Whole limb kinematics are preferentially conserved over individual joint kinematics after peripheral nerve injury

Biomechanics and neurophysiology studies suggest whole limb function to be an important locomotor control parameter. Inverted pendulum and mass-spring models greatly reduce the complexity of the legs and predict the dynamics of locomotion, but do not address how numerous limb elements are coordinate...

Full description

Saved in:
Bibliographic Details
Published inJournal of experimental biology Vol. 212; no. 21; pp. 3511 - 3521
Main Authors Chang, Young-Hui, Auyang, Arick G., Scholz, John P., Nichols, T. Richard
Format Journal Article
LanguageEnglish
Published England Company of Biologists 01.11.2009
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Biomechanics and neurophysiology studies suggest whole limb function to be an important locomotor control parameter. Inverted pendulum and mass-spring models greatly reduce the complexity of the legs and predict the dynamics of locomotion, but do not address how numerous limb elements are coordinated to achieve such simple behavior. As a first step, we hypothesized whole limb kinematics were of primary importance and would be preferentially conserved over individual joint kinematics after neuromuscular injury. We used a well-established peripheral nerve injury model of cat ankle extensor muscles to generate two experimental injury groups with a predictable time course of temporary paralysis followed by complete muscle self-reinnervation. Mean trajectories of individual joint kinematics were altered as a result of deficits after injury. By contrast, mean trajectories of limb orientation and limb length remained largely invariant across all animals, even with paralyzed ankle extensor muscles, suggesting changes in mean joint angles were coordinated as part of a long-term compensation strategy to minimize change in whole limb kinematics. Furthermore, at each measurement stage (pre-injury,paralytic and self-reinnervated) step-by-step variance of individual joint kinematics was always significantly greater than that of limb orientation. Our results suggest joint angle combinations are coordinated and selected to stabilize whole limb kinematics against short-term natural step-by-step deviations as well as long-term, pathological deviations created by injury. This may represent a fundamental compensation principle allowing animals to adapt to changing conditions with minimal effect on overall locomotor function.
AbstractList Biomechanics and neurophysiology studies suggest whole limb function to be an important locomotor control parameter. Inverted pendulum and mass-spring models greatly reduce the complexity of the legs and predict the dynamics of locomotion, but do not address how numerous limb elements are coordinated to achieve such simple behavior. As a first step, we hypothesized whole limb kinematics were of primary importance and would be preferentially conserved over individual joint kinematics after neuromuscular injury. We used a well-established peripheral nerve injury model of cat ankle extensor muscles to generate two experimental injury groups with a predictable time course of temporary paralysis followed by complete muscle self-reinnervation. Mean trajectories of individual joint kinematics were altered as a result of deficits after injury. By contrast, mean trajectories of limb orientation and limb length remained largely invariant across all animals, even with paralyzed ankle extensor muscles, suggesting changes in mean joint angles were coordinated as part of a long-term compensation strategy to minimize change in whole limb kinematics. Furthermore, at each measurement stage (pre-injury, paralytic and self-reinnervated) step-by-step variance of individual joint kinematics was always significantly greater than that of limb orientation. Our results suggest joint angle combinations are coordinated and selected to stabilize whole limb kinematics against short-term natural step-by-step deviations as well as long-term, pathological deviations created by injury. This may represent a fundamental compensation principle allowing animals to adapt to changing conditions with minimal effect on overall locomotor function.Biomechanics and neurophysiology studies suggest whole limb function to be an important locomotor control parameter. Inverted pendulum and mass-spring models greatly reduce the complexity of the legs and predict the dynamics of locomotion, but do not address how numerous limb elements are coordinated to achieve such simple behavior. As a first step, we hypothesized whole limb kinematics were of primary importance and would be preferentially conserved over individual joint kinematics after neuromuscular injury. We used a well-established peripheral nerve injury model of cat ankle extensor muscles to generate two experimental injury groups with a predictable time course of temporary paralysis followed by complete muscle self-reinnervation. Mean trajectories of individual joint kinematics were altered as a result of deficits after injury. By contrast, mean trajectories of limb orientation and limb length remained largely invariant across all animals, even with paralyzed ankle extensor muscles, suggesting changes in mean joint angles were coordinated as part of a long-term compensation strategy to minimize change in whole limb kinematics. Furthermore, at each measurement stage (pre-injury, paralytic and self-reinnervated) step-by-step variance of individual joint kinematics was always significantly greater than that of limb orientation. Our results suggest joint angle combinations are coordinated and selected to stabilize whole limb kinematics against short-term natural step-by-step deviations as well as long-term, pathological deviations created by injury. This may represent a fundamental compensation principle allowing animals to adapt to changing conditions with minimal effect on overall locomotor function.
