Antibody evasiveness of SARS-CoV-2 subvariants KP.3.1.1 and XEC

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to evolve and spread, and it remains critical to understand the functional consequences of mutations in dominant viral variants. The recombinant JN.1 subvariant XEC recently replaced KP.3.1.1 to become the most prevalent subvaria...

Full description

Saved in:
Bibliographic Details
Published inCell reports (Cambridge) Vol. 44; no. 4; p. 115543
Main Authors Wang, Qian, Guo, Yicheng, Mellis, Ian A., Wu, Madeline, Mohri, Hiroshi, Gherasim, Carmen, Valdez, Riccardo, Purpura, Lawrence J., Yin, Michael T., Gordon, Aubree, Ho, David D.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 22.04.2025
Cell Press
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to evolve and spread, and it remains critical to understand the functional consequences of mutations in dominant viral variants. The recombinant JN.1 subvariant XEC recently replaced KP.3.1.1 to become the most prevalent subvariant worldwide. Here, we measure the in vitro neutralization of KP.3.1.1 and XEC by human sera, monoclonal antibodies, and the soluble human ACE2 (hACE2) receptor relative to the parental subvariants KP.3 and JN.1. KP.3.1.1 and XEC are slightly more resistant (1.3- to 1.6-fold) than KP.3 to serum neutralization and antigenically similar. Both also demonstrate greater resistance to neutralization by select monoclonal antibodies and soluble hACE2, all of which target the top of the viral spike. Our findings suggest that the upward motion of the receptor-binding domain in the spike may be partially hindered by the N-terminal domain mutations in KP.3.1.1 and XEC, allowing these subvariants to better evade serum antibodies that target the viral spike in the up position and to have a growth advantage. [Display omitted] •KP.3.1.1 and XEC are 1.3- to 1.6-fold more resistant to serum neutralization than KP.3•KP.2 MV booster may elicit higher titers against KP.3.1.1 and XEC than JN.1 infection•Spike mutations F59S and S31Δ are functionally similar for receptor binding and mAb evasion SARS-CoV-2 Omicron JN.1 subvariants KP.3.1.1 and XEC emerged as dominant over parental strains. Wang et al. show that KP.3.1.1 and XEC are similarly antibody evasive due to different spike NTD mutations at interacting amino acids, which likely leads to similar impairments of spike conformational changes.
AbstractList Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to evolve and spread, and it remains critical to understand the functional consequences of mutations in dominant viral variants. The recombinant JN.1 subvariant XEC recently replaced KP.3.1.1 to become the most prevalent subvariant worldwide. Here, we measure the in vitro neutralization of KP.3.1.1 and XEC by human sera, monoclonal antibodies, and the soluble human ACE2 (hACE2) receptor relative to the parental subvariants KP.3 and JN.1. KP.3.1.1 and XEC are slightly more resistant (1.3- to 1.6-fold) than KP.3 to serum neutralization and antigenically similar. Both also demonstrate greater resistance to neutralization by select monoclonal antibodies and soluble hACE2, all of which target the top of the viral spike. Our findings suggest that the upward motion of the receptor-binding domain in the spike may be partially hindered by the N-terminal domain mutations in KP.3.1.1 and XEC, allowing these subvariants to better evade serum antibodies that target the viral spike in the up position and to have a growth advantage. • KP.3.1.1 and XEC are 1.3- to 1.6-fold more resistant to serum neutralization than KP.3 • KP.2 MV booster may elicit higher titers against KP.3.1.1 and XEC than JN.1 infection • Spike mutations F59S and S31Δ are functionally similar for receptor binding and mAb evasion SARS-CoV-2 Omicron JN.1 subvariants KP.3.1.1 and XEC emerged as dominant over parental strains. Wang et al. show that KP.3.1.1 and XEC are similarly antibody evasive due to different spike NTD mutations at interacting amino acids, which likely leads to similar impairments of spike conformational changes.
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to evolve and spread, and it remains critical to understand the functional consequences of mutations in dominant viral variants. The recombinant JN.1 subvariant XEC recently replaced KP.3.1.1 to become the most prevalent subvariant worldwide. Here, we measure the in vitro neutralization of KP.3.1.1 and XEC by human sera, monoclonal antibodies, and the soluble human ACE2 (hACE2) receptor relative to the parental subvariants KP.3 and JN.1. KP.3.1.1 and XEC are slightly more resistant (1.3- to 1.6-fold) than KP.3 to serum neutralization and antigenically similar. Both also demonstrate greater resistance to neutralization by select monoclonal antibodies and soluble hACE2, all of which target the top of the viral spike. Our findings suggest that the upward motion of the receptor-binding domain in the spike may be partially hindered by the N-terminal domain mutations in KP.3.1.1 and XEC, allowing these subvariants to better evade serum antibodies that target the viral spike in the up position and to have a growth advantage.
