Detecting Slipping-Like Perturbations by Using Adaptive Oscillators
This study introduces a novel algorithm to detect unexpected slipping-like perturbations based on the comparison between actual leg joint angles and those predicted by a pool of adaptive oscillators. The approach grounds on the hypothesis that during postural transitions, the difference between thes...
Saved in:
Published in | Annals of biomedical engineering Vol. 43; no. 2; pp. 416 - 426 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Boston
Springer US
01.02.2015
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 0090-6964 1573-9686 1573-9686 |
DOI | 10.1007/s10439-014-1175-5 |
Cover
Abstract | This study introduces a novel algorithm to detect unexpected slipping-like perturbations based on the comparison between actual leg joint angles and those predicted by a pool of adaptive oscillators. The approach grounds on the hypothesis that during postural transitions, the difference between these datasets diverges and can early signal that the dynamic balance is challenged. To test this hypothesis, leg joint angles of twelve healthy young participants were recorded while undergoing four different perturbations delivered during steady locomotion. Joint angles were estimated after spanning the whole domain of the adaptive oscillator dynamics. Results confirmed that the implemented strategy allows to early detect a postural transition induced by a slipping-like perturbation: the best performance is represented by a mean detection time ranging between 150 and 250 ms and a low rate (lower than 10%) of false alarms. On the whole, the proposed approach is efficient even if it is based on a quite simple threshold-based algorithm. Moreover, it does not need any falling-based training before being implemented, is not computationally heavy, and is not subject dependent. Finally, since it is based on leg joint angles, it appears well suited to be implemented in lower-limb orthoses/prostheses already equipped with joint position sensors. |
---|---|
AbstractList | This study introduces a novel algorithm to detect unexpected slipping-like perturbations based on the comparison between actual leg joint angles and those predicted by a pool of adaptive oscillators. The approach grounds on the hypothesis that during postural transitions, the difference between these datasets diverges and can early signal that the dynamic balance is challenged. To test this hypothesis, leg joint angles of twelve healthy young participants were recorded while undergoing four different perturbations delivered during steady locomotion. Joint angles were estimated after spanning the whole domain of the adaptive oscillator dynamics. Results confirmed that the implemented strategy allows to early detect a postural transition induced by a slipping-like perturbation: the best performance is represented by a mean detection time ranging between 150 and 250 ms and a low rate (lower than 10%) of false alarms. On the whole, the proposed approach is efficient even if it is based on a quite simple threshold-based algorithm. Moreover, it does not need any falling-based training before being implemented, is not computationally heavy, and is not subject dependent. Finally, since it is based on leg joint angles, it appears well suited to be implemented in lower-limb orthoses/prostheses already equipped with joint position sensors. This study introduces a novel algorithm to detect unexpected slipping-like perturbations based on the comparison between actual leg joint angles and those predicted by a pool of adaptive oscillators. The approach grounds on the hypothesis that during postural transitions, the difference between these datasets diverges and can early signal that the dynamic balance is challenged. To test this hypothesis, leg joint angles of twelve healthy young participants were recorded while undergoing four different perturbations delivered during steady locomotion. Joint angles were estimated after spanning the whole domain of the adaptive oscillator dynamics. Results confirmed that the implemented strategy allows to early detect a postural transition