Antibody evasiveness of SARS-CoV-2 subvariants KP.3.1.1 and XEC
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to evolve and spread, and it remains critical to understand the functional consequences of mutations in dominant viral variants. The recombinant JN.1 subvariant XEC recently replaced KP.3.1.1 to become the most prevalent subvaria...
Saved in:
Published in | Cell reports (Cambridge) Vol. 44; no. 4; p. 115543 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
22.04.2025
Cell Press Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to evolve and spread, and it remains critical to understand the functional consequences of mutations in dominant viral variants. The recombinant JN.1 subvariant XEC recently replaced KP.3.1.1 to become the most prevalent subvariant worldwide. Here, we measure the in vitro neutralization of KP.3.1.1 and XEC by human sera, monoclonal antibodies, and the soluble human ACE2 (hACE2) receptor relative to the parental subvariants KP.3 and JN.1. KP.3.1.1 and XEC are slightly more resistant (1.3- to 1.6-fold) than KP.3 to serum neutralization and antigenically similar. Both also demonstrate greater resistance to neutralization by select monoclonal antibodies and soluble hACE2, all of which target the top of the viral spike. Our findings suggest that the upward motion of the receptor-binding domain in the spike may be partially hindered by the N-terminal domain mutations in KP.3.1.1 and XEC, allowing these subvariants to better evade serum antibodies that target the viral spike in the up position and to have a growth advantage.
[Display omitted]
•KP.3.1.1 and XEC are 1.3- to 1.6-fold more resistant to serum neutralization than KP.3•KP.2 MV booster may elicit higher titers against KP.3.1.1 and XEC than JN.1 infection•Spike mutations F59S and S31Δ are functionally similar for receptor binding and mAb evasion
SARS-CoV-2 Omicron JN.1 subvariants KP.3.1.1 and XEC emerged as dominant over parental strains. Wang et al. show that KP.3.1.1 and XEC are similarly antibody evasive due to different spike NTD mutations at interacting amino acids, which likely leads to similar impairments of spike conformational changes. |
---|---|
AbstractList | Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to evolve and spread, and it remains critical to understand the functional consequences of mutations in dominant viral variants. The recombinant JN.1 subvariant XEC recently replaced KP.3.1.1 to become the most prevalent subvariant worldwide. Here, we measure the
in vitro
neutralization of KP.3.1.1 and XEC by human sera, monoclonal antibodies, and the soluble human ACE2 (hACE2) receptor relative to the parental subvariants KP.3 and JN.1. KP.3.1.1 and XEC are slightly more resistant (1.3- to 1.6-fold) than KP.3 to serum neutralization and antigenically similar. Both also demonstrate greater resistance to neutralization by select monoclonal antibodies and soluble hACE2, all of which target the top of the viral spike. Our findings suggest that the upward motion of the receptor-binding domain in the spike may be partially hindered by the N-terminal domain mutations in KP.3.1.1 and XEC, allowing these subvariants to better evade serum antibodies that target the viral spike in the up position and to have a growth advantage.
•
KP.3.1.1 and XEC are 1.3- to 1.6-fold more resistant to serum neutralization than KP.3
•
KP.2 MV booster may elicit higher titers against KP.3.1.1 and XEC than JN.1 infection
•
Spike mutations F59S and S31Δ are functionally similar for receptor binding and mAb evasion
