Iron Homeostasis Disorder and Alzheimer’s Disease

Iron is an essential trace metal for almost all organisms, including human; however, oxidative stress can easily be caused when iron is in excess, producing toxicity to the human body due to its capability to be both an electron donor and an electron acceptor. Although there is a strict regulation m...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of molecular sciences Vol. 22; no. 22; p. 12442
Main Authors Peng, Yu, Chang, Xuejiao, Lang, Minglin
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 18.11.2021
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Iron is an essential trace metal for almost all organisms, including human; however, oxidative stress can easily be caused when iron is in excess, producing toxicity to the human body due to its capability to be both an electron donor and an electron acceptor. Although there is a strict regulation mechanism for iron homeostasis in the human body and brain, it is usually inevitably disturbed by genetic and environmental factors, or disordered with aging, which leads to iron metabolism diseases, including many neurodegenerative diseases such as Alzheimer’s disease (AD). AD is one of the most common degenerative diseases of the central nervous system (CNS) threatening human health. However, the precise pathogenesis of AD is still unclear, which seriously restricts the design of interventions and treatment drugs based on the pathogenesis of AD. Many studies have observed abnormal iron accumulation in different regions of the AD brain, resulting in cognitive, memory, motor and other nerve damages. Understanding the metabolic balance mechanism of iron in the brain is crucial for the treatment of AD, which would provide new cures for the disease. This paper reviews the recent progress in the relationship between iron and AD from the aspects of iron absorption in intestinal cells, storage and regulation of iron in cells and organs, especially for the regulation of iron homeostasis in the human brain and prospects the future directions for AD treatments.
AbstractList Iron is an essential trace metal for almost all organisms, including human; however, oxidative stress can easily be caused when iron is in excess, producing toxicity to the human body due to its capability to be both an electron donor and an electron acceptor. Although there is a strict regulation mechanism for iron homeostasis in the human body and brain, it is usually inevitably disturbed by genetic and environmental factors, or disordered with aging, which leads to iron metabolism diseases, including many neurodegenerative diseases such as Alzheimer's disease (AD). AD is one of the most common degenerative diseases of the central nervous system (CNS) threatening human health. However, the precise pathogenesis of AD is still unclear, which seriously restricts the design of interventions and treatment drugs based on the pathogenesis of AD. Many studies have observed abnormal iron accumulation in different regions of the AD brain, resulting in cognitive, memory, motor and other nerve damages. Understanding the metabolic balance mechanism of iron in the brain is crucial for the treatment of AD, which would provide new cures for the disease. This paper reviews the recent progress in the relationship between iron and AD from the aspects of iron absorption in intestinal cells, storage and regulation of iron in cells and organs, especially for the regulation of iron homeostasis in the human brain and prospects the future directions for AD treatments.Iron is an essential trace metal for almost all organisms, including human; however, oxidative stress can easily be caused when iron is in excess, producing toxicity to the human body due to its capability to be both an electron donor and an electron acceptor. Although there is a strict regulation mechanism for iron homeostasis in the human body and brain, it is usually inevitably disturbed by genetic and environmental factors, or disordered with aging, which leads to iron metabolism diseases, including many neurodegenerative diseases such as Alzheimer's disease (AD). AD is one of the most common degenerative diseases of the central nervous system (CNS) threatening human health. However, the precise pathogenesis of AD is still unclear, which seriously restricts the design of interventions and treatment drugs based on the pathogenesis of AD. Many studies have observed abnormal iron accumulation in different regions of the AD brain, resulting in cognitive, memory, motor and other nerve damages. Understanding the metabolic balance mechanism of iron in the brain is crucial for the treatment of AD, which would provide new cures for the disease. This paper reviews the recent progress in the relationship between iron and AD from the aspects of iron absorption in intestinal cells, storage and regulation of iron in cells and organs, especially for the regulation of iron homeostasis in the human brain and prospects the future directions for AD treatments.
Iron is an essential trace metal for almost all organisms, including human; however, oxidative stress can easily be caused when iron is in excess, producing toxicity to the human body due to its capability to be both an electron donor and an electron acceptor. Although there is a strict regulation mechanism for iron homeostasis in the human body and brain, it is usually inevitably disturbed by genetic and environmental factors, or disordered with aging, which leads to iron metabolism diseases, including many neurodegenerative diseases such as Alzheimer’s disease (AD). AD is one of the most common degenerative diseases of the central nervous system (CNS) threatening human health. However, the precise pathogenesis of AD is still unclear, which seriously restricts the design of interventions and treatment drugs based on the pathogenesis of AD. Many studies have observed abnormal iron accumulation in different regions of the AD brain, resulting in cognitive, memory, motor and other nerve damages. Understanding the metabolic balance mechanism of iron in the brain is crucial for the treatment of AD, which would provide new cures for the disease. This paper reviews the recent progress in the relationship between iron and AD from the aspects of iron absorption in intestinal cells, storage and regulation of iron in cells and organs, especially for the regulation of iron homeostasis in the human brain and prospects the future directions for AD treatments.
Author Chang, Xuejiao
Lang, Minglin
Peng, Yu
AuthorAffiliation 1 CAS Center for Excellence in Biotic Interactions, College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China; pengyu18@mails.ucas.ac.cn (Y.P.); changxuejiao20@mails.ucas.ac.cn (X.C.)
2 College of Life Science, Agricultural University of Hebei, Baoding 071000, China
AuthorAffiliation_xml – name: 1 CAS Center for Excellence in Biotic Interactions, College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China; pengyu18@mails.ucas.ac.cn (Y.P.); changxuejiao20@mails.ucas.ac.cn (X.C.)
– name: 2 College of Life Science, Agricultural University of Hebei, Baoding 071000, China
Author_xml – sequence: 1
  givenname: Yu
  surname: Peng
  fullname: Peng, Yu
– sequence: 2
  givenname: Xuejiao
  surname: Chang
  fullname: Chang, Xuejiao
– sequence: 3
  givenname: Minglin
  orcidid: 0000-0003-3801-2675
  surname: Lang
  fullname: Lang, Minglin
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34830326$$D View this record in MEDLINE/PubMed
BookMark eNptkctKAzEUhoMo9qJLt1Jw42Y0t2ZmNkKplxYKbnQdMpMzNmVmUpOpoCtfw9fzSUxtK20xm5Nwvv_nzzkddFjbGhA6I_iKsRRfm1nlaTiEck4PUJtwSiOMRXy4dW-hjvczjCmj_fQYtRhPGGZUtBEbO1v3RrYC6xvlje_dGm-dBtdTte4Nyo8pmArc9-fXbwuUhxN0VKjSw-m6dtHz_d3TcBRNHh_Gw8EkynlCmogDZBnLRZzSRPEiEWla4EIUMcexLkgSwoU4DDhnjCRY6_DWWdznQSG0TlkX3ax854usAp1D3ThVyrkzlXLv0iojdzu1mcoX-yYTQSkXS4PLtYGzrwvwjayMz6EsVQ124SUVmGOSEBwH9GIPndmFq8P3lhQlpE8wC9T5dqK_KJt5BoCtgNxZ7x0UMjeNaoxdBjSlJFgutyZ3thZU0Z5qY_w__wO5nZgT
CitedBy_id crossref_primary_10_1016_j_phrs_2023_106672
crossref_primary_10_1267_ahc_24_00002
crossref_primary_10_3389_fneur_2024_1353305
crossref_primary_10_1002_tox_24098
crossref_primary_10_1007_s10571_024_01459_4
crossref_primary_10_1016_j_ijbiomac_2024_130387
crossref_primary_10_12996_gmj_galenos_2023_3865
crossref_primary_10_3390_ph16020171
crossref_primary_10_3390_su14137901
crossref_primary_10_1016_j_biopha_2024_117419
crossref_primary_10_1016_j_neuint_2024_105773
crossref_primary_10_3390_ijms25052724
crossref_primary_10_1007_s12035_022_02929_w
crossref_primary_10_1016_j_ejphar_2024_176859
crossref_primary_10_1002_adfm_202302015
crossref_primary_10_2174_0929867329666221003101548
crossref_primary_10_1007_s12011_022_03523_w
crossref_primary_10_1007_s12011_024_04511_y
crossref_primary_10_1016_j_arr_2023_101961
crossref_primary_10_3390_biomedicines10102597
