The general amino acid control pathway regulates mTOR and autophagy during serum/glutamine starvation
Organisms have evolved elaborate mechanisms to adjust intracellular nutrient levels in response to fluctuating availability of exogenous nutrients. During starvation, cells can enhance amino acid uptake and synthesis through the general amino acid control (GAAC) pathway, whereas nonessential cellula...
Saved in:
Published in | The Journal of cell biology Vol. 206; no. 2; pp. 173 - 182 |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Rockefeller University Press
21.07.2014
The Rockefeller University Press |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Organisms have evolved elaborate mechanisms to adjust intracellular nutrient levels in response to fluctuating availability of exogenous nutrients. During starvation, cells can enhance amino acid uptake and synthesis through the general amino acid control (GAAC) pathway, whereas nonessential cellular contents are recycled by autophagy. How these two pathways are coordinated in response to starvation is currently unknown. Here we show that the GAAC pathway couples exogenous amino acid availability with autophagy. Starvation caused deactivation of mTOR, which then activated autophagy. In parallel, serum/glutamine starvation activated the GAAC pathway, which up-regulated amino acid transporters, leading to increased amino acid uptake. This elevated the intracellular amino acid level, which in turn reactivated mTOR and suppressed autophagy. Knockdown of activating transcription factor 4, the major transcription factor in the GAAC pathway, or of SLC7A5, a leucine transporter, caused impaired mTOR reactivation and much higher levels of autophagy. Thus, the GAAC pathway modulates autophagy by regulating amino acid uptake and mTOR reactivation during serum/glutamine starvation. |
---|---|
AbstractList | To meet their metabolic needs, starved cells first activate autophagy, but activation in parallel of the general amino acid control pathway increases amino acid uptake, leading to reactivation of mTOR and down-regulation of autophagy.
Organisms have evolved elaborate mechanisms to adjust intracellular nutrient levels in response to fluctuating availability of exogenous nutrients. During starvation, cells can enhance amino acid uptake and synthesis through the general amino acid control (GAAC) pathway, whereas nonessential cellular contents are recycled by autophagy. How these two pathways are coordinated in response to starvation is currently unknown. Here we show that the GAAC pathway couples exogenous amino acid availability with autophagy. Starvation caused deactivation of mTOR, which then activated autophagy. In parallel, serum/glutamine starvation activated the GAAC pathway, which up-regulated amino acid transporters, leading to increased amino acid uptake. This elevated the intracellular amino acid level, which in turn reactivated mTOR and suppressed autophagy. Knockdown of activating transcription factor 4, the major transcription factor in the GAAC pathway, or of SLC7A5, a leucine transporter, caused impaired mTOR reactivation and much higher levels of autophagy. Thus, the GAAC pathway modulates autophagy by regulating amino acid uptake and mTOR reactivation during serum/glutamine starvation. Organisms have evolved elaborate mechanisms to adjust intracellular nutrient levels in response to fluctuating availability of exogenous nutrients. During starvation, cells can enhance amino acid uptake and synthesis through the general amino acid control (GAAC) pathway, whereas nonessential cellular contents are recycled by autophagy. How these two pathways are coordinated in response to starvation is currently unknown. Here we show that the GAAC pathway couples exogenous amino acid availability with autophagy. Starvation caused deactivation of mTOR, which then activated autophagy. In parallel, serum/glutamine starvation activated the GAAC pathway, which up-regulated amino acid transporters, leading to increased amino acid