Land use and soil factors affecting accumulation of phosphorus species in temperate soils

Data on the distribution of phosphorus (P) species in soils with differing land uses and properties are essential to understanding environmental P availability and how fertiliser inputs, cropping and grazing affect accumulation of soil inorganic P (Pi) and organic P (Po) forms. We examined thirty-tw...

Full description

Saved in:
Bibliographic Details
Published inGeoderma Vol. 257-258; pp. 29 - 39
Main Authors Stutter, Marc I., Shand, Charles A., George, Timothy S., Blackwell, Martin S.A., Dixon, Liz, Bol, Roland, MacKay, Regina L., Richardson, Alan E., Condron, Leo M., Haygarth, Philip M.
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.11.2015
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Data on the distribution of phosphorus (P) species in soils with differing land uses and properties are essential to understanding environmental P availability and how fertiliser inputs, cropping and grazing affect accumulation of soil inorganic P (Pi) and organic P (Po) forms. We examined thirty-two temperate soils (with soil organic C concentrations 12–449gCkg−1 and total P 295–3435mgPkg−1) for biogeochemical properties of soil C, reactive surfaces and P by common indices and 31P-NMR spectroscopy on NaOH–EDTA extracts for P species. Arable soil P was dominated by inorganic orthophosphate (276–2520mgPkg−1), >monoester P (105–446mgPkg−1). The limited diesters, polyphosphates and microbial P in arable soils suggest that cropping and fertiliser inputs limit ecosystem microbial functions and P diversity. Intensive grassland had inorganic orthophosphate concentrations (233–842mgPkg−1) similar to monoesters (200–658mgPkg−1)>diesters (0–50mgPkg−1) and polyphosphates (1–78mgPkg−1). As grazing became more extensive P in semi-natural systems was dominated by organic P, including monoesters (37–621mgPkg−1) and other diverse forms; principally diester (0–102mgPkg−1) and polyphosphates (0–108mgPkg−1). These were related to SOC, water extractable organic carbon (WEOC) and microbial P, suggesting strong microbially-mediated processes. A number of abiotic and biotic related processes appeared to control accumulation of different soil P species and gave considerable variability in forms and concentrations within land use groups. The implications are that to increase agricultural P efficiencies mechanisms to utilise both soil Pi and Po are needed and that specific management strategies may be required for site-specific circumstances of soil C and reactive properties such as Fe and Al complexes. •We examined phosphorus species abundance in UK soils.•P species abundance was related to soil properties.•We need to consider inorganic and organic P presence and availability.•Organic P complexation increased for soils with greater C.
AbstractList Data on the distribution of phosphorus (P) species in soils with differing land uses and properties are essential to understanding environmental P availability and how fertiliser inputs, cropping and grazing affect accumulation of soil inorganic P (Pi) and organic P (Po) forms. We examined thirty-two temperate soils (with soil organic C concentrations 12–449gCkg−1 and total P 295–3435mgPkg−1) for biogeochemical properties of soil C, reactive surfaces and P by common indices and 31P-NMR spectroscopy on NaOH–EDTA extracts for P species. Arable soil P was dominated by inorganic orthophosphate (276–2520mgPkg−1), >monoester P (105–446mgPkg−1). The limited diesters, polyphosphates and microbial P in arable soils suggest that cropping and fertiliser inputs limit ecosystem microbial functions and P diversity. Intensive grassland had inorganic orthophosphate concentrations (233–842mgPkg−1) similar to monoesters (200–658mgPkg−1)>diesters (0–50mgPkg−1) and polyphosphates (1–78mgPkg−1). As grazing became more extensive P in semi-natural systems was dominated by organic P, including monoesters (37–621mgPkg−1) and other diverse forms; principally diester (0–102mgPkg−1) and polyphosphates (0–108mgPkg−1). These were related to SOC, water extractable organic carbon (WEOC) and microbial P, suggesting strong microbially-mediated processes. A number of abiotic and biotic related processes appeared to control accumulation of different soil P species and gave considerable variability in forms and concentrations within land use groups. The implications are that to increase agricultural P efficiencies mechanisms to utilise both soil Pi and Po are needed and that specific management strategies may be required for site-specific circumstances of soil C and reactive properties such as Fe and Al complexes.
Data on the distribution of phosphorus (P) species in soils with differing land uses and properties are essential to understanding environmental P availability and how fertiliser inputs, cropping and grazing affect accumulation of soil inorganic P (Pi) and organic P (Po) forms. We examined thirty-two temperate soils (with soil organic C concentrations 12–449gCkg−1 and total P 295–3435mgPkg−1) for biogeochemical properties of soil C, reactive surfaces and P by common indices and 31P-NMR spectroscopy on NaOH–EDTA extracts for P species. Arable soil P was dominated by inorganic orthophosphate (276–2520mgPkg−1), >monoester P (105–446mgPkg−1). The limited diesters, polyphosphates and microbial P in arable soils suggest that cropping and fertiliser inputs limit ecosystem microbial functions and P diversity. Intensive grassland had inorganic orthophosphate concentrations (233–842mgPkg−1) similar to monoesters (200–658mgPkg−1)>diesters (0–50mgPkg−1) and polyphosphates (1–78mgPkg−1). As grazing became more extensive P in semi-natural systems was dominated by organic P, including monoesters (37–621mgPkg−1) and other diverse forms; principally diester (0–102mgPkg−1) and polyphosphates (0–108mgPkg−1). These were related to SOC, water extractable organic carbon (WEOC) and microbial P, suggesting strong microbially-mediated processes. A number of abiotic and biotic related processes appeared to control accumulation of different soil P species and gave considerable variability in forms and concentrations within land use groups. The implications are that to increase agricultural P efficiencies mechanisms to utilise both soil Pi and Po are needed and that specific management strategies may be required for site-specific circumstances of soil C and reactive properties such as Fe and Al complexes. •We examined phosphorus species abundance in UK soils.•P species abundance was related to soil properties.•We need to consider inorganic and organic P presence and availability.•Organic P complexation increased for soils with greater C.
Author Shand, Charles A.
Dixon, Liz
Condron, Leo M.
Haygarth, Philip M.
MacKay, Regina L.
Blackwell, Martin S.A.
Stutter, Marc I.
Richardson, Alan E.
George, Timothy S.
Bol, Roland
Author_xml – sequence: 1
  givenname: Marc I.
  surname: Stutter
  fullname: Stutter, Marc I.
  email: marc.stutter@hutton.ac.uk
  organization: The James Hutton Institute, Aberdeen AB15 8QH, UK
– sequence: 2
  givenname: Charles A.
  surname: Shand
  fullname: Shand, Charles A.
  organization: The James Hutton Institute, Aberdeen AB15 8QH, UK
– sequence: 3
  givenname: Timothy S.
  surname: George
  fullname: George, Timothy S.
  organization: The James Hutton Institute, Aberdeen AB15 8QH, UK
– sequence: 4
  givenname: Martin S.A.
  surname: Blackwell
  fullname: Blackwell, Martin S.A.
  organization: Rothamsted Research North Wyke, Okehampton, Devon EX20 2SB, UK
– sequence: 5
  givenname: Liz
  surname: Dixon
  fullname: Dixon, Liz
  organization: Rothamsted Research North Wyke, Okehampton, Devon EX20 2SB, UK
– sequence: 6
  givenname: Roland
  surname: Bol
  fullname: Bol, Roland
  organization: Rothamsted Research North Wyke, Okehampton, Devon EX20 2SB, UK
– sequence: 7
  givenname: Regina L.
  surname: MacKay
  fullname: MacKay, Regina L.
