Land use and soil factors affecting accumulation of phosphorus species in temperate soils
Data on the distribution of phosphorus (P) species in soils with differing land uses and properties are essential to understanding environmental P availability and how fertiliser inputs, cropping and grazing affect accumulation of soil inorganic P (Pi) and organic P (Po) forms. We examined thirty-tw...
Saved in:
Published in | Geoderma Vol. 257-258; pp. 29 - 39 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.11.2015
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Data on the distribution of phosphorus (P) species in soils with differing land uses and properties are essential to understanding environmental P availability and how fertiliser inputs, cropping and grazing affect accumulation of soil inorganic P (Pi) and organic P (Po) forms. We examined thirty-two temperate soils (with soil organic C concentrations 12–449gCkg−1 and total P 295–3435mgPkg−1) for biogeochemical properties of soil C, reactive surfaces and P by common indices and 31P-NMR spectroscopy on NaOH–EDTA extracts for P species. Arable soil P was dominated by inorganic orthophosphate (276–2520mgPkg−1), >monoester P (105–446mgPkg−1). The limited diesters, polyphosphates and microbial P in arable soils suggest that cropping and fertiliser inputs limit ecosystem microbial functions and P diversity. Intensive grassland had inorganic orthophosphate concentrations (233–842mgPkg−1) similar to monoesters (200–658mgPkg−1)>diesters (0–50mgPkg−1) and polyphosphates (1–78mgPkg−1). As grazing became more extensive P in semi-natural systems was dominated by organic P, including monoesters (37–621mgPkg−1) and other diverse forms; principally diester (0–102mgPkg−1) and polyphosphates (0–108mgPkg−1). These were related to SOC, water extractable organic carbon (WEOC) and microbial P, suggesting strong microbially-mediated processes. A number of abiotic and biotic related processes appeared to control accumulation of different soil P species and gave considerable variability in forms and concentrations within land use groups. The implications are that to increase agricultural P efficiencies mechanisms to utilise both soil Pi and Po are needed and that specific management strategies may be required for site-specific circumstances of soil C and reactive properties such as Fe and Al complexes.
•We examined phosphorus species abundance in UK soils.•P species abundance was related to soil properties.•We need to consider inorganic and organic P presence and availability.•Organic P complexation increased for soils with greater C. |
---|---|
AbstractList | Data on the distribution of phosphorus (P) species in soils with differing land uses and properties are essential to understanding environmental P availability and how fertiliser inputs, cropping and grazing affect accumulation of soil inorganic P (Pi) and organic P (Po) forms. We examined thirty-two temperate soils (with soil organic C concentrations 12–449gCkg−1 and total P 295–3435mgPkg−1) for biogeochemical properties of soil C, reactive surfaces and P by common indices and 31P-NMR spectroscopy on NaOH–EDTA extracts for P species. Arable soil P was dominated by inorganic orthophosphate (276–2520mgPkg−1), >monoester P (105–446mgPkg−1). The limited diesters, polyphosphates and microbial P in arable soils suggest that cropping and fertiliser inputs limit ecosystem microbial functions and P diversity. Intensive grassland had inorganic orthophosphate concentrations (233–842mgPkg−1) similar to monoesters (200–658mgPkg−1)>diesters (0–50mgPkg−1) and polyphosphates (1–78mgPkg−1). As grazing became more extensive P in semi-natural systems was dominated by organic P, including monoesters (37–621mgPkg−1) and other diverse forms; principally diester (0–102mgPkg−1) and polyphosphates (0–108mgPkg−1). These were related to SOC, water extractable organic carbon (WEOC) and microbial P, suggesting strong microbially-mediated processes. A number of abiotic and biotic related processes appeared to control accumulation of different soil P species and gave considerable variability in forms and concentrations within land use groups. The implications are that to increase agricultural P efficiencies mechanisms to utilise both soil Pi and Po are needed and that specific management strategies may be required for site-specific circumstances of soil C and reactive properties such as Fe and Al complexes. Data on the distribution of phosphorus (P) species in soils with differing land uses and properties are essential to understanding environmental P availability and how fertiliser inputs, cropping and grazing affect accumulation of soil inorganic P (Pi) and organic P (Po) forms. We examined thirty-two temperate soils (with soil organic C concentrations 12–449gCkg−1 and total P 295–3435mgPkg−1) for biogeochemical properties of soil C, reactive surfaces and P by common indices and 31P-NMR spectroscopy on NaOH–EDTA extracts for P species. Arable soil P was dominated by inorganic orthophosphate (276–2520mgPkg−1), >monoester P (105–446mgPkg−1). The limited diesters, polyphosphates and microbial P in arable soils suggest that cropping and fertiliser inputs limit ecosystem microbial functions and P diversity. Intensive grassland had inorganic orthophosphate concentrations (233–842mgPkg−1) similar to monoesters (200–658mgPkg−1)>diesters (0–50mgPkg−1) and polyphosphates (1–78mgPkg−1). As grazing became more extensive P in semi-natural systems was dominated by organic P, including monoesters (37–621mgPkg−1) and other diverse forms; principally diester (0–102mgPkg−1) and polyphosphates (0–108mgPkg−1). These were related to SOC, water extractable organic carbon (WEOC) and microbial P, suggesting strong microbially-mediated processes. A number of abiotic and biotic related processes appeared to control accumulation of different soil P species and gave considerable variability in forms and concentrations within land use groups. The implications are that to increase agricultural P efficiencies mechanisms to utilise both soil Pi and Po are needed and that specific management strategies may be required for site-specific circumstances of soil C and reactive properties such as Fe and Al complexes. •We examined phosphorus species abundance in UK soils.•P species abundance was related to soil properties.•We need to consider inorganic and organic P presence and availability.•Organic P complexation increased for soils with greater C. |