uptake. This elevated the intracellular amino acid level, which in turn reactivated mTOR and suppressed autophagy. Knockdown of activating transcription factor 4, the major transcription factor in the GAAC pathway, or of SLC7A5, a leucine transporter, caused impaired mTOR reactivation and much higher levels of autophagy. Thus, the GAAC pathway modulates autophagy by regulating amino acid uptake and mTOR reactivation during serum/glutamine starvation. Organisms have evolved elaborate mechanisms to adjust intracellular nutrient levels in response to fluctuating availability of exogenous nutrients. During starvation, cells can enhance amino acid uptake and synthesis through the general amino acid control (GAAC) pathway, whereas nonessential cellular contents are recycled by autophagy. How these two pathways are coordinated in response to starvation is currently unknown. Here we show that the GAAC pathway couples exogenous amino acid availability with autophagy. Starvation caused deactivation of mTOR, which then activated autophagy. In parallel, serum/glutamine starvation activated the GAAC pathway, which up-regulated amino acid transporters, leading to increased amino acid uptake. This elevated the intracellular amino acid level, which in turn reactivated mTOR and suppressed autophagy. Knockdown of activating transcription factor 4, the major transcription factor in the GAAC pathway, or of SLC7A5, a leucine transporter, caused impaired mTOR reactivation and much higher levels of autophagy. Thus, the GAAC pathway modulates autophagy by regulating amino acid uptake and mTOR reactivation during serum/glutamine starvation.Organisms have evolved elaborate mechanisms to adjust intracellular nutrient levels in response to fluctuating availability of exogenous nutrients. During starvation, cells can enhance amino acid uptake and synthesis through the general amino acid control (GAAC) pathway, whereas nonessential cellular contents are recycled by autophagy. How these two pathways are coordinated in response to starvation is currently unknown. Here we show that the GAAC pathway couples exogenous amino acid availability with autophagy. Starvation caused deactivation of mTOR, which then activated autophagy. In parallel, serum/glutamine starvation activated the GAAC pathway, which up-regulated amino acid transporters, leading to increased amino acid uptake. This elevated the intracellular amino acid level, which in turn reactivated mTOR and suppressed autophagy. Knockdown of activating transcription factor 4, the major transcription factor in the GAAC pathway, or of SLC7A5, a leucine transporter, caused impaired mTOR reactivation and much higher levels of autophagy. Thus, the GAAC pathway modulates autophagy by regulating amino acid uptake and mTOR reactivation during serum/glutamine starvation. |
Author | Shi, Jingwen Hao, Qianqian Yu, Li Li, Ruiqiang Gao, Guanguang Ye, Wanlu Chen, Rui Sun, Daxiao Mao, Dongxue Zhu, Chen Zou, Yilong Yang, Mingyu Liu, Xiaoqing |
AuthorAffiliation | 1 State Key Laboratory of Biomembrane and Membrane Biotechnology, Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China 2 Biodynamics Optical Imaging Center, Peking University, Beijing 100871, China 3 Beijing Amino Medical Research Company, Beijing 100084, China |
AuthorAffiliation_xml | – name: 1 State Key Laboratory of Biomembrane and Membrane Biotechnology, Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China – name: 3 Beijing Amino Medical Research Company, Beijing 100084, China – name: 2 Biodynamics Optical Imaging Center, Peking University, Beijing 100871, China |