  organization: College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
– sequence: 8
  givenname: Alan E.
  surname: Richardson
  fullname: Richardson, Alan E.
  organization: CSIRO Plant Industry, Black Mountain, Canberra ACT 2601, Australia
– sequence: 9
  givenname: Leo M.
  surname: Condron
  fullname: Condron, Leo M.
  organization: Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln 7647, Canterbury, New Zealand
– sequence: 10
  givenname: Philip M.
  surname: Haygarth
  fullname: Haygarth, Philip M.
  organization: Lancaster Environment Centre, Lancaster University, LA1 4YQ, UK
BookMark eNqFkE1LxDAQhoOs4K76FyRHL61Juv1Y8KCIX7DgRQ-eQppM1ixtUzOp4L836-rFi4dhGOZ932GeBZkNfgBCzjjLOePVxTbfgDcQepULxsucFTkT7IDMeVOLrBLlakbmLCmzmlX8iCwQt2msk2hOXtdqMHRCoLuO3nXUKh19QKqsBR3dsKFK66mfOhWdH6i3dHzzmCpMSHEE7QCpG2iEfoSgInzH4Ak5tKpDOP3px-Tl7vb55iFbP90_3lyvM71seMxWIKAEq40p23SvVcYum9IIxsAyYJy1ok5fQWuVMq3hHGorWrFqal7wtC2Oyfk-dwz-fQKMsneooevUAH5CyZuiqspGNCxJL_dSHTxiACu1i99fxaBcJzmTO6JyK3-Jyh1RyQqZYCV79cc-Bter8Pm_8WpvhMThw0GQmKANGowLCbE03v0X8QUS4plD
CitedBy_id crossref_primary_10_1016_j_scitotenv_2019_134081
crossref_primary_10_3390_soilsystems7020040
crossref_primary_10_1002_jeq2_20237
crossref_primary_10_1111_ejss_13179
crossref_primary_10_1016_j_geoderma_2016_01_039
crossref_primary_10_1111_ejss_12486
crossref_primary_10_1016_j_geoderma_2018_11_046
crossref_primary_10_1186_s12302_021_00496_w
crossref_primary_10_1016_j_geoderma_2017_06_015
crossref_primary_10_1128_msystems_01107_21
crossref_primary_10_1002_ldr_4701
crossref_primary_10_1007_s11104_017_3240_y
crossref_primary_10_1007_s11104_016_2884_3
crossref_primary_10_1007_s00374_025_01903_7
crossref_primary_10_1016_j_scitotenv_2017_10_156
crossref_primary_10_1007_s11104_017_3225_x
crossref_primary_10_1186_s40538_017_0098_4
crossref_primary_10_1360_SSTe_2024_0103
crossref_primary_10_1007_s11104_017_3391_x
crossref_primary_10_3389_fmicb_2020_605955
crossref_primary_10_1021_acs_est_2c00099
crossref_primary_10_1071_SR16057
crossref_primary_10_1002_jpln_201900109
crossref_primary_10_1371_journal_pone_0307139
crossref_primary_10_1002_jeq2_20623
crossref_primary_10_1016_j_geoderma_2016_01_027
crossref_primary_10_4236_ojss_2019_99010
crossref_primary_10_1016_j_geoderma_2018_11_052
crossref_primary_10_1007_s11104_024_06623_9
crossref_primary_10_1016_j_iswcr_2023_06_001
crossref_primary_10_3389_fmicb_2018_01643
crossref_primary_10_1021_acsnano_4c14457
crossref_primary_10_1371_journal_pone_0220476
crossref_primary_10_1016_j_apgeochem_2018_12_012
crossref_primary_10_1111_1758_2229_12651
crossref_primary_10_1002_saj2_20324
crossref_primary_10_3390_min11020121
crossref_primary_10_1038_s41597_023_02022_4
crossref_primary_10_1016_j_geoderma_2025_117187
crossref_primary_10_1016_j_jenvman_2018_12_055
crossref_primary_10_1007_s11104_024_06797_2
crossref_primary_10_3390_f10111001
crossref_primary_10_1016_j_geoderma_2022_115965
crossref_primary_10_1186_s40538_023_00401_y
crossref_primary_10_1002_jeq2_20528
crossref_primary_10_1016_j_geoderma_2015_11_017
crossref_primary_10_3390_su13084327
crossref_primary_10_1016_j_geoderma_2021_115150
crossref_primary_10_1007_s42729_025_02253_x
crossref_primary_10_1007_s00468_022_02268_2
crossref_primary_10_1016_j_resconrec_2015_10_001
crossref_primary_10_1016_j_still_2023_105683
crossref_primary_10_1007_s11104_018_3732_4
crossref_primary_10_1007_s11430_024_1520_1
crossref_primary_10_3390_genes12071022
crossref_primary_10_1007_s11368_023_03434_w
crossref_primary_10_1111_sum_12550
crossref_primary_10_1007_s11783_023_1642_z
crossref_primary_10_2134_jeq2019_02_0085
crossref_primary_10_1007_s40726_023_00282_7
crossref_primary_10_1016_j_soilbio_2019_107655
crossref_primary_10_3390_agriculture13112146
crossref_primary_10_1111_sum_12830
crossref_primary_10_1016_j_geoderma_2018_09_056
crossref_primary_10_1038_s41598_024_72361_8
crossref_primary_10_1111_sum_12439
crossref_primary_10_1002_saj2_20347
crossref_primary_10_1016_j_chemosphere_2019_124709
crossref_primary_10_1002_jeq2_20037
crossref_primary_10_1016_j_chemosphere_2020_129210
crossref_primary_10_1007_s11104_017_3362_2
crossref_primary_10_1016_j_biombioe_2023_106805
crossref_primary_10_3390_agronomy12102569
crossref_primary_10_1002_jpln_201700082
crossref_primary_10_3390_f10020172
crossref_primary_10_1016_j_agee_2020_107247
crossref_primary_10_1111_sum_12585
crossref_primary_10_1080_03650340_2020_1714031
crossref_primary_10_1007_s10705_023_10260_6
crossref_primary_10_1016_j_foreco_2019_01_051
crossref_primary_10_1007_s13205_017_0797_3
crossref_primary_10_1016_j_catena_2024_108389
crossref_primary_10_1021_acs_est_6b03017
crossref_primary_10_1111_geb_12417
crossref_primary_10_1002_jeq2_70003
crossref_primary_10_1007_s00374_017_1218_9
crossref_primary_10_3390_f8060213
crossref_primary_10_3390_ijerph15112584
crossref_primary_10_1002_jeq2_20306
crossref_primary_10_1016_j_still_2019_104516
crossref_primary_10_1007_s11104_019_04342_0
crossref_primary_10_1016_j_scitotenv_2017_08_095
crossref_primary_10_1016_j_chemosphere_2019_03_123
crossref_primary_10_1002_jeq2_20265
crossref_primary_10_1016_j_scitotenv_2023_162400
crossref_primary_10_3390_agronomy11112267
crossref_primary_10_1016_j_geodrs_2019_e00228
crossref_primary_10_1007_s10533_019_00633_x
crossref_primary_10_3390_su10010144
crossref_primary_10_1007_s42729_024_02167_0
crossref_primary_10_1016_j_scitotenv_2019_07_221
crossref_primary_10_1016_j_geodrs_2022_e00542
crossref_primary_10_1111_sum_12457
crossref_primary_10_1007_s11104_020_04764_1
