The general amino acid control pathway regulates mTOR and autophagy during serum/glutamine starvation

Organisms have evolved elaborate mechanisms to adjust intracellular nutrient levels in response to fluctuating availability of exogenous nutrients. During starvation, cells can enhance amino acid uptake and synthesis through the general amino acid control (GAAC) pathway, whereas nonessential cellula...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of cell biology Vol. 206; no. 2; pp. 173 - 182
Main Authors Chen, Rui, Zou, Yilong, Mao, Dongxue, Sun, Daxiao, Gao, Guanguang, Shi, Jingwen, Liu, Xiaoqing, Zhu, Chen, Yang, Mingyu, Ye, Wanlu, Hao, Qianqian, Li, Ruiqiang, Yu, Li
Format Journal Article
LanguageEnglish
Published United States Rockefeller University Press 21.07.2014
The Rockefeller University Press
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Organisms have evolved elaborate mechanisms to adjust intracellular nutrient levels in response to fluctuating availability of exogenous nutrients. During starvation, cells can enhance amino acid uptake and synthesis through the general amino acid control (GAAC) pathway, whereas nonessential cellular contents are recycled by autophagy. How these two pathways are coordinated in response to starvation is currently unknown. Here we show that the GAAC pathway couples exogenous amino acid availability with autophagy. Starvation caused deactivation of mTOR, which then activated autophagy. In parallel, serum/glutamine starvation activated the GAAC pathway, which up-regulated amino acid transporters, leading to increased amino acid uptake. This elevated the intracellular amino acid level, which in turn reactivated mTOR and suppressed autophagy. Knockdown of activating transcription factor 4, the major transcription factor in the GAAC pathway, or of SLC7A5, a leucine transporter, caused impaired mTOR reactivation and much higher levels of autophagy. Thus, the GAAC pathway modulates autophagy by regulating amino acid uptake and mTOR reactivation during serum/glutamine starvation.
AbstractList To meet their metabolic needs, starved cells first activate autophagy, but activation in parallel of the general amino acid control pathway increases amino acid uptake, leading to reactivation of mTOR and down-regulation of autophagy. Organisms have evolved elaborate mechanisms to adjust intracellular nutrient levels in response to fluctuating availability of exogenous nutrients. During starvation, cells can enhance amino acid uptake and synthesis through the general amino acid control (GAAC) pathway, whereas nonessential cellular contents are recycled by autophagy. How these two pathways are coordinated in response to starvation is currently unknown. Here we show that the GAAC pathway couples exogenous amino acid availability with autophagy. Starvation caused deactivation of mTOR, which then activated autophagy. In parallel, serum/glutamine starvation activated the GAAC pathway, which up-regulated amino acid transporters, leading to increased amino acid uptake. This elevated the intracellular amino acid level, which in turn reactivated mTOR and suppressed autophagy. Knockdown of activating transcription factor 4, the major transcription factor in the GAAC pathway, or of SLC7A5, a leucine transporter, caused impaired mTOR reactivation and much higher levels of autophagy. Thus, the GAAC pathway modulates autophagy by regulating amino acid uptake and mTOR reactivation during serum/glutamine starvation.
Organisms have evolved elaborate mechanisms to adjust intracellular nutrient levels in response to fluctuating availability of exogenous nutrients. During starvation, cells can enhance amino acid uptake and synthesis through the general amino acid control (GAAC) pathway, whereas nonessential cellular contents are recycled by autophagy. How these two pathways are coordinated in response to starvation is currently unknown. Here we show that the GAAC pathway couples exogenous amino acid availability with autophagy. Starvation caused deactivation of mTOR, which then activated autophagy. In parallel, serum/glutamine starvation activated the GAAC pathway, which up-regulated amino acid transporters, leading to increased amino acid uptake. This elevated the intracellular amino acid level, which in turn reactivated mTOR and suppressed autophagy. Knockdown of activating transcription factor 4, the major transcription factor in the GAAC pathway, or of SLC7A5, a leucine transporter, caused impaired mTOR reactivation and much higher levels of autophagy. Thus, the GAAC pathway modulates autophagy by regulating amino acid uptake and mTOR reactivation during serum/glutamine starvation.