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to evolve and spread, and it remains critical to understand the functional consequences of mutations in dominant viral variants. The recombinant JN.1 subvariant XEC recently replaced KP.3.1.1 to become the most prevalent subvariant worldwide. Here, we measure the in vitro neutralization of KP.3.1.1 and XEC by human sera, monoclonal antibodies, and the soluble human ACE2 (hACE2) receptor relative to the parental subvariants KP.3 and JN.1. KP.3.1.1 and XEC are slightly more resistant (1.3- to 1.6-fold) than KP.3 to serum neutralization and antigenically similar. Both also demonstrate greater resistance to neutralization by select monoclonal antibodies and soluble hACE2, all of which target the top of the viral spike. Our findings suggest that the upward motion of the receptor-binding domain in the spike may be partially hindered by the N-terminal domain mutations in KP.3.1.1 and XEC, allowing these subvariants to better evade serum antibodies that target the viral spike in the up position and to have a growth advantage. [Display omitted] •KP.3.1.1 and XEC are 1.3- to 1.6-fold more resistant to serum neutralization than KP.3•KP.2 MV booster may elicit higher titers against KP.3.1.1 and XEC than JN.1 infection•Spike mutations F59S and S31Δ are functionally similar for receptor binding and mAb evasion SARS-CoV-2 Omicron JN.1 subvariants KP.3.1.1 and XEC emerged as dominant over parental strains. Wang et al. show that KP.3.1.1 and XEC are similarly antibody evasive due to different spike NTD mutations at interacting amino acids, which likely leads to similar impairments of spike conformational changes.
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to evolve and spread, and it remains critical to understand the functional consequences of mutations in dominant viral variants. The recombinant JN.1 subvariant XEC recently replaced KP.3.1.1 to become the most prevalent subvariant worldwide. Here, we measure the in vitro neutralization of KP.3.1.1 and XEC by human sera, monoclonal antibodies, and the soluble human ACE2 (hACE2) receptor relative to the parental subvariants KP.3 and JN.1. KP.3.1.1 and XEC are slightly more resistant (1.3- to 1.6-fold) than KP.3 to serum neutralization and antigenically similar. Both also demonstrate greater resistance to neutralization by select monoclonal antibodies and soluble hACE2, all of which target the top of the viral spike. Our findings suggest that the upward motion of the receptor-binding domain in the spike may be partially hindered by the N-terminal domain mutations in KP.3.1.1 and XEC, allowing these subvariants to better evade serum antibodies that target the viral spike in the up position and to have a growth advantage.Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to evolve and spread, and it remains critical to understand the functional consequences of mutations in dominant viral variants. The recombinant JN.1 subvariant XEC recently replaced KP.3.1.1 to become the most prevalent subvariant worldwide. Here, we measure the in vitro neutralization of KP.3.1.1 and XEC by human sera, monoclonal antibodies, and the soluble human ACE2 (hACE2) receptor relative to the parental subvariants KP.3 and JN.1. KP.3.1.1 and XEC are slightly more resistant (1.3- to 1.6-fold) than KP.3 to serum neutralization and antigenically similar. Both also demonstrate greater resistance to neutralization by select monoclonal antibodies and soluble hACE2, all of which target the top of the viral spike. Our findings suggest that the upward motion of the receptor-binding domain in the spike may be partially hindered by the N-terminal domain mutations in KP.3.1.1 and XEC, allowing these subvariants to better evade serum antibodies that target the viral spike in the up position and to have a growth advantage.
ArticleNumber 115543
Author Gherasim, Carmen
Guo, Yicheng
Purpura, Lawrence J.
Yin, Michael T.
Wu, Madeline
Gordon, Aubree
Wang, Qian
Mellis, Ian A.
Ho, David D.
Valdez, Riccardo
Mohri, Hiroshi
Author_xml – sequence: 1
  givenname: Qian
  surname: Wang
  fullname: Wang, Qian
  organization: Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
– sequence: 2
  givenname: Yicheng
  surname: Guo
  fullname: Guo, Yicheng
  organization: Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
– sequence: 3
  givenname: Ian A.
  surname: Mellis
  fullname: Mellis, Ian A.
  organization: Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
– sequence: 4
  givenname: Madeline
  surname: Wu
  fullname: Wu, Madeline
  organization: Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
– sequence: 5
  givenname: Hiroshi
  surname: Mohri
  fullname: Mohri, Hiroshi
  organization: Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
– sequence: 6
  givenname: Carmen
  surname: Gherasim
  fullname: Gherasim, Carmen
  organization: Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
– sequence: 7
  givenname: Riccardo
  surname: Valdez
  fullname: Valdez, Riccardo
  organization: Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
– sequence: 8
  givenname: Lawrence J.
  surname: Purpura
  fullname: Purpura, Lawrence J.
  organization: Division of Infectious Diseases, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
– sequence: 9
  givenname: Michael T.
  surname: Yin
  fullname: Yin, Michael T.
  organization: Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
– sequence: 10
  givenname: Aubree
  surname: Gordon
  fullname: Gordon, Aubree
  organization: Department of Epidemiology, University of Michigan, Ann Arbor, MI 48109, USA
– sequence: 11
  givenname: David D.
  orcidid: 0000-0003-1627-149X
  surname: Ho
  fullname: Ho, David D.
  email: dh2994@cumc.columbia.edu
  organization: Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40202847$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1u1DAUhS1UREvpGyCUJZsE_yb2hmo0KlBRCUQBsbMc-6Z4lLGndiZS3x4PKVW7wRtb1-d-1z7nJToKMQBCrwluCCbtu01jYUywayimoiFECM6eoRNKCakJ5d3Ro_MxOst5g8tqMSGKv0DHHJc-ybsTdL4Kk--ju6tgNtnPECDnKg7V9erbdb2OP2ta5X0_m-RNmHL1-WvDGtKQygRX_bpYv0LPBzNmOLvfT9GPDxff15_qqy8fL9erq9pySabaYNHRQfHeEUF7JSw41YlOYeYEJnZwoGBwDFhRCym7XklgllrhWiWZFewUXS5cF81G75LfmnSno_H6byGmG23S5O0I2g64lYq1uDcdJy0znS2_dabvlRWU4cI6X1i7fb8FZyFMyYxPoE9vgv-tb-KsCcWEF0QhvL0npHi7hzzprc8lkdEEiPusGZGSU9nKw8PfPB72MOVfBEXAF4FNMecEw4OEYH0IW2_0ErY-hK2XsEvb-6UNiuuzh6Sz9RCKsT6BnYot_v-APwBWr98
Cites_doi 10.1038/s41586-020-2571-7
10.1016/j.molcel.2024.06.028
10.1080/22221751.2024.2402880
10.1016/j.chom.2024.01.014
10.1016/j.immuni.2022.04.003
10.1016/j.vaccine.2021.05.063
10.1016/S1473-3099(24)00738-2
10.1016/j.cell.2022.12.018
10.1126/scitranslmed.adg7404
10.1016/S1473-3099(25)00058-1
10.1038/s41586-022-05053-w
10.1016/S1473-3099(24)00688-1
10.1038/s41586-023-06750-w
10.2807/1560-7917.ES.2017.22.13.30494
10.1128/msphere.00179-22
10.1126/science.1097211
10.1056/NEJMc2410203
ContentType Journal Article
Copyright 2025 The Author(s)
Copyright © 2025 The Author(s). Published by Elsevier Inc. All rights reserved.
2025 The Author(s) 2025
Copyright_xml – notice: 2025 The Author(s)
– notice: Copyright © 2025 The Author(s). Published by Elsevier Inc. All rights reserved.
– notice: 2025 The Author(s) 2025
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOA
DOI 10.1016/j.celrep.2025.115543
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
Open Access Journals (DOAJ)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE


MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2211-1247
ExternalDocumentID oai_doaj_org_article_cf0689360ba74163a7c202dabb9c5230
PMC12014523
40202847
10_1016_j_celrep_2025_115543
S2211124725003146
Genre Journal Article
GrantInformation_xml – fundername: NIAID NIH HHS
  grantid: K23 AI171263
GroupedDBID 0R~
4.4
457
53G
5VS
6I.
AAEDT
AAEDW
AAFTH
AAIKJ
AAKRW
AALRI
AAMRU
AAXUO
AAYWO
ABMAC
ACGFO
ACGFS
ACVFH
ADBBV
ADCNI
ADEZE
ADVLN
AENEX
AEUPX
AEXQZ
AFPUW
AFTJW
AGHFR
AIGII
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
APXCP
BAWUL
BCNDV
DIK
EBS
EJD
FCP
FDB
FRP
GROUPED_DOAJ
GX1
IXB
KQ8
M41
M48
O-L
O9-
OK1
ROL
SSZ
AAYXX
CITATION
HZ~
IPNFZ
RIG
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c481t-a0572f94bd152b95ced9757903d501cfde9efd3e34815887b98e3c2c5d6983c53
IEDL.DBID M48
ISSN 2211-1247
IngestDate Wed Aug 27 01:28:58 EDT 2025
Thu Aug 21 18:26:51 EDT 2025
Wed Jul 02 05:04:00 EDT 2025
Sun Aug 10 01:31:54 EDT 2025
Wed Jul 16 16:50:14 EDT 2025
Sat Aug 09 17:30:36 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords CP: Immunology
ACE2 inhibition
SARS-CoV-2
XEC
CP: Microbiology
mRNA vaccines
JN.1 subvariants
antibody evasion
serum neutralization
KP.3.1.1
monoclonal antibodies
Language English
License This is an open access article under the CC BY license.
Copyright © 2025 The Author(s). Published by Elsevier Inc. All rights reserved.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c481t-a0572f94bd152b95ced9757903d501cfde9efd3e34815887b98e3c2c5d6983c53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
These authors contributed equally
Lead contact
ORCID 0000-0003-1627-149X
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1016/j.celrep.2025.115543
PMID 40202847
PQID 3188428685
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_cf0689360ba74163a7c202dabb9c5230
pubmedcentral_primary_oai_pubmedcentral_nih_gov_12014523
proquest_miscellaneous_3188428685
pubmed_primary_40202847
crossref_primary_10_1016_j_celrep_2025_115543
elsevier_sciencedirect_doi_10_1016_j_celrep_2025_115543
PublicationCentury 2000
PublicationDate 2025-04-22
PublicationDateYYYYMMDD 2025-04-22
PublicationDate_xml – month: 04
  year: 2025
  text: 2025-04-22
  day: 22
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Cell reports (Cambridge)
PublicationTitleAlternate Cell Rep
PublicationYear 2025
Publisher Elsevier Inc
Cell Press
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Cell Press
– name: Elsevier
References Zhang, Lindenberger, Parsons, Thakur, Parks, Park, Huang, Sammour, Janowska, Spence (bib8) 2024; 84
Shu, McCauley (bib1) 2017; 22
Simon, Kota, Bloomquist, Hanley, Forgacs, Pahwa, Pallikkuth, Miller, Schaenman, Yeaman (bib18) 2022; 7
Wang, Guo, Liu, Schwanz, Li, Nair, Ho, Zhang, Iketani, Yu (bib20) 2023; 624
Wang, Guo, Iketani, Nair, Li, Mohri, Wang, Yu, Bowen, Chang (bib21) 2022; 608
Wang, Guo, Bowen, Mellis, Valdez, Gherasim, Gordon, Liu, Ho (bib16) 2024; 32
FDA (2024). FDA Roundup: March 22, 2024.
.
Wang, Mellis, Ho, Bowen, Kowalski-Dobson, Valdez, Katsamba, Wu, Lee, Shapiro (bib14) 2024; 13
Liu, Yu, Jian, Yang, Song, Wang, Yu, Shao, Cao (bib9) 2024
Wang, Guo, Ho, Ho (bib13) 2024; 391
Wang, Mellis, Wu, Bowen, Gherasim, Valdez, Shah, Purpura, Yin, Gordon (bib15) 2025; 25
Liu, Wang, Nair, Yu, Rapp, Wang, Luo, Chan, Sahi, Figueroa (bib19) 2020; 584
Li, Faraone, Hsu, Chamblee, Liu, Zheng, Xu, Carlin, Horowitz, Mallampalli (bib4) 2024
Smith, Lapedes, de Jong, Bestebroer, Rimmelzwaan, Osterhaus, Fouchier (bib17) 2004; 305
Wang, Muecksch, Cho, Gaebler, Hoffmann, Ramos, Zong, Cipolla, Johnson, Schmidt (bib5) 2022; 55
Earle, Ambrosino, Fiore-Gartland, Goldblatt, Gilbert, Siber, Dull, Plotkin (bib2) 2021; 39
Feng, Yuan, Powers, Hu, Munt, Arunachalam, Leist, Bellusci, Kim, Sprouse (bib7) 2023; 15
Sano, Miyakawa, Kato, Kimura, Goto, Ryo, Watanabe, Hasegawa (bib10) 2024
Uriu, Kaku, Uwamino, Fujiwara, Saito, Sato (bib12) 2024
Wang, Iketani, Li, Liu, Guo, Huang, Bowen, Liu, Wang, Yu (bib22) 2023; 186
Liu, Yu, Jian, Yang, Song, Wang, Yu, Shao, Cao (bib3) 2025; 25
Arora, Happle, Kempf, Nehlmeier, Stankov, Dopfer-Jablonka, Behrens, Pöhlmann, Hoffmann (bib11) 2024; 24
10.1016/j.celrep.2025.115543_bib6
Simon (10.1016/j.celrep.2025.115543_bib18) 2022; 7
Sano (10.1016/j.celrep.2025.115543_bib10) 2024
Wang (10.1016/j.celrep.2025.115543_bib14) 2024; 13
Wang (10.1016/j.celrep.2025.115543_bib20) 2023; 624
Liu (10.1016/j.celrep.2025.115543_bib9) 2024
Wang (10.1016/j.celrep.2025.115543_bib5) 2022; 55
Li (10.1016/j.celrep.2025.115543_bib4) 2024
Zhang (10.1016/j.celrep.2025.115543_bib8) 2024; 84
Wang (10.1016/j.celrep.2025.115543_bib21) 2022; 608
Earle (10.1016/j.celrep.2025.115543_bib2) 2021; 39
Liu (10.1016/j.celrep.2025.115543_bib3) 2025; 25
Liu (10.1016/j.celrep.2025.115543_bib19) 2020; 584
Wang (10.1016/j.celrep.2025.115543_bib15) 2025; 25
Wang (10.1016/j.celrep.2025.115543_bib22) 2023; 186
Arora (10.1016/j.celrep.2025.115543_bib11) 2024; 24
Shu (10.1016/j.celrep.2025.115543_bib1) 2017; 22
Feng (10.1016/j.celrep.2025.115543_bib7) 2023; 15
Smith (10.1016/j.celrep.2025.115543_bib17) 2004; 305
Uriu (10.1016/j.celrep.2025.115543_bib12) 2024
Wang (10.1016/j.celrep.2025.115543_bib16) 2024; 32
Wang (10.1016/j.celrep.2025.115543_bib13) 2024; 391
References_xml – year: 2024
  ident: bib12
  article-title: Robust antiviral humoral immunity induced by JN.1 monovalent mRNA vaccines against a broad range of SARS-CoV-2 Omicron subvariants including JN.1, KP.3.1.1 and XEC
  publication-title: bioRxiv
– volume: 7
  year: 2022
  ident: bib18
  article-title: PARIS and SPARTA: Finding the Achilles' Heel of SARS-CoV-2
  publication-title: mSphere
– volume: 39
  start-page: 4423
  year: 2021
  end-page: 4428
  ident: bib2
  article-title: Evidence for antibody as a protective correlate for COVID-19 vaccines
  publication-title: Vaccine
– volume: 15
  year: 2023
  ident: bib7
  article-title: Broadly neutralizing antibodies against sarbecoviruses generated by immunization of macaques with an AS03-adjuvanted COVID-19 vaccine
  publication-title: Sci. Transl. Med.
– volume: 55
  start-page: 998
  year: 2022
  end-page: 1012.e8
  ident: bib5
  article-title: Analysis of memory B cells identifies conserved neutralizing epitopes on the N-terminal domain of variant SARS-Cov-2 spike proteins
  publication-title: Immunity
– volume: 624
  start-page: 639
  year: 2023
  end-page: 644
  ident: bib20
  article-title: Antigenicity and receptor affinity of SARS-CoV-2 BA.2.86 spike
  publication-title: Nature
– volume: 13
  year: 2024
  ident: bib14
  article-title: Recurrent SARS-CoV-2 spike mutations confer growth advantages to select JN.1 sublineages
  publication-title: Emerg. Microb. Infect.
– volume: 24
  start-page: e732
  year: 2024
  end-page: e733
  ident: bib11
  article-title: Impact of JN.1 booster vaccination on neutralisation of SARS-CoV-2 variants KP.3.1.1 and XEC
  publication-title: Lancet Infect. Dis.
– volume: 391
  start-page: 1863
  year: 2024
  end-page: 1864
  ident: bib13
  article-title: Activity of Research-Grade Pemivibart against Recent SARS-CoV-2 JN.1 Sublineages
  publication-title: N. Engl. J. Med.
– year: 2024
  ident: bib10
  article-title: Neutralizing antibody evasion of SARS-CoV-2 JN.1 derivatives KP.3, KP.3.1.1, LB.1, and XEC
  publication-title: bioRxiv
– reference: .
– volume: 32
  start-page: 315
  year: 2024
  end-page: 321.e3
  ident: bib16
  article-title: XBB.1.5 monovalent mRNA vaccine booster elicits robust neutralizing antibodies against XBB subvariants and JN.1
  publication-title: Cell Host Microbe
– volume: 305
  start-page: 371
  year: 2004
  end-page: 376
  ident: bib17
  article-title: Mapping the antigenic and genetic evolution of influenza virus
  publication-title: Science
– year: 2024
  ident: bib4
  article-title: Immune Evasion, Cell-Cell Fusion, and Spike Stability of the SARS-CoV-2 XEC Variant: Role of Glycosylation Mutations at the N-terminal Domain
  publication-title: bioRxiv
– volume: 25
  start-page: e6
  year: 2025
  end-page: e7
  ident: bib3
  article-title: Enhanced immune evasion of SARS-CoV-2 variants KP.3.1.1 and XEC through N-terminal domain mutations
  publication-title: Lancet Infect. Dis.
– volume: 608
  start-page: 603
  year: 2022
  end-page: 608
  ident: bib21
  article-title: Antibody evasion by SARS-CoV-2 Omicron subvariants BA.2.12.1, BA.4 and BA.5
  publication-title: Nature
– volume: 25
  start-page: e133
  year: 2025
  end-page: e134
  ident: bib15
  article-title: KP.2-based monovalent mRNA vaccines robustly boost antibody responses to SARS-CoV-2
  publication-title: Lancet Infect. Dis.
– volume: 186
  start-page: 279
  year: 2023
  end-page: 286.e8
  ident: bib22
  article-title: Alarming antibody evasion properties of rising SARS-CoV-2 BQ and XBB subvariants
  publication-title: Cellule
– reference: FDA (2024). FDA Roundup: March 22, 2024.
– volume: 84
  start-page: 2747
  year: 2024
  end-page: 2764.e7
  ident: bib8
  article-title: SARS-CoV-2 Omicron XBB lineage spike structures, conformations, antigenicity, and receptor recognition
  publication-title: Mol. Cell
– volume: 22
  year: 2017
  ident: bib1
  article-title: GISAID: Global initiative on sharing all influenza data - from vision to reality
  publication-title: Euro Surveill.
– year: 2024
  ident: bib9
  article-title: Enhanced immune evasion of SARS-CoV-2 KP.3.1.1 and XEC through NTD glycosylation
  publication-title: bioRxiv
– volume: 584
  start-page: 450
  year: 2020
  end-page: 456
  ident: bib19
  article-title: Potent neutralizing antibodies against multiple epitopes on SARS-CoV-2 spike
  publication-title: Nature
– volume: 584
  start-page: 450
  year: 2020
  ident: 10.1016/j.celrep.2025.115543_bib19
  article-title: Potent neutralizing antibodies against multiple epitopes on SARS-CoV-2 spike
  publication-title: Nature
  doi: 10.1038/s41586-020-2571-7
– year: 2024
  ident: 10.1016/j.celrep.2025.115543_bib10
  article-title: Neutralizing antibody evasion of SARS-CoV-2 JN.1 derivatives KP.3, KP.3.1.1, LB.1, and XEC
  publication-title: bioRxiv
– volume: 84
  start-page: 2747
  year: 2024
  ident: 10.1016/j.celrep.2025.115543_bib8
  article-title: SARS-CoV-2 Omicron XBB lineage spike structures, conformations, antigenicity, and receptor recognition
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2024.06.028
– year: 2024
  ident: 10.1016/j.celrep.2025.115543_bib12
  article-title: Robust antiviral humoral immunity induced by JN.1 monovalent mRNA vaccines against a broad range of SARS-CoV-2 Omicron subvariants including JN.1, KP.3.1.1 and XEC
  publication-title: bioRxiv
– volume: 13
  year: 2024
  ident: 10.1016/j.celrep.2025.115543_bib14
  article-title: Recurrent SARS-CoV-2 spike mutations confer growth advantages to select JN.1 sublineages
  publication-title: Emerg. Microb. Infect.
  doi: 10.1080/22221751.2024.2402880
– volume: 32
  start-page: 315
  year: 2024
  ident: 10.1016/j.celrep.2025.115543_bib16
  article-title: XBB.1.5 monovalent mRNA vaccine booster elicits robust neutralizing antibodies against XBB subvariants and JN.1
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2024.01.014
– year: 2024
  ident: 10.1016/j.celrep.2025.115543_bib9
  article-title: Enhanced immune evasion of SARS-CoV-2 KP.3.1.1 and XEC through NTD glycosylation
  publication-title: bioRxiv
– volume: 55
  start-page: 998
  year: 2022
  ident: 10.1016/j.celrep.2025.115543_bib5
  article-title: Analysis of memory B cells identifies conserved neutralizing epitopes on the N-terminal domain of variant SARS-Cov-2 spike proteins
  publication-title: Immunity
  doi: 10.1016/j.immuni.2022.04.003
– volume: 39
  start-page: 4423
  year: 2021
  ident: 10.1016/j.celrep.2025.115543_bib2
  article-title: Evidence for antibody as a protective correlate for COVID-19 vaccines
  publication-title: Vaccine
  doi: 10.1016/j.vaccine.2021.05.063
– volume: 25
  start-page: e6
  year: 2025
  ident: 10.1016/j.celrep.2025.115543_bib3
  article-title: Enhanced immune evasion of SARS-CoV-2 variants KP.3.1.1 and XEC through N-terminal domain mutations
  publication-title: Lancet Infect. Dis.
  doi: 10.1016/S1473-3099(24)00738-2
– volume: 186
  start-page: 279
  year: 2023
  ident: 10.1016/j.celrep.2025.115543_bib22
  article-title: Alarming antibody evasion properties of rising SARS-CoV-2 BQ and XBB subvariants
  publication-title: Cellule
  doi: 10.1016/j.cell.2022.12.018
– year: 2024
  ident: 10.1016/j.celrep.2025.115543_bib4
  article-title: Immune Evasion, Cell-Cell Fusion, and Spike Stability of the SARS-CoV-2 XEC Variant: Role of Glycosylation Mutations at the N-terminal Domain
  publication-title: bioRxiv
– volume: 15
  year: 2023
  ident: 10.1016/j.celrep.2025.115543_bib7
  article-title: Broadly neutralizing antibodies against sarbecoviruses generated by immunization of macaques with an AS03-adjuvanted COVID-19 vaccine
  publication-title: Sci. Transl. Med.
  doi: 10.1126/scitranslmed.adg7404
– volume: 25
  start-page: e133
  year: 2025
  ident: 10.1016/j.celrep.2025.115543_bib15
  article-title: KP.2-based monovalent mRNA vaccines robustly boost antibody responses to SARS-CoV-2
  publication-title: Lancet Infect. Dis.
  doi: 10.1016/S1473-3099(25)00058-1
– volume: 608
  start-page: 603
  year: 2022
  ident: 10.1016/j.celrep.2025.115543_bib21
  article-title: Antibody evasion by SARS-CoV-2 Omicron subvariants BA.2.12.1, BA.4 and BA.5
  publication-title: Nature
  doi: 10.1038/s41586-022-05053-w
– volume: 24
  start-page: e732
  year: 2024
  ident: 10.1016/j.celrep.2025.115543_bib11
  article-title: Impact of JN.1 booster vaccination on neutralisation of SARS-CoV-2 variants KP.3.1.1 and XEC
  publication-title: Lancet Infect. Dis.
  doi: 10.1016/S1473-3099(24)00688-1
– volume: 624
  start-page: 639
  year: 2023
  ident: 10.1016/j.celrep.2025.115543_bib20
  article-title: Antigenicity and receptor affinity of SARS-CoV-2 BA.2.86 spike
  publication-title: Nature
  doi: 10.1038/s41586-023-06750-w
– volume: 22
  year: 2017
  ident: 10.1016/j.celrep.2025.115543_bib1
  article-title: GISAID: Global initiative on sharing all influenza data - from vision to reality
  publication-title: Euro Surveill.
  doi: 10.2807/1560-7917.ES.2017.22.13.30494
– volume: 7
  year: 2022
  ident: 10.1016/j.celrep.2025.115543_bib18
  article-title: PARIS and SPARTA: Finding the Achilles' Heel of SARS-CoV-2
  publication-title: mSphere
  doi: 10.1128/msphere.00179-22
– volume: 305
  start-page: 371
  year: 2004
  ident: 10.1016/j.celrep.2025.115543_bib17
  article-title: Mapping the antigenic and genetic evolution of influenza virus
  publication-title: Science
  doi: 10.1126/science.1097211
– ident: 10.1016/j.celrep.2025.115543_bib6
– volume: 391
  start-page: 1863
  year: 2024
  ident: 10.1016/j.celrep.2025.115543_bib13
  article-title: Activity of Research-Grade Pemivibart against Recent SARS-CoV-2 JN.1 Sublineages
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMc2410203
SSID ssj0000601194
Score 2.4610348
Snippet Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to evolve and spread, and it remains critical to understand the functional consequences...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 115543
SubjectTerms ACE2 inhibition
Angiotensin-Converting Enzyme 2 - immunology
Angiotensin-Converting Enzyme 2 - metabolism
Animals
Antibodies, Monoclonal - immunology
Antibodies, Neutralizing - immunology
Antibodies, Viral - immunology
antibody evasion
COVID-19 - immunology
COVID-19 - virology
CP: Immunology
CP: Microbiology
Humans
JN.1 subvariants
KP.3.1.1
monoclonal antibodies
mRNA vaccines
Mutation
Neutralization Tests
SARS-CoV-2
SARS-CoV-2 - genetics
SARS-CoV-2 - immunology
serum neutralization
Spike Glycoprotein, Coronavirus - genetics
Spike Glycoprotein, Coronavirus - immunology
XEC
SummonAdditionalLinks – databaseName: Open Access Journals (DOAJ)
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9RAEF-kIPgiWr9Srazg656X_cw-yXm0FEURa-Xelv3EE0lK767Q_97ZbFIu-tAXX5OQ7Mwk8_tNZnYGobdAgawCpkGSZZJwEROxWjESXZKJ8-hpPwzm8xd5dsE_rsRqb9RXrgkr7YGL4t75NJeAqXLubE8erPIQrwfrnPb5j2b2voB5e8FU8cG5lxkf98r1BV0-_r6KuUUlFeAoAEbZBIv6lv0TSPqXcv5dObkHRaeP0MOBQ-JFWftjdC-2h-h-mSp58wS9X7TbtevCDY7XdjN4M9wlfL74dk6W3Q9C8WbnriFKzkUw-NPXGZvVsxrbNuDVyfIpujg9-b48I8OcBOJ5U2-JBc5Fk-YuABg7LXwMWgml5yyIee1TiDqmwGLecyvAqTjdROapF0HqhnnBnqGDtmvjC4R5sgDpNCkqFXe8dkk5EDbSKH1KMlaIjBozl6UdhhnrxH6ZomGTNWyKhiv0Iav19trczLo_ACY2g4nNXSaukBqNYgZeUPAebrW-4_FvRhsa-GxyLsS2sdttDLiyBiIv2YgKPS82vV1kDqkzaleomVh7IsX0TLv-2bfmrmlO01J29D_kfokeZFly7orSV-hge7WLx0CBtu51_7b_AQWrAb4
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ScienceDirect Free and Delayed Access Journal
  dbid: IXB
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3di9QwEA_HgeCL-O3qKRV8ze42n-3TsbfccSiKuJ7sW0jSRHtIe-zHwf33zqTtYvVB8LFp2iYz6fxmkvkg5B2oQFaDpkGj5YoKGSK1peY0uKiiEMGzVAzm4yd1eSXer-X6iCyHWBh0q-xlfyfTk7TuW2Y9NWc3dT1bMbBdAJ00gDjmYMe021wUKYhvfXbYZ8F8I3mqh4j9KT4wRNAlNy8ffm4CJq5kEsQHgCsfIVRK5D8Cqr8V0T_9KX8DqIuH5EGvWWaLbvCPyFFoHpN7Xa3JuyfkdNHsatdWd1m4tdtexmVtzFaLLyu6bL9Rlm337hZsZ3SNyT58nvJpPs0z21TZ-nz5lFxdnH9dXtK-egL1osh31IImxmIpXAUQ7UoJBC211OWcV3Ke-1iFMsSKB4zElSBqXFkE7pmXlSoL7iV_Ro6btgkvSCaiBaBnUTOlhRO5i9rBZAMLyseowoTQgWLmpkuSYQbvsWvTUdgghU1H4Qk5Q7Ie-mKK69TQbr6bnsfGx7kCZUrNnU1ao9UeXlFZ50qPW9kTogemmNGKgVfV__j824GHBn4mPCGxTWj3WwMCrgB7TBVyQp53PD0MEg1txPIJKUbcHs1ifKepf6SE3TnDw1vGX_73kF-R-3iFx1iMnZDj3WYfXoM2tHNv0nL_Ba9VBP0
  priority: 102
  providerName: Elsevier
Title Antibody evasiveness of SARS-CoV-2 subvariants KP.3.1.1 and XEC
URI https://dx.doi.org/10.1016/j.celrep.2025.115543
https://www.ncbi.nlm.nih.gov/pubmed/40202847
https://www.proquest.com/docview/3188428685
https://pubmed.ncbi.nlm.nih.gov/PMC12014523
https://doaj.org/article/cf0689360ba74163a7c202dabb9c5230
Volume 44
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Zb9QwELZKERIviJtwVEHi1auNz-QBVdtVqwIqQpRF-2b5LIuqpN2jYv894zgphEPwkofEsuMZe-Ybz3gGoVcAgbQEpIGDpgIz7gPWlaTYmyACY96SthjMyXtxPGNv53y-g_qarR0BV3807WI9qdnyfPTtcrsPG_71j1gt68-XPmafJBxkAGhIegPdBN0kY02Dkw7wJ9kcc5xFVzMhMZaLMNnfp_tLRwN91ab1H6it32Hpr9GVP6mro7voTocz80laGPfQjq_vo1up8uT2Adqf1OuFadw291d61Um8vAn56eTjKZ42nzHJVxtzBZZ0DJTJ330Y0VExKnJdu3x-OH2IZkeHn6bHuKulgC0rizXWgMtIqJhxoLBNxa13leSyGlPHx4UNzlc-OOrjvVwOgsdUpaeWWO5EVVLL6SO0Wze1f4JyFjSQlgRJhGSGFSZIA5P1xAsbgvAZwj3F1EVKmaH6WLKvKlFYRQqrROEMHUSyXreNCa_bF83yTHX7R9kwFgCtxNjoFkNqaaELp42pbDzYzpDsmaI67JAwAXS1-MfwL3seKtha0V-ia99sVgrEXQnWmSh5hh4nnl7_ZDS7o2bPUDng9mAWwy_14kubvrsg0ZVL6NP_GPgZug2tRQoVeo5218uNfwEoaG322tMDeL6ZH-y1i_w7W9sEUQ
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELZWixBcEG_C00hwdNs4iZ0cEOqWXbV0d4XoLurN2I4NRShZ9bGov4s_yEweFYEDEtJe48gez9gz39jjGUJeAQTSEpAG8zoSLE6cZzqTEXPGCx_HzvKqGMzJqRifx-_nyXyP_GzfwmBYZaP7a51eaevmS7_hZv9isejPOPguYJ0kGHHMwS6ayMqp2_4Av231ZvIOhPya86PDs9GYNaUFmI3TcM00wBTus9jkYL9MlsBomUxkNojyZBBan7vM-Txy-Ew1gX1ostRFltskF1kaWSwVAXr_GqAPidpgMj_YHexggpOwKsCIBDKksH2yV8WVWfd96TBTJk9AX4E1jzomsaoc0LGMfyPfPwM4f7OIR7fJrQbK0mHNrTtkzxV3yfW6uOX2Hnk7LNYLU-Zb6i71qlGqtPR0Nvw4Y6PyE-N0tTGX4KxjLA6dfuhFvbAXUl3kdH44uk_Or4SnD8h-URbuEaGx14AsuJdcyNjEofHSwGQdd8J6L1xAWMsxdVFn5VBtuNo3VXNYIYdVzeGAHCBbd_9iTu3qQ7n8oppFpawfCEBvYmB0BVO1tNBFro3JLJ6dB0S2QlGdJQpdLf4x_MtWhgp2L17J6MKVm5UCjZqCAyjSJCAPa5nuiETPHsFDQNKOtDuz6LYUi69VhvCQ420xjx7_N8kvyI3x2cmxOp6cTp-Qm9iCd2icPyX76-XGPQMotjbPq6VPyeer3mu_AH89QeE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Antibody+evasiveness+of+SARS-CoV-2+subvariants+KP.3.1.1+and+XEC&rft.jtitle=Cell+reports+%28Cambridge%29&rft.au=Wang%2C+Qian&rft.au=Guo%2C+Yicheng&rft.au=Mellis%2C+Ian+A&rft.au=Wu%2C+Madeline&rft.date=2025-04-22&rft.issn=2211-1247&rft.eissn=2211-1247&rft.volume=44&rft.issue=4&rft.spage=115543&rft_id=info:doi/10.1016%2Fj.celrep.2025.115543&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-1247&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-1247&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-1247&client=summon