Whole limb kinematics are preferentially conserved over individual joint kinematics after peripheral nerve injury
Biomechanics and neurophysiology studies suggest whole limb function to be an important locomotor control parameter. Inverted pendulum and mass-spring models greatly reduce the complexity of the legs and predict the dynamics of locomotion, but do not address how numerous limb elements are coordinate...
Saved in:
Published in | Journal of experimental biology Vol. 212; no. 21; pp. 3511 - 3521 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
England
Company of Biologists
01.11.2009
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Biomechanics and neurophysiology studies suggest whole limb function to be an important locomotor control parameter. Inverted pendulum and mass-spring models greatly reduce the complexity of the legs and predict the dynamics of locomotion, but do not address how numerous limb elements are coordinated to achieve such simple behavior. As a first step, we hypothesized whole limb kinematics were of primary importance and would be preferentially conserved over individual joint kinematics after neuromuscular injury. We used a well-established peripheral nerve injury model of cat ankle extensor muscles to generate two experimental injury groups with a predictable time course of temporary paralysis followed by complete muscle self-reinnervation. Mean trajectories of individual joint kinematics were altered as a result of deficits after injury. By contrast, mean trajectories of limb orientation and limb length remained largely invariant across all animals, even with paralyzed ankle extensor muscles, suggesting changes in mean joint angles were coordinated as part of a long-term compensation strategy to minimize change in whole limb kinematics. Furthermore, at each measurement stage (pre-injury,paralytic and self-reinnervated) step-by-step variance of individual joint kinematics was always significantly greater than that of limb orientation. Our results suggest joint angle combinations are coordinated and selected to stabilize whole limb kinematics against short-term natural step-by-step deviations as well as long-term, pathological deviations created by injury. This may represent a fundamental compensation principle allowing animals to adapt to changing conditions with minimal effect on overall locomotor function. |
---|---|
AbstractList | Biomechanics and neurophysiology studies suggest whole limb function to be an important locomotor control parameter. Inverted pendulum and mass-spring models greatly reduce the complexity of the legs and predict the dynamics of locomotion, but do not address how numerous limb elements are coordinated to achieve such simple behavior. As a first step, we hypothesized whole limb kinematics were of primary importance and would be preferentially conserved over individual joint kinematics after neuromuscular injury. We used a well-established peripheral nerve injury model of cat ankle extensor muscles to generate two experimental injury groups with a predictable time course of temporary paralysis followed by complete muscle self-reinnervation. Mean trajectories of individual joint kinematics were altered as a result of deficits after injury. By contrast, mean trajectories of limb orientation and limb length remained largely invariant across all animals, even with paralyzed ankle extensor muscles, suggesting changes in mean joint angles were coordinated as part of a long-term compensation strategy to minimize change in whole limb kinematics. Furthermore, at each measurement stage (pre-injury, paralytic and self-reinnervated) step-by-step variance of individual joint kinematics was always