Organisms have evolved elaborate mechanisms to adjust intracellular nutrient levels in response to fluctuating availability of exogenous nutrients. During starvation, cells can enhance amino acid uptake and synthesis through the general amino acid control (GAAC) pathway, whereas nonessential cellular contents are recycled by autophagy. How these two pathways are coordinated in response to starvation is currently unknown. Here we show that the GAAC pathway couples exogenous amino acid availability with autophagy. Starvation caused deactivation of mTOR, which then activated autophagy. In parallel, serum/glutamine starvation activated the GAAC pathway, which up-regulated amino acid transporters, leading to increased amino acid uptake. This elevated the intracellular amino acid level, which in turn reactivated mTOR and suppressed autophagy. Knockdown of activating transcription factor 4, the major transcription factor in the GAAC pathway, or of SLC7A5, a leucine transporter, caused impaired mTOR reactivation and much higher levels of autophagy. Thus, the GAAC pathway modulates autophagy by regulating amino acid uptake and mTOR reactivation during serum/glutamine starvation.Organisms have evolved elaborate mechanisms to adjust intracellular nutrient levels in response to fluctuating availability of exogenous nutrients. During starvation, cells can enhance amino acid uptake and synthesis through the general amino acid control (GAAC) pathway, whereas nonessential cellular contents are recycled by autophagy. How these two pathways are coordinated in response to starvation is currently unknown. Here we show that the GAAC pathway couples exogenous amino acid availability with autophagy. Starvation caused deactivation of mTOR, which then activated autophagy. In parallel, serum/glutamine starvation activated the GAAC pathway, which up-regulated amino acid transporters, leading to increased amino acid uptake. This elevated the intracellular amino acid level, which in turn reactivated mTOR and suppressed autophagy. Knockdown of activating transcription factor 4, the major transcription factor in the GAAC pathway, or of SLC7A5, a leucine transporter, caused impaired mTOR reactivation and much higher levels of autophagy. Thus, the GAAC pathway modulates autophagy by regulating amino acid uptake and mTOR reactivation during serum/glutamine starvation.
Author Shi, Jingwen
Hao, Qianqian
Yu, Li
Li, Ruiqiang
Gao, Guanguang
Ye, Wanlu
Chen, Rui
Sun, Daxiao
Mao, Dongxue
Zhu, Chen
Zou, Yilong
Yang, Mingyu
Liu, Xiaoqing
AuthorAffiliation 1 State Key Laboratory of Biomembrane and Membrane Biotechnology, Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
2 Biodynamics Optical Imaging Center, Peking University, Beijing 100871, China
3 Beijing Amino Medical Research Company, Beijing 100084, China
AuthorAffiliation_xml – name: 1 State Key Laboratory of Biomembrane and Membrane Biotechnology, Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
– name: 3 Beijing Amino Medical Research Company, Beijing 100084, China
– name: 2 Biodynamics Optical Imaging Center, Peking University, Beijing 100871, China
Author_xml – sequence: 1
  givenname: Rui
  surname: Chen
  fullname: Chen, Rui
– sequence: 2
  givenname: Yilong
  surname: Zou
  fullname: Zou, Yilong
– sequence: 3
  givenname: Dongxue
  surname: Mao
  fullname: Mao, Dongxue
– sequence: 4
  givenname: Daxiao
  surname: Sun
  fullname: Sun, Daxiao
– sequence: 5
  givenname: Guanguang
  surname: Gao
  fullname: Gao, Guanguang
– sequence: 6
  givenname: Jingwen
  surname: Shi
  fullname: Shi, Jingwen
– sequence: 7
  givenname: Xiaoqing
  surname: Liu
  fullname: Liu, Xiaoqing
– sequence: 8
  givenname: Chen
  surname: Zhu
  fullname: Zhu, Chen
– sequence: 9
  givenname: Mingyu
  surname: Yang