SARS-CoV-2 Omicron JN.1 subvariants KP.3.1.1 and XEC emerged as dominant over parental strains. Wang et al. show that KP.3.1.1 and XEC are similarly antibody evasive due to different spike NTD mutations at interacting amino acids, which likely leads to similar impairments of spike conformational changes. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to evolve and spread, and it remains critical to understand the functional consequences of mutations in dominant viral variants. The recombinant JN.1 subvariant XEC recently replaced KP.3.1.1 to become the most prevalent subvariant worldwide. Here, we measure the in vitro neutralization of KP.3.1.1 and XEC by human sera, monoclonal antibodies, and the soluble human ACE2 (hACE2) receptor relative to the parental subvariants KP.3 and JN.1. KP.3.1.1 and XEC are slightly more resistant (1.3- to 1.6-fold) than KP.3 to serum neutralization and antigenically similar. Both also demonstrate greater resistance to neutralization by select monoclonal antibodies and soluble hACE2, all of which target the top of the viral spike. Our findings suggest that the upward motion of the receptor-binding domain in the spike may be partially hindered by the N-terminal domain mutations in KP.3.1.1 and XEC, allowing these subvariants to better evade serum antibodies that target the viral spike in the up position and to have a growth advantage. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to evolve and spread, and it remains critical to understand the functional consequences of mutations in dominant viral variants. The recombinant JN.1 subvariant XEC recently replaced KP.3.1.1 to become the most prevalent subvariant worldwide. Here, we measure the in vitro neutralization of KP.3.1.1 and XEC by human sera, monoclonal antibodies, and the soluble human ACE2 (hACE2) receptor relative to the parental subvariants KP.3 and JN.1. KP.3.1.1 and XEC are slightly more resistant (1.3- to 1.6-fold) than KP.3 to serum neutralization and antigenically similar. Both also demonstrate greater resistance to neutralization by select monoclonal antibodies and soluble hACE2, all of which target the top of the viral spike. Our findings suggest that the upward motion of the receptor-binding domain in the spike may be partially hindered by the N-terminal domain mutations in KP.3.1.1 and XEC, allowing these subvariants to better evade serum antibodies that target the viral spike in the up position and to have a growth advantage. [Display omitted] •KP.3.1.1 and XEC are 1.3- to 1.6-fold more resistant to serum neutralization than KP.3•KP.2 MV booster may elicit higher titers against KP.3.1.1 and XEC than JN.1 infection•Spike mutations F59S and S31Δ are functionally similar for receptor binding and mAb evasion SARS-CoV-2 Omicron JN.1 subvariants KP.3.1.1 and XEC emerged as dominant over parental strains. Wang et al. show that KP.3.1.1 and XEC are similarly antibody evasive due to different spike NTD mutations at interacting amino acids, which likely leads to similar impairments of spike conformational changes. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to evolve and spread, and it remains critical to understand the functional consequences of mutations in dominant viral variants. The recombinant JN.1 subvariant XEC recently replaced KP.3.1.1 to become the most prevalent subvariant worldwide. Here, we measure the in vitro neutralization of KP.3.1.1 and XEC by human sera, monoclonal antibodies, and the soluble human ACE2 (hACE2) receptor relative to the parental subvariants KP.3 and JN.1. KP.3.1.1 and XEC are slightly more resistant (1.3- to 1.6-fold) than KP.3 to serum neutralization and antigenically similar. Both also demonstrate greater resistance to neutralization by select monoclonal antibodies and soluble hACE2, all of which target the top of the viral spike. Our findings suggest that the upward motion of the receptor-binding domain in the spike may be partially hindered by the N-terminal domain mutations in KP.3.1.1 and XEC, allowing these subvariants to better evade serum antibodies that target the viral spike in the up position and to have a growth advantage.Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to evolve and spread, and it remains critical to understand the functional consequences of mutations in dominant viral variants. The recombinant JN.1 subvariant XEC recently replaced KP.3.1.1 to become the most prevalent subvariant worldwide. Here, we measure the in vitro neutralization of KP.3.1.1 and XEC by human sera, monoclonal antibodies, and the soluble human ACE2 (hACE2) receptor relative to the parental subvariants KP.3 and JN.1. KP.3.1.1 and XEC are slightly more resistant (1.3- to 1.6-fold) than KP.3 to serum neutralization and antigenically similar. Both also demonstrate greater resistance to neutralization by select monoclonal antibodies and soluble hACE2, all of which target the top of the viral spike. Our findings suggest that the upward motion of the receptor-binding domain in the spike may be partially hindered by the N-terminal domain mutations in KP.3.1.1 and XEC, allowing these subvariants to better evade serum antibodies that target the viral spike in the up position and to have a growth advantage. |
ArticleNumber | 115543 |
Author | Gherasim, Carmen Guo, Yicheng Purpura, Lawrence J. Yin, Michael T. Wu, Madeline Gordon, Aubree Wang, Qian Mellis, Ian A. Ho, David D. Valdez, Riccardo Mohri, Hiroshi |
Author_xml | – sequence: 1 givenname: Qian surname: Wang fullname: Wang, Qian organization: Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA – sequence: 2 givenname: Yicheng surname: Guo fullname: Guo, Yicheng organization: Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA – sequence: 3 givenname: Ian A. surname: Mellis fullname: Mellis, Ian A. organization: Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA – sequence: 4 givenname: Madeline surname: Wu fullname: Wu, Madeline organization: Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA – sequence: 5 givenname: Hiroshi surname: Mohri fullname: Mohri, Hiroshi organization: Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA – sequence: 6 givenname: Carmen surname: Gherasim fullname: Gherasim, Carmen organization: Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA – sequence: 7 givenname: Riccardo surname: Valdez fullname: Valdez, Riccardo organization: Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA – sequence: 8 givenname: Lawrence J. surname: Purpura fullname: Purpura, Lawrence J. organization: Division of Infectious Diseases, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA – sequence: 9 givenname: Michael T. surname: Yin fullname: Yin, Michael T. organization: Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA – sequence: 10 givenname: Aubree surname: Gordon fullname: Gordon, Aubree organization: Department of Epidemiology, University of Michigan, Ann Arbor, MI 48109, USA – sequence: 11 givenname: David D. orcidid: 0000-0003-1627-149X surname: Ho fullname: Ho, David D. email: dh2994@cumc.columbia.edu organization: Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40202847$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kc1u1DAUhS1UREvpGyCUJZsE_yb2hmo0KlBRCUQBsbMc-6Z4lLGndiZS3x4PKVW7wRtb1-d-1z7nJToKMQBCrwluCCbtu01jYUywayimoiFECM6eoRNKCakJ5d3Ro_MxOst5g8tqMSGKv0DHHJc-ybsTdL4Kk--ju6tgNtnPECDnKg7V9erbdb2OP2ta5X0_m-RNmHL1-WvDGtKQygRX_bpYv0LPBzNmOLvfT9GPDxff15_qqy8fL9erq9pySabaYNHRQfHeEUF7JSw41YlOYeYEJnZwoGBwDFhRCym7XklgllrhWiWZFewUXS5cF81G75LfmnSno_H6byGmG23S5O0I2g64lYq1uDcdJy0znS2_dabvlRWU4cI6X1i7fb8FZyFMyYxPoE9vgv-tb-KsCcWEF0QhvL0npHi7hzzprc8lkdEEiPusGZGSU9nKw8PfPB72MOVfBEXAF4FNMecEw4OEYH0IW2_0ErY-hK2XsEvb-6UNiuuzh6Sz9RCKsT6BnYot_v-APwBWr98 |
Cites_doi | 10.1038/s41586-020-2571-7 10.1016/j.molcel.2024.06.028 10.1080/22221751.2024.2402880 10.1016/j.chom.2024.01.014 10.1016/j.immuni.2022.04.003 10.1016/j.vaccine.2021.05.063 10.1016/S1473-3099(24)00738-2 10.1016/j.cell.2022.12.018 10.1126/scitranslmed.adg7404 10.1016/S1473-3099(25)00058-1 10.1038/s41586-022-05053-w 10.1016/S1473-3099(24)00688-1 10.1038/s41586-023-06750-w 10.2807/1560-7917.ES.2017.22.13.30494 10.1128/msphere.00179-22 10.1126/science.1097211 10.1056/NEJMc2410203 |
ContentType | Journal Article |
Copyright | 2025 The Author(s) Copyright © 2025 The Author(s). Published by Elsevier Inc. All rights reserved. 2025 The Author(s) 2025 |
