Implementation of High Speed Tangent Sigmoid Transfer Function Approximations for Artificial Neural Network Applications on FPGA
Tangent Sigmoid (TanSig) Transfer Function (TSTF) is one of the nonlinear functions used in Artificial Neural Networks (ANNs). As TSTF includes exponential function operations, hardware-based implementation of this function is difficult. Thus, various methods have been proposed in the literature for...
Saved in:
Published in | Advances in Electrical and Computer Engineering Vol. 18; no. 3; pp. 79 - 86 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Suceava
Stefan cel Mare University of Suceava
01.01.2018
|
Subjects | |
Online Access | Get full text |
ISSN | 1582-7445 1844-7600 |
DOI | 10.4316/AECE.2018.03011 |
Cover
Abstract | Tangent Sigmoid (TanSig) Transfer Function (TSTF) is one of the nonlinear functions used in Artificial Neural Networks (ANNs). As TSTF includes exponential function operations, hardware-based implementation of this function is difficult. Thus, various methods have been proposed in the literature for the hardware implementation of TSTF. In this study, four different TSTF approaches on FPGA have been implemented using 32-bit IEEE 754-1985 floating point number standard, and their performance analyses and FPGA chip statistics are presented. The Van der Pol system ANN application was carried out using four different FPGA-based TSTF units presented. The Multilayer feed-forward neural network structure was used in the study. The FPGA chip statistics and sensitivity analyses were carried out by applying each TSTF structure to the exemplary ANN. The maximum operating frequency of ANNs designed on FPGA using the four different TSTF units varied between 184-362 MHz. The CORDIC-LUT-based ANN on FPGA was able to calculate 1 billion results in 3.284 s. According to the Van der Pol system ANN application carried out on FPGA, the CORDIC-LUT-based approach most closely reflected the reference ANN results. This study has a reference and key research for realtime artificial neural network applications used of tangent sigmoid one of the nonlinear transfer functions. Index Terms--real-time systems, field programmable gate arrays, artificial neural networks, approximation methods, transfer functions. |
---|---|
AbstractList | Tangent Sigmoid (TanSig) Transfer Function (TSTF) is one of the nonlinear functions used in Artificial Neural Networks (ANNs). As TSTF includes exponential function operations, hardware-based implementation of this function is difficult. Thus, various methods have been proposed in the literature for the hardware implementation of TSTF. In this study, four different TSTF approaches on FPGA have been implemented using 32-bit IEEE 754–1985 floating point number standard, and their performance analyses and FPGA chip statistics are presented. The Van der Pol system ANN application was carried out using four different FPGA-based TSTF units presented. The Multilayer feed-forward neural network structure was used in the study. The FPGA chip statistics and sensitivity analyses were carried out by applying each TSTF