crossref_primary_10_3389_fnagi_2022_888989
crossref_primary_10_3389_fnut_2022_923590
crossref_primary_10_1007_s12035_025_04772_1
crossref_primary_10_1080_07853890_2025_2472871
crossref_primary_10_3389_fnagi_2022_830569
crossref_primary_10_1007_s10534_022_00435_z
crossref_primary_10_3390_ijms23031634
crossref_primary_10_3390_brainsci13101364
crossref_primary_10_3390_ph17121669
crossref_primary_10_1016_j_neulet_2023_137623
crossref_primary_10_3390_biophysica4010001
crossref_primary_10_3390_ijms242115721
crossref_primary_10_1038_s41598_024_75431_z
crossref_primary_10_3390_microorganisms13010122
crossref_primary_10_3390_ijms252211873
crossref_primary_10_3390_ijms241914954
crossref_primary_10_1007_s12035_024_04180_x
crossref_primary_10_3389_fncel_2024_1422130
crossref_primary_10_3390_ijms23094490
crossref_primary_10_3390_ph17121741
crossref_primary_10_1016_j_molstruc_2024_139694
crossref_primary_10_2174_0127724328279684240104094257
crossref_primary_10_3389_fphar_2024_1348128
crossref_primary_10_1051_bioconf_202412917018
crossref_primary_10_12677_ACM_2023_133663
crossref_primary_10_1021_acs_nanolett_3c00042
crossref_primary_10_11613_BM_2024_030701
crossref_primary_10_3390_biomedicines12092043
crossref_primary_10_2147_DDDT_S458013
crossref_primary_10_1016_j_foodhyd_2025_111080
crossref_primary_10_1016_j_neuint_2024_105705
crossref_primary_10_3390_biomedicines10071706
crossref_primary_10_3390_cells12101369
crossref_primary_10_1007_s10895_022_02940_3
crossref_primary_10_3389_fnagi_2022_949083
crossref_primary_10_1016_j_jep_2023_117679
crossref_primary_10_3390_biomedicines10102385
crossref_primary_10_3389_fragi_2023_1234958
crossref_primary_10_1002_dmrr_3841
crossref_primary_10_1039_D2SC05008K
crossref_primary_10_1186_s40001_024_01677_y
crossref_primary_10_1002_nbm_4750
crossref_primary_10_1016_j_neuroscience_2024_08_035
crossref_primary_10_1016_j_brainres_2024_149340
crossref_primary_10_1016_j_ijpharm_2024_124889
crossref_primary_10_3389_fimmu_2023_1279826
crossref_primary_10_1007_s11064_024_04163_3
crossref_primary_10_1007_s12035_023_03370_3
crossref_primary_10_3389_fphar_2022_1079313
crossref_primary_10_1016_j_brainres_2023_148404
crossref_primary_10_1016_j_neurobiolaging_2023_08_001
crossref_primary_10_1186_s40035_022_00321_1
crossref_primary_10_3390_bios14010046
crossref_primary_10_3390_ijms23073612
crossref_primary_10_1186_s43556_023_00142_2
crossref_primary_10_3390_antiox12111997
crossref_primary_10_3389_fnagi_2024_1402774
crossref_primary_10_1016_j_biopha_2023_114312
crossref_primary_10_1016_j_envpol_2024_123555
crossref_primary_10_18137_cardiometry_2024_31_4753
crossref_primary_10_1007_s12035_024_03990_3
crossref_primary_10_3390_biom12030365
crossref_primary_10_12677_acm_2025_153659
crossref_primary_10_3390_brainsci13030500
crossref_primary_10_3390_ijms23010345
crossref_primary_10_3390_ijms242115739
crossref_primary_10_3390_ijms24119637
Cites_doi 10.1016/S0891-5849(97)00016-6
10.1038/nri3863
10.1038/ncomms7760
10.1016/0306-4522(96)00047-4
10.1111/jnc.13671
10.1016/j.taap.2004.06.021
10.1126/science.1104742
10.59566/IJBS.2008.4089
10.1016/j.bmcl.2012.05.129
10.1038/s41589-019-0330-6
10.1016/j.pneurobio.2019.101716
10.1016/j.ijbiomac.2020.11.192
10.1007/s12272-013-0036-3
10.1038/s41419-020-2298-2
10.3390/brainsci11081085
10.3389/fnagi.2018.00065
10.1146/annurev.nutr.012809.104801
10.1016/j.redox.2017.10.014
10.3233/JAD-161200
10.1046/j.1471-4159.1994.63030793.x
10.1523/JNEUROSCI.22-15-06578.2002
10.1155/2014/581256
10.1016/j.neuint.2012.12.006
10.1080/15548627.2020.1810918
10.1016/j.ebiom.2016.07.001
10.1098/rsif.2014.0165
10.1055/s-0033-1359319
10.1212/WNL.34.7.939
10.1007/978-1-59259-963-9
10.1016/j.bbamcr.2012.01.014
10.1038/nchembio.1416
10.1212/WNL.43.8.1467
10.1021/bi300752r
10.1016/j.bcmd.2005.04.006
10.1016/S1474-4422(14)70117-6
10.3389/fnins.2019.01443
10.1016/j.neuroscience.2015.10.006
10.3233/JAD-2009-1010
10.3233/JAD-179944
10.1007/978-981-13-9589-5_10
10.1016/j.bbr.2017.12.036
10.1111/j.1582-4934.2008.00356.x
10.1016/j.jalz.2016.03.001
10.1111/bph.14567
10.1016/S0166-2236(03)00067-5
10.1007/BF02536182
10.1038/s41380-018-0266-3
10.1096/fj.07-8627rev
10.1196/annals.1306.001
10.1038/nrn1537
10.1038/s41582-019-0228-7
10.1002/jnr.490310111
10.1152/physrev.00008.2013
10.3390/molecules23092357
10.1016/j.cca.2019.11.029
10.1002/open.201600169
10.3389/fphar.2016.00160
10.1073/pnas.0900345106
10.1016/j.neuroimage.2019.02.019
10.1126/science.8346443
10.1080/19490976.2021.1874855
10.1002/jmri.20751
10.1111/jnc.13425
10.1016/j.bbamcr.2015.01.021
10.1186/1742-2094-5-12
10.1016/j.neurobiolaging.2014.03.039
10.1016/j.freeradbiomed.2004.04.012
10.1177/0269881114552744
10.1016/j.cmet.2005.02.005
10.1111/jnc.12675
10.1111/jnc.14148
10.1016/j.ctim.2019.102294
10.1002/prot.25075
10.1186/s13027-017-0145-6
10.1038/s41581-019-0197-5
10.1016/j.cmet.2012.03.018
10.1038/475S1a
10.1515/revneuro-2017-0006
10.1007/s00401-020-02196-w
10.1038/nrn3453
10.3389/fnagi.2013.00034
10.1101/cshperspect.a020412
10.1038/s41598-017-14721-1
10.1016/j.cell.2012.03.042
10.1016/j.redox.2020.101494
10.1301/nr.2007.jul.335–340
10.1177/0271678X18783372
10.1136/gut.2010.214312
10.1146/annurev.pathol.1.110304.100113
10.1016/j.neuron.2009.03.024
10.1016/j.spen.2006.08.002
10.1002/jcp.27522
10.1038/s41419-020-2402-7
10.1016/S0098-2997(00)00006-6
10.2174/138161210793176572
10.1182/blood-2003-03-0672
10.1016/j.biocel.2006.07.001
10.1007/s12035-021-02335-8
10.1016/j.pharep.2014.08.014
10.1002/hep.26297
10.3390/microorganisms9112281
10.1038/nrd.2016.248
10.1038/nchembio807
10.1074/jbc.M205305200
10.1152/ajpgi.00004.2017
10.1093/jn/133.5.1549S
10.1016/j.tox.2011.03.001
10.1182/blood.V122.21.3433.3433
10.1016/j.pneurobio.2016.07.005
10.1007/s00018-007-7198-4
10.1016/S1357-2725(99)00080-1
10.1007/BF00334497
10.1016/j.brainresbull.2016.08.009
10.1021/acs.accounts.5b00119
10.1016/j.mehy.2019.02.035
10.15252/embj.201695810
10.1101/cshperspect.a028035
10.1016/j.bbagen.2010.02.005
10.1007/s00775-017-1463-2
10.5662/wjm.v6.i1.1
10.1016/j.mito.2019.09.007
10.1182/blood-2009-11-253815
10.1016/j.beha.2004.10.004
10.1126/scitranslmed.aaz4069
10.1186/s13024-017-0218-4
10.1046/j.1471-4159.1994.62031097.x
10.1042/BST0361282
10.1016/j.nbd.2015.02.026
10.1073/pnas.0801318105
10.1111/bcp.13877
10.1039/b816714c
10.1093/brain/awaa089
10.7861/clinmedicine.16-3-247
10.1016/j.bcp.2014.01.032
10.1016/j.pneurobio.2007.06.001
10.3389/fnins.2019.00180
10.1006/bcmd.2002.0571
10.1016/j.neuroimage.2020.117433
10.1016/j.nbd.2020.104795
10.1007/s11011-019-00516-y
10.1007/s12035-018-1403-3
10.1016/j.bbrc.2020.10.065
10.1111/neup.12626
10.1146/annurev-food-030216-030125
10.1007/978-981-13-9589-5_1
10.1016/j.bbamcr.2019.118535
10.1016/S1474-4422(17)30159-X
10.1039/C4MT00164H
10.1210/en.2006-1331
10.1101/2020.05.01.071498
10.1046/j.1471-4159.2001.00186.x
10.1073/pnas.94.18.9866
10.1021/acs.accounts.9b00248
10.1016/j.freeradbiomed.2017.07.010
10.1016/j.ejmech.2018.05.004
10.1016/j.mpaic.2019.01.003
10.1016/j.bbagen.2011.09.009
10.3390/cells9112476
10.1016/j.cell.2010.06.028
10.1038/sj.emboj.7600041
10.1152/ajplung.00484.2005
ContentType Journal Article
Copyright 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2021 by the authors. 2021
Copyright_xml – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2021 by the authors. 2021
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
8G5
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
GUQSH
K9.
M0S
M1P
M2O
MBDVC
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOI 10.3390/ijms222212442
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
Research Library Prep
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni)
PML(ProQuest Medical Library)
Research Library
Research Library (Corporate)
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
Research Library Prep
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Research Library
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

CrossRef
Publicly Available Content Database
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1422-0067
ExternalDocumentID PMC8622469
34830326
10_3390_ijms222212442
Genre Journal Article
Review
GrantInformation_xml – fundername: Beijing Municipal Natural Science Foundation
  grantid: 7202129
– fundername: Fundamental Research Funds for the Central Universities
  grantid: Fundamental Research Funds for the Central Universities
GroupedDBID ---
29J
2WC
53G
5GY
5VS
7X7
88E
8FE
8FG
8FH
8FI
8FJ
8G5
A8Z
AADQD
AAFWJ
AAHBH
AAYXX
ABDBF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
AEAQA
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BCNDV
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DIK
DU5
DWQXO
E3Z
EBD
EBS
EJD
ESX
F5P
FRP
FYUFA
GNUQQ
GUQSH
GX1
HH5
HMCUK
HYE
IAO
IHR
ITC
KQ8
LK8
M1P
M2O
M48
MODMG
O5R
O5S
OK1
OVT
P2P
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RPM
TR2
TUS
UKHRP
~8M
3V.
