Leptin signaling impairs macrophage defenses against Salmonella Typhimurium
The dynamic interplay between metabolism and immune responses in health and disease, by which different immune cells impact on metabolic processes, are being increasingly appreciated. However, the potential of master regulators of metabolism to control innate immunity are less understood. Here, we s...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 116; no. 33; pp. 16551 - 16560 |
---|---|
Main Authors | , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
13.08.2019
|
Series | PNAS Plus |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The dynamic interplay between metabolism and immune responses in health and disease, by which different immune cells impact on metabolic processes, are being increasingly appreciated. However, the potential of master regulators of metabolism to control innate immunity are less understood. Here, we studied the cross-talk between leptin signaling and macrophage function in the context of bacterial infections. We found that upon infection with Gram-negative pathogens, such as Salmonella Typhimurium, leptin receptor (Lepr) expression increased in both mouse and human macrophages. Unexpectedly, both genetic Lepr ablation in macrophages and global pharmacologic leptin antagonization augmented lysosomal functions, reduced S. Typhimurium burden, and diminished inflammation in vitro and in vivo. Mechanistically, we show that leptin induction activates the mTORC2/Akt pathway and subsequently down-regulates Phlpp1 phosphatase, allowing for phosphorylated Akt to impair lysosomal-mediated pathogen clearance. These data highlight a link between leptin signaling, the mTORC2/Phlpp1/Akt axis, and lysosomal activity in macrophages and have important therapeutic implications for modulating innate immunity to combat Gram-negative bacterial infections. |
---|---|
AbstractList | The dynamic interplay between metabolism and immune responses in health and disease, by which different immune cells impact on metabolic processes, are being increasingly appreciated. However, the potential of master regulators of metabolism to control innate immunity are less understood. Here, we studied the cross-talk between leptin signaling and macrophage function in the context of bacterial infections. We found that upon infection with Gram-negative pathogens, such as Salmonella Typhimurium, leptin receptor (Lepr) expression increased in both mouse and human macrophages. Unexpectedly, both genetic Lepr ablation in macrophages and global pharmacologic leptin antagonization augmented lysosomal functions, reduced S. Typhimurium burden, and diminished inflammation in vitro and in vivo. Mechanistically, we show that leptin induction activates the mTORC2/Akt pathway and subsequently down-regulates Phlpp1 phosphatase, allowing for phosphorylated Akt to impair lysosomal-mediated pathogen clearance. These data highlight a link between leptin signaling, the mTORC2/Phlpp1/Akt axis, and lysosomal activity in macrophages and have important therapeutic implications for modulating innate immunity to combat Gram-negative bacterial infections. The dynamic interplay between metabolism and immune responses in health and disease, by which different immune cells impact