induced by a slipping-like perturbation: the best performance is represented by a mean detection time ranging between 150 and 250 ms and a low rate (lower than 10%) of false alarms. On the whole, the proposed approach is efficient even if it is based on a quite simple threshold-based algorithm. Moreover, it does not need any falling-based training before being implemented, is not computationally heavy, and is not subject dependent. Finally, since it is based on leg joint angles, it appears well suited to be implemented in lower-limb orthoses/prostheses already equipped with joint position sensors. Issue Title: Special Issue: Rehabilitation Bioengineering This study introduces a novel algorithm to detect unexpected slipping-like perturbations based on the comparison between actual leg joint angles and those predicted by a pool of adaptive oscillators. The approach grounds on the hypothesis that during postural transitions, the difference between these datasets diverges and can early signal that the dynamic balance is challenged. To test this hypothesis, leg joint angles of twelve healthy young participants were recorded while undergoing four different perturbations delivered during steady locomotion. Joint angles were estimated after spanning the whole domain of the adaptive oscillator dynamics. Results confirmed that the implemented strategy allows to early detect a postural transition induced by a slipping-like perturbation: the best performance is represented by a mean detection time ranging between 150 and 250 ms and a low rate (lower than 10%) of false alarms. On the whole, the proposed approach is efficient even if it is based on a quite simple threshold-based algorithm. Moreover, it does not need any falling-based training before being implemented, is not computationally heavy, and is not subject dependent. Finally, since it is based on leg joint angles, it appears well suited to be implemented in lower-limb orthoses/prostheses already equipped with joint position sensors. This study introduces a novel algorithm to detect unexpected slipping-like perturbations based on the comparison between actual leg joint angles and those predicted by a pool of adaptive oscillators. The approach grounds on the hypothesis that during postural transitions, the difference between these datasets diverges and can early signal that the dynamic balance is challenged. To test this hypothesis, leg joint angles of twelve healthy young participants were recorded while undergoing four different perturbations delivered during steady locomotion. Joint angles were estimated after spanning the whole domain of the adaptive oscillator dynamics. Results confirmed that the implemented strategy allows to early detect a postural transition induced by a slipping-like perturbation: the best performance is represented by a mean detection time ranging between 150 and 250 ms and a low rate (lower than 10%) of false alarms. On the whole, the proposed approach is efficient even if it is based on a quite simple threshold-based algorithm. Moreover, it does not need any falling-based training before being implemented, is not computationally heavy, and is not subject dependent. Finally, since it is based on leg joint angles, it appears well suited to be implemented in lower-limb orthoses/prostheses already equipped with joint position sensors.This study introduces a novel algorithm to detect unexpected slipping-like perturbations based on the comparison between actual leg joint angles and those predicted by a pool of adaptive oscillators. The approach grounds on the hypothesis that during postural transitions, the difference between these datasets diverges and can early signal that the dynamic balance is challenged. To test this hypothesis, leg joint angles of twelve healthy young participants were recorded while undergoing four different perturbations delivered during steady locomotion. Joint angles were estimated after spanning the whole domain of the adaptive oscillator dynamics. Results confirmed that the implemented strategy allows to early detect a postural transition induced by a slipping-like perturbation: the best performance is represented by a mean detection time ranging between 150 and 250 ms and a low rate (lower than 10%) of false alarms. On the whole, the proposed approach is efficient even if it is based on a quite simple threshold-based algorithm. Moreover, it does not need any falling-based training before being implemented, is not computationally heavy, and is not subject dependent. Finally, since it is based on leg joint angles, it appears well suited to be implemented in lower-limb orthoses/prostheses already equipped with joint position sensors. |
