Exonic splice regulation imposes strong selection at synonymous sites
What proportion of coding sequence nucleotides have roles in splicing, and how strong is the selection that maintains them? Despite a large body of research into exonic splice regulatory signals, these questions have not been answered. This is because, to our knowledge, previous investigations have...
Saved in:
Published in | Genome research Vol. 28; no. 10; pp. 1442 - 1454 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
Cold Spring Harbor Laboratory Press
01.10.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | What proportion of coding sequence nucleotides have roles in splicing, and how strong is the selection that maintains them? Despite a large body of research into exonic splice regulatory signals, these questions have not been answered. This is because, to our knowledge, previous investigations have not explicitly disentangled the frequency of splice regulatory elements from the strength of the evolutionary constraint under which they evolve. Current data are consistent both with a scenario of weak and diffuse constraint, enveloping large swaths of sequence, as well as with well-defined pockets of strong purifying selection. In the former case, natural selection on exonic splice enhancers (ESEs) might primarily act as a slight modifier of codon usage bias. In the latter, mutations that disrupt ESEs are likely to have large fitness and, potentially, clinical effects. To distinguish between these scenarios, we used several different methods to determine the distribution of selection coefficients for new mutations within ESEs. The analyses converged to suggest that ∼15%-20% of fourfold degenerate sites are part of functional ESEs. Most of these sites are under strong evolutionary constraint. Therefore, exonic splice regulation does not simply impose a weak bias that gently nudges coding sequence evolution in a particular direction. Rather, the selection to preserve these motifs is a strong force that severely constrains the evolution of a substantial proportion of coding nucleotides. Thus synonymous mutations that disrupt ESEs should be considered as a potentially common cause of single-locus genetic disorders. |
---|---|
AbstractList | What proportion of coding sequence nucleotides have roles in splicing, and how strong is the selection that maintains them? Despite a large body of research into exonic splice regulatory signals, these questions have not been answered. This is because, to our knowledge, previous investigations have not explicitly disentangled the frequency of splice regulatory elements from the strength of the evolutionary constraint under which they evolve. Current data are consistent both with a scenario of weak and diffuse constraint, enveloping large swaths of sequence, as well as with well-defined pockets of strong purifying selection. In the former case, natural selection on exonic splice enhancers (ESEs) might primarily act as a slight modifier of codon usage bias. In the latter, mutations that disrupt ESEs are likely to have large fitness and, potentially, clinical effects. To distinguish between these scenarios, we used several different methods to determine the distribution of selection coefficients for new mutations within ESEs. The analyses converged to suggest that ∼15%-20% of fourfold degenerate sites are part of functional ESEs. Most of these sites are under strong evolutionary constraint. Therefore, exonic splice regulation does not simply impose a weak bias that gently nudges coding sequence evolution in a particular direction. Rather, the selection to preserve these motifs is a strong force that severely constrains the evolution of a substantial proportion of coding nucleotides. Thus synonymous mutations that disrupt ESEs should be considered as a potentially common cause of single-locus genetic disorders. What proportion of coding sequence nucleotides have roles in splicing, and how strong is the selection that maintains