ABJCF
BBNVY
BHPHI
CGR
CUY
CVF
ECM
EIF
GROUPED_DOAJ
HCIFZ
KB.
M7P
M~E
NPM
PDBOC
7XB
8FK
K9.
MBDVC
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
ID FETCH-LOGICAL-c481t-4eebb3c67928a4f8699f0f6f7407df184223253e4433180dd223db7546796dd93
IEDL.DBID M48
ISSN 1422-0067
1661-6596
IngestDate Thu Aug 21 18:17:03 EDT 2025
Fri Jul 11 11:17:32 EDT 2025
Fri Jul 25 19:56:30 EDT 2025
Wed Feb 19 02:10:54 EST 2025
Thu Apr 24 22:58:38 EDT 2025
Tue Jul 01 02:47:39 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 22
Keywords APP
pathogenesis
Alzheimer’s disease
iron homeostasis regulators
tau
genetic intervention
iron homeostasis disorder
oxidative stress
central nervous system
β-amyloid
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c481t-4eebb3c67928a4f8699f0f6f7407df184223253e4433180dd223db7546796dd93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0003-3801-2675
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/ijms222212442
PMID 34830326
PQID 2602115103
PQPubID 2032341
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8622469
proquest_miscellaneous_2604018107
proquest_journals_2602115103
pubmed_primary_34830326
crossref_citationtrail_10_3390_ijms222212442
crossref_primary_10_3390_ijms222212442
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20211118
PublicationDateYYYYMMDD 2021-11-18
PublicationDate_xml – month: 11
  year: 2021
  text: 20211118
  day: 18
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle International journal of molecular sciences
PublicationTitleAlternate Int J Mol Sci
PublicationYear 2021
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Pantopoulos (ref_48) 2004; 1012
Hare (ref_94) 2013; 5
Mazumder (ref_145) 2019; 125
Wang (ref_54) 2019; 234
Sengoku (ref_95) 2020; 40
Patel (ref_40) 2019; 15
Knutson (ref_56) 2010; 30
Merle (ref_61) 2007; 148
ref_19
Valko (ref_41) 2007; 39
Liu (ref_60) 2005; 35
Xie (ref_140) 2017; 22
Leipuviene (ref_45) 2007; 64
Oshiro (ref_23) 2011; 2011
Long (ref_91) 2019; 24
Briggs (ref_15) 2016; 16
Derry (ref_129) 2020; 184
Seyoum (ref_64) 2021; 13
Rogers (ref_112) 2008; 36
Upadhyay (ref_33) 2020; 50
Sebastiani (ref_137) 2016; 7
Mayle (ref_26) 2012; 1820
Everett (ref_50) 2014; 11
Spotorno (ref_102) 2020; 143
Prasanna (ref_111) 2021; 534
ref_124
Ganz (ref_34) 2012; 1823
Sheetz (ref_139) 2019; 85
Liu (ref_37) 2017; 7
Skovronsky (ref_88) 2006; 1
Dugger (ref_158) 2017; 9
(ref_117) 2016; 12
Rouault (ref_71) 2013; 14
Gerlach (ref_77) 1994; 63
Connor (ref_100) 1992; 31
Robert (ref_135) 2015; 48
Pantopoulos (ref_46) 2012; 51
Sendamarai (ref_31) 2008; 105
Guillemot (ref_110) 2013; 57
Roubroeks (ref_159) 2017; 143
Kent (ref_87) 2020; 140
Leong (ref_164) 2020; 35
Hentze (ref_29) 2010; 142
Zecca (ref_82) 2001; 76
Li (ref_127) 2020; 11
Frisoni (ref_90) 2017; 16
Grundkeiqbal (ref_108) 1990; 81
Ayton (ref_122) 2015; 6
Butterfield (ref_123) 2020; 138
Ghosh (ref_76) 2004; 23
Gong (ref_99) 2019; 191
ref_151
Wilkins (ref_113) 2017; 133
Smith (ref_92) 1997; 94
Theil (ref_22) 2003; 133
Chen (ref_128) 2021; 17
Thirupathi (ref_162) 2019; 1173
Cheignon (ref_107) 2018; 14
Ayton (ref_78) 2014; 2014
Ashraf (ref_131) 2020; 32
Morris (ref_163) 2018; 341
Stankiewicz (ref_44) 2014; 35
Boopathi (ref_109) 2016; 84
Minotti (ref_83) 1992; 27
Knutson (ref_30) 2007; 65
Andrews (ref_39) 2005; 18
Papanikolaou (ref_7) 2005; 202
Ndayisaba (ref_68) 2019; 13
Patel (ref_73) 2002; 22
Dawkins (ref_114) 2014; 129
Corder (ref_119) 1993; 261
Ganz (ref_20) 2013; 93
Sousa (ref_47) 2020; 504
Silvestri (ref_132) 2008; 12
Brody (ref_12) 2011; 475
Nemeth (ref_24) 2004; 306
Zecca (ref_80) 1994; 62
Anand (ref_153) 2013; 36
Qiao (ref_59) 2012; 15
Amit (ref_134) 2008; 22
Evstatiev (ref_2) 2012; 61
Chiou (ref_74) 2019; 39
Zecca (ref_81) 1996; 73
Arosio (ref_21) 2010; 1800
Camandola (ref_70) 2017; 36
Liu (ref_160) 2019; 52
Ranasinghe (ref_14) 2020; 12
Belaidi (ref_17) 2016; 139
Reiman (ref_121) 2009; 106
Cox (ref_147) 2015; 29
Oates (ref_57) 2007; 22
Hower (ref_155) 2009; 5
Ashraf (ref_5) 2018; 10
Zecca (ref_36) 2004; 5
Galaris (ref_1) 2019; 1866
Hunter (ref_58) 2002; 277
Weiland (ref_130) 2019; 56
Mandel (ref_143) 2004; 37
Munoz (ref_116) 2000; 162
Ward (ref_8) 2014; 13
McKhann (ref_89) 1984; 34
Ashrafian (ref_96) 2021; 167
Kuhn (ref_51) 2015; 7
Yan (ref_101) 2019; 13
Lee (ref_105) 2020; 11
Jiang (ref_152) 2016; 147
Cozza (ref_126) 2017; 112
Zhou (ref_28) 2017; 12
Lane (ref_4) 2018; 64
Cascella (ref_150) 2017; 12
Oboudiyat (ref_10) 2013; 33
Seeley (ref_157) 2009; 62
ref_67
ref_66
Borthakur (ref_103) 2006; 24
Bush (ref_18) 2003; 26
Ganz (ref_63) 2015; 15
ref_65
Witcher (ref_138) 2013; 122
Rogers (ref_115) 2016; 138
Zhang (ref_141) 2012; 22
Nikseresht (ref_161) 2019; 176
Saad (ref_148) 2015; 67
Wetzels (ref_43) 2020; 16
He (ref_86) 2008; 4
Bandyopadhyay (ref_106) 2014; 88
Saunders (ref_120) 1993; 43
Rouault (ref_72) 2006; 13
Ganz (ref_25) 2005; 1
Daneman (ref_69) 2015; 7
Choi (ref_133) 2021; 58
Thomson (ref_52) 1999; 31
Rouault (ref_75) 2002; 29
Crielaard (ref_32) 2017; 16
Xiong (ref_79) 2019; 1173
Cogswell (ref_98) 2021; 224
Ganz (ref_55) 2003; 102
Babaei (ref_11) 2018; 152
Rouault (ref_53) 2006; 2
Yamazaki (ref_118) 2019; 15
Dixon (ref_125) 2012; 149
Power (ref_13) 2019; 10
Lieu (ref_156) 2001; 22
Leitao (ref_84) 2017; 6
Zhao (ref_146) 2015; 310
Lane (ref_27) 2015; 1853
Ghosh (ref_154) 2015; 81
Jomova (ref_6) 2011; 283
Rishi (ref_42) 2017; 313
Altamura (ref_93) 2009; 16
Meneghini (ref_38) 1997; 23
Kozlov (ref_97) 2017; 28
Nguyen (ref_62) 2006; 291
Cohen (ref_35) 2010; 116
Kontoghiorghe (ref_136) 2016; 6
Cassidy (ref_9) 2020; 49
Fernando (ref_144) 2017; 59
ref_49
Agostinho (ref_104) 2010; 16
Farina (ref_85) 2013; 62
Dixon (ref_142) 2014; 10
Chen (ref_149) 2008; 5
Mandel (ref_16) 2007; 82
Conway (ref_3) 2019; 20
References_xml – volume: 23
  start-page: 783
  year: 1997
  ident: ref_38
  article-title: Iron Homeostasis, Oxidative Stress, and DNA Damage
  publication-title: Free. Radic. Biol. Med.
