 - BMC Neurol. 2016 May 21;16:74
– reference: 18182384 - J Biochem. 2008 Apr;143(4):555-67
– reference: 17314402 - Mol Biol Cell. 2007 Apr;18(4):1497-506
– reference: 24481216 - Nat Methods. 2014 Feb;11(2):122-3
– reference: 2138778 - Proc Natl Acad Sci U S A. 1990 Apr;87(7):2466-70
– reference: 21739589 - Am J Med Genet A. 2011 Aug;155A(8):1917-22
– reference: 26383639 - PLoS One. 2015 Sep 18;10(9):e0138553
– reference: 7664726 - EMBO J. 1995 Aug 15;14(16):3855-63
– reference: 18635593 - J Biochem. 2008 Sep;144(3):287-94
– reference: 25534658 - Semin Cell Dev Biol. 2015 May;41:79-89
– reference: 19593386 - PLoS One. 2009 Jul 10;4(7):e6191
– reference: 15189166 - Annu Rev Biochem. 2004;73:1019-49
– reference: 8139510 - Methods Enzymol. 1994;230:418-42
– reference: 26157166 - Mol Biol Cell. 2015 Sep 1;26(17):3071-84
– reference: 1688588 - J Immunol. 1990 Feb 1;144(3):1030-6
– reference: 9689111 - Proc Natl Acad Sci U S A. 1998 Aug 4;95(16):9512-7
– reference: 26450970 - J Lipid Res. 2016 Mar;57(3):352-60
– reference: 14517336 - Mol Biol Cell. 2003 Oct;14(10):4285-95
– reference: 17711852 - J Biol Chem. 2007 Oct 19;282(42):30373-80
– reference: 28928140 - EMBO Rep. 2017 Nov;18(11):1935-1946
– reference: 21727194 - J Cell Biol. 2011 Jul 11;194(1):61-75
– reference: 7890742 - J Biol Chem. 1995 Mar 17;270(11):6088-99
– reference: 27085638 - Curr Opin Cell Biol. 2016 Aug;41:57-65
– reference: 24784135 - PLoS Genet. 2014 May 01;10 (5):e1004320
– reference: 10514467 - J Biol Chem. 1999 Oct 15;274(42):29862-73
– reference: 6227481 - EMBO J. 1983;2(6):823-32
– reference: 12356721 - EMBO J. 2002 Oct 1;21(19):5047-56
– reference: 25083867 - Cell. 2014 Jul 31;158(3):522-33
– reference: 26676362 - Traffic. 2016 Apr;17 (4):308-26
– reference: 23694781 - J Biochem. 2013 Sep;154(3):257-64
– reference: 21866103 - Nature. 2011 Aug 24;477(7364):340-3
– reference: 27325793 - J Cell Biol. 2016 Jun 20;213(6):693-704
SSID ssj0004743
Score 2.4865737
Snippet Glycosylphosphatidylinositol (GPI) anchoring of proteins is a conserved posttranslational modification in the endoplasmic reticulum (ER). Soon after GPI is...
N -Glycosylation and GPI anchoring of proteins occur in the endoplasmic reticulum (ER). Liu et al. revealed N -glycans participate in quality control and...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 585
SubjectTerms Anchoring
Calnexin
Cell Line
Cell surface
Deacylation
Endoplasmic reticulum
Endoplasmic Reticulum - metabolism
Folding
Genes
Genetic screening
Glycan
Glycosylphosphatidylinositol
Glycosylphosphatidylinositols - metabolism
HEK293 Cells
Humans
Membrane Proteins - genetics
Membrane Proteins - metabolism
N-glycans
Phosphoric Monoester Hydrolases - genetics
Phosphoric Monoester Hydrolases - metabolism
Polysaccharides
Polysaccharides - metabolism
Protein Folding
Protein transport
Proteins
Quality control
Retention
Stress response
Title N -Glycan–dependent protein folding and endoplasmic reticulum retention regulate GPI-anchor processing
URI https://www.ncbi.nlm.nih.gov/pubmed/29255114
https://www.proquest.com/docview/2008351102
https://www.proquest.com/docview/1978724962
https://pubmed.ncbi.nlm.nih.gov/PMC5800811
Volume 217
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jj9MwFLZgEBIXxE5hQEZCXIqhTu0sR4RmGGAoWyt1TpHtOGrQkFZtcii_nmfHcVI6SAOXKLItJ_L7_PzZfgtCz2XIE0nFmOShlsQEVCJxyCOSqEhTLjOtmHFO_jQJT2bsw5zPO_t5611SyVfq14V-Jf8jVSgDuRov2X-QrO8UCuAd5AtPkDA8LyXjCXl3voWxIW0q22po4y4UxnrQ3irZuwGoWq6AJf-04Zqr5sTPvDlTx3WTjx7w8uU9ARQsluvhqnEgaBe2Hx2oehTWnPoPXRgnb9lT1FatF-T7ovDWPbU9kZ0XJTmru9NuQJ_lrlNdbeqtXyC-OTPhM7HsH0rQ2Nox874eZSNzuthcuegLypzyDRrPTYeyoKdKeZPKZ0_FA2c0Kl5JY5cXGTrCu7Wsvb-ffE6PZ6en6fRoPr2KrgWwhzDpLT5-7YWSd94X7V-5AKzQ_eudzncJy94u5E9j2h47md5CN51M8JsGI7fRFV3eQdebRKPbu0jvIwU7pGCHFAxIwT2kYI8U7JGCW6TgDim4Q8o9NDs-mr49IS7BBlEsphURWjOWZyJU4yDPImCmKlSGYUaKiYRyDfyYZoJmmVA6V8FISlDxMY9zE_BT5-P76KBclvohwioQJjqBDvNEs1hpyZOYCk2ZBMooRDRAL9tRTJWLPm-SoJyn1goiHqcw6Kkf9AF64ZuvmrArf2t42IokdTNzY1OrmgvyUTBAz3w16E0zLUSpl_UmpQksVQFLQmjzoJGg_1KQwEabUjZA0Y5sfQMTk323piwWNjY7jw3Jpo8u8d3H6EY3dQ7RQbWu9RNguJV8apH6Gz50q5o
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=N-Glycan-dependent+protein+folding+and+endoplasmic+reticulum+retention+regulate+GPI-anchor+processing&rft.jtitle=The+Journal+of+cell+biology&rft.au=Liu%2C+Yi-Shi&rft.au=Guo%2C+Xin-Yu&rft.au=Hirata%2C+Tetsuya&rft.au=Rong%2C+Yao&rft.date=2018-02-05&rft.issn=1540-8140&rft.eissn=1540-8140&rft.volume=217&rft.issue=2&rft.spage=585&rft_id=info:doi/10.1083%2Fjcb.201706135&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9525&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9525&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9525&client=summon