Author_xml | – sequence: 1 givenname: Rui surname: Chen fullname: Chen, Rui – sequence: 2 givenname: Yilong surname: Zou fullname: Zou, Yilong – sequence: 3 givenname: Dongxue surname: Mao fullname: Mao, Dongxue – sequence: 4 givenname: Daxiao surname: Sun fullname: Sun, Daxiao – sequence: 5 givenname: Guanguang surname: Gao fullname: Gao, Guanguang – sequence: 6 givenname: Jingwen surname: Shi fullname: Shi, Jingwen – sequence: 7 givenname: Xiaoqing surname: Liu fullname: Liu, Xiaoqing – sequence: 8 givenname: Chen surname: Zhu fullname: Zhu, Chen – sequence: 9 givenname: Mingyu surname: Yang fullname: Yang, Mingyu – sequence: 10 givenname: Wanlu surname: Ye fullname: Ye, Wanlu – sequence: 11 givenname: Qianqian surname: Hao fullname: Hao, Qianqian – sequence: 12 givenname: Ruiqiang surname: Li fullname: Li, Ruiqiang – sequence: 13 givenname: Li surname: Yu fullname: Yu, Li |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25049270$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kc1r3DAQxUVJaTZpj70WQS-9OJEseS1dCiX0CwKBsj2LsTz2arGlrSSn7H9fbZMubaCnYZjfPObNuyBnPngk5DVnV5wpcb2z3VXNuGSCMf2MrHgjWaVKf0ZWjNW80k3dnJOLlHaMMdlK8YKc1w2Tum7ZiuBmi3REjxEmCrPzgYJ1PbXB5xgmuoe8_QkHGnFcJsiY6Ly5-0bB9xSWHPZbGA-0X6LzI00Yl_l6nJZ8FEKaMsR7yC74l-T5AFPCV4_1knz_9HFz86W6vfv89ebDbWWl4rmSHaBUtumKBw21GlTNewHS2sEq3a3rXq5xDQNrEAUIqQbRaI696GvBVG_FJXn_oLtfuhl7i8UETGYf3QzxYAI48-_Eu60Zw72RnLWtFkXg3aNADD8WTNnMLlmcJvAYlmTKd1slmNayoG-foLuwRF_sHSkt1o0WvFBv_r7odMqfBApQPQA2hpQiDieEM3NM2JSEzSnhwosnvHX595OLITf9Z-sX3bCrZw |
CODEN | JCLBA3 |
CitedBy_id | crossref_primary_10_2174_1386207322666190920110324 crossref_primary_10_1093_hmg_ddaa186 crossref_primary_10_1016_j_bbrc_2017_11_088 crossref_primary_10_1016_j_chemosphere_2019_124989 crossref_primary_10_1016_j_placenta_2024_09_011 crossref_primary_10_1016_j_cmet_2020_12_009 crossref_primary_10_1111_cas_14756 crossref_primary_10_1016_j_mocell_2024_100096 crossref_primary_10_1016_j_semcancer_2021_09_015 crossref_primary_10_3389_fgene_2017_00018 crossref_primary_10_3389_fphar_2020_00116 crossref_primary_10_1038_s41467_024_48134_2 crossref_primary_10_1007_s12013_024_01311_y crossref_primary_10_1038_ncb3215 crossref_primary_10_1111_are_13628 crossref_primary_10_1080_15548627_2016_1217369 crossref_primary_10_1093_femsle_fnx273 crossref_primary_10_3390_ijms222111427 crossref_primary_10_1038_s41598_021_03875_8 crossref_primary_10_1152_physiolgenomics_00016_2015 crossref_primary_10_1186_s13567_015_0168_1 crossref_primary_10_3390_ijms17101636 crossref_primary_10_3390_metabo11010027 crossref_primary_10_1016_j_canlet_2020_12_041 crossref_primary_10_1126_scisignal_aaw3921 crossref_primary_10_1038_s41598_024_70603_3 crossref_primary_10_1007_s10522_018_9770_8 crossref_primary_10_1016_j_tibs_2018_05_003 crossref_primary_10_1177_0148607115609308 crossref_primary_10_3390_cells10102711 crossref_primary_10_1039_C5FO01196E crossref_primary_10_1128_IAI_00069_18 crossref_primary_10_1016_j_canlet_2017_02_025 crossref_primary_10_1021_acsmedchemlett_7b00282 crossref_primary_10_2337_db16_1546 crossref_primary_10_1002_stem_1976 crossref_primary_10_1016_j_celrep_2018_04_009 crossref_primary_10_3389_fimmu_2022_880262 crossref_primary_10_1073_pnas_1921618117 crossref_primary_10_3390_ijms17040386 crossref_primary_10_1080_15548627_2017_1378838 crossref_primary_10_1016_j_cmet_2018_07_021 crossref_primary_10_1111_tra_12714 crossref_primary_10_3390_molecules26040854 crossref_primary_10_1111_jnc_14462 crossref_primary_10_1080_15548627_2022_2117515 crossref_primary_10_3389_fphar_2022_924081 crossref_primary_10_1007_s00726_017_2436_z crossref_primary_10_1155_2015_451735 crossref_primary_10_1186_s40478_020_01114_1 crossref_primary_10_18632_oncotarget_2989 crossref_primary_10_1242_jcs_177071 crossref_primary_10_7554_eLife_75821 crossref_primary_10_1016_j_intimp_2015_03_033 crossref_primary_10_1038_s44318_024_00269_0 crossref_primary_10_1155_2018_8026496 crossref_primary_10_1111_bcpt_13821 crossref_primary_10_1080_14756366_2018_1524380 crossref_primary_10_1186_s13045_017_0509_9 crossref_primary_10_1016_j_cbi_2022_110293 crossref_primary_10_1016_j_cmet_2023_10_016 crossref_primary_10_1016_j_freeradbiomed_2017_09_008 crossref_primary_10_1038_s41598_018_32316_2 crossref_primary_10_1007_s00018_021_03988_3 crossref_primary_10_3390_antiox12030683 crossref_primary_10_1360_TB_2024_1391 crossref_primary_10_3389_fnagi_2017_00173 crossref_primary_10_1083_jcb_2062iti2 crossref_primary_10_1016_j_jbc_2023_104827 