Author | Shand, Charles A. Dixon, Liz Condron, Leo M. Haygarth, Philip M. MacKay, Regina L. Blackwell, Martin S.A. Stutter, Marc I. Richardson, Alan E. George, Timothy S. Bol, Roland |
Author_xml | – sequence: 1 givenname: Marc I. surname: Stutter fullname: Stutter, Marc I. email: marc.stutter@hutton.ac.uk organization: The James Hutton Institute, Aberdeen AB15 8QH, UK – sequence: 2 givenname: Charles A. surname: Shand fullname: Shand, Charles A. organization: The James Hutton Institute, Aberdeen AB15 8QH, UK – sequence: 3 givenname: Timothy S. surname: George fullname: George, Timothy S. organization: The James Hutton Institute, Aberdeen AB15 8QH, UK – sequence: 4 givenname: Martin S.A. surname: Blackwell fullname: Blackwell, Martin S.A. organization: Rothamsted Research North Wyke, Okehampton, Devon EX20 2SB, UK – sequence: 5 givenname: Liz surname: Dixon fullname: Dixon, Liz organization: Rothamsted Research North Wyke, Okehampton, Devon EX20 2SB, UK – sequence: 6 givenname: Roland surname: Bol fullname: Bol, Roland organization: Rothamsted Research North Wyke, Okehampton, Devon EX20 2SB, UK – sequence: 7 givenname: Regina L. surname: MacKay fullname: MacKay, Regina L. organization: College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK – sequence: 8 givenname: Alan E. surname: Richardson fullname: Richardson, Alan E. organization: CSIRO Plant Industry, Black Mountain, Canberra ACT 2601, Australia – sequence: 9 givenname: Leo M. surname: Condron fullname: Condron, Leo M. organization: Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln 7647, Canterbury, New Zealand – sequence: 10 givenname: Philip M. surname: Haygarth fullname: Haygarth, Philip M. organization: Lancaster Environment Centre, Lancaster University, LA1 4YQ, UK |
BookMark | eNqFkE1LxDAQhoOs4K76FyRHL61Juv1Y8KCIX7DgRQ-eQppM1ixtUzOp4L836-rFi4dhGOZ932GeBZkNfgBCzjjLOePVxTbfgDcQepULxsucFTkT7IDMeVOLrBLlakbmLCmzmlX8iCwQt2msk2hOXtdqMHRCoLuO3nXUKh19QKqsBR3dsKFK66mfOhWdH6i3dHzzmCpMSHEE7QCpG2iEfoSgInzH4Ak5tKpDOP3px-Tl7vb55iFbP90_3lyvM71seMxWIKAEq40p23SvVcYum9IIxsAyYJy1ok5fQWuVMq3hHGorWrFqal7wtC2Oyfk-dwz-fQKMsneooevUAH5CyZuiqspGNCxJL_dSHTxiACu1i99fxaBcJzmTO6JyK3-Jyh1RyQqZYCV79cc-Bter8Pm_8WpvhMThw0GQmKANGowLCbE03v0X8QUS4plD |
CitedBy_id | crossref_primary_10_1016_j_scitotenv_2019_134081 crossref_primary_10_3390_soilsystems7020040 crossref_primary_10_1002_jeq2_20237 crossref_primary_10_1111_ejss_13179 crossref_primary_10_1016_j_geoderma_2016_01_039 crossref_primary_10_1111_ejss_12486 crossref_primary_10_1016_j_geoderma_2018_11_046 crossref_primary_10_1186_s12302_021_00496_w crossref_primary_10_1016_j_geoderma_2017_06_015 crossref_primary_10_1128_msystems_01107_21 crossref_primary_10_1002_ldr_4701 crossref_primary_10_1007_s11104_017_3240_y crossref_primary_10_1007_s11104_016_2884_3 crossref_primary_10_1007_s00374_025_01903_7 crossref_primary_10_1016_j_scitotenv_2017_10_156 crossref_primary_10_1007_s11104_017_3225_x crossref_primary_10_1186_s40538_017_0098_4 crossref_primary_10_1360_SSTe_2024_0103 crossref_primary_10_1007_s11104_017_3391_x crossref_primary_10_3389_fmicb_2020_605955 crossref_primary_10_1021_acs_est_2c00099 crossref_primary_10_1071_SR16057 crossref_primary_10_1002_jpln_201900109 crossref_primary_10_1371_journal_pone_0307139 crossref_primary_10_1002_jeq2_20623 crossref_primary_10_1016_j_geoderma_2016_01_027 crossref_primary_10_4236_ojss_2019_99010 crossref_primary_10_1016_j_geoderma_2018_11_052 crossref_primary_10_1007_s11104_024_06623_9 crossref_primary_10_1016_j_iswcr_2023_06_001 crossref_primary_10_3389_fmicb_2018_01643 crossref_primary_10_1021_acsnano_4c14457 crossref_primary_10_1371_journal_pone_0220476 crossref_primary_10_1016_j_apgeochem_2018_12_012 crossref_primary_10_1111_1758_2229_12651 crossref_primary_10_1002_saj2_20324 crossref_primary_10_3390_min11020121 crossref_primary_10_1038_s41597_023_02022_4 crossref_primary_10_1016_j_geoderma_2025_117187 crossref_primary_10_1016_j_jenvman_2018_12_055 crossref_primary_10_1007_s11104_024_06797_2 crossref_primary_10_3390_f10111001 crossref_primary_10_1016_j_geoderma_2022_115965 crossref_primary_10_1186_s40538_023_00401_y crossref_primary_10_1002_jeq2_20528 crossref_primary_10_1016_j_geoderma_2015_11_017 crossref_primary_10_3390_su13084327 crossref_primary_10_1016_j_geoderma_2021_115150 crossref_primary_10_1007_s42729_025_02253_x crossref_primary_10_1007_s00468_022_02268_2 crossref_primary_10_1016_j_resconrec_2015_10_001 crossref_primary_10_1016_j_still_2023_105683 crossref_primary_10_1007_s11104_018_3732_4 crossref_primary_10_1007_s11430_024_1520_1 crossref_primary_10_3390_genes12071022 crossref_primary_10_1007_s11368_023_03434_w crossref_primary_10_1111_sum_12550 crossref_primary_10_1007_s11783_023_1642_z crossref_primary_10_2134_jeq2019_02_0085 crossref_primary_10_1007_s40726_023_00282_7 crossref_primary_10_1016_j_soilbio_2019_107655 crossref_primary_10_3390_agriculture13112146 crossref_primary_10_1111_sum_12830 crossref_primary_10_1016_j_geoderma_2018_09_056 crossref_primary_10_1038_s41598_024_72361_8 crossref_primary_10_1111_sum_12439 crossref_primary_10_1002_saj2_20347 crossref_primary_10_1016_j_chemosphere_2019_124709 crossref_primary_10_1002_jeq2_20037 crossref_primary_10_1016_j_chemosphere_2020_129210 crossref_primary_10_1007_s11104_017_3362_2 crossref_primary_10_1016_j_biombioe_2023_106805 crossref_primary_10_3390_agronomy12102569 crossref_primary_10_1002_jpln_201700082 crossref_primary_10_3390_f10020172 crossref_primary_10_1016_j_agee_2020_107247 crossref_primary_10_1111_sum_12585 crossref_primary_10_1080_03650340_2020_1714031 crossref_primary_10_1007_s10705_023_10260_6 crossref_primary_10_1016_j_foreco_2019_01_051 crossref_primary_10_1007_s13205_017_0797_3 crossref_primary_10_1016_j_catena_2024_108389 crossref_primary_10_1021_acs_est_6b03017 crossref_primary_10_1111_geb_12417 crossref_primary_10_1002_jeq2_70003 crossref_primary_10_1007_s00374_017_1218_9 crossref_primary_10_3390_f8060213 crossref_primary_10_3390_ijerph15112584 crossref_primary_10_1002_jeq2_20306 crossref_primary_10_1016_j_still_2019_104516 