on metabolic processes, are being increasingly appreciated. However, the potential of master regulators of metabolism to control innate immunity are less understood. Here, we studied the cross-talk between leptin signaling and macrophage function in the context of bacterial infections. We found that upon infection with Gram-negative pathogens, such as Typhimurium, leptin receptor (Lepr) expression increased in both mouse and human macrophages. Unexpectedly, both genetic ablation in macrophages and global pharmacologic leptin antagonization augmented lysosomal functions, reduced Typhimurium burden, and diminished inflammation in vitro and in vivo. Mechanistically, we show that leptin induction activates the mTORC2/Akt pathway and subsequently down-regulates Phlpp1 phosphatase, allowing for phosphorylated Akt to impair lysosomal-mediated pathogen clearance. These data highlight a link between leptin signaling, the mTORC2/Phlpp1/Akt axis, and lysosomal activity in macrophages and have important therapeutic implications for modulating innate immunity to combat Gram-negative bacterial infections. In the present study, we identify and describe an important cross-talk between leptin signaling and macrophage functions in the context of Salmonella Typhimurium infection. Genetic ablation of leptin receptor or pharmacological antagonization of leptin augmented lysosomal functions in macrophages, reduced S. Typhimurium burden, and diminished inflammation both in vitro and in vivo. Leptin signaling activates mTORC2/Akt pathway through the down-regulation of Phlpp1 phosphatase, thus impairs lysosome-mediated pathogen clearance. The dynamic interplay between metabolism and immune responses in health and disease, by which different immune cells impact on metabolic processes, are being increasingly appreciated. However, the potential of master regulators of metabolism to control innate immunity are less understood. Here, we studied the cross-talk between leptin signaling and macrophage function in the context of bacterial infections. We found that upon infection with Gram-negative pathogens, such as Salmonella Typhimurium, leptin receptor (Lepr) expression increased in both mouse and human macrophages. Unexpectedly, both genetic Lepr ablation in macrophages and global pharmacologic leptin antagonization augmented lysosomal functions, reduced S . Typhimurium burden, and diminished inflammation in vitro and in vivo. Mechanistically, we show that leptin induction activates the mTORC2/Akt pathway and subsequently down-regulates Phlpp1 phosphatase, allowing for phosphorylated Akt to impair lysosomal-mediated pathogen clearance. These data highlight a link between leptin signaling, the mTORC2/Phlpp1/Akt axis, and lysosomal activity in macrophages and have important therapeutic implications for modulating innate immunity to combat Gram-negative bacterial infections. |
Author | Plum, Georg Ranjan, Rajeev Ganesan, Raja Hos, Nina Judith Fischer, Julia Gutièrrez, Saray Tergaonkar, Vinay Rybniker, Jan Antebi, Adam Wolke, Martina Fries, Jochen W. U. Robinson, Nirmal Cildir, Gökhan Calabrese, Chiara |