crossref_primary_10_1016_j_catena_2024_108013
crossref_primary_10_1016_j_scitotenv_2024_171767
crossref_primary_10_1007_s11104_021_04897_x
crossref_primary_10_1016_j_rhisph_2016_11_004
crossref_primary_10_3390_agronomy13061647
crossref_primary_10_1111_gcbb_13145
crossref_primary_10_1016_j_still_2018_07_011
crossref_primary_10_1016_j_scitotenv_2022_155892
crossref_primary_10_1016_j_geoderma_2016_04_028
crossref_primary_10_1111_ppl_12718
crossref_primary_10_1016_j_soilbio_2017_08_011
crossref_primary_10_1016_j_bcab_2024_103372
crossref_primary_10_1016_j_eti_2024_103633
crossref_primary_10_1016_j_apsoil_2020_103833
crossref_primary_10_1016_j_scitotenv_2022_159263
crossref_primary_10_1016_j_still_2021_105214
crossref_primary_10_1016_j_plana_2024_100112
crossref_primary_10_1016_j_geoderma_2022_115800
crossref_primary_10_1038_s41598_021_96885_5
crossref_primary_10_1016_j_apsoil_2021_104089
crossref_primary_10_2134_jeq2015_07_0345
crossref_primary_10_1021_acs_est_5b05395
crossref_primary_10_1080_01904167_2024_2304165
crossref_primary_10_1134_S1064229317120110
crossref_primary_10_1007_s11270_021_05196_y
crossref_primary_10_1016_j_geoderma_2015_06_008
crossref_primary_10_1016_j_jenvman_2024_121744
crossref_primary_10_3390_f8010019
crossref_primary_10_1088_1748_9326_abce81
crossref_primary_10_3390_su13158240
crossref_primary_10_1016_j_agee_2017_11_026
crossref_primary_10_1007_s10533_025_01213_y
crossref_primary_10_1016_j_soilbio_2022_108826
crossref_primary_10_3390_agriculture15050543
crossref_primary_10_1016_j_jclepro_2021_129464
crossref_primary_10_1016_j_soilbio_2019_107695
crossref_primary_10_1007_s42729_024_02140_x
crossref_primary_10_1007_s42729_022_00888_8
crossref_primary_10_3390_microorganisms10030609
crossref_primary_10_1016_j_scitotenv_2016_05_192
crossref_primary_10_1021_acs_est_9b00320
Cites_doi 10.1111/j.1365-2435.2008.01404.x
10.1016/j.soilbio.2012.02.013
10.2136/sssaj2010.0404
10.1073/pnas.1113675109
10.1111/j.1365-2389.2000.00326.x
10.1029/2008GL036385
10.1016/j.geoderma.2005.01.020
10.1080/01904160802116068
10.1071/SR10092
10.1016/j.soilbio.2004.02.002
10.1016/j.soilbio.2013.01.011
10.1016/0016-7061(94)00023-4
10.1016/S0065-2113(08)60216-3
10.1016/j.soilbio.2013.02.013
10.1126/science.1185383
10.1016/S0146-6380(03)00061-5
10.2136/sssaj2013.05.0187dgs
10.1007/BF02187361
10.1007/s10021-007-9086-z
10.1098/rstb.2001.0837
10.1080/00103628209367257
10.1111/ejss.12026
10.1007/s11104-011-0950-4
10.1111/j.1365-2389.1990.tb00043.x
10.1097/00010694-199908000-00005
10.1016/j.scitotenv.2008.02.010
10.1007/BF00210223
10.1021/es2044745
10.1007/s11104-013-1731-z
10.1111/j.1365-2389.1983.tb01056.x
10.1016/j.soilbio.2009.12.002
10.1016/j.fcr.2010.03.001
10.1080/00103629109368432
10.1016/j.soilbio.2012.04.012
10.2134/jeq2000.00472425002900010003x
10.2136/sssaj2003.4970
10.2134/jeq2005.0285
10.1021/es204446z
10.1021/es052442m
10.4141/cjss09090
10.1016/0038-0717(86)90050-7
10.1080/00103629009368377
10.2134/jeq2010.0456
10.1007/BF02181034
10.1007/s00374-002-0454-8
ContentType Journal Article
Copyright 2015 Elsevier B.V.
Copyright_xml – notice: 2015 Elsevier B.V.
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.geoderma.2015.03.020
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 1872-6259
EndPage 39
ExternalDocumentID 10_1016_j_geoderma_2015_03_020
S0016706115000919
GroupedDBID --K
--M
-DZ
-~X
.~1
0R~
0SF
1B1
1RT
1~.
1~5
29H
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AAXUO
ABEFU
ABFNM
ABFRF
ABGRD
ABJNI
ABMAC
ABQEM
ABQYD
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACLVX
ACRLP
ACSBN
ADBBV
ADEZE
ADMUD
ADQTV
AEBSH
AEFWE
AEKER
AENEX
AEQOU
AFFNX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CBWCG
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GROUPED_DOAJ
HLV
HMA
HMC
HVGLF
HZ~
H~9
IHE
IMUCA
J1W
K-O
KOM
LW9
LY3
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OHT
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAB
SDF
SDG
SEN
SEP
SES
SEW
SPC
SPCBC
SSA
SSE
SSZ
T5K
VH1
WUQ
XPP
Y6R
ZMT
~02
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7S9
L.6
ID FETCH-LOGICAL-c481t-9e2e5efcdd5bfecbadf485d200ef0e010b27015ebfaadbd11e7f2b298713110b3
IEDL.DBID .~1
ISSN 0016-7061
IngestDate Fri Jul 11 10:44:04 EDT 2025
Thu Apr 24 23:12:29 EDT 2025
Tue Jul 01 04:04:39 EDT 2025
Fri Feb 23 02:30:44 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Ortho Pi
P-NaOH–EDTA
WEPo
SOC
Po-citric
P-di
Oxalate extractable Fe, Al
P-IHP
P-phosphon
WEOC
Carbon
Land use
WEPi
Psat
P-mono
Soils
P-polyp-end and P-polyp-mid
Phosphorus species
Mox
31P NMR
MDP
Pi
Po
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c481t-9e2e5efcdd5bfecbadf485d200ef0e010b27015ebfaadbd11e7f2b298713110b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1836658280
PQPubID 24069
PageCount 11
ParticipantIDs proquest_miscellaneous_1836658280
crossref_citationtrail_10_1016_j_geoderma_2015_03_020
crossref_primary_10_1016_j_geoderma_2015_03_020
elsevier_sciencedirect_doi_10_1016_j_geoderma_2015_03_020
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-11-01
PublicationDateYYYYMMDD 2015-11-01
PublicationDate_xml – month: 11
  year: 2015
  text: 2015-11-01
  day: 01
PublicationDecade 2010
PublicationTitle Geoderma
PublicationYear 2015
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Spohn, Kuzyakov (bb0235) 2013; 61
Bünemann, Oberson, Liebisch, Keller, Annaheim, Huguenin-Elie, Frossard (bb0020) 2012; 51
McDowell, Stewart, Cade-Menun (bb0170) 2006; 35
Stutter, Richards (bb0245) 2012; 41
Frossard, Condron, Oberson, Sinaj, Fardeau (bb0095) 2000; 29