significantly greater than that of limb orientation. Our results suggest joint angle combinations are coordinated and selected to stabilize whole limb kinematics against short-term natural step-by-step deviations as well as long-term, pathological deviations created by injury. This may represent a fundamental compensation principle allowing animals to adapt to changing conditions with minimal effect on overall locomotor function.Biomechanics and neurophysiology studies suggest whole limb function to be an important locomotor control parameter. Inverted pendulum and mass-spring models greatly reduce the complexity of the legs and predict the dynamics of locomotion, but do not address how numerous limb elements are coordinated to achieve such simple behavior. As a first step, we hypothesized whole limb kinematics were of primary importance and would be preferentially conserved over individual joint kinematics after neuromuscular injury. We used a well-established peripheral nerve injury model of cat ankle extensor muscles to generate two experimental injury groups with a predictable time course of temporary paralysis followed by complete muscle self-reinnervation. Mean trajectories of individual joint kinematics were altered as a result of deficits after injury. By contrast, mean trajectories of limb orientation and limb length remained largely invariant across all animals, even with paralyzed ankle extensor muscles, suggesting changes in mean joint angles were coordinated as part of a long-term compensation strategy to minimize change in whole limb kinematics. Furthermore, at each measurement stage (pre-injury, paralytic and self-reinnervated) step-by-step variance of individual joint kinematics was always significantly greater than that of limb orientation. Our results suggest joint angle combinations are coordinated and selected to stabilize whole limb kinematics against short-term natural step-by-step deviations as well as long-term, pathological deviations created by injury. This may represent a fundamental compensation principle allowing animals to adapt to changing conditions with minimal effect on overall locomotor function. Biomechanics and neurophysiology studies suggest whole limb function to be an important locomotor control parameter. Inverted pendulum and mass-spring models greatly reduce the complexity of the legs and predict the dynamics of locomotion, but do not address how numerous limb elements are coordinated to achieve such simple behavior. As a first step, we hypothesized whole limb kinematics were of primary importance and would be preferentially conserved over individual joint kinematics after neuromuscular injury. We used a well-established peripheral nerve injury model of cat ankle extensor muscles to generate two experimental injury groups with a predictable time course of temporary paralysis followed by complete muscle self-reinnervation. Mean trajectories of individual joint kinematics were altered as a result of deficits after injury. By contrast, mean trajectories of limb orientation and limb length remained largely invariant across all animals, even with paralyzed ankle extensor muscles, suggesting changes in mean joint angles were coordinated as part of a long-term compensation strategy to minimize change in whole limb kinematics. Furthermore, at each measurement stage (pre-injury, paralytic and self-reinnervated) step-by-step variance of individual joint kinematics was always significantly greater than that of limb orientation. Our results suggest joint angle combinations are coordinated and selected to stabilize whole limb kinematics against short-term natural step-by-step deviations as well as long-term, pathological deviations