Unidirectional rotary motion in a metal–organic framework

Overcrowded alkene-based light-driven molecular motors are able to perform large-amplitude repetitive unidirectional rotations. Their behaviour is well understood in solution. However, Brownian motion precludes the precise positioning at the nanoscale needed to harness cooperative action. Here, we d...

Full description

Saved in:
Bibliographic Details
Published inNature nanotechnology Vol. 14; no. 5; pp. 488 - 494
Main Authors Danowski, Wojciech, van Leeuwen, Thomas, Abdolahzadeh, Shaghayegh, Roke, Diederik, Browne, Wesley R., Wezenberg, Sander J., Feringa, Ben L.
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.05.2019
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Overcrowded alkene-based light-driven molecular motors are able to perform large-amplitude repetitive unidirectional rotations. Their behaviour is well understood in solution. However, Brownian motion precludes the precise positioning at the nanoscale needed to harness cooperative action. Here, we demonstrate molecular motors organized in crystalline metal–organic frameworks (MOFs). The motor unit becomes a part of the organic linker (or strut), and its spatial arrangement is elucidated through powder and single-crystal X-ray analyses and polarized optical and Raman microscopies. We confirm that the light-driven unidirectional rotation of the motor units is retained in the MOF framework and that the motors can operate in the solid state with similar rotary speed (rate of thermal helix inversion) to that in solution. These ‘moto-MOFs’ could in the future be used to control dynamic function in crystalline materials. Overcrowded alkene-based motors are made part of the crystalline structure of a metal–organic framework. It is shown that they retain the same rotatory speed and unidirectionality as in solution.
AbstractList Overcrowded alkene-based light-driven molecular motors are able to perform large-amplitude repetitive unidirectional rotations. Their behaviour is well understood in solution. However, Brownian motion precludes the precise positioning at the nanoscale needed to harness cooperative action. Here, we demonstrate molecular motors organized in crystalline metal-organic frameworks (MOFs). The motor unit becomes a part of the organic linker (or strut), and its spatial arrangement is elucidated through powder and single-crystal X-ray analyses and polarized optical and Raman microscopies. We confirm that the light-driven unidirectional rotation of the motor units is retained in the MOF framework and that the motors can operate in the solid state with similar rotary speed (rate of thermal helix inversion) to that in solution. These 'moto-MOFs' could in the future be used to control dynamic function in crystalline materials.
Overcrowded alkene-based light-driven molecular motors are able to perform large-amplitude repetitive unidirectional rotations. Their behaviour is well understood in solution. However, Brownian motion precludes the precise positioning at the nanoscale needed to harness cooperative action. Here, we demonstrate molecular motors organized in crystalline metal–organic frameworks (MOFs). The motor unit becomes a part of the organic linker (or strut), and its spatial arrangement is elucidated through powder and single-crystal X-ray analyses and polarized optical and Raman microscopies. We confirm that the light-driven unidirectional rotation of the motor units is retained in the MOF framework and that the motors can operate in the solid state with similar rotary speed (rate of thermal helix inversion) to that in solution. These ‘moto-MOFs’ could in the future be used to control dynamic function in crystalline materials. Overcrowded alkene-based motors are made part of the crystalline structure of a metal–organic framework. It is shown that they retain the same rotatory speed and unidirectionality as in solution.
Overcrowded alkene-based light-driven molecular motors are able to perform large-amplitude repetitive unidirectional rotations. Their behaviour is well understood in solution. However, Brownian motion precludes the precise positioning at the nanoscale needed to harness cooperative action. Here, we demonstrate molecular motors organized in crystalline metal–organic frameworks (MOFs). The motor unit becomes a part of the organic linker (or strut), and its spatial arrangement is elucidated through powder and single-crystal X-ray analyses and polarized optical and Raman microscopies. We confirm that the light-driven unidirectional rotation of the motor units is retained in the MOF framework and that the motors can operate in the solid state with similar rotary speed (rate of thermal helix inversion) to that in solution. These ‘moto-MOFs’ could in the future be used to control dynamic function in crystalline materials.Overcrowded alkene-based motors are made part of the crystalline structure of a metal–organic framework. It is shown that they retain the same rotatory speed and unidirectionality as in solution.
Overcrowded alkene-based light-driven molecular motors are able to perform large-amplitude repetitive unidirectional rotations. Their behaviour is well understood in solution. However, Brownian motion precludes the precise positioning at the nanoscale needed to harness cooperative action. Here, we demonstrate molecular motors organized in crystalline metal-organic frameworks (MOFs). The motor unit becomes a part of the organic linker (or strut), and its spatial arrangement is elucidated through powder and single-crystal X-ray analyses and polarized optical and Raman microscopies. We confirm that the light-driven unidirectional rotation of the motor units is retained in the MOF framework and that the motors can operate in the solid state with similar rotary speed (rate of thermal helix inversion) to that in solution. These 'moto-MOFs' could in the future be used to control dynamic function in crystalline materials.Overcrowded alkene-based light-driven molecular motors are able to perform large-amplitude repetitive unidirectional rotations. Their behaviour is well understood in solution. However, Brownian motion precludes the precise positioning at the nanoscale needed to harness cooperative action. Here, we demonstrate molecular motors organized in crystalline metal-organic frameworks (MOFs). The motor unit becomes a part of the organic linker (or strut), and its spatial arrangement is elucidated through powder and single-crystal X-ray analyses and polarized optical and Raman microscopies. We confirm that the light-driven unidirectional rotation of the motor units is retained in the MOF framework and that the motors can operate in the solid state with similar rotary speed (rate of thermal helix inversion) to that in solution. These 'moto-MOFs' could in the future be used to control dynamic function in crystalline materials.
Author Danowski, Wojciech
Roke, Diederik
Wezenberg, Sander J.
Abdolahzadeh, Shaghayegh
Browne, Wesley R.