Copyright_xml | – notice: 2025 The Author(s) – notice: Copyright © 2025 The Author(s). Published by Elsevier Inc. All rights reserved. – notice: 2025 The Author(s) 2025 |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM DOA |
DOI | 10.1016/j.celrep.2025.115543 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) Open Access Journals (DOAJ) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2211-1247 |
ExternalDocumentID | oai_doaj_org_article_cf0689360ba74163a7c202dabb9c5230 PMC12014523 40202847 10_1016_j_celrep_2025_115543 S2211124725003146 |
Genre | Journal Article |
GrantInformation_xml | – fundername: NIAID NIH HHS grantid: K23 AI171263 |
GroupedDBID | 0R~ 4.4 457 53G 5VS 6I. AAEDT AAEDW AAFTH AAIKJ AAKRW AALRI AAMRU AAXUO AAYWO ABMAC ACGFO ACGFS ACVFH ADBBV ADCNI ADEZE ADVLN AENEX AEUPX AEXQZ AFPUW AFTJW AGHFR AIGII AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ APXCP BAWUL BCNDV DIK EBS EJD FCP FDB FRP GROUPED_DOAJ GX1 IXB KQ8 M41 M48 O-L O9- OK1 ROL SSZ AAYXX CITATION HZ~ IPNFZ RIG CGR CUY CVF ECM EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c481t-a0572f94bd152b95ced9757903d501cfde9efd3e34815887b98e3c2c5d6983c53 |
IEDL.DBID | M48 |
ISSN | 2211-1247 |
IngestDate | Wed Aug 27 01:28:58 EDT 2025 Thu Aug 21 18:26:51 EDT 2025 Wed Jul 02 05:04:00 EDT 2025 Sun Aug 10 01:31:54 EDT 2025 Wed Jul 16 16:50:14 EDT 2025 Sat Aug 09 17:30:36 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | CP: Immunology ACE2 inhibition SARS-CoV-2 XEC CP: Microbiology mRNA vaccines JN.1 subvariants antibody evasion serum neutralization KP.3.1.1 monoclonal antibodies |
Language | English |
License | This is an open access article under the CC BY license. Copyright © 2025 The Author(s). Published by Elsevier Inc. All rights reserved. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c481t-a0572f94bd152b95ced9757903d501cfde9efd3e34815887b98e3c2c5d6983c53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 These authors contributed equally Lead contact |
ORCID | 0000-0003-1627-149X |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1016/j.celrep.2025.115543 |
PMID | 40202847 |
PQID | 3188428685 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_cf0689360ba74163a7c202dabb9c5230 pubmedcentral_primary_oai_pubmedcentral_nih_gov_12014523 proquest_miscellaneous_3188428685 pubmed_primary_40202847 crossref_primary_10_1016_j_celrep_2025_115543 elsevier_sciencedirect_doi_10_1016_j_celrep_2025_115543 |
PublicationCentury | 2000 |
PublicationDate | 2025-04-22 |
PublicationDateYYYYMMDD | 2025-04-22 |
PublicationDate_xml | – month: 04 year: 2025 text: 2025-04-22 day: 22 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Cell reports (Cambridge) |
PublicationTitleAlternate | Cell Rep |
PublicationYear | 2025 |
Publisher | Elsevier Inc Cell Press Elsevier |
Publisher_xml | – name: Elsevier Inc – name: Cell Press – name: Elsevier |
References | Zhang, Lindenberger, Parsons, Thakur, Parks, Park, Huang, Sammour, Janowska, Spence (bib8) 2024; 84 Shu, McCauley (bib1) 2017; 22 Simon, Kota, Bloomquist, Hanley, Forgacs, Pahwa, Pallikkuth, Miller, Schaenman, Yeaman (bib18) 2022; 7 Wang, Guo, Liu, Schwanz, Li, Nair, Ho, Zhang, Iketani, Yu (bib20) 2023; 624 Wang, Guo, Iketani, Nair, Li, Mohri, Wang, Yu, Bowen, Chang (bib21) 2022; 608 Wang, Guo, Bowen, Mellis, Valdez, Gherasim, Gordon, Liu, Ho (bib16) 2024; 32 FDA (2024). FDA Roundup: March 22, 2024. . Wang, Mellis, Ho, Bowen, Kowalski-Dobson, Valdez, Katsamba, Wu, Lee, Shapiro (bib14) 2024; 13 Liu, Yu, Jian, Yang, Song, Wang, Yu, Shao, Cao (bib9) 2024 Wang, Guo, Ho, Ho (bib13) 2024; 391 Wang, Mellis, Wu, Bowen, Gherasim, Valdez, Shah, Purpura, Yin, Gordon (bib15) 2025; 25 Liu, Wang, Nair, Yu, Rapp, Wang, Luo, Chan, Sahi, Figueroa (bib19) 2020; 584 Li, Faraone, Hsu, Chamblee, Liu, Zheng, Xu, Carlin, Horowitz, Mallampalli (bib4) 2024 Smith, Lapedes, de Jong, Bestebroer, Rimmelzwaan, Osterhaus, Fouchier (bib17) 2004; 305 Wang, Muecksch, Cho, Gaebler, Hoffmann, Ramos, Zong, Cipolla, Johnson, Schmidt (bib5) 2022; 55 Earle, Ambrosino, Fiore-Gartland, Goldblatt, Gilbert, Siber, Dull, Plotkin (bib2) 2021; 39 Feng, Yuan, Powers, Hu, Munt, Arunachalam, Leist, Bellusci, Kim, Sprouse (bib7) 2023; 15 Sano, Miyakawa, Kato, Kimura, Goto, Ryo, Watanabe, Hasegawa (bib10) 2024 Uriu, Kaku, Uwamino, Fujiwara, Saito, Sato (bib12) 2024 Wang, Iketani, Li, Liu, Guo, Huang, Bowen, Liu, Wang, Yu (bib22) 2023; 186 Liu, Yu, Jian, Yang, Song, Wang, Yu, Shao, Cao (bib3) 2025; 25 Arora, Happle, Kempf, Nehlmeier, Stankov, Dopfer-Jablonka, Behrens, Pöhlmann, Hoffmann (bib11) 2024; 24 10.1016/j.celrep.2025.115543_bib6 Simon (10.1016/j.celrep.2025.115543_bib18) 2022; 7 Sano (10.1016/j.celrep.2025.115543_bib10) 2024 Wang (10.1016/j.celrep.2025.115543_bib14) 2024; 13 Wang (10.1016/j.celrep.2025.115543_bib20) 2023; 624 Liu (10.1016/j.celrep.2025.115543_bib9) 2024 Wang (10.1016/j.celrep.2025.115543_bib5) 2022; 55 Li (10.1016/j.celrep.2025.115543_bib4) 2024 Zhang (10.1016/j.celrep.2025.115543_bib8) 2024; 84 Wang (10.1016/j.celrep.2025.115543_bib21) 2022; 608 Earle (10.1016/j.celrep.2025.115543_bib2) 2021; 39 Liu (10.1016/j.celrep.2025.115543_bib3) 2025; 25 Liu (10.1016/j.celrep.2025.115543_bib19) 2020; 584 Wang (10.1016/j.celrep.2025.115543_bib15) 2025; 25 Wang (10.1016/j.celrep.2025.115543_bib22) 2023; 186 Arora (10.1016/j.celrep.2025.115543_bib11) 2024; 24 Shu (10.1016/j.celrep.2025.115543_bib1) 2017; 22 Feng (10.1016/j.celrep.2025.115543_bib7) 2023; 15 Smith (10.1016/j.celrep.2025.115543_bib17) 2004; 305 Uriu (10.1016/j.celrep.2025.115543_bib12) 2024 Wang (10.1016/j.celrep.2025.115543_bib16) 2024; 32 Wang (10.1016/j.celrep.2025.115543_bib13) 2024; 391 |
References_xml | – year: 2024 ident: bib12 article-title: Robust antiviral humoral immunity induced by JN.1 monovalent mRNA vaccines against a broad range of SARS-CoV-2 Omicron subvariants including JN.1, KP.3.1.1 and XEC publication-title: bioRxiv – volume: 7 year: 2022 ident: bib18 article-title: PARIS and SPARTA: Finding the Achilles' Heel of SARS-CoV-2 publication-title: mSphere – volume: 39 start-page: 4423 year: 2021 end-page: 4428 ident: bib2 article-title: Evidence for antibody as a protective correlate for COVID-19 vaccines publication-title: Vaccine – volume: 15 year: 2023 ident: bib7 article-title: Broadly neutralizing antibodies against sarbecoviruses generated by immunization of macaques with an AS03-adjuvanted COVID-19 vaccine publication-title: Sci. Transl. Med. – volume: 55 start-page: 998 year: 2022 end-page: 1012.e8 ident: bib5 article-title: Analysis of memory B cells identifies conserved neutralizing epitopes on the N-terminal domain of variant SARS-Cov-2 spike proteins publication-title: Immunity – volume: 624 start-page: 639 year: 2023 end-page: 644 ident: bib20 article-title: Antigenicity and receptor affinity of SARS-CoV-2 BA.2.86 spike publication-title: Nature – volume: 13 year: 2024 ident: bib14 article-title: Recurrent SARS-CoV-2 spike mutations confer growth advantages to select JN.1 sublineages publication-title: Emerg. Microb. Infect. – volume: 24 start-page: e732 year: 2024 end-page: e733 ident: bib11 article-title: Impact of JN.1 booster vaccination on neutralisation of SARS-CoV-2 variants KP.3.1.1 and XEC publication-title: Lancet Infect. Dis. – volume: 391 start-page: 1863 year: 2024 end-page: 1864 ident: bib13 article-title: Activity of Research-Grade Pemivibart against Recent SARS-CoV-2 JN.1 Sublineages publication-title: N. Engl. J. Med. – year: 2024 ident: bib10 article-title: Neutralizing antibody evasion of SARS-CoV-2 JN.1 derivatives KP.3, KP.3.1.1, LB.1, and XEC publication-title: bioRxiv – reference: . – volume: 32 start-page: 315 year: 2024 end-page: 321.e3 ident: bib16 article-title: XBB.1.5 monovalent mRNA vaccine booster elicits robust neutralizing antibodies against XBB subvariants and JN.1 publication-title: Cell Host Microbe – volume: 305 start-page: 371 year: 2004 end-page: 376 ident: bib17 article-title: Mapping the antigenic and genetic evolution of influenza virus publication-title: Science – year: 2024 ident: bib4 article-title: Immune Evasion, Cell-Cell Fusion, and Spike Stability of the SARS-CoV-2 XEC Variant: Role of Glycosylation Mutations at the N-terminal Domain publication-title: bioRxiv – volume: 25 start-page: e6 year: 2025 end-page: e7 ident: bib3 article-title: Enhanced immune evasion of SARS-CoV-2 variants KP.3.1.1 and XEC through N-terminal domain mutations publication-title: Lancet Infect. Dis. – volume: 608 start-page: 603 year: 2022 end-page: 608 ident: bib21 article-title: Antibody evasion by SARS-CoV-2 Omicron subvariants BA.2.12.1, BA.4 and BA.5 publication-title: Nature – volume: 25 start-page: e133 year: 2025 end-page: e134 ident: bib15 article-title: KP.2-based monovalent mRNA vaccines robustly boost antibody responses to SARS-CoV-2 publication-title: Lancet Infect. Dis. – volume: 186 start-page: 279 year: 2023 end-page: 286.e8 ident: bib22 article-title: Alarming antibody evasion properties of rising SARS-CoV-2 BQ and XBB subvariants publication-title: Cellule – reference: FDA (2024). FDA Roundup: March 22, 2024. – volume: 84 start-page: 2747 year: 2024 end-page: 2764.e7 ident: bib8 article-title: SARS-CoV-2 Omicron XBB lineage spike structures, conformations, antigenicity, and receptor recognition publication-title: Mol. Cell – volume: 22 year: 2017 ident: bib1 article-title: GISAID: Global initiative on sharing all influenza data - from vision to reality publication-title: Euro Surveill. – year: 2024 ident: bib9 article-title: Enhanced immune evasion of SARS-CoV-2 KP.3.1.1 and XEC through NTD glycosylation publication-title: bioRxiv – volume: 584 start-page: 450 year: 2020 end-page: 456 ident: bib19 article-title: Potent neutralizing antibodies against multiple epitopes on SARS-CoV-2 spike publication-title: Nature – volume: 584 start-page: 450 year: 2020 ident: 10.1016/j.celrep.2025.115543_bib19 article-title: Potent neutralizing antibodies against multiple epitopes on SARS-CoV-2 spike publication-title: Nature doi: 10.1038/s41586-020-2571-7 – year: 2024 ident: 10.1016/j.celrep.2025.115543_bib10 article-title: Neutralizing antibody evasion of SARS-CoV-2 JN.1 derivatives KP.3, KP.3.1.1, LB.1, and XEC publication-title: bioRxiv – volume: 84 start-page: 2747 year: 2024 ident: 10.1016/j.celrep.2025.115543_bib8 article-title: SARS-CoV-2 Omicron XBB lineage spike structures, conformations, antigenicity, and receptor recognition publication-title: Mol. Cell doi: 10.1016/j.molcel.2024.06.028 – year: 2024 ident: 10.1016/j.celrep.2025.115543_bib12 article-title: Robust antiviral humoral immunity induced by JN.1 monovalent mRNA vaccines against a broad range of SARS-CoV-2 Omicron subvariants including JN.1, KP.3.1.1 and XEC publication-title: bioRxiv – volume: 13 year: 2024 ident: 10.1016/j.celrep.2025.115543_bib14 article-title: Recurrent SARS-CoV-2 spike mutations confer growth advantages to select JN.1 sublineages publication-title: Emerg. Microb. Infect. doi: 10.1080/22221751.2024.2402880 – volume: 32 start-page: 315 year: 2024 ident: 10.1016/j.celrep.2025.115543_bib16 article-title: XBB.1.5 monovalent mRNA vaccine booster elicits robust neutralizing antibodies against XBB subvariants and JN.1 publication-title: Cell Host Microbe doi: 10.1016/j.chom.2024.01.014 – year: 2024 ident: 10.1016/j.celrep.2025.115543_bib9 article-title: Enhanced immune evasion of SARS-CoV-2 KP.3.1.1 and XEC through NTD glycosylation publication-title: bioRxiv – volume: 55 start-page: 998 year: 2022 ident: 10.1016/j.celrep.2025.115543_bib5 article-title: Analysis of memory B cells identifies conserved neutralizing epitopes on the N-terminal domain of variant SARS-Cov-2 spike proteins publication-title: Immunity doi: 10.1016/j.immuni.2022.04.003 – volume: 39 start-page: 4423 year: 2021 ident: 10.1016/j.celrep.2025.115543_bib2 article-title: Evidence for antibody as a protective correlate for COVID-19 vaccines