crossref_primary_10_1016_j_celrep_2018_08_007 crossref_primary_10_1360_SSV_2024_0039 crossref_primary_10_1158_2159_8290_CD_18_0606 crossref_primary_10_1242_jcs_215442 crossref_primary_10_15252_embr_202051436 crossref_primary_10_17235_reed_2017_5116_2017 crossref_primary_10_1002_mc_22711 crossref_primary_10_1016_j_biocel_2024_106694 crossref_primary_10_1016_j_celrep_2022_111124 crossref_primary_10_1371_journal_pone_0163174 crossref_primary_10_1002_cac2_12187 crossref_primary_10_1152_ajpcell_00403_2021 crossref_primary_10_1016_j_celrep_2018_05_006 crossref_primary_10_1080_07388551_2021_1947962 crossref_primary_10_1002_med_21473 crossref_primary_10_4049_jimmunol_1501881 crossref_primary_10_1038_s41523_023_00544_z crossref_primary_10_1016_j_apsb_2024_04_021 crossref_primary_10_1084_jem_20150956 crossref_primary_10_1038_s41418_021_00892_y crossref_primary_10_1016_j_jnutbio_2017_08_015 crossref_primary_10_1172_jci_insight_154925 crossref_primary_10_1080_14756366_2018_1481403 crossref_primary_10_1080_15548627_2022_2128019 crossref_primary_10_1007_s10616_017_0151_y crossref_primary_10_1242_jcs_132720 crossref_primary_10_3168_jds_2017_13707 crossref_primary_10_1371_journal_pone_0233863 crossref_primary_10_1111_tra_12484 crossref_primary_10_1134_S1990519X15030050 crossref_primary_10_1158_0008_5472_CAN_14_3745 crossref_primary_10_1155_2016_4010357 crossref_primary_10_1016_j_freeradbiomed_2020_01_019 crossref_primary_10_1016_j_jnutbio_2018_10_016 crossref_primary_10_15252_embj_201899735 crossref_primary_10_1007_s11064_021_03261_w crossref_primary_10_1016_j_cdev_2023_203859 crossref_primary_10_1016_j_jbc_2022_102030 crossref_primary_10_1186_s12934_024_02315_2 crossref_primary_10_1038_s42003_022_03609_0 crossref_primary_10_1053_j_gastro_2015_02_013 crossref_primary_10_1093_jas_skad339 crossref_primary_10_1093_abbs_gmx136 crossref_primary_10_1016_j_isci_2021_103296 crossref_primary_10_1016_j_jconrel_2018_02_010 crossref_primary_10_1186_s12970_017_0175_x crossref_primary_10_1080_15476286_2017_1379635 crossref_primary_10_1242_bio_038257 crossref_primary_10_1007_s00726_015_2084_0 crossref_primary_10_3390_ijms20102428 crossref_primary_10_1002_mnfr_201700262 crossref_primary_10_1038_s41556_019_0415_1 crossref_primary_10_1128_IAI_00733_18 crossref_primary_10_1158_1078_0432_CCR_17_3575 crossref_primary_10_3389_fchem_2020_564809 crossref_primary_10_1016_j_bbadis_2017_11_009 crossref_primary_10_1016_j_cellsig_2019_05_008 crossref_primary_10_1016_j_phrs_2016_08_014 crossref_primary_10_1080_15257770_2023_2259431 crossref_primary_10_1016_j_aca_2017_11_005 crossref_primary_10_1016_j_aninu_2021_05_003 crossref_primary_10_1016_j_ajpath_2018_11_013 crossref_primary_10_1158_2159_8290_CD_16_0615 crossref_primary_10_1371_journal_pone_0168387 crossref_primary_10_3390_insects15020084 crossref_primary_10_18632_oncotarget_6519 crossref_primary_10_1016_j_xcrm_2024_101465 |
Cites_doi | 10.1038/26506 10.1146/annurev.micro.59.031805.133833 10.2967/jnumed.107.043620 10.1172/JCI40027 10.1093/jn/131.3.861S 10.1038/emboj.2010.81 10.1093/jn/134.6.1558S 10.1126/science.1104882 10.1093/nar/gkt563 10.1093/jn/130.7.1835S 10.1038/35056522 10.1073/pnas.76.7.3169 10.1128/MCB.15.8.4497 10.1016/j.cell.2009.01.021 10.1038/nrm2672 10.1016/S1097-2765(03)00105-9 10.4161/auto.6143 10.1038/onc.2010.191 10.1093/emboj/21.4.580 10.1016/j.cell.2008.11.044 10.1016/j.stem.2010.03.015 10.1016/S0005-2736(01)00384-4 10.1074/jbc.M801331200 10.1038/270174a0 10.1038/nature09076 10.1073/pnas.0506925102 10.1093/genetics/154.2.787 |
ContentType | Journal Article |
Copyright | 2014 Chen et al. Copyright Rockefeller University Press Jul 21, 2014 2014 Chen et al. 2014 |
Copyright_xml | – notice: 2014 Chen et al. – notice: Copyright Rockefeller University Press Jul 21, 2014 – notice: 2014 Chen et al. 2014 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QL 7QP 7QR 7TK 7TM 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
