Detecting Slipping-Like Perturbations by Using Adaptive Oscillators

This study introduces a novel algorithm to detect unexpected slipping-like perturbations based on the comparison between actual leg joint angles and those predicted by a pool of adaptive oscillators. The approach grounds on the hypothesis that during postural transitions, the difference between thes...

Full description

Saved in:
Bibliographic Details
Published inAnnals of biomedical engineering Vol. 43; no. 2; pp. 416 - 426
Main Authors Tropea, Peppino, Vitiello, Nicola, Martelli, Dario, Aprigliano, Federica, Micera, Silvestro, Monaco, Vito
Format Journal Article
LanguageEnglish
Published Boston Springer US 01.02.2015
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0090-6964
1573-9686
1573-9686
DOI10.1007/s10439-014-1175-5

Cover

Abstract This study introduces a novel algorithm to detect unexpected slipping-like perturbations based on the comparison between actual leg joint angles and those predicted by a pool of adaptive oscillators. The approach grounds on the hypothesis that during postural transitions, the difference between these datasets diverges and can early signal that the dynamic balance is challenged. To test this hypothesis, leg joint angles of twelve healthy young participants were recorded while undergoing four different perturbations delivered during steady locomotion. Joint angles were estimated after spanning the whole domain of the adaptive oscillator dynamics. Results confirmed that the implemented strategy allows to early detect a postural transition induced by a slipping-like perturbation: the best performance is represented by a mean detection time ranging between 150 and 250 ms and a low rate (lower than 10%) of false alarms. On the whole, the proposed approach is efficient even if it is based on a quite simple threshold-based algorithm. Moreover, it does not need any falling-based training before being implemented, is not computationally heavy, and is not subject dependent. Finally, since it is based on leg joint angles, it appears well suited to be implemented in lower-limb orthoses/prostheses already equipped with joint position sensors.
AbstractList This study introduces a novel algorithm to detect unexpected slipping-like perturbations based on the comparison between actual leg joint angles and those predicted by a pool of adaptive oscillators. The approach grounds on the hypothesis that during postural transitions, the difference between these datasets diverges and can early signal that the dynamic balance is challenged. To test this hypothesis, leg joint angles of twelve healthy young participants were recorded while undergoing four different perturbations delivered during steady locomotion. Joint angles were estimated after spanning the whole domain of the adaptive oscillator dynamics. Results confirmed that the implemented strategy allows to early detect a postural transition induced by a slipping-like perturbation: the best performance is represented by a mean detection time ranging between 150 and 250 ms and a low rate (lower than 10%) of false alarms. On the whole, the proposed approach is efficient even if it is based on a quite simple threshold-based algorithm. Moreover, it does not need any falling-based training before being implemented, is not computationally heavy, and is not subject dependent. Finally, since it is based on leg joint angles, it appears well suited to be implemented in lower-limb orthoses/prostheses already equipped with joint position sensors.
This study introduces a novel algorithm to detect unexpected slipping-like perturbations based on the comparison between actual leg joint angles and those predicted by a pool of adaptive oscillators. The approach grounds on the hypothesis that during postural transitions, the difference between these datasets diverges and can early signal that the dynamic balance is challenged. To test this hypothesis, leg joint angles of twelve healthy young participants were recorded while undergoing four different perturbations delivered during steady locomotion. Joint angles were estimated after spanning the whole domain of the adaptive oscillator dynamics. Results confirmed that the implemented strategy allows to early detect a postural transition induced by a slipping-like perturbation: the best performance is represented by a mean detection time ranging between 150 and 250 ms and a low rate (lower than 10%) of false alarms. On the whole, the proposed approach is efficient even if it is based on a quite simple threshold-based algorithm. Moreover, it does not need any falling-based training before being implemented, is not computationally heavy, and is not subject dependent. Finally, since it is based on leg joint angles, it appears well suited to be implemented in lower-limb orthoses/prostheses already equipped with joint position sensors.
Issue Title: Special Issue: Rehabilitation Bioengineering This study introduces a novel algorithm to detect unexpected slipping-like perturbations based on the comparison between actual leg joint angles and those predicted by a pool of adaptive oscillators. The approach grounds on the hypothesis that during postural transitions, the difference between these datasets diverges and can early signal that the dynamic balance is challenged. To test this hypothesis, leg joint angles of twelve healthy young participants were recorded while undergoing four different perturbations delivered during steady locomotion. Joint angles were estimated after spanning the whole domain of the adaptive oscillator dynamics. Results confirmed that the implemented strategy allows to early detect a postural transition induced by a slipping-like perturbation: the best performance is represented by a mean detection time ranging between 150 and 250 ms and a low rate (lower than 10%) of false alarms. On the whole, the proposed approach is efficient even if it is based on a quite simple threshold-based algorithm. Moreover, it does not need any falling-based training before being implemented, is not computationally heavy, and is not subject dependent. Finally, since it is based on leg joint angles, it appears well suited to be implemented in lower-limb orthoses/prostheses already equipped with joint position sensors.