Author_xml | – sequence: 1 givenname: Julia surname: Fischer fullname: Fischer, Julia – sequence: 2 givenname: Saray surname: Gutièrrez fullname: Gutièrrez, Saray – sequence: 3 givenname: Raja surname: Ganesan fullname: Ganesan, Raja – sequence: 4 givenname: Chiara surname: Calabrese fullname: Calabrese, Chiara – sequence: 5 givenname: Rajeev surname: Ranjan fullname: Ranjan, Rajeev – sequence: 6 givenname: Gökhan surname: Cildir fullname: Cildir, Gökhan – sequence: 7 givenname: Nina Judith surname: Hos fullname: Hos, Nina Judith – sequence: 8 givenname: Jan surname: Rybniker fullname: Rybniker, Jan – sequence: 9 givenname: Martina surname: Wolke fullname: Wolke, Martina – sequence: 10 givenname: Jochen W. U. surname: Fries fullname: Fries, Jochen W. U. – sequence: 11 givenname: Vinay surname: Tergaonkar fullname: Tergaonkar, Vinay – sequence: 12 givenname: Georg surname: Plum fullname: Plum, Georg – sequence: 13 givenname: Adam surname: Antebi fullname: Antebi, Adam – sequence: 14 givenname: Nirmal surname: Robinson fullname: Robinson, Nirmal |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31350351$$D View this record in MEDLINE/PubMed https://gup.ub.gu.se/publication/283353$$DView record from Swedish Publication Index |
BookMark | eNpd0Utv1DAQAGALFdFt4cwJFIkLl7Qev2JfkKqKR8VKPbScLW8ym_UqcYKdgPrvcbRloT1Z8nwzmscZOQlDQELeAr0AWvHLMbh0AYYKrSWAekFWQA2UShh6QlaUsqrUgolTcpbSnlJqpKavyCkHLimXsCLf1zhOPhTJt8F1PrSF70fnYyp6V8dh3LkWiwa3GBKmwrXOhzQVd67rcyNd54r7h3Hn-zn6uX9NXm5dl_DN43tOfnz5fH_9rVzffr25vlqXtdAwlQpqRFSO6UY3brup5cY0WmsBtXQKa6grxQ1zIAwgxYZrtYFGSiEY0wYcPyfloW76jeO8sWP0vYsPdnDetvNo81c724SWac4lz_7TwWfcY1NjmKLrnqQ9jQS_s-3wyyplqsqIXODjY4E4_JwxTbb3qV7GDzjMyTKmZCUqxnWmH57R_TDHvNpFVYJzDnpRlweVV5xSxO2xGaB2OaxdDmv_HTZnvP9_hqP_e8kM3h3APk1DPMaZ0pKKTP4A3PWsZg |
CitedBy_id | crossref_primary_10_2337_db21_0842 crossref_primary_10_1007_s11306_022_01921_8 crossref_primary_10_1111_jcmm_16605 crossref_primary_10_3390_pathogens9070587 crossref_primary_10_1371_journal_ppat_1009943 crossref_primary_10_4049_jimmunol_2000048 crossref_primary_10_1128_iai_00242_22 crossref_primary_10_3390_ijms22041933 crossref_primary_10_1016_j_tim_2022_01_006 crossref_primary_10_1007_s10753_019_01132_9 crossref_primary_10_1016_j_crimmu_2024_100077 crossref_primary_10_4049_jimmunol_2000490 crossref_primary_10_1210_endrev_bnaa027 crossref_primary_10_1016_j_bbagen_2020_129627 crossref_primary_10_1038_s41467_023_42432_x |
Cites_doi | 10.1038/nature25986 10.1016/j.immuni.2016.02.024 10.1097/EDE.0000000000000301 10.1016/j.molmed.2015.12.001 10.1038/onc.2012.540 10.3389/fcimb.2017.00428 10.1016/j.molmed.2013.05.001 10.1016/j.immuni.2010.11.024 10.4049/jimmunol.1200935 10.1186/s12889-018-5172-8 10.1152/ajplung.00447.2017 10.1128/mBio.02046-14 10.1016/j.chom.2012.04.012 10.1128/IAI.00976-08 10.1371/journal.ppat.1006227 10.1002/jcp.24273 10.1038/nrmicro955 10.1210/en.2008-1706 10.1016/j.molcel.2015.05.030 10.1111/j.1600-0854.2008.00804.x 10.1016/S0092-8674(00)81231-3 10.1091/mbc.12.1.155 10.1016/j.cytogfr.2017.03.001 10.4049/jimmunol.1003226 10.1083/jcb.201607005 10.1002/jcp.21843 10.1016/j.jim.2014.05.009 10.1371/journal.pone.0108138 10.1038/ni.2397 10.1016/j.micinf.2011.07.008 10.4049/jimmunol.168.8.4018 10.1016/S1473-3099(17)30753-3 10.1074/jbc.M509157200 10.1074/jbc.M706706200 10.1016/j.cell.2010.02.024 10.1091/mbc.e15-05-0272 10.1172/JCI45294 10.1126/science.aan4665 10.1371/journal.pgen.1000938 10.1016/S1473-3099(13)70318-9 10.1371/journal.ppat.1004159 10.1073/pnas.0813319106 10.1038/nri.2016.70 10.4049/jimmunol.1701712 10.1126/science.1106148 10.1083/jcb.201610060 10.1155/2013/487081 10.1126/science.1157535 10.1038/ncomms14338 |
