LSM-SEC: Tongue Segmentation by the Level Set Model with Symmetry and Edge Constraints

Accurate segmentation of the tongue body is an important prerequisite for computer-aided tongue diagnosis. In general, the size and shape of the tongue are very different, the color of the tongue is similar to the surrounding tissue, the edge of the tongue is fuzzy, and some of the tongue is interfe...

Full description

Saved in:
Bibliographic Details
Published inComputational intelligence and neuroscience Vol. 2021; no. 1; p. 6370526
Main Authors Gao, Shanshan, Guo, Ningning, Mao, Deqian
Format Journal Article
LanguageEnglish
Published New York Hindawi 2021
John Wiley & Sons, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Accurate segmentation of the tongue body is an important prerequisite for computer-aided tongue diagnosis. In general, the size and shape of the tongue are very different, the color of the tongue is similar to the surrounding tissue, the edge of the tongue is fuzzy, and some of the tongue is interfered by pathological details. The existing segmentation methods are often not ideal for tongue image processing. To solve these problems, this paper proposes a symmetry and edge-constrained level set model combined with the geometric features of the tongue for tongue segmentation. Based on the symmetry geometry of the tongue, a novel level set initialization method is proposed to improve the accuracy of subsequent model evolution. In order to increase the evolution force of the energy function, symmetry detection constraints are added to the evolution model. Combined with the latest convolution neural network, the edge probability input of the tongue image is obtained to guide the evolution of the edge stop function, so as to achieve accurate and automatic tongue segmentation. The experimental results show that the input tongue image is not subject to the external capturing facility or environment, and it is suitable for tongue segmentation under most realistic conditions. Qualitative and quantitative comparisons show that the proposed method is superior to the other methods in terms of robustness and accuracy.
AbstractList Accurate segmentation of the tongue body is an important prerequisite for computer-aided tongue diagnosis. In general, the size and shape of the tongue are very different, the color of the tongue is similar to the surrounding tissue, the edge of the tongue is fuzzy, and some of the tongue is interfered by pathological details. The existing segmentation methods are often not ideal for tongue image processing. To solve these problems, this paper proposes a symmetry and edge-constrained level set model combined with the geometric features of the tongue for tongue segmentation. Based on the symmetry geometry of the tongue, a novel level set initialization method is proposed to improve the accuracy of subsequent model evolution. In order to increase the evolution force of the energy function, symmetry detection constraints are added to the evolution model. Combined with the latest convolution neural network, the edge probability input of the tongue image is obtained to guide the evolution of the edge stop function, so as to achieve accurate and automatic tongue segmentation. The experimental results show that the input tongue image is not subject to the external capturing facility or environment, and it is suitable for tongue segmentation under most realistic conditions. Qualitative and quantitative comparisons show that the proposed method is superior to the other methods in terms of robustness and accuracy.
Accurate segmentation of the tongue body is an important prerequisite for computer-aided tongue diagnosis. In general, the size and shape of the tongue are very different, the color of the tongue is similar to the surrounding tissue, the edge of the tongue is fuzzy, and some of the tongue is interfered by pathological details. The existing segmentation methods are often not ideal for tongue image processing. To solve these problems, this paper proposes a symmetry and edge-constrained level set model combined with the geometric features of the tongue for tongue segmentation. Based on the symmetry geometry of the tongue, a novel level set initialization method is proposed to improve the accuracy of subsequent model evolution. In order to increase the evolution force of the energy function, symmetry detection constraints are added to the evolution model. Combined with the latest convolution neural network, the edge probability input of the tongue image is obtained to guide the evolution of the edge stop function, so as to achieve accurate and automatic tongue segmentation. The experimental results show that the input tongue image is not subject to the external capturing facility or environment, and it is suitable for tongue segmentation under most realistic conditions. Qualitative and quantitative comparisons show that the proposed method is superior to the other methods in terms of robustness and accuracy.Accurate segmentation of the tongue body is an important prerequisite for computer-aided tongue diagnosis. In general, the size and shape of the tongue are very different, the color of the tongue is similar to the surrounding tissue, the edge of the tongue is fuzzy, and some of the tongue is interfered by pathological details. The existing segmentation methods are often not ideal for tongue image processing. To solve these problems, this paper proposes a symmetry and edge-constrained level set model combined with the geometric features of the tongue for tongue segmentation. Based on the symmetry geometry of the tongue, a novel level set initialization method is proposed to improve the accuracy of subsequent model evolution. In order to increase the evolution force of the energy function, symmetry detection constraints are added to the evolution model. Combined with the latest convolution neural network, the edge probability input of the tongue image is obtained to guide the evolution of the edge stop function, so as to achieve accurate and automatic tongue segmentation. The experimental results show that the input tongue image is not subject to the external capturing facility or environment, and it is suitable for tongue segmentation under most realistic conditions. Qualitative and quantitative comparisons show that the proposed method is superior to the other methods in terms of robustness and accuracy.
