Feature Selection and Activity Recognition System Using a Single Triaxial Accelerometer

Activity recognition is required in various applications such as medical monitoring and rehabilitation. Previously developed activity recognition systems utilizing triaxial accelerometers have provided mixed results, with subject-to-subject variability. This paper presents an accurate activity recog...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on biomedical engineering Vol. 61; no. 6; pp. 1780 - 1786
Main Authors Gupta, Piyush, Dallas, Tim
Format Journal Article
LanguageEnglish
Published United States IEEE 01.06.2014
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Activity recognition is required in various applications such as medical monitoring and rehabilitation. Previously developed activity recognition systems utilizing triaxial accelerometers have provided mixed results, with subject-to-subject variability. This paper presents an accurate activity recognition system utilizing a body worn wireless accelerometer, to be used in the real-life application of patient monitoring. The algorithm utilizes data from a single, waist-mounted triaxial accelerometer to classify gait events into six daily living activities and transitional events. The accelerometer can be worn at any location around the circumference of the waist, thereby reducing user training. Feature selection is performed using Relief-F and sequential forward floating search (SFFS) from a range of previously published features, as well as new features introduced in this paper. Relevant and robust features that are insensitive to the positioning of accelerometer around the waist are selected. SFFS selected almost half the number of features in comparison to Relief-F and provided higher accuracy than Relief-F. Activity classification is performed using Naïve Bayes and k-nearest neighbor (k-NN) and the results are compared. Activity recognition results on seven subjects with leave-one-person-out error estimates show an overall accuracy of about 98% for both the classifiers. Accuracy for each of the individual activity is also more than 95%.
AbstractList Activity recognition is required in various applications such as medical monitoring and rehabilitation. Previously developed activity recognition systems utilizing triaxial accelerometers have provided mixed results, with subject-to-subject variability. This paper presents an accurate activity recognition system utilizing a body worn wireless accelerometer, to be used in the real-life application of patient monitoring. The algorithm utilizes data from a single, waist-mounted triaxial accelerometer to classify gait events into six daily living activities and transitional events. The accelerometer can be worn at any location around the circumference of the waist, thereby reducing user training. Feature selection is performed using Relief-F and sequential forward floating search (SFFS) from a range of previously published features, as well as new features introduced in this paper. Relevant and robust features that are insensitive to the positioning of accelerometer around the waist are selected. SFFS selected almost half the number of features in comparison to Relief-F and provided higher accuracy than Relief-F. Activity classification is performed using Naïve Bayes and [Formula Omitted]-nearest neighbor [Formula Omitted]-NN) and the results are compared. Activity recognition results on seven subjects with leave-one-person-out error estimates show an overall accuracy of about 98% for both the classifiers. Accuracy for each of the individual activity is also more than 95%.
Activity recognition is required in various applications such as medical monitoring and rehabilitation. Previously developed activity recognition systems utilizing triaxial accelerometers have provided mixed results, with subject-to-subject variability. This paper presents an accurate activity recognition system utilizing a body worn wireless accelerometer, to be used in the real-life application of patient monitoring. The algorithm utilizes data from a single, waist-mounted triaxial accelerometer to classify gait events into six daily living activities and transitional events. The accelerometer can be worn at any location around the circumference of the waist, thereby reducing user training. Feature selection is performed using Relief-F and sequential forward floating search (SFFS) from a range of previously published features, as well as new features introduced in this paper. Relevant and robust features that are insensitive to the positioning of accelerometer around the waist are selected. SFFS selected almost half the number of features in comparison to Relief-F and provided higher accuracy than Relief-F. Activity classification is performed using Naïve Bayes and k-nearest neighbor (k-NN) and the results are compared. Activity recognition results on seven subjects with leave-one-person-out error estimates show an overall accuracy of about 98% for both the classifiers. Accuracy for each of the individual activity is also more than 95%.