DOI | 10.1083/jcb.201403009 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Technology Research Database Nucleic Acids Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Genetics Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic Virology and AIDS Abstracts CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
DocumentTitleAlternate | Regulation of autophagy by the GAAC pathway |
EISSN | 1540-8140 |
EndPage | 182 |
ExternalDocumentID | PMC4107793 3386905651 25049270 10_1083_jcb_201403009 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article Feature |
GroupedDBID | --- -DZ -~X .55 123 18M 29K 2WC 34G 36B 39C 4.4 53G 85S AAYXX ABDNZ ABOCM ABPPZ ABRJW ABZEH ACGFO ACGOD ACIWK ACKOT ACNCT ACPRK ADBBV AEILP AENEX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BKOMP BTFSW C45 CITATION CS3 D-I D0L DIK DU5 E3Z EBS EJD EMB F5P F9R FRP GX1 H13 HF~ HYE IH2 JZ9 KQ8 N9A NHB O5R O5S OK1 P2P PQQKQ R.V RHI RNS RXW SJN TAE TN5 TR2 TRP TWZ UBX UHB UKR UPT W8F WH7 WOQ X7M YKV YNH YOC YQT YSK YWH YZZ ZCA ~KM CGR CUY CVF ECM EIF NPM 7QL 7QP 7QR 7TK 7TM 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c481t-4bae48c5b5409a28f821d3a4ccfc89b62d46e6af05ee3a348f3591ed3d2308dc3 |
ISSN | 0021-9525 1540-8140 |
IngestDate | Thu Aug 21 14:13:06 EDT 2025 Fri Jul 11 15:38:27 EDT 2025 Mon Jun 30 10:30:49 EDT 2025 Thu Apr 03 07:10:56 EDT 2025 Tue Jul 01 02:00:40 EDT 2025 Thu Apr 24 23:00:32 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | 2014 Chen et al. This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 3.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/3.0/). |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c481t-4bae48c5b5409a28f821d3a4ccfc89b62d46e6af05ee3a348f3591ed3d2308dc3 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC4107793 |
PMID | 25049270 |
PQID | 1549365931 |
PQPubID | 48855 |
PageCount | 10 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4107793 proquest_miscellaneous_1547830994 proquest_journals_1549365931 pubmed_primary_25049270 crossref_primary_10_1083_jcb_201403009 crossref_citationtrail_10_1083_jcb_201403009 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-07-21 |
PublicationDateYYYYMMDD | 2014-07-21 |
PublicationDate_xml | – month: 07 year: 2014 text: 2014-07-21 day: 21 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | The Journal of cell biology |
PublicationTitleAlternate | J Cell Biol |
PublicationYear | 2014 |
Publisher | Rockefeller University Press The Rockefeller University Press |
Publisher_xml | – name: Rockefeller University Press – name: The Rockefeller University Press |
References | Yanagida (2023072307524176500_bib25) 2001; 1514 Sood (2023072307524176500_bib22) 2000; 154 Wek (2023072307524176500_bib24) 1995; 15 Lynch (2023072307524176500_bib8) 2001; 131 Tang (2023072307524176500_bib23) 2010; 6 Ohsumi (2023072307524176500_bib16) 2001; 2 Rouschop (2023072307524176500_bib18) 2010; 120 Meier (2023072307524176500_bib11) 2002; 21 Schworer (2023072307524176500_bib21) 1979; 76 Nicklin (2023072307524176500_bib14) 2009; 136 Yu (2023072307524176500_bib27) 2010; 465 Ma (2023072307524176500_bib9) 2009; 10 Schiaffino (2023072307524176500_bib20) 2008; 4 Haase (2023072307524176500_bib4) 2007; 48 Rzymski (2023072307524176500_bib19) 2010; 29 Hao (2023072307524176500_bib5) 2005; 307 Harding (2023072307524176500_bib6) 2003; 11 Reeds (2023072307524176500_bib17) 2000; 130 Mortimore (2023072307524176500_bib13) 1977; 270 Fürst (2023072307524176500_bib3) 2004; 134 Nobukuni (2023072307524176500_bib15) 2005; 102 Mizushima (2023072307524176500_bib12) 1998; 395 Cohen (2023072307524176500_bib2) 2009; 136 Ye (2023072307524176500_bib26) 2010; 29 B’chir (2023072307524176500_bib1) 2013; 41 Hinnebusch (2023072307524176500_bib7) 2005; 59 Malmberg (2023072307524176500_bib10) 2008; 283 20452321 - Cell Stem Cell. 2010 May 7;6(5):468-78 20514020 - Oncogene. 2010 Aug 5;29(31):4424-35 19339977 - Nat Rev Mol Cell Biol. 2009 May;10(5):307-18 23804767 - Nucleic Acids Res. 2013 Sep;41(16):7683-99 11847106 - EMBO J. 2002 Feb 15;21(4):580-9 16176982 - Proc Natl Acad Sci U S A. 2005 Oct 4;102(40):14238-43 18437051 - Autophagy. 2008 Jul;4(5):727-30 9759731 - Nature. 