Audience Academic
Author Guo, Ningning
Gao, Shanshan
Mao, Deqian
AuthorAffiliation 3 Shandong China-U.S. Digital Media International Cooperation Research Center, Jinan 250014, China
1 Department of Computer Science and Technology, Shandong University of Finance and Economics, Jinan 250014, China
2 Shandong Provincial Key Laboratory of Digital Media Technology, Jinan 250014, China
AuthorAffiliation_xml – name: 1 Department of Computer Science and Technology, Shandong University of Finance and Economics, Jinan 250014, China
– name: 2 Shandong Provincial Key Laboratory of Digital Media Technology, Jinan 250014, China
– name: 3 Shandong China-U.S. Digital Media International Cooperation Research Center, Jinan 250014, China
Author_xml – sequence: 1
  givenname: Shanshan
  orcidid: 0000-0003-3920-3713
  surname: Gao
  fullname: Gao, Shanshan
  organization: Department of Computer Science and TechnologyShandong University of Finance and EconomicsJinan 250014Chinasdufe.edu.cn
– sequence: 2
  givenname: Ningning
  surname: Guo
  fullname: Guo, Ningning
  organization: Department of Computer Science and TechnologyShandong University of Finance and EconomicsJinan 250014Chinasdufe.edu.cn
– sequence: 3
  givenname: Deqian
  surname: Mao
  fullname: Mao, Deqian
  organization: Department of Computer Science and TechnologyShandong University of Finance and EconomicsJinan 250014Chinasdufe.edu.cn
BookMark eNp9kstu1DAUhi3Uil5gxwNYYoMEaX13wgKpGk2h0lQsprC1nNjJuErsEjut5u1xOgMVlejKRzrf-X0u_wk48MFbAN5hdIYx5-cEEXwuqESciFfgGItSFpxIevA3FvwInMR4ixCXHJHX4IgyKiSR-Bj8XK2vi_Vy8RneBN9NFq5tN1ifdHLBw3oL08bClb23fc4keB1Mjh5c2sD1dhhsGrdQewOXprNwEXxMo3Y-xTfgsNV9tG_37yn4cbm8WXwrVt-_Xi0uVkXDSpwKJqkwlalYbaQwTJC60bwtaYmailSiFZQaxLm2WmNNGWtM2RrNDG4Zx8jW9BR82eneTfVgTZM7H3Wv7kY36HGrgnbq34x3G9WFe1VSRrAkWeDDXmAMvyYbkxpcbGzfa2_DFBXhvBJcllWV0ffP0NswjT6P90hRWnLMnqhO91Y534b8bzOLqgtR5YMIgsXLVEm5pBTNzZEd1YwhxtG2qnG7y8xr7hVGaraAmi2g9hbIRZ-eFf3Zxn_wjzt847zRD-5l-jcWMLuf
CitedBy_id crossref_primary_10_1089_big_2023_0014
crossref_primary_10_1142_S0192415X24500265
crossref_primary_10_1177_20552076221136362
crossref_primary_10_1142_S0219519424400098
crossref_primary_10_1016_j_neucom_2022_05_023
crossref_primary_10_1177_20552076231191044
crossref_primary_10_3390_math10224286
crossref_primary_10_3390_s24134046
Cites_doi 10.1109/TPAMI.2017.2699184
10.1016/j.patcog.2009.03.004
10.1109/IFITA.2009.130
10.1109/access.2020.2976826
10.1109/TIP.2010.2069690
10.1109/IPTA.2008.4743772
10.1109/IHMSC.2010.24
10.1109/tmi.2020.3035253
10.1109/tpami.2004.60
10.1109/CVPR.1997.609299
10.1109/tip.2008.2002304
10.1109/ICBBE.2007.275
10.1109/34.857003
10.1118/1.4819824
10.1007/s11766-017-3534-0
10.1016/0021-9991(88)90002-2
10.1109/tpami.2016.2644615
10.1142/s0192415x05003466
10.1186/1749-8546-9-7
10.1109/ICIP.2019.8803154
10.1109/83.661186
10.1155/2020/6029258
10.1109/CVPR.2017.622
10.1016/j.patrec.2008.02.013
10.1109/CVPR.2018.00199
10.1155/2014/534507
10.1007/978-3-319-63309-1_23
10.1109/TPAMI.2016.2572683
10.1007/978-3-642-15615-1_27
10.1007/bf00133570
10.1109/83.902291
10.1007/bf01210742
10.1007/s11432-011-4428-z
10.1016/j.eswa.2015.06.032
ContentType Journal Article
Copyright Copyright © 2021 Shanshan Gao et al.
COPYRIGHT 2021 John Wiley & Sons, Inc.