This study introduces a novel algorithm to detect unexpected slipping-like perturbations based on the comparison between actual leg joint angles and those predicted by a pool of adaptive oscillators. The approach grounds on the hypothesis that during postural transitions, the difference between these datasets diverges and can early signal that the dynamic balance is challenged. To test this hypothesis, leg joint angles of twelve healthy young participants were recorded while undergoing four different perturbations delivered during steady locomotion. Joint angles were estimated after spanning the whole domain of the adaptive oscillator dynamics. Results confirmed that the implemented strategy allows to early detect a postural transition induced by a slipping-like perturbation: the best performance is represented by a mean detection time ranging between 150 and 250 ms and a low rate (lower than 10%) of false alarms. On the whole, the proposed approach is efficient even if it is based on a quite simple threshold-based algorithm. Moreover, it does not need any falling-based training before being implemented, is not computationally heavy, and is not subject dependent. Finally, since it is based on leg joint angles, it appears well suited to be implemented in lower-limb orthoses/prostheses already equipped with joint position sensors.This study introduces a novel algorithm to detect unexpected slipping-like perturbations based on the comparison between actual leg joint angles and those predicted by a pool of adaptive oscillators. The approach grounds on the hypothesis that during postural transitions, the difference between these datasets diverges and can early signal that the dynamic balance is challenged. To test this hypothesis, leg joint angles of twelve healthy young participants were recorded while undergoing four different perturbations delivered during steady locomotion. Joint angles were estimated after spanning the whole domain of the adaptive oscillator dynamics. Results confirmed that the implemented strategy allows to early detect a postural transition induced by a slipping-like perturbation: the best performance is represented by a mean detection time ranging between 150 and 250 ms and a low rate (lower than 10%) of false alarms. On the whole, the proposed approach is efficient even if it is based on a quite simple threshold-based algorithm. Moreover, it does not need any falling-based training before being implemented, is not computationally heavy, and is not subject dependent. Finally, since it is based on leg joint angles, it appears well suited to be implemented in lower-limb orthoses/prostheses already equipped with joint position sensors.
Author Tropea, Peppino
Vitiello, Nicola
Micera, Silvestro
Martelli, Dario
Aprigliano, Federica
Monaco, Vito
Author_xml – sequence: 1
  givenname: Peppino
  surname: Tropea
  fullname: Tropea, Peppino
  organization: The BioRobotics Institute, Scuola Superiore Sant’Anna
– sequence: 2
  givenname: Nicola
  surname: Vitiello
  fullname: Vitiello, Nicola
  organization: The BioRobotics Institute, Scuola Superiore Sant’Anna, Don Carlo Gnocchi Foundation
– sequence: 3
  givenname: Dario
  surname: Martelli
  fullname: Martelli, Dario
  organization: The BioRobotics Institute, Scuola Superiore Sant’Anna
– sequence: 4
  givenname: Federica
  surname: Aprigliano
  fullname: Aprigliano, Federica
  organization: The BioRobotics Institute, Scuola Superiore Sant’Anna
– sequence: 5
  givenname: Silvestro
  surname: Micera
  fullname: Micera, Silvestro
  organization: The BioRobotics Institute, Scuola Superiore Sant’Anna, Translational Neural Engineering Laboratory, Center for Neuroprosthetics and Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL)
– sequence: 6
  givenname: Vito
  surname: Monaco
  fullname: Monaco, Vito
  email: v.monaco@sssup.it
  organization: The BioRobotics Institute, Scuola Superiore Sant’Anna
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25377766$$D View this record in MEDLINE/PubMed
BookMark eNqN0U1rFDEYB_AgFbutfgAvMuDFS-zz5D3Hsr7CQoXa85CdZErq7MyYZIR-e7NuK1Kw9JQcfv_kSf4n5GicxkDIa4T3CKDPMoLglgIKiqgllc_ICqXm1CqjjsgKwAJVVoljcpLzDQCi4fIFOWaSa62VWpH1h1BCV-J43VwOcZ7rhm7ij9B8C6ksaetKnMbcbG-bq7xH597NJf4KzUXu4jC4MqX8kjzv3ZDDq7v1lFx9-vh9_YVuLj5_XZ9vaCcMFurAg0Db994EyY3nfqvR9MZIMBBc8MoLBtJYppnS1jjVMR-Mqgv32HF-St4dzp3T9HMJubS7mLtQpxjDtOQWldaWAWp8AlWCodBMPIFKI1Bzbip9-4DeTEsa65v3SgtrjIGq3typZbsLvp1T3Ll0295_egV4AF2ack6h_0sQ2n2x7aHYthbb7ottZc3oB5kulj_llOTi8GiSHZK53jJeh_TP0P8N_Qbcp7Oz