  doi: 10.1016/S0891-5849(97)00016-6
– volume: 15
  start-page: 500
  year: 2015
  ident: ref_63
  article-title: Iron homeostasis in host defence and inflammation
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/nri3863
– volume: 6
  start-page: 6760
  year: 2015
  ident: ref_122
  article-title: Ferritin levels in the cerebrospinal fluid predict Alzheimer’s disease outcomes and are regulated by APOE
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms7760
– volume: 73
  start-page: 407
  year: 1996
  ident: ref_81
  article-title: Interaction of neuromelanin and iron in substantia nigra and other areas of human brain
  publication-title: Neuroscience
  doi: 10.1016/0306-4522(96)00047-4
– volume: 138
  start-page: 479
  year: 2016
  ident: ref_115
  article-title: A role for amyloid precursor protein translation to restore iron homeostasis and ameliorate lead (Pb) neurotoxicity
  publication-title: J. Neurochem.
  doi: 10.1111/jnc.13671
– volume: 202
  start-page: 199
  year: 2005
  ident: ref_7
  article-title: Iron metabolism and toxicity
  publication-title: Toxicol. Appl. Pharmacol.
  doi: 10.1016/j.taap.2004.06.021
– volume: 306
  start-page: 2090
  year: 2004
  ident: ref_24
  article-title: Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization
  publication-title: Science
  doi: 10.1126/science.1104742
– volume: 4
  start-page: 89
  year: 2008
  ident: ref_86
  article-title: Free radicals, antioxidants in disease and health
  publication-title: Int. J. Biomed. Sci. IJBS
  doi: 10.59566/IJBS.2008.4089
– volume: 22
  start-page: 5108
  year: 2012
  ident: ref_141
  article-title: Discovery of benzylisothioureas as potent divalent metal transporter 1 (DMT1) inhibitors
  publication-title: Bioorg. Med. Chem. Lett.
  doi: 10.1016/j.bmcl.2012.05.129
– volume: 15
  start-page: 872
  year: 2019
  ident: ref_40
  article-title: A PCBP1-BolA2 chaperone complex delivers iron for cytosolic [2Fe-2S] cluster assembly
  publication-title: Nat. Chem. Biol.
  doi: 10.1038/s41589-019-0330-6
– volume: 184
  start-page: 101716
  year: 2020
  ident: ref_129
  article-title: Revisiting the intersection of amyloid, pathologically modified tau and iron in Alzheimer’s disease from a ferroptosis perspective
  publication-title: Prog. Neurobiol.
  doi: 10.1016/j.pneurobio.2019.101716
– volume: 167
  start-page: 382
  year: 2021
  ident: ref_96
  article-title: Review on Alzheimer’s disease: Inhibition of amyloid beta and tau tangle formation
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2020.11.192
– volume: 36
  start-page: 375
  year: 2013
  ident: ref_153
  article-title: A review on cholinesterase inhibitors for Alzheimer’s disease
  publication-title: Arch. Pharm. Res.
  doi: 10.1007/s12272-013-0036-3
– volume: 11
  start-page: 88
  year: 2020
  ident: ref_127
  article-title: Ferroptosis: Past, present and future
  publication-title: Cell Death Dis.
  doi: 10.1038/s41419-020-2298-2
– ident: ref_66
  doi: 10.3390/brainsci11081085
– volume: 10
  start-page: 65
  year: 2018
  ident: ref_5
  article-title: The Aging of Iron Man
  publication-title: Front. Aging Neurosci.
  doi: 10.3389/fnagi.2018.00065
– volume: 30
  start-page: 149
  year: 2010
  ident: ref_56
  article-title: Iron-sensing proteins that regulate hepcidin and enteric iron absorption
  publication-title: Annu. Rev. Nutr.
  doi: 10.1146/annurev.nutr.012809.104801
– volume: 14
  start-page: 450
  year: 2018
  ident: ref_107
  article-title: Oxidative stress and the amyloid beta peptide in Alzheimer’s disease
  publication-title: Redox Biol.
  doi: 10.1016/j.redox.2017.10.014
– volume: 59
  start-page: 481
  year: 2017
  ident: ref_144
  article-title: Diabetes and Alzheimer’s Disease: Can Tea Phytochemicals Play a Role in Prevention?
  publication-title: J. Alzheimers Dis.
  doi: 10.3233/JAD-161200
– volume: 63
  start-page: 793
  year: 1994
  ident: ref_77
  article-title: Altered brain metabolism of iron as a cause of neurodegenerative diseases?
  publication-title: J. Neurochem.
  doi: 10.1046/j.1471-4159.1994.63030793.x
– volume: 22
  start-page: 6578
  year: 2002
  ident: ref_73
  article-title: Ceruloplasmin Regulates Iron Levels in the CNS and Prevents Free Radical Injury
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.22-15-06578.2002
– volume: 2014
  start-page: 581256
  year: 2014
  ident: ref_78
  article-title: Nigral iron elevation is an invariable feature of Parkinson’s disease and is a sufficient cause of neurodegeneration
  publication-title: BioMed Res. Int.
  doi: 10.1155/2014/581256
– volume: 62
  start-page: 575
  year: 2013
  ident: ref_85
  article-title: Metals, oxidative stress and neurodegeneration: A focus on iron, manganese and mercury
  publication-title: Neurochem. Int.
  doi: 10.1016/j.neuint.2012.12.006
– volume: 17
  start-page: 2054
  year: 2021
  ident: ref_128
  article-title: Ferroptosis: Machinery and regulation
  publication-title: Autophagy
  doi: 10.1080/15548627.2020.1810918
– ident: ref_124
  doi: 10.1016/j.ebiom.2016.07.001
– volume: 11
  start-page: 20140165
  year: 2014
  ident: ref_50
  article-title: Ferrous iron formation following the co-aggregation of ferric iron and the Alzheimer’s disease peptide beta-amyloid (1–42)
  publication-title: J. R. Soc. Interface
  doi: 10.1098/rsif.2014.0165
– volume: 33
  start-page: 313
  year: 2013
  ident: ref_10
  article-title: Alzheimer’s disease
  publication-title: Semin. Neurol.
  doi: 10.1055/s-0033-1359319
– volume: 34
  start-page: 939
  year: 1984
  ident: ref_89
  article-title: Clinical diagnosis of Alzheimer’s disease: Report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s Disease
  publication-title: Neurology
  doi: 10.1212/WNL.34.7.939
– ident: ref_19
  doi: 10.1007/978-1-59259-963-9
– volume: 1823
  start-page: 1434
  year: 2012
  ident: ref_34
  article-title: Hepcidin and iron homeostasis
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbamcr.2012.01.014
– volume: 10
  start-page: 9
  year: 2014
  ident: ref_142
  article-title: The role of iron and reactive oxygen species in cell death
  publication-title: Nat. Chem. Biol.
  doi: 10.1038/nchembio.1416
– volume: 43
  start-page: 1467
  year: 1993
  ident: ref_120
  article-title: Association of apolipoprotein E allele epsilon 4 with late-onset familial and sporadic Alzheimer’s disease
  publication-title: Neurology
  doi: 10.1212/WNL.43.8.1467
– volume: 22
  start-page: 791
  year: 2007
  ident: ref_57
  article-title: The role of hepcidin and ferroportin in iron absorption
  publication-title: Histol. Histopathol.
– volume: 51
  start-page: 5705
  year: 2012
  ident: ref_46
  article-title: Mechanisms of mammalian iron homeostasis
  publication-title: Biochemistry
  doi: 10.1021/bi300752r
– volume: 35
  start-page: 47
  year: 2005
  ident: ref_60
  article-title: Regulation of hepcidin and ferroportin expression by lipopolysaccharide in splenic macrophages
  publication-title: Blood Cells Mol. Dis.
  doi: 10.1016/j.bcmd.2005.04.006
– volume: 13
  start-page: 1045
  year: 2014
  ident: ref_8
  article-title: The role of iron in brain ageing and neurodegenerative disorders
  publication-title: Lancet Neurol.
  doi: 10.1016/S1474-4422(14)70117-6
– volume: 13
  start-page: 1443
  year: 2019
  ident: ref_101
  article-title: Iron Metabolism, Ferroptosis, and the Links With Alzheimer’s Disease
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2019.01443
– volume: 310
  start-page: 641
  year: 2015
  ident: ref_146
  article-title: Resveratrol decreases the insoluble Abeta1-42 level in hippocampus and protects the integrity of the blood-brain barrier in AD rats
  publication-title: Neuroscience
  doi: 10.1016/j.neuroscience.2015.10.006
– volume: 16
  start-page: 879
  year: 2009
  ident: ref_93
  article-title: Iron toxicity in diseases of aging: Alzheimer’s disease, Parkinson’s disease and atherosclerosis
  publication-title: J. Alzheimers Dis.
  doi: 10.3233/JAD-2009-1010
– volume: 64
  start-page: S379
  year: 2018
  ident: ref_4
  article-title: Iron and Alzheimer’s Disease: An Update on Emerging Mechanisms
  publication-title: J. Alzheimers Dis.
  doi: 10.3233/JAD-179944
– volume: 1173
  start-page: 179
  year: 2019
  ident: ref_79
  article-title: Diagnostics and Treatments of Iron-Related CNS Diseases
  publication-title: Adv. Exp. Med. Biol.
  doi: 10.1007/978-981-13-9589-5_10
– volume: 341
  start-page: 154
  year: 2018
  ident: ref_163
  article-title: Why should neuroscientists worry about iron? The emerging role of ferroptosis in the pathophysiology of neuroprogressive diseases
  publication-title: Behav. Brain Res.
  doi: 10.1016/j.bbr.2017.12.036
– volume: 12
  start-page: 1548
  year: 2008
  ident: ref_132
  article-title: A potential pathogenetic role of iron in Alzheimer’s disease
  publication-title: J. Cell. Mol. Med.
  doi: 10.1111/j.1582-4934.2008.00356.x
– volume: 12
  start-page: 459
  year: 2016
  ident: ref_117
  article-title: 2016 Alzheimer’s disease facts and figures
  publication-title: Alzheimers Dement.