crossref_primary_10_1007_s11104_019_04342_0 crossref_primary_10_1016_j_scitotenv_2017_08_095 crossref_primary_10_1016_j_chemosphere_2019_03_123 crossref_primary_10_1002_jeq2_20265 crossref_primary_10_1016_j_scitotenv_2023_162400 crossref_primary_10_3390_agronomy11112267 crossref_primary_10_1016_j_geodrs_2019_e00228 crossref_primary_10_1007_s10533_019_00633_x crossref_primary_10_3390_su10010144 crossref_primary_10_1007_s42729_024_02167_0 crossref_primary_10_1016_j_scitotenv_2019_07_221 crossref_primary_10_1016_j_geodrs_2022_e00542 crossref_primary_10_1111_sum_12457 crossref_primary_10_1007_s11104_020_04764_1 crossref_primary_10_1016_j_catena_2024_108013 crossref_primary_10_1016_j_scitotenv_2024_171767 crossref_primary_10_1007_s11104_021_04897_x crossref_primary_10_1016_j_rhisph_2016_11_004 crossref_primary_10_3390_agronomy13061647 crossref_primary_10_1111_gcbb_13145 crossref_primary_10_1016_j_still_2018_07_011 crossref_primary_10_1016_j_scitotenv_2022_155892 crossref_primary_10_1016_j_geoderma_2016_04_028 crossref_primary_10_1111_ppl_12718 crossref_primary_10_1016_j_soilbio_2017_08_011 crossref_primary_10_1016_j_bcab_2024_103372 crossref_primary_10_1016_j_eti_2024_103633 crossref_primary_10_1016_j_apsoil_2020_103833 crossref_primary_10_1016_j_scitotenv_2022_159263 crossref_primary_10_1016_j_still_2021_105214 crossref_primary_10_1016_j_plana_2024_100112 crossref_primary_10_1016_j_geoderma_2022_115800 crossref_primary_10_1038_s41598_021_96885_5 crossref_primary_10_1016_j_apsoil_2021_104089 crossref_primary_10_2134_jeq2015_07_0345 crossref_primary_10_1021_acs_est_5b05395 crossref_primary_10_1080_01904167_2024_2304165 crossref_primary_10_1134_S1064229317120110 crossref_primary_10_1007_s11270_021_05196_y crossref_primary_10_1016_j_geoderma_2015_06_008 crossref_primary_10_1016_j_jenvman_2024_121744 crossref_primary_10_3390_f8010019 crossref_primary_10_1088_1748_9326_abce81 crossref_primary_10_3390_su13158240 crossref_primary_10_1016_j_agee_2017_11_026 crossref_primary_10_1007_s10533_025_01213_y crossref_primary_10_1016_j_soilbio_2022_108826 crossref_primary_10_3390_agriculture15050543 crossref_primary_10_1016_j_jclepro_2021_129464 crossref_primary_10_1016_j_soilbio_2019_107695 crossref_primary_10_1007_s42729_024_02140_x crossref_primary_10_1007_s42729_022_00888_8 crossref_primary_10_3390_microorganisms10030609 crossref_primary_10_1016_j_scitotenv_2016_05_192 crossref_primary_10_1021_acs_est_9b00320 |
Cites_doi | 10.1111/j.1365-2435.2008.01404.x 10.1016/j.soilbio.2012.02.013 10.2136/sssaj2010.0404 10.1073/pnas.1113675109 10.1111/j.1365-2389.2000.00326.x 10.1029/2008GL036385 10.1016/j.geoderma.2005.01.020 10.1080/01904160802116068 10.1071/SR10092 10.1016/j.soilbio.2004.02.002 10.1016/j.soilbio.2013.01.011 10.1016/0016-7061(94)00023-4 10.1016/S0065-2113(08)60216-3 10.1016/j.soilbio.2013.02.013 10.1126/science.1185383 10.1016/S0146-6380(03)00061-5 10.2136/sssaj2013.05.0187dgs 10.1007/BF02187361 10.1007/s10021-007-9086-z 10.1098/rstb.2001.0837 10.1080/00103628209367257 10.1111/ejss.12026 10.1007/s11104-011-0950-4 10.1111/j.1365-2389.1990.tb00043.x 10.1097/00010694-199908000-00005 10.1016/j.scitotenv.2008.02.010 10.1007/BF00210223 10.1021/es2044745 10.1007/s11104-013-1731-z 10.1111/j.1365-2389.1983.tb01056.x 10.1016/j.soilbio.2009.12.002 10.1016/j.fcr.2010.03.001 10.1080/00103629109368432 10.1016/j.soilbio.2012.04.012 10.2134/jeq2000.00472425002900010003x 10.2136/sssaj2003.4970 10.2134/jeq2005.0285 10.1021/es204446z 10.1021/es052442m 10.4141/cjss09090 10.1016/0038-0717(86)90050-7 10.1080/00103629009368377 10.2134/jeq2010.0456 10.1007/BF02181034 10.1007/s00374-002-0454-8 |
ContentType | Journal Article |
Copyright | 2015 Elsevier B.V. |
Copyright_xml | – notice: 2015 Elsevier B.V. |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.geoderma.2015.03.020 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
EISSN | 1872-6259 |
EndPage | 39 |
ExternalDocumentID | 10_1016_j_geoderma_2015_03_020 S0016706115000919 |
GroupedDBID | --K --M -DZ -~X .~1 0R~ 0SF 1B1 1RT 1~. 1~5 29H 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JM 9JN AABNK AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AATLK AAXUO ABEFU ABFNM ABFRF ABGRD ABJNI ABMAC ABQEM ABQYD ABXDB ABYKQ ACDAQ ACGFO ACGFS ACIUM ACLVX ACRLP ACSBN ADBBV ADEZE ADMUD ADQTV AEBSH AEFWE AEKER AENEX AEQOU AFFNX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AI. AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG ATOGT AVWKF AXJTR AZFZN BKOJK BLXMC CBWCG CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GROUPED_DOAJ HLV HMA HMC HVGLF HZ~ H~9 IHE IMUCA J1W K-O KOM LW9 LY3 LY9 M41 MO0 N9A O-L O9- OAUVE OHT OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAB SDF SDG SEN SEP SES SEW SPC SPCBC SSA SSE SSZ T5K VH1 WUQ XPP Y6R ZMT ~02 ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO ADVLN AEGFY AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7S9 L.6 |
ID | FETCH-LOGICAL-c481t-9e2e5efcdd5bfecbadf485d200ef0e010b27015ebfaadbd11e7f2b298713110b3 |
IEDL.DBID | .~1 |
ISSN | 0016-7061 |
IngestDate | Fri Jul 11 10:44:04 EDT 2025 Thu Apr 24 23:12:29 EDT 2025 Tue Jul 01 04:04:39 EDT 2025 Fri Feb 23 02:30:44 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Ortho Pi P-NaOH–EDTA WEPo SOC Po-citric P-di Oxalate extractable Fe, Al P-IHP P-phosphon WEOC Carbon Land use WEPi Psat P-mono Soils P-polyp-end and P-polyp-mid Phosphorus species Mox 31P NMR MDP Pi Po |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c481t-9e2e5efcdd5bfecbadf485d200ef0e010b27015ebfaadbd11e7f2b298713110b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1836658280 |
PQPubID | 24069 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_1836658280 crossref_citationtrail_10_1016_j_geoderma_2015_03_020 crossref_primary_10_1016_j_geoderma_2015_03_020 elsevier_sciencedirect_doi_10_1016_j_geoderma_2015_03_020 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-11-01 |
PublicationDateYYYYMMDD | 2015-11-01 |
PublicationDate_xml | – month: 11 year: 2015 text: 2015-11-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Geoderma |