Copyright © 2021 Shanshan Gao et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0
Copyright © 2021 Shanshan Gao et al. 2021
Copyright_xml – notice: Copyright © 2021 Shanshan Gao et al.
– notice: COPYRIGHT 2021 John Wiley & Sons, Inc.
– notice: Copyright © 2021 Shanshan Gao et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0
– notice: Copyright © 2021 Shanshan Gao et al. 2021
DBID RHU
RHW
RHX
AAYXX
CITATION
3V.
7QF
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
7X7
7XB
8AL
8BQ
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
CWDGH
DWQXO
F28
FR3
FYUFA
GHDGH
GNUQQ
H8D
H8G
HCIFZ
JG9
JQ2
K7-
K9.
KR7
L6V
L7M
LK8
L~C
L~D
M0N
M0S
M1P
M7P
M7S
P5Z
P62
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
PTHSS
Q9U
7X8
5PM
DOI 10.1155/2021/6370526
DatabaseName Hindawi Publishing Complete
Hindawi Publishing Subscription Journals
Hindawi Publishing Open Access
CrossRef
ProQuest Central (Corporate)
Aluminium Industry Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni Edition)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One Community College
Middle East & Africa Database
ProQuest Central Korea
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
Aerospace Database
Copper Technical Reference Library
SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
ProQuest Biological Science Collection
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Health & Medical Collection (Alumni Edition)
Medical Database
Biological Science Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
Engineering Collection
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
ProQuest One Psychology
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
Materials Business File
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Engineering Database
Aluminium Industry Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Ceramic Abstracts
Biological Science Database
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central
Aerospace Database
Copper Technical Reference Library
ProQuest Health & Medical Research Collection
ProQuest Engineering Collection
Middle East & Africa Database
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Materials Science & Engineering Collection
Corrosion Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
CrossRef

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: RHX
  name: Hindawi Publishing Open Access
  url: http://www.hindawi.com/journals/
  sourceTypes: Publisher
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1687-5273
Editor Zhang, Nian
Editor_xml – sequence: 1
  givenname: Nian
  surname: Zhang
  fullname: Zhang, Nian
ExternalDocumentID PMC8342172
A696876216
A683573302
10_1155_2021_6370526
GeographicLocations China
GeographicLocations_xml – name: China
GrantInformation_xml – fundername: Natural Science Foundation of Shandong Province
  grantid: ZR2020MF037; ZR2019MF016; ZR2019MF051
– fundername: Shandong University
– fundername: Planning Foundation of Education Ministry
  grantid: 20YJA870013
– fundername: National Natural Science Foundation of China
  grantid: U1909210; 61772309
– fundername: Key Research and Development Project of Shandong Province
  grantid: 2019GGX101007
– fundername: Government of Shandong Province
GroupedDBID ---
188
29F
2WC
3V.