structure to the exemplary ANN. The maximum operating frequency of ANNs designed on FPGA using the four different TSTF units varied between 184–362 MHz. The CORDIC-LUT-based ANN on FPGA was able to calculate 1 billion results in 3.284 s. According to the Van der Pol system ANN application carried out on FPGA, the CORDIC-LUT-based approach most closely reflected the reference ANN results. This study has a reference and key research for real-time artificial neural network applications used of tangent sigmoid one of the nonlinear transfer functions. Tangent Sigmoid (TanSig) Transfer Function (TSTF) is one of the nonlinear functions used in Artificial Neural Networks (ANNs). As TSTF includes exponential function operations, hardware-based implementation of this function is difficult. Thus, various methods have been proposed in the literature for the hardware implementation of TSTF. In this study, four different TSTF approaches on FPGA have been implemented using 32-bit IEEE 754-1985 floating point number standard, and their performance analyses and FPGA chip statistics are presented. The Van der Pol system ANN application was carried out using four different FPGA-based TSTF units presented. The Multilayer feed-forward neural network structure was used in the study. The FPGA chip statistics and sensitivity analyses were carried out by applying each TSTF structure to the exemplary ANN. The maximum operating frequency of ANNs designed on FPGA using the four different TSTF units varied between 184-362 MHz. The CORDIC-LUT-based ANN on FPGA was able to calculate 1 billion results in 3.284 s. According to the Van der Pol system ANN application carried out on FPGA, the CORDIC-LUT-based approach most closely reflected the reference ANN results. This study has a reference and key research for realtime artificial neural network applications used of tangent sigmoid one of the nonlinear transfer functions. Index Terms--real-time systems, field programmable gate arrays, artificial neural networks, approximation methods, transfer functions. Tangent Sigmoid (TanSig) Transfer Function (TSTF) is one of the nonlinear functions used in Artificial Neural Networks (ANNs). As TSTF includes exponential function operations, hardware-based implementation of this function is difficult. Thus, various methods have been proposed in the literature for the hardware implementation of TSTF. In this study, four different TSTF approaches on FPGA have been implemented using 32-bit IEEE 754-1985 floating point number standard, and their performance analyses and FPGA chip statistics are presented. The Van der Pol system ANN application was carried out using four different FPGA-based TSTF units presented. The Multilayer feed-forward neural network structure was used in the study. The FPGA chip statistics and sensitivity analyses were carried out by applying each TSTF structure to the exemplary ANN. The maximum operating frequency of ANNs designed on FPGA using the four different TsTf units varied between 184-362 MHz. The CORDIC-LUT-based ANN on FPGA was able to calculate 1 billion results in 3.284 s. According to the Van der Pol system ANN application carried out on FPGA, the CORDIC-LUTbased approach most closely reflected the reference ANN results. This study has a reference and key research for realtime artificial neural network applications used of tangent sigmoid one of the nonlinear transfer functions. |