them? Despite a large body of research into exonic splice regulatory signals, these questions have not been answered. This is because, to our knowledge, previous investigations have not explicitly disentangled the frequency of splice regulatory elements from the strength of the evolutionary constraint under which they evolve. Current data are consistent both with a scenario of weak and diffuse constraint, enveloping large swaths of sequence, as well as with well-defined pockets of strong purifying selection. In the former case, natural selection on exonic splice enhancers (ESEs) might primarily act as a slight modifier of codon usage bias. In the latter, mutations that disrupt ESEs are likely to have large fitness and, potentially, clinical effects. To distinguish between these scenarios, we used several different methods to determine the distribution of selection coefficients for new mutations within ESEs. The analyses converged to suggest that ∼15%-20% of fourfold degenerate sites are part of functional ESEs. Most of these sites are under strong evolutionary constraint. Therefore, exonic splice regulation does not simply impose a weak bias that gently nudges coding sequence evolution in a particular direction. Rather, the selection to preserve these motifs is a strong force that severely constrains the evolution of a substantial proportion of coding nucleotides. Thus synonymous mutations that disrupt ESEs should be considered as a potentially common cause of single-locus genetic disorders.What proportion of coding sequence nucleotides have roles in splicing, and how strong is the selection that maintains them? Despite a large body of research into exonic splice regulatory signals, these questions have not been answered. This is because, to our knowledge, previous investigations have not explicitly disentangled the frequency of splice regulatory elements from the strength of the evolutionary constraint under which they evolve. Current data are consistent both with a scenario of weak and diffuse constraint, enveloping large swaths of sequence, as well as with well-defined pockets of strong purifying selection. In the former case, natural selection on exonic splice enhancers (ESEs) might primarily act as a slight modifier of codon usage bias. In the latter, mutations that disrupt ESEs are likely to have large fitness and, potentially, clinical effects. To distinguish between these scenarios, we used several different methods to determine the distribution of selection coefficients for new mutations within ESEs. The analyses converged to suggest that ∼15%-20% of fourfold degenerate sites are part of functional ESEs. Most of these sites are under strong evolutionary constraint. Therefore, exonic splice regulation does not simply impose a weak bias that gently nudges coding sequence evolution in a particular direction. Rather, the selection to preserve these motifs is a strong force that severely constrains the evolution of a substantial proportion of coding nucleotides. Thus synonymous mutations that disrupt ESEs should be considered as a potentially common cause of single-locus genetic disorders. |
Author | Hurst, Laurence D Savisaar, Rosina |
AuthorAffiliation | The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, United Kingdom |
AuthorAffiliation_xml | – name: The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, United Kingdom |
Author_xml | – sequence: 1 givenname: Rosina surname: Savisaar fullname: Savisaar, Rosina organization: The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, United Kingdom – sequence: 2 givenname: Laurence D surname: Hurst fullname: Hurst, Laurence D organization: The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, United Kingdom |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30143596$$D View this record in MEDLINE/PubMed |