Chardon, Menon, Chien (bb0040) 1996; 46
Vincent, Vestergren, Gröbner, Persson, Schleucher, Biesler (bb0295) 2013; 367
Cade-Menun, Liu (bb0025) 2014; 78
Turner, Condron, Richardson, Peltzer, Allison (bb0280) 2007; 10
Dalal (bb0060) 1977; 29
Kirkby, Richardson, Wade, Batten, Blanchard (bb0145) 2013; 60
Ohno, Hiradate, He (bb0195) 2011; 75
Condron, Turner, Cade-Menun (bb0050) 2005
Celi, Lamacchia, Marsan, Barbaris (bb0035) 1999; 164
Schoenau, Huang (bb0215) 1991; 22
Doolette, Smernik (bb0070) 2011
Harrison (bb0120) 1987
Turner, Mahieu, Condron (bb0265) 2003; 34
Doolette, Smernik, Dougherty (bb0080) 2011; 49
Bradford, Fierer, Reynolds (bb0010) 2008; 22
Neset, Bader, Scheidegger, Lohm (bb0180) 2008; 396
Irving, McLaughlin (bb0135) 1990; 21
Keeler (bb0140) 2010
Richardson, Lynch, Ryan, Delhaize, Smith, Smith, Harvey, Ryan, Veneklaas, Lambers, Oberson, Culvenor, Simpson (bb0205) 2011; 349
Solomon, Lehmann (bb0230) 2000; 51
Bünemann, Bossio, Smithson, Frossard, Oberson (bb0015) 2004; 36
Fageria, Baligar, Li (bb0085) 2008; 31
Turner, Newman, Reddy, Turner, Paphazy, Haygarth, McKelvie (bb0275) 2006; 40
Vadas, Mallarino, McFarland (bb0290) 2005
Ramaekers, Remains, Rao, Blair, Vanderleyden (bb0200) 2010; 117
Cross, Schlesinger (bb0055) 1995; 64
Stutter, Shand, George, Blackwell, Bol, Mackay, Richardson, Condron, Turner, Haygarth (bb0250) 2012; 46
Giaveno, Celi, Richardson, Simpson, Barberis (bb0100) 2010; 42
Giles, Cade-Menun, Hill (bb0105) 2011; 91
Farmer, Russell, Smith (bb0090) 1983; 34
Turner, Blackwell (bb9000) 2013; 64
Smith, Bain (bb0225) 1982; 13
Defra (bb0065) 2010
Bedrock, Cheshire, Chudek, Goodman, Shand (bb0005) 1994
McDowell, Stewart (bb0165) 2006; 130
Stewart, Tiessen (bb0240) 1987; 4
McLaughlin, Alston (bb0175) 1986; 18
Sattari, Bouwman, Giller, van Ittersum (bb0210) 2012; 109
Sundareshwar, Richardson, Gleason, Pellechia, Honomichi (bb0255) 2009; 36
Makarov, Haumaier, Zech (bb0155) 2002; 35
Godfray, Beddington, Crute, Haddad, Lawrence, Muir, Pretty, Robinson, Thomas, Toulmin (bb0110) 2010; 327
Malik, Marschner, Khan (bb0160) 2012; 49
Turner, Mahieu, Condron (bb0260) 2003; 67
Sim (bb0220) 2000
Turner, Cheesman, Godage, Riley, Potter (bb0285) 2012; 46
Condron, Frossard, Tiessen, Newmans, Stewart (bb0045) 1990; 41
Gressel, McColl, Preston, Newman, Powers (bb0115) 1996; 33
Kirkby (10.1016/j.geoderma.2015.03.020_bb0145) 2013; 60
Turner (10.1016/j.geoderma.2015.03.020_bb0285) 2012; 46
Doolette (10.1016/j.geoderma.2015.03.020_bb0080) 2011; 49
Sundareshwar (10.1016/j.geoderma.2015.03.020_bb0255) 2009; 36
Celi (10.1016/j.geoderma.2015.03.020_bb0035) 1999; 164
Bünemann (10.1016/j.geoderma.2015.03.020_bb0015) 2004; 36
Dalal (10.1016/j.geoderma.2015.03.020_bb0060) 1977; 29
Turner (10.1016/j.geoderma.2015.03.020_bb0265) 2003; 34
Richardson (10.1016/j.geoderma.2015.03.020_bb0205) 2011; 349
Spohn (10.1016/j.geoderma.2015.03.020_bb0235) 2013; 61
Godfray (10.1016/j.geoderma.2015.03.020_bb0110) 2010; 327
Farmer (10.1016/j.geoderma.2015.03.020_bb0090) 1983; 34
Gressel (10.1016/j.geoderma.2015.03.020_bb0115) 1996; 33
Condron (10.1016/j.geoderma.2015.03.020_bb0045) 1990; 41
Bradford (10.1016/j.geoderma.2015.03.020_bb0010) 2008; 22
Ohno (10.1016/j.geoderma.2015.03.020_bb0195) 2011; 75
Schoenau (10.1016/j.geoderma.2015.03.020_bb0215) 1991; 22
Sim (10.1016/j.geoderma.2015.03.020_bb0220) 2000
Giles (10.1016/j.geoderma.2015.03.020_bb0105) 2011; 91
Irving (10.1016/j.geoderma.2015.03.020_bb0135) 1990; 21
Turner (10.1016/j.geoderma.2015.03.020_rf0275) 2006; 40
Smith (10.1016/j.geoderma.2015.03.020_bb0225) 1982; 13
Keeler (10.1016/j.geoderma.2015.03.020_bb0140) 2010
Bedrock (10.1016/j.geoderma.2015.03.020_bb0005) 1994
Bünemann (10.1016/j.geoderma.2015.03.020_bb0020) 2012; 51
Malik (10.1016/j.geoderma.2015.03.020_bb0160) 2012; 49
McLaughlin (10.1016/j.geoderma.2015.03.020_bb0175) 1986; 18
Stutter (10.1016/j.geoderma.2015.03.020_bb0250) 2012; 46
Condron (10.1016/j.geoderma.2015.03.020_bb0050) 2005
Stewart (10.1016/j.geoderma.2015.03.020_bb0240) 1987; 4
Turner (10.1016/j.geoderma.2015.03.020_bb0280) 2007; 10
Vincent (10.1016/j.geoderma.2015.03.020_bb0295) 2013; 367
Vadas (10.1016/j.geoderma.2015.03.020_bb0290) 2005
Stutter (10.1016/j.geoderma.2015.03.020_bb0245) 2012; 41
Frossard (10.1016/j.geoderma.2015.03.020_bb0095) 2000; 29
Chardon (10.1016/j.geoderma.2015.03.020_bb0040) 1996; 46
Turner (10.1016/j.geoderma.2015.03.020_bb9000) 2013; 64
Defra (10.1016/j.geoderma.2015.03.020_bb0065) 2010
McDowell (10.1016/j.geoderma.2015.03.020_bb0170) 2006; 35
Ramaekers (10.1016/j.geoderma.2015.03.020_bb0200) 2010; 117
Cross (10.1016/j.geoderma.2015.03.020_bb0055) 1995; 64
Fageria (10.1016/j.geoderma.2015.03.020_bb0085) 2008; 31
Harrison (10.1016/j.geoderma.2015.03.020_bb0120) 1987
Giaveno (10.1016/j.geoderma.2015.03.020_bb0100) 2010; 42
Sattari (10.1016/j.geoderma.2015.03.020_bb0210) 2012; 109
Doolette (10.1016/j.geoderma.2015.03.020_bb0070) 2011
McDowell (10.1016/j.geoderma.2015.03.020_bb0165) 2006; 130
Turner (10.1016/j.geoderma.2015.03.020_rf0280) 2002
Makarov (10.1016/j.geoderma.2015.03.020_bb0155) 2002; 35
Solomon (10.1016/j.geoderma.2015.03.020_bb0230) 2000; 51
Neset (10.1016/j.geoderma.2015.03.020_bb0180) 2008; 396
Cade-Menun (10.1016/j.geoderma.2015.03.020_bb0025) 2014; 78
Turner (10.1016/j.geoderma.2015.03.020_bb0260) 2003; 67
References_xml – volume: 396
  start-page: 111
  year: 2008
  end-page: 120
  ident: bb0180
  article-title: The flow of phosphorus in food production and consumption — Linköping, Sweden, 1870–2000
  publication-title: Sci. Total Environ.
