Feature Selection and Activity Recognition System Using a Single Triaxial Accelerometer
Activity recognition is required in various applications such as medical monitoring and rehabilitation. Previously developed activity recognition systems utilizing triaxial accelerometers have provided mixed results, with subject-to-subject variability. This paper presents an accurate activity recog...
Saved in:
Published in | IEEE transactions on biomedical engineering Vol. 61; no. 6; pp. 1780 - 1786 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.06.2014
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Activity recognition is required in various applications such as medical monitoring and rehabilitation. Previously developed activity recognition systems utilizing triaxial accelerometers have provided mixed results, with subject-to-subject variability. This paper presents an accurate activity recognition system utilizing a body worn wireless accelerometer, to be used in the real-life application of patient monitoring. The algorithm utilizes data from a single, waist-mounted triaxial accelerometer to classify gait events into six daily living activities and transitional events. The accelerometer can be worn at any location around the circumference of the waist, thereby reducing user training. Feature selection is performed using Relief-F and sequential forward floating search (SFFS) from a range of previously published features, as well as new features introduced in this paper. Relevant and robust features that are insensitive to the positioning of accelerometer around the waist are selected. SFFS selected almost half the number of features in comparison to Relief-F and provided higher accuracy than Relief-F. Activity classification is performed using Naïve Bayes and k-nearest neighbor (k-NN) and the results are compared. Activity recognition results on seven subjects with leave-one-person-out error estimates show an overall accuracy of about 98% for both the classifiers. Accuracy for each of the individual activity is also more than 95%. |
---|---|
AbstractList | Activity recognition is required in various applications such as medical monitoring and rehabilitation. Previously developed activity recognition systems utilizing triaxial accelerometers have provided mixed results, with subject-to-subject variability. This paper presents an accurate activity recognition system utilizing a body worn wireless accelerometer, to be used in the real-life application of patient monitoring. The algorithm utilizes data from a single, waist-mounted triaxial accelerometer to classify gait events into six daily living activities and transitional events. The accelerometer can be worn at any location around the circumference of the waist, thereby reducing user training. Feature selection is performed using Relief-F and sequential forward floating search (SFFS) from a range of previously published features, as well as new features introduced in this paper. Relevant and robust features that are insensitive to the positioning of accelerometer around the waist are selected. SFFS selected almost half the number of features in comparison to Relief-F and provided higher accuracy than Relief-F. Activity classification is performed using Naïve Bayes and [Formula Omitted]-nearest neighbor [Formula Omitted]-NN) and the results are compared. Activity recognition results on seven subjects with leave-one-person-out error estimates show an overall accuracy of about 98% for both the classifiers. Accuracy for each of the