BookMark | eNpdkUtLxDAUhYMoPkaXbqXgxk01adI8NoIM4wMEN7oOmcxtzdAmY9KK8--Njoq6Si7n43DuPQdo2wcPCB0TfE4IJhdtPK8oVUrlUWyhfVIzVdaMq-38x1KWCtdkDx2ktMQYUyblLtqjmDBaK76PZrO34J0t0qpzFooI7diZwQVfuH4VEqQiDTH4tkjQgf0UzFCkdU6x7sOYZTdAOkQ7jekSHH29E_R0PXuc3pb3Dzd306v70jJJhtIwuuA1NljU0mBqbcW5yXmhwWKOpW2ExXMigNkFq7htCDBeCWoJVA1XFdAJutz4rsZ5DwsLfoim06voehPXOhin_yrePes2vGpOuJKSZoOzL4MYXkZIg-5dstB1xkPeRldY5WMKoXhGT_-hyzBGn9fTFaFcKlUzlqlyQ9kYUorQ_IQhWH8UpNuoNwXlUWT-5PcGP_R3I_QdSHmOrg |
CitedBy_id | crossref_primary_10_1016_j_cell_2019_02_032 crossref_primary_10_1038_s41467_019_10489_2 crossref_primary_10_3390_ijms23031863 crossref_primary_10_1016_j_ajhg_2022_10_016 crossref_primary_10_1186_s13059_023_02966_1 crossref_primary_10_1038_s41467_020_16673_z crossref_primary_10_1093_molbev_msaa188 crossref_primary_10_1093_molbev_msad179 crossref_primary_10_1002_ntls_20220058 crossref_primary_10_3390_biomedicines9050526 crossref_primary_10_1016_j_ajhg_2020_05_011 crossref_primary_10_1038_s41477_019_0589_3 crossref_primary_10_1093_molbev_msz203 crossref_primary_10_1093_nar_gkac270 crossref_primary_10_1093_gbe_evaa044 crossref_primary_10_1101_gr_241315_118 crossref_primary_10_1128_aac_01390_23 crossref_primary_10_1038_s41576_023_00686_7 crossref_primary_10_1534_genetics_119_302542 crossref_primary_10_1186_s13059_023_03144_z crossref_primary_10_3390_genes11080903 crossref_primary_10_1371_journal_pone_0268321 crossref_primary_10_1002_humu_24091 crossref_primary_10_1016_j_xhgg_2024_100262 crossref_primary_10_1002_wrna_1679 crossref_primary_10_1073_pnas_2023575118 crossref_primary_10_1186_s12881_020_01121_y crossref_primary_10_1093_nar_gkab750 crossref_primary_10_1093_molbev_msz299 |
Cites_doi | 10.1093/molbev/msv234 10.1371/journal.pgen.1003527 10.1093/molbev/msy054 10.1534/genetics.117.300323 10.1093/nar/gks1205 10.1002/art.38952 10.1371/journal.pgen.1004592 10.1038/nrg.2015.3 10.1016/j.cell.2014.01.051 10.1073/pnas.0803230105 10.1534/genetics.116.188102 10.1007/PL00006256 10.1093/gbe/evu210 10.1093/nar/gku1010 10.1093/bioinformatics/btq671 10.1093/molbev/msm104 10.1101/gr.139758.112 10.1101/gr.118638.110 10.1093/bib/bbq072 10.1101/gr.097857.109 10.7554/eLife.02028 10.1002/wrna.1142 10.1261/rna.043893.113 10.1093/molbev/msj035 10.1093/bioinformatics/btq033 10.1371/journal.pgen.1002395 10.1016/j.gene.2004.11.035 10.1186/gb-2013-14-1-r1 10.1073/pnas.0500436102 10.1093/molbev/msh039 10.1093/nar/gkh834 10.1093/bioinformatics/btr330 10.1093/genetics/159.3.1191 10.1093/molbev/msg147 10.1126/science.1243490 10.1016/j.cell.2004.11.010 10.1093/genetics/139.2.1067 10.1371/journal.pgen.1004697 10.1371/journal.pbio.0050014 10.1371/journal.pgen.1000083 10.1371/journal.pone.0018067 10.1073/pnas.1720576115 10.1016/j.jtbi.2005.10.020 10.1126/science.1254806 10.1093/bioinformatics/btp163 10.1534/genetics.107.080663 10.1007/s00239-015-9719-3 10.1093/nar/gnh176 10.1534/genetics.111.128355 10.1093/molbev/msu323 10.1038/nrg2146 10.1109/MCSE.2010.145 10.1073/pnas.87.12.4692 10.1073/pnas.0510638103 10.1093/hmg/ddi350 10.1007/s00239-005-0055-x 10.1016/j.neuron.2016.02.024 10.1016/S0968-0004(00)01549-8 10.1261/rna.2017210 10.1371/journal.pbio.0020268 10.1016/0092-8674(86)90343-0 10.1186/1471-2164-7-67 10.1073/pnas.1101135108 10.1534/genetics.111.131730 10.1534/genetics.116.197145 10.1093/molbev/msu409 10.1016/j.cell.2014.08.011 10.1126/science.1073774 10.1534/genetics.106.057570 10.1007/s00239-005-0273-2 10.1146/annurev-biochem-060614-034316 10.1073/pnas.0502300102 10.1002/humu.23283 10.1007/s00439-017-1798-3 10.1534/genetics.105.047217 10.1073/pnas.0704922104 10.1186/gb-2008-9-2-r29 10.1016/j.semcdb.2014.03.010 10.1093/molbev/msm100 10.1093/nar/gkq009 10.1016/j.molcel.2006.05.008 10.1016/j.bbrc.2004.07.144 10.1093/molbev/msw018 10.1101/gad.7.3.407 10.1101/gad.1195304 10.1186/gb4150 10.1093/molbev/mst019 10.1101/106476 10.1101/gad.286404 10.1038/ng.3837 10.1016/j.cell.2004.12.035 10.1093/molbev/msp219 10.1093/molbev/msv251 10.1101/gr.119628.110 10.1101/gr.070268.107 10.1007/s00239-013-9555-2 10.1093/nar/13.15.5591 10.1534/genetics.112.148023 10.1073/pnas.1833064100 |
ContentType | Journal Article |
