Biodegradation of isoprene by soil Actinomycetota from coffee-tea integrated plantations in a tropical evergreen forest

•Microbial isoprene degradation varied by plant species and season in tropical soils.•Rhodococcus and Gordonia isolates showed 50.3 % to 69.1 % isoprene degradation.•Isoprene monooxygenase genes were found in Rhodococcus and Gordonia. Isoprene, a biogenic volatile compound emitted largely by plants,...

Full description

Saved in:
Bibliographic Details
Published inCurrent research in microbial sciences Vol. 8; p. 100382
Main Authors Uttarotai, Toungporn, McGenity, Terry J., Sutheeworapong, Sawannee, Mhuantong, Wuttichai, Khongdee, Nuttapon, Bovonsombut, Sakunnee, Chitov, Thararat
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.01.2025
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Microbial isoprene degradation varied by plant species and season in tropical soils.•Rhodococcus and Gordonia isolates showed 50.3 % to 69.1 % isoprene degradation.•Isoprene monooxygenase genes were found in Rhodococcus and Gordonia. Isoprene, a biogenic volatile compound emitted largely by plants, can form greenhouse gases when it reacts with atmospheric radicals. A significant amount of isoprene is absorbed into soil and can be degraded by soil microorganisms, but our understanding of the microbial biodegradation of isoprene in tropical ecosystems remains limited. This study investigated isoprene degradation by soil microbes indigenous to a tropical evergreen forest, focusing on those associated with coffee and tea plants grown as integrated crops and their genome characteristics in relation to their biodegradation capabilities. Following a 96-hour incubation with 7.2 × 10⁵ parts per billion by volume (ppbv) of isoprene, soil samples exhibited degradation levels ranging from 11.95 % to 36.54 %. From these soils, bacterial isolates belonging to the genera Rhodococcus and Gordonia (Actinomycetota) were recovered. These isolates demonstrated high isoprene biodegradation activity (50.3 %–69.1 % over seven days) and carried the isoA gene associated with isoprene metabolism. According to genome analysis, the organization of genes in the iso cluster was homologous, and the encoded amino acid sequences were highly similar to those of previously known isoprene-degrading members of the same genera. These findings emphasized the contribution of these widespread isoprene-degrading bacterial genera in the biodegradation of isoprene and the role of their isoprene monooxygenases in modulating atmospheric isoprene flux. [Display omitted]
AbstractList • Microbial isoprene degradation varied by plant species and season in tropical soils. • Rhodococcus and Gordonia isolates showed 50.3 % to 69.1 % isoprene degradation. • Isoprene monooxygenase genes were found in Rhodococcus and Gordonia . Isoprene, a biogenic volatile compound emitted largely by plants, can form greenhouse gases when it reacts with atmospheric radicals. A significant amount of isoprene is absorbed into soil and can be degraded by soil microorganisms, but our understanding of the microbial biodegradation of isoprene in tropical ecosystems remains limited. This study investigated isoprene degradation by soil microbes indigenous to a tropical evergreen forest, focusing on those associated with coffee and tea plants grown as integrated crops and their genome characteristics in relation to their biodegradation capabilities. Following a 96-hour incubation with 7.2 × 10⁵ parts per billion by volume (ppbv) of isoprene, soil samples exhibited degradation levels ranging from 11.95 % to 36.54 %. From these soils, bacterial isolates belonging to the genera Rhodococcus and Gordonia (Actinomycetota) were recovered. These isolates demonstrated high isoprene biodegradation activity (50.3 %–69.1 % over seven days) and carried the isoA gene associated with isoprene metabolism. According to genome analysis, the organization of genes in the iso cluster was homologous, and the encoded amino acid sequences were highly similar to those of previously known isoprene-degrading members of the same genera. These findings emphasized the contribution of these widespread isoprene-degrading bacterial genera in the biodegradation of isoprene and the role of their isoprene monooxygenases in modulating atmospheric isoprene flux. Image, graphical abstract
•Microbial isoprene degradation varied by plant species and season in tropical soils.•Rhodococcus and Gordonia isolates showed 50.3 % to 69.1 % isoprene degradation.•Isoprene monooxygenase genes were found in Rhodococcus and Gordonia. Isoprene, a biogenic volatile compound emitted largely by plants, can form greenhouse gases when it reacts with atmospheric radicals. A significant amount of isoprene is absorbed into soil and can be degraded by soil microorganisms, but our understanding of the microbial biodegradation of isoprene in tropical ecosystems remains limited. This study investigated isoprene degradation by soil microbes indigenous to a tropical evergreen forest, focusing on those associated with coffee and tea plants grown as integrated crops and their genome characteristics in relation to their biodegradation capabilities. Following a 96-hour incubation with 7.2 × 10⁵ parts per billion by volume (ppbv) of isoprene, soil samples exhibited degradation levels ranging from 11.95 % to 36.54 %. From these soils, bacterial isolates belonging to the genera Rhodococcus and Gordonia (Actinomycetota) were recovered. These isolates demonstrated high isoprene biodegradation activity (50.3 %–69.1 % over seven days) and carried the isoA gene associated with isoprene metabolism. According to genome analysis, the organization of genes in the iso cluster was homologous, and the encoded amino acid sequences were highly similar to those of previously known isoprene-degrading members of the same genera. These findings emphasized the contribution of these widespread isoprene-degrading bacterial genera in the biodegradation of isoprene and the role of their isoprene monooxygenases in modulating atmospheric isoprene flux. [Display omitted]
Isoprene, a biogenic volatile compound emitted largely by plants, can form greenhouse gases when it reacts with atmospheric radicals. A significant amount of isoprene is absorbed into soil and can be degraded by soil microorganisms, but our understanding of the microbial biodegradation of isoprene in tropical ecosystems remains limited. This study investigated isoprene degradation by soil microbes indigenous to a tropical evergreen forest, focusing on those associated with coffee and tea plants grown as integrated crops and their genome characteristics in relation to their biodegradation capabilities. Following a 96-hour incubation with 7.2 × 10⁵ parts per billion by volume (ppbv) of isoprene, soil samples exhibited degradation levels ranging from 11.95 % to 36.54 %. From these soils, bacterial isolates belonging to the genera Rhodococcus and Gordonia (Actinomycetota) were recovered. These isolates demonstrated high isoprene biodegradation activity (50.3 %–69.1 % over seven days) and carried the isoA gene associated with isoprene metabolism. According to genome analysis, the organization of genes in the iso cluster was homologous, and the encoded amino acid sequences were highly similar to those of previously known isoprene-degrading members of the same genera. These findings emphasized the contribution of these widespread isoprene-degrading bacterial genera in the biodegradation of isoprene and the role of their isoprene monooxygenases in modulating atmospheric isoprene flux.