Feringa, Ben L.
van Leeuwen, Thomas
Author_xml – sequence: 1
  givenname: Wojciech
  surname: Danowski
  fullname: Danowski, Wojciech
  organization: Centre for Systems Chemistry, Stratingh Institute for Chemistry, University of Groningen
– sequence: 2
  givenname: Thomas
  surname: van Leeuwen
  fullname: van Leeuwen, Thomas
  organization: Centre for Systems Chemistry, Stratingh Institute for Chemistry, University of Groningen
– sequence: 3
  givenname: Shaghayegh
  surname: Abdolahzadeh
  fullname: Abdolahzadeh, Shaghayegh
  organization: Molecular Inorganic Chemistry Group, Stratingh Institute for Chemistry, University of Groningen
– sequence: 4
  givenname: Diederik
  surname: Roke
  fullname: Roke, Diederik
  organization: Centre for Systems Chemistry, Stratingh Institute for Chemistry, University of Groningen
– sequence: 5
  givenname: Wesley R.
  orcidid: 0000-0001-5063-6961
  surname: Browne
  fullname: Browne, Wesley R.
  email: w.r.browne@rug.nl
  organization: Centre for Systems Chemistry, Stratingh Institute for Chemistry, University of Groningen, Molecular Inorganic Chemistry Group, Stratingh Institute for Chemistry, University of Groningen
– sequence: 6
  givenname: Sander J.
  orcidid: 0000-0001-9192-3393
  surname: Wezenberg
  fullname: Wezenberg, Sander J.
  email: s.j.wezenberg@rug.nl
  organization: Centre for Systems Chemistry, Stratingh Institute for Chemistry, University of Groningen
– sequence: 7
  givenname: Ben L.
  orcidid: 0000-0003-0588-8435
  surname: Feringa
  fullname: Feringa, Ben L.
  email: b.l.feringa@rug.nl
  organization: Centre for Systems Chemistry, Stratingh Institute for Chemistry, University of Groningen
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30886378$$D View this record in MEDLINE/PubMed
BookMark eNp9kctKAzEUhoNUbKs-gBsZcONmNCfJZDK4kuINCm7sOqSZTEmdmdRkirjzHXxDn8TUtgoF3eQC33c45_xD1GtdaxA6AXwBmIrLwCDjWYqhSDHDkPI9NICciZTSIuv9vEXeR8MQ5hhnpCDsAPUpFoLTXAzQ1aS1pfVGd9a1qk6865R_Sxq3-ie2TVTSmE7Vn-8fzs9Ua3VSedWYV-efj9B-pepgjjf3IZrc3jyN7tPx493D6HqcaiagSzknJUxJlZXMFCDiUWJFaYYVKxTkmCumdaamFWBTYuA519PYv6aUmAyYoIfofF134d3L0oRONjZoU9eqNW4ZJIGCAWX8Gz3bQedu6eNgkSIEIpkTHKnTDbWcNqaUC2-bOLXcriUC-RrQ3oXgTSW17dRqJZ1XtpaA5SoAuQ5AxgDkKgDJowk75rb4fw5ZOyGy7cz436b_lr4AuZ6WSw
CitedBy_id crossref_primary_10_1038_s41578_020_0225_x
crossref_primary_10_1002_anie_201910467
crossref_primary_10_1002_ange_202115145
crossref_primary_10_1039_D0CS00178C
crossref_primary_10_1126_sciadv_abb6165
crossref_primary_10_1021_jacs_4c01628
crossref_primary_10_1038_s41467_024_50587_4
crossref_primary_10_1021_jacs_9b09643
crossref_primary_10_1038_s41467_020_16527_8
crossref_primary_10_1038_s41557_020_0493_5
crossref_primary_10_1002_anie_202404878
crossref_primary_10_3390_molecules25030697
crossref_primary_10_1039_D3SC03090C
crossref_primary_10_1002_agt2_584
crossref_primary_10_1016_j_chempr_2023_06_006
crossref_primary_10_1021_jacs_0c11981
crossref_primary_10_1039_D0NA00647E
crossref_primary_10_1038_s41467_020_19123_y
crossref_primary_10_1126_sciadv_add0410
crossref_primary_10_1021_acs_jpcb_0c06343
crossref_primary_10_1002_adma_202410067
crossref_primary_10_1126_sciadv_adr9326
crossref_primary_10_1039_D3NA00010A
crossref_primary_10_1002_ange_202217680
crossref_primary_10_1002_anie_202201882
crossref_primary_10_1021_acs_joc_0c01235
crossref_primary_10_3390_ijms23137121
crossref_primary_10_1016_j_chempr_2021_12_008
crossref_primary_10_1021_acsaem_0c00260
crossref_primary_10_1021_jacs_0c04477
crossref_primary_10_1016_j_chempr_2023_08_004
crossref_primary_10_1002_ange_202214202
crossref_primary_10_1002_anie_202002713
crossref_primary_10_1021_acscentsci_0c00064
crossref_primary_10_1021_jacs_1c03801
crossref_primary_10_1038_s41557_024_01521_0
crossref_primary_10_1002_chem_202000701
crossref_primary_10_1002_cjoc_202100263
crossref_primary_10_1039_D3CS00247K
crossref_primary_10_1002_ange_202101646
crossref_primary_10_1021_jacs_0c11752
crossref_primary_10_1002_adma_201905227
crossref_primary_10_1002_adfm_202103311
crossref_primary_10_1002_ange_202201882
crossref_primary_10_1002_smll_202207547
crossref_primary_10_1126_science_abk1391
crossref_primary_10_1007_s40820_024_01379_4
crossref_primary_10_1002_adfm_201909062
crossref_primary_10_1002_adfm_202401431
crossref_primary_10_1002_ajoc_201900374
crossref_primary_10_1021_acs_cgd_0c01028
crossref_primary_10_1002_smll_202402785
crossref_primary_10_1038_s41467_022_29149_z
crossref_primary_10_1002_adma_201906036
crossref_primary_10_1016_j_matt_2023_11_020
crossref_primary_10_1038_s41578_022_00482_5
crossref_primary_10_1021_jacs_0c01753
crossref_primary_10_1039_D2QO00129B
crossref_primary_10_1038_s41467_021_21677_4
crossref_primary_10_1038_s41570_022_00412_7
crossref_primary_10_1002_ange_202002713
crossref_primary_10_1021_acs_nanolett_2c01770
crossref_primary_10_1002_adma_202103808
crossref_primary_10_1021_jacs_1c03630
crossref_primary_10_1039_D4QI01511H
crossref_primary_10_1002_anie_202101646
crossref_primary_10_1021_acs_inorgchem_1c03425
crossref_primary_10_1038_s41467_023_39402_8
crossref_primary_10_1002_ange_201910467
crossref_primary_10_1021_jacs_0c13388
crossref_primary_10_1002_chem_202302267
crossref_primary_10_1002_anie_201909988
crossref_primary_10_1134_S0022476620100133
crossref_primary_10_1002_adma_202302732
crossref_primary_10_1038_s41563_022_01334_x
crossref_primary_10_1039_D2CS00167E
crossref_primary_10_1038_s41467_021_21208_1
crossref_primary_10_1016_j_nantod_2020_100985
crossref_primary_10_1038_s41467_022_29820_5
crossref_primary_10_1021_acsnano_2c12720