PublicationYear | 2015 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Spohn, Kuzyakov (bb0235) 2013; 61 Bünemann, Oberson, Liebisch, Keller, Annaheim, Huguenin-Elie, Frossard (bb0020) 2012; 51 McDowell, Stewart, Cade-Menun (bb0170) 2006; 35 Stutter, Richards (bb0245) 2012; 41 Frossard, Condron, Oberson, Sinaj, Fardeau (bb0095) 2000; 29 Chardon, Menon, Chien (bb0040) 1996; 46 Vincent, Vestergren, Gröbner, Persson, Schleucher, Biesler (bb0295) 2013; 367 Cade-Menun, Liu (bb0025) 2014; 78 Turner, Condron, Richardson, Peltzer, Allison (bb0280) 2007; 10 Dalal (bb0060) 1977; 29 Kirkby, Richardson, Wade, Batten, Blanchard (bb0145) 2013; 60 Ohno, Hiradate, He (bb0195) 2011; 75 Condron, Turner, Cade-Menun (bb0050) 2005 Celi, Lamacchia, Marsan, Barbaris (bb0035) 1999; 164 Schoenau, Huang (bb0215) 1991; 22 Doolette, Smernik (bb0070) 2011 Harrison (bb0120) 1987 Turner, Mahieu, Condron (bb0265) 2003; 34 Doolette, Smernik, Dougherty (bb0080) 2011; 49 Bradford, Fierer, Reynolds (bb0010) 2008; 22 Neset, Bader, Scheidegger, Lohm (bb0180) 2008; 396 Irving, McLaughlin (bb0135) 1990; 21 Keeler (bb0140) 2010 Richardson, Lynch, Ryan, Delhaize, Smith, Smith, Harvey, Ryan, Veneklaas, Lambers, Oberson, Culvenor, Simpson (bb0205) 2011; 349 Solomon, Lehmann (bb0230) 2000; 51 Bünemann, Bossio, Smithson, Frossard, Oberson (bb0015) 2004; 36 Fageria, Baligar, Li (bb0085) 2008; 31 Turner, Newman, Reddy, Turner, Paphazy, Haygarth, McKelvie (bb0275) 2006; 40 Vadas, Mallarino, McFarland (bb0290) 2005 Ramaekers, Remains, Rao, Blair, Vanderleyden (bb0200) 2010; 117 Cross, Schlesinger (bb0055) 1995; 64 Stutter, Shand, George, Blackwell, Bol, Mackay, Richardson, Condron, Turner, Haygarth (bb0250) 2012; 46 Giaveno, Celi, Richardson, Simpson, Barberis (bb0100) 2010; 42 Giles, Cade-Menun, Hill (bb0105) 2011; 91 Farmer, Russell, Smith (bb0090) 1983; 34 Turner, Blackwell (bb9000) 2013; 64 Smith, Bain (bb0225) 1982; 13 Defra (bb0065) 2010 Bedrock, Cheshire, Chudek, Goodman, Shand (bb0005) 1994 McDowell, Stewart (bb0165) 2006; 130 Stewart, Tiessen (bb0240) 1987; 4 McLaughlin, Alston (bb0175) 1986; 18 Sattari, Bouwman, Giller, van Ittersum (bb0210) 2012; 109 Sundareshwar, Richardson, Gleason, Pellechia, Honomichi (bb0255) 2009; 36 Makarov, Haumaier, Zech (bb0155) 2002; 35 Godfray, Beddington, Crute, Haddad, Lawrence, Muir, Pretty, Robinson, Thomas, Toulmin (bb0110) 2010; 327 Malik, Marschner, Khan (bb0160) 2012; 49 Turner, Mahieu, Condron (bb0260) 2003; 67 Sim (bb0220) 2000 Turner, Cheesman, Godage, Riley, Potter (bb0285) 2012; 46 Condron, Frossard, Tiessen, Newmans, Stewart (bb0045) 1990; 41 Gressel, McColl, Preston, Newman, Powers (bb0115) 1996; 33 Kirkby (10.1016/j.geoderma.2015.03.020_bb0145) 2013; 60 Turner (10.1016/j.geoderma.2015.03.020_bb0285) 2012; 46 Doolette (10.1016/j.geoderma.2015.03.020_bb0080) 2011; 49 Sundareshwar (10.1016/j.geoderma.2015.03.020_bb0255) 2009; 36 Celi (10.1016/j.geoderma.2015.03.020_bb0035) 1999; 164 Bünemann (10.1016/j.geoderma.2015.03.020_bb0015) 2004; 36 Dalal (10.1016/j.geoderma.2015.03.020_bb0060) 1977; 29 Turner (10.1016/j.geoderma.2015.03.020_bb0265) 2003; 34 Richardson (10.1016/j.geoderma.2015.03.020_bb0205) 2011; 349 Spohn (10.1016/j.geoderma.2015.03.020_bb0235) 2013; 61 Godfray (10.1016/j.geoderma.2015.03.020_bb0110) 2010; 327 Farmer (10.1016/j.geoderma.2015.03.020_bb0090) 1983; 34 Gressel (10.1016/j.geoderma.2015.03.020_bb0115) 1996; 33 Condron (10.1016/j.geoderma.2015.03.020_bb0045) 1990; 41 Bradford (10.1016/j.geoderma.2015.03.020_bb0010) 2008; 22 Ohno (10.1016/j.geoderma.2015.03.020_bb0195) 2011; 75 Schoenau (10.1016/j.geoderma.2015.03.020_bb0215) 1991; 22 Sim (10.1016/j.geoderma.2015.03.020_bb0220) 2000 Giles (10.1016/j.geoderma.2015.03.020_bb0105) 2011; 91 Irving (10.1016/j.geoderma.2015.03.020_bb0135) 1990; 21 Turner (10.1016/j.geoderma.2015.03.020_rf0275) 2006; 40 Smith (10.1016/j.geoderma.2015.03.020_bb0225) 1982; 13 Keeler (10.1016/j.geoderma.2015.03.020_bb0140) 2010 Bedrock (10.1016/j.geoderma.2015.03.020_bb0005) 1994 Bünemann (10.1016/j.geoderma.2015.03.020_bb0020) 2012; 51 Malik (10.1016/j.geoderma.2015.03.020_bb0160) 2012; 49 McLaughlin (10.1016/j.geoderma.2015.03.020_bb0175) 1986; 18 Stutter (10.1016/j.geoderma.2015.03.020_bb0250) 2012; 46 Condron (10.1016/j.geoderma.2015.03.020_bb0050) 2005 Stewart (10.1016/j.geoderma.2015.03.020_bb0240) 1987; 4 Turner (10.1016/j.geoderma.2015.03.020_bb0280) 2007; 10 Vincent (10.1016/j.geoderma.2015.03.020_bb0295) 2013; 367 Vadas (10.1016/j.geoderma.2015.03.020_bb0290) 2005 Stutter (10.1016/j.geoderma.2015.03.020_bb0245) 2012; 41 Frossard (10.1016/j.geoderma.2015.03.020_bb0095) 2000; 29 Chardon (10.1016/j.geoderma.2015.03.020_bb0040) 1996; 46 Turner (10.1016/j.geoderma.2015.03.020_bb9000) 2013; 64 Defra (10.1016/j.geoderma.2015.03.020_bb0065) 2010 McDowell (10.1016/j.geoderma.2015.03.020_bb0170) 2006; 35 Ramaekers (10.1016/j.geoderma.2015.03.020_bb0200) 2010; 117 Cross (10.1016/j.geoderma.2015.03.020_bb0055) 1995; 64 Fageria (10.1016/j.geoderma.2015.03.020_bb0085) 2008; 31 Harrison (10.1016/j.geoderma.2015.03.020_bb0120) 1987 Giaveno (10.1016/j.geoderma.2015.03.020_bb0100) 2010; 42 Sattari (10.1016/j.geoderma.2015.03.020_bb0210) 2012; 109 Doolette (10.1016/j.geoderma.2015.03.020_bb0070) 2011 McDowell (10.1016/j.geoderma.2015.03.020_bb0165) 2006; 130 Turner (10.1016/j.geoderma.2015.03.020_rf0280) 2002 Makarov (10.1016/j.geoderma.2015.03.020_bb0155) 2002; 35 Solomon (10.1016/j.geoderma.2015.03.020_bb0230) 2000; 51 Neset (10.1016/j.geoderma.2015.03.020_bb0180) 2008; 396 Cade-Menun (10.1016/j.geoderma.2015.03.020_bb0025) 2014; 78 Turner (10.1016/j.geoderma.2015.03.020_bb0260) 2003; 67 |