created by injury. This may represent a fundamental compensation principle allowing animals to adapt to changing conditions with minimal effect on overall locomotor function. Biomechanics and neurophysiology studies suggest whole limb function to be an important locomotor control parameter. Inverted pendulum and mass-spring models greatly reduce the complexity of the legs and predict the dynamics of locomotion, but do not address how numerous limb elements are coordinated to achieve such simple behavior. As a first step, we hypothesized whole limb kinematics were of primary importance and would be preferentially conserved over individual joint kinematics after neuromuscular injury. We used a well-established peripheral nerve injury model of cat ankle extensor muscles to generate two experimental injury groups with a predictable time course of temporary paralysis followed by complete muscle self-reinnervation. Mean trajectories of individual joint kinematics were altered as a result of deficits after injury. By contrast, mean trajectories of limb orientation and limb length remained largely invariant across all animals, even with paralyzed ankle extensor muscles, suggesting changes in mean joint angles were coordinated as part of a long-term compensation strategy to minimize change in whole limb kinematics. Furthermore, at each measurement stage (pre-injury, paralytic and self-reinnervated) step-by-step variance of individual joint kinematics was always significantly greater than that of limb orientation. Our results suggest joint angle combinations are coordinated and selected to stabilize whole limb kinematics against short-term natural step-by-step deviations as well as long-term, pathological deviations created by injury. This may represent a fundamental compensation principle allowing animals to adapt to changing conditions with minimal effect on overall locomotor function. |
Author | Nichols, T. Richard Scholz, John P. Auyang, Arick G. Chang, Young-Hui |
AuthorAffiliation | 1 Department of Physiology, Emory University School of Medicine, Atlanta, GA 30322 USA 2 School of Applied Physiology, Georgia Institute of Technology, Atlanta, GA 30332-0356, USA 3 Department of Physical Therapy, University of Delaware, Newark, DE 19716, USA |
AuthorAffiliation_xml | – name: 2 School of Applied Physiology, Georgia Institute of Technology, Atlanta, GA 30332-0356, USA – name: 3 Department of Physical Therapy, University of Delaware, Newark, DE 19716, USA – name: 1 Department of Physiology, Emory University School of Medicine, Atlanta, GA 30322 USA |
Author_xml | – sequence: 1 givenname: Young-Hui surname: Chang fullname: Chang, Young-Hui organization: Department of Physiology, Emory University School of Medicine, Atlanta, GA 30322 USA – sequence: 2 givenname: Arick G. surname: Auyang fullname: Auyang, Arick G. organization: School of Applied Physiology, Georgia Institute of Technology, Atlanta, GA 30332-0356, USA – sequence: 3 givenname: John P. surname: Scholz fullname: Scholz, John P. organization: Department of Physical Therapy, University of Delaware, Newark, DE 19716,USA – sequence: 4 givenname: T. Richard surname: Nichols fullname: Nichols, T. Richard organization: Department of Physiology, Emory University School of Medicine, Atlanta, GA 30322 USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/19837893$$D View this record in MEDLINE/PubMed |
BookMark | eNptkU9rFTEUxYNU7Gt14weQ2QnCtPk7k2wEKWqFQjeWLkMmc8eXZyaZJjMP3rc3w6vailkkgfzOuTfnnqGTEAMg9JbgC0I5vdxBd4EZk7J5gTaEt22tCBcnaIMxpTVWXJ2is5x3uKxG8FfolCjJWqnYBj3cb6OHyruxq366AKOZnc2VSVBNCQZIEGZnvD9UNoYMaQ99FfeQKhd6t3f9Yny1iy7Mz9TDXIgJkpu2kAoRVmGR7JZ0eI1eDsZnePN4nqO7L5-_X13XN7dfv119uqktl2SuDQAT60aloh3B5U5wJwW3TcMa0kErBqoGIbCkkncSBCOqZ5b1Q0dbTNk5-nj0nZZuhN6Wj5RW9JTcaNJBR-P085fgtvpH3GvaNlS2shi8fzRI8WGBPOvRZQvemwBxybplHCss6Eq-e1rqT43fMRfgwxGwKeZccv2LYL3OUJcZ6uMMC4z_ga2bS7BxbdP5_0l-AfsAomA |