crossref_primary_10_1039_D4CC02084G
crossref_primary_10_1021_jacs_0c08249
crossref_primary_10_1016_j_chempr_2020_06_016
crossref_primary_10_1021_jacs_9b06187
crossref_primary_10_1021_acs_chemrev_0c00535
crossref_primary_10_1002_ange_202100294
crossref_primary_10_1021_acs_accounts_0c00434
crossref_primary_10_1039_D2SC02282F
crossref_primary_10_1021_acscentsci_5c00022
crossref_primary_10_1016_j_mtchem_2022_100893
crossref_primary_10_3389_fchem_2023_1283924
crossref_primary_10_1039_D0QM01091J
crossref_primary_10_1021_jacs_1c13537
crossref_primary_10_1039_D0FD00016G
crossref_primary_10_1002_anie_202004535
crossref_primary_10_1016_j_apsusc_2021_151340
crossref_primary_10_1002_ange_201909988
crossref_primary_10_1038_s42004_021_00484_4
crossref_primary_10_3390_cryst12060846
crossref_primary_10_1021_acscentsci_9b00497
crossref_primary_10_1039_C9CC06516D
crossref_primary_10_1021_acs_inorgchem_2c01999
crossref_primary_10_1186_s12951_025_03252_x
crossref_primary_10_1002_ange_202104285
crossref_primary_10_1002_anie_202100294
crossref_primary_10_1038_s41557_020_0495_3
crossref_primary_10_1021_acs_inorgchem_1c00217
crossref_primary_10_3390_molecules30020321
crossref_primary_10_1039_D3DT03959E
crossref_primary_10_1016_j_trechm_2019_05_005
crossref_primary_10_1002_cnma_202100486
crossref_primary_10_1021_acs_jpca_3c05841
crossref_primary_10_1002_anie_202115145
crossref_primary_10_1039_D0CP06263D
crossref_primary_10_1002_anie_202413047
crossref_primary_10_1016_j_surfrep_2023_100596
crossref_primary_10_1038_s41570_020_0209_9
crossref_primary_10_1002_adfm_202107949
crossref_primary_10_1002_cplu_202200153
crossref_primary_10_1038_s43246_024_00485_5
crossref_primary_10_1002_anie_202109048
crossref_primary_10_1016_j_ccr_2024_215690
crossref_primary_10_1073_pnas_2301279120
crossref_primary_10_1038_s41467_022_33177_0
crossref_primary_10_1021_acs_chemmater_3c03111
crossref_primary_10_1039_D2SC03923K
crossref_primary_10_1002_adma_202211729
crossref_primary_10_1021_acs_joc_2c01457
crossref_primary_10_1002_ange_202109048
crossref_primary_10_1002_smll_202006757
crossref_primary_10_1038_s41557_020_0517_1
crossref_primary_10_1021_jacs_0c03063
crossref_primary_10_1126_sciadv_abn4426
crossref_primary_10_1002_ange_202404878
crossref_primary_10_1038_s41565_019_0414_1
crossref_primary_10_1038_s41578_024_00760_4
crossref_primary_10_1021_acs_jpclett_9b02752
crossref_primary_10_1016_j_reactfunctpolym_2022_105209
crossref_primary_10_1039_D4SC01793E
crossref_primary_10_1002_chem_201905139
crossref_primary_10_1016_j_mtcomm_2024_108382
crossref_primary_10_1002_advs_202101773
crossref_primary_10_1002_anie_202217680
crossref_primary_10_1002_adfm_201908292
crossref_primary_10_1002_anie_202104285
crossref_primary_10_1016_j_ccr_2021_213862
crossref_primary_10_1039_D0SC04495D
crossref_primary_10_1038_s42004_023_00945_y
crossref_primary_10_1002_anie_202400495
crossref_primary_10_1021_acs_chemmater_0c02277
crossref_primary_10_1002_cphc_202400603
crossref_primary_10_1021_acs_chemrev_9b00221
crossref_primary_10_1002_aenm_202100324
crossref_primary_10_1038_s43246_024_00573_6
crossref_primary_10_1002_ange_202004535
crossref_primary_10_1002_adma_202413981
crossref_primary_10_1039_D1SC04781G
crossref_primary_10_1016_j_mtchem_2022_101036
crossref_primary_10_1002_anie_202214202
crossref_primary_10_1007_s40242_022_2210_y
crossref_primary_10_1002_cjoc_202100534
crossref_primary_10_1016_j_chempr_2020_11_009
crossref_primary_10_1021_jacs_3c00132
crossref_primary_10_3390_molecules28020816
crossref_primary_10_1021_jacs_3c01225
crossref_primary_10_1038_s41563_022_01317_y
crossref_primary_10_1002_smsc_202400110
crossref_primary_10_1002_adma_201906064
crossref_primary_10_1002_ange_202400495
crossref_primary_10_1039_D0SC02795B
crossref_primary_10_1021_acs_cgd_9b01697
crossref_primary_10_1021_acs_chemrev_9b00291
crossref_primary_10_1021_jacs_4c16530
crossref_primary_10_1039_D1CP05013C
crossref_primary_10_1002_adfm_202307518
crossref_primary_10_1002_ange_202413047
crossref_primary_10_1038_s41565_022_01097_1
crossref_primary_10_1016_j_matt_2020_05_014
crossref_primary_10_1021_jacs_2c09879
Cites_doi 10.1126/science.288.5463.88
10.1038/nchem.1354
10.1038/nnano.2014.315
10.1039/b804684k
10.1038/nnano.2017.28
10.1002/anie.201805004
10.1039/C7CS00068E
10.1002/anie.200604941
10.1073/pnas.1708817115
10.1038/nmat1455
10.1038/nchem.654
10.1038/s41570-017-0096
10.1021/jacs.7b02979
10.1039/C1CS15262A
10.1021/ja077122c
10.1038/nchem.1859
10.1021/cg501066s
10.1021/ja002755b
10.1039/c3sc21659d
10.1021/cm303749m
10.1038/s41565-017-0059-x
10.1021/jacs.7b05404
10.1039/b602311h
10.1021/ja909519e
10.1038/43646
10.1038/natrevmats.2015.18
10.1038/nchem.1343
10.1351/pac200375101383
10.1021/jacs.7b07856
10.1002/anie.200504313
10.1063/1.1826222
10.1038/nature04127
10.1021/ja808853q
10.1002/anie.201306923
10.1021/cm401724v
10.1002/chem.201702930
10.1038/nchem.2258
10.1021/ja711283c
10.1021/ja412110t
10.1021/acs.chemrev.5b00146
10.1038/440163a
10.1126/science.1230444
10.1039/C7CC02983G
10.1021/jacs.5b04674
10.1039/C5TA09424K
10.1021/ja502238a
10.1038/nchem.2887
10.1021/jacs.6b09880
10.1021/cr030071r
10.1021/jacs.8b02994
10.1039/C6SC04806D
10.1002/3527601600
10.1002/3527601503
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature Limited 2019
2019© The Author(s), under exclusive licence to Springer Nature Limited 2019
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature Limited 2019
– notice: 2019© The Author(s), under exclusive licence to Springer Nature Limited 2019
DBID AAYXX
CITATION
NPM
3V.