Biomechanics and neurophysiology studies suggest whole limb function to be an important locomotor control parameter. Inverted pendulum and mass-spring models greatly reduce the complexity of the legs and predict the dynamics of locomotion, but do not address how numerous limb elements are coordinated to achieve such simple behavior. As a first step, we hypothesized whole limb kinematics were of primary importance and would be preferentially conserved over individual joint kinematics after neuromuscular injury. We used a well-established peripheral nerve injury model of cat ankle extensor muscles to generate two experimental injury groups with a predictable time course of temporary paralysis followed by complete muscle self-reinnervation. Mean trajectories of individual joint kinematics were altered as a result of deficits after injury. By contrast, mean trajectories of limb orientation and limb length remained largely invariant across all animals, even with paralyzed ankle extensor muscles, suggesting changes in mean joint angles were coordinated as part of a long-term compensation strategy to minimize change in whole limb kinematics. Furthermore, at each measurement stage (pre-injury, paralytic and self-reinnervated) step-by-step variance of individual joint kinematics was always significantly greater than that of limb orientation. Our results suggest joint angle combinations are coordinated and selected to stabilize whole limb kinematics against short-term natural step-by-step deviations as well as long-term, pathological deviations created by injury. This may represent a fundamental compensation principle allowing animals to adapt to changing conditions with minimal effect on overall locomotor function.
Biomechanics and neurophysiology studies suggest whole limb function to be an important locomotor control parameter. Inverted pendulum and mass-spring models greatly reduce the complexity of the legs and predict the dynamics of locomotion, but do not address how numerous limb elements are coordinated to achieve such simple behavior. As a first step, we hypothesized whole limb kinematics were of primary importance and would be preferentially conserved over individual joint kinematics after neuromuscular injury. We used a well-established peripheral nerve injury model of cat ankle extensor muscles to generate two experimental injury groups with a predictable time course of temporary paralysis followed by complete muscle self-reinnervation. Mean trajectories of individual joint kinematics were altered as a result of deficits after injury. By contrast, mean trajectories of limb orientation and limb length remained largely invariant across all animals, even with paralyzed ankle extensor muscles, suggesting changes in mean joint angles were coordinated as part of a long-term compensation strategy to minimize change in whole limb kinematics. Furthermore, at each measurement stage (pre-injury, paralytic and self-reinnervated) step-by-step variance of individual joint kinematics was always significantly greater than that of limb orientation. Our results suggest joint angle combinations are coordinated and selected to stabilize whole limb kinematics against short-term natural step-by-step deviations as well as long-term, pathological deviations created by injury. This may represent a fundamental compensation principle allowing animals to adapt to changing conditions with minimal effect on overall locomotor function.
Author Nichols, T. Richard
Scholz, John P.
Auyang, Arick G.
Chang, Young-Hui
AuthorAffiliation 1 Department of Physiology, Emory University School of Medicine, Atlanta, GA 30322 USA
2 School of Applied Physiology, Georgia Institute of Technology, Atlanta, GA 30332-0356, USA
3 Department of Physical Therapy, University of Delaware, Newark, DE 19716, USA
AuthorAffiliation_xml – name: 2 School of Applied Physiology, Georgia Institute of Technology, Atlanta, GA 30332-0356, USA
– name: 3 Department of Physical Therapy, University of Delaware, Newark, DE 19716, USA
– name: 1 Department of Physiology, Emory University School of Medicine, Atlanta, GA 30322 USA
Author_xml – sequence: 1
  givenname: Young-Hui
  surname: Chang
  fullname: Chang, Young-Hui
  organization: Department of Physiology, Emory University School of Medicine, Atlanta, GA 30322 USA
– sequence: 2
  givenname: Arick G.
  surname: Auyang
  fullname: Auyang, Arick G.
  organization: School of Applied Physiology, Georgia Institute of Technology, Atlanta, GA 30332-0356, USA
– sequence: 3
  givenname: John P.