Activity recognition is required in various applications such as medical monitoring and rehabilitation. Previously developed activity recognition systems utilizing triaxial accelerometers have provided mixed results, with subject-to-subject variability. This paper presents an accurate activity recognition system utilizing a body worn wireless accelerometer, to be used in the real-life application of patient monitoring. The algorithm utilizes data from a single, waist-mounted triaxial accelerometer to classify gait events into six daily living activities and transitional events. The accelerometer can be worn at any location around the circumference of the waist, thereby reducing user training. Feature selection is performed using Relief-F and sequential forward floating search (SFFS) from a range of previously published features, as well as new features introduced in this paper. Relevant and robust features that are insensitive to the positioning of accelerometer around the waist are selected. SFFS selected almost half the number of features in comparison to Relief-F and provided higher accuracy than Relief-F. Activity classification is performed using Naïve Bayes and k-nearest neighbor (k-NN) and the results are compared. Activity recognition results on seven subjects with leave-one-person-out error estimates show an overall accuracy of about 98% for both the classifiers. Accuracy for each of the individual activity is also more than 95%.
Activity recognition is required in various applications such as medical monitoring and rehabilitation. Previously developed activity recognition systems utilizing triaxial accelerometers have provided mixed results, with subject-to-subject variability. This paper presents an accurate activity recognition system utilizing a body worn wireless accelerometer, to be used in the real-life application of patient monitoring. The algorithm utilizes data from a single, waist-mounted triaxial accelerometer to classify gait events into six daily living activities and transitional events. The accelerometer can be worn at any location around the circumference of the waist, thereby reducing user training. Feature selection is performed using Relief-F and sequential forward floating search (SFFS) from a range of previously published features, as well as new features introduced in this paper. Relevant and robust features that are insensitive to the positioning of accelerometer around the waist are selected. SFFS selected almost half the number of features in comparison to Relief-F and provided higher accuracy than Relief-F. Activity classification is performed using Naïve Bayes and k-nearest neighbor (k-NN) and the results are compared. Activity recognition results on seven subjects with leave-one-person-out error estimates show an overall accuracy of about 98% for both the classifiers. Accuracy for each of the individual activity is also more than 95%.Activity recognition is required in various applications such as medical monitoring and rehabilitation. Previously developed activity recognition systems utilizing triaxial accelerometers have provided mixed results, with subject-to-subject variability. This paper presents an accurate activity recognition system utilizing a body worn wireless accelerometer, to be used in the real-life application of patient monitoring. The algorithm utilizes data from a single, waist-mounted triaxial accelerometer to classify gait events into six daily living activities and transitional events. The accelerometer can be worn at any location around the circumference of the waist, thereby reducing user training. Feature selection is performed using Relief-F and sequential forward floating search (SFFS) from a range of previously published features, as well as new features introduced in this paper. Relevant and robust features that are insensitive to the positioning of accelerometer around the waist are selected. SFFS selected almost half the number of features in comparison to Relief-F and provided higher accuracy than Relief-F. Activity classification is performed using Naïve Bayes and k-nearest neighbor (k-NN) and the results are compared. Activity recognition results on seven subjects with leave-one-person-out error estimates show an overall accuracy of about 98% for both the classifiers. Accuracy for each of the individual activity is also more than 95%.
Activity recognition is required in various applications such as medical monitoring and rehabilitation. Previously developed activity recognition systems utilizing triaxial accelerometers have provided mixed results, with subject-to-subject variability. This paper presents an accurate activity recognition system utilizing a body worn wireless accelerometer, to be used in the real-life application of patient monitoring. The algorithm utilizes data from a single, waist-mounted triaxial accelerometer to classify gait events into six daily living activities and transitional events. The accelerometer can be worn at any location around the circumference of the waist, thereby reducing user training. Feature selection is performed using Relief-F and sequential forward floating search (SFFS) from a range of previously published features, as well as new features introduced in this paper. Relevant and robust features that are insensitive to the positioning of accelerometer around the waist are selected. SFFS selected almost half the number of features in comparison to Relief-F and provided higher accuracy than Relief-F. Activity classification is performed using Naive Bayes and k -nearest neighbor openbracket k -NN) and the results are compared. Activity recognition results on seven subjects with leave-one-person-out error estimates show an overall accuracy of about 98% for both the classifiers. Accuracy for each of the individual activity is also more than 95%.