ContentType | Journal Article |
Copyright | Copyright © 2019 the Author(s). Published by PNAS. Copyright National Academy of Sciences Aug 13, 2019 Copyright © 2019 the Author(s). Published by PNAS. 2019 |
Copyright_xml | – notice: Copyright © 2019 the Author(s). Published by PNAS. – notice: Copyright National Academy of Sciences Aug 13, 2019 – notice: Copyright © 2019 the Author(s). Published by PNAS. 2019 |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM ADTPV AOWAS F1U |
DOI | 10.1073/pnas.1904885116 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) SwePub SwePub Articles SWEPUB Göteborgs universitet |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE CrossRef Virology and AIDS Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 1091-6490 |
EndPage | 16560 |
ExternalDocumentID | oai_gup_ub_gu_se_283353 10_1073_pnas_1904885116 31350351 26850450 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIDDK NIH HHS grantid: P30 DK026687 – fundername: Deutsche Forschungsgemeinschaft (DFG) grantid: SFB670 (N31) – fundername: Deutsches Zentrum für Infektionsforschung (DZIF) grantid: CL-02-2011 – fundername: Deutsche Forschungsgemeinschaft (DFG) grantid: D01 – fundername: Universität zu Köln (University of Cologne) grantid: 311/2014 – fundername: Deutsches Zentrum für Infektionsforschung (DZIF) grantid: TI 07.005_Fischer_00 – fundername: Universität zu Köln (University of Cologne) grantid: Gusyk funding – fundername: Universität zu Köln (University of Cologne) grantid: Maria-Pesch – fundername: Universität zu Köln (University of Cologne) grantid: Köln Fortune |
GroupedDBID | --- -DZ -~X .55 0R~ 123 29P 2AX 2FS 2WC 4.4 53G 5RE 5VS 85S AACGO AAFWJ AANCE ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACIWK ACNCT ACPRK ADACV ADULT AENEX AEUPB AEXZC AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS AQVQM BKOMP CS3 D0L DCCCD DIK DOOOF DU5 E3Z EBS EJD F5P FRP GX1 H13 HH5 HYE IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST KQ8 L7B LU7 N9A N~3 O9- OK1 PNE PQQKQ R.V RHF RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR VQA W8F WH7 WOQ WOW X7M XSW Y6R YBH YKV YSK ZCA ~02 ~KM CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM .GJ 3O- 692 6TJ 79B AAYJJ ACKIV ADTPV AOWAS AS~ F1U F20 HGD HQ3 HTVGU JSODD MVM NEJ NHB P-O VOH WHG ZCG |
ID | FETCH-LOGICAL-c481t-61ceee6a28d8dafbc5b9d88841c5a6ec1c76392a1491e0ed386b1d554422891a3 |
IEDL.DBID | RPM |
ISSN | 0027-8424 |
IngestDate | Sat Aug 24 00:42:14 EDT 2024 Tue Sep 17 21:27:46 EDT 2024 Fri Oct 25 06:52:32 EDT 2024 Thu Oct 10 16:41:19 EDT 2024 Fri Dec 06 02:51:13 EST 2024 Sat Sep 28 08:28:57 EDT 2024 Tue Dec 10 23:55:01 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 33 |
Keywords | Salmonella macrophages AKT lysosomes leptin |
Language | English |