1998 Sep 24;395(6700):395-8 18480057 - J Biol Chem. 2008 Jul 11;283(28):19229-34 10655230 - Genetics. 2000 Feb;154(2):787-801 15774759 - Science. 2005 Mar 18;307(5716):1776-8 927529 - Nature. 1977 Nov 10;270(5633):174-6 12667446 - Mol Cell. 2003 Mar;11(3):619-33 16153175 - Annu Rev Microbiol. 2005;59:407-50 11238775 - J Nutr. 2001 Mar;131(3):861S-865S 15173430 - J Nutr. 2004 Jun;134(6 Suppl):1558S-1565S 20038797 - J Clin Invest. 2010 Jan;120(1):127-41 290994 - Proc Natl Acad Sci U S A. 1979 Jul;76(7):3169-73 11557028 - Biochim Biophys Acta. 2001 Oct 1;1514(2):291-302 19203585 - Cell. 2009 Feb 6;136(3):521-34 18056335 - J Nucl Med. 2007 Dec;48(12):2063-71 11265251 - Nat Rev Mol Cell Biol. 2001 Mar;2(3):211-6 20473272 - EMBO J. 2010 Jun 16;29(12):2082-96 20526321 - Nature. 2010 Jun 17;465(7300):942-6 7623840 - Mol Cell Biol. 1995 Aug;15(8):4497-506 19203575 - Cell. 2009 Feb 6;136(3):399-400 10867060 - J Nutr. 2000 Jul;130(7):1835S-40S |
References_xml | – volume: 395 start-page: 395 year: 1998 ident: 2023072307524176500_bib12 article-title: A protein conjugation system essential for autophagy publication-title: Nature. doi: 10.1038/26506 – volume: 59 start-page: 407 year: 2005 ident: 2023072307524176500_bib7 article-title: Translational regulation of GCN4 and the general amino acid control of yeast publication-title: Annu. Rev. Microbiol. doi: 10.1146/annurev.micro.59.031805.133833 – volume: 48 start-page: 2063 year: 2007 ident: 2023072307524176500_bib4 article-title: L-type amino acid transporters LAT1 and LAT4 in cancer: uptake of 3-O-methyl-6-18F-fluoro-L-dopa in human adenocarcinoma and squamous cell carcinoma in vitro and in vivo publication-title: J. Nucl. Med. doi: 10.2967/jnumed.107.043620 – volume: 120 start-page: 127 year: 2010 ident: 2023072307524176500_bib18 article-title: The unfolded protein response protects human tumor cells during hypoxia through regulation of the autophagy genes MAP1LC3B and ATG5 publication-title: J. Clin. Invest. doi: 10.1172/JCI40027 – volume: 131 start-page: 861S year: 2001 ident: 2023072307524176500_bib8 article-title: Role of leucine in the regulation of mTOR by amino acids: revelations from structure-activity studies publication-title: J. Nutr. doi: 10.1093/jn/131.3.861S – volume: 29 start-page: 2082 year: 2010 ident: 2023072307524176500_bib26 article-title: The GCN2-ATF4 pathway is critical for tumour cell survival and proliferation in response to nutrient deprivation publication-title: EMBO J. doi: 10.1038/emboj.2010.81 – volume: 134 start-page: 1558S year: 2004 ident: 2023072307524176500_bib3 article-title: What are the essential elements needed for the determination of amino acid requirements in humans? publication-title: J. Nutr. doi: 10.1093/jn/134.6.1558S – volume: 307 start-page: 1776 year: 2005 ident: 2023072307524176500_bib5 article-title: Uncharged tRNA and sensing of amino acid deficiency in mammalian piriform cortex publication-title: Science. doi: 10.1126/science.1104882 – volume: 41 start-page: 7683 year: 2013 ident: 2023072307524176500_bib1 article-title: The eIF2α/ATF4 pathway is essential for stress-induced autophagy gene expression publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkt563 – volume: 130 start-page: 1835S year: 2000 ident: 2023072307524176500_bib17 article-title: Dispensable and indispensable amino acids for humans publication-title: J. Nutr. doi: 10.1093/jn/130.7.1835S – volume: 2 start-page: 211 year: 2001 ident: 2023072307524176500_bib16 article-title: Molecular dissection of autophagy: two ubiquitin-like systems publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/35056522 – volume: 76 start-page: 3169 year: 1979 ident: 2023072307524176500_bib21 article-title: Glucagon-induced autophagy and proteolysis in rat liver: mediation by selective deprivation of intracellular amino acids publication-title: Proc. Natl. Acad. Sci. USA. doi: 10.1073/pnas.76.7.3169 – volume: 15 start-page: 4497 year: 1995 ident: 2023072307524176500_bib24 article-title: The histidyl-tRNA synthetase-related sequence in the eIF-2α