7QO
7U5
7X7
7XB
88E
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
D1I
DWQXO
F28
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
KB.
L6V
L7M
LK8
M0S
M1P
M7P
M7S
P5Z
P62
P64
PDBOC
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7X8
DOI 10.1038/s41565-019-0401-6
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Health & Medical Collection (ProQuest)
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest SciTech Premium Collection Technology Collection Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One
ProQuest Materials Science Collection
ProQuest Central Korea
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Collection (ProQuest)
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Biological Sciences
Health & Medical Collection (Alumni)
Medical Database
Biological Science Database (ProQuest)
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central
ProQuest Health & Medical Research Collection
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Materials Science Database
Advanced Technologies Database with Aerospace
ProQuest Materials Science Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Materials Science & Engineering Collection
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList PubMed

ProQuest Central Student
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1748-3395
EndPage 494
ExternalDocumentID 30886378
10_1038_s41565_019_0401_6
Genre Journal Article
GroupedDBID ---
-~X
0R~
123
29M
39C
3V.
4.4
53G
5BI
5M7
5S5
6OB
70F
7X7
88E
8FE
8FG
8FH
8FI
8FJ
8R4
8R5
AAEEF
AARCD
AAYZH
AAZLF
ABAWZ
ABDBF
ABJCF
ABJNI
ABLJU
ABUWG
ACBWK
ACGFS
ACIWK
ACPRK
ACUHS
ADBBV
AENEX
AEUYN
AFANA
AFBBN
AFKRA
AFLOW
AFRAH
AFSHS
AFWHJ
AGAYW
AGHTU
AHBCP
AHMBA
AHOSX
AHSBF
AIBTJ
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ARMCB
ASPBG
AVWKF
AXYYD
AZFZN
BBNVY
BENPR
BGLVJ
BHPHI
BKKNO
BPHCQ
BVXVI
CCPQU
CS3
D1I
DB5
DU5
EBS
EE.
EJD
EMOBN
ESX
EXGXG
F5P
FEDTE
FQGFK
FSGXE
FYUFA
HCIFZ
HMCUK
HVGLF
HZ~
I-F
KB.
L6V
LK8
M1P
M7P
M7S
MM.
NNMJJ
O9-
ODYON
P2P
P62
PDBOC
PQQKQ
PROAC
PSQYO
PTHSS
Q2X
RNS
RNT
RNTTT
SHXYY
SIXXV
SNYQT
SOJ
SV3
TAOOD
TBHMF
TDRGL
TSG
TUS
UKHRP
~8M
AAYXX
ABFSG
ACSTC
AEZWR
AFHIU
AHWEU
AIXLP
ALPWD
ATHPR
CITATION
PHGZM
PHGZT
NFIDA
NPM
7QO
7U5
7XB
8FD
8FK
AZQEC
DWQXO
F28
FR3
GNUQQ
K9.
L7M
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
7X8
ID FETCH-LOGICAL-c481t-662d1b2f5d4e9184e9d0a3350a49a1706a4cc5abf10ed01676cb395c332e51483
IEDL.DBID 7X7
ISSN 1748-3387
1748-3395
IngestDate Fri Jul 11 10:55:15 EDT 2025
Sat Aug 23 12:51:32 EDT 2025
Thu Apr 03 07:05:32 EDT 2025
Tue Jul 01 01:56:29 EDT 2025
Thu Apr 24 23:03:53 EDT 2025
Fri Feb 21 02:41:50 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c481t-662d1b2f5d4e9184e9d0a3350a49a1706a4cc5abf10ed01676cb395c332e51483
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-5063-6961
0000-0003-0588-8435
0000-0001-9192-3393
OpenAccessLink https://pure.rug.nl/ws/files/83557794/s41565_019_0401_6_1_.pdf
PMID 30886378
PQID 2221219720
PQPubID 546299
PageCount 7
ParticipantIDs proquest_miscellaneous_2194134648
proquest_journals_2221219720
pubmed_primary_30886378
crossref_citationtrail_10_1038_s41565_019_0401_6
crossref_primary_10_1038_s41565_019_0401_6
springer_journals_10_1038_s41565_019_0401_6
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-05-01
PublicationDateYYYYMMDD 2019-05-01
PublicationDate_xml – month: 05
  year: 2019
  text: 2019-05-01
  day: 01
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Nature nanotechnology
PublicationTitleAbbrev Nat. Nanotechnol
PublicationTitleAlternate Nat Nanotechnol
PublicationYear 2019
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References Furlong, Katz (CR51) 2017; 139
Williams (CR50) 2018; 140
Vukotic (CR38) 2015; 137
Huang, Sato, Aida (CR48) 2017; 139
Bracco (CR33) 2017; 23
Gould, Tranchemontagne, Yaghi, Garcia-Garibay (CR31) 2008; 130
Orlova (CR18) 2018; 13
Kaleta (CR25) 2017; 139
Pezzato, Cheng, Stoddart, Astumian (CR28) 2017; 46
Vukotic, Harris, Zhu, Schurko, Loeb (CR36) 2012; 4
Chen (CR22) 2018; 10
Vogelsberg (CR34) 2017; 114
Tinnemans (CR53) 2006; 8
Vives, De Rouville, Carella, Launay, Rapenne (CR4) 2009; 38
Pijper, Jongejan, Meetsma, Feringa (CR17) 2008; 130
Coskun, Banaszak, Astumian, Stoddart, Grzybowski (CR9) 2012; 41
Foy (CR21) 2017; 12
Bracco (CR32) 2017; 53
Erbas-Cakmak, Leigh, McTernan, Nussbaumer (CR5) 2015; 115
Jones, Tansell, Easun (CR52) 2016; 4
CR2
Howarth (CR29) 2016; 1
Farha, Malliakas, Kanatzidis, Hupp (CR41) 2010; 132
Karagiaridi, Bury, Mondloch, Hupp, Farha (CR43) 2014; 53
CR8
Furukawa, Cordova, O’Keeffe, Yaghi (CR30) 2013; 341
Dietrich-Buchecker, Jimenez-Molero, Sartor, Sauvage (CR1) 2003; 75
Iamsaard (CR19) 2014; 6
Berná (CR11) 2005; 4
Vale, Milligan (CR7) 2000; 288
Koumura, Geertsema, Meetsma, Feringa (CR14) 2000; 122
Kay, Leigh, Zerbetto (CR3) 2007; 46
Kinbara, Aida (CR6) 2005; 105
Zhu, O’Keefe, Vukotic, Schurko, Loeb (CR39) 2015; 7
Nelson, Farha, Mulfort, Hupp (CR47) 2009; 131
Deng, Olson, Stoddart, Yaghi (CR26) 2010; 2
Pijper, Feringa (CR16) 2007; 46
van Leeuwen, Lubbe, Štacko, Wezenberg, Feringa (CR10) 2017; 1
Damron (CR35) 2018; 57
Bury (CR44) 2013; 25