CitedBy_id | crossref_primary_10_1016_j_zool_2023_126076 crossref_primary_10_1242_jeb_102640 crossref_primary_10_1002_jor_25306 crossref_primary_10_12688_f1000research_2_158_v1 crossref_primary_10_1113_JP283291 crossref_primary_10_1152_jn_01097_2010 crossref_primary_10_12688_f1000research_2_158_v2 crossref_primary_10_1038_srep17619 crossref_primary_10_1152_jn_00663_2013 crossref_primary_10_7554_eLife_38215 crossref_primary_10_3389_fnhum_2021_777776 crossref_primary_10_1242_jeb_061937 crossref_primary_10_1152_jn_00699_2011 crossref_primary_10_1242_jeb_245199 crossref_primary_10_1002_cne_24244 crossref_primary_10_1016_j_jbiomech_2014_04_037 crossref_primary_10_1152_jn_00335_2016 crossref_primary_10_1080_00222895_2013_815151 crossref_primary_10_1152_jn_00565_2015 crossref_primary_10_1152_jn_00946_2012 crossref_primary_10_1080_10407413_2012_726179 crossref_primary_10_1016_j_bbr_2011_08_021 crossref_primary_10_3389_fnhum_2022_944638 crossref_primary_10_1152_jn_00661_2017 crossref_primary_10_1007_s00221_010_2424_y crossref_primary_10_1088_1748_3190_ad5129 crossref_primary_10_1016_j_humov_2013_02_004 crossref_primary_10_1097_JPO_0000000000000006 crossref_primary_10_1186_1743_0003_11_142 crossref_primary_10_1242_jeb_051508 crossref_primary_10_1242_jeb_195172 crossref_primary_10_1186_s12984_021_00860_0 crossref_primary_10_1080_00222895_2014_914885 crossref_primary_10_1002_ima_22317 crossref_primary_10_1371_journal_pone_0069429 crossref_primary_10_1093_pm_pnaa206 crossref_primary_10_1098_rsbl_2013_0484 crossref_primary_10_1038_s41598_024_53616_w crossref_primary_10_1242_jeb_244629 crossref_primary_10_1016_j_jneumeth_2009_10_017 crossref_primary_10_1113_JP275532 crossref_primary_10_1113_jphysiol_2011_210518 crossref_primary_10_1007_s00221_013_3708_9 crossref_primary_10_1159_000371543 crossref_primary_10_1016_j_jbiomech_2020_109761 crossref_primary_10_1159_000371542 crossref_primary_10_2490_jjrmc_58_121 crossref_primary_10_1152_jn_00246_2014 crossref_primary_10_1002_cne_22446 crossref_primary_10_1113_JP287448 crossref_primary_10_7554_eLife_38371 crossref_primary_10_1142_S0219519414500651 crossref_primary_10_1242_bio_028852 crossref_primary_10_1155_2021_6613029 crossref_primary_10_1152_jn_00756_2013 crossref_primary_10_7554_eLife_53908 crossref_primary_10_1016_j_semcdb_2021_04_016 crossref_primary_10_1242_jeb_237073 crossref_primary_10_1152_jn_00129_2016 crossref_primary_10_1152_jn_00887_2011 crossref_primary_10_1007_s40846_019_00490_x |
Cites_doi | 10.1152/jn.00718.2002 10.2307/3545669 10.1016/j.conb.2008.01.002 10.1007/s00221-003-1786-9 10.1249/00003677-199900270-00010 10.1152/jn.00719.2002 10.1123/mcj.9.1.75 10.1162/neco.2008.01-08-698 10.1152/jn.00833.2002 10.1113/jphysiol.1993.sp019499 10.1152/jn.1999.81.2.467 10.1126/science.258.5086.1348 10.1152/ajpregu.1977.233.5.R243 10.1007/s00221-008-1582-7 10.1007/s002210050738 10.1007/s00221-004-1850-0 10.1111/j.1749-6632.1998.tb09101.x 10.1152/jn.1993.70.5.1787 10.1152/jn.2000.83.5.2946 10.1152/jn.00706.2005 10.1038/nature04113 10.1016/0021-9290(89)90224-8 10.1088/1741-2560/4/3/009 10.1152/jn.2000.84.5.2709 10.1113/jphysiol.1989.sp017544 10.1152/jn.1993.69.1.282 10.1113/jphysiol.2007.146605 10.1242/jeb.199.4.801 10.1007/s00221-007-0938-8 10.1002/cne.20678 10.1007/s00221-009-1868-4 10.1016/0021-9290(93)90010-C 10.1152/jn.2001.86.4.2102 10.1152/jn.1991.65.3.648 10.1016/0021-9290(90)90042-2 10.1152/jappl.1998.85.2.764 10.1152/jn.1994.71.2.817 10.1111/j.1558-5646.1996.tb02342.x 10.1016/S0079-6123(06)65019-X 10.1242/jeb.202.23.3325 10.1152/japplphysiol.00643.2002 10.1113/jphysiol.1993.sp019498 10.1007/978-1-4613-9030-5_37 10.1242/jeb.01177 10.2307/3545777 10.1123/mcj.6.2.183 10.1016/j.gaitpost.2006.07.003 10.1002/mus.20852 10.1002/jmor.1051410102 10.1152/jn.2000.83.5.2931 10.1007/s00221-007-1066-1 |