Author Dallas, Tim
Gupta, Piyush
Author_xml – sequence: 1
  givenname: Piyush
  surname: Gupta
  fullname: Gupta, Piyush
  email: piyushgupta.2@gmail.com
  organization: Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX, USA
– sequence: 2
  givenname: Tim
  surname: Dallas
  fullname: Dallas, Tim
  email: tim.dallas@ttu.edu
  organization: Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24691526$$D View this record in MEDLINE/PubMed
BookMark eNqNkU9vFCEYh4mpsdvqBzAmZpJeepktLwMMHGvTqklNE3cbjwRm3mlo5k8FxnS_fVl366EH9fRCeH6_AM8RORinEQl5D3QJQPXZ-tO3yyWjwJesojWV-hVZgBCqZKKCA7KgFFSpmeaH5CjG-7zliss35JBxqUEwuSA_rtCmOWCxwh6b5KexsGNbnOflL582xXdsprvR_z5YbWLCobiNfrwrbLHKo8diHbx99LbPmSZ3hGnAhOEted3ZPuK7_Twmt1eX64sv5fXN568X59dlwxWkUgsqROuY1E5S6RwwaKqmdeAE6rpRSnHsnFOoJNSV7DoLXVdLdF3bKWCsOianu96HMP2cMSYz-Jjv0dsRpzkakFJrSpni_4Ny0BqY_DcqWF1VjAqV0ZMX6P00hzG_OVNc6JpJJTL1cU_NbsDWPAQ_2LAxzyIyUO-AJkwxBuxM45PdfnsK1vcGqNkqN1vlZqvc7JXnJLxIPpf_LfNhl_GI-IeXtaISRPUEXNW0yQ
CODEN IEBEAX
CitedBy_id crossref_primary_10_1186_s13638_016_0534_3
crossref_primary_10_3390_s19061370
crossref_primary_10_1016_j_future_2017_04_036
crossref_primary_10_1007_s10044_016_0549_8
crossref_primary_10_3390_s19092039
crossref_primary_10_1109_JSEN_2022_3144157
crossref_primary_10_1155_2016_4073584
crossref_primary_10_1002_cpe_7468
crossref_primary_10_1109_ACCESS_2019_2937350
crossref_primary_10_1177_1550147719842729
crossref_primary_10_1109_TII_2018_2890141
crossref_primary_10_1016_j_cmpb_2022_107305
crossref_primary_10_1109_JSEN_2021_3139588
crossref_primary_10_1007_s11277_020_07903_0
crossref_primary_10_1016_j_gaitpost_2021_06_017
crossref_primary_10_1109_JBHI_2023_3332735
crossref_primary_10_3390_s151229858
crossref_primary_10_3390_s17040774
crossref_primary_10_1109_JSEN_2018_2885168
crossref_primary_10_1177_1550147719849357
crossref_primary_10_1007_s11042_022_12261_z
crossref_primary_10_1109_TBME_2015_2401512
crossref_primary_10_1002_widm_1254
crossref_primary_10_1186_s12938_016_0142_9
crossref_primary_10_3233_IDA_163329
crossref_primary_10_7717_peerj_5764
crossref_primary_10_1007_s11517_024_03180_2
crossref_primary_10_1109_JSEN_2015_2444441
crossref_primary_10_1007_s10586_017_1648_z
crossref_primary_10_1007_s10439_015_1407_3
crossref_primary_10_1016_j_inffus_2019_06_013
crossref_primary_10_3390_s20185114
crossref_primary_10_3390_s20185356
crossref_primary_10_1109_TIFS_2015_2415753
crossref_primary_10_32604_cmc_2024_055511
crossref_primary_10_1109_TBME_2024_3418688
crossref_primary_10_1007_s11042_023_16989_0
crossref_primary_10_1016_j_jnca_2022_103417
crossref_primary_10_1142_S0219519419500854
crossref_primary_10_3390_mi14030546
crossref_primary_10_1007_s10209_020_00760_5
crossref_primary_10_3390_s20123444
crossref_primary_10_1016_j_bspc_2024_106858
crossref_primary_10_3951_biomechanisms_25_81
crossref_primary_10_1371_journal_pone_0258067
crossref_primary_10_1016_j_ijhcs_2022_102776
crossref_primary_10_1007_s11063_020_10400_x
crossref_primary_10_1109_TSMC_2016_2617465
crossref_primary_10_1080_1091367X_2020_1815749
crossref_primary_10_1109_ACCESS_2018_2871732
crossref_primary_10_1002_aisy_202200204
crossref_primary_10_1007_s11277_018_5715_4
crossref_primary_10_1016_j_bspc_2017_03_004
crossref_primary_10_1109_JSEN_2015_2487358
crossref_primary_10_1016_j_engappai_2023_107681
crossref_primary_10_3390_s16122151
crossref_primary_10_1007_s00500_018_3364_x
crossref_primary_10_1109_ACCESS_2021_3078513
crossref_primary_10_1109_JSEN_2016_2545708
crossref_primary_10_3390_s18041215
crossref_primary_10_1109_JSEN_2019_2949057
crossref_primary_10_1109_TMC_2018_2793913
crossref_primary_10_1109_TIM_2023_3304703
crossref_primary_10_1016_j_pmcj_2016_09_009
crossref_primary_10_1145_3377882
crossref_primary_10_1134_S1054661820040033
crossref_primary_10_3390_s22197446
crossref_primary_10_1109_TNSRE_2015_2477720
crossref_primary_10_3390_s20051457
crossref_primary_10_1016_j_neucom_2019_06_051
crossref_primary_10_1109_JSEN_2016_2519679
crossref_primary_10_1007_s12652_018_0769_4
crossref_primary_10_1111_exsy_13680
crossref_primary_10_1016_j_pmcj_2019_03_005
crossref_primary_10_1109_JBHI_2019_2943391
crossref_primary_10_3390_mi13081205
crossref_primary_10_5057_ijae_IJAE_D_17_00020
crossref_primary_10_1155_2014_897282
crossref_primary_10_1142_S021819402040015X
crossref_primary_10_3390_s16122048
crossref_primary_10_1061__ASCE_CO_1943_7862_0001579
crossref_primary_10_3390_s22176632
crossref_primary_10_1016_j_cmpb_2020_105445
crossref_primary_10_1007_s11760_024_03374_z
crossref_primary_10_1016_j_inffus_2017_01_004
crossref_primary_10_1109_ACCESS_2020_2982225
crossref_primary_10_1007_s44196_021_00052_7
crossref_primary_10_1016_j_procs_2020_09_301
crossref_primary_10_1109_JSEN_2020_2989865
crossref_primary_10_1016_j_eswa_2019_04_057
crossref_primary_10_1016_j_jbi_2016_07_005
crossref_primary_10_3390_s23198234
crossref_primary_10_1109_JSEN_2017_2776100
crossref_primary_10_1016_j_neucom_2022_09_099
crossref_primary_10_3390_s18103409
crossref_primary_10_3390_s22114028
crossref_primary_10_1007_s11036_019_01370_z
crossref_primary_10_3390_s19225001
crossref_primary_10_1109_TBME_2016_2604856
crossref_primary_10_1007_s42417_023_01014_3
crossref_primary_10_1016_j_smhl_2017_10_001
crossref_primary_10_1109_JSEN_2015_2449276
crossref_primary_10_3390_info10080245
crossref_primary_10_1109_JBHI_2019_2893945
crossref_primary_10_1142_S021951942250066X
crossref_primary_10_3390_app8091695
crossref_primary_10_1007_s00542_019_04738_z
crossref_primary_10_1007_s11042_020_08962_y
crossref_primary_10_1109_TCYB_2021_3085489
crossref_primary_10_1109_TBME_2015_2471094
crossref_primary_10_1109_ACCESS_2019_2891512
crossref_primary_10_1016_j_procir_2019_03_288
crossref_primary_10_1155_2015_140820
crossref_primary_10_3390_su14010220
crossref_primary_10_3390_app12104988
crossref_primary_10_1109_JIOT_2023_3288050
crossref_primary_10_3390_s21196434
crossref_primary_10_1109_ACCESS_2022_3183228
crossref_primary_10_3390_s21248377
crossref_primary_10_1109_TCAD_2018_2801227
crossref_primary_10_3390_s20174791
crossref_primary_10_3390_s22239176
crossref_primary_10_1109_JIOT_2020_2985082
crossref_primary_10_1109_ACCESS_2018_2866872
crossref_primary_10_3390_s17010066
crossref_primary_10_1109_TNSRE_2020_3044260
crossref_primary_10_1016_j_measurement_2023_113231
crossref_primary_10_1109_JSEN_2016_2514606
crossref_primary_10_3390_s19071716
crossref_primary_10_1016_j_medengphy_2020_11_005
crossref_primary_10_3390_s18113629
crossref_primary_10_1109_MIC_2015_72
crossref_primary_10_1016_j_compbiomed_2021_104633
crossref_primary_10_1109_TMC_2018_2841905
crossref_primary_10_1177_1550147716683687
crossref_primary_10_48084_etasr_8211
crossref_primary_10_1007_s12652_022_03862_5
crossref_primary_10_3390_s18010268
crossref_primary_10_3390_s150203952
crossref_primary_10_1109_MIS_2015_57
crossref_primary_10_1109_TBME_2019_2899927
crossref_primary_10_1007_s10489_020_02005_7
crossref_primary_10_1109_TIM_2022_3201947
crossref_primary_10_3390_s18113981
crossref_primary_10_1088_0967_3334_37_10_1813
crossref_primary_10_1007_s00034_019_01116_y
crossref_primary_10_1109_ACCESS_2019_2905575
crossref_primary_10_3390_informatics5020027
crossref_primary_10_3390_s19235206
crossref_primary_10_3390_s22197482
crossref_primary_10_1080_17455030_2021_1971325
crossref_primary_10_1007_s11042_020_10046_w
crossref_primary_10_3390_s150511312
crossref_primary_10_1109_ACCESS_2021_3068877
crossref_primary_10_1007_s11042_019_08463_7
crossref_primary_10_1007_s11042_021_11410_0
crossref_primary_10_1155_2018_3419213
crossref_primary_10_1109_THMS_2022_3185533
crossref_primary_10_1123_jpah_2019_0088
crossref_primary_10_1016_j_ins_2023_119394
crossref_primary_10_1145_3214277
Cites_doi 10.1109/34.574797
10.1109/ICSMC.2009.5346042
10.1055/s-0038-1634267
10.1007/s10439-005-9068-2
10.1109/JBHI.2013.2253613
10.1155/2012/864516
10.1177/1352458510373111
10.1109/IEMBS.2011.6090896
10.1109/TBCAS.2011.2160540
10.1109/BSN.2006.6
10.1007/s11517-010-0701-3
10.1016/B978-1-55860-247-2.50037-1
10.1007/s00391-003-0143-8
10.1109/TPAMI.2005.159
10.1117/12.841963
10.1109/TITB.2010.2051955
10.1016/S1350-4533(00)00041-2
10.1063/1.166141
10.1587/transfun.E93.A.1379
10.1109/ICSMC.2001.973004
10.1088/0967-3334/25/2/R01
10.1109/AUTOID.2007.380623
10.1109/ISWC.2008.4911590
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jun 2014
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jun 2014
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1109/TBME.2014.2307069
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList Materials Research Database

MEDLINE
MEDLINE - Academic
Technology Research Database
Engineering Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1558-2531
EndPage 1786
ExternalDocumentID 3377633841
24691526
10_1109_TBME_2014_2307069
6780615
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: AT&T Labs-Research
GroupedDBID ---
-~X
.55
.DC
.GJ
0R~
29I
4.4
53G
5GY
5RE
5VS
6IF
6IK
6IL
6IN
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
AAYJJ
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACKIV
ACNCT
ACPRK
ADZIZ
AENEX
AETIX
AFFNX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CHZPO
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IEGSK
IFIPE
IFJZH
IPLJI
JAVBF
LAI
MS~
O9-
OCL
P2P
RIA
RIE
RIL
RNS
TAE
TN5
VH1
VJK
X7M
ZGI
ZXP
AAYXX
CITATION
RIG
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c481t-95055db269b606bb121c3cdb1b5e97c8884efbb8e861736ffa1ff76ebfdf81223
IEDL.DBID RIE
ISSN 0018-9294
1558-2531
IngestDate Fri Jul 11 15:17:05 EDT 2025
Fri Jul 11 06:30:01 EDT 2025
Fri Jul 11 04:06:56 EDT 2025
Mon Jun 30 08:31:00 EDT 2025
Thu Apr 03 06:59:14 EDT 2025
Thu Apr 24 23:03:24 EDT 2025
Tue Jul 01 02:15:50 EDT 2025
Wed Aug 27 02:52:54 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c481t-95055db269b606bb121c3cdb1b5e97c8884efbb8e861736ffa1ff76ebfdf81223
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 24691526
PQID 1545972685
PQPubID 85474
PageCount 7
ParticipantIDs proquest_miscellaneous_1664199126
proquest_journals_1545972685
crossref_citationtrail_10_1109_TBME_2014_2307069
pubmed_primary_24691526
crossref_primary_10_1109_TBME_2014_2307069
proquest_miscellaneous_1527332058
ieee_primary_6780615
proquest_miscellaneous_1669900284
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-06-01
PublicationDateYYYYMMDD 2014-06-01
PublicationDate_xml – month: 06
  year: 2014
  text: 2014-06-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on biomedical engineering
PublicationTitleAbbrev TBME
PublicationTitleAlternate IEEE Trans Biomed Eng
PublicationYear 2014
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref34
ref12
ref15
ref14
ref31
ref30
ref11
ref32
ref10
long (ref19) 2009
he (ref7) 2008
ref2
ref1
ref18
navot (ref29) 2004
kwapisz (ref16) 2010
ravi (ref21) 2005
(ref24) 0
ref25
ref20
kononenko (ref33) 1994
ref28
ref27
ref8
ref9
ref3
ref6
ref5
wu (ref23) 2007
sekine (ref17) 2000; 39
bao (ref4) 2004
khan (ref26) 2011
kang (ref22) 2008
References_xml – ident: ref34
  doi: 10.1109/34.574797
– ident: ref8
  doi: 10.1109/ICSMC.2009.5346042
– volume: 39
  start-page: 183
  year: 2000
  ident: ref17
  article-title: Analysis of acceleration signals using wavelet transform
  publication-title: Methods Info Med
  doi: 10.1055/s-0038-1634267
– ident: ref1
  doi: 10.1007/s10439-005-9068-2
– ident: ref11
  doi: 10.1109/JBHI.2013.2253613
– start-page: 1
  year: 2004
  ident: ref4
  publication-title: Proc PERVASIVE (LNCS 3001)
– ident: ref3
  doi: 10.1155/2012/864516
– ident: ref31
  doi: 10.1177/1352458510373111
– start-page: 1541
  year: 2005
  ident: ref21
  article-title: Activity recognition from accelerometer data
  publication-title: Proc Nat Conf Artif Intell
– year: 2011
  ident: ref26
  article-title: A feature extraction method for real time human activity recognition on cell phones
  publication-title: presented at isQoLT
– ident: ref12
  doi: 10.1109/IEMBS.2011.6090896
– start-page: 1
  year: 2008
  ident: ref7
  article-title: Weightlessness feature?A novel feature for single tri-axial accelerometer based activity recognition
  publication-title: Proc 19th Int Conf Pattern Recog
– start-page: 171
  year: 1994
  ident: ref33
  article-title: Estimating attributes: Analysis and extensions of RELIEF
  publication-title: Proc Eur Conf Mach Learning
– ident: ref9
  doi: 10.1109/TBCAS.2011.2160540
– ident: ref27
  doi: 10.1109/BSN.2006.6
– ident: ref6
  doi: 10.1007/s11517-010-0701-3
– ident: ref28
  doi: 10.1016/B978-1-55860-247-2.50037-1
– ident: ref2
  doi: 10.1007/s00391-003-0143-8
– ident: ref30
  doi: 10.1109/TPAMI.2005.159
– start-page: 10
  year: 2010
  ident: ref16
  article-title: Activity recognition using cell phone accelerometers
  publication-title: Proc 4th Int Workshop Knowl Discovery From Sens Data Human Factors
– ident: ref10
  doi: 10.1117/12.841963
– ident: ref5
  doi: 10.1109/TITB.2010.2051955
– start-page: 6107
  year: 2009
  ident: ref19
  article-title: Single-accelerometer-based daily physical activity classification
  publication-title: Proc IEEE Int Conf Eng Med Biol Soc
– start-page: 43
  year: 2004
  ident: ref29
  article-title: Margin based feature selection?Theory and algorithms
  publication-title: Proc Int Conf Mach Learning
– start-page: 1
  year: 2007
  ident: ref23
  article-title: Real-time physical activity classification and tracking using wearable sensors
  publication-title: Proc 6th Int Conf Inform Commun Signal Process
– ident: ref13
  doi: 10.1016/S1350-4533(00)00041-2
– year: 0
  ident: ref24
– ident: ref32
  doi: 10.1063/1.166141
– ident: ref25
  doi: 10.1587/transfun.E93.A.1379
– ident: ref15
  doi: 10.1109/ICSMC.2001.973004
– ident: ref20
  doi: 10.1088/0967-3334/25/2/R01
– ident: ref14
  doi: 10.1109/AUTOID.2007.380623
– ident: ref18
  doi: 10.1109/ISWC.2008.4911590
– start-page: 262
  year: 2008
  ident: ref22
  article-title: Real-time elderly activity monitoring system based on a tri-axial accelerometer
  publication-title: Proc Int Convention Rehabil Eng Assistive Technol
SSID ssj0014846
Score 2.5634599
Snippet Activity recognition is required in various applications such as medical monitoring and rehabilitation. Previously developed activity recognition systems...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1780
SubjectTerms Acceleration
Accelerometer
Accelerometers
Accelerometry - instrumentation
Accuracy
Activities of Daily Living - classification
activity recognition
Adult
Algorithms
Bayes Theorem
Classification
detrended fluctuation analysis (DFA)
error estimates
feature selection
Female
Fluctuations
Humans
k -nearest neighbor ( k -NN) classifier
leave-one-person-out (LOO) error
Legged locomotion
Male
Monitoring
Monitoring, Ambulatory - instrumentation
Monitoring, Ambulatory - methods
Motor Activity - physiology
Naïve Bayes classifier
Neural Networks (Computer)
Patients
Position (location)
Recognition
Relief-F algorithm
Searching
sequential forward floating search (SFFS) wrapper algorithm
Time series analysis
Young Adult
Title Feature Selection and Activity Recognition System Using a Single Triaxial Accelerometer
URI https://ieeexplore.ieee.org/document/6780615
https://www.ncbi.nlm.nih.gov/pubmed/24691526
https://www.proquest.com/docview/1545972685
https://www.proquest.com/docview/1527332058
https://www.proquest.com/docview/1664199126
https://www.proquest.com/docview/1669900284
Volume 61
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Bb9UwDLa2HRAcxthgPBgoSJwQfUvTJG2OY9o0IT0O7E3sViVpKiGmvmm8ShO_HjtpK0DwxKmV4rapvrj-XDs2wFvOUZsLxTPftEUmUYEyG6zNSvSddRBoIBxtFF580hdX8uO1ut6C99NemBBCTD4LczqNsfxm5Xv6VXaMH1aywNuwjY5b2qs1RQxklTbl8BwVWBg5RDBzbo6XHxZnlMQlY9Yz11QpVKBbiKZL_2aOYn-Vf1PNaHLOH8NinGzKNPk279du7n_8Ucfxf99mD3YH7slO0mJ5Aluh24dHv1Qk3IcHiyHWfgBfiB32d4FdxlY5iB-zXcNOfOo3wT6PqUc4kOqes5h_wCy7xMNNYEtc3Pdf6Yne4z2oMAKi-BSuzs-WpxfZ0IYh87LK15lBkqQaJ7Rx6O04l4vcF75xuVPBlB5daBla56pQIRsqdNvavG1LHVzbtEgfRPEMdrpVF54DU1KEXIZCGWkl-p7W-sYIxxtVOVlqNQM-olH7oUY5tcq4qaOvwk1NWNaEZT1gOYN30yW3qUDHJuEDwmESHCCYwdEIeT2o8PeauKUpha5w-M00jMpHERXbhVVPMsj-CsFVtUFGa0n5ZUJvlEFWgFRPzuAwLblpjuNKffH3ub-Eh_SGKXvtCHbWd314hTxp7V5HBfkJ4BsLsA
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VIvE48GgLLBQwEidEtrZjO_GxoFYLND3Qregtsh1HQlRZVDYS4tcztpMIEKw4JZIniaPPk_kmM54BeEkpanMuaeaaNs8EKlBmvDFZgb6z8hwNhA0bhatTtTgX7y_kxRa8nvbCeO9j8pmfh9MYy29Wrg-_yg7wwxos8DW4jnZfsrRba4oZiDJty6EMVZhrMcQwGdUHyzfVUUjjEjHvmapQK5SjY4jGS_1mkGKHlX-TzWh0ju9CNU435Zp8mfdrO3c__qjk-L_vcw_uDOyTHKblch-2fLcDt3-pSbgDN6oh2r4LnwI_7K88OYvNchBBYrqGHLrUcYJ8HJOPcCBVPicxA4EYcoaHS0-WuLy_fw5PdA7vEUojII57cH58tHy7yIZGDJkTJVtnGmmSbCxX2qK_Yy3jzOWuscxKrwuHTrTwrbWlL5EP5aptDWvbQnnbNi0SCJ4_gO1u1flHQKTgngmfSy2MQO_TGNdobmkjSysKJWdARzRqN1QpD80yLuvorVBdByzrgGU9YDmDV9MlX1OJjk3CuwGHSXCAYAb7I-T1oMTf6sAudcFVicMvpmFUvxBTMZ1f9UEG-V_OqSw3yCglQoYZVxtlkBcg2RMzeJiW3DTHcaU-_vvcn8PNxbI6qU_enX54ArfC26Zctn3YXl_1_imyprV9FpXlJ_hoDvk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Feature+Selection+and+Activity+Recognition+System+Using+a+Single+Triaxial+Accelerometer&rft.jtitle=IEEE+transactions+on+biomedical+engineering&rft.au=Gupta%2C+Piyush&rft.au=Dallas%2C+Tim&rft.date=2014-06-01&rft.eissn=1558-2531&rft.volume=61&rft.issue=6&rft.spage=1780&rft.epage=1786&rft_id=info:doi/10.1109%2FTBME.2014.2307069&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9294&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9294&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9294&client=summon