Implementation of High Speed Tangent Sigmoid Transfer Function Approximations for Artificial Neural Network Applications on FPGA

Tangent Sigmoid (TanSig) Transfer Function (TSTF) is one of the nonlinear functions used in Artificial Neural Networks (ANNs). As TSTF includes exponential function operations, hardware-based implementation of this function is difficult. Thus, various methods have been proposed in the literature for...

Full description

Saved in:
Bibliographic Details
Published inAdvances in Electrical and Computer Engineering Vol. 18; no. 3; pp. 79 - 86
Main Author KOYUNCU, I.
Format Journal Article
LanguageEnglish
Published Suceava Stefan cel Mare University of Suceava 01.01.2018
Subjects
Online AccessGet full text
ISSN1582-7445
1844-7600
DOI10.4316/AECE.2018.03011

Cover

Abstract Tangent Sigmoid (TanSig) Transfer Function (TSTF) is one of the nonlinear functions used in Artificial Neural Networks (ANNs). As TSTF includes exponential function operations, hardware-based implementation of this function is difficult. Thus, various methods have been proposed in the literature for the hardware implementation of TSTF. In this study, four different TSTF approaches on FPGA have been implemented using 32-bit IEEE 754-1985 floating point number standard, and their performance analyses and FPGA chip statistics are presented. The Van der Pol system ANN application was carried out using four different FPGA-based TSTF units presented. The Multilayer feed-forward neural network structure was used in the study. The FPGA chip statistics and sensitivity analyses were carried out by applying each TSTF structure to the exemplary ANN. The maximum operating frequency of ANNs designed on FPGA using the four different TSTF units varied between 184-362 MHz. The CORDIC-LUT-based ANN on FPGA was able to calculate 1 billion results in 3.284 s. According to the Van der Pol system ANN application carried out on FPGA, the CORDIC-LUT-based approach most closely reflected the reference ANN results. This study has a reference and key research for realtime artificial neural network applications used of tangent sigmoid one of the nonlinear transfer functions. Index Terms--real-time systems, field programmable gate arrays, artificial neural networks, approximation methods, transfer functions.
AbstractList Tangent Sigmoid (TanSig) Transfer Function (TSTF) is one of the nonlinear functions used in Artificial Neural Networks (ANNs). As TSTF includes exponential function operations, hardware-based implementation of this function is difficult. Thus, various methods have been proposed in the literature for the hardware implementation of TSTF. In this study, four different TSTF approaches on FPGA have been implemented using 32-bit IEEE 754–1985 floating point number standard, and their performance analyses and FPGA chip statistics are presented. The Van der Pol system ANN application was carried out using four different FPGA-based TSTF units presented. The Multilayer feed-forward neural network structure was used in the study. The FPGA chip statistics and sensitivity analyses were carried out by applying each TSTF structure to the exemplary ANN. The maximum operating frequency of ANNs designed on FPGA using the four different TSTF units varied between 184–362 MHz. The CORDIC-LUT-based ANN on FPGA was able to calculate 1 billion results in 3.284 s. According to the Van der Pol system ANN application carried out on FPGA, the CORDIC-LUT-based approach most closely reflected the reference ANN results. This study has a reference and key research for real-time artificial neural network applications used of tangent sigmoid one of the nonlinear transfer functions.
Tangent Sigmoid (TanSig) Transfer Function (TSTF) is one of the nonlinear functions used in Artificial Neural Networks (ANNs). As TSTF includes exponential function operations, hardware-based implementation of this function is difficult. Thus, various methods have been proposed in the literature for the hardware implementation of TSTF. In this study, four different TSTF approaches on FPGA have been implemented using 32-bit IEEE 754-1985 floating point number standard, and their performance analyses and FPGA chip statistics are presented. The Van der Pol system ANN application was carried out using four different FPGA-based TSTF units presented. The Multilayer feed-forward neural network structure was used in the study. The FPGA chip statistics and sensitivity analyses were carried out by applying each TSTF structure to the exemplary ANN. The maximum operating frequency of ANNs designed on FPGA using the four different TSTF units varied between 184-362 MHz. The CORDIC-LUT-based ANN on FPGA was able to calculate 1 billion results in 3.284 s. According to the Van der Pol system ANN application carried out on FPGA, the CORDIC-LUT-based approach most closely reflected the reference ANN results. This study has a reference and key research for realtime artificial neural network applications used of tangent sigmoid one of the nonlinear transfer functions. Index Terms--real-time systems, field programmable gate arrays, artificial neural networks, approximation methods, transfer functions.