References_xml | – volume: 396 start-page: 111 year: 2008 end-page: 120 ident: bb0180 article-title: The flow of phosphorus in food production and consumption — Linköping, Sweden, 1870–2000 publication-title: Sci. Total Environ. – volume: 18 start-page: 437 year: 1986 end-page: 443 ident: bb0175 article-title: Measurement of phosphorus in the soil microbial biomass: a modified procedure for field soils publication-title: Soil Biol. Biochem. – volume: 349 start-page: 121 year: 2011 end-page: 156 ident: bb0205 article-title: Plant and microbial strategies to improve the phosphorus efficiency of agriculture publication-title: Plant Soil – volume: 51 start-page: 84 year: 2012 end-page: 95 ident: bb0020 article-title: Rapid microbial phosphorus immobilization dominates gross phosphorus fluxes in a grassland soil with low inorganic phosphorus availability publication-title: Soil Biol. Biochem. – volume: 46 start-page: 41 year: 1996 end-page: 51 ident: bb0040 article-title: Iron oxide impregnated filter paper (Pi test): a review of its development and methodological research publication-title: Nutr. Cycl. Agroecosyst. – start-page: 266 year: 2010 ident: bb0140 article-title: Understanding NMR Spectroscopy – year: 2010 ident: bb0065 article-title: Fertiliser Manual (RB209) – volume: 21 start-page: 2245 year: 1990 end-page: 2255 ident: bb0135 article-title: A rapid and simple field-test for phosphorus in Olsen and Bray No 1 extracts of soil publication-title: Commun. Soil Sci. Plant Anal. – volume: 33 start-page: 97 year: 1996 end-page: 123 ident: bb0115 article-title: Linkages between phosphorus transformations and carbon decomposition in a forest soil publication-title: Biogeochemistry – start-page: 20 year: 2000 end-page: 21 ident: bb0220 article-title: Soil test phosphorus: Olsen P publication-title: Methods of Phosphorus Analysis for Soils, Sediments, Residuals and Waters – volume: 61 start-page: 69 year: 2013 end-page: 75 ident: bb0235 article-title: Phosphorus mineralization can be driven by microbial need for carbon publication-title: Soil Biol. Biochem. – volume: 367 start-page: 149 year: 2013 end-page: 162 ident: bb0295 article-title: Soil organic phosphorus transformations in a boreal forest chronosequence publication-title: Plant Soil – volume: 164 start-page: 574 year: 1999 end-page: 578 ident: bb0035 article-title: Interaction of inositol hexaphosphate on clays: adsorption and charging phenomena publication-title: Soil Sci. – volume: 29 start-page: 15 year: 2000 end-page: 23 ident: bb0095 article-title: Processes governing phosphorous availability in temperate soils publication-title: J. Environ. Qual. – volume: 117 start-page: 169 year: 2010 end-page: 176 ident: bb0200 article-title: Strategies for improving phosphorus acquisition efficiency of crop plants publication-title: Field Crop Res. – volume: 91 start-page: 397 year: 2011 end-page: 416 ident: bb0105 article-title: The inositol phosphates in soils and manures: abundance, cycling and measurement publication-title: Can. J. Soil Sci. – volume: 51 start-page: 699 year: 2000 end-page: 708 ident: bb0230 article-title: Loss of phosphorus from soil in semi-arid northern Tanzania as a result of cropping: evidence from sequential extraction and publication-title: Eur. J. Soil Sci. – volume: 327 start-page: 812 year: 2010 end-page: 818 ident: bb0110 article-title: Food security: the challenge of feeding 9 billion people publication-title: Science – volume: 75 start-page: 1704 year: 2011 end-page: 1711 ident: bb0195 article-title: Phosphorus solubility of agricultural soils: a surface charge and phosphorus-31 NMR speciation study publication-title: Soil Sci. Soc. Am. J. – volume: 40 start-page: 3349 year: 2006 end-page: 3354 ident: bb0275 article-title: Overestimation of organic phosphorus in wetland soils by alkaline extraction and molybdate colorimetry publication-title: Environ. Sci. Technol. – volume: 78 start-page: 19 year: 2014 end-page: 37 ident: bb0025 article-title: Solution publication-title: Soil Sci. Soc. Am. J. – year: 2005 ident: bb0050 article-title: Chemistry and dynamics of soil organic phosphorus publication-title: Phosphorus, Agriculture and the Environment Agronomy Monograph no 46 – volume: 67 start-page: 497 year: 2003 end-page: 510 ident: bb0260 article-title: Phosphorus-31 nuclear magnetic resonance spectral assignments of phosphorus compounds in soil NaOH–EDTA extracts publication-title: Soil Sci. Soc. Am. J. – volume: 49 start-page: 106 year: 2012 end-page: 113 ident: bb0160 article-title: Addition of organic and inorganic P sources to soil — effects on P pools and microorganisms publication-title: Soil Biol. Biochem. – volume: 35 start-page: 293 year: 2006 end-page: 302 ident: bb0170 article-title: An examination of spin-lattice relaxation times for analysis of soil and manure extracts by liquid state phosphorus-31 nuclear magnetic resonance spectroscopy publication-title: J. Environ. Qual. – volume: 13 start-page: 185 year: 1982 end-page: 190 ident: bb0225 article-title: A sodium hydroxide fusion method for the determination of total phosphate in soils publication-title: Commun. Soil Sci. Plant Anal. – year: 1987 ident: bb0120 article-title: Soil Organic Phosphorus: A Review of World Literature CAB International, Wallingford, UK – volume: 31 start-page: 1121 year: 2008 end-page: 1157 ident: bb0085 article-title: The role of nutrient efficient plants in improving crop yields in the twenty first century publication-title: J. Plant Nutr. – volume: 36 start-page: 889 year: 2004 end-page: 901 ident: bb0015 article-title: Microbial community composition and substrate use in a highly weathered soil as affected by crop rotation and P fertilization publication-title: Soil Biol. Biochem. – volume: 64 start-page: 197 year: 1995 end-page: 214 ident: bb0055 article-title: A literature review and evaluation of the Hedley fractionation: applications to the biogeochemical cycle of soil phosphorus in natural ecosystems publication-title: Geoderma – volume: 41 start-page: 400 year: 2012 end-page: 410 ident: bb0245 article-title: Relationships between soil physico-chemical, microbiological properties, and nutrient release in buffer soils compared to field soils publication-title: J. Environ. Qual. – volume: 42 start-page: 491 year: 2010 end-page: 498 ident: bb0100 article-title: Interaction of phytases with minerals and availability of substrate affect the hydrolysis of inositol phosphates publication-title: Soil Biol. Biochem. – volume: 46 start-page: 4994 year: 2012 end-page: 5002 ident: bb0285 article-title: Determination of neo- and publication-title: Environ. Sci. Technol. – volume: 35 start-page: 136 year: 2002 end-page: 146 ident: bb0155 article-title: The nature and origins of diester phosphates in soils: a publication-title: Biol. Fertil. Soils – volume: 22 start-page: 465 year: 1991 end-page: 492 ident: bb0215 article-title: Anion-exchange membrane, water, and sodium bicarbonate extractions as soil tests for phosphorus publication-title: Commun. Soil Sci. Plant Anal. – volume: 29 start-page: 