  doi: 10.1016/j.jalz.2016.03.001
– volume: 176
  start-page: 3622
  year: 2019
  ident: ref_161
  article-title: Treating Alzheimer’s disease by targeting iron
  publication-title: Br. J. Pharmacol.
  doi: 10.1111/bph.14567
– volume: 26
  start-page: 207
  year: 2003
  ident: ref_18
  article-title: The metallobiology of Alzheimer’s disease
  publication-title: Trends Neurosci.
  doi: 10.1016/S0166-2236(03)00067-5
– volume: 27
  start-page: 219
  year: 1992
  ident: ref_83
  article-title: Redox cycling of iron and lipid-peroxidation
  publication-title: Lipids
  doi: 10.1007/BF02536182
– volume: 24
  start-page: 345
  year: 2019
  ident: ref_91
  article-title: Novel upregulation of amyloid-beta precursor protein (APP) by microRNA-346 via targeting of APP mRNA 5′-untranslated region: Implications in Alzheimer’s disease
  publication-title: Mol. Psychiatry
  doi: 10.1038/s41380-018-0266-3
– volume: 22
  start-page: 1296
  year: 2008
  ident: ref_134
  article-title: Targeting multiple Alzheimer’s disease etiologies with multimodal neuroprotective and neurorestorative iron chelators
  publication-title: FASEB J.
  doi: 10.1096/fj.07-8627rev
– volume: 1012
  start-page: 1
  year: 2004
  ident: ref_48
  article-title: Iron metabolism and the IRE/IRP regulatory system: An update
  publication-title: Ann. N. Y. Acad. Sci.
  doi: 10.1196/annals.1306.001
– volume: 5
  start-page: 863
  year: 2004
  ident: ref_36
  article-title: Iron, brain ageing and neurodegenerative disorders
  publication-title: Nat. Rev. Neurosci.
  doi: 10.1038/nrn1537
– volume: 15
  start-page: 501
  year: 2019
  ident: ref_118
  article-title: Apolipoprotein E and Alzheimer disease: Pathobiology and targeting strategies
  publication-title: Nat. Rev. Neurol.
  doi: 10.1038/s41582-019-0228-7
– volume: 31
  start-page: 75
  year: 1992
  ident: ref_100
  article-title: A histochemical study of iron, transferrin, and ferritin in Alzheimer’s diseased brains
  publication-title: J. Neurosci. Res.
  doi: 10.1002/jnr.490310111
– volume: 93
  start-page: 1721
  year: 2013
  ident: ref_20
  article-title: Systemic iron homeostasis
  publication-title: Physiol. Rev.
  doi: 10.1152/physrev.00008.2013
– ident: ref_151
  doi: 10.3390/molecules23092357
– volume: 504
  start-page: 180
  year: 2020
  ident: ref_47
  article-title: Iron overload: Effects on cellular biochemistry
  publication-title: Clin. Chim. Acta
  doi: 10.1016/j.cca.2019.11.029
– volume: 6
  start-page: 360
  year: 2017
  ident: ref_84
  article-title: Spin-Forbidden Branching in the Mechanism of the Intrinsic Haber-Weiss Reaction
  publication-title: ChemistryOpen
  doi: 10.1002/open.201600169
– volume: 7
  start-page: 160
  year: 2016
  ident: ref_137
  article-title: Pharmacological Targeting of the Hepcidin/Ferroportin Axis
  publication-title: Front. Pharmacol.
  doi: 10.3389/fphar.2016.00160
– volume: 106
  start-page: 6820
  year: 2009
  ident: ref_121
  article-title: Fibrillar amyloid-beta burden in cognitively normal people at 3 levels of genetic risk for Alzheimer’s disease
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0900345106
– volume: 191
  start-page: 176
  year: 2019
  ident: ref_99
  article-title: Imaging beta amyloid aggregation and iron accumulation in Alzheimer’s disease using quantitative susceptibility mapping MRI
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2019.02.019
– volume: 261
  start-page: 921
  year: 1993
  ident: ref_119
  article-title: Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families
  publication-title: Science
  doi: 10.1126/science.8346443
– volume: 13
  start-page: 1
  year: 2021
  ident: ref_64
  article-title: Iron homeostasis in host and gut bacteria—A complex interrelationship
  publication-title: Gut Microbes.
  doi: 10.1080/19490976.2021.1874855
– volume: 24
  start-page: 1011
  year: 2006
  ident: ref_103
  article-title: In vivo measurement of plaque burden in a mouse model of Alzheimer’s disease
  publication-title: J. Magn. Reson. Imaging
  doi: 10.1002/jmri.20751
– volume: 139
  start-page: 179
  year: 2016
  ident: ref_17
  article-title: Iron neurochemistry in Alzheimer’s disease and Parkinson’s disease: Targets for therapeutics
  publication-title: J. Neurochem.
  doi: 10.1111/jnc.13425
– volume: 1853
  start-page: 1130
  year: 2015
  ident: ref_27
  article-title: Cellular iron uptake, trafficking and metabolism: Key molecules and mechanisms and their roles in disease
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbamcr.2015.01.021
– volume: 5
  start-page: 12
  year: 2008
  ident: ref_149
  article-title: Caffeine blocks disruption of blood brain barrier in a rabbit model of Alzheimer’s disease
  publication-title: J. Neuroinflamm.
  doi: 10.1186/1742-2094-5-12
– volume: 35
  start-page: S51
  year: 2014
  ident: ref_44
  article-title: Iron and multiple sclerosis
  publication-title: Neurobiol. Aging
  doi: 10.1016/j.neurobiolaging.2014.03.039
– volume: 37
  start-page: 304
  year: 2004
  ident: ref_143
  article-title: Catechin polyphenols: Neurodegeneration and neuroprotection in neurodegenerative diseases
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/j.freeradbiomed.2004.04.012
– volume: 29
  start-page: 642
  year: 2015
  ident: ref_147
  article-title: Investigation of the effects of solid lipid curcumin on cognition and mood in a healthy older population
  publication-title: J. Psychopharmacol.
  doi: 10.1177/0269881114552744
– volume: 1
  start-page: 155
  year: 2005
  ident: ref_25
  article-title: Cellular iron: Ferroportin is the only way out
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2005.02.005
– volume: 129
  start-page: 756
  year: 2014
  ident: ref_114
  article-title: Insights into the physiological function of the beta-amyloid precursor protein: Beyond Alzheimer’s disease
  publication-title: J. Neurochem.
  doi: 10.1111/jnc.12675
– volume: 2011
  start-page: 378278
  year: 2011
  ident: ref_23
  article-title: Dysregulation of iron metabolism in Alzheimer’s disease, Parkinson’s disease, and amyotrophic lateral sclerosis
  publication-title: Adv. Pharmacol. Sci.
– volume: 143
  start-page: 158
  year: 2017
  ident: ref_159
  article-title: Epigenetics and DNA methylomic profiling in Alzheimer’s disease and other neurodegenerative diseases
  publication-title: J. Neurochem.
  doi: 10.1111/jnc.14148
– volume: 49
  start-page: 102294
  year: 2020
  ident: ref_9
  article-title: Oxidative stress in alzheimer’s disease: A review on emergent natural polyphenolic therapeutics
  publication-title: Complement. Ther. Med.
  doi: 10.1016/j.ctim.2019.102294
– volume: 84
  start-page: 1257
  year: 2016
  ident: ref_109
  article-title: Fe2+ binding on amyloid beta-peptide promotes aggregation
  publication-title: Proteins
  doi: 10.1002/prot.25075
– volume: 12
  start-page: 36
  year: 2017
  ident: ref_150
  article-title: The efficacy of Epigallocatechin-3-gallate (green tea) in the treatment of Alzheimer’s disease: An overview of pre-clinical studies and translational perspectives in clinical practice
  publication-title: Infect. Agent Cancer
  doi: 10.1186/s13027-017-0145-6
– volume: 16
  start-page: 77
  year: 2020
  ident: ref_43
  article-title: The multifaceted role of iron in renal health and disease
  publication-title: Nat. Rev. Nephrol.
  doi: 10.1038/s41581-019-0197-5
– volume: 15
  start-page: 918
  year: 2012
  ident: ref_59
  article-title: Hepcidin-induced endocytosis of ferroportin is dependent on ferroportin ubiquitination
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2012.03.018
– volume: 475
  start-page: S1
  year: 2011
  ident: ref_12
  article-title: Alzheimer’s disease
  publication-title: Nature
  doi: 10.1038/475S1a
– volume: 28
  start-page: 825
  year: 2017
  ident: ref_97
  article-title: Alzheimer’s disease: As it was in the beginning
  publication-title: Rev. Neurosci.
  doi: 10.1515/revneuro-2017-0006
– volume: 140
  start-page: 417
  year: 2020
  ident: ref_87
  article-title: The physiological roles of tau and Abeta: Implications for Alzheimer’s disease pathology and therapeutics
  publication-title: Acta Neuropathol.
  doi: 10.1007/s00401-020-02196-w
– volume: 14
  start-page: 551
  year: 2013
  ident: ref_71
  article-title: Iron metabolism in the CNS: Implications for neurodegenerative diseases
  publication-title: Nat. Rev. Neurosci.
  doi: 10.1038/nrn3453
– volume: 5
  start-page: 34
  year: 2013
  ident: ref_94
  article-title: A delicate balance: Iron metabolism and diseases of the brain
  publication-title: Front. Aging Neurosci.
  doi: 10.3389/fnagi.2013.00034
– volume: 7
  start-page: a020412
  year: 2015
  ident: ref_69
  article-title: The blood-brain barrier
  publication-title: Cold Spring Harb. Perspect. Biol.