Audience | Academic |
Author | KOYUNCU, I. |
Author_xml | – sequence: 1 givenname: I. surname: KOYUNCU fullname: KOYUNCU, I. |
BookMark | eNp1kUtr3DAUhU1IIWmadbeGrj2RZL28NMNMMhCSQtK1uNbDVWpbruyh7S4_PRo7dFEoWlzp6nxHV5yP2fkQBptlnzHa0BLzm3q33W0IwnKDSoTxWXaJJaWF4Aidpz2TpBCUsovsepp8gygVRJKSX2avh37sbG-HGWYfhjy4_M633_On0VqTP8PQpqv8ybd98OkcYZicjfn-OOhFX49jDL99v9BT7kLM6zh757WHLn-wx7iU-VeIP07izut3aYL3X2_rT9kHB91kr9_rVfZtv3ve3hX3j7eHbX1faCrxXDBDKDCECAjpADmEodEIVYZJLgCE1VpIIjkxVWMEGMpdiZGASmNuDTHlVXZYfU2AFzXGNHL8owJ4tTRCbBWkwXVnFTDLoAHmiMGUWtPIEgRlTQOcM1bK5PVl9Up__3m006xewjEOaXxFKCacMlThpNqsqhaSqR9cmCPotIztvU75OZ_6NWOClqXkVQJuVkDHME3Rur9jYqROMatTzOoUs1piTgT7h9B-DTI95bv_cm8Q8a4p |
CitedBy_id | crossref_primary_10_1016_j_ijhydene_2020_05_181 crossref_primary_10_1140_epjst_e2019_900005_8 crossref_primary_10_3390_app11156704 crossref_primary_10_1016_j_ijhydene_2019_05_049 crossref_primary_10_1016_j_vlsi_2024_102176 crossref_primary_10_1080_14680629_2023_2230298 crossref_primary_10_1016_j_renene_2020_09_024 crossref_primary_10_1109_ACCESS_2023_3253668 crossref_primary_10_3390_sym12101745 crossref_primary_10_1016_j_aeue_2019_152941 crossref_primary_10_1140_epjs_s11734_021_00178_x crossref_primary_10_3390_e24060777 crossref_primary_10_1007_s10470_020_01703_z crossref_primary_10_4316_AECE_2021_02005 crossref_primary_10_25092_baunfbed_892032 crossref_primary_10_1016_j_micpro_2024_105037 crossref_primary_10_16984_saufenbilder_505497 crossref_primary_10_1002_cta_2581 |
Cites_doi | 10.1016/j.ijleo.2016.03.042 10.4316/AECE.2013.02005 10.1016/j.apenergy.2014.01.044 10.1007/s00521-013-1407-x 10.1142/S0218126617500153 10.1016/j.ijleo.2016.09.087 10.1007/s00521-010-0423-3 10.1016/j.renene.2014.07.054 10.1016/j.micpro.2015.05.012 10.1140/epjst/e2015-02471-2 10.1016/j.compeleceng.2016.07.005 10.4316/AECE.2014.01020 10.1016/j.neunet.2014.03.009 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2018 Stefan cel Mare University of Suceava Copyright Stefan cel Mare University of Suceava 2018 |
Copyright_xml | – notice: COPYRIGHT 2018 Stefan cel Mare University of Suceava – notice: Copyright Stefan cel Mare University of Suceava 2018 |
DBID | AAYXX CITATION 7SC 7SP 8FD 8FE 8FG ABJCF AFKRA ARAPS BENPR BGLVJ CCPQU DWQXO HCIFZ JQ2 L6V L7M L~C L~D M7S P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS DOA |
DOI | 10.4316/AECE.2018.03011 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Technology Collection ProQuest One Community College ProQuest Central SciTech Premium Collection ProQuest Computer Science Collection ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Technology Collection |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1844-7600 |
EndPage | 86 |
ExternalDocumentID | oai_doaj_org_article_a5e5aba5f2d144edb83a745bba665538 A557433869 10_4316_AECE_2018_03011 |