publication-title: Vaccine doi: 10.1016/j.vaccine.2021.05.063 – volume: 25 start-page: e6 year: 2025 ident: 10.1016/j.celrep.2025.115543_bib3 article-title: Enhanced immune evasion of SARS-CoV-2 variants KP.3.1.1 and XEC through N-terminal domain mutations publication-title: Lancet Infect. Dis. doi: 10.1016/S1473-3099(24)00738-2 – volume: 186 start-page: 279 year: 2023 ident: 10.1016/j.celrep.2025.115543_bib22 article-title: Alarming antibody evasion properties of rising SARS-CoV-2 BQ and XBB subvariants publication-title: Cellule doi: 10.1016/j.cell.2022.12.018 – year: 2024 ident: 10.1016/j.celrep.2025.115543_bib4 article-title: Immune Evasion, Cell-Cell Fusion, and Spike Stability of the SARS-CoV-2 XEC Variant: Role of Glycosylation Mutations at the N-terminal Domain publication-title: bioRxiv – volume: 15 year: 2023 ident: 10.1016/j.celrep.2025.115543_bib7 article-title: Broadly neutralizing antibodies against sarbecoviruses generated by immunization of macaques with an AS03-adjuvanted COVID-19 vaccine publication-title: Sci. Transl. Med. doi: 10.1126/scitranslmed.adg7404 – volume: 25 start-page: e133 year: 2025 ident: 10.1016/j.celrep.2025.115543_bib15 article-title: KP.2-based monovalent mRNA vaccines robustly boost antibody responses to SARS-CoV-2 publication-title: Lancet Infect. Dis. doi: 10.1016/S1473-3099(25)00058-1 – volume: 608 start-page: 603 year: 2022 ident: 10.1016/j.celrep.2025.115543_bib21 article-title: Antibody evasion by SARS-CoV-2 Omicron subvariants BA.2.12.1, BA.4 and BA.5 publication-title: Nature doi: 10.1038/s41586-022-05053-w – volume: 24 start-page: e732 year: 2024 ident: 10.1016/j.celrep.2025.115543_bib11 article-title: Impact of JN.1 booster vaccination on neutralisation of SARS-CoV-2 variants KP.3.1.1 and XEC publication-title: Lancet Infect. Dis. doi: 10.1016/S1473-3099(24)00688-1 – volume: 624 start-page: 639 year: 2023 ident: 10.1016/j.celrep.2025.115543_bib20 article-title: Antigenicity and receptor affinity of SARS-CoV-2 BA.2.86 spike publication-title: Nature doi: 10.1038/s41586-023-06750-w – volume: 22 year: 2017 ident: 10.1016/j.celrep.2025.115543_bib1 article-title: GISAID: Global initiative on sharing all influenza data - from vision to reality publication-title: Euro Surveill. doi: 10.2807/1560-7917.ES.2017.22.13.30494 – volume: 7 year: 2022 ident: 10.1016/j.celrep.2025.115543_bib18 article-title: PARIS and SPARTA: Finding the Achilles' Heel of SARS-CoV-2 publication-title: mSphere doi: 10.1128/msphere.00179-22 – volume: 305 start-page: 371 year: 2004 ident: 10.1016/j.celrep.2025.115543_bib17 article-title: Mapping the antigenic and genetic evolution of influenza virus publication-title: Science doi: 10.1126/science.1097211 – ident: 10.1016/j.celrep.2025.115543_bib6 – volume: 391 start-page: 1863 year: 2024 ident: 10.1016/j.celrep.2025.115543_bib13 article-title: Activity of Research-Grade Pemivibart against Recent SARS-CoV-2 JN.1 Sublineages publication-title: N. Engl. J. Med. doi: 10.1056/NEJMc2410203 |
SSID | ssj0000601194 |
Score | 2.4610348 |
Snippet | Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to evolve and spread, and it remains critical to understand the functional consequences... |
SourceID | doaj pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 115543 |
SubjectTerms | ACE2 inhibition Angiotensin-Converting Enzyme 2 - immunology Angiotensin-Converting Enzyme 2 - metabolism Animals Antibodies, Monoclonal - immunology Antibodies, Neutralizing - immunology Antibodies, Viral - immunology antibody evasion COVID-19 - immunology COVID-19 - virology CP: Immunology CP: Microbiology Humans JN.1 subvariants KP.3.1.1 monoclonal antibodies mRNA vaccines Mutation Neutralization Tests SARS-CoV-2 SARS-CoV-2 - genetics SARS-CoV-2 - immunology serum neutralization Spike Glycoprotein, Coronavirus - genetics Spike Glycoprotein, Coronavirus - immunology XEC |