  fullname: Yang, Mingyu
– sequence: 10
  givenname: Wanlu
  surname: Ye
  fullname: Ye, Wanlu
– sequence: 11
  givenname: Qianqian
  surname: Hao
  fullname: Hao, Qianqian
– sequence: 12
  givenname: Ruiqiang
  surname: Li
  fullname: Li, Ruiqiang
– sequence: 13
  givenname: Li
  surname: Yu
  fullname: Yu, Li
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25049270$$D View this record in MEDLINE/PubMed
BookMark eNp1kc1r3DAQxUVJaTZpj70WQS-9OJEseS1dCiX0CwKBsj2LsTz2arGlrSSn7H9fbZMubaCnYZjfPObNuyBnPngk5DVnV5wpcb2z3VXNuGSCMf2MrHgjWaVKf0ZWjNW80k3dnJOLlHaMMdlK8YKc1w2Tum7ZiuBmi3REjxEmCrPzgYJ1PbXB5xgmuoe8_QkHGnFcJsiY6Ly5-0bB9xSWHPZbGA-0X6LzI00Yl_l6nJZ8FEKaMsR7yC74l-T5AFPCV4_1knz_9HFz86W6vfv89ebDbWWl4rmSHaBUtumKBw21GlTNewHS2sEq3a3rXq5xDQNrEAUIqQbRaI696GvBVG_FJXn_oLtfuhl7i8UETGYf3QzxYAI48-_Eu60Zw72RnLWtFkXg3aNADD8WTNnMLlmcJvAYlmTKd1slmNayoG-foLuwRF_sHSkt1o0WvFBv_r7odMqfBApQPQA2hpQiDieEM3NM2JSEzSnhwosnvHX595OLITf9Z-sX3bCrZw
CODEN JCLBA3
CitedBy_id crossref_primary_10_2174_1386207322666190920110324
crossref_primary_10_1093_hmg_ddaa186
crossref_primary_10_1016_j_bbrc_2017_11_088
crossref_primary_10_1016_j_chemosphere_2019_124989
crossref_primary_10_1016_j_placenta_2024_09_011
crossref_primary_10_1016_j_cmet_2020_12_009
crossref_primary_10_1111_cas_14756
crossref_primary_10_1016_j_mocell_2024_100096
crossref_primary_10_1016_j_semcancer_2021_09_015
crossref_primary_10_3389_fgene_2017_00018
crossref_primary_10_3389_fphar_2020_00116
crossref_primary_10_1038_s41467_024_48134_2
crossref_primary_10_1007_s12013_024_01311_y
crossref_primary_10_1038_ncb3215
crossref_primary_10_1111_are_13628
crossref_primary_10_1080_15548627_2016_1217369
crossref_primary_10_1093_femsle_fnx273
crossref_primary_10_3390_ijms222111427
crossref_primary_10_1038_s41598_021_03875_8
crossref_primary_10_1152_physiolgenomics_00016_2015
crossref_primary_10_1186_s13567_015_0168_1
crossref_primary_10_3390_ijms17101636
crossref_primary_10_3390_metabo11010027
crossref_primary_10_1016_j_canlet_2020_12_041
crossref_primary_10_1126_scisignal_aaw3921
crossref_primary_10_1038_s41598_024_70603_3
crossref_primary_10_1007_s10522_018_9770_8
crossref_primary_10_1016_j_tibs_2018_05_003
crossref_primary_10_1177_0148607115609308
crossref_primary_10_3390_cells10102711
crossref_primary_10_1039_C5FO01196E
crossref_primary_10_1128_IAI_00069_18
crossref_primary_10_1016_j_canlet_2017_02_025
crossref_primary_10_1021_acsmedchemlett_7b00282
crossref_primary_10_2337_db16_1546
crossref_primary_10_1002_stem_1976
crossref_primary_10_1016_j_celrep_2018_04_009
crossref_primary_10_3389_fimmu_2022_880262
crossref_primary_10_1073_pnas_1921618117
crossref_primary_10_3390_ijms17040386
crossref_primary_10_1080_15548627_2017_1378838
crossref_primary_10_1016_j_cmet_2018_07_021
crossref_primary_10_1111_tra_12714
crossref_primary_10_3390_molecules26040854
crossref_primary_10_1111_jnc_14462
crossref_primary_10_1080_15548627_2022_2117515
crossref_primary_10_3389_fphar_2022_924081
crossref_primary_10_1007_s00726_017_2436_z
crossref_primary_10_1155_2015_451735
crossref_primary_10_1186_s40478_020_01114_1
crossref_primary_10_18632_oncotarget_2989
crossref_primary_10_1242_jcs_177071
crossref_primary_10_7554_eLife_75821
crossref_primary_10_1016_j_intimp_2015_03_033
crossref_primary_10_1038_s44318_024_00269_0
crossref_primary_10_1155_2018_8026496
crossref_primary_10_1111_bcpt_13821
crossref_primary_10_1080_14756366_2018_1524380
crossref_primary_10_1186_s13045_017_0509_9
crossref_primary_10_1016_j_cbi_2022_110293
crossref_primary_10_1016_j_cmet_2023_10_016
crossref_primary_10_1016_j_freeradbiomed_2017_09_008
crossref_primary_10_1038_s41598_018_32316_2
crossref_primary_10_1007_s00018_021_03988_3
crossref_primary_10_3390_antiox12030683
crossref_primary_10_1360_TB_2024_1391
crossref_primary_10_3389_fnagi_2017_00173