GroupedDBID | 23M 5GY 5VS AAKPC AAYXX ABJCF ADBBV AENEX AFKRA ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ C1A CCPQU CITATION E3Z GROUPED_DOAJ HCIFZ IAO IGS IPNFZ ITC KQ8 M7S OK1 PHGZM PHGZT PTHSS PV9 RIG RZL TR2 ADMLS 7SC 7SP 8FD 8FE 8FG DWQXO JQ2 L6V L7M L~C L~D P62 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c481t-5d24a5002a78fa0f01abc009d5867aa7ecc782862d9bd7ad46f3107a9c16ed2d3 |
IEDL.DBID | DOA |
ISSN | 1582-7445 |
IngestDate | Wed Aug 27 01:32:04 EDT 2025 Fri Jul 25 11:49:25 EDT 2025 Sat Mar 08 18:10:09 EST 2025 Tue Jul 01 01:27:21 EDT 2025 Thu Apr 24 23:00:08 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c481t-5d24a5002a78fa0f01abc009d5867aa7ecc782862d9bd7ad46f3107a9c16ed2d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://doaj.org/article/a5e5aba5f2d144edb83a745bba665538 |
PQID | 2412645091 |
PQPubID | 2049588 |
PageCount | 8 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_a5e5aba5f2d144edb83a745bba665538 proquest_journals_2412645091 gale_infotracacademiconefile_A557433869 crossref_primary_10_4316_AECE_2018_03011 crossref_citationtrail_10_4316_AECE_2018_03011 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-01-01 |
PublicationDateYYYYMMDD | 2018-01-01 |
PublicationDate_xml | – month: 01 year: 2018 text: 2018-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Suceava |
PublicationPlace_xml | – name: Suceava |
PublicationTitle | Advances in Electrical and Computer Engineering |
PublicationYear | 2018 |
Publisher | Stefan cel Mare University of Suceava |
Publisher_xml | – name: Stefan cel Mare University of Suceava |
References | Suzuki (10.1109/VLSIT.2015.7223644) 2015 Roy (10.1016/j.apenergy.2014.01.044) 2014; 119 Baptista (10.1007/s00521-013-1407-x) 2013; 23 Tuna (10.1016/j.ijleo.2016.09.087) 2016; 127 Brezetskyi (10.1140/epjst/e2015-02471-2) 2015; 224 GEMAN (10.4316/AECE.2014.01020) 2014; 14 Alcin (10.1016/j.ijleo.2016.03.042) 2016; 127 MELNYK (10.4316/AECE.2013.02005) 2013; 13 Betiku (10.1016/j.renene.2014.07.054) 2015; 74 Cavuslu (10.1007/s00521-010-0423-3) 2011; 20 Zhang (10.1016/j.neunet.2014.03.009) 2014; 55 Tuna (10.1109/SIU.2015.7129921) 2015 Nilsson (10.1109/NORCHIP.2014.7004740) 2014 Koyuncu (10.1016/j.compeleceng.2016.07.005) 2017; 58 Tiwari (10.1016/j.micpro.2015.05.012) 2015; 39 Koyuncu (10.1142/S0218126617500153) 2016; 26 |
References_xml | – volume: 127 start-page: 5500 year: 2016 ident: 10.1016/j.ijleo.2016.03.042 publication-title: Optik doi: 10.1016/j.ijleo.2016.03.042 – volume: 13 start-page: 33 year: 2013 ident: 10.4316/AECE.2013.02005 publication-title: Advances in Electrical and Computer Engineering doi: 10.4316/AECE.2013.02005 – volume: 119 start-page: 330 year: 2014 ident: 10.1016/j.apenergy.2014.01.044 publication-title: Applied Energy doi: 10.1016/j.apenergy.2014.01.044 – volume: 23 start-page: 601 year: 2013 ident: 10.1007/s00521-013-1407-x publication-title: Neural Computing and Applications doi: 10.1007/s00521-013-1407-x – volume: 26 start-page: 1750015 year: 2016 ident: 10.1142/S0218126617500153 publication-title: Journal of Circuits, Systems and Computers doi: 10.1142/S0218126617500153 – volume: 127 start-page: 11786 year: 2016 ident: 10.1016/j.ijleo.2016.09.087 publication-title: Optik doi: 10.1016/j.ijleo.2016.09.087 – volume: 20 start-page: 195 year: 2011 ident: 10.1007/s00521-010-0423-3 publication-title: Neural Computing and Applications doi: 10.1007/s00521-010-0423-3 – start-page: 1 year: 2014 ident: 10.1109/NORCHIP.2014.7004740 – start-page: C172 year: 2015 ident: 10.1109/VLSIT.2015.7223644 – volume: 74 start-page: 87 year: 2015 ident: 10.1016/j.renene.2014.07.054 publication-title: Renewable Energy doi: 10.1016/j.renene.2014.07.054 – start-page: 698 year: 2015 ident: 10.1109/SIU.2015.7129921 – volume: 39 start-page: 373 year: 2015 ident: 10.1016/j.micpro.2015.05.012 publication-title: Microprocessors and Microsystems doi: 10.1016/j.micpro.2015.05.012 – volume: 224 start-page: 1459 year: 2015 ident: 10.1140/epjst/e2015-02471-2 publication-title: The European Physical Journal Special Topics doi: 10.1140/epjst/e2015-02471-2 – volume: 58 start-page: 203 year: 2017 ident: 10.1016/j.compeleceng.2016.07.005 publication-title: Computers & Electrical Engineering doi: 10.1016/j.compeleceng.2016.07.005 – volume: 14 start-page: 133 year: 2014 ident: 10.4316/AECE.2014.01020 publication-title: Advances in Electrical and Computer Engineering doi: 10.4316/AECE.2014.01020 – volume: 55 start-page: 1 year: 2014 ident: 10.1016/j.neunet.2014.03.009 publication-title: Neural Networks doi: 10.1016/j.neunet.2014.03.009 |
SSID | ssib044728236 ssib057620034 ssj0000395691 |
Score | 2.1859033 |
Snippet | Tangent Sigmoid (TanSig) Transfer Function (TSTF) is one of the nonlinear functions used in Artificial Neural Networks (ANNs). As TSTF includes exponential... |
SourceID | doaj proquest gale crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 79 |
SubjectTerms | Applied research Approximation approximation methods Artificial neural networks Bias Design Design and construction Digital signal processors Exponential functions Field programmable gate arrays Floating point arithmetic Hardware Methods Multilayers Neural networks Programmable logic arrays real-time systems Studies Transfer functions |
SummonAdditionalLinks | – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9NAEF5BucCh4ikCBe0BCS5uE-_TJ2SquBUSCKmt1Ntqn1WkNg5JKnHkpzOzXodyKCfL9lpee8Y734xnviHkQ9SNmwVAbk74UCEhV-WY5JXStvaC-cgdhga-fZenF_zrpbgsAbdNSasc18S8UIfeY4z8CCwN2G40b59XPyvsGoV_V0sLjYfkEZyVqOe6Oxn1iXNVj_28cR-gNaZi8V0MZsrAO2gGSlUEmpyLgf0H68OP2vnxHHO_9GF2G_4xXJnf_75VPJum7inZL5iStoMSPCMP4vI5eXKHafAF-Z1ZgG9KodGS9olihgc9W4H1ouc2V1jRs8XVTb-A_Yxm45p2YPXy-Bapx38thjrHDQWkm2830E9QZPjIm5xSTts7P8UpXNz9OGlfkotufn58WpXmC5XneratRKg5dkuordLJTtN0Zp0HQBaElspaBaJXWIJeh8YFZQOXCZCiso2fyRjqwF6RvWW_jK8JTU7GpB24wzpxl7zTkjnFWOQhytqJCTkc36zxhZkcG2RcG_BQUBQGRWFQFCaLYkI-7S5YDaQc9w_9gqLaDUM27XygX1-Z8nEaK6KwzopUB_AvY3CaWcWFc1ZKARZhQj6ioA1-8zAxb0vpAjwesmeZVggAYkzLZkIORl0wZTHYmL-q--b_p9-SxzjzIcJzQPa269v4DjDP1r3Piv0HjPH7ZA priority: 102 providerName: ProQuest |
Title | Implementation of High Speed Tangent Sigmoid Transfer Function Approximations for Artificial Neural Network Applications on FPGA |