– volume: 18
  start-page: 437
  year: 1986
  end-page: 443
  ident: bb0175
  article-title: Measurement of phosphorus in the soil microbial biomass: a modified procedure for field soils
  publication-title: Soil Biol. Biochem.
– volume: 349
  start-page: 121
  year: 2011
  end-page: 156
  ident: bb0205
  article-title: Plant and microbial strategies to improve the phosphorus efficiency of agriculture
  publication-title: Plant Soil
– volume: 51
  start-page: 84
  year: 2012
  end-page: 95
  ident: bb0020
  article-title: Rapid microbial phosphorus immobilization dominates gross phosphorus fluxes in a grassland soil with low inorganic phosphorus availability
  publication-title: Soil Biol. Biochem.
– volume: 46
  start-page: 41
  year: 1996
  end-page: 51
  ident: bb0040
  article-title: Iron oxide impregnated filter paper (Pi test): a review of its development and methodological research
  publication-title: Nutr. Cycl. Agroecosyst.
– start-page: 266
  year: 2010
  ident: bb0140
  article-title: Understanding NMR Spectroscopy
– year: 2010
  ident: bb0065
  article-title: Fertiliser Manual (RB209)
– volume: 21
  start-page: 2245
  year: 1990
  end-page: 2255
  ident: bb0135
  article-title: A rapid and simple field-test for phosphorus in Olsen and Bray No 1 extracts of soil
  publication-title: Commun. Soil Sci. Plant Anal.
– volume: 33
  start-page: 97
  year: 1996
  end-page: 123
  ident: bb0115
  article-title: Linkages between phosphorus transformations and carbon decomposition in a forest soil
  publication-title: Biogeochemistry
– start-page: 20
  year: 2000
  end-page: 21
  ident: bb0220
  article-title: Soil test phosphorus: Olsen P
  publication-title: Methods of Phosphorus Analysis for Soils, Sediments, Residuals and Waters
– volume: 61
  start-page: 69
  year: 2013
  end-page: 75
  ident: bb0235
  article-title: Phosphorus mineralization can be driven by microbial need for carbon
  publication-title: Soil Biol. Biochem.
– volume: 367
  start-page: 149
  year: 2013
  end-page: 162
  ident: bb0295
  article-title: Soil organic phosphorus transformations in a boreal forest chronosequence
  publication-title: Plant Soil
– volume: 164
  start-page: 574
  year: 1999
  end-page: 578
  ident: bb0035
  article-title: Interaction of inositol hexaphosphate on clays: adsorption and charging phenomena
  publication-title: Soil Sci.
– volume: 29
  start-page: 15
  year: 2000
  end-page: 23
  ident: bb0095
  article-title: Processes governing phosphorous availability in temperate soils
  publication-title: J. Environ. Qual.
– volume: 117
  start-page: 169
  year: 2010
  end-page: 176
  ident: bb0200
  article-title: Strategies for improving phosphorus acquisition efficiency of crop plants
  publication-title: Field Crop Res.
– volume: 91
  start-page: 397
  year: 2011
  end-page: 416
  ident: bb0105
  article-title: The inositol phosphates in soils and manures: abundance, cycling and measurement
  publication-title: Can. J. Soil Sci.
– volume: 51
  start-page: 699
  year: 2000
  end-page: 708
  ident: bb0230
  article-title: Loss of phosphorus from soil in semi-arid northern Tanzania as a result of cropping: evidence from sequential extraction and
  publication-title: Eur. J. Soil Sci.
– volume: 327
  start-page: 812
  year: 2010
  end-page: 818
  ident: bb0110
  article-title: Food security: the challenge of feeding 9 billion people
  publication-title: Science
– volume: 75
  start-page: 1704
  year: 2011
  end-page: 1711
  ident: bb0195
  article-title: Phosphorus solubility of agricultural soils: a surface charge and phosphorus-31 NMR speciation study
  publication-title: Soil Sci. Soc. Am. J.
– volume: 40
  start-page: 3349
  year: 2006
  end-page: 3354
  ident: bb0275
  article-title: Overestimation of organic phosphorus in wetland soils by alkaline extraction and molybdate colorimetry
  publication-title: Environ. Sci. Technol.
– volume: 78
  start-page: 19
  year: 2014
  end-page: 37
  ident: bb0025
  article-title: Solution
  publication-title: Soil Sci. Soc. Am. J.
– year: 2005
  ident: bb0050
  article-title: Chemistry and dynamics of soil organic phosphorus
  publication-title: Phosphorus, Agriculture and the Environment Agronomy Monograph no 46
– volume: 67
  start-page: 497
  year: 2003
  end-page: 510
  ident: bb0260
  article-title: Phosphorus-31 nuclear magnetic resonance spectral assignments of phosphorus compounds in soil NaOH–EDTA extracts
  publication-title: Soil Sci. Soc. Am. J.
– volume: 49
  start-page: 106
  year: 2012
  end-page: 113
  ident: bb0160
  article-title: Addition of organic and inorganic P sources to soil — effects on P pools and microorganisms
  publication-title: Soil Biol. Biochem.
– volume: 35
  start-page: 293
  year: 2006
  end-page: 302
  ident: bb0170
  article-title: An examination of spin-lattice relaxation times for analysis of soil and manure extracts by liquid state phosphorus-31 nuclear magnetic resonance spectroscopy
  publication-title: J. Environ. Qual.
– volume: 13
  start-page: 185
  year: 1982
  end-page: 190
  ident: bb0225
  article-title: A sodium hydroxide fusion method for the determination of total phosphate in soils
  publication-title: Commun. Soil Sci. Plant Anal.
– year: 1987
  ident: bb0120
  article-title: Soil Organic Phosphorus: A Review of World Literature CAB International, Wallingford, UK
– volume: 31
  start-page: 1121
  year: 2008
  end-page: 1157
  ident: bb0085
  article-title: The role of nutrient efficient plants in improving crop yields in the twenty first century
  publication-title: J. Plant Nutr.
– volume: 36
  start-page: 889
  year: 2004
  end-page: 901
  ident: bb0015
  article-title: Microbial community composition and substrate use in a highly weathered soil as affected by crop rotation and P fertilization
  publication-title: Soil Biol. Biochem.
– volume: 64
  start-page: 197
  year: 1995
  end-page: 214
  ident: bb0055
  article-title: A literature review and evaluation of the Hedley fractionation: applications to the biogeochemical cycle of soil phosphorus in natural ecosystems
  publication-title: Geoderma
– volume: 41
  start-page: 400
  year: 2012
  end-page: 410
  ident: bb0245
  article-title: Relationships between soil physico-chemical, microbiological properties, and nutrient release in buffer soils compared to field soils
  publication-title: J. Environ. Qual.
– volume: 42
  start-page: 491
  year: 2010
  end-page: 498
  ident: bb0100
  article-title: Interaction of phytases with minerals and availability of substrate affect the hydrolysis of inositol phosphates
  publication-title: Soil Biol. Biochem.
– volume: 46
  start-page: 4994
  year: 2012
  end-page: 5002
  ident: bb0285
  article-title: Determination of neo- and
  publication-title: Environ. Sci. Technol.