protein kinase GCN2 interacts with tRNA and is required for activation in response to starvation for different amino acids publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.15.8.4497 – volume: 136 start-page: 399 year: 2009 ident: 2023072307524176500_bib2 article-title: An amino acid shuffle activates mTORC1 publication-title: Cell. doi: 10.1016/j.cell.2009.01.021 – volume: 10 start-page: 307 year: 2009 ident: 2023072307524176500_bib9 article-title: Molecular mechanisms of mTOR-mediated translational control publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm2672 – volume: 11 start-page: 619 year: 2003 ident: 2023072307524176500_bib6 article-title: An integrated stress response regulates amino acid metabolism and resistance to oxidative stress publication-title: Mol. Cell. doi: 10.1016/S1097-2765(03)00105-9 – volume: 4 start-page: 727 year: 2008 ident: 2023072307524176500_bib20 article-title: The role of autophagy in neonatal tissues: just a response to amino acid starvation? publication-title: Autophagy. doi: 10.4161/auto.6143 – volume: 29 start-page: 4424 year: 2010 ident: 2023072307524176500_bib19 article-title: Regulation of autophagy by ATF4 in response to severe hypoxia publication-title: Oncogene. doi: 10.1038/onc.2010.191 – volume: 21 start-page: 580 year: 2002 ident: 2023072307524176500_bib11 article-title: Activation of system L heterodimeric amino acid exchangers by intracellular substrates publication-title: EMBO J. doi: 10.1093/emboj/21.4.580 – volume: 136 start-page: 521 year: 2009 ident: 2023072307524176500_bib14 article-title: Bidirectional transport of amino acids regulates mTOR and autophagy publication-title: Cell. doi: 10.1016/j.cell.2008.11.044 – volume: 6 start-page: 468 year: 2010 ident: 2023072307524176500_bib23 article-title: Tracing the derivation of embryonic stem cells from the inner cell mass by single-cell RNA-Seq analysis publication-title: Cell Stem Cell. doi: 10.1016/j.stem.2010.03.015 – volume: 1514 start-page: 291 year: 2001 ident: 2023072307524176500_bib25 article-title: Human L-type amino acid transporter 1 (LAT1): characterization of function and expression in tumor cell lines publication-title: Biochim. Biophys. Acta. doi: 10.1016/S0005-2736(01)00384-4 – volume: 283 start-page: 19229 year: 2008 ident: 2023072307524176500_bib10 article-title: Insulin signaling and the general amino acid control response. Two distinct pathways to amino acid synthesis and uptake publication-title: J. Biol. Chem. doi: 10.1074/jbc.M801331200 – volume: 270 start-page: 174 year: 1977 ident: 2023072307524176500_bib13 article-title: Induction of autophagy by amino-acid deprivation in perfused rat liver publication-title: Nature. doi: 10.1038/270174a0 – volume: 465 start-page: 942 year: 2010 ident: 2023072307524176500_bib27 article-title: Termination of autophagy and reformation of lysosomes regulated by mTOR publication-title: Nature. doi: 10.1038/nature09076 – volume: 102 start-page: 14238 year: 2005 ident: 2023072307524176500_bib15 article-title: Amino acids mediate mTOR/raptor signaling through activation of class 3 phosphatidylinositol 3OH-kinase publication-title: Proc. Natl. Acad. Sci. USA. doi: 10.1073/pnas.0506925102 – volume: 154 start-page: 787 year: 2000 ident: 2023072307524176500_bib22 article-title: A mammalian homologue of GCN2 protein kinase important for translational control by phosphorylation of eukaryotic initiation factor-2α publication-title: Genetics. doi: 10.1093/genetics/154.2.787 – reference: 20514020 - Oncogene. 2010 Aug 5;29(31):4424-35 – reference: 20038797 - J Clin Invest. 2010 Jan;120(1):127-41 – reference: 20473272 - EMBO J. 2010 Jun 16;29(12):2082-96 – reference: 10867060 - J Nutr. 2000 Jul;130(7):1835S-40S – reference: 11847106 - EMBO J. 2002 Feb 15;21(4):580-9 – reference: 15774759 - Science. 2005 Mar 18;307(5716):1776-8 – reference: 19203575 - Cell. 2009 Feb 6;136(3):399-400 – reference: 290994 - Proc Natl Acad Sci U S A. 1979 Jul;76(7):3169-73 – reference: 9759731 - Nature. 