Huang (CR12) 2004; 85
Li (CR20) 2015; 10
Eelkema (CR15) 2006; 440
Van Delden (CR23) 2005; 437
Chen (CR24) 2014; 136
Karagiaridi (CR45) 2013; 25
Conyard (CR46) 2012; 4
Madrahimov (CR42) 2014; 14
Zhu, Vukotic, Okeefe, Schurko, Loeb (CR37) 2014; 136
Chen (CR40) 2016; 138
Koumura, Zijlstra, Van Delden, Harada, Feringa (CR13) 1999; 401
Astumian (CR27) 2017; 8
Brown (CR49) 2013; 4
R Eelkema (401_CR15) 2006; 440
C Dietrich-Buchecker (401_CR1) 2003; 75
T Orlova (401_CR18) 2018; 13
RD Vale (401_CR7) 2000; 288
SJ Tinnemans (401_CR53) 2006; 8
401_CR2
401_CR8
J Conyard (401_CR46) 2012; 4
CS Vogelsberg (401_CR34) 2017; 114
TJ Huang (401_CR12) 2004; 85
J Chen (401_CR22) 2018; 10
RA Delden Van (401_CR23) 2005; 437
H Furukawa (401_CR30) 2013; 341
G Vives (401_CR4) 2009; 38
C Pezzato (401_CR28) 2017; 46
A Coskun (401_CR9) 2012; 41
W Bury (401_CR44) 2013; 25
AP Nelson (401_CR47) 2009; 131
Q Chen (401_CR40) 2016; 138
JT Foy (401_CR21) 2017; 12
H Deng (401_CR26) 2010; 2
RD Astumian (401_CR27) 2017; 8
N Koumura (401_CR13) 1999; 401
O Karagiaridi (401_CR43) 2014; 53
BJ Furlong (401_CR51) 2017; 139
SL Gould (401_CR31) 2008; 130
JT Damron (401_CR35) 2018; 57
J Berná (401_CR11) 2005; 4
K Kinbara (401_CR6) 2005; 105
VN Vukotic (401_CR36) 2012; 4
OK Farha (401_CR41) 2010; 132
K Zhu (401_CR39) 2015; 7
J Kaleta (401_CR25) 2017; 139
VN Vukotic (401_CR38) 2015; 137
S Erbas-Cakmak (401_CR5) 2015; 115
S Bracco (401_CR33) 2017; 23
O Karagiaridi (401_CR45) 2013; 25
S Bracco (401_CR32) 2017; 53
DE Williams (401_CR50) 2018; 140
K Zhu (401_CR37) 2014; 136
Q Li (401_CR20) 2015; 10
AJ Howarth (401_CR29) 2016; 1
CL Jones (401_CR52) 2016; 4
S Iamsaard (401_CR19) 2014; 6
T Leeuwen van (401_CR10) 2017; 1
KY Chen (401_CR24) 2014; 136
ST Madrahimov (401_CR42) 2014; 14
N Koumura (401_CR14) 2000; 122
JW Brown (401_CR49) 2013; 4
D Pijper (401_CR16) 2007; 46
H Huang (401_CR48) 2017; 139
D Pijper (401_CR17) 2008; 130
ER Kay (401_CR3) 2007; 46
References_xml – volume: 288
  start-page: 88
  year: 2000
  end-page: 95
  ident: CR7
  article-title: The way things move: looking under the hood of molecular motor proteins
  publication-title: Science
  doi: 10.1126/science.288.5463.88
– volume: 4
  start-page: 456
  year: 2012
  end-page: 460
  ident: CR36
  article-title: Metal–organic frameworks with dynamic interlocked components
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.1354
– volume: 10
  start-page: 161
  year: 2015
  end-page: 165
  ident: CR20
  article-title: Macroscopic contraction of a gel induced by the integrated motion of light-driven molecular motors
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2014.315
– volume: 38
  start-page: 1551
  year: 2009
  end-page: 1561
  ident: CR4
  article-title: Prototypes of molecular motors based on star-shaped organometallic ruthenium complexes
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/b804684k
– volume: 12
  start-page: 540
  year: 2017
  end-page: 545
  ident: CR21
  article-title: Dual-light control of nanomachines that integrate motor and modulator subunits
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2017.28
– volume: 57
  start-page: 8678
  year: 2018
  end-page: 8681
  ident: CR35
  article-title: The influence of chemical modification on linker rotational dynamics in metal organic frameworks
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201805004
– volume: 46
  start-page: 5491
  year: 2017
  end-page: 5507
  ident: CR28
  article-title: Mastering the non-equilibrium assembly and operation of molecular machines
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C7CS00068E
– volume: 46
  start-page: 3693
  year: 2007
  end-page: 3696
  ident: CR16
  article-title: Molecular transmission: controlling the twist sense of a helical polymer with a single light-driven molecular motor
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.200604941
– ident: CR8
– volume: 114
  start-page: 13613
  year: 2017
  end-page: 13618
  ident: CR34
  article-title: Ultrafast rotation in an amphidynamic crystalline metal organic framework
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1708817115
– volume: 4
  start-page: 704
  year: 2005
  end-page: 710
  ident: CR11
  article-title: Macroscopic transport by synthetic molecular machines
  publication-title: Nat. Mater.
  doi: 10.1038/nmat1455
– volume: 2
  start-page: 439
  year: 2010
  end-page: 443
  ident: CR26
  article-title: Robust dynamics
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.654
– volume: 1
  start-page: 0096
  year: 2017
  ident: CR10
  article-title: Dynamic control of function by light-driven molecular motors
  publication-title: Nat. Rev. Chem.
  doi: 10.1038/s41570-017-0096
– volume: 139
  start-page: 8784
  year: 2017
  end-page: 8787
  ident: CR48
  article-title: Crystalline nanochannels with pendant azobenzene groups: steric or polar effects on gas adsorption and diffusion?
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b02979
– volume: 41
  start-page: 19
  year: 2012
  end-page: 30
  ident: CR9
  article-title: Great expectations: can artificial molecular machines deliver on their promise?