Tangent Sigmoid (TanSig) Transfer Function (TSTF) is one of the nonlinear functions used in Artificial Neural Networks (ANNs). As TSTF includes exponential function operations, hardware-based implementation of this function is difficult. Thus, various methods have been proposed in the literature for the hardware implementation of TSTF. In this study, four different TSTF approaches on FPGA have been implemented using 32-bit IEEE 754-1985 floating point number standard, and their performance analyses and FPGA chip statistics are presented. The Van der Pol system ANN application was carried out using four different FPGA-based TSTF units presented. The Multilayer feed-forward neural network structure was used in the study. The FPGA chip statistics and sensitivity analyses were carried out by applying each TSTF structure to the exemplary ANN. The maximum operating frequency of ANNs designed on FPGA using the four different TsTf units varied between 184-362 MHz. The CORDIC-LUT-based ANN on FPGA was able to calculate 1 billion results in 3.284 s. According to the Van der Pol system ANN application carried out on FPGA, the CORDIC-LUTbased approach most closely reflected the reference ANN results. This study has a reference and key research for realtime artificial neural network applications used of tangent sigmoid one of the nonlinear transfer functions.
Audience Academic
Author KOYUNCU, I.
Author_xml – sequence: 1
  givenname: I.
  surname: KOYUNCU
  fullname: KOYUNCU, I.
BookMark eNp1kUtr3DAUhU1IIWmadbeGrj2RZL28NMNMMhCSQtK1uNbDVWpbruyh7S4_PRo7dFEoWlzp6nxHV5yP2fkQBptlnzHa0BLzm3q33W0IwnKDSoTxWXaJJaWF4Aidpz2TpBCUsovsepp8gygVRJKSX2avh37sbG-HGWYfhjy4_M633_On0VqTP8PQpqv8ybd98OkcYZicjfn-OOhFX49jDL99v9BT7kLM6zh757WHLn-wx7iU-VeIP07izut3aYL3X2_rT9kHB91kr9_rVfZtv3ve3hX3j7eHbX1faCrxXDBDKDCECAjpADmEodEIVYZJLgCE1VpIIjkxVWMEGMpdiZGASmNuDTHlVXZYfU2AFzXGNHL8owJ4tTRCbBWkwXVnFTDLoAHmiMGUWtPIEgRlTQOcM1bK5PVl9Up__3m006xewjEOaXxFKCacMlThpNqsqhaSqR9cmCPotIztvU75OZ_6NWOClqXkVQJuVkDHME3Rur9jYqROMatTzOoUs1piTgT7h9B-DTI95bv_cm8Q8a4p
CitedBy_id crossref_primary_10_1016_j_ijhydene_2020_05_181
crossref_primary_10_1140_epjst_e2019_900005_8
crossref_primary_10_3390_app11156704
crossref_primary_10_1016_j_ijhydene_2019_05_049
crossref_primary_10_1016_j_vlsi_2024_102176
crossref_primary_10_1080_14680629_2023_2230298
crossref_primary_10_1016_j_renene_2020_09_024
crossref_primary_10_1109_ACCESS_2023_3253668
crossref_primary_10_3390_sym12101745
crossref_primary_10_1016_j_aeue_2019_152941
crossref_primary_10_1140_epjs_s11734_021_00178_x
crossref_primary_10_3390_e24060777
crossref_primary_10_1007_s10470_020_01703_z
crossref_primary_10_4316_AECE_2021_02005