individual activity is also more than 95%. Activity recognition is required in various applications such as medical monitoring and rehabilitation. Previously developed activity recognition systems utilizing triaxial accelerometers have provided mixed results, with subject-to-subject variability. This paper presents an accurate activity recognition system utilizing a body worn wireless accelerometer, to be used in the real-life application of patient monitoring. The algorithm utilizes data from a single, waist-mounted triaxial accelerometer to classify gait events into six daily living activities and transitional events. The accelerometer can be worn at any location around the circumference of the waist, thereby reducing user training. Feature selection is performed using Relief-F and sequential forward floating search (SFFS) from a range of previously published features, as well as new features introduced in this paper. Relevant and robust features that are insensitive to the positioning of accelerometer around the waist are selected. SFFS selected almost half the number of features in comparison to Relief-F and provided higher accuracy than Relief-F. Activity classification is performed using Naïve Bayes and k-nearest neighbor (k-NN) and the results are compared. Activity recognition results on seven subjects with leave-one-person-out error estimates show an overall accuracy of about 98% for both the classifiers. Accuracy for each of the individual activity is also more than 95%. Activity recognition is required in various applications such as medical monitoring and rehabilitation. Previously developed activity recognition systems utilizing triaxial accelerometers have provided mixed results, with subject-to-subject variability. This paper presents an accurate activity recognition system utilizing a body worn wireless accelerometer, to be used in the real-life application of patient monitoring. The algorithm utilizes data from a single, waist-mounted triaxial accelerometer to classify gait events into six daily living activities and transitional events. The accelerometer can be worn at any location around the circumference of the waist, thereby reducing user training. Feature selection is performed using Relief-F and sequential forward floating search (SFFS) from a range of previously published features, as well as new features introduced in this paper. Relevant and robust features that are insensitive to the positioning of accelerometer around the waist are selected. SFFS selected almost half the number of features in comparison to Relief-F and provided higher accuracy than Relief-F. Activity classification is performed using Naïve Bayes and k-nearest neighbor (k-NN) and the results are compared. Activity recognition results on seven subjects with leave-one-person-out error estimates show an overall accuracy of about 98% for both the classifiers. Accuracy for each of the individual activity is also more than 95%. Activity recognition is required in various applications such as medical monitoring and rehabilitation. Previously developed activity recognition systems utilizing triaxial accelerometers have provided mixed results, with subject-to-subject variability. This paper presents an accurate activity recognition system utilizing a body worn wireless accelerometer, to be used in the real-life application of patient monitoring. The algorithm utilizes data from a single, waist-mounted triaxial accelerometer to classify gait events into six daily living activities and transitional