Isoprene, a biogenic volatile compound emitted largely by plants, can form greenhouse gases when it reacts with atmospheric radicals. A significant amount of isoprene is absorbed into soil and can be degraded by soil microorganisms, but our understanding of the microbial biodegradation of isoprene in tropical ecosystems remains limited. This study investigated isoprene degradation by soil microbes indigenous to a tropical evergreen forest, focusing on those associated with coffee and tea plants grown as integrated crops and their genome characteristics in relation to their biodegradation capabilities. Following a 96-hour incubation with 7.2 × 10⁵ parts per billion by volume (ppbv) of isoprene, soil samples exhibited degradation levels ranging from 11.95 % to 36.54 %. From these soils, bacterial isolates belonging to the genera Rhodococcus and Gordonia (Actinomycetota) were recovered. These isolates demonstrated high isoprene biodegradation activity (50.3 %-69.1 % over seven days) and carried the isoA gene associated with isoprene metabolism. According to genome analysis, the organization of genes in the iso cluster was homologous, and the encoded amino acid sequences were highly similar to those of previously known isoprene-degrading members of the same genera. These findings emphasized the contribution of these widespread isoprene-degrading bacterial genera in the biodegradation of isoprene and the role of their isoprene monooxygenases in modulating atmospheric isoprene flux.Isoprene, a biogenic volatile compound emitted largely by plants, can form greenhouse gases when it reacts with atmospheric radicals. A significant amount of isoprene is absorbed into soil and can be degraded by soil microorganisms, but our understanding of the microbial biodegradation of isoprene in tropical ecosystems remains limited. This study investigated isoprene degradation by soil microbes indigenous to a tropical evergreen forest, focusing on those associated with coffee and tea plants grown as integrated crops and their genome characteristics in relation to their biodegradation capabilities. Following a 96-hour incubation with 7.2 × 10⁵ parts per billion by volume (ppbv) of isoprene, soil samples exhibited degradation levels ranging from 11.95 % to 36.54 %. From these soils, bacterial isolates belonging to the genera Rhodococcus and Gordonia (Actinomycetota) were recovered. These isolates demonstrated high isoprene biodegradation activity (50.3 %-69.1 % over seven days) and carried the isoA gene associated with isoprene metabolism. According to genome analysis, the organization of genes in the iso cluster was homologous, and the encoded amino acid sequences were highly similar to those of previously known isoprene-degrading members of the same genera. These findings emphasized the contribution of these widespread isoprene-degrading bacterial genera in the biodegradation of isoprene and the role of their isoprene monooxygenases in modulating atmospheric isoprene flux.
Isoprene, a biogenic volatile compound emitted largely by plants, can form greenhouse gases when it reacts with atmospheric radicals. A significant amount of isoprene is absorbed into soil and can be degraded by soil microorganisms, but our understanding of the microbial biodegradation of isoprene in tropical ecosystems remains limited. This study investigated isoprene degradation by soil microbes indigenous to a tropical evergreen forest, focusing on those associated with coffee and tea plants grown as integrated crops and their genome characteristics in relation to their biodegradation capabilities. Following a 96-hour incubation with 7.2 × 10⁵ parts per billion by volume (ppbv) of isoprene, soil samples exhibited degradation levels ranging from 11.95 % to 36.54 %. From these soils, bacterial isolates belonging to the genera and (Actinomycetota) were recovered. These isolates demonstrated high isoprene biodegradation activity (50.3 %-69.1 % over seven days) and carried the gene associated with isoprene metabolism. According to genome analysis, the organization of genes in the cluster was homologous, and the encoded amino acid sequences were highly similar to those of previously known isoprene-degrading members of the same genera. These findings emphasized the contribution of these widespread isoprene-degrading bacterial genera in the biodegradation of isoprene and the role of their isoprene monooxygenases in modulating atmospheric isoprene flux.
ArticleNumber 100382
Author McGenity, Terry J.
Sutheeworapong, Sawannee
Uttarotai, Toungporn
Khongdee, Nuttapon
Mhuantong, Wuttichai
Chitov, Thararat
Bovonsombut, Sakunnee
Author_xml – sequence: 1
  givenname: Toungporn
  surname: Uttarotai
  fullname: Uttarotai, Toungporn
  email: toungporn.u@cmu.ac.th
  organization: Department of Highland Agriculture and Natural Resources, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
– sequence: 2
  givenname: Terry J.
  surname: McGenity
  fullname: McGenity, Terry J.
  email: tjmcgen@essex.ac.uk
  organization: School of Life Sciences, University of Essex, Colchester CO4 3SQ, UK
– sequence: 3
  givenname: Sawannee
  surname: Sutheeworapong
  fullname: Sutheeworapong, Sawannee
  email: sawannee.sut@kmutt.ac.th
  organization: Systems Biology and Bioinformatics Laboratory, Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi, Bangkok 10150, Thailand
– sequence: 4
  givenname: Wuttichai
  surname: Mhuantong
  fullname: Mhuantong, Wuttichai
  email: wuttichai.mhu@biotec.or.th
  organization: Enzyme Technology Research Team, Biorefinery and Bioproduct Technology Research Group, National Center for Genetic Engineering and Biotechnology, Pathumthani 12120, Thailand
– sequence: 5
  givenname: Nuttapon
  surname: Khongdee
  fullname: Khongdee, Nuttapon
  email: nuttapon.k@cmu.ac.th
  organization: Department of Highland Agriculture and Natural Resources, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
– sequence: 6
  givenname: Sakunnee
  surname: Bovonsombut
  fullname: Bovonsombut, Sakunnee
  email: sakunnee.b@cmu.ac.th
  organization: Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
– sequence: 7
  givenname: Thararat
  surname: Chitov
  fullname: Chitov, Thararat
  email: thararat.chitov@cmu.ac.th
  organization: Environmental Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40255246$$D View this record in MEDLINE/PubMed
BookMark eNp9kk9v3CAQxVGVqkm3-QZVxbEXbwEDti-t0qh_IkXqpT0jDMOWlQ1bYDfab182TqPk0hOjmTe_kR7vNToLMQBCbylZU0Llh-3apNmbtGaEidoibc9eoAsmpWwE7fjZk_ocXea8JaQqaStE9wqd81oLxuUFuvvso4VN0lYXHwOODvscdwkC4PGIc_QTvjLFhzgfDZRYNHYpzthE5wCaAhr7UE6AAhbvJh3KPSjXNta4pLjzRk8YDpA2CSBgFxPk8ga9dHrKcPnwrtCvr19-Xn9vbn98u7m-um0M72lp-lZLQ8aWC2esbO1ALDcgrQUOzBlirCWUOkqZATYCcSMhXAtBhOYaBtGu0M3CtVFv1S75Waejitqr-0ZMG6VT8WYC1cpW0q6vh7XkgnI9ODeQjjIxDl1fLV6hTwtrtx9nsAZCSXp6Bn0-Cf632sSDooyQXnBaCe8fCCn-2Vcb1OyzganaBnGfVUsH1gouZV-l754ee7zy7-uqgC8Ck2LOCdyjhBJ1ConaqiUk6hQStYSkrn1c1qC6fvCQVDYeggHrE5hSbfH_B_wFAjvItg
Cites_doi 10.1111/j.1462-2920.2009.02069.x
10.1111/1462-2920.13842
10.1093/bioinformatics/btu170
10.5194/bg-15-3591-2018
10.1111/1462-2920.16325
10.1016/j.soilbio.2020.107969
10.1021/i560103a035
10.1128/JB.182.7.1956-1963.2000
10.3390/microorganisms9051024
10.1111/1462-2920.12793
10.1016/j.jmb.2021.166968
10.1111/gcb.16321
10.1111/1462-2920.16149
10.12952/journal.elementa.000053
10.21105/joss.03021
10.1099/ijs.0.64483-0
10.3390/microorganisms8101557
10.1029/92GB02125
10.1016/j.ibiod.2011.01.013
10.1515/fhort-2017-0019
10.1093/bioinformatics/bty121
10.1089/cmb.2012.0021
10.1016/j.ibiod.2013.08.015
10.1111/1462-2920.13345
10.1021/acs.est.5b06367
10.1128/JB.181.7.2094-2101.1999
10.1128/AEM.64.8.2800-2805.1998
10.1080/14486563.2001.10648526
10.1093/molbev/msab199
10.1016/S0003-2670(00)88444-5
10.1073/pnas.0409727102
10.1097/00010694-193401000-00003
10.1093/bioinformatics/bty266
10.1111/1758-2229.13212
10.1073/pnas.1812668115
10.3389/ffgc.2023.1260327
10.1093/nar/gkt1099
10.1128/AEM.64.1.172-177.1998
10.1186/s40168-020-00860-7
10.1016/j.phytochem.2020.112366
10.1099/ijsem.0.000760
10.3390/microorganisms8060889
10.5194/acp-8-1329-2008
10.3390/biology11040519
10.3390/microorganisms8030349
10.1097/00010694-194501000-00006
10.1186/s40168-018-0607-0
10.1155/2019/8987436
10.1093/aob/mcm240
10.1093/bioinformatics/btu033
10.1029/97GL02451
10.1128/jb.173.2.697-703.1991
ContentType Journal Article
Copyright 2025
2025 Published by Elsevier B.V.
2025 Published by Elsevier B.V. 2025
Copyright_xml – notice: 2025
– notice: 2025 Published by Elsevier B.V.
– notice: 2025 Published by Elsevier B.V. 2025
DBID 6I.
AAFTH
AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.1016/j.crmicr.2025.100382
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList


MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2666-5174
ExternalDocumentID oai_doaj_org_article_3636178c48a64514a9ff907125b97800
PMC12008541
40255246
10_1016_j_crmicr_2025_100382
S2666517425000446
Genre Journal Article
GroupedDBID 0R~
6I.
AAEDW
AAFTH
AALRI
AAXUO
AAYWO
ACVFH
ADCNI
ADVLN
AEUPX
AFJKZ
AFPUW
AIGII
AITUG
AKBMS
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
APXCP
EBS
FDB
GROUPED_DOAJ
M41
M~E
OK1
ROL
RPM
AAYXX
CITATION
NPM
7X8
5PM
ID FETCH-LOGICAL-c481t-83a6c0b345fcd63d90d4ce6dde4e2fc0cdd011f112ce2be0fb004a5505a4ae953
IEDL.DBID DOA
ISSN 2666-5174
IngestDate Wed Aug 27 01:26:08 EDT 2025
Thu Aug 21 18:27:32 EDT 2025
Wed Jul 02 04:59:20 EDT 2025
Wed Apr 23 01:37:23 EDT 2025
Thu Jul 03 08:17:42 EDT 2025
Sat Jul 05 17:11:31 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Biodegradation
BVOCs
Climate-active gas
Soil microorganisms
Isoprene monooxygenases
Isoprene
Language English
License This is an open access article under the CC BY-NC-ND license.
2025 Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c481t-83a6c0b345fcd63d90d4ce6dde4e2fc0cdd011f112ce2be0fb004a5505a4ae953
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://doaj.org/article/3636178c48a64514a9ff907125b97800
PMID 40255246
PQID 3192354668
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_3636178c48a64514a9ff907125b97800
pubmedcentral_primary_oai_pubmedcentral_nih_gov_12008541
proquest_miscellaneous_3192354668
pubmed_primary_40255246
crossref_primary_10_1016_j_crmicr_2025_100382
elsevier_sciencedirect_doi_10_1016_j_crmicr_2025_100382
PublicationCentury 2000
PublicationDate 2025-01-01
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – month: 01
  year: 2025
  text: 2025-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Current research in microbial sciences
PublicationTitleAlternate Curr Res Microb Sci
PublicationYear 2025
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Fehsenfeld, Calvert, Fall, Goldan, Guenther, Hewitt, Lamb, Liu, Trainer, Westberg, Zimmerman (bib0020) 1992; 6
Stautz, Hellmich, Fuss, Silberberg, Devlin, Stockbridge, Hänelt (bib0049) 2021
Murphy, Riley (bib0040) 1962; 27
Weisburg, Barns, Pelletier, Lane (bib0058) 1991; 173
van Hylckama Vlieg, Kingma, Kruizinga, Janssen (bib0052) 1999; 181
El Khawand, Crombie, Johnston, Vavlline, McAuliffe, Latone, Primak, Lee, Whited, McGenity, Murrell (bib0019) 2016; 18
Sims, Wright, Crombie, Dawson, Lockwood, Brun, Lehtovirta-Morley, Murrell (bib0045) 2023; 15
Goris, Konstantinidis, Klappenbach, Coenye, Vandamme, Tiedje (bib0023) 2007; 57
Waskom (bib0056) 2021; 6
Nakamura, Yamada, Tomii, Katoh (bib0041) 2018; 34
Rix, Sims, Dawson, Williamson, Bryant, Crombie, Murrell (bib0043) 2023; 89
Stamatakis (bib0048) 2014; 30
Acuña Alvarez, Exton, Timmis, Suggett, McGenity (bib0001) 2009; 11
Chen, Wang, Liu, Hu, He, Zhou, Zhang (bib0010) 2013; 85
Manni, Berkeley, Seppey, Simão, Zdobnov (bib0034) 2021; 38
Millet, Baasandorj, Hu, Mitroo, Turner, Williams (bib0036) 2016; 50
Johnston, Crombie, Khawand, Sims, Whited, McGenity, Murrell (bib0027) 2017; 19
Uttarotai, Sutheeworapong, Crombie, Murrell, Mhuantong, Noirungsee, Wangkarn, Bovonsombut, McGenity, Chitov (bib0051) 2022; 11
Crombie, Larke-Mejía, Emery, Dawson, Pratscher, Murphy, McGenity, Murrell (bib0015) 2018; 115
Uttarotai, McKew, Benyahia, Murrell, Mhuantong, Wangkarn, Chitov, Bovonsombut, McGenity (bib0050) 2021; 9
Dawson, Crombie, Jansen, Smith, Nichol, Murrell (bib0016) 2023; 25
Mu, Zeng, Zhang, Song, Pang, Yi, Asensio, Llusià, Peñuelas, Wang (bib0038) 2023; 6
Sridhar, Wilhelm, Debenport, Fahey, Buckley, Goodale (bib0047) 2022; 28
Dawson, Rix, Crombie, Murrell (bib0018) 2022; 24
Cleveland, Yavitt (bib0012) 1997; 24
AO (bib0003) 2001; 8
Crombie, Khawand, Rhodius, Fengler, Miller, Whited, McGenity, Murrell (bib0014) 2015; 17
Konstantinidis, Tiedje (bib0029) 2005; 102
Zhang, Kong, Chen, Guo, Zhou (bib0060) 2021; 10
Butcher, Nasto, Norton, Stark (bib0007) 2020; 150
Hajiboland (bib0025) 2017; 29
Sharkey, Wiberley, Donohue (bib0044) 2008; 101
Joshi, Fass (bib0028) 2011
Larke-Mejía, Crombie, Pratscher, McGenity, Murrell (bib0030) 2019; 21
Ma, Zuazaga (bib0033) 1942; 14
Müller, Stavrakou, Wallens, De Smedt, Van Roozendael, Potosnak, Rinne, Munger, Goldstein, Guenther (bib0039) 2008; 8
Wattam, Abraham, Dalay, Disz, Driscoll, Gabbard, Gillespie, Gough, Hix, Kenyon, Machi, Mao, Nordberg, Olson, Overbeek, Pusch, Shukla, Schulman, Stevens, Sullivan, Vonstein, Warren, Will, Wilson, Yoo, Zhang, Zhang, Sobral (bib0057) 2014; 42
Dawson, Larke-Mejía, Crombie, Ul Haque, Murrell (bib0017) 2020; 8
Cleveland, Yavitt (bib0011) 1998; 64
Moreira, da Silva, da Silva, Alves dos Santos, Santos (bib0037) 2020
Gray, Helmig, Fierer (bib0024) 2015; 3
Albers, Kramshøj, Rinnan (bib0002) 2018; 15
Bray, Kurtz (bib0006) 1945; 59
Mikheenko, Prjibelski, Saveliev, Antipov, Gurevich (bib0035) 2018; 34
Sorkhoh, Al-Mailem, Ali, Al-Awadhi, Salamah, Eliyas, Radwan (bib0046) 2011; 65
Walkley, Black (bib0055) 1934; 37
Ying, Ye, Xu, Wang, Bao, Li (bib0059) 2019
Bankevich, Nurk, Antipov, Gurevich, Dvorkin, Kulikov, Lesin, Nikolenko, Pham, Prjibelski, Pyshkin, Sirotkin, Vyahhi, Tesler, Alekseyev, Pevzner (bib0004) 2012; 19
Carrión, Larke-Mejía, Gibson, Farhan Ul Haque, Ramiro-García, McGenity, Murrell (bib0009) 2018; 6
Gibson, Larke-Mejía, Murrell (bib0022) 2020; 8
Lee, Ouk Kim, Park, Chun (bib0032) 2016; 66
Larke-Mejía, Carrión, Crombie, McGenity, Murrell (bib0031) 2020; 8
van Hylckama Vlieg, Kingma, Wijngaard, Janssen (bib0054) 1998; 64
Jardine, Zorzanelli, Gimenez, de Oliveira Piva, Teixeira, Fontes, Robles, Higuchi, Chambers, Martin (bib0026) 2020; 175
Carrión, Gibson, Elias, McNamara, van Alen, Op den Camp, Supramaniam, McGenity, Murrell (bib0008) 2020; 8
Bolger, Lohse, Usadel (bib0005) 2014; 30
van Hylckama Vlieg, Leemhuis, Spelberg, Janssen (bib0053) 2000; 182
Cleveland (10.1016/j.crmicr.2025.100382_bib0011) 1998; 64
Sridhar (10.1016/j.crmicr.2025.100382_bib0047) 2022; 28
Walkley (10.1016/j.crmicr.2025.100382_bib0055) 1934; 37
Carrión (10.1016/j.crmicr.2025.100382_bib0008) 2020; 8
Bray (10.1016/j.crmicr.2025.100382_bib0006) 1945; 59
Larke-Mejía (10.1016/j.crmicr.2025.100382_bib0031) 2020; 8
Crombie (10.1016/j.crmicr.2025.100382_bib0015) 2018; 115
Larke-Mejía (10.1016/j.crmicr.2025.100382_bib0030) 2019; 21
Ying (10.1016/j.crmicr.2025.100382_bib0059) 2019
Nakamura (10.1016/j.crmicr.2025.100382_bib0041) 2018; 34
Waskom (10.1016/j.crmicr.2025.100382_bib0056) 2021; 6
Lee (10.1016/j.crmicr.2025.100382_bib0032) 2016; 66
Moreira (10.1016/j.crmicr.2025.100382_bib0037) 2020
Uttarotai (10.1016/j.crmicr.2025.100382_bib0050) 2021; 9
Uttarotai (10.1016/j.crmicr.2025.100382_bib0051) 2022; 11
Gibson (10.1016/j.crmicr.2025.100382_bib0022) 2020; 8
Mikheenko (10.1016/j.crmicr.2025.100382_bib0035) 2018; 34
van Hylckama Vlieg (10.1016/j.crmicr.2025.100382_bib0054) 1998; 64
Dawson (10.1016/j.crmicr.2025.100382_bib0018) 2022; 24
Johnston (10.1016/j.crmicr.2025.100382_bib0027) 2017; 19
Jardine (10.1016/j.crmicr.2025.100382_bib0026) 2020; 175
Millet (10.1016/j.crmicr.2025.100382_bib0036) 2016; 50
Müller (10.1016/j.crmicr.2025.100382_bib0039) 2008; 8
Zhang (10.1016/j.crmicr.2025.100382_bib0060) 2021; 10
Konstantinidis (10.1016/j.crmicr.2025.100382_bib0029) 2005; 102
Sims (10.1016/j.crmicr.2025.100382_bib0045) 2023; 15
van Hylckama Vlieg (10.1016/j.crmicr.2025.100382_bib0052) 1999; 181
Weisburg (10.1016/j.crmicr.2025.100382_bib0058) 1991; 173
Sharkey (10.1016/j.crmicr.2025.100382_bib0044) 2008; 101
Gray (10.1016/j.crmicr.2025.100382_bib0024) 2015; 3
Mu (10.1016/j.crmicr.2025.100382_bib0038) 2023; 6
Stautz (10.1016/j.crmicr.2025.100382_bib0049) 2021
Wattam (10.1016/j.crmicr.2025.100382_bib0057) 2014; 42
Dawson (10.1016/j.crmicr.2025.100382_bib0016) 2023; 25
Joshi (10.1016/j.crmicr.2025.100382_bib0028)
AO (10.1016/j.crmicr.2025.100382_bib0003) 2001; 8
Bolger (10.1016/j.crmicr.2025.100382_bib0005) 2014; 30
Manni (10.1016/j.crmicr.2025.100382_bib0034) 2021; 38
Albers (10.1016/j.crmicr.2025.100382_bib0002) 2018; 15
Crombie (10.1016/j.crmicr.2025.100382_bib0014) 2015; 17
Acuña Alvarez (10.1016/j.crmicr.2025.100382_bib0001) 2009; 11
Goris (10.1016/j.crmicr.2025.100382_bib0023) 2007; 57
Sorkhoh (10.1016/j.crmicr.2025.100382_bib0046) 2011; 65
Bankevich (10.1016/j.crmicr.2025.100382_bib0004) 2012; 19
Fehsenfeld (10.1016/j.crmicr.2025.100382_bib0020) 1992; 6
Hajiboland (10.1016/j.crmicr.2025.100382_bib0025) 2017; 29
van Hylckama Vlieg (10.1016/j.crmicr.2025.100382_bib0053) 2000; 182
Stamatakis (10.1016/j.crmicr.2025.100382_bib0048) 2014; 30
Cleveland (10.1016/j.crmicr.2025.100382_bib0012) 1997; 24
Chen (10.1016/j.crmicr.2025.100382_bib0010) 2013; 85
Rix (10.1016/j.crmicr.2025.100382_bib0043) 2023; 89
El Khawand (10.1016/j.crmicr.2025.100382_bib0019) 2016; 18
Ma (10.1016/j.crmicr.2025.100382_bib0033) 1942; 14
Butcher (10.1016/j.crmicr.2025.100382_bib0007) 2020; 150
Carrión (10.1016/j.crmicr.2025.100382_bib0009) 2018; 6
Murphy (10.1016/j.crmicr.2025.100382_bib0040) 1962; 27
Dawson (10.1016/j.crmicr.2025.100382_bib0017) 2020; 8
References_xml – year: 2011
  ident: bib0028
  article-title: Sickle: a sliding-window, adaptive, quality-based trimming tool for FastQ files (Version 1.33) [Software]
– volume: 150
  year: 2020
  ident: bib0007
  article-title: Physical mechanisms for soil moisture effects on microbial carbon-use efficiency in a sandy loam soil in the western United States
  publication-title: Soil. Biol. Biochem.
– volume: 15
  start-page: 809
  year: 2023
  end-page: 819
  ident: bib0045
  article-title: Whole-cell studies of substrate and inhibitor specificity of isoprene monooxygenase and related enzymes
  publication-title: Environ. Microbiol. Rep.
– volume: 181
  start-page: 2094
  year: 1999
  end-page: 2101
  ident: bib0052
  article-title: Purification of a GlutathioneS-transferase and a glutathione conjugate-specific dehydrogenase involved in isoprene metabolism in
  publication-title: J. Bacteriol.
– volume: 175
  year: 2020
  ident: bib0026
  article-title: Leaf isoprene and monoterpene emission distribution across hyperdominant tree genera in the Amazon basin
  publication-title: Phytochemistry
– volume: 182
  start-page: 1956
  year: 2000
  end-page: 1963
  ident: bib0053
  article-title: Characterization of the gene cluster involved in Isoprene metabolism in
  publication-title: J. Bacteriol.
– volume: 10
  year: 2021
  ident: bib0060
  article-title: Increased tea saponin content influences the diversity and function of plantation soil microbiomes
  publication-title: Microbiol. Spectr.
– volume: 6
  year: 2023
  ident: bib0038
  article-title: Soil uptake of isoprenoids in a eucalyptus urophylla plantation forest in subtropical China
  publication-title: Front. For. Glob. Change
– volume: 6
  start-page: 3021
  year: 2021
  ident: bib0056
  article-title: seaborn: statistical data visualization
  publication-title: J. Open. Source Softw.
– volume: 8
  start-page: 1329
  year: 2008
  end-page: 1341
  ident: bib0039
  article-title: Global isoprene emissions estimated using MEGAN, ECMWF analyses and a detailed canopy environment model
  publication-title: Atmos. Chem. Phys.
– year: 2019
  ident: bib0059
  article-title: Comparative Genomic analysis of
  publication-title: Int. J. Genom.
– volume: 65
  start-page: 797
  year: 2011
  end-page: 802
  ident: bib0046
  article-title: Bioremediation of volatile oil hydrocarbons by epiphytic bacteria associated with American grass (
  publication-title: Int. Biodeterior. Biodegrad.
– volume: 30
  start-page: 2114
  year: 2014
  end-page: 2120
  ident: bib0005
  article-title: Trimmomatic: a flexible trimmer for Illumina sequence data
  publication-title: Bioinformatics.
– volume: 19
  start-page: 455
  year: 2012
  end-page: 477
  ident: bib0004
  article-title: SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing
  publication-title: J. Comput. Biol.
– year: 2021
  ident: bib0049
  article-title: Molecular mechanisms for bacterial potassium homeostasis
  publication-title: J. Mol. Biol.
– volume: 15
  start-page: 3591
  year: 2018
  end-page: 3601
  ident: bib0002
  article-title: Rapid mineralization of biogenic volatile organic compounds in temperate and Arctic soils
  publication-title: Biogeosciences.
– volume: 85
  start-page: 429
  year: 2013
  end-page: 437
  ident: bib0010
  article-title: Profiling of microbial community during
  publication-title: Int. Biodeterior. Biodegrad.
– volume: 21
  start-page: 3896
  year: 2019
  end-page: 3908
  ident: bib0030
  article-title: Novel isoprene-degrading proteobacteria from soil and leaves of the willow tree
  publication-title: Environ. Microbiol.
– volume: 57
  start-page: 81
  year: 2007
  end-page: 91
  ident: bib0023
  article-title: DNA–DNA hybridization values and their relationship to whole-genome sequence similarities
  publication-title: Int. J. Syst. Evol. Microbiol.
– volume: 173
  start-page: 697
  year: 1991
  end-page: 703
  ident: bib0058
  article-title: 16S ribosomal DNA amplification for phylogenetic study
  publication-title: J. Bacteriol.
– volume: 14
  start-page: 280
  year: 1942
  end-page: 282
  ident: bib0033
  article-title: Micro-kjeldahl determination of nitrogen.A new indicator and an improved rapid method
  publication-title: Ind. Eng. Chem. Anal. Ed.
– volume: 89
  year: 2023
  ident: bib0043
  article-title: Analysis of essential Isoprene metabolic pathway proteins in
  publication-title: Strain WS11. Appl. Environ. Microbiol.
– volume: 66
  start-page: 1100
  year: 2016
  end-page: 1103
  ident: bib0032
  article-title: OrthoANI: an improved algorithm and software for calculating average nucleotide identity
  publication-title: Int. J. Syst. Evol. Microbiol.
– volume: 28
  start-page: 5399
  year: 2022
  end-page: 5415
  ident: bib0047
  article-title: Microbial community shifts correspond with suppression of decomposition 25 years after liming of acidic forest soils
  publication-title: Glob. Change Biol.
– volume: 11
  start-page: 519
  year: 2022
  ident: bib0051
  article-title: Genome characterisation of an isoprene-degrading
  publication-title: Biology.
– volume: 17
  start-page: 3314
  year: 2015
  end-page: 3329
  ident: bib0014
  article-title: Regulation of plasmid-encoded isoprene metabolism in Rhodococcus, a representative of an important link in the global isoprene cycle
  publication-title: Environ. Microbiol.
– volume: 8
  start-page: 349
  year: 2020
  ident: bib0017
  article-title: Isoprene oxidation by the gram-negative model bacterium
  publication-title: Microorganisms.
– volume: 6
  start-page: 389
  year: 1992
  end-page: 430
  ident: bib0020
  article-title: Emissions of volatile organic compounds from vegetation and the implications for atmospheric chemistry
  publication-title: Global. Biogeochem. Cycles.
– volume: 8
  start-page: 81
  year: 2020
  ident: bib0008
  article-title: Diversity of isoprene-degrading bacteria in phyllosphere and soil communities from a high isoprene-emitting environment: a Malaysian oil palm plantation
  publication-title: Microbiome
– volume: 37
  start-page: 29
  year: 1934
  ident: bib0055
  article-title: An examination of the degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method
  publication-title: Soil. Sci.
– volume: 102
  start-page: 2567
  year: 2005
  end-page: 2572
  ident: bib0029
  article-title: Genomic insights that advance the species definition for prokaryotes
  publication-title: PNAS
– volume: 64
  start-page: 172
  year: 1998
  end-page: 177
  ident: bib0011
  article-title: Microbial consumption of atmospheric isoprene in a temperate forest soil
  publication-title: Appl. Environ. Microbiol.
– volume: 19
  start-page: 3526
  year: 2017
  end-page: 3537
  ident: bib0027
  article-title: Identification and characterisation of isoprene-degrading bacteria in an estuarine environment
  publication-title: Environ. Microbiol.
– volume: 34
  start-page: 2490
  year: 2018
  end-page: 2492
  ident: bib0041
  article-title: Parallelization of MAFFT for large-scale multiple sequence alignments
  publication-title: Bioinformatics.
– volume: 11
  start-page: 3280
  year: 2009
  end-page: 3291
  ident: bib0001
  article-title: Characterization of marine isoprene-degrading communities
  publication-title: Environ. Microbiol.
– volume: 64
  start-page: 2800
  year: 1998
  end-page: 2805
  ident: bib0054
  article-title: A glutathione S-transferase with activity towards cis-1,2-dichloroepoxyethane is involved in isoprene utilization by
  publication-title: Appl. Environ. Microbiol.
– volume: 24
  start-page: 5151
  year: 2022
  end-page: 5164
  ident: bib0018
  article-title: Omics-guided prediction of the pathway for metabolism of isoprene by Variovorax sp. WS11
  publication-title: Environ. Microbiol.
– volume: 50
  start-page: 4335
  year: 2016
  end-page: 4342
  ident: bib0036
  article-title: Nighttime chemistry and morning isoprene can drive urban ozone downwind of a major deciduous forest
  publication-title: Environ. Sci. Technol.
– volume: 18
  start-page: 2743
  year: 2016
  end-page: 2753
  ident: bib0019
  article-title: Isolation of isoprene degrading bacteria from soils, development of
  publication-title: Environ. Microbiol.
– year: 2020
  ident: bib0037
  article-title: Global warming and the effects of climate change on coffee production
  publication-title: Food Eng. Ser.
– volume: 38
  start-page: 4647
  year: 2021
  end-page: 4654
  ident: bib0034
  article-title: BUSCO update: novel and streamlined workflows along with broader and deeper phylogenetic coverage for scoring of eukaryotic, prokaryotic, and viral genomes
  publication-title: Mol. Biol. Evol.
– volume: 8
  start-page: 169
  year: 2001
  end-page: 185
  ident: bib0003
  article-title: The IPCC Third Assessment Report on the scientific basis of Climate change
  publication-title: Australas. J. Environ. Manag.
– volume: 115
  start-page: 13081
  year: 2018
  end-page: 13086
  ident: bib0015
  article-title: Poplar phyllosphere harbors disparate isoprene-degrading bacteria
  publication-title: PNAS
– volume: 30
  start-page: 1312
  year: 2014
  end-page: 1313
  ident: bib0048
  article-title: RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies
  publication-title: Bioinformatics.
– volume: 24
  start-page: 2379
  year: 1997
  end-page: 2382
  ident: bib0012
  article-title: Consumption of atmospheric isoprene in soil
  publication-title: Geophys. Res. Lett.
– volume: 29
  start-page: 199
  year: 2017
  end-page: 220
  ident: bib0025
  article-title: Environmental and nutritional requirements for tea cultivation
  publication-title: Folia. Hortic.
– volume: 34
  start-page: i142
  year: 2018
  end-page: i150
  ident: bib0035
  article-title: Versatile genome assembly evaluation with QUAST-LG
  publication-title: Bioinformatics.
– volume: 101
  start-page: 5
  year: 2008
  end-page: 18
  ident: bib0044
  article-title: Isoprene emission from plants: why and how
  publication-title: Ann. Bot.
– volume: 3
  year: 2015
  ident: bib0024
  article-title: Bacteria and fungi associated with isoprene consumption in soil
  publication-title: Elem. Sci. Anth.
– volume: 6
  start-page: 219
  year: 2018
  ident: bib0009
  article-title: Gene probing reveals the widespread distribution, diversity and abundance of isoprene-degrading bacteria in the environment
  publication-title: Microbiome
– volume: 27
  start-page: 31
  year: 1962
  end-page: 36
  ident: bib0040
  article-title: A modified single solution method for the determination of phosphate in natural waters
  publication-title: Anal. Chim. Acta
– volume: 8
  start-page: 1557
  year: 2020
  ident: bib0031
  article-title: sp. Strain OPL5, an isoprene-degrading bacterium from the Sphingomonadaceae Family isolated from oil palm leaves
  publication-title: Microorganisms.
– volume: 59
  start-page: 39
  year: 1945
  ident: bib0006
  article-title: Determination of total, organic, and available forms of phosphorus in soils
  publication-title: Soil. Sci.
– volume: 8
  start-page: 889
  year: 2020
  ident: bib0022
  article-title: Complete genome of isoprene degrading
  publication-title: Microorganisms.
– volume: 9
  start-page: 1024
  year: 2021
  ident: bib0050
  article-title: Isoprene-degrading bacteria from soils associated with tropical economic crops and framework forest trees
  publication-title: Microorganisms.
– volume: 42
  start-page: D581
  year: 2014
  end-page: D591
  ident: bib0057
  article-title: PATRIC, the bacterial bioinformatics database and analysis resource
  publication-title: Nucleic. Acids. Res.
– volume: 25
  start-page: 786
  year: 2023
  end-page: 799
  ident: bib0016
  article-title: Peering down the sink: a review of isoprene metabolism by bacteria
  publication-title: Environ. Microbiol.
– volume: 11
  start-page: 3280
  year: 2009
  ident: 10.1016/j.crmicr.2025.100382_bib0001
  article-title: Characterization of marine isoprene-degrading communities
  publication-title: Environ. Microbiol.
  doi: 10.1111/j.1462-2920.2009.02069.x
– volume: 19
  start-page: 3526
  year: 2017
  ident: 10.1016/j.crmicr.2025.100382_bib0027
  article-title: Identification and characterisation of isoprene-degrading bacteria in an estuarine environment
  publication-title: Environ. Microbiol.
  doi: 10.1111/1462-2920.13842
– volume: 30
  start-page: 2114
  year: 2014
  ident: 10.1016/j.crmicr.2025.100382_bib0005
  article-title: Trimmomatic: a flexible trimmer for Illumina sequence data
  publication-title: Bioinformatics.
  doi: 10.1093/bioinformatics/btu170
– volume: 15
  start-page: 3591
  year: 2018
  ident: 10.1016/j.crmicr.2025.100382_bib0002
  article-title: Rapid mineralization of biogenic volatile organic compounds in temperate and Arctic soils
  publication-title: Biogeosciences.
  doi: 10.5194/bg-15-3591-2018
– volume: 25
  start-page: 786
  year: 2023
  ident: 10.1016/j.crmicr.2025.100382_bib0016
  article-title: Peering down the sink: a review of isoprene metabolism by bacteria
  publication-title: Environ. Microbiol.
  doi: 10.1111/1462-2920.16325
– volume: 150
  year: 2020
  ident: 10.1016/j.crmicr.2025.100382_bib0007
  article-title: Physical mechanisms for soil moisture effects on microbial carbon-use efficiency in a sandy loam soil in the western United States
  publication-title: Soil. Biol. Biochem.
  doi: 10.1016/j.soilbio.2020.107969
– volume: 14
  start-page: 280
  year: 1942
  ident: 10.1016/j.crmicr.2025.100382_bib0033
  article-title: Micro-kjeldahl determination of nitrogen.A new indicator and an improved rapid method
  publication-title: Ind. Eng. Chem. Anal. Ed.
  doi: 10.1021/i560103a035
– volume: 182
  start-page: 1956
  year: 2000
  ident: 10.1016/j.crmicr.2025.100382_bib0053
  article-title: Characterization of the gene cluster involved in Isoprene metabolism in rhodococcus sp. Strain AD45
  publication-title: J. Bacteriol.
  doi: 10.1128/JB.182.7.1956-1963.2000
– volume: 9
  start-page: 1024
  year: 2021
  ident: 10.1016/j.crmicr.2025.100382_bib0050
  article-title: Isoprene-degrading bacteria from soils associated with tropical economic crops and framework forest trees
  publication-title: Microorganisms.
  doi: 10.3390/microorganisms9051024
– volume: 17
  start-page: 3314
  year: 2015
  ident: 10.1016/j.crmicr.2025.100382_bib0014
  article-title: Regulation of plasmid-encoded isoprene metabolism in Rhodococcus, a representative of an important link in the global isoprene cycle
  publication-title: Environ. Microbiol.
  doi: 10.1111/1462-2920.12793
– year: 2021
  ident: 10.1016/j.crmicr.2025.100382_bib0049
  article-title: Molecular mechanisms for bacterial potassium homeostasis
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2021.166968
– volume: 28
  start-page: 5399
  issue: 24
  year: 2022
  ident: 10.1016/j.crmicr.2025.100382_bib0047
  article-title: Microbial community shifts correspond with suppression of decomposition 25 years after liming of acidic forest soils
  publication-title: Glob. Change Biol.
  doi: 10.1111/gcb.16321
– volume: 24
  start-page: 5151
  year: 2022
  ident: 10.1016/j.crmicr.2025.100382_bib0018
  article-title: Omics-guided prediction of the pathway for metabolism of isoprene by Variovorax sp. WS11
  publication-title: Environ. Microbiol.
  doi: 10.1111/1462-2920.16149
– volume: 3
  year: 2015
  ident: 10.1016/j.crmicr.2025.100382_bib0024
  article-title: Bacteria and fungi associated with isoprene consumption in soil
  publication-title: Elem. Sci. Anth.
  doi: 10.12952/journal.elementa.000053
– volume: 6
  start-page: 3021
  year: 2021
  ident: 10.1016/j.crmicr.2025.100382_bib0056
  article-title: seaborn: statistical data visualization
  publication-title: J. Open. Source Softw.
  doi: 10.21105/joss.03021
– volume: 57
  start-page: 81
  year: 2007
  ident: 10.1016/j.crmicr.2025.100382_bib0023
  article-title: DNA–DNA hybridization values and their relationship to whole-genome sequence similarities
  publication-title: Int. J. Syst. Evol. Microbiol.
  doi: 10.1099/ijs.0.64483-0
– volume: 8
  start-page: 1557
  year: 2020
  ident: 10.1016/j.crmicr.2025.100382_bib0031
  article-title: Sphingopyxis sp. Strain OPL5, an isoprene-degrading bacterium from the Sphingomonadaceae Family isolated from oil palm leaves
  publication-title: Microorganisms.
  doi: 10.3390/microorganisms8101557
– volume: 6
  start-page: 389
  year: 1992
  ident: 10.1016/j.crmicr.2025.100382_bib0020
  article-title: Emissions of volatile organic compounds from vegetation and the implications for atmospheric chemistry
  publication-title: Global. Biogeochem. Cycles.
  doi: 10.1029/92GB02125
– volume: 65
  start-page: 797
  year: 2011
  ident: 10.1016/j.crmicr.2025.100382_bib0046
  article-title: Bioremediation of volatile oil hydrocarbons by epiphytic bacteria associated with American grass (Cynodon sp.) and broad bean (Vicia faba) leaves
  publication-title: Int. Biodeterior. Biodegrad.
  doi: 10.1016/j.ibiod.2011.01.013
– volume: 29
  start-page: 199
  issue: 2
  year: 2017
  ident: 10.1016/j.crmicr.2025.100382_bib0025
  article-title: Environmental and nutritional requirements for tea cultivation
  publication-title: Folia. Hortic.
  doi: 10.1515/fhort-2017-0019
– volume: 34
  start-page: 2490
  year: 2018
  ident: 10.1016/j.crmicr.2025.100382_bib0041
  article-title: Parallelization of MAFFT for large-scale multiple sequence alignments
  publication-title: Bioinformatics.
  doi: 10.1093/bioinformatics/bty121
– volume: 19
  start-page: 455
  year: 2012
  ident: 10.1016/j.crmicr.2025.100382_bib0004
  article-title: SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing
  publication-title: J. Comput. Biol.
  doi: 10.1089/cmb.2012.0021
– volume: 85
  start-page: 429
  year: 2013
  ident: 10.1016/j.crmicr.2025.100382_bib0010
  article-title: Profiling of microbial community during in situ remediation of volatile sulfide compounds in river sediment with nitrate by high throughput sequencing
  publication-title: Int. Biodeterior. Biodegrad.
  doi: 10.1016/j.ibiod.2013.08.015
– ident: 10.1016/j.crmicr.2025.100382_bib0028
– volume: 18
  start-page: 2743
  year: 2016
  ident: 10.1016/j.crmicr.2025.100382_bib0019
  article-title: Isolation of isoprene degrading bacteria from soils, development of isoA gene probes and identification of the active isoprene-degrading soil community using DNA-stable isotope probing: isoprene-degrading bacteria
  publication-title: Environ. Microbiol.
  doi: 10.1111/1462-2920.13345
– volume: 50
  start-page: 4335
  issue: 8
  year: 2016
  ident: 10.1016/j.crmicr.2025.100382_bib0036
  article-title: Nighttime chemistry and morning isoprene can drive urban ozone downwind of a major deciduous forest
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.5b06367
– volume: 89
  year: 2023
  ident: 10.1016/j.crmicr.2025.100382_bib0043
  article-title: Analysis of essential Isoprene metabolic pathway proteins in Variovorax sp
  publication-title: Strain WS11. Appl. Environ. Microbiol.
– volume: 181
  start-page: 2094
  year: 1999
  ident: 10.1016/j.crmicr.2025.100382_bib0052
  article-title: Purification of a GlutathioneS-transferase and a glutathione conjugate-specific dehydrogenase involved in isoprene metabolism in rhodococcus sp. Strain AD45
  publication-title: J. Bacteriol.
  doi: 10.1128/JB.181.7.2094-2101.1999
– volume: 64
  start-page: 2800
  year: 1998
  ident: 10.1016/j.crmicr.2025.100382_bib0054
  article-title: A glutathione S-transferase with activity towards cis-1,2-dichloroepoxyethane is involved in isoprene utilization by rhodococcus sp. Strain AD45
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.64.8.2800-2805.1998
– volume: 8
  start-page: 169
  year: 2001
  ident: 10.1016/j.crmicr.2025.100382_bib0003
  article-title: The IPCC Third Assessment Report on the scientific basis of Climate change
  publication-title: Australas. J. Environ. Manag.
  doi: 10.1080/14486563.2001.10648526
– volume: 38
  start-page: 4647
  year: 2021
  ident: 10.1016/j.crmicr.2025.100382_bib0034
  article-title: BUSCO update: novel and streamlined workflows along with broader and deeper phylogenetic coverage for scoring of eukaryotic, prokaryotic, and viral genomes
  publication-title: Mol. Biol. Evol.
  doi: 10.1093/molbev/msab199
– volume: 27
  start-page: 31
  year: 1962
  ident: 10.1016/j.crmicr.2025.100382_bib0040
  article-title: A modified single solution method for the determination of phosphate in natural waters
  publication-title: Anal. Chim. Acta
  doi: 10.1016/S0003-2670(00)88444-5
– volume: 102
  start-page: 2567
  year: 2005
  ident: 10.1016/j.crmicr.2025.100382_bib0029
  article-title: Genomic insights that advance the species definition for prokaryotes
  publication-title: PNAS
  doi: 10.1073/pnas.0409727102
– volume: 37
  start-page: 29
  year: 1934
  ident: 10.1016/j.crmicr.2025.100382_bib0055
  article-title: An examination of the degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method
  publication-title: Soil. Sci.
  doi: 10.1097/00010694-193401000-00003
– volume: 34
  start-page: i142
  year: 2018
  ident: 10.1016/j.crmicr.2025.100382_bib0035
  article-title: Versatile genome assembly evaluation with QUAST-LG
  publication-title: Bioinformatics.
  doi: 10.1093/bioinformatics/bty266
– volume: 15
  start-page: 809
  year: 2023
  ident: 10.1016/j.crmicr.2025.100382_bib0045
  article-title: Whole-cell studies of substrate and inhibitor specificity of isoprene monooxygenase and related enzymes
  publication-title: Environ. Microbiol. Rep.
  doi: 10.1111/1758-2229.13212
– volume: 115
  start-page: 13081
  issue: 49
  year: 2018
  ident: 10.1016/j.crmicr.2025.100382_bib0015
  article-title: Poplar phyllosphere harbors disparate isoprene-degrading bacteria
  publication-title: PNAS
  doi: 10.1073/pnas.1812668115
– volume: 6
  year: 2023
  ident: 10.1016/j.crmicr.2025.100382_bib0038
  article-title: Soil uptake of isoprenoids in a eucalyptus urophylla plantation forest in subtropical China
  publication-title: Front. For. Glob. Change
  doi: 10.3389/ffgc.2023.1260327
– volume: 42
  start-page: D581
  year: 2014
  ident: 10.1016/j.crmicr.2025.100382_bib0057
  article-title: PATRIC, the bacterial bioinformatics database and analysis resource
  publication-title: Nucleic. Acids. Res.
  doi: 10.1093/nar/gkt1099
– volume: 64
  start-page: 172
  year: 1998
  ident: 10.1016/j.crmicr.2025.100382_bib0011
  article-title: Microbial consumption of atmospheric isoprene in a temperate forest soil
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.64.1.172-177.1998
– volume: 8
  start-page: 81
  year: 2020
  ident: 10.1016/j.crmicr.2025.100382_bib0008
  article-title: Diversity of isoprene-degrading bacteria in phyllosphere and soil communities from a high isoprene-emitting environment: a Malaysian oil palm plantation
  publication-title: Microbiome
  doi: 10.1186/s40168-020-00860-7
– volume: 175
  year: 2020
  ident: 10.1016/j.crmicr.2025.100382_bib0026
  article-title: Leaf isoprene and monoterpene emission distribution across hyperdominant tree genera in the Amazon basin
  publication-title: Phytochemistry
  doi: 10.1016/j.phytochem.2020.112366
– volume: 10
  issue: 2
  year: 2021
  ident: 10.1016/j.crmicr.2025.100382_bib0060
  article-title: Increased tea saponin content influences the diversity and function of plantation soil microbiomes
  publication-title: Microbiol. Spectr.
– volume: 66
  start-page: 1100
  year: 2016
  ident: 10.1016/j.crmicr.2025.100382_bib0032
  article-title: OrthoANI: an improved algorithm and software for calculating average nucleotide identity
  publication-title: Int. J. Syst. Evol. Microbiol.
  doi: 10.1099/ijsem.0.000760
– volume: 8
  start-page: 889
  year: 2020
  ident: 10.1016/j.crmicr.2025.100382_bib0022
  article-title: Complete genome of isoprene degrading nocardioides sp. WS12
  publication-title: Microorganisms.
  doi: 10.3390/microorganisms8060889
– volume: 21
  start-page: 3896
  issue: 10
  year: 2019
  ident: 10.1016/j.crmicr.2025.100382_bib0030
  article-title: Novel isoprene-degrading proteobacteria from soil and leaves of the willow tree Salix alba
  publication-title: Environ. Microbiol.
– volume: 8
  start-page: 1329
  year: 2008
  ident: 10.1016/j.crmicr.2025.100382_bib0039
  article-title: Global isoprene emissions estimated using MEGAN, ECMWF analyses and a detailed canopy environment model
  publication-title: Atmos. Chem. Phys.
  doi: 10.5194/acp-8-1329-2008
– volume: 11
  start-page: 519
  year: 2022
  ident: 10.1016/j.crmicr.2025.100382_bib0051
  article-title: Genome characterisation of an isoprene-degrading Alcaligenes sp. Isolated from a tropical restored forest
  publication-title: Biology.
  doi: 10.3390/biology11040519
– volume: 8
  start-page: 349
  year: 2020
  ident: 10.1016/j.crmicr.2025.100382_bib0017
  article-title: Isoprene oxidation by the gram-negative model bacterium variovorax sp. WS11
  publication-title: Microorganisms.
  doi: 10.3390/microorganisms8030349
– year: 2020
  ident: 10.1016/j.crmicr.2025.100382_bib0037
  article-title: Global warming and the effects of climate change on coffee production
  publication-title: Food Eng. Ser.
– volume: 59
  start-page: 39
  year: 1945
  ident: 10.1016/j.crmicr.2025.100382_bib0006
  article-title: Determination of total, organic, and available forms of phosphorus in soils
  publication-title: Soil. Sci.
  doi: 10.1097/00010694-194501000-00006
– volume: 6
  start-page: 219
  year: 2018
  ident: 10.1016/j.crmicr.2025.100382_bib0009
  article-title: Gene probing reveals the widespread distribution, diversity and abundance of isoprene-degrading bacteria in the environment
  publication-title: Microbiome
  doi: 10.1186/s40168-018-0607-0
– year: 2019
  ident: 10.1016/j.crmicr.2025.100382_bib0059
  article-title: Comparative Genomic analysis of rhodococcus equi: an insight into genomic diversity and genome evolution
  publication-title: Int. J. Genom.
  doi: 10.1155/2019/8987436
– volume: 101
  start-page: 5
  year: 2008
  ident: 10.1016/j.crmicr.2025.100382_bib0044
  article-title: Isoprene emission from plants: why and how
  publication-title: Ann. Bot.
  doi: 10.1093/aob/mcm240
– volume: 30
  start-page: 1312
  year: 2014
  ident: 10.1016/j.crmicr.2025.100382_bib0048
  article-title: RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies
  publication-title: Bioinformatics.
  doi: 10.1093/bioinformatics/btu033
– volume: 24
  start-page: 2379
  year: 1997
  ident: 10.1016/j.crmicr.2025.100382_bib0012
  article-title: Consumption of atmospheric isoprene in soil
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/97GL02451
– volume: 173
  start-page: 697
  year: 1991
  ident: 10.1016/j.crmicr.2025.100382_bib0058
  article-title: 16S ribosomal DNA amplification for phylogenetic study
  publication-title: J. Bacteriol.
  doi: 10.1128/jb.173.2.697-703.1991
SSID ssj0002513557
Score 2.2791166
Snippet •Microbial isoprene degradation varied by plant species and season in tropical soils.•Rhodococcus and Gordonia isolates showed 50.3 % to 69.1 % isoprene...
Isoprene, a biogenic volatile compound emitted largely by plants, can form greenhouse gases when it reacts with atmospheric radicals. A significant amount of...
• Microbial isoprene degradation varied by plant species and season in tropical soils. • Rhodococcus and Gordonia isolates showed 50.3 % to 69.1 % isoprene...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 100382
SubjectTerms Biodegradation
BVOCs
Climate-active gas
Isoprene
Isoprene monooxygenases
Research Paper
Soil microorganisms
Title Biodegradation of isoprene by soil Actinomycetota from coffee-tea integrated plantations in a tropical evergreen forest
URI https://dx.doi.org/10.1016/j.crmicr.2025.100382
https://www.ncbi.nlm.nih.gov/pubmed/40255246
https://www.proquest.com/docview/3192354668
https://pubmed.ncbi.nlm.nih.gov/PMC12008541
https://doaj.org/article/3636178c48a64514a9ff907125b97800
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwELUqJKReKkpLCQXkSr1azcaOkxxLVYSQ2lORuFn-GNNFKFmxQYh_3xl7s9otBy7cVkl21_bMeN44M28Y-4qDa2JbgiilBKFa3wrXBSfiLEoH0EWXysd-_dYXV-ryur7eaPVFOWGZHjgv3DepJVWxedVardC72y5GDOjQLzsiz0nROvq8jWCK9mD02uhIm6lWLiV0eVw5TxSgVU25AYl7b8MXJcr-LZf0HHL-nzm54YrO99i7FYbk3_PY37M30O-z3dxV8ukDe8RPgTggcrskPkQ-Xw6Ju5K7J74c5vhd3OaomsHDOIyWU5EJ90OMAAKlztckEoEv7myuTuqXeJlbPt4PC5IsB7SCG0rb4Qh8cfwf2dX5zz8_LsSqv4LA1ZyNopVW-9JJVUcftAxdGZQHjRuegir60oeA1h8RkXmoHJSRTNxSSGOVha6WB2ynH3o4ZNxHaniEd6AB5avWosQaG8oyIoCxTV0wMa20WWQaDTPll92aLBlDkjFZMgU7I3GsnyUS7HQBVcOsVMO8pBoFayZhmhWeyDgBf2r-wt9_mWRv0NzoHYrtYXhYGkmIuFZatwX7lHVhPUhF8VmldMHaLS3ZmsX2nX7-N1F6zygNpVazo9eY92f2luaSD4qO2c54_wAnCJ1Gd5qs5DSdaf0DbhwZog
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Biodegradation+of+isoprene+by+soil+Actinomycetota+from+coffee-tea+integrated+plantations+in+a+tropical+evergreen+forest&rft.jtitle=Current+research+in+microbial+sciences&rft.au=Uttarotai%2C+Toungporn&rft.au=McGenity%2C+Terry+J.&rft.au=Sutheeworapong%2C+Sawannee&rft.au=Mhuantong%2C+Wuttichai&rft.date=2025-01-01&rft.issn=2666-5174&rft.eissn=2666-5174&rft.volume=8&rft.spage=100382&rft_id=info:doi/10.1016%2Fj.crmicr.2025.100382&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_crmicr_2025_100382
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2666-5174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2666-5174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2666-5174&client=summon