License | Copyright © 2019 the Author(s). Published by PNAS. This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c481t-61ceee6a28d8dafbc5b9d88841c5a6ec1c76392a1491e0ed386b1d554422891a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Author contributions: J.F., G.P., and N.R. designed research; J.F., S.G., R.G., C.C., R.R., G.C., N.J.H., M.W., J.W.U.F., and N.R. performed research; V.T. and A.A. contributed new reagents/analytic tools; J.F., S.G., J.R., J.W.U.F., and N.R. analyzed data; and J.F., G.C., A.A., and N.R. wrote the paper. 1Present address: Department of Physiology, Institute of Neuroscience and Physiology, University of Gothenburg, SE-405 30 Gothenburg, Sweden. Edited by Andres Vazquez-Torres, University of Colorado School of Medicine, Aurora, CO, and accepted by Editorial Board Member Carl F. Nathan July 2, 2019 (received for review March 25, 2019) |
ORCID | 0000-0002-7361-9491 0000-0002-7241-3029 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6697794/ |
PMID | 31350351 |
PQID | 2274333188 |
PQPubID | 42026 |
PageCount | 10 |
ParticipantIDs | swepub_primary_oai_gup_ub_gu_se_283353 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6697794 proquest_miscellaneous_2265747238 proquest_journals_2274333188 crossref_primary_10_1073_pnas_1904885116 pubmed_primary_31350351 jstor_primary_26850450 |
PublicationCentury | 2000 |
PublicationDate | 2019-08-13 |
PublicationDateYYYYMMDD | 2019-08-13 |
PublicationDate_xml | – month: 08 year: 2019 text: 2019-08-13 day: 13 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationSeriesTitle | PNAS Plus |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2019 |
Publisher | National Academy of Sciences |
Publisher_xml | – sequence: 0 name: National Academy of Sciences – name: National Academy of Sciences |
References | e_1_3_3_50_2 Truett G. E. (e_1_3_3_35_2) 1998; 275 e_1_3_3_16_2 e_1_3_3_18_2 e_1_3_3_39_2 e_1_3_3_12_2 e_1_3_3_37_2 e_1_3_3_14_2 e_1_3_3_33_2 e_1_3_3_10_2 e_1_3_3_31_2 e_1_3_3_40_2 e_1_3_3_5_2 e_1_3_3_7_2 e_1_3_3_9_2 e_1_3_3_27_2 e_1_3_3_29_2 e_1_3_3_23_2 e_1_3_3_48_2 e_1_3_3_25_2 e_1_3_3_46_2 e_1_3_3_1_2 e_1_3_3_44_2 e_1_3_3_3_2 e_1_3_3_21_2 e_1_3_3_42_2 e_1_3_3_51_2 Gutiérrez S. (e_1_3_3_52_2) 2017 e_1_3_3_17_2 e_1_3_3_19_2 e_1_3_3_38_2 e_1_3_3_13_2 e_1_3_3_36_2 e_1_3_3_15_2 e_1_3_3_34_2 e_1_3_3_32_2 e_1_3_3_11_2 e_1_3_3_30_2 e_1_3_3_6_2 e_1_3_3_8_2 e_1_3_3_28_2 e_1_3_3_49_2 e_1_3_3_24_2 e_1_3_3_47_2 e_1_3_3_26_2 e_1_3_3_45_2 e_1_3_3_2_2 e_1_3_3_20_2 e_1_3_3_43_2 e_1_3_3_4_2 e_1_3_3_22_2 e_1_3_3_41_2 |
References_xml | – ident: e_1_3_3_13_2 doi: 10.1038/nature25986 – ident: e_1_3_3_4_2 doi: 10.1016/j.immuni.2016.02.024 – ident: e_1_3_3_9_2 doi: 10.1097/EDE.0000000000000301 – ident: e_1_3_3_19_2 doi: 10.1016/j.molmed.2015.12.001 – ident: e_1_3_3_21_2 doi: 10.1038/onc.2012.540 – ident: e_1_3_3_6_2 doi: 10.3389/fcimb.2017.00428 – ident: e_1_3_3_11_2 doi: 10.1016/j.molmed.2013.05.001 – ident: e_1_3_3_44_2 doi: 10.1016/j.immuni.2010.11.024 – start-page: e56514 year: 2017 ident: e_1_3_3_52_2 article-title: Isolation of Salmonella typhimurium-containing phagosomes from macrophages publication-title: J. Vis. Exp. contributor: fullname: Gutiérrez S. – ident: e_1_3_3_27_2 doi: 10.4049/jimmunol.1200935 – ident: e_1_3_3_10_2 doi: 10.1186/s12889-018-5172-8 – ident: e_1_3_3_38_2 doi: 10.1152/ajplung.00447.2017 – ident: e_1_3_3_17_2 doi: 10.1128/mBio.02046-14 – ident: e_1_3_3_51_2 doi: 10.1016/j.chom.2012.04.012 – ident: e_1_3_3_32_2 doi: 10.1128/IAI.00976-08 – ident: e_1_3_3_8_2 doi: 10.1371/journal.ppat.1006227 – ident: e_1_3_3_18_2 doi: 10.1002/jcp.24273 – ident: e_1_3_3_3_2 doi: 10.1038/nrmicro955 – ident: e_1_3_3_25_2 doi: 10.1210/en.2008-1706 – ident: e_1_3_3_20_2 doi: 10.1016/j.molcel.2015.05.030 – ident: e_1_3_3_26_2 doi: 10.1111/j.1600-0854.2008.00804.x – ident: e_1_3_3_36_2 doi: 10.1016/S0092-8674(00)81231-3 – ident: e_1_3_3_40_2 – ident: e_1_3_3_37_2 doi: 10.1091/mbc.12.1.155 – ident: e_1_3_3_30_2 doi: 10.1016/j.cytogfr.2017.03.001 – ident: e_1_3_3_34_2 doi: 10.4049/jimmunol.1003226 – volume: 275 start-page: R29 year: 1998 ident: e_1_3_3_35_2 article-title: Misty (m) affects growth traits publication-title: Am. J. Physiol. contributor: fullname: Truett G. E. – ident: e_1_3_3_5_2 doi: 10.1083/jcb.201607005 – ident: e_1_3_3_22_2 doi: 10.1002/jcp.21843 – ident: e_1_3_3_23_2 doi: 10.1016/j.jim.2014.05.009 – ident: e_1_3_3_24_2 doi: 10.1371/journal.pone.0108138 – ident: e_1_3_3_7_2 doi: 10.1038/ni.2397 – ident: e_1_3_3_33_2 doi: 10.1016/j.micinf.2011.07.008 – ident: e_1_3_3_39_2 doi: 10.4049/jimmunol.168.8.4018 – ident: e_1_3_3_2_2 doi: 10.1016/S1473-3099(17)30753-3 – ident: e_1_3_3_49_2 doi: 10.1074/jbc.M509157200 – ident: e_1_3_3_43_2 doi: 10.1074/jbc.M706706200 – ident: e_1_3_3_42_2 doi: 10.1016/j.cell.2010.02.024 – ident: e_1_3_3_29_2 doi: 10.1091/mbc.e15-05-0272 – ident: e_1_3_3_31_2 doi: 10.1172/JCI45294 – ident: e_1_3_3_12_2 doi: 10.1126/science.aan4665 – ident: e_1_3_3_15_2 doi: 10.1371/journal.pgen.1000938 – ident: e_1_3_3_1_2 doi: 10.1016/S1473-3099(13)70318-9 – ident: e_1_3_3_46_2 doi: 10.1371/journal.ppat.1004159 – ident: e_1_3_3_48_2 doi: 10.1073/pnas.0813319106 – ident: e_1_3_3_14_2 doi: 10.1038/nri.2016.70 – ident: e_1_3_3_50_2 doi: 10.4049/jimmunol.1701712 – ident: e_1_3_3_28_2 doi: 10.1126/science.1106148 – ident: e_1_3_3_45_2 doi: 10.1083/jcb.201610060 – ident: e_1_3_3_16_2 doi: 10.1155/2013/487081 – ident: e_1_3_3_41_2 doi: 10.1126/science.1157535 – ident: e_1_3_3_47_2 doi: 10.1038/ncomms14338 |
SSID | ssj0009580 |
Score | 2.4532614 |
Snippet | The dynamic interplay between metabolism and immune responses in health and disease, by which different immune cells impact on metabolic processes, are being... In the present study, we identify and describe an important cross-talk between leptin signaling and macrophage functions in the context of Salmonella... |
SourceID | swepub pubmedcentral proquest crossref pubmed jstor |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 16551 |
SubjectTerms | Ablation activation Adult AKT AKT protein Animals Bacterial infections Biological Sciences cells Crosstalk expression Farmaceutisk vetenskap Female Gram-negative bacteria host-defense Humans Immune clearance Immune response Immune system Immunity infection Infections Inflammation - pathology Innate immunity leptin Leptin - antagonists & inhibitors Leptin - metabolism lysosome lysosomes Lysosomes - metabolism Macrophages Macrophages - immunology Macrophages - microbiology Mechanistic Target of Rapamycin Complex 2 - metabolism Metabolism Mice Mice, Inbred C57BL Models, Biological pathogen Pathogens Phagosomes - metabolism Pharmaceutical Sciences Phosphoprotein Phosphatases - metabolism Phosphorylation PNAS Plus Proto-Oncogene Proteins c-akt - metabolism RAW 264.7 Cells receptor Receptors, Leptin - metabolism Regulators Rodents Salmonella Salmonella Infections, Animal Salmonella typhimurium - immunology Signal Transduction Signaling Young Adult |