ContentType | Journal Article |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1242/jeb.033886 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1477-9145 |
EndPage | 3521 |
ExternalDocumentID | PMC2762878 19837893 10_1242_jeb_033886 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NINDS NIH HHS grantid: NS050880-05 – fundername: NIAMS NIH HHS grantid: R21 AR054760 – fundername: NIAMS NIH HHS grantid: AR054760-01 – fundername: NINDS NIH HHS grantid: NS043893-01A1 – fundername: NICHD NIH HHS grantid: HD32571-06A1 – fundername: NINDS NIH HHS grantid: F32 NS043893 |
GroupedDBID | --- -DZ -~X 0R~ 186 18M 2WC 34G 39C 4.4 53G 5GY 5RE 5VS 6TJ AAFWJ AAYXX ABDNZ ABPPZ ABRJW ACGFS ACIWK ACNCT ACPRK ADBBV ADVGF ADXHL AEILP AENEX AETEA AFRAH AGCDD AGGIJ ALMA_UNASSIGNED_HOLDINGS BAWUL BTFSW C1A CITATION CJ0 CS3 DIK DU5 E3Z EBS EJD F5P F9R GX1 H13 HZ~ H~9 INIJC KQ8 N9A O9- OHT OK1 P2P PQQKQ RCB RHI RXW S10 SJN TAE TN5 TR2 TWZ UKR UPT W8F WH7 WOQ XJT XSW YQT YR2 YVO YZZ ZCA ZY4 ~02 .55 .GJ 3O- AAUTI AAYJJ ABJNI ACPVT ACYGS AFFNX AI. CGR CUY CVF ECM EIF MVM NPM UBC VH1 X7M XOL ZGI ZXP 7X8 5PM |
ID | FETCH-LOGICAL-c481t-aee35aee32892b105ae10b854c66361be75f29f5508284b8e5319d3c3dfb27023 |
ISSN | 0022-0949 1477-9145 |
IngestDate | Thu Aug 21 18:32:59 EDT 2025 Fri Jul 11 08:16:39 EDT 2025 Sat May 31 02:10:51 EDT 2025 Thu Apr 24 22:58:03 EDT 2025 Tue Jul 01 01:57:40 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 21 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c481t-aee35aee32892b105ae10b854c66361be75f29f5508284b8e5319d3c3dfb27023 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 We would like to give special thanks to Thom Abelew, Andrea Burgess, Jinger Gottschall, Clotilde Huyghues-Despointes, Melissa Miller, Bin Nguyen, Kyla Ross, and David Spinner for their invaluable assistance in collecting, digitizing and analyzing the data for this study. We would also like to thank Teresa Snow for her statistics advice, Thomas Roberts for help with the knee triangulation technique and the members of the Comparative Neuromechanics Laboratory for their helpful comments on this manuscript. This work was supported in part by NIH AR054760-01 (to Y.H.C.), NIH NS043893-01A1 (to Y.H.C.), NIH HD32571-06A1 (to T.R.N.) and NSF 0078127 and NIH NS050880-05 (to J.P.S.). Deposited in PMC for release after 12 months. Author for correspondence (yh.chang@ap.gatech.edu) Present address: School of Applied Physiology, Georgia Institute of Technology, Atlanta, GA 30332-0356, USA |
OpenAccessLink | https://journals.biologists.com/jeb/article-pdf/212/21/3511/1268117/3511.pdf |
PMID | 19837893 |
PQID | 734090528 |
PQPubID | 23479 |
PageCount | 11 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_2762878 proquest_miscellaneous_734090528 pubmed_primary_19837893 crossref_primary_10_1242_jeb_033886 crossref_citationtrail_10_1242_jeb_033886 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2009-11-01 |
PublicationDateYYYYMMDD | 2009-11-01 |
PublicationDate_xml | – month: 11 year: 2009 text: 2009-11-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Journal of experimental biology |
PublicationTitleAlternate | J Exp Biol |
PublicationYear | 2009 |
Publisher | Company of Biologists |
Publisher_xml | – name: Company of Biologists |