  doi: 10.1101/cshperspect.a020412
– volume: 7
  start-page: 14973
  year: 2017
  ident: ref_37
  article-title: Iron deposition in substantia nigra: Abnormal iron metabolism, neuroinflammatory mechanism and clinical relevance
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-14721-1
– volume: 162
  start-page: 65
  year: 2000
  ident: ref_116
  article-title: Causes of Alzheimer’s disease
  publication-title: CMAJ
– volume: 149
  start-page: 1060
  year: 2012
  ident: ref_125
  article-title: Ferroptosis: An iron-dependent form of nonapoptotic cell death
  publication-title: Cell
  doi: 10.1016/j.cell.2012.03.042
– volume: 32
  start-page: 101494
  year: 2020
  ident: ref_131
  article-title: Iron dyshomeostasis, lipid peroxidation and perturbed expression of cystine/glutamate antiporter in Alzheimer’s disease: Evidence of ferroptosis
  publication-title: Redox Biol.
  doi: 10.1016/j.redox.2020.101494
– volume: 65
  start-page: 335
  year: 2007
  ident: ref_30
  article-title: Steap proteins: Implications for iron and copper metabolism
  publication-title: Nutr. Rev.
  doi: 10.1301/nr.2007.jul.335–340
– volume: 39
  start-page: 2117
  year: 2019
  ident: ref_74
  article-title: Endothelial cells are critical regulators of iron transport in a model of the human blood-brain barrier
  publication-title: J. Cereb. Blood Flow Metab.
  doi: 10.1177/0271678X18783372
– volume: 61
  start-page: 933
  year: 2012
  ident: ref_2
  article-title: Iron sensing and signalling
  publication-title: Gut
  doi: 10.1136/gut.2010.214312
– volume: 1
  start-page: 151
  year: 2006
  ident: ref_88
  article-title: Neurodegenerative diseases: New concepts of pathogenesis and their therapeutic implications
  publication-title: Annu. Rev. Pathol.
  doi: 10.1146/annurev.pathol.1.110304.100113
– volume: 62
  start-page: 42
  year: 2009
  ident: ref_157
  article-title: Neurodegenerative diseases target large-scale human brain networks
  publication-title: Neuron
  doi: 10.1016/j.neuron.2009.03.024
– volume: 13
  start-page: 142
  year: 2006
  ident: ref_72
  article-title: Brain iron metabolism
  publication-title: Semin. Pediatr. Neurol.
  doi: 10.1016/j.spen.2006.08.002
– volume: 234
  start-page: 7600
  year: 2019
  ident: ref_54
  article-title: Hepcidin and iron regulatory proteins coordinately regulate ferroportin 1 expression in the brain of mice
  publication-title: J. Cell. Physiol.
  doi: 10.1002/jcp.27522
– volume: 11
  start-page: 204
  year: 2020
  ident: ref_105
  article-title: Peroxiredoxin 5 deficiency exacerbates iron overload-induced neuronal death via ER-mediated mitochondrial fission in mouse hippocampus
  publication-title: Cell Death Dis.
  doi: 10.1038/s41419-020-2402-7
– volume: 22
  start-page: 1
  year: 2001
  ident: ref_156
  article-title: The roles of iron in health and disease
  publication-title: Mol. Asp. Med.
  doi: 10.1016/S0098-2997(00)00006-6
– volume: 16
  start-page: 2766
  year: 2010
  ident: ref_104
  article-title: Neuroinflammation, oxidative stress and the pathogenesis of Alzheimer’s disease
  publication-title: Curr. Pharm. Des.
  doi: 10.2174/138161210793176572
– volume: 102
  start-page: 783
  year: 2003
  ident: ref_55
  article-title: Hepcidin, a key regulator of iron metabolism and mediator of anemia of inflammation
  publication-title: Blood
  doi: 10.1182/blood-2003-03-0672
– volume: 39
  start-page: 44
  year: 2007
  ident: ref_41
  article-title: Free radicals and antioxidants in normal physiological functions and human disease
  publication-title: Int. J. Biochem. Cell Biol.
  doi: 10.1016/j.biocel.2006.07.001
– volume: 58
  start-page: 3208
  year: 2021
  ident: ref_133
  article-title: Treadmill Exercise Alleviates Brain Iron Dyshomeostasis Accelerating Neuronal Amyloid-beta Production, Neuronal Cell Death, and Cognitive Impairment in Transgenic Mice Model of Alzheimer’s Disease
  publication-title: Mol. Neurobiol.
  doi: 10.1007/s12035-021-02335-8
– volume: 67
  start-page: 115
  year: 2015
  ident: ref_148
  article-title: Pinocembrin attenuates hippocampal inflammation, oxidative perturbations and apoptosis in a rat model of global cerebral ischemia reperfusion
  publication-title: Pharmacol. Rep.
  doi: 10.1016/j.pharep.2014.08.014
– volume: 57
  start-page: 2514
  year: 2013
  ident: ref_110
  article-title: Implication of the proprotein convertases in iron homeostasis: Proprotein convertase 7 sheds human transferrin receptor 1 and furin activates hepcidin
  publication-title: Hepatology
  doi: 10.1002/hep.26297
– ident: ref_65
  doi: 10.3390/microorganisms9112281
– volume: 16
  start-page: 400
  year: 2017
  ident: ref_32
  article-title: Targeting iron metabolism in drug discovery and delivery
  publication-title: Nat. Rev. Drug Discov.
  doi: 10.1038/nrd.2016.248
– volume: 2
  start-page: 406
  year: 2006
  ident: ref_53
  article-title: The role of iron regulatory proteins in mammalian iron homeostasis and disease
  publication-title: Nat. Chem. Biol.
  doi: 10.1038/nchembio807
– volume: 277
  start-page: 37597
  year: 2002
  ident: ref_58
  article-title: The solution structure of human hepcidin, a peptide hormone with antimicrobial activity that is involved in iron uptake and hereditary hemochromatosis
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M205305200
– volume: 313
  start-page: G157
  year: 2017
  ident: ref_42
  article-title: The liver in regulation of iron homeostasis
  publication-title: Am. J. Physiol. Gastrointest. Liver Physiol.
  doi: 10.1152/ajpgi.00004.2017
– volume: 133
  start-page: 1549S
  year: 2003
  ident: ref_22
  article-title: Ferritin: At the crossroads of iron and oxygen metabolism
  publication-title: J. Nutr.
  doi: 10.1093/jn/133.5.1549S
– volume: 283
  start-page: 65
  year: 2011
  ident: ref_6
  article-title: Advances in metal-induced oxidative stress and human disease
  publication-title: Toxicology
  doi: 10.1016/j.tox.2011.03.001
– volume: 122
  start-page: 3433
  year: 2013
  ident: ref_138
  article-title: LY2928057, An Antibody Targeting Ferroportin, Is a Potent Inhibitor Of Hepcidin Activity and Increases Iron Mobilization In Normal Cynomolgus Monkeys
  publication-title: Blood
  doi: 10.1182/blood.V122.21.3433.3433
– volume: 147
  start-page: 1
  year: 2016
  ident: ref_152
  article-title: Oxidative stress: A major pathogenesis and potential therapeutic target of antioxidative agents in Parkinson’s disease and Alzheimer’s disease
  publication-title: Prog. Neurobiol.
  doi: 10.1016/j.pneurobio.2016.07.005
– volume: 64
  start-page: 2945
  year: 2007
  ident: ref_45
  article-title: The family of iron responsive RNA structures regulated by changes in cellular iron and oxygen
  publication-title: Cell Mol. Life Sci.
  doi: 10.1007/s00018-007-7198-4
– volume: 31
  start-page: 1139
  year: 1999
  ident: ref_52
  article-title: Iron-regulatory proteins, iron-responsive elements and ferritin mRNA translation
  publication-title: Int. J. Biochem. Cell Biol.
  doi: 10.1016/S1357-2725(99)00080-1
– volume: 81
  start-page: 105
  year: 1990
  ident: ref_108
  article-title: Ferritin is a component of the neuritic (senile) plaque in Alzheimer dementia
  publication-title: Acta Neuropathol.
  doi: 10.1007/BF00334497
– volume: 133
  start-page: 71
  year: 2017
  ident: ref_113
  article-title: Amyloid precursor protein processing and bioenergetics
  publication-title: Brain Res. Bull.
  doi: 10.1016/j.brainresbull.2016.08.009
– volume: 48
  start-page: 1332
  year: 2015
  ident: ref_135
  article-title: Regulation of copper and iron homeostasis by metal chelators: A possible chemotherapy for Alzheimer’s disease
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.5b00119
– volume: 125
  start-page: 94
  year: 2019
  ident: ref_145
  article-title: Tea polyphenols as multi-target therapeutics for Alzheimer’s disease: An in silico study
  publication-title: Med. Hypotheses
  doi: 10.1016/j.mehy.2019.02.035
– volume: 36
  start-page: 1474
  year: 2017
  ident: ref_70
  article-title: Brain metabolism in health, aging, and neurodegeneration
  publication-title: EMBO J.
  doi: 10.15252/embj.201695810
– volume: 9
  start-page: 7
  year: 2017
  ident: ref_158
  article-title: Pathology of Neurodegenerative Diseases
  publication-title: Cold Spring Harb. Perspect. Biol.
  doi: 10.1101/cshperspect.a028035
– volume: 1800
  start-page: 783
  year: 2010
  ident: ref_21
  article-title: Cytosolic and mitochondrial ferritins in the regulation of cellular iron homeostasis and oxidative damage
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbagen.2010.02.005
– volume: 22
  start-page: 851
  year: 2017
  ident: ref_140
  article-title: Ebselen ameliorates beta-amyloid pathology, tau pathology, and cognitive impairment in triple-transgenic Alzheimer’s disease mice
  publication-title: J. Biol. Inorg. Chem.