1998 Sep 24;395(6700):395-8 – reference: 12667446 - Mol Cell. 2003 Mar;11(3):619-33 – reference: 19339977 - Nat Rev Mol Cell Biol. 2009 May;10(5):307-18 – reference: 7623840 - Mol Cell Biol. 1995 Aug;15(8):4497-506 – reference: 20452321 - Cell Stem Cell. 2010 May 7;6(5):468-78 – reference: 11557028 - Biochim Biophys Acta. 2001 Oct 1;1514(2):291-302 – reference: 16153175 - Annu Rev Microbiol. 2005;59:407-50 – reference: 19203585 - Cell. 2009 Feb 6;136(3):521-34 – reference: 20526321 - Nature. 2010 Jun 17;465(7300):942-6 – reference: 18437051 - Autophagy. 2008 Jul;4(5):727-30 – reference: 18480057 - J Biol Chem. 2008 Jul 11;283(28):19229-34 – reference: 11238775 - J Nutr. 2001 Mar;131(3):861S-865S – reference: 18056335 - J Nucl Med. 2007 Dec;48(12):2063-71 – reference: 10655230 - Genetics. 2000 Feb;154(2):787-801 – reference: 927529 - Nature. 1977 Nov 10;270(5633):174-6 – reference: 16176982 - Proc Natl Acad Sci U S A. 2005 Oct 4;102(40):14238-43 – reference: 11265251 - Nat Rev Mol Cell Biol. 2001 Mar;2(3):211-6 – reference: 23804767 - Nucleic Acids Res. 2013 Sep;41(16):7683-99 – reference: 15173430 - J Nutr. 2004 Jun;134(6 Suppl):1558S-1565S |
SSID | ssj0004743 |
Score | 2.5208135 |
Snippet | Organisms have evolved elaborate mechanisms to adjust intracellular nutrient levels in response to fluctuating availability of exogenous nutrients. During... To meet their metabolic needs, starved cells first activate autophagy, but activation in parallel of the general amino acid control pathway increases amino... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 173 |
SubjectTerms | Activating Transcription Factor 4 - genetics Activating Transcription Factor 4 - metabolism Activating Transcription Factor 4 - physiology Amino acids Amino Acids - metabolism Animals Autophagy Cell Line Cellular biology Gene Expression Regulation Gene Knockdown Techniques Glutamine - metabolism Homeostasis Large Neutral Amino Acid-Transporter 1 - genetics Large Neutral Amino Acid-Transporter 1 - metabolism Nutrient availability Proteins Rats Starvation TOR Serine-Threonine Kinases - metabolism |
Title | The general amino acid control pathway regulates mTOR and autophagy during serum/glutamine starvation |
URI | https://www.ncbi.nlm.nih.gov/pubmed/25049270 https://www.proquest.com/docview/1549365931 https://www.proquest.com/docview/1547830994 https://pubmed.ncbi.nlm.nih.gov/PMC4107793 |
Volume | 206 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFLXKEBIviG8KAxkJ8VK6NbGTOI9oYppA46N00t4ix3G6SGsydY1Y-VH8Ru61XTddQYK9RFHixmnOyfX1zfW5hLzRkWSsEOUwj6NkyHUQw57SQ1T3KkdpKXNTvu34c3x0wj-eRqe93q9O1lK7yPfUzz-uK7kJqnAMcMVVsv-BrL8oHIB9wBe2gDBs_xnjqdWNHshZVTcDqarCp59jteEfcjmY23rz-nIwm3wZW3nWFgUF5HS5WqcI94sVjw-ncL94KRSelS5e23Vg10vJjBOLcf-BE3JaZwpYUzZuKx-Wblpj66vzxo2UJgjeWBe-nl61nl_fW2sH5VUlm25MIuAY7AzXMQm8lTGYc13ix4f51qLHrkHGDJHIrn3e084G8xFGJkddIx2O4g4bw47JDWwpFDd6B7aU0dbAAJ4mDgwqx2w-DpbNiDIsOiS5mBmWoKRbGtpiJteUuL8eH3CYLYNFu0VuhzAtwYoZn7511OkTl6Xp_pTTdIW-9zd6RgVq182mO7Q1x7meqtvxfSb3yT2HN31vGfiA9HT9kNyxZUyXj4gGJKjjITU8pMhD6nhIHQ-p5yFFHlLgIfU8pJaH1PBw37OQrln4mJwcfpgcHA1d-Y6h4iJYDHkuNRcqygHPVIaiFGFQMMmVKpVI8zgseKxjWY4irZlkXJQsSgNdsAKmxaJQ7AnZqZtaPyM0ZkGepCopwLRwoVMRwWxLFXD5tAgSFfXJu9VTzJTTtscSK-eZybEQLIPnn_nn3ydvffMLK-ryt4a7K0gy995fZihqyOIoZUGfvPanwSrjKydr3bSmTSIYzL54nzy1CPqeVtD3SbKBrW-Aiu-bZ-rqzCi_O_o9v_EvX5C76_d1l-ws5q1-CV71In9lqPwbOfjSsQ |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+general+amino+acid+control+pathway+regulates+mTOR+and+autophagy+during+serum%2Fglutamine+starvation&rft.jtitle=The+Journal+of+cell+biology&rft.au=Chen%2C+Rui&rft.au=Zou%2C+Yilong&rft.au=Mao%2C+Dongxue&rft.au=Sun%2C+Daxiao&rft.date=2014-07-21&rft.pub=The+Rockefeller+University+Press&rft.issn=0021-9525&rft.eissn=1540-8140&rft.volume=206&rft.issue=2&rft.spage=173&rft.epage=182&rft_id=info:doi/10.1083%2Fjcb.201403009&rft_id=info%3Apmid%2F25049270&rft.externalDocID=PMC4107793 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9525&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9525&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9525&client=summon |