References | 2021042512083489000_REF29 2021042512083489000_REF26 2021042512083489000_REF25 2021042512083489000_REF28 2021042512083489000_REF27 2021042512083489000_REF22 2021042512083489000_REF21 2021042512083489000_REF24 2021042512083489000_REF23 2021042512083489000_REF20 2021042512083489000_REF19 2021042512083489000_REF18 2021042512083489000_REF15 2021042512083489000_REF14 2021042512083489000_REF17 2021042512083489000_REF16 2021042512083489000_REF11 2021042512083489000_REF55 2021042512083489000_REF10 2021042512083489000_REF54 2021042512083489000_REF13 2021042512083489000_REF57 2021042512083489000_REF12 2021042512083489000_REF56 2021042512083489000_REF51 2021042512083489000_REF50 2021042512083489000_REF53 2021042512083489000_REF52 2021042512083489000_REF48 2021042512083489000_REF47 2021042512083489000_REF49 2021042512083489000_REF44 2021042512083489000_REF43 2021042512083489000_REF46 2021042512083489000_REF45 2021042512083489000_REF40 2021042512083489000_REF42 2021042512083489000_REF41 2021042512083489000_REF9 2021042512083489000_REF6 2021042512083489000_REF5 2021042512083489000_REF8 2021042512083489000_REF7 2021042512083489000_REF37 2021042512083489000_REF36 2021042512083489000_REF39 2021042512083489000_REF38 2021042512083489000_REF2 2021042512083489000_REF33 2021042512083489000_REF1 2021042512083489000_REF32 2021042512083489000_REF4 2021042512083489000_REF35 2021042512083489000_REF3 2021042512083489000_REF34 2021042512083489000_REF31 2021042512083489000_REF30 |
References_xml | – ident: 2021042512083489000_REF27 doi: 10.1152/jn.00718.2002 – ident: 2021042512083489000_REF25 doi: 10.2307/3545669 – ident: 2021042512083489000_REF50 doi: 10.1016/j.conb.2008.01.002 – ident: 2021042512083489000_REF46 doi: 10.1007/s00221-003-1786-9 – ident: 2021042512083489000_REF40 doi: 10.1249/00003677-199900270-00010 – ident: 2021042512083489000_REF28 doi: 10.1152/jn.00719.2002 – ident: 2021042512083489000_REF51 doi: 10.1123/mcj.9.1.75 – ident: 2021042512083489000_REF29 – ident: 2021042512083489000_REF35 doi: 10.1162/neco.2008.01-08-698 – ident: 2021042512083489000_REF19 – ident: 2021042512083489000_REF55 doi: 10.1152/jn.00833.2002 – ident: 2021042512083489000_REF4 doi: 10.1113/jphysiol.1993.sp019499 – ident: 2021042512083489000_REF39 doi: 10.1152/jn.1999.81.2.467 – ident: 2021042512083489000_REF11 doi: 10.1126/science.258.5086.1348 – ident: 2021042512083489000_REF15 doi: 10.1152/ajpregu.1977.233.5.R243 – ident: 2021042512083489000_REF2 doi: 10.1007/s00221-008-1582-7 – ident: 2021042512083489000_REF44 doi: 10.1007/s002210050738 – ident: 2021042512083489000_REF30 doi: 10.1007/s00221-004-1850-0 – ident: 2021042512083489000_REF57 – ident: 2021042512083489000_REF5 doi: 10.1111/j.1749-6632.1998.tb09101.x – ident: 2021042512083489000_REF16 doi: 10.1152/jn.1993.70.5.1787 – ident: 2021042512083489000_REF47 – ident: 2021042512083489000_REF8 doi: 10.1152/jn.2000.83.5.2946 – ident: 2021042512083489000_REF32 doi: 10.1152/jn.00706.2005 – ident: 2021042512083489000_REF48 doi: 10.1038/nature04113 – ident: 2021042512083489000_REF7 doi: 10.1016/0021-9290(89)90224-8 – ident: 2021042512083489000_REF13 doi: 10.1088/1741-2560/4/3/009 – ident: 2021042512083489000_REF1 doi: 10.1152/jn.2000.84.5.2709 – ident: 2021042512083489000_REF38 doi: 10.1113/jphysiol.1989.sp017544 – ident: 2021042512083489000_REF33 doi: 10.1152/jn.1993.69.1.282 – ident: 2021042512083489000_REF20 doi: 10.1113/jphysiol.2007.146605 – ident: 2021042512083489000_REF41 doi: 10.1242/jeb.199.4.801 – ident: 2021042512083489000_REF34 doi: 10.1007/s00221-007-0938-8 – ident: 2021042512083489000_REF21 doi: 10.1002/cne.20678 – ident: 2021042512083489000_REF56 doi: 10.1007/s00221-009-1868-4 – ident: 2021042512083489000_REF22 doi: 10.1016/0021-9290(93)90010-C – ident: 2021042512083489000_REF14 doi: 10.1152/jn.2001.86.4.2102 – ident: 2021042512083489000_REF17 doi: 10.1152/jn.1991.65.3.648 – ident: 2021042512083489000_REF37 doi: 