Copyright | 2018 Savisaar and Hurst; Published by Cold Spring Harbor Laboratory Press. Copyright Cold Spring Harbor Laboratory Press Oct 2018 2018 |
Copyright_xml | – notice: 2018 Savisaar and Hurst; Published by Cold Spring Harbor Laboratory Press. – notice: Copyright Cold Spring Harbor Laboratory Press Oct 2018 – notice: 2018 |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 7TM 8FD FR3 P64 RC3 7X8 5PM |
DOI | 10.1101/gr.233999.117 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Nucleic Acids Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Genetics Abstracts Engineering Research Database Technology Research Database Nucleic Acids Abstracts Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE CrossRef MEDLINE - Academic Genetics Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry Biology |
DocumentTitleAlternate | Savisaar and Hurst |
EISSN | 1549-5469 |
EndPage | 1454 |
ExternalDocumentID | 10_1101_gr_233999_117 30143596 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: European Research Council grantid: 669207 – fundername: Medical Research Council grantid: MR/L007215/1 – fundername: ; – fundername: ; grantid: ERC-2014-ADG 669207 – fundername: ; grantid: MR/L007215/1 |
GroupedDBID | --- .GJ 18M 29H 2WC 39C 4.4 53G 5GY 5RE 5VS AAYOK AAZTW ABDIX ABDNZ ACGFO ACYGS ADBBV ADNWM AEILP AENEX AI. ALMA_UNASSIGNED_HOLDINGS BAWUL BTFSW C1A CGR CS3 CUY CVF DIK DU5 E3Z EBS ECM EIF EJD F5P FRP GX1 H13 HYE IH2 K-O KQ8 MV1 NPM R.V RCX RHF RHI RNS RPM RXW SJN TAE TR2 VH1 W8F WOQ YKV ZCG ZGI ZXP AAYXX CITATION 7TM 8FD FR3 P64 RC3 7X8 5PM ABRJW |
ID | FETCH-LOGICAL-c481t-a43d650a0758a03cc266a549ef07b08cf7c0b17e4cd426cf1e46273c1e2f692e3 |
IEDL.DBID | RPM |
ISSN | 1088-9051 1549-5469 |
IngestDate | Tue Sep 17 21:21:19 EDT 2024 Wed Nov 13 16:48:26 EST 2024 Tue Nov 19 04:14:45 EST 2024 Thu Nov 21 20:46:35 EST 2024 Thu Nov 28 21:34:59 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
License | 2018 Savisaar and Hurst; Published by Cold Spring Harbor Laboratory Press. This article, published in Genome Research, is available under a Creative Commons License (Attribution 4.0 International), as described at http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c481t-a43d650a0758a03cc266a549ef07b08cf7c0b17e4cd426cf1e46273c1e2f692e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6169883/ |
PMID | 30143596 |
PQID | 2136899544 |
PQPubID | 2049132 |
PageCount | 13 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6169883 proquest_miscellaneous_2093397796 proquest_journals_2136899544 crossref_primary_10_1101_gr_233999_117 pubmed_primary_30143596 |
PublicationCentury | 2000 |
PublicationDate | 2018-10-01 |
PublicationDateYYYYMMDD | 2018-10-01 |
PublicationDate_xml | – month: 10 year: 2018 text: 2018-10-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | Genome research |
PublicationTitleAlternate | Genome Res |
PublicationYear | 2018 |
Publisher | Cold Spring Harbor Laboratory Press |
Publisher_xml | – name: Cold Spring Harbor Laboratory Press |
References | 2021111811174778000_28.10.1442.19 2021111811174778000_28.10.1442.18 2021111811174778000_28.10.1442.11 2021111811174778000_28.10.1442.99 2021111811174778000_28.10.1442.10 2021111811174778000_28.10.1442.98 2021111811174778000_28.10.1442.13 2021111811174778000_28.10.1442.12 2021111811174778000_28.10.1442.15 2021111811174778000_28.10.1442.14 2021111811174778000_28.10.1442.17 2021111811174778000_28.10.1442.16 2021111811174778000_28.10.1442.91 2021111811174778000_28.10.1442.93 2021111811174778000_28.10.1442.92 2021111811174778000_28.10.1442.95 2021111811174778000_28.10.1442.94 2021111811174778000_28.10.1442.97 2021111811174778000_28.10.1442.96 2021111811174778000_28.10.1442.1 2021111811174778000_28.10.1442.7 2021111811174778000_28.10.1442.8 2021111811174778000_28.10.1442.5 2021111811174778000_28.10.1442.6 2021111811174778000_28.10.1442.88 2021111811174778000_28.10.1442.9 2021111811174778000_28.10.1442.89 2021111811174778000_28.10.1442.82 2021111811174778000_28.10.1442.81 2021111811174778000_28.10.1442.84 2021111811174778000_28.10.1442.83 