crossref_primary_10_1083_jcb_2062iti2
crossref_primary_10_1016_j_jbc_2023_104827
crossref_primary_10_1016_j_celrep_2018_08_007
crossref_primary_10_1360_SSV_2024_0039
crossref_primary_10_1158_2159_8290_CD_18_0606
crossref_primary_10_1242_jcs_215442
crossref_primary_10_15252_embr_202051436
crossref_primary_10_17235_reed_2017_5116_2017
crossref_primary_10_1002_mc_22711
crossref_primary_10_1016_j_biocel_2024_106694
crossref_primary_10_1016_j_celrep_2022_111124
crossref_primary_10_1371_journal_pone_0163174
crossref_primary_10_1002_cac2_12187
crossref_primary_10_1152_ajpcell_00403_2021
crossref_primary_10_1016_j_celrep_2018_05_006
crossref_primary_10_1080_07388551_2021_1947962
crossref_primary_10_1002_med_21473
crossref_primary_10_4049_jimmunol_1501881
crossref_primary_10_1038_s41523_023_00544_z
crossref_primary_10_1016_j_apsb_2024_04_021
crossref_primary_10_1084_jem_20150956
crossref_primary_10_1038_s41418_021_00892_y
crossref_primary_10_1016_j_jnutbio_2017_08_015
crossref_primary_10_1172_jci_insight_154925
crossref_primary_10_1080_14756366_2018_1481403
crossref_primary_10_1080_15548627_2022_2128019
crossref_primary_10_1007_s10616_017_0151_y
crossref_primary_10_1242_jcs_132720
crossref_primary_10_3168_jds_2017_13707
crossref_primary_10_1371_journal_pone_0233863
crossref_primary_10_1111_tra_12484
crossref_primary_10_1134_S1990519X15030050
crossref_primary_10_1158_0008_5472_CAN_14_3745
crossref_primary_10_1155_2016_4010357
crossref_primary_10_1016_j_freeradbiomed_2020_01_019
crossref_primary_10_1016_j_jnutbio_2018_10_016
crossref_primary_10_15252_embj_201899735
crossref_primary_10_1007_s11064_021_03261_w
crossref_primary_10_1016_j_cdev_2023_203859
crossref_primary_10_1016_j_jbc_2022_102030
crossref_primary_10_1186_s12934_024_02315_2
crossref_primary_10_1038_s42003_022_03609_0
crossref_primary_10_1053_j_gastro_2015_02_013
crossref_primary_10_1093_jas_skad339
crossref_primary_10_1093_abbs_gmx136
crossref_primary_10_1016_j_isci_2021_103296
crossref_primary_10_1016_j_jconrel_2018_02_010
crossref_primary_10_1186_s12970_017_0175_x
crossref_primary_10_1080_15476286_2017_1379635
crossref_primary_10_1242_bio_038257
crossref_primary_10_1007_s00726_015_2084_0
crossref_primary_10_3390_ijms20102428
crossref_primary_10_1002_mnfr_201700262
crossref_primary_10_1038_s41556_019_0415_1
crossref_primary_10_1128_IAI_00733_18
crossref_primary_10_1158_1078_0432_CCR_17_3575
crossref_primary_10_3389_fchem_2020_564809
crossref_primary_10_1016_j_bbadis_2017_11_009
crossref_primary_10_1016_j_cellsig_2019_05_008
crossref_primary_10_1016_j_phrs_2016_08_014
crossref_primary_10_1080_15257770_2023_2259431
crossref_primary_10_1016_j_aca_2017_11_005
crossref_primary_10_1016_j_aninu_2021_05_003
crossref_primary_10_1016_j_ajpath_2018_11_013
crossref_primary_10_1158_2159_8290_CD_16_0615
crossref_primary_10_1371_journal_pone_0168387
crossref_primary_10_3390_insects15020084
crossref_primary_10_18632_oncotarget_6519
crossref_primary_10_1016_j_xcrm_2024_101465
Cites_doi 10.1038/26506
10.1146/annurev.micro.59.031805.133833
10.2967/jnumed.107.043620
10.1172/JCI40027
10.1093/jn/131.3.861S
10.1038/emboj.2010.81
10.1093/jn/134.6.1558S
10.1126/science.1104882
10.1093/nar/gkt563
10.1093/jn/130.7.1835S
10.1038/35056522
10.1073/pnas.76.7.3169
10.1128/MCB.15.8.4497
10.1016/j.cell.2009.01.021
10.1038/nrm2672
10.1016/S1097-2765(03)00105-9
10.4161/auto.6143
10.1038/onc.2010.191
10.1093/emboj/21.4.580
10.1016/j.cell.2008.11.044
10.1016/j.stem.2010.03.015
10.1016/S0005-2736(01)00384-4
10.1074/jbc.M801331200
10.1038/270174a0
10.1038/nature09076
10.1073/pnas.0506925102
10.1093/genetics/154.2.787
ContentType Journal Article
Copyright 2014 Chen et al.
Copyright Rockefeller University Press Jul 21, 2014
2014 Chen et al. 2014
Copyright_xml – notice: 2014 Chen et al.