crossref_primary_10_25092_baunfbed_892032
crossref_primary_10_1016_j_micpro_2024_105037
crossref_primary_10_16984_saufenbilder_505497
crossref_primary_10_1002_cta_2581
Cites_doi 10.1016/j.ijleo.2016.03.042
10.4316/AECE.2013.02005
10.1016/j.apenergy.2014.01.044
10.1007/s00521-013-1407-x
10.1142/S0218126617500153
10.1016/j.ijleo.2016.09.087
10.1007/s00521-010-0423-3
10.1016/j.renene.2014.07.054
10.1016/j.micpro.2015.05.012
10.1140/epjst/e2015-02471-2
10.1016/j.compeleceng.2016.07.005
10.4316/AECE.2014.01020
10.1016/j.neunet.2014.03.009
ContentType Journal Article
Copyright COPYRIGHT 2018 Stefan cel Mare University of Suceava
Copyright Stefan cel Mare University of Suceava 2018
Copyright_xml – notice: COPYRIGHT 2018 Stefan cel Mare University of Suceava
– notice: Copyright Stefan cel Mare University of Suceava 2018
DBID AAYXX
CITATION
7SC
7SP
8FD
8FE
8FG
ABJCF
AFKRA
ARAPS
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
JQ2
L6V
L7M
L~C
L~D
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOA
DOI 10.4316/AECE.2018.03011
DatabaseName CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList

Technology Collection
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1844-7600
EndPage 86
ExternalDocumentID oai_doaj_org_article_a5e5aba5f2d144edb83a745bba665538
A557433869
10_4316_AECE_2018_03011
GroupedDBID 23M
5GY
5VS
AAKPC
AAYXX
ABJCF
ADBBV
AENEX
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
C1A
CCPQU
CITATION
E3Z
GROUPED_DOAJ
HCIFZ
IAO
IGS
IPNFZ
ITC
KQ8
M7S
OK1
PHGZM
PHGZT
PTHSS
PV9
RIG
RZL
TR2
ADMLS
7SC
7SP
8FD
8FE
8FG
DWQXO
JQ2
L6V
L7M
L~C
L~D
P62
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c481t-5d24a5002a78fa0f01abc009d5867aa7ecc782862d9bd7ad46f3107a9c16ed2d3
IEDL.DBID DOA
ISSN 1582-7445
IngestDate Wed Aug 27 01:32:04 EDT 2025
Fri Jul 25 11:49:25 EDT 2025
Sat Mar 08 18:10:09 EST 2025
Tue Jul 01 01:27:21 EDT 2025
Thu Apr 24 23:00:08 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c481t-5d24a5002a78fa0f01abc009d5867aa7ecc782862d9bd7ad46f3107a9c16ed2d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://doaj.org/article/a5e5aba5f2d144edb83a745bba665538
PQID 2412645091
PQPubID 2049588
PageCount 8
ParticipantIDs doaj_primary_oai_doaj_org_article_a5e5aba5f2d144edb83a745bba665538
proquest_journals_2412645091
gale_infotracacademiconefile_A557433869
crossref_primary_10_4316_AECE_2018_03011
crossref_citationtrail_10_4316_AECE_2018_03011
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-01-01
PublicationDateYYYYMMDD 2018-01-01
PublicationDate_xml – month: 01
  year: 2018
  text: 2018-01-01
  day: 01
PublicationDecade 2010
PublicationPlace Suceava
PublicationPlace_xml – name: Suceava