– volume: 35
  start-page: 136
  year: 2002
  end-page: 146
  ident: bb0155
  article-title: The nature and origins of diester phosphates in soils: a
  publication-title: Biol. Fertil. Soils
– volume: 22
  start-page: 465
  year: 1991
  end-page: 492
  ident: bb0215
  article-title: Anion-exchange membrane, water, and sodium bicarbonate extractions as soil tests for phosphorus
  publication-title: Commun. Soil Sci. Plant Anal.
– volume: 29
  start-page: 83
  year: 1977
  end-page: 112
  ident: bb0060
  article-title: Soil organic phosphorous
  publication-title: Adv. Agron.
– start-page: 227
  year: 1994
  end-page: 232
  ident: bb0005
  article-title: P NMR studies of humic acid from a blanket peat
  publication-title: Humic Substances in the Global Environment and Implications on Human Health
– volume: 49
  start-page: 152
  year: 2011
  end-page: 165
  ident: bb0080
  article-title: A quantitative assessment of phosphorus forms in some Australian soils
  publication-title: Soil Res.
– volume: 41
  start-page: 41
  year: 1990
  end-page: 50
  ident: bb0045
  article-title: Chemical nature of organic phosphorus in cultivated and uncultivated soils under different environmental conditions
  publication-title: Eur. J. Soil Sci.
– volume: 130
  start-page: 176
  year: 2006
  end-page: 189
  ident: bb0165
  article-title: The phosphorus composition of contrasting soils in pastoral, native and forest management in Otago, New Zealand: sequential extraction and
  publication-title: Geoderma
– volume: 109
  start-page: 6348
  year: 2012
  end-page: 6353
  ident: bb0210
  article-title: Residual soil phosphorus as the missing piece in the global phosphorus crisis puzzle
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 4
  start-page: 41
  year: 1987
  end-page: 60
  ident: bb0240
  article-title: Dynamics of soil organic phosphorus
  publication-title: Biogeochemistry
– start-page: 3
  year: 2011
  end-page: 36
  ident: bb0070
  article-title: Soil organic phosphorus speciation using spectroscopic techniques
  publication-title: Phosphorus in Action
– volume: 22
  start-page: 964
  year: 2008
  end-page: 974
  ident: bb0010
  article-title: Soil carbon stocks in experimental mesocosms are dependent on the rate of labile carbon, nitrogen and phosphorus inputs to soils
  publication-title: Funct. Ecol.
– volume: 10
  start-page: 1166
  year: 2007
  end-page: 1181
  ident: bb0280
  article-title: Soil organic phosphorus transformations during pedogenesis
  publication-title: Ecosystems
– volume: 46
  start-page: 1977
  year: 2012
  end-page: 1978
  ident: bb0250
  article-title: Recovering phosphorus from soil — a root solution?
  publication-title: Environ. Sci. Technol.
– year: 2005
  ident: bb0290
  article-title: The importance of sampling depth when testing soils for their potential to supply phosphorus to surface runoff
  publication-title: Position Paper
– volume: 34
  start-page: 1199
  year: 2003
  end-page: 1210
  ident: bb0265
  article-title: The phosphorus composition of temperate pasture soils determined by NaOH–EDTA extraction and solution P-31 NMR spectroscopy
  publication-title: Org. Geochem.
– volume: 64
  start-page: 249
  year: 2013
  end-page: 259
  ident: bb9000
  article-title: Isolating the influence o pH on the amont and forms of soil organic phosphorus
  publication-title: Eur. J. Soil Sci.
– volume: 36
  year: 2009
  ident: bb0255
  article-title: Nature versus nurture: functional assessment of restoration effects on wetland services using nuclear magnetic resonance spectroscopy
  publication-title: Geophys. Res. Lett.
– volume: 60
  start-page: 77
  year: 2013
  end-page: 86
  ident: bb0145
  article-title: Carbon-nutrient stoichiometry to increase soil carbon sequestration
  publication-title: Soil Biol. Chem.
– volume: 34
  start-page: 571
  year: 1983
  end-page: 576
  ident: bb0090
  article-title: Extraction of inorganic forms of translocated Al, Fe and Si from a podzol Bs horizon
  publication-title: J. Soil Sci.
– volume: 22
  start-page: 964
  year: 2008
  ident: 10.1016/j.geoderma.2015.03.020_bb0010
  article-title: Soil carbon stocks in experimental mesocosms are dependent on the rate of labile carbon, nitrogen and phosphorus inputs to soils
  publication-title: Funct. Ecol.
  doi: 10.1111/j.1365-2435.2008.01404.x
– volume: 49
  start-page: 106
  year: 2012
  ident: 10.1016/j.geoderma.2015.03.020_bb0160
  article-title: Addition of organic and inorganic P sources to soil — effects on P pools and microorganisms
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2012.02.013
– volume: 75
  start-page: 1704
  year: 2011
  ident: 10.1016/j.geoderma.2015.03.020_bb0195
  article-title: Phosphorus solubility of agricultural soils: a surface charge and phosphorus-31 NMR speciation study
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2010.0404
– year: 2005
  ident: 10.1016/j.geoderma.2015.03.020_bb0290
  article-title: The importance of sampling depth when testing soils for their potential to supply phosphorus to surface runoff
– start-page: 227
  year: 1994
  ident: 10.1016/j.geoderma.2015.03.020_bb0005
  article-title: 31P NMR studies of humic acid from a blanket peat
– volume: 109
  start-page: 6348
  year: 2012
  ident: 10.1016/j.geoderma.2015.03.020_bb0210
  article-title: Residual soil phosphorus as the missing piece in the global phosphorus crisis puzzle
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1113675109
– volume: 51
  start-page: 699
  year: 2000
  ident: 10.1016/j.geoderma.2015.03.020_bb0230
  article-title: Loss of phosphorus from soil in semi-arid northern Tanzania as a result of cropping: evidence from sequential extraction and 31P NMR spectroscopy
  publication-title: Eur. J. Soil Sci.
  doi: 10.1111/j.1365-2389.2000.00326.x
– year: 2010
  ident: 10.1016/j.geoderma.2015.03.020_bb0065
– volume: 36
  year: 2009
  ident: 10.1016/j.geoderma.2015.03.020_bb0255
  article-title: Nature versus nurture: functional assessment of restoration effects on wetland services using nuclear magnetic resonance spectroscopy
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2008GL036385
– volume: 130
  start-page: 176
  year: 2006
  ident: 10.1016/j.geoderma.2015.03.020_bb0165
  article-title: The phosphorus composition of contrasting soils in pastoral, native and forest management in Otago, New Zealand: sequential extraction and 31P NMR
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2005.01.020
– volume: 31
  start-page: 1121
  year: 2008
  ident: 10.1016/j.geoderma.2015.03.020_bb0085
  article-title: The role of nutrient efficient plants in improving crop yields in the twenty first century
  publication-title: J. Plant Nutr.
  doi: 10.1080/01904160802116068
– volume: 49
  start-page: 152
  year: 2011
  ident: 10.1016/j.geoderma.2015.03.020_bb0080
  article-title: A quantitative assessment of phosphorus forms in some Australian soils
  publication-title: Soil Res.
  doi: 10.1071/SR10092
– start-page: 20
  year: 2000
  ident: 10.1016/j.geoderma.2015.03.020_bb0220
  article-title: Soil test phosphorus: Olsen P
– volume: 36
  start-page: 889
  year: 2004
  ident: 10.1016/j.geoderma.2015.03.020_bb0015
  article-title: Microbial community composition and substrate use in a highly weathered soil as affected by crop rotation and P fertilization
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2004.02.002
– volume: 60
  start-page: 77
  year: 2013
  ident: 10.1016/j.geoderma.2015.03.020_bb0145
  article-title: Carbon-nutrient stoichiometry to increase soil carbon sequestration
  publication-title: Soil Biol. Chem.