Author | Tropea, Peppino Vitiello, Nicola Micera, Silvestro Martelli, Dario Aprigliano, Federica Monaco, Vito |
Author_xml | – sequence: 1 givenname: Peppino surname: Tropea fullname: Tropea, Peppino organization: The BioRobotics Institute, Scuola Superiore Sant’Anna – sequence: 2 givenname: Nicola surname: Vitiello fullname: Vitiello, Nicola organization: The BioRobotics Institute, Scuola Superiore Sant’Anna, Don Carlo Gnocchi Foundation – sequence: 3 givenname: Dario surname: Martelli fullname: Martelli, Dario organization: The BioRobotics Institute, Scuola Superiore Sant’Anna – sequence: 4 givenname: Federica surname: Aprigliano fullname: Aprigliano, Federica organization: The BioRobotics Institute, Scuola Superiore Sant’Anna – sequence: 5 givenname: Silvestro surname: Micera fullname: Micera, Silvestro organization: The BioRobotics Institute, Scuola Superiore Sant’Anna, Translational Neural Engineering Laboratory, Center for Neuroprosthetics and Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL) – sequence: 6 givenname: Vito surname: Monaco fullname: Monaco, Vito email: v.monaco@sssup.it organization: The BioRobotics Institute, Scuola Superiore Sant’Anna |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25377766$$D View this record in MEDLINE/PubMed |
BookMark | eNqN0U1rFDEYB_AgFbutfgAvMuDFS-zz5D3Hsr7CQoXa85CdZErq7MyYZIR-e7NuK1Kw9JQcfv_kSf4n5GicxkDIa4T3CKDPMoLglgIKiqgllc_ICqXm1CqjjsgKwAJVVoljcpLzDQCi4fIFOWaSa62VWpH1h1BCV-J43VwOcZ7rhm7ij9B8C6ksaetKnMbcbG-bq7xH597NJf4KzUXu4jC4MqX8kjzv3ZDDq7v1lFx9-vh9_YVuLj5_XZ9vaCcMFurAg0Db994EyY3nfqvR9MZIMBBc8MoLBtJYppnS1jjVMR-Mqgv32HF-St4dzp3T9HMJubS7mLtQpxjDtOQWldaWAWp8AlWCodBMPIFKI1Bzbip9-4DeTEsa65v3SgtrjIGq3typZbsLvp1T3Ll0295_egV4AF2ack6h_0sQ2n2x7aHYthbb7ottZc3oB5kulj_llOTi8GiSHZK53jJeh_TP0P8N_Qbcp7Oz |
CitedBy_id | crossref_primary_10_1186_s12984_022_01000_y crossref_primary_10_1016_j_gaitpost_2017_02_002 crossref_primary_10_1016_j_chaos_2022_111991 crossref_primary_10_1017_S0263574719000626 crossref_primary_10_3389_fnbot_2017_00014 crossref_primary_10_1016_j_jbiomech_2019_01_003 crossref_primary_10_1007_s10514_017_9641_1 crossref_primary_10_1152_jn_00844_2016 crossref_primary_10_3390_s19173713 crossref_primary_10_1038_srep46721 crossref_primary_10_3390_act8010010 crossref_primary_10_1016_j_medengphy_2023_103960 |
Cites_doi | 10.1093/ageing/30.suppl_4.3 10.1007/s00415-004-0276-8 10.1016/j.gaitpost.2011.11.016 10.1053/apmr.2001.24295 10.1007/s00391-012-0404-5 10.1371/journal.pone.0037062 10.1080/0014013031000139491 10.1016/0021-9290(90)90054-7 10.1115/1.3005147 10.1016/j.physd.2006.02.009 10.1109/TNSRE.2007.916282 10.1007/s11517-008-0327-x 10.1016/S0966-6362(02)00010-3 10.1016/j.jbiomech.2004.05.042 10.1109/TITB.2012.2198668 10.1682/JRRD.2007.11.0197 10.1371/journal.pone.0092037 10.1109/TNSRE.2011.2161888 10.1186/1743-0003-6-21 10.1016/j.gaitpost.2012.06.017 10.1016/S1388-2457(99)00300-4 10.1016/j.clinbiomech.2009.04.004 10.1186/1743-0003-9-51 10.1016/0167-9457(91)90046-Z 10.1113/jphysiol.1996.sp021539 10.1007/s00391-012-0403-6 10.1109/TBME.2013.2241434 10.1109/TITB.2012.2214786 |
ContentType | Journal Article |
Copyright | Biomedical Engineering Society 2014 Biomedical Engineering Society 2015 |
Copyright_xml | – notice: Biomedical Engineering Society 2014 – notice: Biomedical Engineering Society 2015 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 7X7 7XB 88E 8AO 8BQ 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO F28 FR3 FYUFA GHDGH GNUQQ H8D H8G HCIFZ JG9 JQ2 K9. KR7 L6V L7M LK8 L~C L~D M0S M1P M7P M7S P5Z P62 P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PTHSS 7X8 |
DOI | 10.1007/s10439-014-1175-5 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Database ProQuest Central Technology Collection ProQuest Natural Science Collection ProQuest One Community College ProQuest Central ANTE: Abstracts in New Technology & Engineering Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student Aerospace Database Copper Technical Reference Library SciTech Premium Collection Materials Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Biological Sciences Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ProQuest Health & Medical Collection ProQuest Medical Database Biological Science Database Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection Materials Business File ProQuest One Applied & Life Sciences ProQuest One Sustainability Engineered Materials Abstracts Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Engineering Database Aluminium Industry Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Ceramic Abstracts Biological Science Database ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central Aerospace Database Copper Technical Reference Library ProQuest Health & Medical Research Collection ProQuest Engineering Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest Medical Library Materials Science & Engineering Collection Corrosion Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE Solid State and Superconductivity Abstracts Engineering Research Database Materials Research Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering |
EISSN | 1573-9686 |
EndPage | 426 |
ExternalDocumentID | 3602338181 25377766 10_1007_s10439_014_1175_5 |
Genre | Research Support, Non-U.S. Gov't Journal Article Feature |
GroupedDBID | --- -4W -56 -5G -BR -DZ -EM -Y2 -~C -~X .86 .GJ .VR 06C 06D 0R~ 0VY 199 1N0 1SB 2.D 203 23M 28- 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3SX 3V. 4.4 406 408 409 40D 40E 53G 5GY 5QI 5RE 5VS 67N 67Z 6J9 6NX 78A 7X7 85S 88E 8AO 8FE 8FG 8FH 8FI 8FJ 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANXM AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABIPD ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABPLI ABQBU ABQSL ABSXP ABTAH ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACIHN ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACREN ACZOJ ADBBV ADHHG ADHIR ADIMF ADINQ ADJJI ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYOE ADYPR ADZKW AEAQA AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHIZS AHKAY AHMBA AHSBF AHYZX AI. AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKMHD ALIPV ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AZFZN B-. BA0 BBNVY BBWZM BDATZ BENPR BGLVJ BGNMA BHPHI BPHCQ BSONS BVXVI CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP EBD EBLON EBS EIOEI EJD EMOBN EN4 EPAXT ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC FYUFA G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMCUK HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ IMOTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW KPH L6V L7B LAK LK8 LLZTM M1P M4Y M7P M7S MA- MK~ ML~ N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 PF0 PQQKQ PROAC PSQYO PT4 PT5 PTHSS Q2X QOK QOR QOS R4E R89 R9I RHV RNI RNS ROL RPX RRX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3A S3B SAP SBL SBY SCLPG SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SV3 SZN T13 T16 TEORI TN5 TSG TSK TSV TUC TUS U2A U9L UG4 UKHRP UKR UOJIU UTJUX UZXMN VC2 VFIZW VH1 W23 W48 WH7 WJK WK6 WK8 YLTOR Z45 Z7R Z7S Z7U Z7V Z7W Z7X Z7Y Z7Z Z81 Z82 Z83 Z87 Z88 Z8M Z8N Z8O Z8R Z8T Z8V Z8W Z91 Z92 ZGI ZMTXR ZOVNA ZY4 ~EX ~KM AAPKM AAYXX ABBRH ABDBE ABFSG ACMFV ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT ABRTQ CGR CUY CVF ECM EIF NPM PJZUB PPXIY PQGLB 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 7XB 8BQ 8FD 8FK AZQEC DWQXO F28 FR3 GNUQQ H8D H8G JG9 JQ2 K9. KR7 L7M L~C L~D P64 PKEHL PQEST PQUKI 7X8 PUEGO |
ID | FETCH-LOGICAL-c481t-a0d0419ffd8e538d3db718f885080eaed6d4205892726798a6c2de866c23d1c33 |
IEDL.DBID | U2A |
ISSN | 0090-6964 1573-9686 |
IngestDate | Thu Sep 04 21:34:47 EDT 2025 Fri Sep 05 14:31:58 EDT 2025 Thu Sep 04 22:03:47 EDT 2025 Fri Jul 25 18:58:34 EDT 2025 Mon Jul 21 05:57:35 EDT 2025 Tue Jul 01 00:38:08 EDT 2025 Thu Apr 24 23:04:41 EDT 2025 Fri Feb 21 02:37:38 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Adaptive oscillators Joint angles Walking Pre-fall detection Perturbation Threshold algorithm |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c481t-a0d0419ffd8e538d3db718f885080eaed6d4205892726798a6c2de866c23d1c33 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://infoscience.epfl.ch/handle/20.500.14299/113244 |
PMID | 25377766 |
PQID | 1657498880 |
PQPubID | 54090 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_1677920171 proquest_miscellaneous_1664214724 proquest_miscellaneous_1658417338 proquest_journals_1657498880 pubmed_primary_25377766 crossref_primary_10_1007_s10439_014_1175_5 crossref_citationtrail_10_1007_s10439_014_1175_5 springer_journals_10_1007_s10439_014_1175_5 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20150200 2015-2-00 2015-Feb 20150201 |
PublicationDateYYYYMMDD | 2015-02-01 |
PublicationDate_xml | – month: 2 year: 2015 text: 20150200 |
PublicationDecade | 2010 |
PublicationPlace | Boston |
PublicationPlace_xml | – name: Boston – name: United States – name: New York |
PublicationSubtitle | The Journal of the Biomedical Engineering Society |
PublicationTitle | Annals of biomedical engineering |
PublicationTitleAbbrev | Ann Biomed Eng |
PublicationTitleAlternate | Ann Biomed Eng |
PublicationYear | 2015 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | Righetti, Buchli, Ijspeert (CR22) 2006; 216 Wu, Van Der Helm, Veeger, Makhsous, Van Roy, Anglin, Nagels, Karduna, McQuade, Wang, Werner, Buchholz (CR27) 2005; 38 Masud, Morris (CR17) 2001; 30 Lockhart, Woldstad, Smith (CR12) 2003; 46 CR15 Yu, Rhuma, Naqvi, Wang, Chambers (CR29) 2012; 16 Bagalà, Becker, Cappello, Chiari, Aminian, Hausdorff, Zijlstra, Klenk (CR1) 2012; 7 Mannini, Sabatini (CR13) 2012; 36 Stolze, Klebe, Zechlin, Baecker, Friege, Deuschl (CR25) 2004; 251 Ferber, Osternig, Woollacott, Wasielewski, Lee (CR7) 2002; 16 Whittington, Thelen (CR26) 2009; 131 CR2 Kangas, Vikman, Nyberg, Korpelainen, Lindblom, Jamsa (CR9) 2012; 35 CR3 CR6 CR5 Orendurff, Schoen, Bernatz, Segal, Klute (CR21) 2008; 45 Wu, Xue (CR28) 2008; 16 Zhang, D’Andrea, Nunnery, Kay, Huang (CR30) 2011; 19 Liu, Lockhart (CR11) 2014 CR24 CR23 CR20 Martelli, Monaco, Micera (CR16) 2011; 2011 Miller, Speechley, Deathe (CR19) 2001; 82 Bell, Pedersen, Brand (CR4) 1990; 23 Herr (CR8) 2009; 6 Mellone, Tacconi, Schwickert, Klenk, Becker, Chiari (CR18) 2012; 45 Martelli, Artoni, Monaco, Sabatini, Micera (CR14) 2014; 9 Lau, Tong, Zhu (CR10) 2008; 46 1175_CR15 AL Bell (1175_CR4) 1990; 23 H Herr (1175_CR8) 2009; 6 M Kangas (1175_CR9) 2012; 35 T Masud (1175_CR17) 2001; 30 F Bagalà (1175_CR1) 2012; 7 S Mellone (1175_CR18) 2012; 45 L Righetti (1175_CR22) 2006; 216 TE Lockhart (1175_CR12) 2003; 46 G Wu (1175_CR28) 2008; 16 BR Whittington (1175_CR26) 2009; 131 F Zhang (1175_CR30) 2011; 19 D Martelli (1175_CR14) 2014; 9 M Yu (1175_CR29) 2012; 16 G Wu (1175_CR27) 2005; 38 1175_CR23 1175_CR24 D Martelli (1175_CR16) 2011; 2011 H Stolze (1175_CR25) 2004; 251 R Ferber (1175_CR7) 2002; 16 HY Lau (1175_CR10) 2008; 46 MS Orendurff (1175_CR21) 2008; 45 J Liu (1175_CR11) 2014 1175_CR5 A Mannini (1175_CR13) 2012; 36 WC Miller (1175_CR19) 2001; 82 1175_CR6 1175_CR20 1175_CR2 1175_CR3 |
References_xml | – volume: 30 start-page: 3 year: 2001 end-page: 7 ident: CR17 article-title: Epidemiology of falls publication-title: Age Ageing doi: 10.1093/ageing/30.suppl_4.3 – volume: 251 start-page: 79 year: 2004 end-page: 84 ident: CR25 article-title: Falls in frequent neurological diseases–prevalence, risk factors and aetiology publication-title: J. Neurol. doi: 10.1007/s00415-004-0276-8 – volume: 35 start-page: 500 year: 2012 end-page: 505 ident: CR9 article-title: Comparison of real-life accidental falls in older people with experimental falls in middle-aged test subjects publication-title: Gait Posture doi: 10.1016/j.gaitpost.2011.11.016 – volume: 82 start-page: 1031 year: 2001 end-page: 1037 ident: CR19 article-title: The prevalence and risk factors of falling and fear of falling among lower extremity amputees publication-title: Arch. Phys. Med. Rehabil. doi: 10.1053/apmr.2001.24295 – volume: 45 start-page: 722 year: 2012 end-page: 727 ident: CR18 article-title: Smartphone-based solutions for fall detection and prevention: the FARSEEING approach publication-title: Z. Gerontol. Geriatr. doi: 10.1007/s00391-012-0404-5 – volume: 7 start-page: e37062 year: 2012 ident: CR1 article-title: Evaluation of accelerometer-based fall detection algorithms on real-world falls publication-title: PLoS One doi: 10.1371/journal.pone.0037062 – ident: CR2 – volume: 46 start-page: 1136 year: 2003 end-page: 1160 ident: CR12 article-title: Effects of age-related gait changes on the biomechanics of slips and falls publication-title: Ergonomics doi: 10.1080/0014013031000139491 – volume: 23 start-page: 617 year: 1990 end-page: 621 ident: CR4 article-title: A comparison of the accuracy of several hip center location prediction methods publication-title: J. Biomech. doi: 10.1016/0021-9290(90)90054-7 – volume: 131 start-page: 11013 year: 2009 ident: CR26 article-title: A simple mass-spring model with roller feet can induce the ground reactions observed in human walking publication-title: J. Biomech. Eng. doi: 10.1115/1.3005147 – ident: CR6 – ident: CR23 – volume: 216 start-page: 269 year: 2006 end-page: 281 ident: CR22 article-title: Dynamic Hebbian learning in adaptive frequency oscillators publication-title: Phys. D-Nonlinear Phenom. doi: 10.1016/j.physd.2006.02.009 – volume: 16 start-page: 178 year: 2008 end-page: 183 ident: CR28 article-title: Portable preimpact fall detector with inertial sensors publication-title: IEEE Trans. Neural. Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2007.916282 – volume: 46 start-page: 563 year: 2008 end-page: 573 ident: CR10 article-title: Support vector machine for classification of walking conditions using miniature kinematic sensors publication-title: Med. Biol. Eng. Comput. doi: 10.1007/s11517-008-0327-x – volume: 16 start-page: 238 year: 2002 end-page: 248 ident: CR7 article-title: Reactive balance adjustments to unexpected perturbations during human walking publication-title: Gait Posture doi: 10.1016/S0966-6362(02)00010-3 – ident: CR3 – ident: CR15 – volume: 38 start-page: 981 year: 2005 end-page: 992 ident: CR27 article-title: ISB recommendation on definitions of joint coordinate systems of various joints for the reporting of human joint motion-part II: shoulder, elbow, wrist and hand publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2004.05.042 – volume: 16 start-page: 1274 year: 2012 end-page: 1286 ident: CR29 article-title: A posture recognition based fall detection system for monitoring an elderly person in a smart home environment publication-title: IEEE Trans. Inf. Technol. Biomed. doi: 10.1109/TITB.2012.2198668 – volume: 45 start-page: 1077 year: 2008 end-page: 1089 ident: CR21 article-title: How humans walk: bout duration, steps per bout, and rest duration publication-title: J. Rehabil. Res. Dev. doi: 10.1682/JRRD.2007.11.0197 – volume: 9 start-page: e92037 year: 2014 ident: CR14 article-title: Pre-impact fall detection: optimal sensor positioning based on a machine learning paradigm publication-title: PLoS One doi: 10.1371/journal.pone.0092037 – volume: 19 start-page: 567 year: 2011 end-page: 577 ident: CR30 article-title: Towards design of a stumble detection system for artificial legs publication-title: IEEE Trans. Neural. Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2011.2161888 – ident: CR5 – volume: 6 start-page: 21 year: 2009 ident: CR8 article-title: Exoskeletons and orthoses: classification, design challenges and future directions publication-title: J. Neuroeng. Rehabil. doi: 10.1186/1743-0003-6-21 – volume: 36 start-page: 657 year: 2012 end-page: 661 ident: CR13 article-title: Gait phase detection and discrimination between walking-jogging activities using hidden Markov models applied to foot motion data from a gyroscope publication-title: Gait Posture doi: 10.1016/j.gaitpost.2012.06.017 – ident: CR24 – ident: CR20 – year: 2014 ident: CR11 article-title: Development and evaluation of a prior-to-impact fall event detection algorithm publication-title: IEEE Trans. Biomed. Eng. – volume: 2011 start-page: 5975404 year: 2011 ident: CR16 article-title: Detecting falls by analyzing angular momentum publication-title: IEEE Int. Conf. Rehabil. Robot. – volume: 19 start-page: 567 year: 2011 ident: 1175_CR30 publication-title: IEEE Trans. Neural. Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2011.2161888 – year: 2014 ident: 1175_CR11 publication-title: IEEE Trans. Biomed. Eng. – volume: 216 start-page: 269 year: 2006 ident: 1175_CR22 publication-title: Phys. D-Nonlinear Phenom. doi: 10.1016/j.physd.2006.02.009 – volume: 30 start-page: 3 year: 2001 ident: 1175_CR17 publication-title: Age Ageing doi: 10.1093/ageing/30.suppl_4.3 – volume: 46 start-page: 1136 year: 2003 ident: 1175_CR12 publication-title: Ergonomics doi: 10.1080/0014013031000139491 – ident: 1175_CR24 doi: 10.1016/S1388-2457(99)00300-4 – ident: 1175_CR20 doi: 10.1016/j.clinbiomech.2009.04.004 – volume: 36 start-page: 657 year: 2012 ident: 1175_CR13 publication-title: Gait Posture doi: 10.1016/j.gaitpost.2012.06.017 – ident: 1175_CR23 – ident: 1175_CR2 doi: 10.1186/1743-0003-9-51 – volume: 35 start-page: 500 year: 2012 ident: 1175_CR9 publication-title: Gait Posture doi: 10.1016/j.gaitpost.2011.11.016 – ident: 1175_CR6 doi: 10.1016/0167-9457(91)90046-Z – volume: 46 start-page: 563 year: 2008 ident: 1175_CR10 publication-title: Med. Biol. Eng. Comput. doi: 10.1007/s11517-008-0327-x – ident: 1175_CR5 doi: 10.1113/jphysiol.1996.sp021539 – ident: 1175_CR3 doi: 10.1007/s00391-012-0403-6 – volume: 45 start-page: 1077 year: 2008 ident: 1175_CR21 publication-title: J. Rehabil. Res. Dev. doi: 10.1682/JRRD.2007.11.0197 – volume: 251 start-page: 79 year: 2004 ident: 1175_CR25 publication-title: J. Neurol. doi: 10.1007/s00415-004-0276-8 – volume: 9 start-page: e92037 year: 2014 ident: 1175_CR14 publication-title: PLoS One doi: 10.1371/journal.pone.0092037 – volume: 131 start-page: 11013 year: 2009 ident: 1175_CR26 publication-title: J. Biomech. Eng. doi: 10.1115/1.3005147 – volume: 16 start-page: 238 year: 2002 ident: 1175_CR7 publication-title: Gait Posture doi: 10.1016/S0966-6362(02)00010-3 – ident: 1175_CR15 doi: 10.1109/TBME.2013.2241434 – volume: 16 start-page: 178 year: 2008 ident: 1175_CR28 publication-title: IEEE Trans. Neural. Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2007.916282 – volume: 16 start-page: 1274 year: 2012 ident: 1175_CR29 publication-title: IEEE Trans. Inf. Technol. Biomed. doi: 10.1109/TITB.2012.2214786 – volume: 6 start-page: 21 year: 2009 ident: 1175_CR8 publication-title: J. Neuroeng. Rehabil. doi: 10.1186/1743-0003-6-21 – volume: 2011 start-page: 5975404 year: 2011 ident: 1175_CR16 publication-title: IEEE Int. Conf. Rehabil. Robot. – volume: 45 start-page: 722 year: 2012 ident: 1175_CR18 publication-title: Z. Gerontol. Geriatr. doi: 10.1007/s00391-012-0404-5 – volume: 7 start-page: e37062 year: 2012 ident: 1175_CR1 publication-title: PLoS One doi: 10.1371/journal.pone.0037062 – volume: 38 start-page: 981 year: 2005 ident: 1175_CR27 publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2004.05.042 – volume: 23 start-page: 617 year: 1990 ident: 1175_CR4 publication-title: J. Biomech. doi: 10.1016/0021-9290(90)90054-7 – volume: 82 start-page: 1031 year: 2001 ident: 1175_CR19 publication-title: Arch. Phys. Med. Rehabil. doi: 10.1053/apmr.2001.24295 |
SSID | ssj0011835 |
Score | 2.1968894 |
Snippet | This study introduces a novel algorithm to detect unexpected slipping-like perturbations based on the comparison between actual leg joint angles and those... Issue Title: Special Issue: Rehabilitation Bioengineering This study introduces a novel algorithm to detect unexpected slipping-like perturbations based on the... |
SourceID | proquest pubmed crossref springer |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 416 |
SubjectTerms | Adult Algorithms Ankle Joint - physiology Biochemistry Biological and Medical Physics Biomedical and Life Sciences Biomedical Engineering and Bioengineering Biomedicine Biophysics Classical Mechanics Dynamics Female Grounds Hip Joint - physiology Humans Knee Joint - physiology Leg - physiology Male Oscillators Perturbation methods Position sensing Postural Balance - physiology Prostheses Prosthetics Surgical implants Walking - physiology Young Adult |
SummonAdditionalLinks | – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwEB4VKlVwQDwKhJdSiROV1djxKyeEaBeEoFRqkbhFju1UFWh3geXAv2cmj4UKsadIyTjxY-KZ8Wd_A7AftBEhF5aRL86kMpIVXlSsVrmLKgbLG7b9i5_69EqeXavrbsHtodtW2c-JzUQdRp7WyL9xje8pMF7LDsd3jLJGEbrapdCYg48cLQ3puR2cTFEEVNc2g0GBIVKhZY9qtkfn0BRjIC0ZkVUy9b9deuNsvgFKG_szWIalznFMj9qRXoEPcbgKi6_oBFfh00UHlK_B8fdI6ADeTn_fNhwMf9n5v5uY_or3aGSqdp0urZ7SZs9AehTcmCa-9BJNImoG5eD5DFeDH3-OT1mXL4F5afmEuSxkkhd1HWzEeSwQdTK3tbXohGXRxaCDFJRGUBhB4IvTXoRoNV7ywH2er8P8cDSMm5DqTPjausorF6QsvLM85oXFQkTo7mUCWd9bpe_IxCmnxW35QoNMHVxiBxOfuCpVAgfTIuOWSWOW8E4_BGX3Uz2ULyqQwJfpY_wdCONwwzh6bGSs5AYD71kydLpXGiFnyRhTCCITSmCjVYFprYXKjTFaJ_C114lXlXyvSVuzm7QNC_g51W4I34H5yf1j3EV_Z1LtNUr9DC3X98Q priority: 102 providerName: ProQuest |
Title | Detecting Slipping-Like Perturbations by Using Adaptive Oscillators |
URI | https://link.springer.com/article/10.1007/s10439-014-1175-5 https://www.ncbi.nlm.nih.gov/pubmed/25377766 https://www.proquest.com/docview/1657498880 https://www.proquest.com/docview/1658417338 https://www.proquest.com/docview/1664214724 https://www.proquest.com/docview/1677920171 |
Volume | 43 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT-MwEB7xkNByQMDuQnhUQeK0K0uJ41eOBVoQb8FW6p4ix3YQoioIyoF_zziPUgRU4hJLySRx7LFnJp_9DcCuFZLahCrifXHCuGQkNTQnBU-0486quGTbPzsXRz123Of9eh_3U7PavYEky5l6YrMbGk8MfRnx9JKEz8I8x9Ddj8YebY-hA9TRKm1BinFRKlgDZX72iPfG6IOH-QEdLY1OdxmWam8xbFfduwIzbrgKixMcgquwcFaj4z9h_8B5SABPh9eDknjhhpze3rnw0j2iZcmrn3Nh_hKWCwXCttUPfrYLL9AOojr4xDu_oNft_Ns_InWSBGKYikdERzZicVoUVjmcvKznS45VoRR6XpHTzgrLqM8dSCX1iIsWhlqnBBaJjU2S_Ia54f3QrUMoImoKpXPDtWUsNVrFLkkV3uRZ3A0LIGpaKzM1g7hPZDHI3riPfQNn2MCeRJxnPIA_41seKvqMacJbTRdk9Uh6ymKB-pNinB4FsDO-jGPAAxt66O6fSxnFYonR9jQZv6WXScqmyUiZUs8gFMBapQLjWlOeSCmFCOBvoxMTlfzqkza-Jb0JP_DtvFoUvgVzo8dnt40-zyhvwazsSzyq7mEL5tuH_086WO51zi-vWqX-vwIcU_ki |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bT9RAFD4hS-LlgSgqFFFroi-aie10bn0wBrlkkd2VKCS81enM1BjJ7gpLDH_K3-g5vSwY4r7x1KSdtnM51zlzvgPwyivNfcYNI1ucCakFyx0vWSUzG2TwJq3R9ocj1T8Wn07kyRL86XJh6FhlJxNrQe0njvbI36UKv5Ojv5Z8mP5iVDWKoqtdCY2GLA7C5W902c7f7-_g-r7mfG_3aLvP2qoCzAmTzphNfCLSvKq8CcjtngCGU1MZg6ZKEmzwygtOxfa45hSisMpxH4zCS-ZTRxugKPKXBWW09mD54-7o8Ms8boEM0tRMyNEpy5Xo4qhNsh4qf3TdBSN4TCb_1YQ3zNsbodla4-09gJXWVI23Gtp6CEthvAr3rwEYrsKdYRuafwTbO4HiEXg7_npaoz58Z4MfP0N8GM5QrZXNzmBcXsb1KYV4y9spidr4MyphpEWq-vMYjm9lLp9AbzwZh3WIVcJdZWzppPVC5M6aNGS5wZcIQt6JCJJutgrXwpdTFY3T4gp4mSa4wAkmBHNZyAjezF-ZNtgdixpvdktQtGx8XlwRXQQv54-RASmqYsdhclG3MSLV6OovakP5xEJzsaiN1jkn-KII1hoSmPeay0xrrVQEbzuauNbJ_w1pY_GQXsDd_tFwUAz2RwdP4R7-WjbH0TehNzu7CM_Q2pqVz1sSj-HbbXPVXwfbNVg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ba9RAFD6UCkUfitZbtNUR9EUZmkzmlgcppevS2osFLexbnMxMpFh213aL9K_56zwnl22luG99CiQnyVzOdc7MdwDeBm1EyIXl5ItzqYzkhRcVr1XuoorBZg3a_uGR3j2Rn0dqtAR_-rMwtK2y14mNog4TT2vkm5nG7xQYr6Wbdbct4ngw3Jr-4lRBijKtfTmNlkX249VvDN8uPu4NcK7fCTH89G1nl3cVBriXNptxl4ZUZkVdBxtR8gOBDWe2thbdljS6GHSQggrvCSMoXeG0FyFajZc8ZJ4WQ1H93zM5elUoS2Y0D_bQb2-Le6YFhmeFln1GtT22h24ABvGSE1AmV__axFuO7q0kbWP7hg9htXNa2XbLZY9gKY7X4MENKMM1WDnskvSPYWcQKTOBt9nXswb_4Qc_OP0Z2XE8RwNXtWuErLpizX4Fth3clJQu-4LmGLmS6v88gZM7GcmnsDyejONzYDoVvrau8soFKQvvbBbzwuJLBCbvZQJpP1ql74DMqZ7GWXkNwUwDXOIAE5a5KlUC7-evTFsUj0XE6_0UlJ1AX5TX7JfAm_ljFEXKr7hxnFw2NFZmBoP-RTR0slgaIRfRGFMIAjJK4FnLAvNWC5UbY7RO4EPPEzca-b8uvVjcpdewgrJUHuwd7b-E-_hn1e5LX4fl2fll3EC3a1a9avibwfe7Fqi_PdE4Hw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Detecting+Slipping-Like+Perturbations+by+Using+Adaptive+Oscillators&rft.jtitle=Annals+of+biomedical+engineering&rft.au=Tropea%2C+Peppino&rft.au=Vitiello%2C+Nicola&rft.au=Martelli%2C+Dario&rft.au=Aprigliano%2C+Federica&rft.date=2015-02-01&rft.issn=0090-6964&rft.eissn=1573-9686&rft.volume=43&rft.issue=2&rft.spage=416&rft.epage=426&rft_id=info:doi/10.1007%2Fs10439-014-1175-5&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0090-6964&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0090-6964&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0090-6964&client=summon |