4.4
53G
5GY
5VS
6J9
7X7
8FE
8FG
8FH
8FI
8FJ
8R4
8R5
AAFWJ
AAJEY
AAKPC
ABDBF
ABIVO
ABJCF
ABUWG
ACGFO
ACIWK
ACM
ACPRK
ADBBV
ADRAZ
AENEX
AFKRA
AHMBA
AINHJ
ALMA_UNASSIGNED_HOLDINGS
AOIJS
ARAPS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
CCPQU
CS3
CWDGH
DIK
DWQXO
E3Z
EBD
EBS
EMOBN
ESX
F5P
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
I-F
IAO
ICD
INH
INR
IPY
ITC
K6V
K7-
KQ8
L6V
LK8
M0N
M1P
M48
M7P
M7S
MK~
O5R
O5S
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PSQYO
PSYQQ
PTHSS
Q2X
RHU
RHW
RHX
RNS
RPM
SV3
TR2
TUS
UKHRP
XH6
~8M
0R~
24P
2UF
AAYXX
ACCMX
ACUHS
C1A
CITATION
EJD
H13
IHR
IL9
OVT
PGMZT
PHGZM
PHGZT
UZ4
7QF
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
7XB
8AL
8BQ
8FD
8FK
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
F28
FR3
H8D
H8G
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
Q9U
7X8
5PM
ID FETCH-LOGICAL-c481t-4736d9d94bd76d462bca5f8380c9296f633d055aeaa1a344cd8fda4d1f4510eb3
IEDL.DBID M48
ISSN 1687-5265
1687-5273
IngestDate Thu Aug 21 13:17:59 EDT 2025
Fri Jul 11 00:53:51 EDT 2025
Fri Jul 25 09:29:09 EDT 2025
Tue Jun 17 22:02:57 EDT 2025
Tue Jun 17 22:03:04 EDT 2025
Tue Jul 01 01:38:54 EDT 2025
Thu Apr 24 23:12:13 EDT 2025
Sun Jun 02 18:51:56 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c481t-4736d9d94bd76d462bca5f8380c9296f633d055aeaa1a344cd8fda4d1f4510eb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Academic Editor: Nian Zhang
ORCID 0000-0003-3920-3713
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1155/2021/6370526
PMID 34367271
PQID 2559338514
PQPubID 237303
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8342172
proquest_miscellaneous_2559657899
proquest_journals_2559338514
gale_infotracmisc_A696876216
gale_infotracmisc_A683573302
crossref_citationtrail_10_1155_2021_6370526
crossref_primary_10_1155_2021_6370526
hindawi_primary_10_1155_2021_6370526
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-00-00
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – year: 2021
  text: 2021-00-00
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Computational intelligence and neuroscience
PublicationYear 2021
Publisher Hindawi
John Wiley & Sons, Inc
Publisher_xml – name: Hindawi
– name: John Wiley & Sons, Inc
References e_1_2_10_22_2
e_1_2_10_23_2
e_1_2_10_20_2
e_1_2_10_21_2
Sun X. (e_1_2_10_30_2) 2013; 36
Huang Z. P. (e_1_2_10_19_2) 2017; 28
e_1_2_10_1_2
e_1_2_10_3_2
e_1_2_10_17_2
e_1_2_10_2_2
e_1_2_10_18_2
e_1_2_10_5_2
e_1_2_10_15_2
e_1_2_10_4_2
e_1_2_10_16_2
e_1_2_10_37_2
e_1_2_10_7_2
e_1_2_10_13_2
e_1_2_10_36_2
e_1_2_10_6_2
e_1_2_10_14_2
e_1_2_10_35_2
e_1_2_10_9_2
e_1_2_10_11_2
e_1_2_10_34_2
e_1_2_10_8_2
e_1_2_10_12_2
e_1_2_10_33_2
e_1_2_10_32_2
e_1_2_10_10_2
e_1_2_10_31_2
e_1_2_10_28_2
e_1_2_10_29_2
e_1_2_10_26_2
e_1_2_10_27_2
e_1_2_10_24_2
e_1_2_10_25_2
References_xml – ident: e_1_2_10_4_2
  doi: 10.1109/TPAMI.2017.2699184
– ident: e_1_2_10_37_2
  doi: 10.1016/j.patcog.2009.03.004
– ident: e_1_2_10_16_2
  doi: 10.1109/IFITA.2009.130
– ident: e_1_2_10_20_2
  doi: 10.1109/access.2020.2976826
– ident: e_1_2_10_33_2
  doi: 10.1109/TIP.2010.2069690
– ident: e_1_2_10_15_2
  doi: 10.1109/IPTA.2008.4743772
– ident: e_1_2_10_35_2
  doi: 10.1109/IHMSC.2010.24
– ident: e_1_2_10_14_2
  doi: 10.1109/tmi.2020.3035253
– ident: e_1_2_10_1_2
  doi: 10.1109/tpami.2004.60
– ident: e_1_2_10_27_2
  doi: 10.1109/CVPR.1997.609299
– ident: e_1_2_10_11_2
  doi: 10.1109/tip.2008.2002304
– ident: e_1_2_10_23_2
  doi: 10.1109/ICBBE.2007.275
– ident: e_1_2_10_2_2
  doi: 10.1109/34.857003
– ident: e_1_2_10_3_2
  doi: 10.1118/1.4819824
– ident: e_1_2_10_34_2
  doi: 10.1007/s11766-017-3534-0
– volume: 28
  start-page: 3062
  year: 2017
  ident: e_1_2_10_19_2
  article-title: An automatic tongue segmentation algorithm based on OTSU and region growing
  publication-title: LiShiZhen Medicine and Materia Medica Research
– ident: e_1_2_10_32_2
  doi: 10.1016/0021-9991(88)90002-2
– ident: e_1_2_10_6_2
  doi: 10.1109/tpami.2016.2644615
– ident: e_1_2_10_17_2
  doi: 10.1142/s0192415x05003466
– ident: e_1_2_10_18_2
  doi: 10.1186/1749-8546-9-7
– ident: e_1_2_10_9_2
  doi: 10.1109/ICIP.2019.8803154
– ident: e_1_2_10_26_2
  doi: 10.1109/83.661186
– ident: e_1_2_10_21_2
  doi: 10.1155/2020/6029258
– ident: e_1_2_10_36_2
  doi: 10.1109/CVPR.2017.622
– ident: e_1_2_10_13_2
  doi: 10.1016/j.patrec.2008.02.013
– ident: e_1_2_10_7_2
  doi: 10.1109/CVPR.2018.00199
– ident: e_1_2_10_29_2
  doi: 10.1155/2014/534507
– ident: e_1_2_10_22_2
  doi: 10.1007/978-3-319-63309-1_23
– ident: e_1_2_10_5_2
  doi: 10.1109/TPAMI.2016.2572683
– ident: e_1_2_10_25_2
  doi: 10.1007/978-3-642-15615-1_27
– ident: e_1_2_10_10_2
  doi: 10.1007/bf00133570
– ident: e_1_2_10_12_2
  doi: 10.1109/83.902291
– ident: e_1_2_10_31_2
  doi: 10.1007/bf01210742
– ident: e_1_2_10_8_2
– ident: e_1_2_10_28_2
  doi: 10.1007/s11432-011-4428-z
– volume: 36
  start-page: 154
  year: 2013
  ident: e_1_2_10_30_2
  article-title: An improved Snake model method on tongue segmentation
  publication-title: Journal of Changchun University of Science & Technology
– ident: e_1_2_10_24_2
  doi: 10.1016/j.eswa.2015.06.032
SSID ssj0057502
Score 2.277173
Snippet Accurate segmentation of the tongue body is an important prerequisite for computer-aided tongue diagnosis. In general, the size and shape of the tongue are...