events. The accelerometer can be worn at any location around the circumference of the waist, thereby reducing user training. Feature selection is performed using Relief-F and sequential forward floating search (SFFS) from a range of previously published features, as well as new features introduced in this paper. Relevant and robust features that are insensitive to the positioning of accelerometer around the waist are selected. SFFS selected almost half the number of features in comparison to Relief-F and provided higher accuracy than Relief-F. Activity classification is performed using Naïve Bayes and k-nearest neighbor (k-NN) and the results are compared. Activity recognition results on seven subjects with leave-one-person-out error estimates show an overall accuracy of about 98% for both the classifiers. Accuracy for each of the individual activity is also more than 95%.Activity recognition is required in various applications such as medical monitoring and rehabilitation. Previously developed activity recognition systems utilizing triaxial accelerometers have provided mixed results, with subject-to-subject variability. This paper presents an accurate activity recognition system utilizing a body worn wireless accelerometer, to be used in the real-life application of patient monitoring. The algorithm utilizes data from a single, waist-mounted triaxial accelerometer to classify gait events into six daily living activities and transitional events. The accelerometer can be worn at any location around the circumference of the waist, thereby reducing user training. Feature selection is performed using Relief-F and sequential forward floating search (SFFS) from a range of previously published features, as well as new features introduced in this paper. Relevant and robust features that are insensitive to the positioning of accelerometer around the waist are selected. SFFS selected almost half the number of features in comparison to Relief-F and provided higher accuracy than Relief-F. Activity classification is performed using Naïve Bayes and k-nearest neighbor (k-NN) and the results are compared. Activity recognition results on seven subjects with leave-one-person-out error estimates show an overall accuracy of about 98% for both the classifiers. Accuracy for each of the individual activity is also more than 95%. Activity recognition is required in various applications such as medical monitoring and rehabilitation. Previously developed activity recognition systems utilizing triaxial accelerometers have provided mixed results, with subject-to-subject variability. This paper presents an accurate activity recognition system utilizing a body worn wireless accelerometer, to be used in the real-life application of patient monitoring. The algorithm utilizes data from a single, waist-mounted triaxial accelerometer to classify gait events into six daily living activities and transitional events. The accelerometer can be worn at any location around the circumference of the waist, thereby reducing user training. Feature selection is performed using Relief-F and sequential forward floating search (SFFS) from a range of previously published features, as well as new features introduced in this paper. Relevant and robust features that are insensitive to the positioning of accelerometer around the waist are selected. SFFS selected almost half the number of features in comparison to Relief-F and provided higher accuracy than Relief-F. Activity classification is performed using Naive Bayes and k -nearest neighbor openbracket k -NN) and the results are compared. Activity recognition results on seven subjects with leave-one-person-out error estimates show an overall accuracy of about 98% for both the classifiers. Accuracy for each of the individual activity is also more than 95%. |