  surname: Scholz
  fullname: Scholz, John P.
  organization: Department of Physical Therapy, University of Delaware, Newark, DE 19716,USA
– sequence: 4
  givenname: T. Richard
  surname: Nichols
  fullname: Nichols, T. Richard
  organization: Department of Physiology, Emory University School of Medicine, Atlanta, GA 30322 USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/19837893$$D View this record in MEDLINE/PubMed
BookMark eNptkU9rFTEUxYNU7Gt14weQ2QnCtPk7k2wEKWqFQjeWLkMmc8eXZyaZJjMP3rc3w6vailkkgfzOuTfnnqGTEAMg9JbgC0I5vdxBd4EZk7J5gTaEt22tCBcnaIMxpTVWXJ2is5x3uKxG8FfolCjJWqnYBj3cb6OHyruxq366AKOZnc2VSVBNCQZIEGZnvD9UNoYMaQ99FfeQKhd6t3f9Yny1iy7Mz9TDXIgJkpu2kAoRVmGR7JZ0eI1eDsZnePN4nqO7L5-_X13XN7dfv119uqktl2SuDQAT60aloh3B5U5wJwW3TcMa0kErBqoGIbCkkncSBCOqZ5b1Q0dbTNk5-nj0nZZuhN6Wj5RW9JTcaNJBR-P085fgtvpH3GvaNlS2shi8fzRI8WGBPOvRZQvemwBxybplHCss6Eq-e1rqT43fMRfgwxGwKeZccv2LYL3OUJcZ6uMMC4z_ga2bS7BxbdP5_0l-AfsAomA
CitedBy_id crossref_primary_10_1016_j_zool_2023_126076
crossref_primary_10_1242_jeb_102640
crossref_primary_10_1002_jor_25306
crossref_primary_10_12688_f1000research_2_158_v1
crossref_primary_10_1113_JP283291
crossref_primary_10_1152_jn_01097_2010
crossref_primary_10_12688_f1000research_2_158_v2
crossref_primary_10_1038_srep17619
crossref_primary_10_1152_jn_00663_2013
crossref_primary_10_7554_eLife_38215
crossref_primary_10_3389_fnhum_2021_777776
crossref_primary_10_1242_jeb_061937
crossref_primary_10_1152_jn_00699_2011
crossref_primary_10_1242_jeb_245199
crossref_primary_10_1002_cne_24244
crossref_primary_10_1016_j_jbiomech_2014_04_037
crossref_primary_10_1152_jn_00335_2016
crossref_primary_10_1080_00222895_2013_815151
crossref_primary_10_1152_jn_00565_2015
crossref_primary_10_1152_jn_00946_2012
crossref_primary_10_1080_10407413_2012_726179
crossref_primary_10_1016_j_bbr_2011_08_021
crossref_primary_10_3389_fnhum_2022_944638
crossref_primary_10_1152_jn_00661_2017
crossref_primary_10_1007_s00221_010_2424_y
crossref_primary_10_1088_1748_3190_ad5129
crossref_primary_10_1016_j_humov_2013_02_004
crossref_primary_10_1097_JPO_0000000000000006
crossref_primary_10_1186_1743_0003_11_142
crossref_primary_10_1242_jeb_051508
crossref_primary_10_1242_jeb_195172
crossref_primary_10_1186_s12984_021_00860_0
crossref_primary_10_1080_00222895_2014_914885
crossref_primary_10_1002_ima_22317
crossref_primary_10_1371_journal_pone_0069429
crossref_primary_10_1093_pm_pnaa206
crossref_primary_10_1098_rsbl_2013_0484
crossref_primary_10_1038_s41598_024_53616_w
crossref_primary_10_1242_jeb_244629
crossref_primary_10_1016_j_jneumeth_2009_10_017
crossref_primary_10_1113_JP275532
crossref_primary_10_1113_jphysiol_2011_210518
crossref_primary_10_1007_s00221_013_3708_9
crossref_primary_10_1159_000371543
crossref_primary_10_1016_j_jbiomech_2020_109761
crossref_primary_10_1159_000371542
crossref_primary_10_2490_jjrmc_58_121
crossref_primary_10_1152_jn_00246_2014
crossref_primary_10_1002_cne_22446
crossref_primary_10_1113_JP287448