– notice: Copyright Rockefeller University Press Jul 21, 2014
– notice: 2014 Chen et al. 2014
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7QP
7QR
7TK
7TM
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
DOI 10.1083/jcb.201403009
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Technology Research Database
Nucleic Acids Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Genetics Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList
MEDLINE
MEDLINE - Academic
Virology and AIDS Abstracts
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
DocumentTitleAlternate Regulation of autophagy by the GAAC pathway
EISSN 1540-8140
EndPage 182
ExternalDocumentID PMC4107793
3386905651
25049270
10_1083_jcb_201403009
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Feature
GroupedDBID ---
-DZ
-~X
.55
123
18M
29K
2WC
34G
36B
39C
4.4
53G
85S
AAYXX
ABDNZ
ABOCM
ABPPZ
ABRJW
ABZEH
ACGFO
ACGOD
ACIWK
ACKOT
ACNCT
ACPRK
ADBBV
AEILP
AENEX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BKOMP
BTFSW
C45
CITATION
CS3
D-I
D0L
DIK
DU5
E3Z
EBS
EJD
EMB
F5P
F9R
FRP
GX1
H13
HF~
HYE
IH2
JZ9
KQ8
N9A
NHB
O5R
O5S
OK1
P2P
PQQKQ
R.V
RHI
RNS
RXW
SJN
TAE
TN5
TR2
TRP
TWZ
UBX
UHB
UKR
UPT
W8F
WH7
WOQ
X7M
YKV
YNH
YOC
YQT
YSK
YWH
YZZ
ZCA
~KM
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7QP
7QR
7TK
7TM
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c481t-4bae48c5b5409a28f821d3a4ccfc89b62d46e6af05ee3a348f3591ed3d2308dc3
ISSN 0021-9525
1540-8140
IngestDate Thu Aug 21 14:13:06 EDT 2025
Fri Jul 11 15:38:27 EDT 2025
Mon Jun 30 10:30:49 EDT 2025
Thu Apr 03 07:10:56 EDT 2025
Tue Jul 01 02:00:40 EDT 2025
Thu Apr 24 23:00:32 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License 2014 Chen et al.
This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 3.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/3.0/).
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c481t-4bae48c5b5409a28f821d3a4ccfc89b62d46e6af05ee3a348f3591ed3d2308dc3
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC4107793
PMID 25049270
PQID 1549365931
PQPubID 48855
PageCount 10
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4107793
proquest_miscellaneous_1547830994
proquest_journals_1549365931
pubmed_primary_25049270
crossref_primary_10_1083_jcb_201403009
crossref_citationtrail_10_1083_jcb_201403009
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-07-21
PublicationDateYYYYMMDD 2014-07-21
PublicationDate_xml – month: 07
  year: 2014
  text: 2014-07-21
  day: 21
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle The Journal of cell biology
PublicationTitleAlternate J Cell Biol
PublicationYear 2014
Publisher Rockefeller University Press
The Rockefeller University Press
Publisher_xml – name: Rockefeller University Press
– name: The Rockefeller University Press
References Yanagida (2023072307524176500_bib25) 2001; 1514
Sood (2023072307524176500_bib22) 2000; 154
Wek (2023072307524176500_bib24) 1995; 15
Lynch (2023072307524176500_bib8) 2001; 131
Tang (2023072307524176500_bib23) 2010; 6
Ohsumi (2023072307524176500_bib16) 2001; 2
Rouschop (2023072307524176500_bib18) 2010; 120
Meier (2023072307524176500_bib11) 2002; 21
Schworer (2023072307524176500_bib21) 1979; 76
Nicklin (2023072307524176500_bib14) 2009; 136
Yu (2023072307524176500_bib27) 2010; 465
Ma (2023072307524176500_bib9) 2009; 10
Schiaffino (2023072307524176500_bib20) 2008; 4
Haase (2023072307524176500_bib4) 2007; 48
Rzymski (2023072307524176500_bib19) 2010; 29
Hao (2023072307524176500_bib5) 2005; 307
Harding (2023072307524176500_bib6) 2003; 11
Reeds (2023072307524176500_bib17) 2000; 130
Mortimore (2023072307524176500_bib13) 1977; 270
Fürst (2023072307524176500_bib3) 2004; 134
Nobukuni (2023072307524176500_bib15) 2005; 102
Mizushima (2023072307524176500_bib12) 1998; 395
Cohen (2023072307524176500_bib2) 2009; 136
Ye (2023072307524176500_bib26) 2010; 29
B’chir (2023072307524176500_bib1) 2013; 41
Hinnebusch (2023072307524176500_bib7) 2005; 59
Malmberg (2023072307524176500_bib10) 2008; 283
20452321 - Cell Stem Cell. 2010 May 7;6(5):468-78
20514020 - Oncogene. 2010 Aug 5;29(31):4424-35
19339977 - Nat Rev Mol Cell Biol. 2009 May;10(5):307-18
23804767 - Nucleic Acids Res. 2013 Sep;41(16):7683-99
11847106 - EMBO J. 2002 Feb 15;21(4):580-9
16176982 - Proc Natl Acad Sci U S A. 2005 Oct 4;102(40):14238-43
18437051 - Autophagy. 2008 Jul;4(5):727-30
9759731 - Nature. 1998 Sep 24;395(6700):395-8
18480057 - J Biol Chem. 2008 Jul 11;283(28):19229-34
10655230 - Genetics. 2000 Feb;154(2):787-801
15774759 - Science. 2005 Mar 18;307(5716):1776-8
927529 - Nature. 1977 Nov 10;270(5633):174-6
12667446 - Mol Cell. 2003 Mar;11(3):619-33
16153175 - Annu Rev Microbiol. 2005;59:407-50
11238775 - J Nutr. 2001 Mar;131(3):861S-865S
15173430 - J Nutr. 2004 Jun;134(6 Suppl):1558S-1565S
20038797 - J Clin Invest. 2010 Jan;120(1):127-41
290994 - Proc Natl Acad Sci U S A. 1979 Jul;76(7):3169-73
11557028 - Biochim Biophys Acta. 2001 Oct 1;1514(2):291-302
19203585 - Cell. 2009 Feb 6;136(3):521-34
18056335 - J Nucl Med. 2007 Dec;48(12):2063-71
11265251 - Nat Rev Mol Cell Biol. 2001 Mar;2(3):211-6
20473272 - EMBO J. 2010 Jun 16;29(12):2082-96
20526321 - Nature. 2010 Jun 17;465(7300):942-6
7623840 - Mol Cell Biol. 1995 Aug;15(8):4497-506
19203575 - Cell. 2009 Feb 6;136(3):399-400
10867060 - J Nutr. 2000 Jul;130(7):1835S-40S
References_xml – volume: 395
  start-page: 395
  year: 1998
  ident: 2023072307524176500_bib12
  article-title: A protein conjugation system essential for autophagy
  publication-title: Nature.