SummonAdditionalLinks | – databaseName: Open Access Journals (DOAJ) dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9RAEF-kIPgiWr9Srazg656X_cw-yXm0FEURa-Xelv3EE0lK767Q_97ZbFIu-tAXX5OQ7Mwk8_tNZnYGobdAgawCpkGSZZJwEROxWjESXZKJ8-hpPwzm8xd5dsE_rsRqb9RXrgkr7YGL4t75NJeAqXLubE8erPIQrwfrnPb5j2b2voB5e8FU8cG5lxkf98r1BV0-_r6KuUUlFeAoAEbZBIv6lv0TSPqXcv5dObkHRaeP0MOBQ-JFWftjdC-2h-h-mSp58wS9X7TbtevCDY7XdjN4M9wlfL74dk6W3Q9C8WbnriFKzkUw-NPXGZvVsxrbNuDVyfIpujg9-b48I8OcBOJ5U2-JBc5Fk-YuABg7LXwMWgml5yyIee1TiDqmwGLecyvAqTjdROapF0HqhnnBnqGDtmvjC4R5sgDpNCkqFXe8dkk5EDbSKH1KMlaIjBozl6UdhhnrxH6ZomGTNWyKhiv0Iav19trczLo_ACY2g4nNXSaukBqNYgZeUPAebrW-4_FvRhsa-GxyLsS2sdttDLiyBiIv2YgKPS82vV1kDqkzaleomVh7IsX0TLv-2bfmrmlO01J29D_kfokeZFly7orSV-hge7WLx0CBtu51_7b_AQWrAb4 priority: 102 providerName: Directory of Open Access Journals – databaseName: ScienceDirect Free and Delayed Access Journal dbid: IXB link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3di9QwEA_HgeCL-O3qKRV8ze42n-3TsbfccSiKuJ7sW0jSRHtIe-zHwf33zqTtYvVB8LFp2iYz6fxmkvkg5B2oQFaDpkGj5YoKGSK1peY0uKiiEMGzVAzm4yd1eSXer-X6iCyHWBh0q-xlfyfTk7TuW2Y9NWc3dT1bMbBdAJ00gDjmYMe021wUKYhvfXbYZ8F8I3mqh4j9KT4wRNAlNy8ffm4CJq5kEsQHgCsfIVRK5D8Cqr8V0T_9KX8DqIuH5EGvWWaLbvCPyFFoHpN7Xa3JuyfkdNHsatdWd1m4tdtexmVtzFaLLyu6bL9Rlm337hZsZ3SNyT58nvJpPs0z21TZ-nz5lFxdnH9dXtK-egL1osh31IImxmIpXAUQ7UoJBC211OWcV3Ke-1iFMsSKB4zElSBqXFkE7pmXlSoL7iV_Ro6btgkvSCaiBaBnUTOlhRO5i9rBZAMLyseowoTQgWLmpkuSYQbvsWvTUdgghU1H4Qk5Q7Ie-mKK69TQbr6bnsfGx7kCZUrNnU1ao9UeXlFZ50qPW9kTogemmNGKgVfV__j824GHBn4mPCGxTWj3WwMCrgB7TBVyQp53PD0MEg1txPIJKUbcHs1ifKepf6SE3TnDw1vGX_73kF-R-3iFx1iMnZDj3WYfXoM2tHNv0nL_Ba9VBP0 priority: 102 providerName: Elsevier |
Title | Antibody evasiveness of SARS-CoV-2 subvariants KP.3.1.1 and XEC |
URI | https://dx.doi.org/10.1016/j.celrep.2025.115543 https://www.ncbi.nlm.nih.gov/pubmed/40202847 https://www.proquest.com/docview/3188428685 https://pubmed.ncbi.nlm.nih.gov/PMC12014523 https://doaj.org/article/cf0689360ba74163a7c202dabb9c5230 |
Volume | 44 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Zb9QwELZKERIviJtwVEHi1auNz-QBVdtVqwIqQpRF-2b5LIuqpN2jYv894zgphEPwkofEsuMZe-Ybz3gGoVcAgbQEpIGDpgIz7gPWlaTYmyACY96SthjMyXtxPGNv53y-g_qarR0BV3807WI9qdnyfPTtcrsPG_71j1gt68-XPmafJBxkAGhIegPdBN0kY02Dkw7wJ9kcc5xFVzMhMZaLMNnfp_tLRwN91ab1H6it32Hpr9GVP6mro7voTocz80laGPfQjq_vo1up8uT2Adqf1OuFadw291d61Um8vAn56eTjKZ42nzHJVxtzBZZ0DJTJ330Y0VExKnJdu3x-OH2IZkeHn6bHuKulgC0rizXWgMtIqJhxoLBNxa13leSyGlPHx4UNzlc-OOrjvVwOgsdUpaeWWO5EVVLL6SO0Wze1f4JyFjSQlgRJhGSGFSZIA5P1xAsbgvAZwj3F1EVKmaH6WLKvKlFYRQqrROEMHUSyXreNCa_bF83yTHX7R9kwFgCtxNjoFkNqaaELp42pbDzYzpDsmaI67JAwAXS1-MfwL3seKtha0V-ia99sVgrEXQnWmSh5hh4nnl7_ZDS7o2bPUDng9mAWwy_14kubvrsg0ZVL6NP_GPgZug2tRQoVeo5218uNfwEoaG322tMDeL6ZH-y1i_w7W9sEUQ |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELZWixBcEG_C00hwdNs4iZ0cEOqWXbV0d4XoLurN2I4NRShZ9bGov4s_yEweFYEDEtJe48gez9gz39jjGUJeAQTSEpAG8zoSLE6cZzqTEXPGCx_HzvKqGMzJqRifx-_nyXyP_GzfwmBYZaP7a51eaevmS7_hZv9isejPOPguYJ0kGHHMwS6ayMqp2_4Av231ZvIOhPya86PDs9GYNaUFmI3TcM00wBTus9jkYL9MlsBomUxkNojyZBBan7vM-Txy-Ew1gX1ostRFltskF1kaWSwVAXr_GqAPidpgMj_YHexggpOwKsCIBDKksH2yV8WVWfd96TBTJk9AX4E1jzomsaoc0LGMfyPfPwM4f7OIR7fJrQbK0mHNrTtkzxV3yfW6uOX2Hnk7LNYLU-Zb6i71qlGqtPR0Nvw4Y6PyE-N0tTGX4KxjLA6dfuhFvbAXUl3kdH44uk_Or4SnD8h-URbuEaGx14AsuJdcyNjEofHSwGQdd8J6L1xAWMsxdVFn5VBtuNo3VXNYIYdVzeGAHCBbd_9iTu3qQ7n8oppFpawfCEBvYmB0BVO1tNBFro3JLJ6dB0S2QlGdJQpdLf4x_MtWhgp2L17J6MKVm5UCjZqCAyjSJCAPa5nuiETPHsFDQNKOtDuz6LYUi69VhvCQ420xjx7_N8kvyI3x2cmxOp6cTp-Qm9iCd2icPyX76-XGPQMotjbPq6VPyeer3mu_AH89QeE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Antibody+evasiveness+of+SARS-CoV-2+subvariants+KP.3.1.1+and+XEC&rft.jtitle=Cell+reports+%28Cambridge%29&rft.au=Wang%2C+Qian&rft.au=Guo%2C+Yicheng&rft.au=Mellis%2C+Ian+A&rft.au=Wu%2C+Madeline&rft.date=2025-04-22&rft.issn=2211-1247&rft.eissn=2211-1247&rft.volume=44&rft.issue=4&rft.spage=115543&rft_id=info:doi/10.1016%2Fj.celrep.2025.115543&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-1247&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-1247&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-1247&client=summon |