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C1CS15262A
– volume: 130
  start-page: 3246
  year: 2008
  end-page: 3247
  ident: CR31
  article-title: The amphidynamic character of crystalline MOF-5: rotational dynamics in a free-volume environment
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja077122c
– volume: 6
  start-page: 229
  year: 2014
  end-page: 235
  ident: CR19
  article-title: Conversion of light into macroscopic helical motion
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.1859
– volume: 14
  start-page: 6320
  year: 2014
  end-page: 6324
  ident: CR42
  article-title: Metal–organic frameworks containing (alkynyl)gold functionalities: a comparative evaluation of solvent-assisted linker exchange, de novo synthesis, and post-synthesis modification
  publication-title: Cryst. Growth Des.
  doi: 10.1021/cg501066s
– volume: 122
  start-page: 12005
  year: 2000
  end-page: 12006
  ident: CR14
  article-title: Light-driven molecular rotor: unidirectional rotation controlled by a single stereogenic center
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja002755b
– volume: 4
  start-page: 2858
  year: 2013
  ident: CR49
  article-title: Photophysical pore control in an azobenzene-containing metal–organic framework
  publication-title: Chem. Sci.
  doi: 10.1039/c3sc21659d
– volume: 25
  start-page: 739
  year: 2013
  end-page: 744
  ident: CR44
  article-title: Control over catenation in pillared paddlewheel metal–organic framework materials via solvent-assisted linker exchange
  publication-title: Chem. Mater.
  doi: 10.1021/cm303749m
– volume: 13
  start-page: 304
  year: 2018
  end-page: 308
  ident: CR18
  article-title: Revolving supramolecular chiral structures powered by light in nanomotor-doped liquid crystals
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-017-0059-x
– volume: 139
  start-page: 10486
  year: 2017
  end-page: 10498
  ident: CR25
  article-title: Surface inclusion of unidirectional molecular motors in hexagonal tris( -phenylene)cyclotriphosphazene
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b05404
– volume: 8
  start-page: 2413
  year: 2006
  ident: CR53
  article-title: Dealing with a local heating effect when measuring catalytic solids in a reactor with Raman spectroscopy
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/b602311h
– volume: 132
  start-page: 950
  year: 2010
  end-page: 952
  ident: CR41
  article-title: Control over catenation in metal–organic frameworks via rational design of the organic building block
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja909519e
– volume: 401
  start-page: 152
  year: 1999
  end-page: 155
  ident: CR13
  article-title: Light-driven monodirectional molecular rotor
  publication-title: Nature
  doi: 10.1038/43646
– volume: 1
  start-page: 15018
  year: 2016
  ident: CR29
  article-title: Chemical, thermal and mechanical stabilities of metal–organic frameworks
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/natrevmats.2015.18
– volume: 4
  start-page: 547
  year: 2012
  end-page: 551
  ident: CR46
  article-title: Ultrafast dynamics in the power stroke of a molecular rotary motor
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.1343
– volume: 75
  start-page: 1383
  year: 2003
  end-page: 1393
  ident: CR1
  article-title: Rotaxanes and catenanes as prototypes of molecular machines and motors
  publication-title: Pure Appl. Chem.
  doi: 10.1351/pac200375101383
– volume: 139
  start-page: 13280
  year: 2017
  end-page: 13283
  ident: CR51
  article-title: Bistable dithienylethene-based metal–organic framework illustrating optically induced changes in chemical separations
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b07856
– volume: 46
  start-page: 72
  year: 2007
  end-page: 191
  ident: CR3
  article-title: Synthetic molecular motors and mechanical machines
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.200504313
– volume: 85
  start-page: 5391
  year: 2004
  end-page: 5393
  ident: CR12
  article-title: A nanomechanical device based on linear molecular motors
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1826222
– volume: 437
  start-page: 1337
  year: 2005
  end-page: 1340
  ident: CR23
  article-title: Unidirectional molecular motor on a gold surface
  publication-title: Nature
  doi: 10.1038/nature04127
– volume: 131
  start-page: 458
  year: 2009
  end-page: 460
  ident: CR47
  article-title: Supercritical processing as a route to high internal surface areas and permanent microporosity in metal organic framework materials
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja808853q
– ident: CR2
– volume: 53
  start-page: 4530
  year: 2014
  end-page: 4540
  ident: CR43
  article-title: Solvent-assisted linker exchange: an alternative to the de novo synthesis of unattainable metal–organic frameworks
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201306923
– volume: 25
  start-page: 3499
  year: 2013
  end-page: 3503
  ident: CR45
  article-title: Opening metal–organic frameworks. Vol. 2: Inserting longer pillars into pillared-paddlewheel structures through solvent-assisted linker exchange
  publication-title: Chem. Mater.
  doi: 10.1021/cm401724v
– volume: 23
  start-page: 11210
  year: 2017
  end-page: 11215
  ident: CR33
  article-title: Ultrafast molecular rotors and their CO tuning in MOFs with rod-like ligands
  publication-title: Chem. Eur. J.
  doi: 10.1002/chem.201702930
– volume: 7
  start-page: 514
  year: 2015
  end-page: 519
  ident: CR39
  article-title: A molecular shuttle that operates inside a metal–organic framework
  publication-title: Nat. Chem
  doi: 10.1038/nchem.2258
– volume: 130
  start-page: 4541
  year: 2008
  end-page: 4552
  ident: CR17
  article-title: Light-controlled supramolecular helicity of a liquid crystalline phase using a helical polymer functionalized with a single chiroptical molecular switch
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja711283c
– volume: 136
  start-page: 3219
  year: 2014
  end-page: 3224
  ident: CR24
  article-title: Control of surface wettability using tripodal light-activated molecular motors
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja412110t
– volume: 115
  start-page: 10081
  year: 2015
  end-page: 10206
  ident: CR5
  article-title: Artificial molecular machines
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.5b00146
– volume: 440
  start-page: 163
  year: 2006
  ident: CR15
  article-title: Nanomotor rotates microscale objects
  publication-title: Nature
  doi: 10.1038/440163a
– volume: 341
  start-page: 1230444
  year: 2013
  ident: CR30
  article-title: The chemistry and applications of metal–organic frameworks
  publication-title: Science
  doi: 10.1126/science.1230444
– volume: 53
  start-page: 7776
  year: 2017
  end-page: 7779
  ident: CR32
  article-title: CO regulates molecular rotor dynamics in porous materials
  publication-title: Chem. Commun.
  doi: 10.1039/C7CC02983G
– volume: 137
  start-page: 9643
  year: 2015
  end-page: 9651
  ident: CR38
  article-title: Mechanically interlocked linkers inside metal−organic frameworks: effect of ring size on rotational dynamics
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b04674
– volume: 4
  start-page: 6714
  year: 2016
  end-page: 6723
  ident: CR52
  article-title: The lighter side of MOFs: structurally photoresponsive metal–organic frameworks
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C5TA09424K
– volume: 136
  start-page: 7403
  year: 2014
  end-page: 7409
  ident: CR37
  article-title: Metal–organic frameworks with mechanically interlocked pillars: controlling ring dynamics in the solid-state via a reversible phase change
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja502238a
– volume: 10
  start-page: 132
  year: 2018
  end-page: 138
  ident: CR22
  article-title: Artificial muscle-like function from hierarchical supramolecular assembly of photoresponsive molecular motors
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.2887
– volume: 138
  start-page: 14242
  year: 2016
  end-page: 14245
  ident: CR40
  article-title: A redox-active bistable molecular switch mounted inside a metal–organic framework
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b09880
– volume: 105
  start-page: 1377
  year: 2005
  end-page: 1400
  ident: CR6
  article-title: Toward intelligent molecular machines: directed motions of biological and artificial molecules and assemblies
  publication-title: Chem. Rev.