  doi: 10.1016/j.soilbio.2013.01.011
– volume: 64
  start-page: 197
  year: 1995
  ident: 10.1016/j.geoderma.2015.03.020_bb0055
  article-title: A literature review and evaluation of the Hedley fractionation: applications to the biogeochemical cycle of soil phosphorus in natural ecosystems
  publication-title: Geoderma
  doi: 10.1016/0016-7061(94)00023-4
– volume: 29
  start-page: 83
  year: 1977
  ident: 10.1016/j.geoderma.2015.03.020_bb0060
  article-title: Soil organic phosphorous
  publication-title: Adv. Agron.
  doi: 10.1016/S0065-2113(08)60216-3
– volume: 61
  start-page: 69
  year: 2013
  ident: 10.1016/j.geoderma.2015.03.020_bb0235
  article-title: Phosphorus mineralization can be driven by microbial need for carbon
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2013.02.013
– volume: 327
  start-page: 812
  year: 2010
  ident: 10.1016/j.geoderma.2015.03.020_bb0110
  article-title: Food security: the challenge of feeding 9 billion people
  publication-title: Science
  doi: 10.1126/science.1185383
– volume: 34
  start-page: 1199
  year: 2003
  ident: 10.1016/j.geoderma.2015.03.020_bb0265
  article-title: The phosphorus composition of temperate pasture soils determined by NaOH–EDTA extraction and solution P-31 NMR spectroscopy
  publication-title: Org. Geochem.
  doi: 10.1016/S0146-6380(03)00061-5
– volume: 78
  start-page: 19
  year: 2014
  ident: 10.1016/j.geoderma.2015.03.020_bb0025
  article-title: Solution 31P-NMR spectroscopy of soils from 2005–2013: a review of sample preparation and experimental parameters
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2013.05.0187dgs
– volume: 4
  start-page: 41
  year: 1987
  ident: 10.1016/j.geoderma.2015.03.020_bb0240
  article-title: Dynamics of soil organic phosphorus
  publication-title: Biogeochemistry
  doi: 10.1007/BF02187361
– volume: 10
  start-page: 1166
  year: 2007
  ident: 10.1016/j.geoderma.2015.03.020_bb0280
  article-title: Soil organic phosphorus transformations during pedogenesis
  publication-title: Ecosystems
  doi: 10.1007/s10021-007-9086-z
– year: 2002
  ident: 10.1016/j.geoderma.2015.03.020_rf0280
  article-title: Inositol phosphates in the environment
  publication-title: Philos. Trans. R. Soc. Lond.
  doi: 10.1098/rstb.2001.0837
– volume: 13
  start-page: 185
  year: 1982
  ident: 10.1016/j.geoderma.2015.03.020_bb0225
  article-title: A sodium hydroxide fusion method for the determination of total phosphate in soils
  publication-title: Commun. Soil Sci. Plant Anal.
  doi: 10.1080/00103628209367257
– volume: 64
  start-page: 249
  year: 2013
  ident: 10.1016/j.geoderma.2015.03.020_bb9000
  article-title: Isolating the influence o pH on the amont and forms of soil organic phosphorus
  publication-title: Eur. J. Soil Sci.
  doi: 10.1111/ejss.12026
– volume: 349
  start-page: 121
  year: 2011
  ident: 10.1016/j.geoderma.2015.03.020_bb0205
  article-title: Plant and microbial strategies to improve the phosphorus efficiency of agriculture
  publication-title: Plant Soil
  doi: 10.1007/s11104-011-0950-4
– volume: 41
  start-page: 41
  year: 1990
  ident: 10.1016/j.geoderma.2015.03.020_bb0045
  article-title: Chemical nature of organic phosphorus in cultivated and uncultivated soils under different environmental conditions
  publication-title: Eur. J. Soil Sci.
  doi: 10.1111/j.1365-2389.1990.tb00043.x
– volume: 164
  start-page: 574
  year: 1999
  ident: 10.1016/j.geoderma.2015.03.020_bb0035
  article-title: Interaction of inositol hexaphosphate on clays: adsorption and charging phenomena
  publication-title: Soil Sci.
  doi: 10.1097/00010694-199908000-00005
– volume: 396
  start-page: 111
  year: 2008
  ident: 10.1016/j.geoderma.2015.03.020_bb0180
  article-title: The flow of phosphorus in food production and consumption — Linköping, Sweden, 1870–2000
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2008.02.010
– volume: 46
  start-page: 41
  year: 1996
  ident: 10.1016/j.geoderma.2015.03.020_bb0040
  article-title: Iron oxide impregnated filter paper (Pi test): a review of its development and methodological research
  publication-title: Nutr. Cycl. Agroecosyst.
  doi: 10.1007/BF00210223
– volume: 46
  start-page: 1977
  year: 2012
  ident: 10.1016/j.geoderma.2015.03.020_bb0250
  article-title: Recovering phosphorus from soil — a root solution?
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es2044745
– volume: 367
  start-page: 149
  year: 2013
  ident: 10.1016/j.geoderma.2015.03.020_bb0295
  article-title: Soil organic phosphorus transformations in a boreal forest chronosequence
  publication-title: Plant Soil
  doi: 10.1007/s11104-013-1731-z
– start-page: 3
  year: 2011
  ident: 10.1016/j.geoderma.2015.03.020_bb0070
  article-title: Soil organic phosphorus speciation using spectroscopic techniques
– volume: 34
  start-page: 571
  year: 1983
  ident: 10.1016/j.geoderma.2015.03.020_bb0090
  article-title: Extraction of inorganic forms of translocated Al, Fe and Si from a podzol Bs horizon
  publication-title: J. Soil Sci.
  doi: 10.1111/j.1365-2389.1983.tb01056.x
– year: 2005
  ident: 10.1016/j.geoderma.2015.03.020_bb0050
  article-title: Chemistry and dynamics of soil organic phosphorus
– volume: 42
  start-page: 491
  year: 2010
  ident: 10.1016/j.geoderma.2015.03.020_bb0100
  article-title: Interaction of phytases with minerals and availability of substrate affect the hydrolysis of inositol phosphates
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2009.12.002
– volume: 117
  start-page: 169
  year: 2010
  ident: 10.1016/j.geoderma.2015.03.020_bb0200
  article-title: Strategies for improving phosphorus acquisition efficiency of crop plants
  publication-title: Field Crop Res.
  doi: 10.1016/j.fcr.2010.03.001
– volume: 22
  start-page: 465
  year: 1991
  ident: 10.1016/j.geoderma.2015.03.020_bb0215
  article-title: Anion-exchange membrane, water, and sodium bicarbonate extractions as soil tests for phosphorus
  publication-title: Commun. Soil Sci. Plant Anal.
  doi: 10.1080/00103629109368432
– volume: 51
  start-page: 84
  year: 2012
  ident: 10.1016/j.geoderma.2015.03.020_bb0020
  article-title: Rapid microbial phosphorus immobilization dominates gross phosphorus fluxes in a grassland soil with low inorganic phosphorus availability
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2012.04.012
– volume: 29
  start-page: 15
  year: 2000
  ident: 10.1016/j.geoderma.2015.03.020_bb0095
  article-title: Processes governing phosphorous availability in temperate soils
  publication-title: J. Environ. Qual.