crossref_primary_10_7554_eLife_38371
crossref_primary_10_1142_S0219519414500651
crossref_primary_10_1242_bio_028852
crossref_primary_10_1155_2021_6613029
crossref_primary_10_1152_jn_00756_2013
crossref_primary_10_7554_eLife_53908
crossref_primary_10_1016_j_semcdb_2021_04_016
crossref_primary_10_1242_jeb_237073
crossref_primary_10_1152_jn_00129_2016
crossref_primary_10_1152_jn_00887_2011
crossref_primary_10_1007_s40846_019_00490_x
Cites_doi 10.1152/jn.00718.2002
10.2307/3545669
10.1016/j.conb.2008.01.002
10.1007/s00221-003-1786-9
10.1249/00003677-199900270-00010
10.1152/jn.00719.2002
10.1123/mcj.9.1.75
10.1162/neco.2008.01-08-698
10.1152/jn.00833.2002
10.1113/jphysiol.1993.sp019499
10.1152/jn.1999.81.2.467
10.1126/science.258.5086.1348
10.1152/ajpregu.1977.233.5.R243
10.1007/s00221-008-1582-7
10.1007/s002210050738
10.1007/s00221-004-1850-0
10.1111/j.1749-6632.1998.tb09101.x
10.1152/jn.1993.70.5.1787
10.1152/jn.2000.83.5.2946
10.1152/jn.00706.2005
10.1038/nature04113
10.1016/0021-9290(89)90224-8
10.1088/1741-2560/4/3/009
10.1152/jn.2000.84.5.2709
10.1113/jphysiol.1989.sp017544
10.1152/jn.1993.69.1.282
10.1113/jphysiol.2007.146605
10.1242/jeb.199.4.801
10.1007/s00221-007-0938-8
10.1002/cne.20678
10.1007/s00221-009-1868-4
10.1016/0021-9290(93)90010-C
10.1152/jn.2001.86.4.2102
10.1152/jn.1991.65.3.648
10.1016/0021-9290(90)90042-2
10.1152/jappl.1998.85.2.764
10.1152/jn.1994.71.2.817
10.1111/j.1558-5646.1996.tb02342.x
10.1016/S0079-6123(06)65019-X
10.1242/jeb.202.23.3325
10.1152/japplphysiol.00643.2002
10.1113/jphysiol.1993.sp019498
10.1007/978-1-4613-9030-5_37
10.1242/jeb.01177
10.2307/3545777
10.1123/mcj.6.2.183
10.1016/j.gaitpost.2006.07.003
10.1002/mus.20852
10.1002/jmor.1051410102
10.1152/jn.2000.83.5.2931
10.1007/s00221-007-1066-1
ContentType Journal Article
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1242/jeb.033886
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE

CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1477-9145
EndPage 3521
ExternalDocumentID PMC2762878
19837893
10_1242_jeb_033886
Genre Research Support, U.S. Gov't, Non-P.H.S
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NINDS NIH HHS
  grantid: NS050880-05
– fundername: NIAMS NIH HHS
  grantid: R21 AR054760
– fundername: NIAMS NIH HHS
  grantid: AR054760-01
– fundername: NINDS NIH HHS
  grantid: NS043893-01A1
– fundername: NICHD NIH HHS
  grantid: HD32571-06A1
– fundername: NINDS NIH HHS
  grantid: F32 NS043893
GroupedDBID ---
-DZ
-~X
0R~
186
18M
2WC
34G
39C
4.4
53G
5GY
5RE
5VS
6TJ
AAFWJ
AAYXX
ABDNZ
ABPPZ
ABRJW
ACGFS
ACIWK
ACNCT
ACPRK
ADBBV
ADVGF
ADXHL
AEILP
AENEX
AETEA
AFRAH
AGCDD
AGGIJ
ALMA_UNASSIGNED_HOLDINGS
BAWUL
BTFSW
C1A
CITATION
CJ0
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
F9R
GX1
H13
HZ~
H~9
INIJC
KQ8
N9A
O9-
OHT
OK1
P2P
PQQKQ
RCB
RHI
RXW
S10
SJN
TAE
TN5
TR2
TWZ
UKR
UPT
W8F
WH7
WOQ
XJT
XSW
YQT
YR2
YVO
YZZ
ZCA
ZY4
~02
.55
.GJ
3O-
AAUTI
AAYJJ
ABJNI
ACPVT
ACYGS
AFFNX
AI.