  doi: 10.1021/cr030071r
– volume: 140
  start-page: 7611
  year: 2018
  end-page: 7622
  ident: CR50
  article-title: Flipping the switch: fast photoisomerization in a confined environment
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b02994
– volume: 8
  start-page: 840
  year: 2017
  end-page: 845
  ident: CR27
  article-title: How molecular motors work—insights from the molecular machinist’s toolbox: the Nobel prize in Chemistry 2016
  publication-title: Chem. Sci.
  doi: 10.1039/C6SC04806D
– volume: 13
  start-page: 304
  year: 2018
  ident: 401_CR18
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-017-0059-x
– volume: 14
  start-page: 6320
  year: 2014
  ident: 401_CR42
  publication-title: Cryst. Growth Des.
  doi: 10.1021/cg501066s
– volume: 122
  start-page: 12005
  year: 2000
  ident: 401_CR14
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja002755b
– ident: 401_CR2
  doi: 10.1002/3527601600
– volume: 114
  start-page: 13613
  year: 2017
  ident: 401_CR34
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1708817115
– volume: 115
  start-page: 10081
  year: 2015
  ident: 401_CR5
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.5b00146
– volume: 85
  start-page: 5391
  year: 2004
  ident: 401_CR12
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1826222
– volume: 25
  start-page: 739
  year: 2013
  ident: 401_CR44
  publication-title: Chem. Mater.
  doi: 10.1021/cm303749m
– volume: 437
  start-page: 1337
  year: 2005
  ident: 401_CR23
  publication-title: Nature
  doi: 10.1038/nature04127
– volume: 341
  start-page: 1230444
  year: 2013
  ident: 401_CR30
  publication-title: Science
  doi: 10.1126/science.1230444
– volume: 140
  start-page: 7611
  year: 2018
  ident: 401_CR50
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b02994
– volume: 12
  start-page: 540
  year: 2017
  ident: 401_CR21
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2017.28
– volume: 139
  start-page: 8784
  year: 2017
  ident: 401_CR48
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b02979
– volume: 46
  start-page: 3693
  year: 2007
  ident: 401_CR16
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.200604941
– volume: 2
  start-page: 439
  year: 2010
  ident: 401_CR26
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.654
– volume: 131
  start-page: 458
  year: 2009
  ident: 401_CR47
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja808853q
– volume: 136
  start-page: 3219
  year: 2014
  ident: 401_CR24
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja412110t
– volume: 137
  start-page: 9643
  year: 2015
  ident: 401_CR38
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b04674
– volume: 401
  start-page: 152
  year: 1999
  ident: 401_CR13
  publication-title: Nature
  doi: 10.1038/43646
– volume: 288
  start-page: 88
  year: 2000
  ident: 401_CR7
  publication-title: Science
  doi: 10.1126/science.288.5463.88
– volume: 130
  start-page: 4541
  year: 2008
  ident: 401_CR17
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja711283c
– volume: 10
  start-page: 161
  year: 2015
  ident: 401_CR20
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2014.315
– volume: 4
  start-page: 456
  year: 2012
  ident: 401_CR36
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.1354
– volume: 41
  start-page: 19
  year: 2012
  ident: 401_CR9
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C1CS15262A
– volume: 53
  start-page: 7776
  year: 2017
  ident: 401_CR32
  publication-title: Chem. Commun.
  doi: 10.1039/C7CC02983G
– volume: 6
  start-page: 229
  year: 2014
  ident: 401_CR19
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.1859
– volume: 38
  start-page: 1551
  year: 2009
  ident: 401_CR4
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/b804684k
– volume: 23
  start-page: 11210
  year: 2017
  ident: 401_CR33
  publication-title: Chem. Eur. J.
  doi: 10.1002/chem.201702930
– volume: 53
  start-page: 4530
  year: 2014
  ident: 401_CR43
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201306923
– volume: 25
  start-page: 3499
  year: 2013
  ident: 401_CR45
  publication-title: Chem. Mater.
  doi: 10.1021/cm401724v
– volume: 4
  start-page: 547
  year: 2012
  ident: 401_CR46
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.1343
– volume: 57
  start-page: 8678
  year: 2018
  ident: 401_CR35
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201805004
– volume: 105
  start-page: 1377
  year: 2005
  ident: 401_CR6
  publication-title: Chem. Rev.
  doi: 10.1021/cr030071r
– volume: 4
  start-page: 6714
  year: 2016
  ident: 401_CR52
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C5TA09424K
– volume: 46
  start-page: 5491
  year: 2017
  ident: 401_CR28
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C7CS00068E
– volume: 1
  start-page: 0096
  year: 2017
  ident: 401_CR10
  publication-title: Nat. Rev. Chem.
  doi: 10.1038/s41570-017-0096
– volume: 4
  start-page: 704
  year: 2005
  ident: 401_CR11
  publication-title: Nat. Mater.
  doi: 10.1038/nmat1455
– volume: 139
  start-page: 10486
  year: 2017
  ident: 401_CR25
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b05404
– volume: 130
  start-page: 3246
  year: 2008
  ident: 401_CR31
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja077122c
– ident: 401_CR8
  doi: 10.1002/3527601503
– volume: 136
  start-page: 7403
  year: 2014
  ident: 401_CR37
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja502238a
– volume: 8
  start-page: 840
  year: 2017
  ident: 401_CR27
  publication-title: Chem. Sci.
  doi: 10.1039/C6SC04806D
– volume: 7
  start-page: 514
  year: 2015
  ident: 401_CR39
  publication-title: Nat. Chem
  doi: 10.1038/nchem.2258
– volume: 4
  start-page: 2858
  year: 2013
  ident: 401_CR49
  publication-title: Chem. Sci.