URI | https://www.proquest.com/docview/2412645091 https://doaj.org/article/a5e5aba5f2d144edb83a745bba665538 |
Volume | 18 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBZtemkPpU-6bbroUGgvTrzW00cn2AmFhNAkkJvQsywkuyHZQk-lP70zknfZHkIvvdjYSFjSjKRv5JlvCPkUdetmAZCbEz5USMhVOSZ5pbRtvGA-codHAyen8viSf70SV1upvtAnrNADl4HbtyIK66xITQDsH4PTzCounLNSCpituPrWbb1lTIEmca6adSZvfAZQjU5YfHP6UjOwC9pCpooQk3NReH8wMny_6w979PrSe9lg-GvLysz-D63feVMaXpDnI5qkXenFS_IoLl6RZ1scg6_J78z_ezOGGC3oMlH07aDnt7Bv0QubY6vo-fz7zXIOzxnHxjs6wH6Xy3dIOv5zXiIc7ylg3Py5QjxBkdsj37IzOe22fodTqDycHXVvyOXQXxweV2PahcpzPVtVIjQc8yQ0Vulk61TPrPMAxYLQUlmrQOgKg8-b0LqgbOAyAUZUtvUzGUMT2Fuys1gu4jtCk5MxaQeGsE7cJe-0ZE4xFnmIsnFiQvbWI2v8yEmOqTGuDdgmKAqDojAoCpNFMSFfNhVuCx3Hw0UPUFSbYsijnV-AdplRu8y_tGtCPqOgDc52aJi3Y9ACdA95s0wnBEAwpmU7IbtrXTDjMnBvAB4B4ERM9v5_tOYDeYr9KydAu2RndfcjfgRMtHJT8lgPR1Py5KA_Pfs2zZMBrie_-j_t8AiC |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6V9AAcEE8RKLAHEFzcJva-fEDILQkpbaOKplJvy75cRaJxSIKAG7-I38jM2g7lUG49WXbWcTYznvlmd-YbQl4Gldu-B-RmufMJEnIlNhMskcqkjmcuMItLA0djMTplH8_42Qb53dbCYFplaxOjofaVwzXyHfA04LvRvb2bf02waxTurrYtNGq1OAg_v0PItny7_x7k-ypNh4PJ3ihpugokjqn-KuE-ZdgGIDVSlaZX9vrGOkAanishjZEwJ4m11anPrZfGM1ECBJImd30RfOoz-N4bZJNhRWuHbO4OxsefWg1mTKZtB3E8BzCPyV9sverTyyAeyWsSV4S2jPGabwgr0neKwd4As83UdgxU_nGVsaPAVX4jOsPhXXKnQbG0qNXuHtkIs_vk9iVuwwfkV-QdvmhKm2a0KinmlNCTOfhLOjGxpoueTM8vqimcR_wcFnQIfjaOL5Ds_Me0rqxcUsDW8XE14QVFTpF4iEnstLi0DU_h5uHxh-IhOb0WwTwinVk1C48JLa0IpbIQgKuS2dJZJTIrsywwH0RqeZdst_-sdg0XOrbk-KIhJkJRaBSFRlHoKIouebO-YV7TgFw9dBdFtR6G_N3xQrU414050IYHbqzhZeohog3eqsxIxq01QnDwQV3yGgWt0crAD3OmKZaA6SFfly44B-iXKZF3yVarC7oxP0v992V58v-PX5Cbo8nRoT7cHx88JbdwFvX60hbprBbfwjNAXCv7vFFzSj5f95v1B8LPOiw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VIiE4IJ4iUGAPILi4SbxPHxAybdyWQlWprdTbdte7W0WiSUiCgBu_i1_HzNoO5VBuPUVO1nbWMzvzzXrmG0JeBV24oQfk5kTtMyTkyhyTPFPa5rVgdeAOtwY-H8jdE_7xVJyukd9dLQymVXY2MRlqP61xj7wPngZ8N7q3fmzTIg63q_ezrxl2kMI3rV07jUZF9sPP7xC-Ld7tbYOsX-d5NTre2s3aDgNZzfVwmQmfc2wJkFulox3EwdC6GlCHF1oqaxXMT2Gdde4L55X1XEaAQ8oW9VAGn3sG171BbiqmCgz8dLXT6TLnKu96ieMxwHpMA-Or_Z8Bg8ikaOhcEeRyLhrmIaxN75ejrRHmnenNFLL84zRTb4GrPEhyi9U9crfFs7RsFPA-WQuTB-TOJZbDh-RXYiC-aIucJnQaKWaX0KMZeE56bFN1Fz0an19Mx3CckHSY0wo8bhpfIu35j3FTY7mggLLT7RrqC4rsIukjpbPT8tILeQonV4c75SNyci1ieUzWJ9NJeEJodDJE7SAU15G7WDstmVOMBe6DzJ3okc3uyZq6ZUXH5hxfDERHKAqDojAoCpNE0SNvVyfMGkKQq4d-QFGthiGTd_piOj83rWEwVgRhnRUx9xDbBu80s4oL56yUArxRj7xBQRu0N_DHatuWTcD0kLnLlEIACGRaFj2y0emCaQ3RwvxdNk____NLcgvWk_m0d7D_jNzGSTQbTRtkfTn_Fp4D9Fq6F0nHKTm77kX1Bx-DPPw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Implementation+of+High+Speed+Tangent+Sigmoid+Transfer+Function+Approximations+for+Artificial+Neural+Network+Applications+on+FPGA&rft.jtitle=Advances+in+Electrical+and+Computer+Engineering&rft.au=Koyuncu%2C+Ismail&rft.date=2018-01-01&rft.pub=Stefan+cel+Mare+University+of+Suceava&rft.issn=1582-7445&rft.volume=18&rft.issue=3&rft.spage=79&rft_id=info:doi/10.4316%2FAECE.2018.03011&rft.externalDocID=A557433869 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1582-7445&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1582-7445&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1582-7445&client=summon |