CitedBy_id crossref_primary_10_1186_s12984_022_01000_y
crossref_primary_10_1016_j_gaitpost_2017_02_002
crossref_primary_10_1016_j_chaos_2022_111991
crossref_primary_10_1017_S0263574719000626
crossref_primary_10_3389_fnbot_2017_00014
crossref_primary_10_1016_j_jbiomech_2019_01_003
crossref_primary_10_1007_s10514_017_9641_1
crossref_primary_10_1152_jn_00844_2016
crossref_primary_10_3390_s19173713
crossref_primary_10_1038_srep46721
crossref_primary_10_3390_act8010010
crossref_primary_10_1016_j_medengphy_2023_103960
Cites_doi 10.1093/ageing/30.suppl_4.3
10.1007/s00415-004-0276-8
10.1016/j.gaitpost.2011.11.016
10.1053/apmr.2001.24295
10.1007/s00391-012-0404-5
10.1371/journal.pone.0037062
10.1080/0014013031000139491
10.1016/0021-9290(90)90054-7
10.1115/1.3005147
10.1016/j.physd.2006.02.009
10.1109/TNSRE.2007.916282
10.1007/s11517-008-0327-x
10.1016/S0966-6362(02)00010-3
10.1016/j.jbiomech.2004.05.042
10.1109/TITB.2012.2198668
10.1682/JRRD.2007.11.0197
10.1371/journal.pone.0092037
10.1109/TNSRE.2011.2161888
10.1186/1743-0003-6-21
10.1016/j.gaitpost.2012.06.017
10.1016/S1388-2457(99)00300-4
10.1016/j.clinbiomech.2009.04.004
10.1186/1743-0003-9-51
10.1016/0167-9457(91)90046-Z
10.1113/jphysiol.1996.sp021539
10.1007/s00391-012-0403-6
10.1109/TBME.2013.2241434
10.1109/TITB.2012.2214786
ContentType Journal Article
Copyright Biomedical Engineering Society 2014
Biomedical Engineering Society 2015
Copyright_xml – notice: Biomedical Engineering Society 2014
– notice: Biomedical Engineering Society 2015
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
7X7
7XB
88E
8AO
8BQ
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
F28
FR3
FYUFA
GHDGH
GNUQQ
H8D
H8G
HCIFZ
JG9
JQ2
K9.
KR7
L6V
L7M
LK8
L~C
L~D
M0S
M1P
M7P
M7S
P5Z
P62
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
7X8
DOI 10.1007/s10439-014-1175-5
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Database
ProQuest Central
Technology Collection
ProQuest Natural Science Collection
ProQuest One Community College
ProQuest Central
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
Aerospace Database
Copper Technical Reference Library
SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Biological Sciences
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ProQuest Health & Medical Collection
ProQuest Medical Database
Biological Science Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
Materials Business File
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Engineered Materials Abstracts
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Engineering Database
Aluminium Industry Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Ceramic Abstracts
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
Aerospace Database
Copper Technical Reference Library
ProQuest Health & Medical Research Collection
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Materials Science & Engineering Collection
Corrosion Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE

Solid State and Superconductivity Abstracts
Engineering Research Database
Materials Research Database
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1573-9686
EndPage 426
ExternalDocumentID 3602338181
25377766
10_1007_s10439_014_1175_5
Genre Research Support, Non-U.S. Gov't
Journal Article
Feature
GroupedDBID ---
-4W
-56
-5G
-BR
-DZ
-EM
-Y2
-~C
-~X
.86
.GJ
.VR
06C
06D
0R~
0VY
199
1N0
1SB
2.D
203
23M
28-
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3SX
3V.
4.4
406
408
409
40D
40E
53G
5GY
5QI
5RE
5VS
67N
67Z
6J9
6NX
78A
7X7
85S
88E
8AO
8FE
8FG
8FH
8FI
8FJ
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABIPD
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABPLI
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACIHN
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACREN
ACZOJ
ADBBV
ADHHG
ADHIR
ADIMF
ADINQ
ADJJI
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADYPR
ADZKW
AEAQA
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUYN
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHIZS
AHKAY
AHMBA
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKMHD
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
B-.
BA0
BBNVY
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BHPHI
BPHCQ
BSONS
BVXVI
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EBD
EBLON
EBS
EIOEI
EJD
EMOBN
EN4
EPAXT
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
FYUFA
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
IMOTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
KPH
L6V
L7B
LAK
LK8
LLZTM
M1P
M4Y
M7P
M7S
MA-
MK~
ML~
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
PF0
PQQKQ
PROAC
PSQYO
PT4
PT5
PTHSS
Q2X
QOK
QOR
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RRX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3A
S3B
SAP
SBL
SBY
SCLPG
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SV3
SZN
T13
T16
TEORI
TN5
TSG
TSK
TSV
TUC
TUS
U2A
U9L
UG4
UKHRP
UKR
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
WH7
WJK
WK6
WK8
YLTOR
Z45
Z7R
Z7S
Z7U
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z82
Z83
Z87
Z88
Z8M
Z8N
Z8O
Z8R
Z8T
Z8V
Z8W
Z91
Z92
ZGI
ZMTXR
ZOVNA
ZY4
~EX
~KM
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACMFV
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
ABRTQ
CGR
CUY
CVF
ECM
EIF
NPM
PJZUB
PPXIY
PQGLB
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
7XB
8BQ
8FD
8FK
AZQEC
DWQXO
F28
FR3
GNUQQ
H8D
H8G
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
P64
PKEHL
PQEST
PQUKI
7X8
PUEGO
ID FETCH-LOGICAL-c481t-a0d0419ffd8e538d3db718f885080eaed6d4205892726798a6c2de866c23d1c33
IEDL.DBID U2A
ISSN 0090-6964
1573-9686
IngestDate Thu Sep 04 21:34:47 EDT 2025
Fri Sep 05 14:31:58 EDT 2025
Thu Sep 04 22:03:47 EDT 2025
Fri Jul 25 18:58:34 EDT 2025
Mon Jul 21 05:57:35 EDT 2025
Tue Jul 01 00:38:08 EDT 2025
Thu Apr 24 23:04:41 EDT 2025
Fri Feb 21 02:37:38 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Adaptive oscillators
Joint angles
Walking
Pre-fall detection
Perturbation
Threshold algorithm
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c481t-a0d0419ffd8e538d3db718f885080eaed6d4205892726798a6c2de866c23d1c33
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://infoscience.epfl.ch/handle/20.500.14299/113244
PMID 25377766
PQID 1657498880
PQPubID 54090
PageCount 11
ParticipantIDs proquest_miscellaneous_1677920171
proquest_miscellaneous_1664214724
proquest_miscellaneous_1658417338
proquest_journals_1657498880
pubmed_primary_25377766
crossref_primary_10_1007_s10439_014_1175_5
crossref_citationtrail_10_1007_s10439_014_1175_5
springer_journals_10_1007_s10439_014_1175_5
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20150200
2015-2-00
2015-Feb
20150201
PublicationDateYYYYMMDD 2015-02-01
PublicationDate_xml – month: 2
  year: 2015
  text: 20150200
PublicationDecade 2010
PublicationPlace Boston
PublicationPlace_xml – name: Boston
– name: United States
– name: New York
PublicationSubtitle The Journal of the Biomedical Engineering Society
PublicationTitle Annals of biomedical engineering
PublicationTitleAbbrev Ann Biomed Eng
PublicationTitleAlternate Ann Biomed Eng
PublicationYear 2015
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Righetti, Buchli, Ijspeert (CR22) 2006; 216
Wu, Van Der Helm, Veeger, Makhsous, Van Roy, Anglin, Nagels, Karduna, McQuade, Wang, Werner, Buchholz (CR27) 2005; 38
Masud, Morris (CR17) 2001; 30
Lockhart, Woldstad, Smith (CR12) 2003; 46
CR15
Yu, Rhuma, Naqvi, Wang, Chambers (CR29) 2012; 16
Bagalà, Becker, Cappello, Chiari, Aminian, Hausdorff, Zijlstra, Klenk (CR1) 2012; 7
Mannini, Sabatini (CR13) 2012; 36
Stolze, Klebe, Zechlin, Baecker, Friege, Deuschl (CR25) 2004; 251
Ferber, Osternig, Woollacott, Wasielewski, Lee (CR7) 2002; 16
Whittington, Thelen (CR26) 2009; 131
CR2
Kangas, Vikman, Nyberg, Korpelainen, Lindblom, Jamsa (CR9) 2012; 35
CR3
CR6
CR5
Orendurff, Schoen, Bernatz, Segal, Klute (CR21) 2008; 45
Wu, Xue (CR28) 2008; 16
Zhang, D’Andrea, Nunnery, Kay, Huang (CR30) 2011; 19
Liu, Lockhart (CR11) 2014
CR24
CR23
CR20
Martelli, Monaco, Micera (CR16) 2011; 2011
Miller, Speechley, Deathe (CR19) 2001; 82
Bell, Pedersen, Brand (CR4) 1990; 23
Herr (CR8) 2009; 6
Mellone, Tacconi, Schwickert, Klenk, Becker, Chiari (CR18) 2012; 45
Martelli, Artoni, Monaco, Sabatini, Micera (CR14) 2014; 9
Lau, Tong, Zhu (CR10) 2008; 46
1175_CR15
AL Bell (1175_CR4) 1990; 23
H Herr (1175_CR8) 2009; 6
M Kangas (1175_CR9) 2012; 35
T Masud (1175_CR17) 2001; 30
F Bagalà (1175_CR1) 2012; 7
S Mellone (1175_CR18) 2012; 45
L Righetti (1175_CR22) 2006; 216
TE Lockhart (1175_CR12) 2003; 46
G Wu (1175_CR28) 2008; 16
BR Whittington (1175_CR26) 2009; 131
F Zhang (1175_CR30) 2011; 19
D Martelli (1175_CR14) 2014; 9
M Yu (1175_CR29) 2012; 16
G Wu (1175_CR27) 2005; 38
1175_CR23
1175_CR24
D Martelli (1175_CR16) 2011; 2011
H Stolze (1175_CR25) 2004; 251
R Ferber (1175_CR7) 2002; 16
HY Lau (1175_CR10) 2008; 46
MS Orendurff (1175_CR21) 2008; 45
J Liu (1175_CR11) 2014
1175_CR5
A Mannini (1175_CR13) 2012; 36
WC Miller (1175_CR19) 2001; 82
1175_CR6
1175_CR20
1175_CR2
1175_CR3
References_xml – volume: 30
  start-page: 3
  year: 2001
  end-page: 7
  ident: CR17
  article-title: Epidemiology of falls
  publication-title: Age Ageing
  doi: 10.1093/ageing/30.suppl_4.3
– volume: 251
  start-page: 79
  year: 2004
  end-page: 84
  ident: CR25
  article-title: Falls in frequent neurological diseases–prevalence, risk factors and aetiology
  publication-title: J. Neurol.
  doi: 10.1007/s00415-004-0276-8
– volume: 35
  start-page: 500
  year: 2012
  end-page: 505
  ident: CR9
  article-title: Comparison of real-life accidental falls in older people with experimental falls in middle-aged test subjects
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2011.11.016
– volume: 82
  start-page: 1031
  year: 2001
  end-page: 1037
  ident: CR19
  article-title: The prevalence and risk factors of falling and fear of falling among lower extremity amputees
  publication-title: Arch. Phys. Med. Rehabil.
  doi: 10.1053/apmr.2001.24295
– volume: 45
  start-page: 722
  year: 2012
  end-page: 727
  ident: CR18
  article-title: Smartphone-based solutions for fall detection and prevention: the FARSEEING approach
  publication-title: Z. Gerontol. Geriatr.
  doi: 10.1007/s00391-012-0404-5
– volume: 7
  start-page: e37062
  year: 2012
  ident: CR1
  article-title: Evaluation of accelerometer-based fall detection algorithms on real-world falls
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0037062
– ident: CR2
– volume: 46
  start-page: 1136
  year: 2003
  end-page: 1160
  ident: CR12
  article-title: Effects of age-related gait changes on the biomechanics of slips and falls
  publication-title: Ergonomics
  doi: 10.1080/0014013031000139491
– volume: 23
  start-page: 617
  year: 1990
  end-page: 621
  ident: CR4
  article-title: A comparison of the accuracy of several hip center location prediction methods
  publication-title: J. Biomech.
  doi: 10.1016/0021-9290(90)90054-7
– volume: 131
  start-page: 11013
  year: 2009
  ident: CR26
  article-title: A simple mass-spring model with roller feet can induce the ground reactions observed in human walking
  publication-title: J. Biomech. Eng.
  doi: 10.1115/1.3005147
– ident: CR6
– ident: CR23
– volume: 216
  start-page: 269
  year: 2006
  end-page: 281
  ident: CR22
  article-title: Dynamic Hebbian learning in adaptive frequency oscillators
  publication-title: Phys. D-Nonlinear Phenom.
  doi: 10.1016/j.physd.2006.02.009
– volume: 16
  start-page: 178
  year: 2008
  end-page: 183
  ident: CR28
  article-title: Portable preimpact fall detector with inertial sensors
  publication-title: IEEE Trans. Neural. Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2007.916282
– volume: 46
  start-page: 563
  year: 2008
  end-page: 573
  ident: CR10
  article-title: Support vector machine for classification of walking conditions using miniature kinematic sensors
  publication-title: Med. Biol. Eng. Comput.
  doi: 10.1007/s11517-008-0327-x
– volume: 16
  start-page: 238
  year: 2002
  end-page: 248
  ident: CR7
  article-title: Reactive balance adjustments to unexpected perturbations during human walking
  publication-title: Gait Posture
  doi: 10.1016/S0966-6362(02)00010-3
– ident: CR3
– ident: CR15
– volume: 38
  start-page: 981
  year: 2005
  end-page: 992
  ident: CR27
  article-title: ISB recommendation on definitions of joint coordinate systems of various joints for the reporting of human joint motion-part II: shoulder, elbow, wrist and hand
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2004.05.042
– volume: 16
  start-page: 1274
  year: 2012
  end-page: 1286
  ident: CR29
  article-title: A posture recognition based fall detection system for monitoring an elderly person in a smart home environment
  publication-title: IEEE Trans. Inf. Technol. Biomed.
  doi: 10.1109/TITB.2012.2198668
– volume: 45
  start-page: 1077
  year: 2008
  end-page: 1089
  ident: CR21
  article-title: How humans walk: bout duration, steps per bout, and rest duration
  publication-title: J. Rehabil. Res. Dev.
  doi: 10.1682/JRRD.2007.11.0197
– volume: 9
  start-page: e92037
  year: 2014
  ident: CR14
  article-title: Pre-impact fall detection: optimal sensor positioning based on a machine learning paradigm
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0092037
– volume: 19
  start-page: 567
  year: 2011
  end-page: 577
  ident: CR30
  article-title: Towards design of a stumble detection system for artificial legs
  publication-title: IEEE Trans. Neural. Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2011.2161888
– ident: CR5
– volume: 6
  start-page: 21
  year: 2009
  ident: CR8
  article-title: Exoskeletons and orthoses: classification, design challenges and future directions
  publication-title: J. Neuroeng. Rehabil.
  doi: 10.1186/1743-0003-6-21
– volume: 36
  start-page: 657
  year: 2012
  end-page: 661
  ident: CR13
  article-title: Gait phase detection and discrimination between walking-jogging activities using hidden Markov models applied to foot motion data from a gyroscope
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2012.06.017
– ident: CR24
– ident: CR20
– year: 2014
  ident: CR11
  article-title: Development and evaluation of a prior-to-impact fall event detection algorithm
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 2011
  start-page: 5975404
  year: 2011
  ident: CR16
  article-title: Detecting falls by analyzing angular momentum
  publication-title: IEEE Int. Conf. Rehabil. Robot.
– volume: 19
  start-page: 567
  year: 2011
  ident: 1175_CR30
  publication-title: IEEE Trans. Neural. Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2011.2161888
– year: 2014
  ident: 1175_CR11
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 216
  start-page: 269
  year: 2006
  ident: 1175_CR22
  publication-title: Phys. D-Nonlinear Phenom.
  doi: 10.1016/j.physd.2006.02.009
– volume: 30
  start-page: 3
  year: 2001
  ident: 1175_CR17
  publication-title: Age Ageing
  doi: 10.1093/ageing/30.suppl_4.3
– volume: 46
  start-page: 1136
  year: 2003
  ident: 1175_CR12
  publication-title: Ergonomics
  doi: 10.1080/0014013031000139491
– ident: 1175_CR24
  doi: 10.1016/S1388-2457(99)00300-4
– ident: 1175_CR20
  doi: 10.1016/j.clinbiomech.2009.04.004
– volume: 36
  start-page: 657
  year: 2012
  ident: 1175_CR13
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2012.06.017
– ident: 1175_CR23
– ident: 1175_CR2
  doi: 10.1186/1743-0003-9-51
– volume: 35
  start-page: 500
  year: 2012
  ident: 1175_CR9
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2011.11.016
– ident: 1175_CR6
  doi: 10.1016/0167-9457(91)90046-Z
– volume: 46
  start-page: 563
  year: 2008
  ident: 1175_CR10
  publication-title: Med. Biol. Eng. Comput.
  doi: 10.1007/s11517-008-0327-x
– ident: 1175_CR5
  doi: 10.1113/jphysiol.1996.sp021539
– ident: 1175_CR3
  doi: 10.1007/s00391-012-0403-6
– volume: 45
  start-page: 1077
  year: 2008
  ident: 1175_CR21
  publication-title: J. Rehabil. Res. Dev.
  doi: 10.1682/JRRD.2007.11.0197
– volume: 251
  start-page: 79
  year: 2004
  ident: 1175_CR25
  publication-title: J. Neurol.
  doi: 10.1007/s00415-004-0276-8
– volume: 9
  start-page: e92037
  year: 2014
  ident: 1175_CR14
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0092037
– volume: 131
  start-page: 11013
  year: 2009
  ident: 1175_CR26
  publication-title: J. Biomech. Eng.
  doi: 10.1115/1.3005147
– volume: 16
  start-page: 238
  year: 2002
  ident: 1175_CR7
  publication-title: Gait Posture
  doi: 10.1016/S0966-6362(02)00010-3
– ident: 1175_CR15
  doi: 10.1109/TBME.2013.2241434
– volume: 16
  start-page: 178
  year: 2008
  ident: 1175_CR28
  publication-title: IEEE Trans. Neural. Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2007.916282
– volume: 16
  start-page: 1274
  year: 2012
  ident: 1175_CR29
  publication-title: IEEE Trans. Inf. Technol. Biomed.
  doi: 10.1109/TITB.2012.2214786
– volume: 6
  start-page: 21
  year: 2009
  ident: 1175_CR8
  publication-title: J. Neuroeng. Rehabil.
  doi: 10.1186/1743-0003-6-21
– volume: 2011
  start-page: 5975404
  year: 2011
  ident: 1175_CR16
  publication-title: IEEE Int. Conf. Rehabil. Robot.
– volume: 45
  start-page: 722
  year: 2012
  ident: 1175_CR18
  publication-title: Z. Gerontol. Geriatr.
  doi: 10.1007/s00391-012-0404-5
– volume: 7
  start-page: e37062
  year: 2012
  ident: 1175_CR1
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0037062
– volume: 38
  start-page: 981
  year: 2005
  ident: 1175_CR27
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2004.05.042
– volume: 23
  start-page: 617
  year: 1990
  ident: 1175_CR4
  publication-title: J. Biomech.
  doi: 10.1016/0021-9290(90)90054-7
– volume: 82
  start-page: 1031
  year: 2001
  ident: 1175_CR19
  publication-title: Arch. Phys. Med. Rehabil.
  doi: 10.1053/apmr.2001.24295
SSID ssj0011835
Score 2.1968894
Snippet This study introduces a novel algorithm to detect unexpected slipping-like perturbations based on the comparison between actual leg joint angles and those...
Issue Title: Special Issue: Rehabilitation Bioengineering This study introduces a novel algorithm to detect unexpected slipping-like perturbations based on the...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 416
SubjectTerms Adult
Algorithms
Ankle Joint - physiology
Biochemistry
Biological and Medical Physics
Biomedical and Life Sciences
Biomedical Engineering and Bioengineering
Biomedicine
Biophysics
Classical Mechanics
Dynamics
Female
Grounds
Hip Joint - physiology
Humans
Knee Joint - physiology
Leg - physiology
Male
Oscillators
Perturbation methods
Position sensing
Postural Balance - physiology
Prostheses
Prosthetics
Surgical implants
Walking - physiology
Young Adult
SummonAdditionalLinks – databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwEB4VKlVwQDwKhJdSiROV1djxKyeEaBeEoFRqkbhFju1UFWh3geXAv2cmj4UKsadIyTjxY-KZ8Wd_A7AftBEhF5aRL86kMpIVXlSsVrmLKgbLG7b9i5_69EqeXavrbsHtodtW2c-JzUQdRp7WyL9xje8pMF7LDsd3jLJGEbrapdCYg48cLQ3puR2cTFEEVNc2g0GBIVKhZY9qtkfn0BRjIC0ZkVUy9b9deuNsvgFKG_szWIalznFMj9qRXoEPcbgKi6_oBFfh00UHlK_B8fdI6ADeTn_fNhwMf9n5v5uY_or3aGSqdp0urZ7SZs9AehTcmCa-9BJNImoG5eD5DFeDH3-OT1mXL4F5afmEuSxkkhd1HWzEeSwQdTK3tbXohGXRxaCDFJRGUBhB4IvTXoRoNV7ywH2er8P8cDSMm5DqTPjausorF6QsvLM85oXFQkTo7mUCWd9bpe_IxCmnxW35QoNMHVxiBxOfuCpVAgfTIuOWSWOW8E4_BGX3Uz2ULyqQwJfpY_wdCONwwzh6bGSs5AYD71kydLpXGiFnyRhTCCITSmCjVYFprYXKjTFaJ_C114lXlXyvSVuzm7QNC_g51W4I34H5yf1j3EV_Z1LtNUr9DC3X98Q
  priority: 102
  providerName: ProQuest
Title Detecting Slipping-Like Perturbations by Using Adaptive Oscillators
URI https://link.springer.com/article/10.1007/s10439-014-1175-5
https://www.ncbi.nlm.nih.gov/pubmed/25377766
https://www.proquest.com/docview/1657498880
https://www.proquest.com/docview/1658417338
https://www.proquest.com/docview/1664214724
https://www.proquest.com/docview/1677920171
Volume 43
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT-MwEB7xkNByQMDuQnhUQeK0K0uJ41eOBVoQb8FW6p4ix3YQoioIyoF_zziPUgRU4hJLySRx7LFnJp_9DcCuFZLahCrifXHCuGQkNTQnBU-0486quGTbPzsXRz123Of9eh_3U7PavYEky5l6YrMbGk8MfRnx9JKEz8I8x9Ddj8YebY-hA9TRKm1BinFRKlgDZX72iPfG6IOH-QEdLY1OdxmWam8xbFfduwIzbrgKixMcgquwcFaj4z9h_8B5SABPh9eDknjhhpze3rnw0j2iZcmrn3Nh_hKWCwXCttUPfrYLL9AOojr4xDu_oNft_Ns_InWSBGKYikdERzZicVoUVjmcvKznS45VoRR6XpHTzgrLqM8dSCX1iIsWhlqnBBaJjU2S_Ia54f3QrUMoImoKpXPDtWUsNVrFLkkV3uRZ3A0LIGpaKzM1g7hPZDHI3riPfQNn2MCeRJxnPIA_41seKvqMacJbTRdk9Uh6ymKB-pNinB4FsDO-jGPAAxt66O6fSxnFYonR9jQZv6WXScqmyUiZUs8gFMBapQLjWlOeSCmFCOBvoxMTlfzqkza-Jb0JP_DtvFoUvgVzo8dnt40-zyhvwazsSzyq7mEL5tuH_086WO51zi-vWqX-vwIcU_ki
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bT9RAFD4hS-LlgSgqFFFroi-aie10bn0wBrlkkd2VKCS81enM1BjJ7gpLDH_K3-g5vSwY4r7x1KSdtnM51zlzvgPwyivNfcYNI1ucCakFyx0vWSUzG2TwJq3R9ocj1T8Wn07kyRL86XJh6FhlJxNrQe0njvbI36UKv5Ojv5Z8mP5iVDWKoqtdCY2GLA7C5W902c7f7-_g-r7mfG_3aLvP2qoCzAmTzphNfCLSvKq8CcjtngCGU1MZg6ZKEmzwygtOxfa45hSisMpxH4zCS-ZTRxugKPKXBWW09mD54-7o8Ms8boEM0tRMyNEpy5Xo4qhNsh4qf3TdBSN4TCb_1YQ3zNsbodla4-09gJXWVI23Gtp6CEthvAr3rwEYrsKdYRuafwTbO4HiEXg7_npaoz58Z4MfP0N8GM5QrZXNzmBcXsb1KYV4y9spidr4MyphpEWq-vMYjm9lLp9AbzwZh3WIVcJdZWzppPVC5M6aNGS5wZcIQt6JCJJutgrXwpdTFY3T4gp4mSa4wAkmBHNZyAjezF-ZNtgdixpvdktQtGx8XlwRXQQv54-RASmqYsdhclG3MSLV6OovakP5xEJzsaiN1jkn-KII1hoSmPeay0xrrVQEbzuauNbJ_w1pY_GQXsDd_tFwUAz2RwdP4R7-WjbH0TehNzu7CM_Q2pqVz1sSj-HbbXPVXwfbNVg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ba9RAFD6UCkUfitZbtNUR9EUZmkzmlgcppevS2osFLexbnMxMpFh213aL9K_56zwnl22luG99CiQnyVzOdc7MdwDeBm1EyIXl5ItzqYzkhRcVr1XuoorBZg3a_uGR3j2Rn0dqtAR_-rMwtK2y14mNog4TT2vkm5nG7xQYr6Wbdbct4ngw3Jr-4lRBijKtfTmNlkX249VvDN8uPu4NcK7fCTH89G1nl3cVBriXNptxl4ZUZkVdBxtR8gOBDWe2thbdljS6GHSQggrvCSMoXeG0FyFajZc8ZJ4WQ1H93zM5elUoS2Y0D_bQb2-Le6YFhmeFln1GtT22h24ABvGSE1AmV__axFuO7q0kbWP7hg9htXNa2XbLZY9gKY7X4MENKMM1WDnskvSPYWcQKTOBt9nXswb_4Qc_OP0Z2XE8RwNXtWuErLpizX4Fth3clJQu-4LmGLmS6v88gZM7GcmnsDyejONzYDoVvrau8soFKQvvbBbzwuJLBCbvZQJpP1ql74DMqZ7GWXkNwUwDXOIAE5a5KlUC7-evTFsUj0XE6_0UlJ1AX5TX7JfAm_ljFEXKr7hxnFw2NFZmBoP-RTR0slgaIRfRGFMIAjJK4FnLAvNWC5UbY7RO4EPPEzca-b8uvVjcpdewgrJUHuwd7b-E-_hn1e5LX4fl2fll3EC3a1a9avibwfe7Fqi_PdE4Hw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Detecting+Slipping-Like+Perturbations+by+Using+Adaptive+Oscillators&rft.jtitle=Annals+of+biomedical+engineering&rft.au=Tropea%2C+Peppino&rft.au=Vitiello%2C+Nicola&rft.au=Martelli%2C+Dario&rft.au=Aprigliano%2C+Federica&rft.date=2015-02-01&rft.issn=0090-6964&rft.eissn=1573-9686&rft.volume=43&rft.issue=2&rft.spage=416&rft.epage=426&rft_id=info:doi/10.1007%2Fs10439-014-1175-5&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0090-6964&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0090-6964&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0090-6964&client=summon