  doi: 10.1039/c3sc21659d
– volume: 10
  start-page: 132
  year: 2018
  ident: 401_CR22
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.2887
– volume: 132
  start-page: 950
  year: 2010
  ident: 401_CR41
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja909519e
– volume: 1
  start-page: 15018
  year: 2016
  ident: 401_CR29
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/natrevmats.2015.18
– volume: 138
  start-page: 14242
  year: 2016
  ident: 401_CR40
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b09880
– volume: 8
  start-page: 2413
  year: 2006
  ident: 401_CR53
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/b602311h
– volume: 46
  start-page: 72
  year: 2007
  ident: 401_CR3
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.200504313
– volume: 440
  start-page: 163
  year: 2006
  ident: 401_CR15
  publication-title: Nature
  doi: 10.1038/440163a
– volume: 139
  start-page: 13280
  year: 2017
  ident: 401_CR51
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b07856
– volume: 75
  start-page: 1383
  year: 2003
  ident: 401_CR1
  publication-title: Pure Appl. Chem.
  doi: 10.1351/pac200375101383
SSID ssj0052924
Score 2.628953
Snippet Overcrowded alkene-based light-driven molecular motors are able to perform large-amplitude repetitive unidirectional rotations. Their behaviour is well...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 488
SubjectTerms 140/131
140/133
639/301/299/921
639/638/541
Brownian motion
Chemistry and Materials Science
Crystal structure
Crystallinity
Materials Science
Metal-organic frameworks
Molecular motors
Motor units
Nanotechnology
Nanotechnology and Microengineering
Powder
Single crystals
Title Unidirectional rotary motion in a metal–organic framework
URI https://link.springer.com/article/10.1038/s41565-019-0401-6
https://www.ncbi.nlm.nih.gov/pubmed/30886378
https://www.proquest.com/docview/2221219720
https://www.proquest.com/docview/2194134648
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8QwEA66XvQgvl0fSwVPSrDNs8GDuOIqgouIwt5KmqQgaHfdx8Gb_8F_6C9x0seuInppDknaMDOdRyaZD6HDyBJQgTLFXJoQszQTWEHgjA2PLVjfkDjp7zvfdsX1I7vp8V614TaqjlXWOrFQ1LZv_B75CdixiHiMrPBs8Io9apTPrlYQGvNowZcu81Ite9OAixNVgtpKFmMIxWSd1aTxycgHLv7Ymk8NQEQtftqlX87mr0RpYX86K2i5chyD85LTq2jO5Wto6Vs5wXV0Cg5kaaKK_b1g2B_r4VtQAvUET3mggxcHzvbn-0cJ5mSCrD6btYEeO5cPF9e4AkfAhsXRGAtBbJSSjFvmFIRpTtlQU8pDzZT2NXE0M4brNItCZ_1dA2FSqrihlDhwkmK6iRp5P3fbKCAcNI1UlmU2ZaFxwKyUaCYdU2BCmWiisCZNYqrK4R7A4jkpMtg0TkpqJkDNxFMzgSlH0ymDsmzGf4P3anon1R80Smb8bqKDaTfIvk9o6Nz1JzAmUmCDmWBxE22VfJp-jYL6FFRCz3HNuNnL_1zKzv9L2UWLpBAZLzl7qDEeTtw-OCXjtFVIHjzjzlULLZx32u0utO3L7t39F2VG3rA
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JbhQxEC2FcIAcEGsyEMBIcAFZ6fbWbSGEEDBMyHJKpNyM23ZLkUJPmJkI5cY_8B_5qHwJ5fZ4AorILWe73Vb5uRZX2Q_gZekZqsCqobJyBRVNq6jGwJk6WXu0vgULVbzvvLOrRvvi64E8WIKzfBcmllVmndgraj928Yx8A-1YySJHVvH--AeNrFExu5opNBIstsLpTwzZpu82P-H6vmJs-Hnv44jOWQWoE3U5o0oxXzaslV4EjfFN0L6wnMvCCm3jYzJWOCdt05ZF8LFIX7mGa-k4ZwG9i5rjuDfgpuBoyePN9OGXrPkl04lEtxI1xdCvyllUXm9MY6AUy-RiKgIjePWvHbzk3F5KzPb2bngX7swdVfIhIeseLIXuPqz89XzhA3iLDmsyif15IpmMZ3ZyShIxEDnsiCXfAzr3579-J_IoR9pcC_YQ9q9FbI9guRt3YQ0Ik6jZKu1F6xtRuIDgaJgVVRAaTbZQAyiyaIybv1QeCTOOTJ8x57VJ0jQoTROlafCT14tPjtMzHVd1Xs_yNvMdOzUX-BrAi0Uz7rWYQLFdGJ9gn1KjzRdK1ANYTeu0-BtHda14hS1v8sJdDP7fqTy-eirP4dZob2fbbG_ubj2B26yHT0TROizPJifhKTpEs-ZZj0IC364b9n8AZN4WgQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dahQxFD7ULYi9KP53a9UIeqOEncnvDCKitktrdSlioXcxk8mAoLN1d4v0znfwbXwcn8STyWSrFHvX62Qy4eTL-ck5yQfwOK8ZqkBdUaldRkXVKFpi4EydLGq0vhnzOtx3fj9Ru4fi7ZE8WoFf6S5MKKtMOrFT1PXUhTPyEdqxnAWOrGzU9GURB9vjl8ffaGCQCpnWRKcRIbLvT79j-DZ_sbeNa_2EsfHOxze7tGcYoE4U-YIqxeq8Yo2shS8x1vFlnVnOZWZFacPDMlY4J23V5JmvQ8G-chUvpeOcefQ0Co7jXoFVHaKiAay-3pkcfEh2QLIyUupqUVAMBHXKqfJiNA9hUyiaC4kJjOfVv1bxnKt7Lk3bWb_xdVjv3VbyKuLsBqz49ias_fWY4S14ju5rNJDd6SKZTRd2dkoiTRD53BJLvnp09X__-BmppBxpUmXYbTi8FMHdgUE7bf0GECZRz-myFk1dicx5hErFrNBelGjAhRpClkRjXP9ueaDP-GK6_DkvTJSmQWmaIE2DnzxdfnIcH-24qPNWkrfp9-_cnKFtCI-WzbjzQjrFtn56gn3yEj0AoUQxhLtxnZZ_46i8FdfY8iwt3Nng_53K5sVTeQhXEfLm3d5k_x5cYx16Aoi2YLCYnfj76B0tqgc9DAl8umzk_wFHmhwT
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unidirectional+rotary+motion+in+a+metal%E2%80%93organic+framework&rft.jtitle=Nature+nanotechnology&rft.au=Danowski%2C+Wojciech&rft.au=van+Leeuwen%2C+Thomas&rft.au=Abdolahzadeh%2C+Shaghayegh&rft.au=Roke%2C+Diederik&rft.date=2019-05-01&rft.issn=1748-3387&rft.eissn=1748-3395&rft.volume=14&rft.issue=5&rft.spage=488&rft.epage=494&rft_id=info:doi/10.1038%2Fs41565-019-0401-6&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41565_019_0401_6
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1748-3387&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1748-3387&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1748-3387&client=summon