Unidirectional rotary motion in a metal–organic framework
Overcrowded alkene-based light-driven molecular motors are able to perform large-amplitude repetitive unidirectional rotations. Their behaviour is well understood in solution. However, Brownian motion precludes the precise positioning at the nanoscale needed to harness cooperative action. Here, we d...
Saved in:
Published in | Nature nanotechnology Vol. 14; no. 5; pp. 488 - 494 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.05.2019
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Overcrowded alkene-based light-driven molecular motors are able to perform large-amplitude repetitive unidirectional rotations. Their behaviour is well understood in solution. However, Brownian motion precludes the precise positioning at the nanoscale needed to harness cooperative action. Here, we demonstrate molecular motors organized in crystalline metal–organic frameworks (MOFs). The motor unit becomes a part of the organic linker (or strut), and its spatial arrangement is elucidated through powder and single-crystal X-ray analyses and polarized optical and Raman microscopies. We confirm that the light-driven unidirectional rotation of the motor units is retained in the MOF framework and that the motors can operate in the solid state with similar rotary speed (rate of thermal helix inversion) to that in solution. These ‘moto-MOFs’ could in the future be used to control dynamic function in crystalline materials.
Overcrowded alkene-based motors are made part of the crystalline structure of a metal–organic framework. It is shown that they retain the same rotatory speed and unidirectionality as in solution. |
---|---|
AbstractList | Overcrowded alkene-based light-driven molecular motors are able to perform large-amplitude repetitive unidirectional rotations. Their behaviour is well understood in solution. However, Brownian motion precludes the precise positioning at the nanoscale needed to harness cooperative action. Here, we demonstrate molecular motors organized in crystalline metal-organic frameworks (MOFs). The motor unit becomes a part of the organic linker (or strut), and its spatial arrangement is elucidated through powder and single-crystal X-ray analyses and polarized optical and Raman microscopies. We confirm that the light-driven unidirectional rotation of the motor units is retained in the MOF framework and that the motors can operate in the solid state with similar rotary speed (rate of thermal helix inversion) to that in solution. These 'moto-MOFs' could in the future be used to control dynamic function in crystalline materials. Overcrowded alkene-based light-driven molecular motors are able to perform large-amplitude repetitive unidirectional rotations. Their behaviour is well understood in solution. However, Brownian motion precludes the precise positioning at the nanoscale needed to harness cooperative action. Here, we demonstrate molecular motors organized in crystalline metal–organic frameworks (MOFs). The motor unit becomes a part of the organic linker (or strut), and its spatial arrangement is elucidated through powder and single-crystal X-ray analyses and polarized optical and Raman microscopies. We confirm that the light-driven unidirectional rotation of the motor units is retained in the MOF framework and that the motors can operate in the solid state with similar rotary speed (rate of thermal helix inversion) to that in solution. These ‘moto-MOFs’ could in the future be used to control dynamic function in crystalline materials. Overcrowded alkene-based motors are made part of the crystalline structure of a metal–organic framework. It is shown that they retain the same rotatory speed and unidirectionality as in solution. Overcrowded alkene-based light-driven molecular motors are able to perform large-amplitude repetitive unidirectional rotations. Their behaviour is well understood in solution. However, Brownian motion precludes the precise positioning at the nanoscale needed to harness cooperative action. Here, we demonstrate molecular motors organized in crystalline metal–organic frameworks (MOFs). The motor unit becomes a part of the organic linker (or strut), and its spatial arrangement is elucidated through powder and single-crystal X-ray analyses and polarized optical and Raman microscopies. We confirm that the light-driven unidirectional rotation of the motor units is retained in the MOF framework and that the motors can operate in the solid state with similar rotary speed (rate of thermal helix inversion) to that in solution. These ‘moto-MOFs’ could in the future be used to control dynamic function in crystalline materials.Overcrowded alkene-based motors are made part of the crystalline structure of a metal–organic framework. It is shown that they retain the same rotatory speed and unidirectionality as in solution. Overcrowded alkene-based light-driven molecular motors are able to perform large-amplitude repetitive unidirectional rotations. Their behaviour is well understood in solution. However, Brownian motion precludes the precise positioning at the nanoscale needed to harness cooperative action. Here, we demonstrate molecular motors organized in crystalline metal-organic frameworks (MOFs). The motor unit becomes a part of the organic linker (or strut), and its spatial arrangement is elucidated through powder and single-crystal X-ray analyses and polarized optical and Raman microscopies. We confirm that the light-driven unidirectional rotation of the motor units is retained in the MOF framework and that the motors can operate in the solid state with similar rotary speed (rate of thermal helix inversion) to that in solution. These 'moto-MOFs' could in the future be used to control dynamic function in crystalline materials.Overcrowded alkene-based light-driven molecular motors are able to perform large-amplitude repetitive unidirectional rotations. Their behaviour is well understood in solution. However, Brownian motion precludes the precise positioning at the nanoscale needed to harness cooperative action. Here, we demonstrate molecular motors organized in crystalline metal-organic frameworks (MOFs). The motor unit becomes a part of the organic linker (or strut), and its spatial arrangement is elucidated through powder and single-crystal X-ray analyses and polarized optical and Raman microscopies. We confirm that the light-driven unidirectional rotation of the motor units is retained in the MOF framework and that the motors can operate in the solid state with similar rotary speed (rate of thermal helix inversion) to that in solution. These 'moto-MOFs' could in the future be used to control dynamic function in crystalline materials. |
Author | Danowski, Wojciech Roke, Diederik Wezenberg, Sander J. Abdolahzadeh, Shaghayegh Browne, Wesley R. Feringa, Ben L. van Leeuwen, Thomas |
Author_xml | – sequence: 1 givenname: Wojciech surname: Danowski fullname: Danowski, Wojciech organization: Centre for Systems Chemistry, Stratingh Institute for Chemistry, University of Groningen – sequence: 2 givenname: Thomas surname: van Leeuwen fullname: van Leeuwen, Thomas organization: Centre for Systems Chemistry, Stratingh Institute for Chemistry, University of Groningen – sequence: 3 givenname: Shaghayegh surname: Abdolahzadeh fullname: Abdolahzadeh, Shaghayegh organization: Molecular Inorganic Chemistry Group, Stratingh Institute for Chemistry, University of Groningen – sequence: 4 givenname: Diederik surname: Roke fullname: Roke, Diederik organization: Centre for Systems Chemistry, Stratingh Institute for Chemistry, University of Groningen – sequence: 5 givenname: Wesley R. orcidid: 0000-0001-5063-6961 surname: Browne fullname: Browne, Wesley R. email: w.r.browne@rug.nl organization: Centre for Systems Chemistry, Stratingh Institute for Chemistry, University of Groningen, Molecular Inorganic Chemistry Group, Stratingh Institute for Chemistry, University of Groningen – sequence: 6 givenname: Sander J. orcidid: 0000-0001-9192-3393 surname: Wezenberg fullname: Wezenberg, Sander J. email: s.j.wezenberg@rug.nl organization: Centre for Systems Chemistry, Stratingh Institute for Chemistry, University of Groningen – sequence: 7 givenname: Ben L. orcidid: 0000-0003-0588-8435 surname: Feringa fullname: Feringa, Ben L. email: b.l.feringa@rug.nl organization: Centre for Systems Chemistry, Stratingh Institute for Chemistry, University of Groningen |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30886378$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kctKAzEUhoNUbKs-gBsZcONmNCfJZDK4kuINCm7sOqSZTEmdmdRkirjzHXxDn8TUtgoF3eQC33c45_xD1GtdaxA6AXwBmIrLwCDjWYqhSDHDkPI9NICciZTSIuv9vEXeR8MQ5hhnpCDsAPUpFoLTXAzQ1aS1pfVGd9a1qk6865R_Sxq3-ie2TVTSmE7Vn-8fzs9Ua3VSedWYV-efj9B-pepgjjf3IZrc3jyN7tPx493D6HqcaiagSzknJUxJlZXMFCDiUWJFaYYVKxTkmCumdaamFWBTYuA519PYv6aUmAyYoIfofF134d3L0oRONjZoU9eqNW4ZJIGCAWX8Gz3bQedu6eNgkSIEIpkTHKnTDbWcNqaUC2-bOLXcriUC-RrQ3oXgTSW17dRqJZ1XtpaA5SoAuQ5AxgDkKgDJowk75rb4fw5ZOyGy7cz436b_lr4AuZ6WSw |
CitedBy_id | crossref_primary_10_1038_s41578_020_0225_x crossref_primary_10_1002_anie_201910467 crossref_primary_10_1002_ange_202115145 crossref_primary_10_1039_D0CS00178C crossref_primary_10_1126_sciadv_abb6165 crossref_primary_10_1021_jacs_4c01628 crossref_primary_10_1038_s41467_024_50587_4 crossref_primary_10_1021_jacs_9b09643 crossref_primary_10_1038_s41467_020_16527_8 crossref_primary_10_1038_s41557_020_0493_5 crossref_primary_10_1002_anie_202404878 crossref_primary_10_3390_molecules25030697 crossref_primary_10_1039_D3SC03090C crossref_primary_10_1002_agt2_584 crossref_primary_10_1016_j_chempr_2023_06_006 crossref_primary_10_1021_jacs_0c11981 crossref_primary_10_1039_D0NA00647E crossref_primary_10_1038_s41467_020_19123_y crossref_primary_10_1126_sciadv_add0410 crossref_primary_10_1021_acs_jpcb_0c06343 crossref_primary_10_1002_adma_202410067 crossref_primary_10_1126_sciadv_adr9326 crossref_primary_10_1039_D3NA00010A crossref_primary_10_1002_ange_202217680 crossref_primary_10_1002_anie_202201882 crossref_primary_10_1021_acs_joc_0c01235 crossref_primary_10_3390_ijms23137121 crossref_primary_10_1016_j_chempr_2021_12_008 crossref_primary_10_1021_acsaem_0c00260 crossref_primary_10_1021_jacs_0c04477 crossref_primary_10_1016_j_chempr_2023_08_004 crossref_primary_10_1002_ange_202214202 crossref_primary_10_1002_anie_202002713 crossref_primary_10_1021_acscentsci_0c00064 crossref_primary_10_1021_jacs_1c03801 crossref_primary_10_1038_s41557_024_01521_0 crossref_primary_10_1002_chem_202000701 crossref_primary_10_1002_cjoc_202100263 crossref_primary_10_1039_D3CS00247K crossref_primary_10_1002_ange_202101646 crossref_primary_10_1021_jacs_0c11752 crossref_primary_10_1002_adma_201905227 crossref_primary_10_1002_adfm_202103311 crossref_primary_10_1002_ange_202201882 crossref_primary_10_1002_smll_202207547 crossref_primary_10_1126_science_abk1391 crossref_primary_10_1007_s40820_024_01379_4 crossref_primary_10_1002_adfm_201909062 crossref_primary_10_1002_adfm_202401431 crossref_primary_10_1002_ajoc_201900374 crossref_primary_10_1021_acs_cgd_0c01028 crossref_primary_10_1002_smll_202402785 crossref_primary_10_1038_s41467_022_29149_z crossref_primary_10_1002_adma_201906036 crossref_primary_10_1016_j_matt_2023_11_020 crossref_primary_10_1038_s41578_022_00482_5 crossref_primary_10_1021_jacs_0c01753 crossref_primary_10_1039_D2QO00129B crossref_primary_10_1038_s41467_021_21677_4 crossref_primary_10_1038_s41570_022_00412_7 crossref_primary_10_1002_ange_202002713 crossref_primary_10_1021_acs_nanolett_2c01770 crossref_primary_10_1002_adma_202103808 crossref_primary_10_1021_jacs_1c03630 crossref_primary_10_1039_D4QI01511H crossref_primary_10_1002_anie_202101646 crossref_primary_10_1021_acs_inorgchem_1c03425 crossref_primary_10_1038_s41467_023_39402_8 crossref_primary_10_1002_ange_201910467 crossref_primary_10_1021_jacs_0c13388 crossref_primary_10_1002_chem_202302267 crossref_primary_10_1002_anie_201909988 crossref_primary_10_1134_S0022476620100133 crossref_primary_10_1002_adma_202302732 crossref_primary_10_1038_s41563_022_01334_x crossref_primary_10_1039_D2CS00167E crossref_primary_10_1038_s41467_021_21208_1 crossref_primary_10_1016_j_nantod_2020_100985 crossref_primary_10_1038_s41467_022_29820_5 crossref_primary_10_1021_acsnano_2c12720 crossref_primary_10_1039_D4CC02084G crossref_primary_10_1021_jacs_0c08249 crossref_primary_10_1016_j_chempr_2020_06_016 crossref_primary_10_1021_jacs_9b06187 crossref_primary_10_1021_acs_chemrev_0c00535 crossref_primary_10_1002_ange_202100294 crossref_primary_10_1021_acs_accounts_0c00434 crossref_primary_10_1039_D2SC02282F crossref_primary_10_1021_acscentsci_5c00022 crossref_primary_10_1016_j_mtchem_2022_100893 crossref_primary_10_3389_fchem_2023_1283924 crossref_primary_10_1039_D0QM01091J crossref_primary_10_1021_jacs_1c13537 crossref_primary_10_1039_D0FD00016G crossref_primary_10_1002_anie_202004535 crossref_primary_10_1016_j_apsusc_2021_151340 crossref_primary_10_1002_ange_201909988 crossref_primary_10_1038_s42004_021_00484_4 crossref_primary_10_3390_cryst12060846 crossref_primary_10_1021_acscentsci_9b00497 crossref_primary_10_1039_C9CC06516D crossref_primary_10_1021_acs_inorgchem_2c01999 crossref_primary_10_1186_s12951_025_03252_x crossref_primary_10_1002_ange_202104285 crossref_primary_10_1002_anie_202100294 crossref_primary_10_1038_s41557_020_0495_3 crossref_primary_10_1021_acs_inorgchem_1c00217 crossref_primary_10_3390_molecules30020321 crossref_primary_10_1039_D3DT03959E crossref_primary_10_1016_j_trechm_2019_05_005 crossref_primary_10_1002_cnma_202100486 crossref_primary_10_1021_acs_jpca_3c05841 crossref_primary_10_1002_anie_202115145 crossref_primary_10_1039_D0CP06263D crossref_primary_10_1002_anie_202413047 crossref_primary_10_1016_j_surfrep_2023_100596 crossref_primary_10_1038_s41570_020_0209_9 crossref_primary_10_1002_adfm_202107949 crossref_primary_10_1002_cplu_202200153 crossref_primary_10_1038_s43246_024_00485_5 crossref_primary_10_1002_anie_202109048 crossref_primary_10_1016_j_ccr_2024_215690 crossref_primary_10_1073_pnas_2301279120 crossref_primary_10_1038_s41467_022_33177_0 crossref_primary_10_1021_acs_chemmater_3c03111 crossref_primary_10_1039_D2SC03923K crossref_primary_10_1002_adma_202211729 crossref_primary_10_1021_acs_joc_2c01457 crossref_primary_10_1002_ange_202109048 crossref_primary_10_1002_smll_202006757 crossref_primary_10_1038_s41557_020_0517_1 crossref_primary_10_1021_jacs_0c03063 crossref_primary_10_1126_sciadv_abn4426 crossref_primary_10_1002_ange_202404878 crossref_primary_10_1038_s41565_019_0414_1 crossref_primary_10_1038_s41578_024_00760_4 crossref_primary_10_1021_acs_jpclett_9b02752 crossref_primary_10_1016_j_reactfunctpolym_2022_105209 crossref_primary_10_1039_D4SC01793E crossref_primary_10_1002_chem_201905139 crossref_primary_10_1016_j_mtcomm_2024_108382 crossref_primary_10_1002_advs_202101773 crossref_primary_10_1002_anie_202217680 crossref_primary_10_1002_adfm_201908292 crossref_primary_10_1002_anie_202104285 crossref_primary_10_1016_j_ccr_2021_213862 crossref_primary_10_1039_D0SC04495D crossref_primary_10_1038_s42004_023_00945_y crossref_primary_10_1002_anie_202400495 crossref_primary_10_1021_acs_chemmater_0c02277 crossref_primary_10_1002_cphc_202400603 crossref_primary_10_1021_acs_chemrev_9b00221 crossref_primary_10_1002_aenm_202100324 crossref_primary_10_1038_s43246_024_00573_6 crossref_primary_10_1002_ange_202004535 crossref_primary_10_1002_adma_202413981 crossref_primary_10_1039_D1SC04781G crossref_primary_10_1016_j_mtchem_2022_101036 crossref_primary_10_1002_anie_202214202 crossref_primary_10_1007_s40242_022_2210_y crossref_primary_10_1002_cjoc_202100534 crossref_primary_10_1016_j_chempr_2020_11_009 crossref_primary_10_1021_jacs_3c00132 crossref_primary_10_3390_molecules28020816 crossref_primary_10_1021_jacs_3c01225 crossref_primary_10_1038_s41563_022_01317_y crossref_primary_10_1002_smsc_202400110 crossref_primary_10_1002_adma_201906064 crossref_primary_10_1002_ange_202400495 crossref_primary_10_1039_D0SC02795B crossref_primary_10_1021_acs_cgd_9b01697 crossref_primary_10_1021_acs_chemrev_9b00291 crossref_primary_10_1021_jacs_4c16530 crossref_primary_10_1039_D1CP05013C crossref_primary_10_1002_adfm_202307518 crossref_primary_10_1002_ange_202413047 crossref_primary_10_1038_s41565_022_01097_1 crossref_primary_10_1016_j_matt_2020_05_014 crossref_primary_10_1021_jacs_2c09879 |
Cites_doi | 10.1126/science.288.5463.88 10.1038/nchem.1354 10.1038/nnano.2014.315 10.1039/b804684k 10.1038/nnano.2017.28 10.1002/anie.201805004 10.1039/C7CS00068E 10.1002/anie.200604941 10.1073/pnas.1708817115 10.1038/nmat1455 10.1038/nchem.654 10.1038/s41570-017-0096 10.1021/jacs.7b02979 10.1039/C1CS15262A 10.1021/ja077122c 10.1038/nchem.1859 10.1021/cg501066s 10.1021/ja002755b 10.1039/c3sc21659d 10.1021/cm303749m 10.1038/s41565-017-0059-x 10.1021/jacs.7b05404 10.1039/b602311h 10.1021/ja909519e 10.1038/43646 10.1038/natrevmats.2015.18 10.1038/nchem.1343 10.1351/pac200375101383 10.1021/jacs.7b07856 10.1002/anie.200504313 10.1063/1.1826222 10.1038/nature04127 10.1021/ja808853q 10.1002/anie.201306923 10.1021/cm401724v 10.1002/chem.201702930 10.1038/nchem.2258 10.1021/ja711283c 10.1021/ja412110t 10.1021/acs.chemrev.5b00146 10.1038/440163a 10.1126/science.1230444 10.1039/C7CC02983G 10.1021/jacs.5b04674 10.1039/C5TA09424K 10.1021/ja502238a 10.1038/nchem.2887 10.1021/jacs.6b09880 10.1021/cr030071r 10.1021/jacs.8b02994 10.1039/C6SC04806D 10.1002/3527601600 10.1002/3527601503 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Nature Limited 2019 2019© The Author(s), under exclusive licence to Springer Nature Limited 2019 |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature Limited 2019 – notice: 2019© The Author(s), under exclusive licence to Springer Nature Limited 2019 |
DBID | AAYXX CITATION NPM 3V. 7QO 7U5 7X7 7XB 88E 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU D1I DWQXO F28 FR3 FYUFA GHDGH GNUQQ HCIFZ K9. KB. L6V L7M LK8 M0S M1P M7P M7S P5Z P62 P64 PDBOC PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7X8 |
DOI | 10.1038/s41565-019-0401-6 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Health & Medical Collection (ProQuest) ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest SciTech Premium Collection Technology Collection Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One ProQuest Materials Science Collection ProQuest Central Korea ANTE: Abstracts in New Technology & Engineering Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Collection (ProQuest) ProQuest Health & Medical Complete (Alumni) Materials Science Database ProQuest Engineering Collection Advanced Technologies Database with Aerospace Biological Sciences Health & Medical Collection (Alumni) Medical Database Biological Science Database (ProQuest) Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering collection MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials SciTech Premium Collection ProQuest Central China ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Engineering Database ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central ProQuest Health & Medical Research Collection ProQuest Engineering Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Materials Science Database Advanced Technologies Database with Aerospace ProQuest Materials Science Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Materials Science & Engineering Collection ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | PubMed ProQuest Central Student MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1748-3395 |
EndPage | 494 |
ExternalDocumentID | 30886378 10_1038_s41565_019_0401_6 |
Genre | Journal Article |
GroupedDBID | --- -~X 0R~ 123 29M 39C 3V. 4.4 53G 5BI 5M7 5S5 6OB 70F 7X7 88E 8FE 8FG 8FH 8FI 8FJ 8R4 8R5 AAEEF AARCD AAYZH AAZLF ABAWZ ABDBF ABJCF ABJNI ABLJU ABUWG ACBWK ACGFS ACIWK ACPRK ACUHS ADBBV AENEX AEUYN AFANA AFBBN AFKRA AFLOW AFRAH AFSHS AFWHJ AGAYW AGHTU AHBCP AHMBA AHOSX AHSBF AIBTJ ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS ARAPS ARMCB ASPBG AVWKF AXYYD AZFZN BBNVY BENPR BGLVJ BHPHI BKKNO BPHCQ BVXVI CCPQU CS3 D1I DB5 DU5 EBS EE. EJD EMOBN ESX EXGXG F5P FEDTE FQGFK FSGXE FYUFA HCIFZ HMCUK HVGLF HZ~ I-F KB. L6V LK8 M1P M7P M7S MM. NNMJJ O9- ODYON P2P P62 PDBOC PQQKQ PROAC PSQYO PTHSS Q2X RNS RNT RNTTT SHXYY SIXXV SNYQT SOJ SV3 TAOOD TBHMF TDRGL TSG TUS UKHRP ~8M AAYXX ABFSG ACSTC AEZWR AFHIU AHWEU AIXLP ALPWD ATHPR CITATION PHGZM PHGZT NFIDA NPM 7QO 7U5 7XB 8FD 8FK AZQEC DWQXO F28 FR3 GNUQQ K9. L7M P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS 7X8 |
ID | FETCH-LOGICAL-c481t-662d1b2f5d4e9184e9d0a3350a49a1706a4cc5abf10ed01676cb395c332e51483 |
IEDL.DBID | 7X7 |
ISSN | 1748-3387 1748-3395 |
IngestDate | Fri Jul 11 10:55:15 EDT 2025 Sat Aug 23 12:51:32 EDT 2025 Thu Apr 03 07:05:32 EDT 2025 Tue Jul 01 01:56:29 EDT 2025 Thu Apr 24 23:03:53 EDT 2025 Fri Feb 21 02:41:50 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c481t-662d1b2f5d4e9184e9d0a3350a49a1706a4cc5abf10ed01676cb395c332e51483 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-5063-6961 0000-0003-0588-8435 0000-0001-9192-3393 |
OpenAccessLink | https://pure.rug.nl/ws/files/83557794/s41565_019_0401_6_1_.pdf |
PMID | 30886378 |
PQID | 2221219720 |
PQPubID | 546299 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_2194134648 proquest_journals_2221219720 pubmed_primary_30886378 crossref_citationtrail_10_1038_s41565_019_0401_6 crossref_primary_10_1038_s41565_019_0401_6 springer_journals_10_1038_s41565_019_0401_6 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-05-01 |
PublicationDateYYYYMMDD | 2019-05-01 |
PublicationDate_xml | – month: 05 year: 2019 text: 2019-05-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Nature nanotechnology |
PublicationTitleAbbrev | Nat. Nanotechnol |
PublicationTitleAlternate | Nat Nanotechnol |
PublicationYear | 2019 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | Furlong, Katz (CR51) 2017; 139 Williams (CR50) 2018; 140 Vukotic (CR38) 2015; 137 Huang, Sato, Aida (CR48) 2017; 139 Bracco (CR33) 2017; 23 Gould, Tranchemontagne, Yaghi, Garcia-Garibay (CR31) 2008; 130 Orlova (CR18) 2018; 13 Kaleta (CR25) 2017; 139 Pezzato, Cheng, Stoddart, Astumian (CR28) 2017; 46 Vukotic, Harris, Zhu, Schurko, Loeb (CR36) 2012; 4 Chen (CR22) 2018; 10 Vogelsberg (CR34) 2017; 114 Tinnemans (CR53) 2006; 8 Vives, De Rouville, Carella, Launay, Rapenne (CR4) 2009; 38 Pijper, Jongejan, Meetsma, Feringa (CR17) 2008; 130 Coskun, Banaszak, Astumian, Stoddart, Grzybowski (CR9) 2012; 41 Foy (CR21) 2017; 12 Bracco (CR32) 2017; 53 Erbas-Cakmak, Leigh, McTernan, Nussbaumer (CR5) 2015; 115 Jones, Tansell, Easun (CR52) 2016; 4 CR2 Howarth (CR29) 2016; 1 Farha, Malliakas, Kanatzidis, Hupp (CR41) 2010; 132 Karagiaridi, Bury, Mondloch, Hupp, Farha (CR43) 2014; 53 CR8 Furukawa, Cordova, O’Keeffe, Yaghi (CR30) 2013; 341 Dietrich-Buchecker, Jimenez-Molero, Sartor, Sauvage (CR1) 2003; 75 Iamsaard (CR19) 2014; 6 Berná (CR11) 2005; 4 Vale, Milligan (CR7) 2000; 288 Koumura, Geertsema, Meetsma, Feringa (CR14) 2000; 122 Kay, Leigh, Zerbetto (CR3) 2007; 46 Kinbara, Aida (CR6) 2005; 105 Zhu, O’Keefe, Vukotic, Schurko, Loeb (CR39) 2015; 7 Nelson, Farha, Mulfort, Hupp (CR47) 2009; 131 Deng, Olson, Stoddart, Yaghi (CR26) 2010; 2 Pijper, Feringa (CR16) 2007; 46 van Leeuwen, Lubbe, Štacko, Wezenberg, Feringa (CR10) 2017; 1 Damron (CR35) 2018; 57 Bury (CR44) 2013; 25 Huang (CR12) 2004; 85 Li (CR20) 2015; 10 Eelkema (CR15) 2006; 440 Van Delden (CR23) 2005; 437 Chen (CR24) 2014; 136 Karagiaridi (CR45) 2013; 25 Conyard (CR46) 2012; 4 Madrahimov (CR42) 2014; 14 Zhu, Vukotic, Okeefe, Schurko, Loeb (CR37) 2014; 136 Chen (CR40) 2016; 138 Koumura, Zijlstra, Van Delden, Harada, Feringa (CR13) 1999; 401 Astumian (CR27) 2017; 8 Brown (CR49) 2013; 4 R Eelkema (401_CR15) 2006; 440 C Dietrich-Buchecker (401_CR1) 2003; 75 T Orlova (401_CR18) 2018; 13 RD Vale (401_CR7) 2000; 288 SJ Tinnemans (401_CR53) 2006; 8 401_CR2 401_CR8 J Conyard (401_CR46) 2012; 4 CS Vogelsberg (401_CR34) 2017; 114 TJ Huang (401_CR12) 2004; 85 J Chen (401_CR22) 2018; 10 RA Delden Van (401_CR23) 2005; 437 H Furukawa (401_CR30) 2013; 341 G Vives (401_CR4) 2009; 38 C Pezzato (401_CR28) 2017; 46 A Coskun (401_CR9) 2012; 41 W Bury (401_CR44) 2013; 25 AP Nelson (401_CR47) 2009; 131 Q Chen (401_CR40) 2016; 138 JT Foy (401_CR21) 2017; 12 H Deng (401_CR26) 2010; 2 RD Astumian (401_CR27) 2017; 8 N Koumura (401_CR13) 1999; 401 O Karagiaridi (401_CR43) 2014; 53 BJ Furlong (401_CR51) 2017; 139 SL Gould (401_CR31) 2008; 130 JT Damron (401_CR35) 2018; 57 J Berná (401_CR11) 2005; 4 K Kinbara (401_CR6) 2005; 105 VN Vukotic (401_CR36) 2012; 4 OK Farha (401_CR41) 2010; 132 K Zhu (401_CR39) 2015; 7 J Kaleta (401_CR25) 2017; 139 VN Vukotic (401_CR38) 2015; 137 S Erbas-Cakmak (401_CR5) 2015; 115 S Bracco (401_CR33) 2017; 23 O Karagiaridi (401_CR45) 2013; 25 S Bracco (401_CR32) 2017; 53 DE Williams (401_CR50) 2018; 140 K Zhu (401_CR37) 2014; 136 Q Li (401_CR20) 2015; 10 AJ Howarth (401_CR29) 2016; 1 CL Jones (401_CR52) 2016; 4 S Iamsaard (401_CR19) 2014; 6 T Leeuwen van (401_CR10) 2017; 1 KY Chen (401_CR24) 2014; 136 ST Madrahimov (401_CR42) 2014; 14 N Koumura (401_CR14) 2000; 122 JW Brown (401_CR49) 2013; 4 D Pijper (401_CR16) 2007; 46 H Huang (401_CR48) 2017; 139 D Pijper (401_CR17) 2008; 130 ER Kay (401_CR3) 2007; 46 |
References_xml | – volume: 288 start-page: 88 year: 2000 end-page: 95 ident: CR7 article-title: The way things move: looking under the hood of molecular motor proteins publication-title: Science doi: 10.1126/science.288.5463.88 – volume: 4 start-page: 456 year: 2012 end-page: 460 ident: CR36 article-title: Metal–organic frameworks with dynamic interlocked components publication-title: Nat. Chem. doi: 10.1038/nchem.1354 – volume: 10 start-page: 161 year: 2015 end-page: 165 ident: CR20 article-title: Macroscopic contraction of a gel induced by the integrated motion of light-driven molecular motors publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2014.315 – volume: 38 start-page: 1551 year: 2009 end-page: 1561 ident: CR4 article-title: Prototypes of molecular motors based on star-shaped organometallic ruthenium complexes publication-title: Chem. Soc. Rev. doi: 10.1039/b804684k – volume: 12 start-page: 540 year: 2017 end-page: 545 ident: CR21 article-title: Dual-light control of nanomachines that integrate motor and modulator subunits publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2017.28 – volume: 57 start-page: 8678 year: 2018 end-page: 8681 ident: CR35 article-title: The influence of chemical modification on linker rotational dynamics in metal organic frameworks publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201805004 – volume: 46 start-page: 5491 year: 2017 end-page: 5507 ident: CR28 article-title: Mastering the non-equilibrium assembly and operation of molecular machines publication-title: Chem. Soc. Rev. doi: 10.1039/C7CS00068E – volume: 46 start-page: 3693 year: 2007 end-page: 3696 ident: CR16 article-title: Molecular transmission: controlling the twist sense of a helical polymer with a single light-driven molecular motor publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.200604941 – ident: CR8 – volume: 114 start-page: 13613 year: 2017 end-page: 13618 ident: CR34 article-title: Ultrafast rotation in an amphidynamic crystalline metal organic framework publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1708817115 – volume: 4 start-page: 704 year: 2005 end-page: 710 ident: CR11 article-title: Macroscopic transport by synthetic molecular machines publication-title: Nat. Mater. doi: 10.1038/nmat1455 – volume: 2 start-page: 439 year: 2010 end-page: 443 ident: CR26 article-title: Robust dynamics publication-title: Nat. Chem. doi: 10.1038/nchem.654 – volume: 1 start-page: 0096 year: 2017 ident: CR10 article-title: Dynamic control of function by light-driven molecular motors publication-title: Nat. Rev. Chem. doi: 10.1038/s41570-017-0096 – volume: 139 start-page: 8784 year: 2017 end-page: 8787 ident: CR48 article-title: Crystalline nanochannels with pendant azobenzene groups: steric or polar effects on gas adsorption and diffusion? publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b02979 – volume: 41 start-page: 19 year: 2012 end-page: 30 ident: CR9 article-title: Great expectations: can artificial molecular machines deliver on their promise? publication-title: Chem. Soc. Rev. doi: 10.1039/C1CS15262A – volume: 130 start-page: 3246 year: 2008 end-page: 3247 ident: CR31 article-title: The amphidynamic character of crystalline MOF-5: rotational dynamics in a free-volume environment publication-title: J. Am. Chem. Soc. doi: 10.1021/ja077122c – volume: 6 start-page: 229 year: 2014 end-page: 235 ident: CR19 article-title: Conversion of light into macroscopic helical motion publication-title: Nat. Chem. doi: 10.1038/nchem.1859 – volume: 14 start-page: 6320 year: 2014 end-page: 6324 ident: CR42 article-title: Metal–organic frameworks containing (alkynyl)gold functionalities: a comparative evaluation of solvent-assisted linker exchange, de novo synthesis, and post-synthesis modification publication-title: Cryst. Growth Des. doi: 10.1021/cg501066s – volume: 122 start-page: 12005 year: 2000 end-page: 12006 ident: CR14 article-title: Light-driven molecular rotor: unidirectional rotation controlled by a single stereogenic center publication-title: J. Am. Chem. Soc. doi: 10.1021/ja002755b – volume: 4 start-page: 2858 year: 2013 ident: CR49 article-title: Photophysical pore control in an azobenzene-containing metal–organic framework publication-title: Chem. Sci. doi: 10.1039/c3sc21659d – volume: 25 start-page: 739 year: 2013 end-page: 744 ident: CR44 article-title: Control over catenation in pillared paddlewheel metal–organic framework materials via solvent-assisted linker exchange publication-title: Chem. Mater. doi: 10.1021/cm303749m – volume: 13 start-page: 304 year: 2018 end-page: 308 ident: CR18 article-title: Revolving supramolecular chiral structures powered by light in nanomotor-doped liquid crystals publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-017-0059-x – volume: 139 start-page: 10486 year: 2017 end-page: 10498 ident: CR25 article-title: Surface inclusion of unidirectional molecular motors in hexagonal tris( -phenylene)cyclotriphosphazene publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b05404 – volume: 8 start-page: 2413 year: 2006 ident: CR53 article-title: Dealing with a local heating effect when measuring catalytic solids in a reactor with Raman spectroscopy publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/b602311h – volume: 132 start-page: 950 year: 2010 end-page: 952 ident: CR41 article-title: Control over catenation in metal–organic frameworks via rational design of the organic building block publication-title: J. Am. Chem. Soc. doi: 10.1021/ja909519e – volume: 401 start-page: 152 year: 1999 end-page: 155 ident: CR13 article-title: Light-driven monodirectional molecular rotor publication-title: Nature doi: 10.1038/43646 – volume: 1 start-page: 15018 year: 2016 ident: CR29 article-title: Chemical, thermal and mechanical stabilities of metal–organic frameworks publication-title: Nat. Rev. Mater. doi: 10.1038/natrevmats.2015.18 – volume: 4 start-page: 547 year: 2012 end-page: 551 ident: CR46 article-title: Ultrafast dynamics in the power stroke of a molecular rotary motor publication-title: Nat. Chem. doi: 10.1038/nchem.1343 – volume: 75 start-page: 1383 year: 2003 end-page: 1393 ident: CR1 article-title: Rotaxanes and catenanes as prototypes of molecular machines and motors publication-title: Pure Appl. Chem. doi: 10.1351/pac200375101383 – volume: 139 start-page: 13280 year: 2017 end-page: 13283 ident: CR51 article-title: Bistable dithienylethene-based metal–organic framework illustrating optically induced changes in chemical separations publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b07856 – volume: 46 start-page: 72 year: 2007 end-page: 191 ident: CR3 article-title: Synthetic molecular motors and mechanical machines publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.200504313 – volume: 85 start-page: 5391 year: 2004 end-page: 5393 ident: CR12 article-title: A nanomechanical device based on linear molecular motors publication-title: Appl. Phys. Lett. doi: 10.1063/1.1826222 – volume: 437 start-page: 1337 year: 2005 end-page: 1340 ident: CR23 article-title: Unidirectional molecular motor on a gold surface publication-title: Nature doi: 10.1038/nature04127 – volume: 131 start-page: 458 year: 2009 end-page: 460 ident: CR47 article-title: Supercritical processing as a route to high internal surface areas and permanent microporosity in metal organic framework materials publication-title: J. Am. Chem. Soc. doi: 10.1021/ja808853q – ident: CR2 – volume: 53 start-page: 4530 year: 2014 end-page: 4540 ident: CR43 article-title: Solvent-assisted linker exchange: an alternative to the de novo synthesis of unattainable metal–organic frameworks publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201306923 – volume: 25 start-page: 3499 year: 2013 end-page: 3503 ident: CR45 article-title: Opening metal–organic frameworks. Vol. 2: Inserting longer pillars into pillared-paddlewheel structures through solvent-assisted linker exchange publication-title: Chem. Mater. doi: 10.1021/cm401724v – volume: 23 start-page: 11210 year: 2017 end-page: 11215 ident: CR33 article-title: Ultrafast molecular rotors and their CO tuning in MOFs with rod-like ligands publication-title: Chem. Eur. J. doi: 10.1002/chem.201702930 – volume: 7 start-page: 514 year: 2015 end-page: 519 ident: CR39 article-title: A molecular shuttle that operates inside a metal–organic framework publication-title: Nat. Chem doi: 10.1038/nchem.2258 – volume: 130 start-page: 4541 year: 2008 end-page: 4552 ident: CR17 article-title: Light-controlled supramolecular helicity of a liquid crystalline phase using a helical polymer functionalized with a single chiroptical molecular switch publication-title: J. Am. Chem. Soc. doi: 10.1021/ja711283c – volume: 136 start-page: 3219 year: 2014 end-page: 3224 ident: CR24 article-title: Control of surface wettability using tripodal light-activated molecular motors publication-title: J. Am. Chem. Soc. doi: 10.1021/ja412110t – volume: 115 start-page: 10081 year: 2015 end-page: 10206 ident: CR5 article-title: Artificial molecular machines publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.5b00146 – volume: 440 start-page: 163 year: 2006 ident: CR15 article-title: Nanomotor rotates microscale objects publication-title: Nature doi: 10.1038/440163a – volume: 341 start-page: 1230444 year: 2013 ident: CR30 article-title: The chemistry and applications of metal–organic frameworks publication-title: Science doi: 10.1126/science.1230444 – volume: 53 start-page: 7776 year: 2017 end-page: 7779 ident: CR32 article-title: CO regulates molecular rotor dynamics in porous materials publication-title: Chem. Commun. doi: 10.1039/C7CC02983G – volume: 137 start-page: 9643 year: 2015 end-page: 9651 ident: CR38 article-title: Mechanically interlocked linkers inside metal−organic frameworks: effect of ring size on rotational dynamics publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b04674 – volume: 4 start-page: 6714 year: 2016 end-page: 6723 ident: CR52 article-title: The lighter side of MOFs: structurally photoresponsive metal–organic frameworks publication-title: J. Mater. Chem. A doi: 10.1039/C5TA09424K – volume: 136 start-page: 7403 year: 2014 end-page: 7409 ident: CR37 article-title: Metal–organic frameworks with mechanically interlocked pillars: controlling ring dynamics in the solid-state via a reversible phase change publication-title: J. Am. Chem. Soc. doi: 10.1021/ja502238a – volume: 10 start-page: 132 year: 2018 end-page: 138 ident: CR22 article-title: Artificial muscle-like function from hierarchical supramolecular assembly of photoresponsive molecular motors publication-title: Nat. Chem. doi: 10.1038/nchem.2887 – volume: 138 start-page: 14242 year: 2016 end-page: 14245 ident: CR40 article-title: A redox-active bistable molecular switch mounted inside a metal–organic framework publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b09880 – volume: 105 start-page: 1377 year: 2005 end-page: 1400 ident: CR6 article-title: Toward intelligent molecular machines: directed motions of biological and artificial molecules and assemblies publication-title: Chem. Rev. doi: 10.1021/cr030071r – volume: 140 start-page: 7611 year: 2018 end-page: 7622 ident: CR50 article-title: Flipping the switch: fast photoisomerization in a confined environment publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b02994 – volume: 8 start-page: 840 year: 2017 end-page: 845 ident: CR27 article-title: How molecular motors work—insights from the molecular machinist’s toolbox: the Nobel prize in Chemistry 2016 publication-title: Chem. Sci. doi: 10.1039/C6SC04806D – volume: 13 start-page: 304 year: 2018 ident: 401_CR18 publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-017-0059-x – volume: 14 start-page: 6320 year: 2014 ident: 401_CR42 publication-title: Cryst. Growth Des. doi: 10.1021/cg501066s – volume: 122 start-page: 12005 year: 2000 ident: 401_CR14 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja002755b – ident: 401_CR2 doi: 10.1002/3527601600 – volume: 114 start-page: 13613 year: 2017 ident: 401_CR34 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1708817115 – volume: 115 start-page: 10081 year: 2015 ident: 401_CR5 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.5b00146 – volume: 85 start-page: 5391 year: 2004 ident: 401_CR12 publication-title: Appl. Phys. Lett. doi: 10.1063/1.1826222 – volume: 25 start-page: 739 year: 2013 ident: 401_CR44 publication-title: Chem. Mater. doi: 10.1021/cm303749m – volume: 437 start-page: 1337 year: 2005 ident: 401_CR23 publication-title: Nature doi: 10.1038/nature04127 – volume: 341 start-page: 1230444 year: 2013 ident: 401_CR30 publication-title: Science doi: 10.1126/science.1230444 – volume: 140 start-page: 7611 year: 2018 ident: 401_CR50 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b02994 – volume: 12 start-page: 540 year: 2017 ident: 401_CR21 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2017.28 – volume: 139 start-page: 8784 year: 2017 ident: 401_CR48 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b02979 – volume: 46 start-page: 3693 year: 2007 ident: 401_CR16 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.200604941 – volume: 2 start-page: 439 year: 2010 ident: 401_CR26 publication-title: Nat. Chem. doi: 10.1038/nchem.654 – volume: 131 start-page: 458 year: 2009 ident: 401_CR47 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja808853q – volume: 136 start-page: 3219 year: 2014 ident: 401_CR24 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja412110t – volume: 137 start-page: 9643 year: 2015 ident: 401_CR38 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b04674 – volume: 401 start-page: 152 year: 1999 ident: 401_CR13 publication-title: Nature doi: 10.1038/43646 – volume: 288 start-page: 88 year: 2000 ident: 401_CR7 publication-title: Science doi: 10.1126/science.288.5463.88 – volume: 130 start-page: 4541 year: 2008 ident: 401_CR17 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja711283c – volume: 10 start-page: 161 year: 2015 ident: 401_CR20 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2014.315 – volume: 4 start-page: 456 year: 2012 ident: 401_CR36 publication-title: Nat. Chem. doi: 10.1038/nchem.1354 – volume: 41 start-page: 19 year: 2012 ident: 401_CR9 publication-title: Chem. Soc. Rev. doi: 10.1039/C1CS15262A – volume: 53 start-page: 7776 year: 2017 ident: 401_CR32 publication-title: Chem. Commun. doi: 10.1039/C7CC02983G – volume: 6 start-page: 229 year: 2014 ident: 401_CR19 publication-title: Nat. Chem. doi: 10.1038/nchem.1859 – volume: 38 start-page: 1551 year: 2009 ident: 401_CR4 publication-title: Chem. Soc. Rev. doi: 10.1039/b804684k – volume: 23 start-page: 11210 year: 2017 ident: 401_CR33 publication-title: Chem. Eur. J. doi: 10.1002/chem.201702930 – volume: 53 start-page: 4530 year: 2014 ident: 401_CR43 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201306923 – volume: 25 start-page: 3499 year: 2013 ident: 401_CR45 publication-title: Chem. Mater. doi: 10.1021/cm401724v – volume: 4 start-page: 547 year: 2012 ident: 401_CR46 publication-title: Nat. Chem. doi: 10.1038/nchem.1343 – volume: 57 start-page: 8678 year: 2018 ident: 401_CR35 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201805004 – volume: 105 start-page: 1377 year: 2005 ident: 401_CR6 publication-title: Chem. Rev. doi: 10.1021/cr030071r – volume: 4 start-page: 6714 year: 2016 ident: 401_CR52 publication-title: J. Mater. Chem. A doi: 10.1039/C5TA09424K – volume: 46 start-page: 5491 year: 2017 ident: 401_CR28 publication-title: Chem. Soc. Rev. doi: 10.1039/C7CS00068E – volume: 1 start-page: 0096 year: 2017 ident: 401_CR10 publication-title: Nat. Rev. Chem. doi: 10.1038/s41570-017-0096 – volume: 4 start-page: 704 year: 2005 ident: 401_CR11 publication-title: Nat. Mater. doi: 10.1038/nmat1455 – volume: 139 start-page: 10486 year: 2017 ident: 401_CR25 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b05404 – volume: 130 start-page: 3246 year: 2008 ident: 401_CR31 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja077122c – ident: 401_CR8 doi: 10.1002/3527601503 – volume: 136 start-page: 7403 year: 2014 ident: 401_CR37 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja502238a – volume: 8 start-page: 840 year: 2017 ident: 401_CR27 publication-title: Chem. Sci. doi: 10.1039/C6SC04806D – volume: 7 start-page: 514 year: 2015 ident: 401_CR39 publication-title: Nat. Chem doi: 10.1038/nchem.2258 – volume: 4 start-page: 2858 year: 2013 ident: 401_CR49 publication-title: Chem. Sci. doi: 10.1039/c3sc21659d – volume: 10 start-page: 132 year: 2018 ident: 401_CR22 publication-title: Nat. Chem. doi: 10.1038/nchem.2887 – volume: 132 start-page: 950 year: 2010 ident: 401_CR41 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja909519e – volume: 1 start-page: 15018 year: 2016 ident: 401_CR29 publication-title: Nat. Rev. Mater. doi: 10.1038/natrevmats.2015.18 – volume: 138 start-page: 14242 year: 2016 ident: 401_CR40 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b09880 – volume: 8 start-page: 2413 year: 2006 ident: 401_CR53 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/b602311h – volume: 46 start-page: 72 year: 2007 ident: 401_CR3 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.200504313 – volume: 440 start-page: 163 year: 2006 ident: 401_CR15 publication-title: Nature doi: 10.1038/440163a – volume: 139 start-page: 13280 year: 2017 ident: 401_CR51 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b07856 – volume: 75 start-page: 1383 year: 2003 ident: 401_CR1 publication-title: Pure Appl. Chem. doi: 10.1351/pac200375101383 |
SSID | ssj0052924 |
Score | 2.628953 |
Snippet | Overcrowded alkene-based light-driven molecular motors are able to perform large-amplitude repetitive unidirectional rotations. Their behaviour is well... |
SourceID | proquest pubmed crossref springer |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 488 |
SubjectTerms | 140/131 140/133 639/301/299/921 639/638/541 Brownian motion Chemistry and Materials Science Crystal structure Crystallinity Materials Science Metal-organic frameworks Molecular motors Motor units Nanotechnology Nanotechnology and Microengineering Powder Single crystals |
Title | Unidirectional rotary motion in a metal–organic framework |
URI | https://link.springer.com/article/10.1038/s41565-019-0401-6 https://www.ncbi.nlm.nih.gov/pubmed/30886378 https://www.proquest.com/docview/2221219720 https://www.proquest.com/docview/2194134648 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8QwEA66XvQgvl0fSwVPSrDNs8GDuOIqgouIwt5KmqQgaHfdx8Gb_8F_6C9x0seuInppDknaMDOdRyaZD6HDyBJQgTLFXJoQszQTWEHgjA2PLVjfkDjp7zvfdsX1I7vp8V614TaqjlXWOrFQ1LZv_B75CdixiHiMrPBs8Io9apTPrlYQGvNowZcu81Ite9OAixNVgtpKFmMIxWSd1aTxycgHLv7Ymk8NQEQtftqlX87mr0RpYX86K2i5chyD85LTq2jO5Wto6Vs5wXV0Cg5kaaKK_b1g2B_r4VtQAvUET3mggxcHzvbn-0cJ5mSCrD6btYEeO5cPF9e4AkfAhsXRGAtBbJSSjFvmFIRpTtlQU8pDzZT2NXE0M4brNItCZ_1dA2FSqrihlDhwkmK6iRp5P3fbKCAcNI1UlmU2ZaFxwKyUaCYdU2BCmWiisCZNYqrK4R7A4jkpMtg0TkpqJkDNxFMzgSlH0ymDsmzGf4P3anon1R80Smb8bqKDaTfIvk9o6Nz1JzAmUmCDmWBxE22VfJp-jYL6FFRCz3HNuNnL_1zKzv9L2UWLpBAZLzl7qDEeTtw-OCXjtFVIHjzjzlULLZx32u0utO3L7t39F2VG3rA |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JbhQxEC2FcIAcEGsyEMBIcAFZ6fbWbSGEEDBMyHJKpNyM23ZLkUJPmJkI5cY_8B_5qHwJ5fZ4AorILWe73Vb5uRZX2Q_gZekZqsCqobJyBRVNq6jGwJk6WXu0vgULVbzvvLOrRvvi64E8WIKzfBcmllVmndgraj928Yx8A-1YySJHVvH--AeNrFExu5opNBIstsLpTwzZpu82P-H6vmJs-Hnv44jOWQWoE3U5o0oxXzaslV4EjfFN0L6wnMvCCm3jYzJWOCdt05ZF8LFIX7mGa-k4ZwG9i5rjuDfgpuBoyePN9OGXrPkl04lEtxI1xdCvyllUXm9MY6AUy-RiKgIjePWvHbzk3F5KzPb2bngX7swdVfIhIeseLIXuPqz89XzhA3iLDmsyif15IpmMZ3ZyShIxEDnsiCXfAzr3579-J_IoR9pcC_YQ9q9FbI9guRt3YQ0Ik6jZKu1F6xtRuIDgaJgVVRAaTbZQAyiyaIybv1QeCTOOTJ8x57VJ0jQoTROlafCT14tPjtMzHVd1Xs_yNvMdOzUX-BrAi0Uz7rWYQLFdGJ9gn1KjzRdK1ANYTeu0-BtHda14hS1v8sJdDP7fqTy-eirP4dZob2fbbG_ubj2B26yHT0TROizPJifhKTpEs-ZZj0IC364b9n8AZN4WgQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dahQxFD7ULYi9KP53a9UIeqOEncnvDCKitktrdSlioXcxk8mAoLN1d4v0znfwbXwcn8STyWSrFHvX62Qy4eTL-ck5yQfwOK8ZqkBdUaldRkXVKFpi4EydLGq0vhnzOtx3fj9Ru4fi7ZE8WoFf6S5MKKtMOrFT1PXUhTPyEdqxnAWOrGzU9GURB9vjl8ffaGCQCpnWRKcRIbLvT79j-DZ_sbeNa_2EsfHOxze7tGcYoE4U-YIqxeq8Yo2shS8x1vFlnVnOZWZFacPDMlY4J23V5JmvQ8G-chUvpeOcefQ0Co7jXoFVHaKiAay-3pkcfEh2QLIyUupqUVAMBHXKqfJiNA9hUyiaC4kJjOfVv1bxnKt7Lk3bWb_xdVjv3VbyKuLsBqz49ias_fWY4S14ju5rNJDd6SKZTRd2dkoiTRD53BJLvnp09X__-BmppBxpUmXYbTi8FMHdgUE7bf0GECZRz-myFk1dicx5hErFrNBelGjAhRpClkRjXP9ueaDP-GK6_DkvTJSmQWmaIE2DnzxdfnIcH-24qPNWkrfp9-_cnKFtCI-WzbjzQjrFtn56gn3yEj0AoUQxhLtxnZZ_46i8FdfY8iwt3Nng_53K5sVTeQhXEfLm3d5k_x5cYx16Aoi2YLCYnfj76B0tqgc9DAl8umzk_wFHmhwT |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unidirectional+rotary+motion+in+a+metal%E2%80%93organic+framework&rft.jtitle=Nature+nanotechnology&rft.au=Danowski%2C+Wojciech&rft.au=van+Leeuwen%2C+Thomas&rft.au=Abdolahzadeh%2C+Shaghayegh&rft.au=Roke%2C+Diederik&rft.date=2019-05-01&rft.issn=1748-3387&rft.eissn=1748-3395&rft.volume=14&rft.issue=5&rft.spage=488&rft.epage=494&rft_id=info:doi/10.1038%2Fs41565-019-0401-6&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41565_019_0401_6 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1748-3387&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1748-3387&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1748-3387&client=summon |