  doi: 10.1038/26506
– volume: 59
  start-page: 407
  year: 2005
  ident: 2023072307524176500_bib7
  article-title: Translational regulation of GCN4 and the general amino acid control of yeast
  publication-title: Annu. Rev. Microbiol.
  doi: 10.1146/annurev.micro.59.031805.133833
– volume: 48
  start-page: 2063
  year: 2007
  ident: 2023072307524176500_bib4
  article-title: L-type amino acid transporters LAT1 and LAT4 in cancer: uptake of 3-O-methyl-6-18F-fluoro-L-dopa in human adenocarcinoma and squamous cell carcinoma in vitro and in vivo
  publication-title: J. Nucl. Med.
  doi: 10.2967/jnumed.107.043620
– volume: 120
  start-page: 127
  year: 2010
  ident: 2023072307524176500_bib18
  article-title: The unfolded protein response protects human tumor cells during hypoxia through regulation of the autophagy genes MAP1LC3B and ATG5
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI40027
– volume: 131
  start-page: 861S
  year: 2001
  ident: 2023072307524176500_bib8
  article-title: Role of leucine in the regulation of mTOR by amino acids: revelations from structure-activity studies
  publication-title: J. Nutr.
  doi: 10.1093/jn/131.3.861S
– volume: 29
  start-page: 2082
  year: 2010
  ident: 2023072307524176500_bib26
  article-title: The GCN2-ATF4 pathway is critical for tumour cell survival and proliferation in response to nutrient deprivation
  publication-title: EMBO J.
  doi: 10.1038/emboj.2010.81
– volume: 134
  start-page: 1558S
  year: 2004
  ident: 2023072307524176500_bib3
  article-title: What are the essential elements needed for the determination of amino acid requirements in humans?
  publication-title: J. Nutr.
  doi: 10.1093/jn/134.6.1558S
– volume: 307
  start-page: 1776
  year: 2005
  ident: 2023072307524176500_bib5
  article-title: Uncharged tRNA and sensing of amino acid deficiency in mammalian piriform cortex
  publication-title: Science.
  doi: 10.1126/science.1104882
– volume: 41
  start-page: 7683
  year: 2013
  ident: 2023072307524176500_bib1
  article-title: The eIF2α/ATF4 pathway is essential for stress-induced autophagy gene expression
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkt563
– volume: 130
  start-page: 1835S
  year: 2000
  ident: 2023072307524176500_bib17
  article-title: Dispensable and indispensable amino acids for humans
  publication-title: J. Nutr.
  doi: 10.1093/jn/130.7.1835S
– volume: 2
  start-page: 211
  year: 2001
  ident: 2023072307524176500_bib16
  article-title: Molecular dissection of autophagy: two ubiquitin-like systems
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/35056522
– volume: 76
  start-page: 3169
  year: 1979
  ident: 2023072307524176500_bib21
  article-title: Glucagon-induced autophagy and proteolysis in rat liver: mediation by selective deprivation of intracellular amino acids
  publication-title: Proc. Natl. Acad. Sci. USA.
  doi: 10.1073/pnas.76.7.3169
– volume: 15
  start-page: 4497
  year: 1995
  ident: 2023072307524176500_bib24
  article-title: The histidyl-tRNA synthetase-related sequence in the eIF-2α protein kinase GCN2 interacts with tRNA and is required for activation in response to starvation for different amino acids
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.15.8.4497
– volume: 136
  start-page: 399
  year: 2009
  ident: 2023072307524176500_bib2
  article-title: An amino acid shuffle activates mTORC1
  publication-title: Cell.
  doi: 10.1016/j.cell.2009.01.021
– volume: 10
  start-page: 307
  year: 2009
  ident: 2023072307524176500_bib9
  article-title: Molecular mechanisms of mTOR-mediated translational control
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm2672
– volume: 11
  start-page: 619
  year: 2003
  ident: 2023072307524176500_bib6
  article-title: An integrated stress response regulates amino acid metabolism and resistance to oxidative stress
  publication-title: Mol. Cell.