10.1016/0021-9290(90)90042-2 – ident: 2021042512083489000_REF31 doi: 10.1152/jappl.1998.85.2.764 – ident: 2021042512083489000_REF18 doi: 10.1152/jn.1994.71.2.817 – ident: 2021042512083489000_REF53 – ident: 2021042512083489000_REF54 doi: 10.1111/j.1558-5646.1996.tb02342.x – ident: 2021042512083489000_REF9 – ident: 2021042512083489000_REF49 doi: 10.1016/S0079-6123(06)65019-X – ident: 2021042512083489000_REF23 doi: 10.1242/jeb.202.23.3325 – ident: 2021042512083489000_REF45 doi: 10.1152/japplphysiol.00643.2002 – ident: 2021042512083489000_REF3 doi: 10.1113/jphysiol.1993.sp019498 – ident: 2021042512083489000_REF36 doi: 10.1007/978-1-4613-9030-5_37 – ident: 2021042512083489000_REF26 doi: 10.1242/jeb.01177 – ident: 2021042512083489000_REF12 doi: 10.2307/3545777 – ident: 2021042512083489000_REF52 doi: 10.1123/mcj.6.2.183 – ident: 2021042512083489000_REF42 doi: 10.1016/j.gaitpost.2006.07.003 – ident: 2021042512083489000_REF43 doi: 10.1002/mus.20852 – ident: 2021042512083489000_REF24 doi: 10.1002/jmor.1051410102 – ident: 2021042512083489000_REF10 doi: 10.1152/jn.2000.83.5.2931 – ident: 2021042512083489000_REF6 doi: 10.1007/s00221-007-1066-1 |
SSID | ssj0000654 |
Score | 2.2369483 |
Snippet | Biomechanics and neurophysiology studies suggest whole limb function to be an important locomotor control parameter. Inverted pendulum and mass-spring models... Biomechanics and neurophysiology studies suggest whole limb function to be an important locomotor control parameter. Inverted pendulum and mass-spring models... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 3511 |
SubjectTerms | Animals Biomechanical Phenomena - physiology Cats Extremities - innervation Extremities - physiology Joints - innervation Joints - physiology Locomotion - physiology Muscle, Skeletal - innervation Muscle, Skeletal - physiology Nerve Regeneration - physiology Peripheral Nerve Injuries |
Title | Whole limb kinematics are preferentially conserved over individual joint kinematics after peripheral nerve injury |
URI | https://www.ncbi.nlm.nih.gov/pubmed/19837893 https://www.proquest.com/docview/734090528 https://pubmed.ncbi.nlm.nih.gov/PMC2762878 |
Volume | 212 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bi9QwFA7jiuCLeHe8EdAXKV3bNL09LqIMCqKwi_tWmjSDXbud0W0fZn-Av9tzkrRp1xFUBsrQNCn0-3p6TnvOdwh5WUXVOk9F4kdZzHyexcIXMld-kEgVAqlzJnWW78dkdcLfn8ani8XPSdZS34lDebm3ruR_UIV9gCtWyf4DsuOisAP-A76wBYRh-1cYf8Hmtl5TnwvvG3iLWn31wsNcrq1tHwL3b9PsMLcc376Cc4kZm17tqrDONnXbzWbrpuGof6wFBxqvxYkw5ayfV09PXNlZmwAr6zTJGzDmRNsVf9XXI8f6nR06Qm1-1-ULlUGbyyFR2FWgAWthwOQ1TRUBxrcWuS3f0w8dY2k5fjsOjZbkYIpZyCac-9R5pnraGlf85rnX6oObgVZficMAIm4jrT2Bf3uu8Q9zFM83_RivaGwPQ9fIdQbhBtrLD5-zyRM95lbaFk712p1IS86aqXO_5rdg5WrO7cSJOb5NblnI6JGh0h2yUO1dcsP0I93dI981oSgSijpKUCAUnROKjoSiSCjqCEU1oWazkVDUEYpqQlFDqPvk5N3b4zcr3_bk8CXPws4vlYpi3ECgzgQ456UKA5HFXILrmoRCpfGa5WuIeyGU5yJTaOOrSIJJEFj6GD0gB-2mVY8IrZgKSvglIqh4wJJSwmpiHSYyFQoe1EvyariihbSC9dg3pSkwcAUgCgCiMEAsyYvx2K2Radl7FB2AKcCK4qexslWb_qJIIx7kQcyyJXlocHLLWICXJJ0hOB6AAu3zkbb-qoXaGXgaWZo9_uOaT8hNd3M8JQfdj149Aye3E881A38BcEuwSA |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Whole+limb+kinematics+are+preferentially+conserved+over+individual+joint+kinematics+after+peripheral+nerve+injury&rft.jtitle=Journal+of+experimental+biology&rft.au=Chang%2C+Young-Hui&rft.au=Auyang%2C+Arick+G&rft.au=Scholz%2C+John+P&rft.au=Nichols%2C+T+Richard&rft.date=2009-11-01&rft.eissn=1477-9145&rft.volume=212&rft.issue=Pt+21&rft.spage=3511&rft_id=info:doi/10.1242%2Fjeb.033886&rft_id=info%3Apmid%2F19837893&rft.externalDocID=19837893 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-0949&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-0949&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-0949&client=summon |