  doi: 10.2134/jeq2000.00472425002900010003x
– volume: 67
  start-page: 497
  year: 2003
  ident: 10.1016/j.geoderma.2015.03.020_bb0260
  article-title: Phosphorus-31 nuclear magnetic resonance spectral assignments of phosphorus compounds in soil NaOH–EDTA extracts
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2003.4970
– start-page: 266
  year: 2010
  ident: 10.1016/j.geoderma.2015.03.020_bb0140
– volume: 35
  start-page: 293
  year: 2006
  ident: 10.1016/j.geoderma.2015.03.020_bb0170
  article-title: An examination of spin-lattice relaxation times for analysis of soil and manure extracts by liquid state phosphorus-31 nuclear magnetic resonance spectroscopy
  publication-title: J. Environ. Qual.
  doi: 10.2134/jeq2005.0285
– volume: 46
  start-page: 4994
  year: 2012
  ident: 10.1016/j.geoderma.2015.03.020_bb0285
  article-title: Determination of neo- and d-chiro-inositol hexakisphosphate in soils by solution 31P NMR spectroscopy
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es204446z
– volume: 40
  start-page: 3349
  year: 2006
  ident: 10.1016/j.geoderma.2015.03.020_rf0275
  article-title: Overestimation of organic phosphorus in wetland soils by alkaline extraction and molybdate colorimetry
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es052442m
– volume: 91
  start-page: 397
  year: 2011
  ident: 10.1016/j.geoderma.2015.03.020_bb0105
  article-title: The inositol phosphates in soils and manures: abundance, cycling and measurement
  publication-title: Can. J. Soil Sci.
  doi: 10.4141/cjss09090
– volume: 18
  start-page: 437
  year: 1986
  ident: 10.1016/j.geoderma.2015.03.020_bb0175
  article-title: Measurement of phosphorus in the soil microbial biomass: a modified procedure for field soils
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/0038-0717(86)90050-7
– volume: 21
  start-page: 2245
  year: 1990
  ident: 10.1016/j.geoderma.2015.03.020_bb0135
  article-title: A rapid and simple field-test for phosphorus in Olsen and Bray No 1 extracts of soil
  publication-title: Commun. Soil Sci. Plant Anal.
  doi: 10.1080/00103629009368377
– volume: 41
  start-page: 400
  year: 2012
  ident: 10.1016/j.geoderma.2015.03.020_bb0245
  article-title: Relationships between soil physico-chemical, microbiological properties, and nutrient release in buffer soils compared to field soils
  publication-title: J. Environ. Qual.
  doi: 10.2134/jeq2010.0456
– year: 1987
  ident: 10.1016/j.geoderma.2015.03.020_bb0120
– volume: 33
  start-page: 97
  year: 1996
  ident: 10.1016/j.geoderma.2015.03.020_bb0115
  article-title: Linkages between phosphorus transformations and carbon decomposition in a forest soil
  publication-title: Biogeochemistry
  doi: 10.1007/BF02181034
– volume: 35
  start-page: 136
  year: 2002
  ident: 10.1016/j.geoderma.2015.03.020_bb0155
  article-title: The nature and origins of diester phosphates in soils: a 31P-NMR study
  publication-title: Biol. Fertil. Soils
  doi: 10.1007/s00374-002-0454-8
SSID ssj0017020
Score 2.5361197
Snippet Data on the distribution of phosphorus (P) species in soils with differing land uses and properties are essential to understanding environmental P availability...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 29
SubjectTerms aluminum
arable soils
Carbon
esters
fertilizer application
grasslands
grazing
inorganic phosphorus
iron
Land use
microbial ecology
orthophosphates
Oxalate extractable Fe, Al
Phosphorus species
polyphosphates
soil organic carbon
soil properties
Soils
spectroscopy
temperate soils
Title Land use and soil factors affecting accumulation of phosphorus species in temperate soils
URI https://dx.doi.org/10.1016/j.geoderma.2015.03.020
https://www.proquest.com/docview/1836658280
Volume 257-258
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEBYhubSHkqQtTfNAgV6dXdnyY4_LkrDN69SFzUnoMWo3pPayXl_z2zOjlUMSCjn0YIyNJewZeR5ovm8Y-yHQzYBMIclM6hJZaZ8YAI0KQe9GSErtCI18c1tMZ_Jyns-32KTHwlBZZbT9G5serHW8M4jSHCwXC8L4iqJEdyQCp3-g_pSypFV-9vhc5iHKYaRmFEVCT79ACd-jjqjhWOAfEnkgO6W-3_92UG9MdfA_F7vsUwwc-XjzbntsC-p99nH8exXJM-Azu7vWteNdC5zObbN44LGdDtehbAPdFNfWdn9jzy7eeL7807R4rLqWE-oSE2e-qDkxVhHdMoRp2i9sdnH-azJNYuuExMpKrJMRpJCDt87lBuc32nlZ5Q5_CfBDwBzMpCV-MhivURlOCCh9atIRpk8ZBgQm-8q266aGb4ynzmESpXMLmZc285XXYKWwFQZe3gEcsLyXl7KRV5zaWzyovoDsXvVyViRnNcwUyvmADZ7HLTfMGu-OGPXqUK_WiELz_-7Y015_Cn8g2hXRNTRdq9CmFQVtHg6__8f8h-wDXW1Qikdse73q4BjDlbU5CevxhO2Mf15Nb58AD27uAQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOiKdoeRkJjmFj57HZA4cKqLZ021MrlZPxY1y2Kslqs1HFhT_FH2Qm61SAkHpAPUSREtmyZsbzeeSZbwBeS4IZzBUmmVU-ySsTEotoSCGEblxJaTxXIx8cltPj_NNJcbIBP4daGE6rjL5_7dN7bx2_jKI0R4v5nGt8ZTkmOJI9p7-cxMzKffx-QXFb-27vAyn5jVK7H4_eT5PYWiBxeSVXyQQVFhic94UN6KzxIa8KTyaDIUWKUawaE1CiDYYW66XEcVBWUYDO9DSpzWjeG3AzJ3fBbRPe_rjMK5HjNHJByjLh5f1WlnxGRsEdznrCI1n07KrcaPzfiPgXNvSAt3sP7saTqthZC-M-bGD9AO7snC4jWwc-hM8zU3vRtSj43TbzcxH79wjT54kQLgrjXPctNgkTTRCLr01Lz7JrBZd5UqQu5rVgiizmd8Z-mvYRHF-LQB_DZt3U-ASE8p6iNlM4zELuslAFgy6XrqKTXvCIW1AM8tIuEplzP41zPWSsnelBzprlrNNMk5y3YHQ5brGm8rhyxGRQh_7DKDXhzZVjXw3607Rj-RrG1Nh0rSYnWpZ8W5lu_8f8L-HW9Ohgpmd7h_tP4Tb_WZdIPoPN1bLD53RWWtkXvW0K-HLdm-EXuNosKg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Land+use+and+soil+factors+affecting+accumulation+of+phosphorus+species+in+temperate+soils&rft.jtitle=Geoderma&rft.au=Stutter%2C+Marc+I.&rft.au=Shand%2C+Charles+A.&rft.au=George%2C+Timothy+S.&rft.au=Blackwell%2C+Martin+S.A.&rft.date=2015-11-01&rft.pub=Elsevier+B.V&rft.issn=0016-7061&rft.eissn=1872-6259&rft.volume=257-258&rft.spage=29&rft.epage=39&rft_id=info:doi/10.1016%2Fj.geoderma.2015.03.020&rft.externalDocID=S0016706115000919
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-7061&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-7061&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-7061&client=summon