2021111811174778000_28.10.1442.86 2021111811174778000_28.10.1442.85 (2021111811174778000_28.10.1442.51) 2017; 38 2021111811174778000_28.10.1442.77 2021111811174778000_28.10.1442.76 2021111811174778000_28.10.1442.79 2021111811174778000_28.10.1442.78 (2021111811174778000_28.10.1442.75) 2017; 136 2021111811174778000_28.10.1442.71 2021111811174778000_28.10.1442.70 2021111811174778000_28.10.1442.73 2021111811174778000_28.10.1442.72 (2021111811174778000_28.10.1442.90) 2001; 159 (2021111811174778000_28.10.1442.74) 2017; 34 (2021111811174778000_28.10.1442.64) 2016; 82 (2021111811174778000_28.10.1442.3) 2015; 67 2021111811174778000_28.10.1442.66 2021111811174778000_28.10.1442.65 2021111811174778000_28.10.1442.67 2021111811174778000_28.10.1442.100 2021111811174778000_28.10.1442.69 2021111811174778000_28.10.1442.101 2021111811174778000_28.10.1442.102 2021111811174778000_28.10.1442.60 (2021111811174778000_28.10.1442.4) 2018; 35 2021111811174778000_28.10.1442.62 2021111811174778000_28.10.1442.61 2021111811174778000_28.10.1442.63 (2021111811174778000_28.10.1442.52) 2006; 172 (2021111811174778000_28.10.1442.80) 2017; 49 2021111811174778000_28.10.1442.55 2021111811174778000_28.10.1442.54 2021111811174778000_28.10.1442.57 2021111811174778000_28.10.1442.56 2021111811174778000_28.10.1442.59 2021111811174778000_28.10.1442.58 2021111811174778000_28.10.1442.50 2021111811174778000_28.10.1442.53 (2021111811174778000_28.10.1442.68) 2013; 76 (2021111811174778000_28.10.1442.87) 2016; 89 2021111811174778000_28.10.1442.44 2021111811174778000_28.10.1442.43 2021111811174778000_28.10.1442.46 2021111811174778000_28.10.1442.45 2021111811174778000_28.10.1442.48 2021111811174778000_28.10.1442.47 2021111811174778000_28.10.1442.49 2021111811174778000_28.10.1442.40 (2021111811174778000_28.10.1442.31) 2016; 2016 2021111811174778000_28.10.1442.42 2021111811174778000_28.10.1442.41 2021111811174778000_28.10.1442.33 2021111811174778000_28.10.1442.32 2021111811174778000_28.10.1442.35 2021111811174778000_28.10.1442.34 2021111811174778000_28.10.1442.37 2021111811174778000_28.10.1442.36 2021111811174778000_28.10.1442.39 2021111811174778000_28.10.1442.38 2021111811174778000_28.10.1442.30 2021111811174778000_28.10.1442.29 2021111811174778000_28.10.1442.22 2021111811174778000_28.10.1442.21 2021111811174778000_28.10.1442.24 2021111811174778000_28.10.1442.23 2021111811174778000_28.10.1442.26 2021111811174778000_28.10.1442.25 2021111811174778000_28.10.1442.28 (2021111811174778000_28.10.1442.2) 1995; 139 2021111811174778000_28.10.1442.20 (2021111811174778000_28.10.1442.27) 2013; 4 |
References_xml | – ident: 2021111811174778000_28.10.1442.1 doi: 10.1093/molbev/msv234 – ident: 2021111811174778000_28.10.1442.44 doi: 10.1371/journal.pgen.1003527 – volume: 35 start-page: 1536 year: 2018 ident: 2021111811174778000_28.10.1442.4 article-title: New methods for inferring the distribution of fitness effects for INDELs and SNPs publication-title: Mol Biol Evol doi: 10.1093/molbev/msy054 – ident: 2021111811174778000_28.10.1442.89 doi: 10.1534/genetics.117.300323 – ident: 2021111811174778000_28.10.1442.78 doi: 10.1093/nar/gks1205 – volume: 67 start-page: 423 year: 2015 ident: 2021111811174778000_28.10.1442.3 article-title: MicroRNA-602 and microRNA-608 regulate sonic hedgehog expression via target sites in the coding region in human chondrocytes publication-title: Arthritis Rheumatol doi: 10.1002/art.38952 – ident: 2021111811174778000_28.10.1442.5 doi: 10.1371/journal.pgen.1004592 – ident: 2021111811174778000_28.10.1442.77 doi: 10.1038/nrg.2015.3 – ident: 2021111811174778000_28.10.1442.85 doi: 10.1016/j.cell.2014.01.051 – ident: 2021111811174778000_28.10.1442.25 doi: 10.1073/pnas.0803230105 – ident: 2021111811174778000_28.10.1442.38 doi: 10.1534/genetics.116.188102 – volume: 2016 start-page: 1 year: 2016 ident: 2021111811174778000_28.10.1442.31 article-title: Ensembl comparative genomics resources publication-title: Database – ident: 2021111811174778000_28.10.1442.56 doi: 10.1007/PL00006256 – ident: 2021111811174778000_28.10.1442.7 