PublicationTitle Advances in Electrical and Computer Engineering
PublicationYear 2018
Publisher Stefan cel Mare University of Suceava
Publisher_xml – name: Stefan cel Mare University of Suceava
References Suzuki (10.1109/VLSIT.2015.7223644) 2015
Roy (10.1016/j.apenergy.2014.01.044) 2014; 119
Baptista (10.1007/s00521-013-1407-x) 2013; 23
Tuna (10.1016/j.ijleo.2016.09.087) 2016; 127
Brezetskyi (10.1140/epjst/e2015-02471-2) 2015; 224
GEMAN (10.4316/AECE.2014.01020) 2014; 14
Alcin (10.1016/j.ijleo.2016.03.042) 2016; 127
MELNYK (10.4316/AECE.2013.02005) 2013; 13
Betiku (10.1016/j.renene.2014.07.054) 2015; 74
Cavuslu (10.1007/s00521-010-0423-3) 2011; 20
Zhang (10.1016/j.neunet.2014.03.009) 2014; 55
Tuna (10.1109/SIU.2015.7129921) 2015
Nilsson (10.1109/NORCHIP.2014.7004740) 2014
Koyuncu (10.1016/j.compeleceng.2016.07.005) 2017; 58
Tiwari (10.1016/j.micpro.2015.05.012) 2015; 39
Koyuncu (10.1142/S0218126617500153) 2016; 26
References_xml – volume: 127
  start-page: 5500
  year: 2016
  ident: 10.1016/j.ijleo.2016.03.042
  publication-title: Optik
  doi: 10.1016/j.ijleo.2016.03.042
– volume: 13
  start-page: 33
  year: 2013
  ident: 10.4316/AECE.2013.02005
  publication-title: Advances in Electrical and Computer Engineering
  doi: 10.4316/AECE.2013.02005
– volume: 119
  start-page: 330
  year: 2014
  ident: 10.1016/j.apenergy.2014.01.044
  publication-title: Applied Energy
  doi: 10.1016/j.apenergy.2014.01.044
– volume: 23
  start-page: 601
  year: 2013
  ident: 10.1007/s00521-013-1407-x
  publication-title: Neural Computing and Applications
  doi: 10.1007/s00521-013-1407-x
– volume: 26
  start-page: 1750015
  year: 2016
  ident: 10.1142/S0218126617500153
  publication-title: Journal of Circuits, Systems and Computers
  doi: 10.1142/S0218126617500153
– volume: 127
  start-page: 11786
  year: 2016
  ident: 10.1016/j.ijleo.2016.09.087
  publication-title: Optik
  doi: 10.1016/j.ijleo.2016.09.087
– volume: 20
  start-page: 195
  year: 2011
  ident: 10.1007/s00521-010-0423-3
  publication-title: Neural Computing and Applications
  doi: 10.1007/s00521-010-0423-3
– start-page: 1
  year: 2014
  ident: 10.1109/NORCHIP.2014.7004740
– start-page: C172
  year: 2015
  ident: 10.1109/VLSIT.2015.7223644
– volume: 74
  start-page: 87
  year: 2015
  ident: 10.1016/j.renene.2014.07.054
  publication-title: Renewable Energy
  doi: 10.1016/j.renene.2014.07.054
– start-page: 698
  year: 2015
  ident: 10.1109/SIU.2015.7129921
– volume: 39
  start-page: 373
  year: 2015
  ident: 10.1016/j.micpro.2015.05.012
  publication-title: Microprocessors and Microsystems
  doi: 10.1016/j.micpro.2015.05.012
– volume: 224
  start-page: 1459
  year: 2015
  ident: 10.1140/epjst/e2015-02471-2