Author | Dallas, Tim Gupta, Piyush |
Author_xml | – sequence: 1 givenname: Piyush surname: Gupta fullname: Gupta, Piyush email: piyushgupta.2@gmail.com organization: Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX, USA – sequence: 2 givenname: Tim surname: Dallas fullname: Dallas, Tim email: tim.dallas@ttu.edu organization: Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24691526$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkU9vFCEYh4mpsdvqBzAmZpJeepktLwMMHGvTqklNE3cbjwRm3mlo5k8FxnS_fVl366EH9fRCeH6_AM8RORinEQl5D3QJQPXZ-tO3yyWjwJesojWV-hVZgBCqZKKCA7KgFFSpmeaH5CjG-7zliss35JBxqUEwuSA_rtCmOWCxwh6b5KexsGNbnOflL582xXdsprvR_z5YbWLCobiNfrwrbLHKo8diHbx99LbPmSZ3hGnAhOEted3ZPuK7_Twmt1eX64sv5fXN568X59dlwxWkUgsqROuY1E5S6RwwaKqmdeAE6rpRSnHsnFOoJNSV7DoLXVdLdF3bKWCsOianu96HMP2cMSYz-Jjv0dsRpzkakFJrSpni_4Ny0BqY_DcqWF1VjAqV0ZMX6P00hzG_OVNc6JpJJTL1cU_NbsDWPAQ_2LAxzyIyUO-AJkwxBuxM45PdfnsK1vcGqNkqN1vlZqvc7JXnJLxIPpf_LfNhl_GI-IeXtaISRPUEXNW0yQ |
CODEN | IEBEAX |
CitedBy_id | crossref_primary_10_1186_s13638_016_0534_3 crossref_primary_10_3390_s19061370 crossref_primary_10_1016_j_future_2017_04_036 crossref_primary_10_1007_s10044_016_0549_8 crossref_primary_10_3390_s19092039 crossref_primary_10_1109_JSEN_2022_3144157 crossref_primary_10_1155_2016_4073584 crossref_primary_10_1002_cpe_7468 crossref_primary_10_1109_ACCESS_2019_2937350 crossref_primary_10_1177_1550147719842729 crossref_primary_10_1109_TII_2018_2890141 crossref_primary_10_1016_j_cmpb_2022_107305 crossref_primary_10_1109_JSEN_2021_3139588 crossref_primary_10_1007_s11277_020_07903_0 crossref_primary_10_1016_j_gaitpost_2021_06_017 crossref_primary_10_1109_JBHI_2023_3332735 crossref_primary_10_3390_s151229858 crossref_primary_10_3390_s17040774 crossref_primary_10_1109_JSEN_2018_2885168 crossref_primary_10_1177_1550147719849357 crossref_primary_10_1007_s11042_022_12261_z crossref_primary_10_1109_TBME_2015_2401512 crossref_primary_10_1002_widm_1254 crossref_primary_10_1186_s12938_016_0142_9 crossref_primary_10_3233_IDA_163329 crossref_primary_10_7717_peerj_5764 crossref_primary_10_1007_s11517_024_03180_2 crossref_primary_10_1109_JSEN_2015_2444441 crossref_primary_10_1007_s10586_017_1648_z crossref_primary_10_1007_s10439_015_1407_3 crossref_primary_10_1016_j_inffus_2019_06_013 crossref_primary_10_3390_s20185114 crossref_primary_10_3390_s20185356 crossref_primary_10_1109_TIFS_2015_2415753 crossref_primary_10_32604_cmc_2024_055511 crossref_primary_10_1109_TBME_2024_3418688 crossref_primary_10_1007_s11042_023_16989_0 crossref_primary_10_1016_j_jnca_2022_103417 crossref_primary_10_1142_S0219519419500854 crossref_primary_10_3390_mi14030546 crossref_primary_10_1007_s10209_020_00760_5 crossref_primary_10_3390_s20123444 crossref_primary_10_1016_j_bspc_2024_106858 crossref_primary_10_3951_biomechanisms_25_81 crossref_primary_10_1371_journal_pone_0258067 crossref_primary_10_1016_j_ijhcs_2022_102776 crossref_primary_10_1007_s11063_020_10400_x crossref_primary_10_1109_TSMC_2016_2617465 crossref_primary_10_1080_1091367X_2020_1815749 crossref_primary_10_1109_ACCESS_2018_2871732 crossref_primary_10_1002_aisy_202200204 crossref_primary_10_1007_s11277_018_5715_4 crossref_primary_10_1016_j_bspc_2017_03_004 crossref_primary_10_1109_JSEN_2015_2487358 crossref_primary_10_1016_j_engappai_2023_107681 crossref_primary_10_3390_s16122151 crossref_primary_10_1007_s00500_018_3364_x crossref_primary_10_1109_ACCESS_2021_3078513 crossref_primary_10_1109_JSEN_2016_2545708 crossref_primary_10_3390_s18041215 crossref_primary_10_1109_JSEN_2019_2949057 crossref_primary_10_1109_TMC_2018_2793913 crossref_primary_10_1109_TIM_2023_3304703 crossref_primary_10_1016_j_pmcj_2016_09_009 crossref_primary_10_1145_3377882 crossref_primary_10_1134_S1054661820040033 crossref_primary_10_3390_s22197446 crossref_primary_10_1109_TNSRE_2015_2477720 crossref_primary_10_3390_s20051457 crossref_primary_10_1016_j_neucom_2019_06_051 crossref_primary_10_1109_JSEN_2016_2519679 crossref_primary_10_1007_s12652_018_0769_4 crossref_primary_10_1111_exsy_13680 crossref_primary_10_1016_j_pmcj_2019_03_005 crossref_primary_10_1109_JBHI_2019_2943391 crossref_primary_10_3390_mi13081205 crossref_primary_10_5057_ijae_IJAE_D_17_00020 crossref_primary_10_1155_2014_897282 crossref_primary_10_1142_S021819402040015X crossref_primary_10_3390_s16122048 crossref_primary_10_1061__ASCE_CO_1943_7862_0001579 crossref_primary_10_3390_s22176632 crossref_primary_10_1016_j_cmpb_2020_105445 crossref_primary_10_1007_s11760_024_03374_z crossref_primary_10_1016_j_inffus_2017_01_004 crossref_primary_10_1109_ACCESS_2020_2982225 crossref_primary_10_1007_s44196_021_00052_7 crossref_primary_10_1016_j_procs_2020_09_301 crossref_primary_10_1109_JSEN_2020_2989865 crossref_primary_10_1016_j_eswa_2019_04_057 crossref_primary_10_1016_j_jbi_2016_07_005 crossref_primary_10_3390_s23198234 crossref_primary_10_1109_JSEN_2017_2776100 crossref_primary_10_1016_j_neucom_2022_09_099 crossref_primary_10_3390_s18103409 crossref_primary_10_3390_s22114028 crossref_primary_10_1007_s11036_019_01370_z crossref_primary_10_3390_s19225001 crossref_primary_10_1109_TBME_2016_2604856 crossref_primary_10_1007_s42417_023_01014_3 crossref_primary_10_1016_j_smhl_2017_10_001 crossref_primary_10_1109_JSEN_2015_2449276 crossref_primary_10_3390_info10080245 crossref_primary_10_1109_JBHI_2019_2893945 crossref_primary_10_1142_S021951942250066X crossref_primary_10_3390_app8091695 crossref_primary_10_1007_s00542_019_04738_z crossref_primary_10_1007_s11042_020_08962_y crossref_primary_10_1109_TCYB_2021_3085489 crossref_primary_10_1109_TBME_2015_2471094 crossref_primary_10_1109_ACCESS_2019_2891512 crossref_primary_10_1016_j_procir_2019_03_288 crossref_primary_10_1155_2015_140820 crossref_primary_10_3390_su14010220 crossref_primary_10_3390_app12104988 crossref_primary_10_1109_JIOT_2023_3288050 crossref_primary_10_3390_s21196434 crossref_primary_10_1109_ACCESS_2022_3183228 crossref_primary_10_3390_s21248377 crossref_primary_10_1109_TCAD_2018_2801227 crossref_primary_10_3390_s20174791 crossref_primary_10_3390_s22239176 crossref_primary_10_1109_JIOT_2020_2985082 crossref_primary_10_1109_ACCESS_2018_2866872 crossref_primary_10_3390_s17010066 crossref_primary_10_1109_TNSRE_2020_3044260 crossref_primary_10_1016_j_measurement_2023_113231 crossref_primary_10_1109_JSEN_2016_2514606 crossref_primary_10_3390_s19071716 crossref_primary_10_1016_j_medengphy_2020_11_005 crossref_primary_10_3390_s18113629 crossref_primary_10_1109_MIC_2015_72 crossref_primary_10_1016_j_compbiomed_2021_104633 crossref_primary_10_1109_TMC_2018_2841905 crossref_primary_10_1177_1550147716683687 crossref_primary_10_48084_etasr_8211 crossref_primary_10_1007_s12652_022_03862_5 crossref_primary_10_3390_s18010268 crossref_primary_10_3390_s150203952 crossref_primary_10_1109_MIS_2015_57 crossref_primary_10_1109_TBME_2019_2899927 crossref_primary_10_1007_s10489_020_02005_7 crossref_primary_10_1109_TIM_2022_3201947 crossref_primary_10_3390_s18113981 crossref_primary_10_1088_0967_3334_37_10_1813 crossref_primary_10_1007_s00034_019_01116_y crossref_primary_10_1109_ACCESS_2019_2905575 crossref_primary_10_3390_informatics5020027 crossref_primary_10_3390_s19235206 crossref_primary_10_3390_s22197482 crossref_primary_10_1080_17455030_2021_1971325 crossref_primary_10_1007_s11042_020_10046_w crossref_primary_10_3390_s150511312 crossref_primary_10_1109_ACCESS_2021_3068877 crossref_primary_10_1007_s11042_019_08463_7 crossref_primary_10_1007_s11042_021_11410_0 crossref_primary_10_1155_2018_3419213 crossref_primary_10_1109_THMS_2022_3185533 crossref_primary_10_1123_jpah_2019_0088 crossref_primary_10_1016_j_ins_2023_119394 crossref_primary_10_1145_3214277 |
Cites_doi | 10.1109/34.574797 10.1109/ICSMC.2009.5346042 10.1055/s-0038-1634267 10.1007/s10439-005-9068-2 10.1109/JBHI.2013.2253613 10.1155/2012/864516 10.1177/1352458510373111 10.1109/IEMBS.2011.6090896 10.1109/TBCAS.2011.2160540 10.1109/BSN.2006.6 10.1007/s11517-010-0701-3 10.1016/B978-1-55860-247-2.50037-1 10.1007/s00391-003-0143-8 10.1109/TPAMI.2005.159 10.1117/12.841963 10.1109/TITB.2010.2051955 10.1016/S1350-4533(00)00041-2 10.1063/1.166141 10.1587/transfun.E93.A.1379 10.1109/ICSMC.2001.973004 10.1088/0967-3334/25/2/R01 10.1109/AUTOID.2007.380623 10.1109/ISWC.2008.4911590 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jun 2014 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jun 2014 |
DBID | 97E RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
DOI | 10.1109/TBME.2014.2307069 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Ceramic Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
DatabaseTitleList | Materials Research Database MEDLINE MEDLINE - Academic Technology Research Database Engineering Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering |
EISSN | 1558-2531 |
EndPage | 1786 |
ExternalDocumentID | 3377633841 24691526 10_1109_TBME_2014_2307069 6780615 |
Genre | orig-research Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: AT&T Labs-Research |
GroupedDBID | --- -~X .55 .DC .GJ 0R~ 29I 4.4 53G 5GY 5RE 5VS 6IF 6IK 6IL 6IN 85S 97E AAJGR AARMG AASAJ AAWTH AAYJJ ABAZT ABJNI ABQJQ ABVLG ACGFO ACGFS ACIWK ACKIV ACNCT ACPRK ADZIZ AENEX AETIX AFFNX AFRAH AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CHZPO CS3 DU5 EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IEGSK IFIPE IFJZH IPLJI JAVBF LAI MS~ O9- OCL P2P RIA RIE RIL RNS TAE TN5 VH1 VJK X7M ZGI ZXP AAYXX CITATION RIG CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
ID | FETCH-LOGICAL-c481t-95055db269b606bb121c3cdb1b5e97c8884efbb8e861736ffa1ff76ebfdf81223 |
IEDL.DBID | RIE |
ISSN | 0018-9294 1558-2531 |
IngestDate | Fri Jul 11 15:17:05 EDT 2025 Fri Jul 11 06:30:01 EDT 2025 Fri Jul 11 04:06:56 EDT 2025 Mon Jun 30 08:31:00 EDT 2025 Thu Apr 03 06:59:14 EDT 2025 Thu Apr 24 23:03:24 EDT 2025 Tue Jul 01 02:15:50 EDT 2025 Wed Aug 27 02:52:54 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c481t-95055db269b606bb121c3cdb1b5e97c8884efbb8e861736ffa1ff76ebfdf81223 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 24691526 |
PQID | 1545972685 |
PQPubID | 85474 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_1664199126 proquest_journals_1545972685 crossref_citationtrail_10_1109_TBME_2014_2307069 pubmed_primary_24691526 crossref_primary_10_1109_TBME_2014_2307069 proquest_miscellaneous_1527332058 ieee_primary_6780615 proquest_miscellaneous_1669900284 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-06-01 |
PublicationDateYYYYMMDD | 2014-06-01 |
PublicationDate_xml | – month: 06 year: 2014 text: 2014-06-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | IEEE transactions on biomedical engineering |
PublicationTitleAbbrev | TBME |
PublicationTitleAlternate | IEEE Trans Biomed Eng |
PublicationYear | 2014 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref34 ref12 ref15 ref14 ref31 ref30 ref11 ref32 ref10 long (ref19) 2009 he (ref7) 2008 ref2 ref1 ref18 navot (ref29) 2004 kwapisz (ref16) 2010 ravi (ref21) 2005 (ref24) 0 ref25 ref20 kononenko (ref33) 1994 ref28 ref27 ref8 ref9 ref3 ref6 ref5 wu (ref23) 2007 sekine (ref17) 2000; 39 bao (ref4) 2004 khan (ref26) 2011 kang (ref22) 2008 |
References_xml | – ident: ref34 doi: 10.1109/34.574797 – ident: ref8 doi: 10.1109/ICSMC.2009.5346042 – volume: 39 start-page: 183 year: 2000 ident: ref17 article-title: Analysis of acceleration signals using wavelet transform publication-title: Methods Info Med doi: 10.1055/s-0038-1634267 – ident: ref1 doi: 10.1007/s10439-005-9068-2 – ident: ref11 doi: 10.1109/JBHI.2013.2253613 – start-page: 1 year: 2004 ident: ref4 publication-title: Proc PERVASIVE (LNCS 3001) – ident: ref3 doi: 10.1155/2012/864516 – ident: ref31 doi: 10.1177/1352458510373111 – start-page: 1541 year: 2005 ident: ref21 article-title: Activity recognition from accelerometer data publication-title: Proc Nat Conf Artif Intell – year: 2011 ident: ref26 article-title: A feature extraction method for real time human activity recognition on cell phones publication-title: presented at isQoLT – ident: ref12 doi: 10.1109/IEMBS.2011.6090896 – start-page: 1 year: 2008 ident: ref7 article-title: Weightlessness feature?A novel feature for single tri-axial accelerometer based activity recognition publication-title: Proc 19th Int Conf Pattern Recog – start-page: 171 year: 1994 ident: ref33 article-title: Estimating attributes: Analysis and extensions of RELIEF publication-title: Proc Eur Conf Mach Learning – ident: ref9 doi: 10.1109/TBCAS.2011.2160540 – ident: ref27 doi: 10.1109/BSN.2006.6 – ident: ref6 doi: 10.1007/s11517-010-0701-3 – ident: ref28 doi: 10.1016/B978-1-55860-247-2.50037-1 – ident: ref2 doi: 10.1007/s00391-003-0143-8 – ident: ref30 doi: 10.1109/TPAMI.2005.159 – start-page: 10 year: 2010 ident: ref16 article-title: Activity recognition using cell phone accelerometers publication-title: Proc 4th Int Workshop Knowl Discovery From Sens Data Human Factors – ident: ref10 doi: 10.1117/12.841963 – ident: ref5 doi: 10.1109/TITB.2010.2051955 – start-page: 6107 year: 2009 ident: ref19 article-title: Single-accelerometer-based daily physical activity classification publication-title: Proc IEEE Int Conf Eng Med Biol Soc – start-page: 43 year: 2004 ident: ref29 article-title: Margin based feature selection?Theory and algorithms publication-title: Proc Int Conf Mach Learning – start-page: 1 year: 2007 ident: ref23 article-title: Real-time physical activity classification and tracking using wearable sensors publication-title: Proc 6th Int Conf Inform Commun Signal Process – ident: ref13 doi: 10.1016/S1350-4533(00)00041-2 – year: 0 ident: ref24 – ident: ref32 doi: 10.1063/1.166141 – ident: ref25 doi: 10.1587/transfun.E93.A.1379 – ident: ref15 doi: 10.1109/ICSMC.2001.973004 – ident: ref20 doi: 10.1088/0967-3334/25/2/R01 – ident: ref14 doi: 10.1109/AUTOID.2007.380623 – ident: ref18 doi: 10.1109/ISWC.2008.4911590 – start-page: 262 year: 2008 ident: ref22 article-title: Real-time elderly activity monitoring system based on a tri-axial accelerometer publication-title: Proc Int Convention Rehabil Eng Assistive Technol |
SSID | ssj0014846 |
Score | 2.5634599 |
Snippet | Activity recognition is required in various applications such as medical monitoring and rehabilitation. Previously developed activity recognition systems... |
SourceID | proquest pubmed crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1780 |
SubjectTerms | Acceleration Accelerometer Accelerometers Accelerometry - instrumentation Accuracy Activities of Daily Living - classification activity recognition Adult Algorithms Bayes Theorem Classification detrended fluctuation analysis (DFA) error estimates feature selection Female Fluctuations Humans k -nearest neighbor ( k -NN) classifier leave-one-person-out (LOO) error Legged locomotion Male Monitoring Monitoring, Ambulatory - instrumentation Monitoring, Ambulatory - methods Motor Activity - physiology Naïve Bayes classifier Neural Networks (Computer) Patients Position (location) Recognition Relief-F algorithm Searching sequential forward floating search (SFFS) wrapper algorithm Time series analysis Young Adult |
Title | Feature Selection and Activity Recognition System Using a Single Triaxial Accelerometer |
URI | https://ieeexplore.ieee.org/document/6780615 https://www.ncbi.nlm.nih.gov/pubmed/24691526 https://www.proquest.com/docview/1545972685 https://www.proquest.com/docview/1527332058 https://www.proquest.com/docview/1664199126 https://www.proquest.com/docview/1669900284 |
Volume | 61 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Bb9UwDLa2HRAcxthgPBgoSJwQfUvTJG2OY9o0IT0O7E3sViVpKiGmvmm8ShO_HjtpK0DwxKmV4rapvrj-XDs2wFvOUZsLxTPftEUmUYEyG6zNSvSddRBoIBxtFF580hdX8uO1ut6C99NemBBCTD4LczqNsfxm5Xv6VXaMH1aywNuwjY5b2qs1RQxklTbl8BwVWBg5RDBzbo6XHxZnlMQlY9Yz11QpVKBbiKZL_2aOYn-Vf1PNaHLOH8NinGzKNPk279du7n_8Ucfxf99mD3YH7slO0mJ5Aluh24dHv1Qk3IcHiyHWfgBfiB32d4FdxlY5iB-zXcNOfOo3wT6PqUc4kOqes5h_wCy7xMNNYEtc3Pdf6Yne4z2oMAKi-BSuzs-WpxfZ0IYh87LK15lBkqQaJ7Rx6O04l4vcF75xuVPBlB5daBla56pQIRsqdNvavG1LHVzbtEgfRPEMdrpVF54DU1KEXIZCGWkl-p7W-sYIxxtVOVlqNQM-olH7oUY5tcq4qaOvwk1NWNaEZT1gOYN30yW3qUDHJuEDwmESHCCYwdEIeT2o8PeauKUpha5w-M00jMpHERXbhVVPMsj-CsFVtUFGa0n5ZUJvlEFWgFRPzuAwLblpjuNKffH3ub-Eh_SGKXvtCHbWd314hTxp7V5HBfkJ4BsLsA |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VIvE48GgLLBQwEidEtrZjO_GxoFYLND3Qregtsh1HQlRZVDYS4tcztpMIEKw4JZIniaPPk_kmM54BeEkpanMuaeaaNs8EKlBmvDFZgb6z8hwNhA0bhatTtTgX7y_kxRa8nvbCeO9j8pmfh9MYy29Wrg-_yg7wwxos8DW4jnZfsrRba4oZiDJty6EMVZhrMcQwGdUHyzfVUUjjEjHvmapQK5SjY4jGS_1mkGKHlX-TzWh0ju9CNU435Zp8mfdrO3c__qjk-L_vcw_uDOyTHKblch-2fLcDt3-pSbgDN6oh2r4LnwI_7K88OYvNchBBYrqGHLrUcYJ8HJOPcCBVPicxA4EYcoaHS0-WuLy_fw5PdA7vEUojII57cH58tHy7yIZGDJkTJVtnGmmSbCxX2qK_Yy3jzOWuscxKrwuHTrTwrbWlL5EP5aptDWvbQnnbNi0SCJ4_gO1u1flHQKTgngmfSy2MQO_TGNdobmkjSysKJWdARzRqN1QpD80yLuvorVBdByzrgGU9YDmDV9MlX1OJjk3CuwGHSXCAYAb7I-T1oMTf6sAudcFVicMvpmFUvxBTMZ1f9UEG-V_OqSw3yCglQoYZVxtlkBcg2RMzeJiW3DTHcaU-_vvcn8PNxbI6qU_enX54ArfC26Zctn3YXl_1_imyprV9FpXlJ_hoDvk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Feature+Selection+and+Activity+Recognition+System+Using+a+Single+Triaxial+Accelerometer&rft.jtitle=IEEE+transactions+on+biomedical+engineering&rft.au=Gupta%2C+Piyush&rft.au=Dallas%2C+Tim&rft.date=2014-06-01&rft.eissn=1558-2531&rft.volume=61&rft.issue=6&rft.spage=1780&rft.epage=1786&rft_id=info:doi/10.1109%2FTBME.2014.2307069&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9294&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9294&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9294&client=summon |