doi: 10.1093/gbe/evu210 – ident: 2021111811174778000_28.10.1442.14 doi: 10.1093/nar/gku1010 – ident: 2021111811174778000_28.10.1442.47 doi: 10.1093/bioinformatics/btq671 – ident: 2021111811174778000_28.10.1442.58 doi: 10.1093/molbev/msm104 – ident: 2021111811174778000_28.10.1442.30 doi: 10.1101/gr.139758.112 – ident: 2021111811174778000_28.10.1442.84 doi: 10.1101/gr.118638.110 – ident: 2021111811174778000_28.10.1442.32 doi: 10.1093/bib/bbq072 – ident: 2021111811174778000_28.10.1442.62 doi: 10.1101/gr.097857.109 – ident: 2021111811174778000_28.10.1442.55 doi: 10.7554/eLife.02028 – volume: 4 start-page: 77 year: 2013 ident: 2021111811174778000_28.10.1442.27 article-title: Connections between chromatin signatures and splicing publication-title: Wiley Interdiscip Rev RNA doi: 10.1002/wrna.1142 – ident: 2021111811174778000_28.10.1442.9 doi: 10.1261/rna.043893.113 – ident: 2021111811174778000_28.10.1442.59 doi: 10.1093/molbev/msj035 – ident: 2021111811174778000_28.10.1442.65 doi: 10.1093/bioinformatics/btq033 – ident: 2021111811174778000_28.10.1442.97 doi: 10.1371/journal.pgen.1002395 – ident: 2021111811174778000_28.10.1442.43 doi: 10.1016/j.gene.2004.11.035 – volume: 34 start-page: 1110 year: 2017 ident: 2021111811174778000_28.10.1442.74 article-title: Both maintenance and avoidance of RNA-binding protein interactions constrain coding sequence evolution publication-title: Mol Biol Evol – ident: 2021111811174778000_28.10.1442.10 doi: 10.1186/gb-2013-14-1-r1 – ident: 2021111811174778000_28.10.1442.53 doi: 10.1073/pnas.0500436102 – ident: 2021111811174778000_28.10.1442.79 doi: 10.1093/molbev/msh039 – ident: 2021111811174778000_28.10.1442.17 doi: 10.1093/nar/gkh834 – ident: 2021111811174778000_28.10.1442.15 doi: 10.1093/bioinformatics/btr330 – volume: 159 start-page: 1191 year: 2001 ident: 2021111811174778000_28.10.1442.90 article-title: Codon usage bias covaries with expression breadth and the rate of synonymous evolution in humans, but this is not evidence for selection publication-title: Genetics doi: 10.1093/genetics/159.3.1191 – ident: 2021111811174778000_28.10.1442.57 doi: 10.1093/molbev/msg147 – ident: 2021111811174778000_28.10.1442.82 doi: 10.1126/science.1243490 – ident: 2021111811174778000_28.10.1442.93 doi: 10.1016/j.cell.2004.11.010 – volume: 139 start-page: 1067 year: 1995 ident: 2021111811174778000_28.10.1442.2 article-title: Inferring weak selection from patterns of polymorphism and divergence at “silent” sites in Drosophila DNA publication-title: Genetics doi: 10.1093/genetics/139.2.1067 – ident: 2021111811174778000_28.10.1442.67 doi: 10.1371/journal.pgen.1004697 – ident: 2021111811174778000_28.10.1442.60 doi: 10.1371/journal.pbio.0050014 – ident: 2021111811174778000_28.10.1442.8 doi: 10.1371/journal.pgen.1000083 – ident: 2021111811174778000_28.10.1442.24 doi: 10.1371/journal.pone.0018067 – ident: 2021111811174778000_28.10.1442.71 doi: 10.1073/pnas.1720576115 – ident: 2021111811174778000_28.10.1442.40 doi: 10.1016/j.jtbi.2005.10.020 – ident: 2021111811174778000_28.10.1442.100 doi: 10.1126/science.1254806 – ident: 2021111811174778000_28.10.1442.12 doi: 10.1093/bioinformatics/btp163 – ident: 2021111811174778000_28.10.1442.36 doi: 10.1534/genetics.107.080663 – volume: 82 start-page: 51 year: 2016 ident: 2021111811174778000_28.10.1442.64 article-title: Are synonymous sites in primates and rodents functionally constrained? publication-title: J Mol Evol doi: 10.1007/s00239-015-9719-3 – ident: 2021111811174778000_28.10.1442.23 doi: 10.1093/nar/gnh176 – ident: 2021111811174778000_28.10.1442.37 doi: 10.1534/genetics.111.128355 – ident: 2021111811174778000_28.10.1442.50 doi: 10.1093/molbev/msu323 – ident: 2021111811174778000_28.10.1442.19 doi: 10.1038/nrg2146 – ident: 2021111811174778000_28.10.1442.66 – ident: 2021111811174778000_28.10.1442.91 doi: 10.1109/MCSE.2010.145 – ident: 2021111811174778000_28.10.1442.86 doi: 10.1073/pnas.87.12.4692 – ident: 2021111811174778000_28.10.1442.13 doi: 10.1073/pnas.0510638103 – ident: 2021111811174778000_28.10.1442.101 doi: 10.1093/hmg/ddi350 – ident: 2021111811174778000_28.10.1442.11 doi: 10.1007/s00239-005-0055-x – volume: 89 start-page: 940 year: 2016 ident: 2021111811174778000_28.10.1442.87 article-title: De novo synonymous mutations in regulatory elements contribute to the genetic etiology of autism and schizophrenia publication-title: Neuron doi: 10.1016/j.neuron.2016.02.024 – ident: 2021111811174778000_28.10.1442.6 doi: 10.1016/S0968-0004(00)01549-8 – ident: 2021111811174778000_28.10.1442.48 doi: 10.1261/rna.2017210 – ident: 2021111811174778000_28.10.1442.22 doi: 10.1371/journal.pbio.0020268 – ident: 2021111811174778000_28.10.1442.69 doi: 10.1016/0092-8674(86)90343-0 – ident: 2021111811174778000_28.10.1442.41 doi: 10.1186/1471-2164-7-67 – ident: 2021111811174778000_28.10.1442.49 doi: 10.1073/pnas.1101135108 – ident: 2021111811174778000_28.10.1442.76 doi: 10.1534/genetics.111.131730 – ident: 2021111811174778000_28.10.1442.39 doi: 10.1534/genetics.116.197145 – ident: 2021111811174778000_28.10.1442.99 doi: 10.1093/molbev/msu409 – ident: 2021111811174778000_28.10.1442.26 doi: 10.1016/j.cell.2014.08.011 – ident: 2021111811174778000_28.10.1442.21 doi: 10.1126/science.1073774 – ident: 2021111811174778000_28.10.1442.20 doi: 10.1534/genetics.106.057570 – ident: 2021111811174778000_28.10.1442.33 doi: 10.1007/s00239-005-0273-2 – ident: 2021111811174778000_28.10.1442.45 doi: 10.1146/annurev-biochem-060614-034316 – ident: 2021111811174778000_28.10.1442.96 doi: 10.1073/pnas.0502300102 – volume: 38 start-page: 1336 year: 2017 ident: 2021111811174778000_28.10.1442.51 article-title: Investigating DNA-, RNA-, and protein-based features as a means to discriminate pathogenic synonymous variants publication-title: Hum Mutat doi: 10.1002/humu.23283 – volume: 136 start-page: 1059 year: 2017 ident: 2021111811174778000_28.10.1442.75 article-title: Estimating the prevalence of functional exonic splice regulatory information publication-title: Hum Genet doi: 10.1007/s00439-017-1798-3 – volume: 172 start-page: 1079 year: 2006 ident: 2021111811174778000_28.10.1442.52 article-title: Estimating selection on nonsynonymous mutations publication-title: Genetics doi: 10.1534/genetics.105.047217 – ident: 2021111811174778000_28.10.1442.88 doi: 10.1073/pnas.0704922104 – ident: 2021111811174778000_28.10.1442.94 doi: 10.1186/gb-2008-9-2-r29 – ident: 2021111811174778000_28.10.1442.16 doi: 10.1016/j.semcdb.2014.03.010 – ident: 2021111811174778000_28.10.1442.70 doi: 10.1093/molbev/msm100 – ident: 2021111811174778000_28.10.1442.92 doi: 10.1093/nar/gkq009 – ident: 2021111811174778000_28.10.1442.28 doi: 10.1016/j.molcel.2006.05.008 – ident: 2021111811174778000_28.10.1442.63 doi: 10.1016/j.bbrc.2004.07.144 – ident: 2021111811174778000_28.10.1442.73 doi: 10.1093/molbev/msw018 – ident: 2021111811174778000_28.10.1442.95 doi: 10.1101/gad.7.3.407 – ident: 2021111811174778000_28.10.1442.102 doi: 10.1101/gad.1195304 – ident: 2021111811174778000_28.10.1442.83 doi: 10.1186/gb4150 – ident: 2021111811174778000_28.10.1442.29 doi: 10.1093/molbev/mst019 – ident: 2021111811174778000_28.10.1442.54 doi: 10.1101/106476 – ident: 2021111811174778000_28.10.1442.72 doi: 10.1101/gad.286404 – volume: 49 start-page: 848 year: 2017 ident: 2021111811174778000_28.10.1442.80 article-title: Pathogenic variants that alter protein code often disrupt splicing publication-title: Nat Genet doi: 10.1038/ng.3837 – ident: 2021111811174778000_28.10.1442.46 doi: 10.1016/j.cell.2004.12.035 – ident: 2021111811174778000_28.10.1442.18 doi: 10.1093/molbev/msp219 – ident: 2021111811174778000_28.10.1442.98 doi: 10.1093/molbev/msv251 – ident: 2021111811174778000_28.10.1442.35 doi: 10.1101/gr.119628.110 – ident: 2021111811174778000_28.10.1442.34 doi: 10.1101/gr.070268.107 – volume: 76 start-page: 228 year: 2013 ident: 2021111811174778000_28.10.1442.68 article-title: Testing for natural selection in human exonic splicing regulators associated with evolutionary rate shifts publication-title: J Mol Evol doi: 10.1007/s00239-013-9555-2 – ident: 2021111811174778000_28.10.1442.81 doi: 10.1093/nar/13.15.5591 – ident: 2021111811174778000_28.10.1442.42 doi: 10.1534/genetics.112.148023 – ident: 2021111811174778000_28.10.1442.61 doi: 10.1073/pnas.1833064100 |