  publication-title: The European Physical Journal Special Topics
  doi: 10.1140/epjst/e2015-02471-2
– volume: 58
  start-page: 203
  year: 2017
  ident: 10.1016/j.compeleceng.2016.07.005
  publication-title: Computers & Electrical Engineering
  doi: 10.1016/j.compeleceng.2016.07.005
– volume: 14
  start-page: 133
  year: 2014
  ident: 10.4316/AECE.2014.01020
  publication-title: Advances in Electrical and Computer Engineering
  doi: 10.4316/AECE.2014.01020
– volume: 55
  start-page: 1
  year: 2014
  ident: 10.1016/j.neunet.2014.03.009
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2014.03.009
SSID ssib044728236
ssib057620034
ssj0000395691
Score 2.1859033
Snippet Tangent Sigmoid (TanSig) Transfer Function (TSTF) is one of the nonlinear functions used in Artificial Neural Networks (ANNs). As TSTF includes exponential...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 79
SubjectTerms Applied research
Approximation
approximation methods
Artificial neural networks
Bias
Design
Design and construction
Digital signal processors
Exponential functions
Field programmable gate arrays
Floating point arithmetic
Hardware
Methods
Multilayers
Neural networks
Programmable logic arrays
real-time systems
Studies
Transfer functions
SummonAdditionalLinks – databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9NAEF5BucCh4ikCBe0BCS5uE-_TJ2SquBUSCKmt1Ntqn1WkNg5JKnHkpzOzXodyKCfL9lpee8Y734xnviHkQ9SNmwVAbk74UCEhV-WY5JXStvaC-cgdhga-fZenF_zrpbgsAbdNSasc18S8UIfeY4z8CCwN2G40b59XPyvsGoV_V0sLjYfkEZyVqOe6Oxn1iXNVj_28cR-gNaZi8V0MZsrAO2gGSlUEmpyLgf0H68OP2vnxHHO_9GF2G_4xXJnf_75VPJum7inZL5iStoMSPCMP4vI5eXKHafAF-Z1ZgG9KodGS9olihgc9W4H1ouc2V1jRs8XVTb-A_Yxm45p2YPXy-Bapx38thjrHDQWkm2830E9QZPjIm5xSTts7P8UpXNz9OGlfkotufn58WpXmC5XneratRKg5dkuordLJTtN0Zp0HQBaElspaBaJXWIJeh8YFZQOXCZCiso2fyRjqwF6RvWW_jK8JTU7GpB24wzpxl7zTkjnFWOQhytqJCTkc36zxhZkcG2RcG_BQUBQGRWFQFCaLYkI-7S5YDaQc9w_9gqLaDUM27XygX1-Z8nEaK6KwzopUB_AvY3CaWcWFc1ZKARZhQj6ioA1-8zAxb0vpAjwesmeZVggAYkzLZkIORl0wZTHYmL-q--b_p9-SxzjzIcJzQPa269v4DjDP1r3Piv0HjPH7ZA
  priority: 102
  providerName: ProQuest
Title Implementation of High Speed Tangent Sigmoid Transfer Function Approximations for Artificial Neural Network Applications on FPGA
URI https://www.proquest.com/docview/2412645091
https://doaj.org/article/a5e5aba5f2d144edb83a745bba665538