83 year: 1977 end-page: 112 ident: bb0060 article-title: Soil organic phosphorous publication-title: Adv. Agron. – start-page: 227 year: 1994 end-page: 232 ident: bb0005 article-title: P NMR studies of humic acid from a blanket peat publication-title: Humic Substances in the Global Environment and Implications on Human Health – volume: 49 start-page: 152 year: 2011 end-page: 165 ident: bb0080 article-title: A quantitative assessment of phosphorus forms in some Australian soils publication-title: Soil Res. – volume: 41 start-page: 41 year: 1990 end-page: 50 ident: bb0045 article-title: Chemical nature of organic phosphorus in cultivated and uncultivated soils under different environmental conditions publication-title: Eur. J. Soil Sci. – volume: 130 start-page: 176 year: 2006 end-page: 189 ident: bb0165 article-title: The phosphorus composition of contrasting soils in pastoral, native and forest management in Otago, New Zealand: sequential extraction and publication-title: Geoderma – volume: 109 start-page: 6348 year: 2012 end-page: 6353 ident: bb0210 article-title: Residual soil phosphorus as the missing piece in the global phosphorus crisis puzzle publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 4 start-page: 41 year: 1987 end-page: 60 ident: bb0240 article-title: Dynamics of soil organic phosphorus publication-title: Biogeochemistry – start-page: 3 year: 2011 end-page: 36 ident: bb0070 article-title: Soil organic phosphorus speciation using spectroscopic techniques publication-title: Phosphorus in Action – volume: 22 start-page: 964 year: 2008 end-page: 974 ident: bb0010 article-title: Soil carbon stocks in experimental mesocosms are dependent on the rate of labile carbon, nitrogen and phosphorus inputs to soils publication-title: Funct. Ecol. – volume: 10 start-page: 1166 year: 2007 end-page: 1181 ident: bb0280 article-title: Soil organic phosphorus transformations during pedogenesis publication-title: Ecosystems – volume: 46 start-page: 1977 year: 2012 end-page: 1978 ident: bb0250 article-title: Recovering phosphorus from soil — a root solution? publication-title: Environ. Sci. Technol. – year: 2005 ident: bb0290 article-title: The importance of sampling depth when testing soils for their potential to supply phosphorus to surface runoff publication-title: Position Paper – volume: 34 start-page: 1199 year: 2003 end-page: 1210 ident: bb0265 article-title: The phosphorus composition of temperate pasture soils determined by NaOH–EDTA extraction and solution P-31 NMR spectroscopy publication-title: Org. Geochem. – volume: 64 start-page: 249 year: 2013 end-page: 259 ident: bb9000 article-title: Isolating the influence o pH on the amont and forms of soil organic phosphorus publication-title: Eur. J. Soil Sci. – volume: 36 year: 2009 ident: bb0255 article-title: Nature versus nurture: functional assessment of restoration effects on wetland services using nuclear magnetic resonance spectroscopy publication-title: Geophys. Res. Lett. – volume: 60 start-page: 77 year: 2013 end-page: 86 ident: bb0145 article-title: Carbon-nutrient stoichiometry to increase soil carbon sequestration publication-title: Soil Biol. Chem. – volume: 34 start-page: 571 year: 1983 end-page: 576 ident: bb0090 article-title: Extraction of inorganic forms of translocated Al, Fe and Si from a podzol Bs horizon publication-title: J. Soil Sci. – volume: 22 start-page: 964 year: 2008 ident: 10.1016/j.geoderma.2015.03.020_bb0010 article-title: Soil carbon stocks in experimental mesocosms are dependent on the rate of labile carbon, nitrogen and phosphorus inputs to soils publication-title: Funct. Ecol. doi: 10.1111/j.1365-2435.2008.01404.x – volume: 49 start-page: 106 year: 2012 ident: 10.1016/j.geoderma.2015.03.020_bb0160 article-title: Addition of organic and inorganic P sources to soil — effects on P pools and microorganisms publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2012.02.013 – volume: 75 start-page: 1704 year: 2011 ident: 10.1016/j.geoderma.2015.03.020_bb0195 article-title: Phosphorus solubility of agricultural soils: a surface charge and phosphorus-31 NMR speciation study publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2010.0404 – year: 2005 ident: 10.1016/j.geoderma.2015.03.020_bb0290 article-title: The importance of sampling depth when testing soils for their potential to supply phosphorus to surface runoff – start-page: 227 year: 1994 ident: 10.1016/j.geoderma.2015.03.020_bb0005 article-title: 31P NMR studies of humic acid from a blanket peat – volume: 109 start-page: 6348 year: 2012 ident: 10.1016/j.geoderma.2015.03.020_bb0210 article-title: Residual soil phosphorus as the missing piece in the global phosphorus crisis puzzle publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1113675109 – volume: 51 start-page: 699 year: 2000 ident: 10.1016/j.geoderma.2015.03.020_bb0230 article-title: Loss of phosphorus from soil in semi-arid northern Tanzania as a result of cropping: evidence from sequential extraction and 31P NMR spectroscopy publication-title: Eur. J. Soil Sci. doi: 10.1111/j.1365-2389.2000.00326.x – year: 2010 ident: 10.1016/j.geoderma.2015.03.020_bb0065 – volume: 36 year: 2009 ident: 10.1016/j.geoderma.2015.03.020_bb0255 article-title: Nature versus nurture: functional assessment of restoration effects on wetland services using nuclear magnetic resonance spectroscopy publication-title: Geophys. Res. Lett. doi: 10.1029/2008GL036385 – volume: 130 start-page: 176 year: 2006 ident: 10.1016/j.geoderma.2015.03.020_bb0165 article-title: The phosphorus composition of contrasting soils in pastoral, native and forest management in Otago, New Zealand: sequential extraction and 31P NMR publication-title: Geoderma doi: 10.1016/j.geoderma.2005.01.020 – volume: 31 start-page: 1121 year: 2008 ident: 10.1016/j.geoderma.2015.03.020_bb0085 article-title: The role of nutrient efficient plants in improving crop yields in the twenty first century publication-title: J. Plant Nutr. doi: 10.1080/01904160802116068 – volume: 49 start-page: 152 year: 2011 ident: 10.1016/j.geoderma.2015.03.020_bb0080 article-title: A quantitative assessment of phosphorus forms in some Australian soils publication-title: Soil Res. doi: 10.1071/SR10092 – start-page: 20 year: 2000 ident: 10.1016/j.geoderma.2015.03.020_bb0220 article-title: Soil test phosphorus: Olsen P – volume: 36 start-page: 889 year: 2004 ident: 10.1016/j.geoderma.2015.03.020_bb0015 article-title: Microbial community composition and substrate use in a highly weathered soil as affected by crop rotation and P fertilization publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2004.02.002 – volume: 60 start-page: 77 year: 2013 ident: 10.1016/j.geoderma.2015.03.020_bb0145 article-title: Carbon-nutrient stoichiometry to increase soil carbon sequestration publication-title: Soil Biol. Chem. doi: 10.1016/j.soilbio.2013.01.011 – volume: 64 start-page: 197 year: 1995 ident: 10.1016/j.geoderma.2015.03.020_bb0055 article-title: A literature review and evaluation of the Hedley fractionation: applications to the biogeochemical cycle of soil phosphorus in natural ecosystems publication-title: Geoderma doi: 10.1016/0016-7061(94)00023-4 – volume: 29 start-page: 83 year: 1977 ident: 10.1016/j.geoderma.2015.03.020_bb0060 article-title: Soil organic phosphorous publication-title: Adv. Agron. doi: 10.1016/S0065-2113(08)60216-3 – volume: 61 start-page: 69 year: 2013 ident: 10.1016/j.geoderma.2015.03.020_bb0235 article-title: Phosphorus mineralization can be driven by microbial need for carbon publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2013.02.013 – volume: 327 start-page: 812 year: 2010 ident: 10.1016/j.geoderma.2015.03.020_bb0110 article-title: Food security: the challenge of feeding 9 billion people publication-title: Science doi: 10.1126/science.1185383 – volume: 34 start-page: 1199 year: 2003 ident: 10.1016/j.geoderma.2015.03.020_bb0265 article-title: The phosphorus composition of temperate pasture soils determined by NaOH–EDTA extraction and solution P-31 NMR spectroscopy publication-title: Org. Geochem. doi: 10.1016/S0146-6380(03)00061-5 – volume: 78 start-page: 19 year: 2014 ident: 10.1016/j.geoderma.2015.03.020_bb0025 article-title: Solution 31P-NMR spectroscopy of soils from 2005–2013: a review of sample preparation and experimental parameters publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2013.05.0187dgs – volume: 4 start-page: 41 year: 1987 ident: 10.1016/j.geoderma.2015.03.020_bb0240 article-title: Dynamics of soil organic phosphorus publication-title: Biogeochemistry doi: 10.1007/BF02187361 – volume: 10 start-page: 1166 year: 2007 ident: 10.1016/j.geoderma.2015.03.020_bb0280 article-title: Soil organic phosphorus transformations during pedogenesis publication-title: Ecosystems doi: 10.1007/s10021-007-9086-z – year: 2002 ident: 10.1016/j.geoderma.2015.03.020_rf0280 article-title: Inositol phosphates in the environment publication-title: Philos. Trans. R. Soc. Lond. doi: 10.1098/rstb.2001.0837 – volume: 13 start-page: 185 year: 1982 ident: 10.1016/j.geoderma.2015.03.020_bb0225 article-title: A sodium hydroxide fusion method for the determination of total phosphate in soils publication-title: Commun. Soil Sci. Plant Anal. doi: 10.1080/00103628209367257 – volume: 64 start-page: 249 year: 2013 ident: 10.1016/j.geoderma.2015.03.020_bb9000 article-title: Isolating the influence o pH on the amont and forms of soil organic phosphorus publication-title: Eur. J. Soil Sci. doi: 10.1111/ejss.12026 – volume: 349 start-page: 121 year: 2011 ident: 10.1016/j.geoderma.2015.03.020_bb0205 article-title: Plant and microbial strategies to improve the phosphorus efficiency of agriculture publication-title: Plant Soil doi: 10.1007/s11104-011-0950-4 – volume: 41 start-page: 41 year: 1990 ident: 10.1016/j.geoderma.2015.03.020_bb0045 article-title: Chemical nature of organic phosphorus in cultivated and uncultivated soils under different environmental conditions publication-title: Eur. J. Soil Sci. doi: 10.1111/j.1365-2389.1990.tb00043.x – volume: 164 start-page: 574 year: 1999 ident: 10.1016/j.geoderma.2015.03.020_bb0035 article-title: Interaction of inositol hexaphosphate on clays: adsorption and charging phenomena publication-title: Soil Sci. doi: 10.1097/00010694-199908000-00005 – volume: 396 start-page: 111 year: 2008 ident: 10.1016/j.geoderma.2015.03.020_bb0180 article-title: The flow of phosphorus in food production and consumption — Linköping, Sweden, 1870–2000 publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2008.02.010 – volume: 46 start-page: 41 year: 1996 ident: 10.1016/j.geoderma.2015.03.020_bb0040 article-title: Iron oxide impregnated filter paper (Pi test): a review of its development and methodological research publication-title: Nutr. Cycl. Agroecosyst. doi: 10.1007/BF00210223 – volume: 46 start-page: 1977 year: 2012 ident: 10.1016/j.geoderma.2015.03.020_bb0250 article-title: Recovering phosphorus from soil — a root solution? publication-title: Environ. Sci. Technol. doi: 10.1021/es2044745 – volume: 367 start-page: 149 year: 2013 ident: 10.1016/j.geoderma.2015.03.020_bb0295 article-title: Soil organic phosphorus transformations in a boreal forest chronosequence publication-title: Plant Soil doi: 10.1007/s11104-013-1731-z – start-page: 3 year: 2011 ident: 10.1016/j.geoderma.2015.03.020_bb0070 article-title: Soil organic phosphorus speciation using spectroscopic techniques – volume: 34 start-page: 571 year: 1983 ident: 10.1016/j.geoderma.2015.03.020_bb0090 article-title: Extraction of inorganic forms of translocated Al, Fe and Si from a podzol Bs horizon publication-title: J. Soil Sci. doi: 10.1111/j.1365-2389.1983.tb01056.x – year: 2005 ident: 10.1016/j.geoderma.2015.03.020_bb0050 article-title: Chemistry and dynamics of soil organic phosphorus – volume: 42 start-page: 491 year: 2010 ident: 10.1016/j.geoderma.2015.03.020_bb0100 article-title: Interaction of phytases with minerals and availability of substrate affect the hydrolysis of inositol phosphates publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2009.12.002 – volume: 117 start-page: 169 year: 2010 ident: 10.1016/j.geoderma.2015.03.020_bb0200 article-title: Strategies for improving phosphorus acquisition efficiency of crop plants publication-title: Field Crop Res. doi: 10.1016/j.fcr.2010.03.001 – volume: 22 start-page: 465 year: 1991 ident: 10.1016/j.geoderma.2015.03.020_bb0215 article-title: Anion-exchange membrane, water, and sodium bicarbonate extractions as soil tests for phosphorus