SSID | ssj0003488 |
Score | 2.472088 |
Snippet | What proportion of coding sequence nucleotides have roles in splicing, and how strong is the selection that maintains them? Despite a large body of research... |
SourceID | pubmedcentral proquest crossref pubmed |
SourceType | Open Access Repository Aggregation Database Index Database |
StartPage | 1442 |
SubjectTerms | Enhancer Elements, Genetic Enhancers Evolution Evolution, Molecular Exons Gene Expression Regulation Genetic disorders Humans Mutation Natural selection Nucleotide sequence Polymorphism, Genetic Regulation Regulatory sequences RNA Splice Sites RNA Splicing RNA, Messenger - genetics RNA, Messenger - metabolism Selection, Genetic Silent Mutation Splicing |
Title | Exonic splice regulation imposes strong selection at synonymous sites |
URI | https://www.ncbi.nlm.nih.gov/pubmed/30143596 https://www.proquest.com/docview/2136899544 https://www.proquest.com/docview/2093397796 https://pubmed.ncbi.nlm.nih.gov/PMC6169883 |
Volume | 28 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB61lYBeELQ8AqUyEuotu_EjjnMsq60KqIgDlXqLbGeyXYkNq80i0X_POIlXLdy4RbIjJzOTzDcPfwb44JTU3NssrXNdUoDiTWoElqmwrkbj8tzqsFH46qu-vFafb_KbPcjjXpi-ad-75aT9sZq0y9u-t3K98tPYJzb9djXTXJfGyOk-7JP7jSH6-PuVygz738gEAvnUjliTTxebiZDkkctQqjyExyGckHng67_vk_4Bmn_3S95zQBfP4OmIHNn58ITPYQ_bIzg-bylqXt2xM9b3cvZJ8iN49DFePZnFE92OYT7_HYhwWRdq1sg2wzH0pBi2XK1_dtixLiTGF6zrD8cJA3bLuruYIWCh0ty9gOuL-ffZZToeo5B6Zfg2tUrWhMMsgQNjM-k9-WRLYSE2WeEy45vCZ44XqHxN7to3HJUmUOM5ikaXAuVLOKCF8DUwXTY-TEGNThWI1rlcaJJLLuqyEU0CZ1GQ1Xpgy6j6KCPj1WJTDcIP_OIJnEQxV-NH01WCS20CP51K4P1umGQUahi2RXrRSoQMDGHWUifwatDKbqWozgSKB_raTQhU2g9HyMJ6Su3Rot78951v4ZCg1MCUy0_gYLv5he8IrmzdKQH1T19OeyP9A0dK7J0 |
link.rule.ids | 230,314,727,780,784,885,27924,27925,53791,53793 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFH8aQ7BdEGx8BAYYCe2WNrZjxz6OqlOBdeKwSbtFtuOUSjRUTZHYf89zElcb3LhFsiMn773k_d6Hfwb4aHMuqTNZWgmpMUBxKlXM65QZW3llhTAybBSeX8rZdf7lRtzsgYh7YbqmfWeXo-bHatQsv3e9leuVG8c-sfG3-URSqZXi4wfwUPBC0xikDz9gnqt-BxwaQaCf2lFr0vFiM2IcfbIOxcpDeBwCCi4CY_9dr_QP1Py7Y_KOCzp_Ck8G7EjO-md8Bnu-OYLjswbj5tUtOSVdN2eXJj-CR5_i1cEknul2DNPp70CFS9pQtfZk0x9Ej6ohy9X6Z-tb0obU-IK03fE4YcBsSXsbcwQk1Jrb53B9Pr2azNLhIIXU5YpuU5PzCpGYQXigTMadQ69sMDD0dVbYTLm6cJmlhc9dhQ7b1dTnEmGNo57VUjPPX8A-LuRfAZG6dmGKl97mhffGWsEkykWwStesTuA0CrJc93wZZRdnZLRcbMpe-IFhPIGTKOZy-GzaklEuVWCoyxP4sBtGGYUqhmk8vmjJQg4GUauWCbzstbJbKaozgeKevnYTApn2_RG0sY5Ue7Cp1_9953s4mF3NL8qLz5df38AhAqueN5eewP5288u_RfCyte86U_0DS2zu-Q |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB61IB6XikehoVCMVHHLJn7EcY502RV9gDgUiVtkO852pW662myl8u8Z57Fa2ltvkezIyXiS-ebhbwA-GsEltToOi0Rm6KBYFSrmspBpUzhlkkRLf1D49k7ePIgvj8njWquvpmjfmumg-jkbVNMfTW3lfGajvk4sur8dSiozpXg0L8roNWwmHJWsd9S7nzAXqj0Fh4rgKahW9Jo0miwGjKNdznzCche2vVPBE8_av26Z_oGbf1dNrpmh8R686fAjuWqfcx9eueoADq8q9J1nT-SSNBWdTaj8ALY-9Vc7w76v2yGMRn88HS6pfebakUXbjB63h0xn81-1q0ntw-MTUjctcvyAXpL6qY8TEJ9vrt_Cw3j0fXgTds0UQisUXYZa8ALRmEaIoHTMrUXLrNE5dGWcmljZMrWxoakTtkCjbUvqhERoY6ljpcyY40ewgQu5d0BkVlo_xUlnROqcNiZhEuWSsCIrWRnAZS_IfN5yZuSNrxHTfLLIW-F7lvEATnsx592nU-eMcqk8S50I4GI1jDLymQxdOXzRnPk4DCLXTAZw3O7KaqV-OwNIX-zXaoIn1H45gnrWEGt3enXy33eew_b99Tj_9vnu63vYRWzVUufSU9hYLn67M8QvS_Oh0dRnvTrwDA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exonic+splice+regulation+imposes+strong+selection+at+synonymous+sites&rft.jtitle=Genome+research&rft.au=Savisaar%2C+Rosina&rft.au=Hurst%2C+Laurence+D.&rft.date=2018-10-01&rft.issn=1088-9051&rft.eissn=1549-5469&rft.volume=28&rft.issue=10&rft.spage=1442&rft.epage=1454&rft_id=info:doi/10.1101%2Fgr.233999.117&rft.externalDBID=n%2Fa&rft.externalDocID=10_1101_gr_233999_117 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1088-9051&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1088-9051&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1088-9051&client=summon |