  doi: 10.1007/s00775-017-1463-2
– volume: 6
  start-page: 1
  year: 2016
  ident: ref_136
  article-title: New developments and controversies in iron metabolism and iron chelation therapy
  publication-title: World J. Methodol.
  doi: 10.5662/wjm.v6.i1.1
– volume: 50
  start-page: 82
  year: 2020
  ident: ref_33
  article-title: Ironing the mitochondria: Relevance to its dynamics
  publication-title: Mitochondrion
  doi: 10.1016/j.mito.2019.09.007
– volume: 116
  start-page: 1574
  year: 2010
  ident: ref_35
  article-title: Serum ferritin is derived primarily from macrophages through a nonclassical secretory pathway
  publication-title: Blood
  doi: 10.1182/blood-2009-11-253815
– volume: 18
  start-page: 159
  year: 2005
  ident: ref_39
  article-title: Molecular control of iron metabolism
  publication-title: Best Pract. Res. Clin. Haematol.
  doi: 10.1016/j.beha.2004.10.004
– volume: 12
  start-page: 534
  year: 2020
  ident: ref_14
  article-title: Neurophysiological signatures in Alzheimer’s disease are distinctly associated with TAU, amyloid-beta accumulation, and cognitive decline
  publication-title: Sci. Transl. Med.
  doi: 10.1126/scitranslmed.aaz4069
– volume: 12
  start-page: 75
  year: 2017
  ident: ref_28
  article-title: Iron regulatory protein (IRP)-iron responsive element (IRE) signaling pathway in human neurodegenerative diseases
  publication-title: Mol. Neurodegener.
  doi: 10.1186/s13024-017-0218-4
– volume: 62
  start-page: 1097
  year: 1994
  ident: ref_80
  article-title: Iron and other metals in neuromelanin, substantia nigra, and putamen of human brain
  publication-title: J. Neurochem.
  doi: 10.1046/j.1471-4159.1994.62031097.x
– volume: 36
  start-page: 1282
  year: 2008
  ident: ref_112
  article-title: Iron and the translation of the amyloid precursor protein (APP) and ferritin mRNAs: Riboregulation against neural oxidative damage in Alzheimer’s disease
  publication-title: Biochem. Soc. Trans.
  doi: 10.1042/BST0361282
– volume: 81
  start-page: 66
  year: 2015
  ident: ref_154
  article-title: Iron misregulation and neurodegenerative disease in mouse models that lack iron regulatory proteins
  publication-title: Neurobiol. Dis.
  doi: 10.1016/j.nbd.2015.02.026
– volume: 105
  start-page: 7410
  year: 2008
  ident: ref_31
  article-title: Structure of the membrane proximal oxidoreductase domain of human Steap3, the dominant ferrireductase of the erythroid transferrin cycle
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0801318105
– volume: 85
  start-page: 935
  year: 2019
  ident: ref_139
  article-title: Targeting the hepcidin-ferroportin pathway in anaemia of chronic kidney disease
  publication-title: Br. J. Clin. Pharmacol.
  doi: 10.1111/bcp.13877
– volume: 5
  start-page: 422
  year: 2009
  ident: ref_155
  article-title: A general map of iron metabolism and tissue-specific subnetworks
  publication-title: Mol. Biosyst.
  doi: 10.1039/b816714c
– volume: 143
  start-page: 1341
  year: 2020
  ident: ref_102
  article-title: Relationship between cortical iron and tau aggregation in Alzheimer’s disease
  publication-title: Brain
  doi: 10.1093/brain/awaa089
– volume: 16
  start-page: 247
  year: 2016
  ident: ref_15
  article-title: Drug treatments in Alzheimer’s disease
  publication-title: Clin. Med.
  doi: 10.7861/clinmedicine.16-3-247
– volume: 88
  start-page: 486
  year: 2014
  ident: ref_106
  article-title: Alzheimer’s disease therapeutics targeted to the control of amyloid precursor protein translation: Maintenance of brain iron homeostasis
  publication-title: Biochem. Pharmacol.
  doi: 10.1016/j.bcp.2014.01.032
– volume: 82
  start-page: 348
  year: 2007
  ident: ref_16
  article-title: Iron dysregulation in Alzheimer’s disease: Multimodal brain permeable iron chelating drugs, possessing neuroprotective-neurorescue and amyloid precursor protein-processing regulatory activities as therapeutic agents
  publication-title: Prog. Neurobiol.
  doi: 10.1016/j.pneurobio.2007.06.001
– volume: 13
  start-page: 180
  year: 2019
  ident: ref_68
  article-title: Iron in Neurodegeneration—Cause or Consequence?
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2019.00180
– volume: 29
  start-page: 309
  year: 2002
  ident: ref_75
  article-title: Post-transcriptional regulation of human iron metabolism by iron regulatory proteins
  publication-title: Blood Cells Mol. Dis.
  doi: 10.1006/bcmd.2002.0571
– volume: 224
  start-page: 117433
  year: 2021
  ident: ref_98
  article-title: Associations of quantitative susceptibility mapping with Alzheimer’s disease clinical and imaging markers
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2020.117433
– volume: 138
  start-page: 104795
  year: 2020
  ident: ref_123
  article-title: Apolipoprotein E and oxidative stress in brain with relevance to Alzheimer’s disease
  publication-title: Neurobiol. Dis.
  doi: 10.1016/j.nbd.2020.104795
– volume: 35
  start-page: 11
  year: 2020
  ident: ref_164
  article-title: Mechanisms of action of amyloid-beta and its precursor protein in neuronal cell death
  publication-title: Metab. Brain Dis.
  doi: 10.1007/s11011-019-00516-y
– volume: 56
  start-page: 4880
  year: 2019
  ident: ref_130
  article-title: Ferroptosis and Its Role in Diverse Brain Diseases
  publication-title: Mol. Neurobiol.
  doi: 10.1007/s12035-018-1403-3
– volume: 534
  start-page: 950
  year: 2021
  ident: ref_111
  article-title: Self-assembly of N-terminal Alzheimer’s beta-amyloid and its inhibition
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2020.10.065
– volume: 40
  start-page: 22
  year: 2020
  ident: ref_95
  article-title: Aging and Alzheimer’s disease pathology
  publication-title: Neuropathology
  doi: 10.1111/neup.12626
– volume: 10
  start-page: 619
  year: 2019
  ident: ref_13
  article-title: The Role of Nutrition for the Aging Population: Implications for Cognition and Alzheimer’s Disease
  publication-title: Annu. Rev. Food Sci. Technol.
  doi: 10.1146/annurev-food-030216-030125
– volume: 1173
  start-page: 1
  year: 2019
  ident: ref_162
  article-title: Brain Iron Metabolism and CNS Diseases
  publication-title: Adv. Exp. Med. Biol.
  doi: 10.1007/978-981-13-9589-5_1
– volume: 1866
  start-page: 118535
  year: 2019
  ident: ref_1
  article-title: Iron homeostasis and oxidative stress: An intimate relationship
  publication-title: Biochim. Biophys. Acta Mol. Cell Res.
  doi: 10.1016/j.bbamcr.2019.118535
– volume: 16
  start-page: 661
  year: 2017
  ident: ref_90
  article-title: Strategic roadmap for an early diagnosis of Alzheimer’s disease based on biomarkers
  publication-title: Lancet Neurol.
  doi: 10.1016/S1474-4422(17)30159-X
– volume: 7
  start-page: 232
  year: 2015
  ident: ref_51
  article-title: Iron regulatory proteins and their role in controlling iron metabolism
  publication-title: Metallomics
  doi: 10.1039/C4MT00164H
– volume: 148
  start-page: 2663
  year: 2007
  ident: ref_61
  article-title: The iron regulatory peptide hepcidin is expressed in the heart and regulated by hypoxia and inflammation
  publication-title: Endocrinology
  doi: 10.1210/en.2006-1331
– ident: ref_49
  doi: 10.1101/2020.05.01.071498
– volume: 76
  start-page: 1766
  year: 2001
  ident: ref_82
  article-title: Iron, neuromelanin and ferritin content in the substantia nigra of normal subjects at different ages: Consequences for iron storage and neurodegenerative processes
  publication-title: J. Neurochem.
  doi: 10.1046/j.1471-4159.2001.00186.x
– volume: 94
  start-page: 9866
  year: 1997
  ident: ref_92
  article-title: Iron accumulation in Alzheimer disease is a source of redox-generated free radicals
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.94.18.9866
– volume: 52
  start-page: 2026
  year: 2019
  ident: ref_160
  article-title: Metal Ions in Alzheimer’s Disease: A Key Role or Not?