CGR
CUY
CVF
ECM
EIF
MVM
NPM
UBC
VH1
X7M
XOL
ZGI
ZXP
7X8
5PM
ID FETCH-LOGICAL-c481t-aee35aee32892b105ae10b854c66361be75f29f5508284b8e5319d3c3dfb27023
ISSN 0022-0949
1477-9145
IngestDate Thu Aug 21 18:32:59 EDT 2025
Fri Jul 11 08:16:39 EDT 2025
Sat May 31 02:10:51 EDT 2025
Thu Apr 24 22:58:03 EDT 2025
Tue Jul 01 01:57:40 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 21
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c481t-aee35aee32892b105ae10b854c66361be75f29f5508284b8e5319d3c3dfb27023
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
We would like to give special thanks to Thom Abelew, Andrea Burgess, Jinger Gottschall, Clotilde Huyghues-Despointes, Melissa Miller, Bin Nguyen, Kyla Ross, and David Spinner for their invaluable assistance in collecting, digitizing and analyzing the data for this study. We would also like to thank Teresa Snow for her statistics advice, Thomas Roberts for help with the knee triangulation technique and the members of the Comparative Neuromechanics Laboratory for their helpful comments on this manuscript. This work was supported in part by NIH AR054760-01 (to Y.H.C.), NIH NS043893-01A1 (to Y.H.C.), NIH HD32571-06A1 (to T.R.N.) and NSF 0078127 and NIH NS050880-05 (to J.P.S.). Deposited in PMC for release after 12 months.
Author for correspondence (yh.chang@ap.gatech.edu)
Present address: School of Applied Physiology, Georgia Institute of Technology, Atlanta, GA 30332-0356, USA
OpenAccessLink https://journals.biologists.com/jeb/article-pdf/212/21/3511/1268117/3511.pdf
PMID 19837893
PQID 734090528
PQPubID 23479
PageCount 11
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_2762878
proquest_miscellaneous_734090528
pubmed_primary_19837893
crossref_primary_10_1242_jeb_033886
crossref_citationtrail_10_1242_jeb_033886
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2009-11-01
PublicationDateYYYYMMDD 2009-11-01
PublicationDate_xml – month: 11
  year: 2009
  text: 2009-11-01
  day: 01
PublicationDecade 2000
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Journal of experimental biology
PublicationTitleAlternate J Exp Biol
PublicationYear 2009
Publisher Company of Biologists
Publisher_xml – name: Company of Biologists
References 2021042512083489000_REF29
2021042512083489000_REF26
2021042512083489000_REF25
2021042512083489000_REF28
2021042512083489000_REF27
2021042512083489000_REF22
2021042512083489000_REF21
2021042512083489000_REF24
2021042512083489000_REF23
2021042512083489000_REF20
2021042512083489000_REF19
2021042512083489000_REF18
2021042512083489000_REF15
2021042512083489000_REF14
2021042512083489000_REF17
2021042512083489000_REF16
2021042512083489000_REF11
2021042512083489000_REF55
2021042512083489000_REF10
2021042512083489000_REF54
2021042512083489000_REF13
2021042512083489000_REF57
2021042512083489000_REF12
2021042512083489000_REF56
2021042512083489000_REF51
2021042512083489000_REF50
2021042512083489000_REF53
2021042512083489000_REF52
2021042512083489000_REF48
2021042512083489000_REF47
2021042512083489000_REF49
2021042512083489000_REF44
2021042512083489000_REF43
2021042512083489000_REF46
2021042512083489000_REF45
2021042512083489000_REF40
2021042512083489000_REF42
2021042512083489000_REF41
2021042512083489000_REF9
2021042512083489000_REF6
2021042512083489000_REF5
2021042512083489000_REF8
2021042512083489000_REF7
2021042512083489000_REF37
2021042512083489000_REF36
2021042512083489000_REF39
2021042512083489000_REF38
2021042512083489000_REF2
2021042512083489000_REF33
2021042512083489000_REF1
2021042512083489000_REF32
2021042512083489000_REF4
2021042512083489000_REF35
2021042512083489000_REF3
2021042512083489000_REF34
2021042512083489000_REF31
2021042512083489000_REF30
References_xml – ident: 2021042512083489000_REF27
  doi: 10.1152/jn.00718.2002