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBZtemkPpU-6bbroUGgvTrzW00cn2AmFhNAkkJvQsywkuyHZQk-lP70zknfZHkIvvdjYSFjSjKRv5JlvCPkUdetmAZCbEz5USMhVOSZ5pbRtvGA-codHAyen8viSf70SV1upvtAnrNADl4HbtyIK66xITQDsH4PTzCounLNSCpituPrWbb1lTIEmca6adSZvfAZQjU5YfHP6UjOwC9pCpooQk3NReH8wMny_6w979PrSe9lg-GvLysz-D63feVMaXpDnI5qkXenFS_IoLl6RZ1scg6_J78z_ezOGGC3oMlH07aDnt7Bv0QubY6vo-fz7zXIOzxnHxjs6wH6Xy3dIOv5zXiIc7ylg3Py5QjxBkdsj37IzOe22fodTqDycHXVvyOXQXxweV2PahcpzPVtVIjQc8yQ0Vulk61TPrPMAxYLQUlmrQOgKg8-b0LqgbOAyAUZUtvUzGUMT2Fuys1gu4jtCk5MxaQeGsE7cJe-0ZE4xFnmIsnFiQvbWI2v8yEmOqTGuDdgmKAqDojAoCpNFMSFfNhVuCx3Hw0UPUFSbYsijnV-AdplRu8y_tGtCPqOgDc52aJi3Y9ACdA95s0wnBEAwpmU7IbtrXTDjMnBvAB4B4ERM9v5_tOYDeYr9KydAu2RndfcjfgRMtHJT8lgPR1Py5KA_Pfs2zZMBrie_-j_t8AiC
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6V9AAcEE8RKLAHEFzcJva-fEDILQkpbaOKplJvy75cRaJxSIKAG7-I38jM2g7lUG49WXbWcTYznvlmd-YbQl4Gldu-B-RmufMJEnIlNhMskcqkjmcuMItLA0djMTplH8_42Qb53dbCYFplaxOjofaVwzXyHfA04LvRvb2bf02waxTurrYtNGq1OAg_v0PItny7_x7k-ypNh4PJ3ihpugokjqn-KuE-ZdgGIDVSlaZX9vrGOkAanishjZEwJ4m11anPrZfGM1ECBJImd30RfOoz-N4bZJNhRWuHbO4OxsefWg1mTKZtB3E8BzCPyV9sverTyyAeyWsSV4S2jPGabwgr0neKwd4As83UdgxU_nGVsaPAVX4jOsPhXXKnQbG0qNXuHtkIs_vk9iVuwwfkV-QdvmhKm2a0KinmlNCTOfhLOjGxpoueTM8vqimcR_wcFnQIfjaOL5Ds_Me0rqxcUsDW8XE14QVFTpF4iEnstLi0DU_h5uHxh-IhOb0WwTwinVk1C48JLa0IpbIQgKuS2dJZJTIrsywwH0RqeZdst_-sdg0XOrbk-KIhJkJRaBSFRlHoKIouebO-YV7TgFw9dBdFtR6G_N3xQrU414050IYHbqzhZeohog3eqsxIxq01QnDwQV3yGgWt0crAD3OmKZaA6SFfly44B-iXKZF3yVarC7oxP0v992V58v-PX5Cbo8nRoT7cHx88JbdwFvX60hbprBbfwjNAXCv7vFFzSj5f95v1B8LPOiw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VIiE4IJ4iUGAPILi4SbxPHxAybdyWQlWprdTbdte7W0WiSUiCgBu_i1_HzNoO5VBuPUVO1nbWMzvzzXrmG0JeBV24oQfk5kTtMyTkyhyTPFPa5rVgdeAOtwY-H8jdE_7xVJyukd9dLQymVXY2MRlqP61xj7wPngZ8N7q3fmzTIg63q_ezrxl2kMI3rV07jUZF9sPP7xC-Ld7tbYOsX-d5NTre2s3aDgNZzfVwmQmfc2wJkFulox3EwdC6GlCHF1oqaxXMT2Gdde4L55X1XEaAQ8oW9VAGn3sG171BbiqmCgz8dLXT6TLnKu96ieMxwHpMA-Or_Z8Bg8ikaOhcEeRyLhrmIaxN75ejrRHmnenNFLL84zRTb4GrPEhyi9U9crfFs7RsFPA-WQuTB-TOJZbDh-RXYiC-aIucJnQaKWaX0KMZeE56bFN1Fz0an19Mx3CckHSY0wo8bhpfIu35j3FTY7mggLLT7RrqC4rsIukjpbPT8tILeQonV4c75SNyci1ieUzWJ9NJeEJodDJE7SAU15G7WDstmVOMBe6DzJ3okc3uyZq6ZUXH5hxfDERHKAqDojAoCpNE0SNvVyfMGkKQq4d-QFGthiGTd_piOj83rWEwVgRhnRUx9xDbBu80s4oL56yUArxRj7xBQRu0N_DHatuWTcD0kLnLlEIACGRaFj2y0emCaQ3RwvxdNk____NLcgvWk_m0d7D_jNzGSTQbTRtkfTn_Fp4D9Fq6F0nHKTm77kX1Bx-DPPw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Implementation+of+High+Speed+Tangent+Sigmoid+Transfer+Function+Approximations+for+Artificial+Neural+Network+Applications+on+FPGA&rft.jtitle=Advances+in+Electrical+and+Computer+Engineering&rft.au=Koyuncu%2C+Ismail&rft.date=2018-01-01&rft.pub=Stefan+cel+Mare+University+of+Suceava&rft.issn=1582-7445&rft.volume=18&rft.issue=3&rft.spage=79&rft_id=info:doi/10.4316%2FAECE.2018.03011&rft.externalDocID=A557433869
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1582-7445&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1582-7445&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1582-7445&client=summon