Title | Leptin signaling impairs macrophage defenses against Salmonella Typhimurium |
URI | https://www.jstor.org/stable/26850450 https://www.ncbi.nlm.nih.gov/pubmed/31350351 https://www.proquest.com/docview/2274333188 https://search.proquest.com/docview/2265747238 https://pubmed.ncbi.nlm.nih.gov/PMC6697794 https://gup.ub.gu.se/publication/283353 |
Volume | 116 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4BJy5VKdCmpchIFaKHfTh-bHJECISgoEotEjfLiZ3dSCRdbTb_vzN5oag9cY3tJJoZe76xvxkDfHNSSrQbIrWnbiKVyiaJoG04GSYuckqLJlH44VHfPsm7Z_W8A6rPhWlI-2mST8uXYlrmq4ZbuS7SWc8Tm_18uNIaUUssZ7uwi-63D9GHSrtRm3cS4vIrQ9nX81mI2bq01RQ9IBot4gy6vUhwoegsbeSVWmLi_yDnv8zJUX3RxifdvId3HZhkl-1PH8COLz_AQTddK3bR1ZT-fgj3P4i9UjKia1jKQGeUHplvKlZYusRrhcsKcz7DoBYH2qXNETayX_YFrZT4UQzj1VVe1Ju8Lo7g6eb699XtpLtHYZLKiG8xOkRP6LUNI5S-zZJUJbHDyFfyVFntU57iIhOHFoMl7ufeiUgn3CHOoPJgMbfiGPZK_NonYEpb5Xjm5DzzEuduHGVq7qmfS2RsRQAXvRzNui2XYZpj7oUwJH3zKv0Ajhs5D_1CHSkEmPMATnrBm25CVSbE6FkIXICiAM6GZpwKdL5hS_-npj5aYXSEICSAj62ehpf3ig5gMdLg0IHKbI9b0PqactudtQVw3up6NGRZrw0-Wtam8iakDDbx-c2f-AL7iMdi2rLm4gT2tpvaf0XMs01OyeOo08bS_wJU9QHl |
link.rule.ids | 230,314,727,780,784,885,27924,27925,53791,53793 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VcoALokAhUMBICJXDPhw_NjmiimqhuxUSrdSb5cTObqQmrDab_89MXiiCE9fYTqLxeOYb-5sxwEcnpUS9IVJ76iZSqWySCNqGk2HiIqe0aBKF19d6eSu_36m7I1B9LkxD2k-TfFreF9My3zbcyl2Rznqe2OzH-kJrRC2xnD2Ah0osYt4H6UOt3ajNPAnRAMtQ9hV9FmK2K201RR-IaotIg-4vElwoOk0b-aWWmvgv0Pk3d3JUYbTxSpdP4UkHJ9mX9rdP4MiXz-CkW7AVO--qSn9-Dlcr4q-UjAgblnLQGSVI5vuKFZau8dqiYWHOZxjW4kC7sTkCR_bT3qOeEkOKYcS6zYt6n9fFC7i9_HpzsZx0NylMUhnxA8aH6Au9tmGE8rdZkqokdhj7Sp4qq33KUzQzcWgxXOJ-7p2IdMIdIg0qEBZzK07huMSvvQKmtFWOZ07OMy9x9cZRpuae-rlExlYEcN7L0ezaghmmOeheCEPSN3-kH8BpI-ehX6gjhRBzHsBZL3jTLanKhBg_C4EmKArgw9CMi4FOOGzpf9XURyuMjxCGBPCynafh5f1EB7AYzeDQgQptj1tQ_5qC252-BfCpnevRkE29M_hoU5vKm5By2MTr__7Ee3i0vFmvzOrb9dUbeIzoLKYNbC7O4Piwr_1bRECH5F2j778B9DgEVA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5BkRAXRIHSlAJGQqgcdrOJH5scUWFV6EOVoFJvlhM7u5GaEG02_78zeUEEJ66xnUQzY_sb-5sZgA9WCIF2Q6T21M6ElNks4XQMJ8LERlYq3gYKX16psxvx_Vbe_lHqqyXtp0k-L--KeZlvWm5lVaT-wBPzry9PlULUEgu_spn_EB5JjkY2OOpjvt2oiz4JcREWoRiy-iy5X5WmnuM-iKaLaINqGPGAS7pRm-xNHT3xX8Dzb_7kJMtouzOtnsHTHlKyz92v78MDVz6H_X7S1uykzyz96QWcXxCHpWRE2jAUh84oSDLf1qwwVMprg4sLsy5D1xYHmrXJETyyH-YObZVYUgy91k1eNNu8KV7Czerrz9OzWV9NYZaKKNihj4j7oVMmjFAHJktSmcQW_V8RpNIolwYpLjVxaNBlCtzCWR6pJLCINihJWBwYfgB7JX7tEJhURtogs2KROYEzOI4yuXDUzyYiNtyDk0GOuuqSZuj2snvJNUlf_5a-BwetnMd-oYokwsyFB8eD4HU_rWodog_NOS5DkQfvx2acEHTLYUr3q6E-SqKPhFDEg1ednsaXD4r2YDnR4NiBkm1PW9AG26Tbvc158LHT9WTIuqk0Plo3unY6pDg2fvTfn3gHj6-_rPTFt6vz1_AEAVpMZ9gBP4a93bZxbxAE7ZK3rbnfA7DPBWc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Leptin+signaling+impairs+macrophage+defenses+against+Salmonella+Typhimurium&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Fischer%2C+Julia&rft.au=Guti%C3%A8rrez%2C+Saray&rft.au=Ganesan%2C+Raja&rft.au=Calabrese%2C+Chiara&rft.date=2019-08-13&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=116&rft.issue=33&rft.spage=16551&rft.epage=16560&rft_id=info:doi/10.1073%2Fpnas.1904885116&rft.externalDBID=n%2Fa&rft.externalDocID=10_1073_pnas_1904885116 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon |