Precision Medicine in Osteosarcoma: MATCH Trial and Beyond
Osteosarcoma (OS) is a rare bone malignant tumour with a poor prognosis in the case of recurrence. So far, there is no agreement on the best systemic therapy for relapsed OS. The availability of next generation sequencing techniques has recently revolutionized clinical research. The sequencing of th...
Saved in:
Published in | Cells (Basel, Switzerland) Vol. 10; no. 2; p. 281 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
31.01.2021
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Osteosarcoma (OS) is a rare bone malignant tumour with a poor prognosis in the case of recurrence. So far, there is no agreement on the best systemic therapy for relapsed OS. The availability of next generation sequencing techniques has recently revolutionized clinical research. The sequencing of the tumour and its matched normal counterpart has the potential to reveal a wide landscape of genetic alterations with significant implications for clinical practice. The knowledge that the genomic profile of a patient's tumour can be precisely mapped and matched to a targeted therapy in real time has improved the development of precision medicine trials (PMTs). PMTs aiming at determining the effectiveness of targeted therapies could be advantageous for patients with a tumour refractory to standard therapies. Development of PMTs for relapsed OS is largely encouraging and is in its initial phase. Assessing OS features, such as its rarity, its age distribution, the technical issues related to the bone tissue origin, and its complex genomic landscape, represents a real challenge for PMTs development. In this light, a multidisciplinary approach is required to fully exploit the potential of precision medicine for OS patients. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-3 content type line 23 ObjectType-Review-1 |
ISSN: | 2073-4409 2073-4409 |
DOI: | 10.3390/cells10020281 |