  doi: 10.1016/S1097-2765(03)00105-9
– volume: 4
  start-page: 727
  year: 2008
  ident: 2023072307524176500_bib20
  article-title: The role of autophagy in neonatal tissues: just a response to amino acid starvation?
  publication-title: Autophagy.
  doi: 10.4161/auto.6143
– volume: 29
  start-page: 4424
  year: 2010
  ident: 2023072307524176500_bib19
  article-title: Regulation of autophagy by ATF4 in response to severe hypoxia
  publication-title: Oncogene.
  doi: 10.1038/onc.2010.191
– volume: 21
  start-page: 580
  year: 2002
  ident: 2023072307524176500_bib11
  article-title: Activation of system L heterodimeric amino acid exchangers by intracellular substrates
  publication-title: EMBO J.
  doi: 10.1093/emboj/21.4.580
– volume: 136
  start-page: 521
  year: 2009
  ident: 2023072307524176500_bib14
  article-title: Bidirectional transport of amino acids regulates mTOR and autophagy
  publication-title: Cell.
  doi: 10.1016/j.cell.2008.11.044
– volume: 6
  start-page: 468
  year: 2010
  ident: 2023072307524176500_bib23
  article-title: Tracing the derivation of embryonic stem cells from the inner cell mass by single-cell RNA-Seq analysis
  publication-title: Cell Stem Cell.
  doi: 10.1016/j.stem.2010.03.015
– volume: 1514
  start-page: 291
  year: 2001
  ident: 2023072307524176500_bib25
  article-title: Human L-type amino acid transporter 1 (LAT1): characterization of function and expression in tumor cell lines
  publication-title: Biochim. Biophys. Acta.
  doi: 10.1016/S0005-2736(01)00384-4
– volume: 283
  start-page: 19229
  year: 2008
  ident: 2023072307524176500_bib10
  article-title: Insulin signaling and the general amino acid control response. Two distinct pathways to amino acid synthesis and uptake
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M801331200
– volume: 270
  start-page: 174
  year: 1977
  ident: 2023072307524176500_bib13
  article-title: Induction of autophagy by amino-acid deprivation in perfused rat liver
  publication-title: Nature.
  doi: 10.1038/270174a0
– volume: 465
  start-page: 942
  year: 2010
  ident: 2023072307524176500_bib27
  article-title: Termination of autophagy and reformation of lysosomes regulated by mTOR
  publication-title: Nature.
  doi: 10.1038/nature09076
– volume: 102
  start-page: 14238
  year: 2005
  ident: 2023072307524176500_bib15
  article-title: Amino acids mediate mTOR/raptor signaling through activation of class 3 phosphatidylinositol 3OH-kinase
  publication-title: Proc. Natl. Acad. Sci. USA.
  doi: 10.1073/pnas.0506925102
– volume: 154
  start-page: 787
  year: 2000
  ident: 2023072307524176500_bib22
  article-title: A mammalian homologue of GCN2 protein kinase important for translational control by phosphorylation of eukaryotic initiation factor-2α
  publication-title: Genetics.
  doi: 10.1093/genetics/154.2.787
– reference: 20514020 - Oncogene. 2010 Aug 5;29(31):4424-35
– reference: 20038797 - J Clin Invest. 2010 Jan;120(1):127-41
– reference: 20473272 - EMBO J. 2010 Jun 16;29(12):2082-96
– reference: 10867060 - J Nutr. 2000 Jul;130(7):1835S-40S
– reference: 11847106 - EMBO J. 2002 Feb 15;21(4):580-9
– reference: 15774759 - Science. 2005 Mar 18;307(5716):1776-8
– reference: 19203575 - Cell. 2009 Feb 6;136(3):399-400
– reference: 290994 - Proc Natl Acad Sci U S A. 1979 Jul;76(7):3169-73
– reference: 9759731 - Nature. 1998 Sep 24;395(6700):395-8
– reference: 12667446 - Mol Cell. 2003 Mar;11(3):619-33
– reference: 19339977 - Nat Rev Mol Cell Biol. 2009 May;10(5):307-18
– reference: 7623840 - Mol Cell Biol. 1995 Aug;15(8):4497-506
– reference: 20452321 - Cell Stem Cell. 2010 May 7;6(5):468-78
– reference: 11557028 - Biochim Biophys Acta. 2001 Oct 1;1514(2):291-302
– reference: 16153175 - Annu Rev Microbiol. 2005;59:407-50
– reference: 19203585 - Cell. 2009 Feb 6;136(3):521-34
– reference: 20526321 - Nature. 2010 Jun 17;465(7300):942-6
– reference: 18437051 - Autophagy. 2008 Jul;4(5):727-30
– reference: 18480057 - J Biol Chem. 2008 Jul 11;283(28):19229-34
– reference: 11238775 - J Nutr. 2001 Mar;131(3):861S-865S
– reference: 18056335 - J Nucl Med. 2007 Dec;48(12):2063-71
– reference: 10655230 - Genetics. 2000 Feb;154(2):787-801
– reference: 927529 - Nature. 1977 Nov 10;270(5633):174-6
– reference: 16176982 - Proc Natl Acad Sci U S A. 2005 Oct 4;102(40):14238-43
– reference: 11265251 - Nat Rev Mol Cell Biol. 2001 Mar;2(3):211-6
– reference: 23804767 - Nucleic Acids Res. 2013 Sep;41(16):7683-99
– reference: 15173430 - J Nutr. 2004 Jun;134(6 Suppl):1558S-1565S
SSID ssj0004743
Score 2.5208135
Snippet Organisms have evolved elaborate mechanisms to adjust intracellular nutrient levels in response to fluctuating availability of exogenous nutrients. During...