– ident: 2021042512083489000_REF25
  doi: 10.2307/3545669
– ident: 2021042512083489000_REF50
  doi: 10.1016/j.conb.2008.01.002
– ident: 2021042512083489000_REF46
  doi: 10.1007/s00221-003-1786-9
– ident: 2021042512083489000_REF40
  doi: 10.1249/00003677-199900270-00010
– ident: 2021042512083489000_REF28
  doi: 10.1152/jn.00719.2002
– ident: 2021042512083489000_REF51
  doi: 10.1123/mcj.9.1.75
– ident: 2021042512083489000_REF29
– ident: 2021042512083489000_REF35
  doi: 10.1162/neco.2008.01-08-698
– ident: 2021042512083489000_REF19
– ident: 2021042512083489000_REF55
  doi: 10.1152/jn.00833.2002
– ident: 2021042512083489000_REF4
  doi: 10.1113/jphysiol.1993.sp019499
– ident: 2021042512083489000_REF39
  doi: 10.1152/jn.1999.81.2.467
– ident: 2021042512083489000_REF11
  doi: 10.1126/science.258.5086.1348
– ident: 2021042512083489000_REF15
  doi: 10.1152/ajpregu.1977.233.5.R243
– ident: 2021042512083489000_REF2
  doi: 10.1007/s00221-008-1582-7
– ident: 2021042512083489000_REF44
  doi: 10.1007/s002210050738
– ident: 2021042512083489000_REF30
  doi: 10.1007/s00221-004-1850-0
– ident: 2021042512083489000_REF57
– ident: 2021042512083489000_REF5
  doi: 10.1111/j.1749-6632.1998.tb09101.x
– ident: 2021042512083489000_REF16
  doi: 10.1152/jn.1993.70.5.1787
– ident: 2021042512083489000_REF47
– ident: 2021042512083489000_REF8
  doi: 10.1152/jn.2000.83.5.2946
– ident: 2021042512083489000_REF32
  doi: 10.1152/jn.00706.2005
– ident: 2021042512083489000_REF48
  doi: 10.1038/nature04113
– ident: 2021042512083489000_REF7
  doi: 10.1016/0021-9290(89)90224-8
– ident: 2021042512083489000_REF13
  doi: 10.1088/1741-2560/4/3/009
– ident: 2021042512083489000_REF1
  doi: 10.1152/jn.2000.84.5.2709
– ident: 2021042512083489000_REF38
  doi: 10.1113/jphysiol.1989.sp017544
– ident: 2021042512083489000_REF33
  doi: 10.1152/jn.1993.69.1.282
– ident: 2021042512083489000_REF20
  doi: 10.1113/jphysiol.2007.146605
– ident: 2021042512083489000_REF41
  doi: 10.1242/jeb.199.4.801
– ident: 2021042512083489000_REF34
  doi: 10.1007/s00221-007-0938-8
– ident: 2021042512083489000_REF21
  doi: 10.1002/cne.20678
– ident: 2021042512083489000_REF56
  doi: 10.1007/s00221-009-1868-4
– ident: 2021042512083489000_REF22
  doi: 10.1016/0021-9290(93)90010-C
– ident: 2021042512083489000_REF14
  doi: 10.1152/jn.2001.86.4.2102
– ident: 2021042512083489000_REF17
  doi: 10.1152/jn.1991.65.3.648
– ident: 2021042512083489000_REF37
  doi: 10.1016/0021-9290(90)90042-2
– ident: 2021042512083489000_REF31
  doi: 10.1152/jappl.1998.85.2.764
– ident: 2021042512083489000_REF18
  doi: 10.1152/jn.1994.71.2.817
– ident: 2021042512083489000_REF53
– ident: 2021042512083489000_REF54
  doi: 10.1111/j.1558-5646.1996.tb02342.x
– ident: 2021042512083489000_REF9
– ident: 2021042512083489000_REF49
  doi: 10.1016/S0079-6123(06)65019-X
– ident: 2021042512083489000_REF23
  doi: 10.1242/jeb.202.23.3325
– ident: 2021042512083489000_REF45
  doi: 10.1152/japplphysiol.00643.2002
– ident: 2021042512083489000_REF3
  doi: 10.1113/jphysiol.1993.sp019498
– ident: 2021042512083489000_REF36
  doi: 10.1007/978-1-4613-9030-5_37
– ident: 2021042512083489000_REF26
  doi: 10.1242/jeb.01177
– ident: 2021042512083489000_REF12
  doi: 10.2307/3545777
– ident: 2021042512083489000_REF52
  doi: 10.1123/mcj.6.2.183
– ident: 2021042512083489000_REF42
  doi: 10.1016/j.gaitpost.2006.07.003
– ident: 2021042512083489000_REF43
  doi: 10.1002/mus.20852
– ident: 2021042512083489000_REF24
  doi: 10.1002/jmor.1051410102
– ident: 2021042512083489000_REF10
  doi: 10.1152/jn.2000.83.5.2931
– ident: 2021042512083489000_REF6
  doi: 10.1007/s00221-007-1066-1
SSID ssj0000654
Score 2.2369483
Snippet Biomechanics and neurophysiology studies suggest whole limb function to be an important locomotor control parameter. Inverted pendulum and mass-spring models...