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.9b00248
– volume: 112
  start-page: 1
  year: 2017
  ident: ref_126
  article-title: Glutathione peroxidase 4-catalyzed reduction of lipid hydroperoxides in membranes: The polar head of membrane phospholipids binds the enzyme and addresses the fatty acid hydroperoxide group toward the redox center
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/j.freeradbiomed.2017.07.010
– volume: 152
  start-page: 570
  year: 2018
  ident: ref_11
  article-title: A review on flavonoid-based scaffolds as multi-target-directed ligands (MTDLs) for Alzheimer’s disease
  publication-title: Eur. J. Med. Chem.
  doi: 10.1016/j.ejmech.2018.05.004
– volume: 20
  start-page: 175
  year: 2019
  ident: ref_3
  article-title: Iron metabolism
  publication-title: Anaesth. Intensive Care Med.
  doi: 10.1016/j.mpaic.2019.01.003
– volume: 1820
  start-page: 264
  year: 2012
  ident: ref_26
  article-title: The intracellular trafficking pathway of transferrin
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbagen.2011.09.009
– ident: ref_67
  doi: 10.3390/cells9112476
– volume: 142
  start-page: 24
  year: 2010
  ident: ref_29
  article-title: Two to tango: Regulation of Mammalian iron metabolism
  publication-title: Cell
  doi: 10.1016/j.cell.2010.06.028
– volume: 23
  start-page: 386
  year: 2004
  ident: ref_76
  article-title: Genetic ablations of iron regulatory proteins 1 and 2 reveal why iron regulatory protein 2 dominates iron homeostasis
  publication-title: EMBO J.
  doi: 10.1038/sj.emboj.7600041
– volume: 291
  start-page: L417
  year: 2006
  ident: ref_62
  article-title: Hepcidin expression and iron transport in alveolar macrophages
  publication-title: Am. J. Physiol. Lung Cell. Mol. Physiol.
  doi: 10.1152/ajplung.00484.2005
SSID ssj0023259
Score 2.5972028
SecondaryResourceType review_article
Snippet Iron is an essential trace metal for almost all organisms, including human; however, oxidative stress can easily be caused when iron is in excess, producing...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 12442
SubjectTerms Alzheimer Disease - complications
Alzheimer Disease - genetics
Alzheimer Disease - metabolism
Alzheimer Disease - pathology
Alzheimer's disease
Amyloid beta-Peptides - genetics
Amyloid beta-Peptides - metabolism
Antigens, CD - genetics
Antigens, CD - metabolism
Apoptosis
Blood
Brain - metabolism
Brain - pathology
Cation Transport Proteins - genetics
Cation Transport Proteins - metabolism
Chemical reactions
Cytochrome
Gene Expression Regulation
Hepatocytes - metabolism
Hepatocytes - pathology
Homeostasis
Homeostasis - genetics
Human body
Humans
Intestinal Absorption
Iron
Iron - metabolism
Iron Overload - complications
Iron Overload - etiology
Iron Overload - genetics
Iron Overload - metabolism
Liver - metabolism
Liver - pathology
Macrophages - metabolism
Macrophages - pathology
Metabolic disorders
Oxidative stress
Pathogenesis
Physiology
Plasma
Proteins
Receptors, Transferrin - genetics
Receptors, Transferrin - metabolism
Regulation
Review
Sulfur
Transcription Factors - genetics
Transcription Factors - metabolism
Transferrin - genetics
Transferrin - metabolism
Transfusion Reaction - complications
SummonAdditionalLinks – databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8QwEB50RfAivq0vKogni9skTdOTLOL6AD0peCvdJMWVtdXtetCTf8O_5y9xpu1WV9FjyUDbmSQzX2byDcAei0KrpVZeYETiCSpzTdpCe8ZPcWlp41tLF4Uvr-TZjbi4DW7rA7eiLqsc74nlRm1yTWfkhxh3I1Yh_rejxyePukZRdrVuoTENMz56GirpUt3TBnBxVjZL89EHeTKIZMWxyRHmH_bvHwp0jYzcG5v0Sb8CzZ_1kt8cUHcB5uvI0e1Upl6EKZstwWzVS_JlGfj5MM9c6nqeY8BX9At3TKzpJplxO4PXO9t_sMOPt_dyiNIyK3DTPbk-PvPqjgieFsofecLaXo9rGUZMJSJVMorSdirTEGGZSRGsMfpnbgXdg1JtY_DZ9MJA0GmRMRFfhVaWZ3YdXI6L24oo9X2UDv1UCURalgc2JE5BpR04GOsk1jVdOHWtGMQIG0iF8YQKHdhvxB8rnoy_BLfGCo7r5VLEX8Z1YLcZxolO2Ysks_lzKSOIXawdOrBW2aN5ExcKXTGTDoQTlmoEiER7ciTr35Vk2ojomJDRxv-ftQlzjIpZqP5PbUFrNHy22xiNjHo75ZT7BC8Y3PM
  priority: 102
  providerName: ProQuest
Title Iron Homeostasis Disorder and Alzheimer’s Disease
URI https://www.ncbi.nlm.nih.gov/pubmed/34830326
https://www.proquest.com/docview/2602115103
https://www.proquest.com/docview/2604018107
https://pubmed.ncbi.nlm.nih.gov/PMC8622469
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS8MwED90Q_BF_LY6RwXRF6trmzbpg8gU5xQ2RBzsrXRNyiZbp_sA51_vXbtV5xR8KZRcCb1LcvdLLr8DOLY8rkI3FIYjWWAwSnMNSiw0pBnh1AqlqRRdFK7V3WqDPTSd5hel0FSBw1-hHdWTagy65-9vkyuc8JeEOBGyX3ReekN0cxa5KlyN8-iUOBUzqLHsQAHjhqRuGu14GLRCp3Sbi5_Pu6eFmPNn6uQ3X1RZh7VpEKmXU6tvwJKKN2ElLSs52QLzftCPdSqA3sfYb9gZ6jOOTT2IpV7ufrRVp6cGp0kDnc9sQ6Ny-3xTNaalEYyQCXNkMKVaLTt0uWeJgEXC9byoFLkRR3wmI0RtFv2xrRhdiBIlKfFdtrjDaNtISs_egVzcj9Ue6DbOcsW8yDRRmpuRYAi5lO0oTuSCItTgbKYRP5zyhlP5iq6P-IEU6M8pUIOTTPw1Jcz4S7AwU68_M7uP6AoRKbH8aXCUNeOIp2OMIFb9cSLDiGasxDXYTa2R9WQzgT7ZcjXgc3bKBIhNe74l7rQTVm2EdhZzvf1_9HsAqxaltlA2oChAbjQYq0OMTUatIizzJsenqNwVIX99W398KpK3cIrJePwE3LjkVg
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3BbtNAEB1VrRBcqhYKuE3BSC0nrNrr9Xp9qFAFhKRtcmql3oyzu1aDEjuNE1Xpid_gJ_pRfAkzdmwICG49WjOWrdnZnXm7s28ADlgUGiWUdALNE4dTmWvicuVoL8WppbRnDF0U7vVF55KfXgVXa3Bf34Whssp6TSwXap0r2iM_wrwbsQrxv72f3DjUNYpOV-sWGpVbnJnFLUK24rj7Ecf3kLH2p4sPHWfZVcBRXHozhxszGPhKhBGTCU-liKLUTUUaIrTRKQIeDJgs8A2nu0TS1Rqf9SAMOO24aE3kS7jkb6A0IrAn258bgIfvUbrtYcxzRBCJitMTFd2j4ddxgaGYUThlqzHwr8T2z_rM3wJeews2l5mqfVK51jasmewpPKp6Vy6egd-d5plNXdZzTDCLYWHXRJ52kmn7ZHR3bYZjM_3x7XspomOgHbh8EFs9h_Usz8xLsH1cTAyPUs9D7dBLJUdkZ_zAhMRhKJUF72qbxGpJT05dMkYxwhQyYbxiQgveNuqTipfjX4qt2sDxcnoW8S9nsuBNI8aJRaclSWbyeanDic3MDS14UY1H8yWfSwz9TFgQroxUo0Ck3auSbHhdkncjgmRcRLv__63X8Lhz0TuPz7v9sz14wqiQhmoPZQvWZ9O52cdMaDZ4VbqfDV8e2t9_ApclGAw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fT9RAEJ8QiIYXIqJQBS2J8GRz7Xa73T4Qg8KFA7kQIglvpbd_whFo8XrE4BNfw6_ix_GTOHP9o6eBNx6bnabN7OzM_HZnfwPwjiWxUUJJL9I88ziVuWY-V54OLC4tpQNj6KLwYV_snfD90-h0Bn42d2GorLLxiRNHrQtFe-QdzLsRqxD_W8fWZRFHO90P11896iBFJ61NO43KRA7M7TeEb-VWbwfneoOx7u6XT3te3WHAU1wGY48bMxiESsQJkxm3UiSJ9a2wMcIcbRH8YPBkUWg43SuSvtb4rAdxxGn3RWsiYkL3P0fi6BTmPu72j45buIdvUvIdYAT0RJSIiuEzDBO_M7y4KjEwMwqubDoi_pfm_lut-Vf46z6DhTpvdbcrQ1uEGZM_hydVJ8vbJQh7oyJ3qed6gelmOSzdhtbTzXLtbl9-PzfDKzP6dfdjMkSHQi_g5FG09RJm8yI3K-CG6FoMT2wQoHQcWMkR55kwMjExGkrlwPtGJ6mqycqpZ8ZliqCFVJhOqdCBzVb8umLpuE9wtVFwWi_WMv1jWg6st8O4zOjsJMtNcTOR4cRt5scOLFfz0X4p5BITASYciKdmqhUgCu_pkXx4PqHyRjzJuEhePfxbb-Ep2nr6udc_eA3zjKpqqBBRrsLseHRj1jAtGg_e1Pbnwtljm_xvYzYdng
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Iron+Homeostasis+Disorder+and+Alzheimer%27s+Disease&rft.jtitle=International+journal+of+molecular+sciences&rft.au=Peng%2C+Yu&rft.au=Chang%2C+Xuejiao&rft.au=Lang%2C+Minglin&rft.date=2021-11-18&rft.issn=1422-0067&rft.eissn=1422-0067&rft.volume=22&rft.issue=22&rft_id=info:doi/10.3390%2Fijms222212442&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1422-0067&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1422-0067&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1422-0067&client=summon