To meet their metabolic needs, starved cells first activate autophagy, but activation in parallel of the general amino acid control pathway increases amino...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 173
SubjectTerms Activating Transcription Factor 4 - genetics
Activating Transcription Factor 4 - metabolism
Activating Transcription Factor 4 - physiology
Amino acids
Amino Acids - metabolism
Animals
Autophagy
Cell Line
Cellular biology
Gene Expression Regulation
Gene Knockdown Techniques
Glutamine - metabolism
Homeostasis
Large Neutral Amino Acid-Transporter 1 - genetics
Large Neutral Amino Acid-Transporter 1 - metabolism
Nutrient availability
Proteins
Rats
Starvation
TOR Serine-Threonine Kinases - metabolism
Title The general amino acid control pathway regulates mTOR and autophagy during serum/glutamine starvation
URI https://www.ncbi.nlm.nih.gov/pubmed/25049270
https://www.proquest.com/docview/1549365931
https://www.proquest.com/docview/1547830994
https://pubmed.ncbi.nlm.nih.gov/PMC4107793
Volume 206
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFLXKEBIviG8KAxkJ8VK6NbGTOI9oYppA46N00t4ix3G6SGsydY1Y-VH8Ru61XTddQYK9RFHixmnOyfX1zfW5hLzRkWSsEOUwj6NkyHUQw57SQ1T3KkdpKXNTvu34c3x0wj-eRqe93q9O1lK7yPfUzz-uK7kJqnAMcMVVsv-BrL8oHIB9wBe2gDBs_xnjqdWNHshZVTcDqarCp59jteEfcjmY23rz-nIwm3wZW3nWFgUF5HS5WqcI94sVjw-ncL94KRSelS5e23Vg10vJjBOLcf-BE3JaZwpYUzZuKx-Wblpj66vzxo2UJgjeWBe-nl61nl_fW2sH5VUlm25MIuAY7AzXMQm8lTGYc13ix4f51qLHrkHGDJHIrn3e084G8xFGJkddIx2O4g4bw47JDWwpFDd6B7aU0dbAAJ4mDgwqx2w-DpbNiDIsOiS5mBmWoKRbGtpiJteUuL8eH3CYLYNFu0VuhzAtwYoZn7511OkTl6Xp_pTTdIW-9zd6RgVq182mO7Q1x7meqtvxfSb3yT2HN31vGfiA9HT9kNyxZUyXj4gGJKjjITU8pMhD6nhIHQ-p5yFFHlLgIfU8pJaH1PBw37OQrln4mJwcfpgcHA1d-Y6h4iJYDHkuNRcqygHPVIaiFGFQMMmVKpVI8zgseKxjWY4irZlkXJQsSgNdsAKmxaJQ7AnZqZtaPyM0ZkGepCopwLRwoVMRwWxLFXD5tAgSFfXJu9VTzJTTtscSK-eZybEQLIPnn_nn3ydvffMLK-ryt4a7K0gy995fZihqyOIoZUGfvPanwSrjKydr3bSmTSIYzL54nzy1CPqeVtD3SbKBrW-Aiu-bZ-rqzCi_O_o9v_EvX5C76_d1l-ws5q1-CV71In9lqPwbOfjSsQ
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+general+amino+acid+control+pathway+regulates+mTOR+and+autophagy+during+serum%2Fglutamine+starvation&rft.jtitle=The+Journal+of+cell+biology&rft.au=Chen%2C+Rui&rft.au=Zou%2C+Yilong&rft.au=Mao%2C+Dongxue&rft.au=Sun%2C+Daxiao&rft.date=2014-07-21&rft.pub=The+Rockefeller+University+Press&rft.issn=0021-9525&rft.eissn=1540-8140&rft.volume=206&rft.issue=2&rft.spage=173&rft.epage=182&rft_id=info:doi/10.1083%2Fjcb.201403009&rft_id=info%3Apmid%2F25049270&rft.externalDocID=PMC4107793
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9525&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9525&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9525&client=summon