publication-title: Commun. Soil Sci. Plant Anal. doi: 10.1080/00103629109368432 – volume: 51 start-page: 84 year: 2012 ident: 10.1016/j.geoderma.2015.03.020_bb0020 article-title: Rapid microbial phosphorus immobilization dominates gross phosphorus fluxes in a grassland soil with low inorganic phosphorus availability publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2012.04.012 – volume: 29 start-page: 15 year: 2000 ident: 10.1016/j.geoderma.2015.03.020_bb0095 article-title: Processes governing phosphorous availability in temperate soils publication-title: J. Environ. Qual. doi: 10.2134/jeq2000.00472425002900010003x – volume: 67 start-page: 497 year: 2003 ident: 10.1016/j.geoderma.2015.03.020_bb0260 article-title: Phosphorus-31 nuclear magnetic resonance spectral assignments of phosphorus compounds in soil NaOH–EDTA extracts publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2003.4970 – start-page: 266 year: 2010 ident: 10.1016/j.geoderma.2015.03.020_bb0140 – volume: 35 start-page: 293 year: 2006 ident: 10.1016/j.geoderma.2015.03.020_bb0170 article-title: An examination of spin-lattice relaxation times for analysis of soil and manure extracts by liquid state phosphorus-31 nuclear magnetic resonance spectroscopy publication-title: J. Environ. Qual. doi: 10.2134/jeq2005.0285 – volume: 46 start-page: 4994 year: 2012 ident: 10.1016/j.geoderma.2015.03.020_bb0285 article-title: Determination of neo- and d-chiro-inositol hexakisphosphate in soils by solution 31P NMR spectroscopy publication-title: Environ. Sci. Technol. doi: 10.1021/es204446z – volume: 40 start-page: 3349 year: 2006 ident: 10.1016/j.geoderma.2015.03.020_rf0275 article-title: Overestimation of organic phosphorus in wetland soils by alkaline extraction and molybdate colorimetry publication-title: Environ. Sci. Technol. doi: 10.1021/es052442m – volume: 91 start-page: 397 year: 2011 ident: 10.1016/j.geoderma.2015.03.020_bb0105 article-title: The inositol phosphates in soils and manures: abundance, cycling and measurement publication-title: Can. J. Soil Sci. doi: 10.4141/cjss09090 – volume: 18 start-page: 437 year: 1986 ident: 10.1016/j.geoderma.2015.03.020_bb0175 article-title: Measurement of phosphorus in the soil microbial biomass: a modified procedure for field soils publication-title: Soil Biol. Biochem. doi: 10.1016/0038-0717(86)90050-7 – volume: 21 start-page: 2245 year: 1990 ident: 10.1016/j.geoderma.2015.03.020_bb0135 article-title: A rapid and simple field-test for phosphorus in Olsen and Bray No 1 extracts of soil publication-title: Commun. Soil Sci. Plant Anal. doi: 10.1080/00103629009368377 – volume: 41 start-page: 400 year: 2012 ident: 10.1016/j.geoderma.2015.03.020_bb0245 article-title: Relationships between soil physico-chemical, microbiological properties, and nutrient release in buffer soils compared to field soils publication-title: J. Environ. Qual. doi: 10.2134/jeq2010.0456 – year: 1987 ident: 10.1016/j.geoderma.2015.03.020_bb0120 – volume: 33 start-page: 97 year: 1996 ident: 10.1016/j.geoderma.2015.03.020_bb0115 article-title: Linkages between phosphorus transformations and carbon decomposition in a forest soil publication-title: Biogeochemistry doi: 10.1007/BF02181034 – volume: 35 start-page: 136 year: 2002 ident: 10.1016/j.geoderma.2015.03.020_bb0155 article-title: The nature and origins of diester phosphates in soils: a 31P-NMR study publication-title: Biol. Fertil. Soils doi: 10.1007/s00374-002-0454-8 |
SSID | ssj0017020 |
Score | 2.5361197 |
Snippet | Data on the distribution of phosphorus (P) species in soils with differing land uses and properties are essential to understanding environmental P availability... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 29 |
SubjectTerms | aluminum arable soils Carbon esters fertilizer application grasslands grazing inorganic phosphorus iron Land use microbial ecology orthophosphates Oxalate extractable Fe, Al Phosphorus species polyphosphates soil organic carbon soil properties Soils spectroscopy temperate soils |
Title | Land use and soil factors affecting accumulation of phosphorus species in temperate soils |
URI | https://dx.doi.org/10.1016/j.geoderma.2015.03.020 https://www.proquest.com/docview/1836658280 |
Volume | 257-258 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEBYhubSHkqQtTfNAgV6dXdnyY4_LkrDN69SFzUnoMWo3pPayXl_z2zOjlUMSCjn0YIyNJewZeR5ovm8Y-yHQzYBMIclM6hJZaZ8YAI0KQe9GSErtCI18c1tMZ_Jyns-32KTHwlBZZbT9G5serHW8M4jSHCwXC8L4iqJEdyQCp3-g_pSypFV-9vhc5iHKYaRmFEVCT79ACd-jjqjhWOAfEnkgO6W-3_92UG9MdfA_F7vsUwwc-XjzbntsC-p99nH8exXJM-Azu7vWteNdC5zObbN44LGdDtehbAPdFNfWdn9jzy7eeL7807R4rLqWE-oSE2e-qDkxVhHdMoRp2i9sdnH-azJNYuuExMpKrJMRpJCDt87lBuc32nlZ5Q5_CfBDwBzMpCV-MhivURlOCCh9atIRpk8ZBgQm-8q266aGb4ynzmESpXMLmZc285XXYKWwFQZe3gEcsLyXl7KRV5zaWzyovoDsXvVyViRnNcwUyvmADZ7HLTfMGu-OGPXqUK_WiELz_-7Y015_Cn8g2hXRNTRdq9CmFQVtHg6__8f8h-wDXW1Qikdse73q4BjDlbU5CevxhO2Mf15Nb58AD27uAQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOiKdoeRkJjmFj57HZA4cKqLZ021MrlZPxY1y2Kslqs1HFhT_FH2Qm61SAkHpAPUSREtmyZsbzeeSZbwBeS4IZzBUmmVU-ySsTEotoSCGEblxJaTxXIx8cltPj_NNJcbIBP4daGE6rjL5_7dN7bx2_jKI0R4v5nGt8ZTkmOJI9p7-cxMzKffx-QXFb-27vAyn5jVK7H4_eT5PYWiBxeSVXyQQVFhic94UN6KzxIa8KTyaDIUWKUawaE1CiDYYW66XEcVBWUYDO9DSpzWjeG3AzJ3fBbRPe_rjMK5HjNHJByjLh5f1WlnxGRsEdznrCI1n07KrcaPzfiPgXNvSAt3sP7saTqthZC-M-bGD9AO7snC4jWwc-hM8zU3vRtSj43TbzcxH79wjT54kQLgrjXPctNgkTTRCLr01Lz7JrBZd5UqQu5rVgiizmd8Z-mvYRHF-LQB_DZt3U-ASE8p6iNlM4zELuslAFgy6XrqKTXvCIW1AM8tIuEplzP41zPWSsnelBzprlrNNMk5y3YHQ5brGm8rhyxGRQh_7DKDXhzZVjXw3607Rj-RrG1Nh0rSYnWpZ8W5lu_8f8L-HW9Ohgpmd7h_tP4Tb_WZdIPoPN1bLD53RWWtkXvW0K-HLdm-EXuNosKg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Land+use+and+soil+factors+affecting+accumulation+of+phosphorus+species+in+temperate+soils&rft.jtitle=Geoderma&rft.au=Stutter%2C+Marc+I.&rft.au=Shand%2C+Charles+A.&rft.au=George%2C+Timothy+S.&rft.au=Blackwell%2C+Martin+S.A.&rft.date=2015-11-01&rft.pub=Elsevier+B.V&rft.issn=0016-7061&rft.eissn=1872-6259&rft.volume=257-258&rft.spage=29&rft.epage=39&rft_id=info:doi/10.1016%2Fj.geoderma.2015.03.020&rft.externalDocID=S0016706115000919 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-7061&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-7061&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-7061&client=summon |