Biomechanics and neurophysiology studies suggest whole limb function to be an important locomotor control parameter. Inverted pendulum and mass-spring models...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 3511
SubjectTerms Animals
Biomechanical Phenomena - physiology
Cats
Extremities - innervation
Extremities - physiology
Joints - innervation
Joints - physiology
Locomotion - physiology
Muscle, Skeletal - innervation
Muscle, Skeletal - physiology
Nerve Regeneration - physiology
Peripheral Nerve Injuries
Title Whole limb kinematics are preferentially conserved over individual joint kinematics after peripheral nerve injury
URI https://www.ncbi.nlm.nih.gov/pubmed/19837893
https://www.proquest.com/docview/734090528
https://pubmed.ncbi.nlm.nih.gov/PMC2762878
Volume 212
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bi9QwFA7jiuCLeHe8EdAXKV3bNL09LqIMCqKwi_tWmjSDXbud0W0fZn-Av9tzkrRp1xFUBsrQNCn0-3p6TnvOdwh5WUXVOk9F4kdZzHyexcIXMld-kEgVAqlzJnWW78dkdcLfn8ani8XPSdZS34lDebm3ruR_UIV9gCtWyf4DsuOisAP-A76wBYRh-1cYf8Hmtl5TnwvvG3iLWn31wsNcrq1tHwL3b9PsMLcc376Cc4kZm17tqrDONnXbzWbrpuGof6wFBxqvxYkw5ayfV09PXNlZmwAr6zTJGzDmRNsVf9XXI8f6nR06Qm1-1-ULlUGbyyFR2FWgAWthwOQ1TRUBxrcWuS3f0w8dY2k5fjsOjZbkYIpZyCac-9R5pnraGlf85rnX6oObgVZficMAIm4jrT2Bf3uu8Q9zFM83_RivaGwPQ9fIdQbhBtrLD5-zyRM95lbaFk712p1IS86aqXO_5rdg5WrO7cSJOb5NblnI6JGh0h2yUO1dcsP0I93dI981oSgSijpKUCAUnROKjoSiSCjqCEU1oWazkVDUEYpqQlFDqPvk5N3b4zcr3_bk8CXPws4vlYpi3ECgzgQ456UKA5HFXILrmoRCpfGa5WuIeyGU5yJTaOOrSIJJEFj6GD0gB-2mVY8IrZgKSvglIqh4wJJSwmpiHSYyFQoe1EvyariihbSC9dg3pSkwcAUgCgCiMEAsyYvx2K2Radl7FB2AKcCK4qexslWb_qJIIx7kQcyyJXlocHLLWICXJJ0hOB6AAu3zkbb-qoXaGXgaWZo9_uOaT8hNd3M8JQfdj149Aye3E881A38BcEuwSA
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Whole+limb+kinematics+are+preferentially+conserved+over+individual+joint+kinematics+after+peripheral+nerve+injury&rft.jtitle=Journal+of+experimental+biology&rft.au=Chang%2C+Young-Hui&rft.au=Auyang%2C+Arick+G&rft.au=Scholz%2C+John+P&rft.au=Nichols%2C+T+Richard&rft.date=2009-11-01&rft.eissn=1477-9145&rft.volume=212&rft.issue=Pt+21&rft.spage=3511&rft_id=info:doi/10.1242%2Fjeb.033886&rft_id=info%3Apmid%2F19837893&rft.externalDocID=19837893
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-0949&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-0949&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-0949&client=summon