Accurate segmentation of the tongue body is an important prerequisite for computer‐aided tongue diagnosis. In general, the size and shape of the tongue are...
SourceID pubmedcentral
proquest
gale
crossref
hindawi
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 6370526
SubjectTerms Accuracy
Algorithms
Analysis
Artificial neural networks
Constraint modelling
Deep learning
Evolution
Image processing
Image segmentation
Medical research
Methods
Model accuracy
Neural networks
Partial differential equations
Symmetry
Symmetry detection
Tongue
Traditional Chinese medicine
SummonAdditionalLinks – databaseName: Hindawi Publishing Open Access
  dbid: RHX
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1La9tAEF6aQCGX0sQJdZqUDTi5FFHL-5CUmzEJJti5OCm-iX3JCcTrEssU__vMSGtTtZjmKGYfYuf5rUYzhHSYsqnQqYoSx3TEHQDWzGoV6Qy7QQLI7lWcHt_L4SO_m4ppKJK0_PcTPng7hOfxD8kSrEyyR_ZAwBCUD6cbgwuL1qmFEvQFq71v8tv_mtvwPMH-fnxC5Pv7uRFfNrMj_3A3t5_JpxAn0n7N2EPywfkj0up7wMjzNb2iVeZmdSXeIj9HkzHYxcE1fVj42crRiZvNwz9Fnuo1hSCPjjA7CCglxfZnLxQvYOlkPZ-78nVNlbf0xs4cxQaeVduIcnlMHm9vHgbDKPRLiAxP4zLiCZM2sxnXNpGWy542ShQpS7sGgiBZSMZsVwjllIoV49zYtLCK27jgoJmAqk_Ivl9494XQ2EpZJJI76QRXQivWs7JrlEvB4Vlt2uT75ixzE4qJ48u95BWoECLHk8_DybfJ5Xb0r7qIxo5xZ8iWHHULVjMg6SbvSwgSE8a6vR3kTKJFj2F2J3Dzf5tsWJ0HfV3mCKwArEP02CYXWzJugDlo3i1W9RgJBi7L2iRpiMh2P6zV3aT456eqZnfKOLYCO33fO34lB_hYX_Wckf3ydeXOIfgp9bdK9N8ALbb6Ew
  priority: 102
  providerName: Hindawi Publishing
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1bS-tAEF68cMAX8XIOp8cLK6gvEmy6lyS-SBFFRH2pSt_C3lIFu_XYFOm_dybZVvOgPs8ms-zsXL7JZIaQfaZsKnSqosQxHXEHgDWzWkU6w2mQALI7laRvbuXlPb_qi35IuI1DWeXMJlaG2o4M5siPMfQFOAX-_fTlf4RTo_DrahihsUiWsXUZlnQl_TngAm51zaEERcI28LPCdyEQ88fHkiXY7qThkoJh_vWIkPjtqRF4NssmP_mhizWyGgJI2q0lvk4WnN8gm10P4Hk4pYe0KumscuWb5OG6dwMG8-yE3o38YOJozw2G4WcjT_WUQvRHr7FsCCglxblozxQzs7Q3HQ5d-Tqlylt6bgeO4mTPap5EOf5N7i_O784uozBIITI8jcuIJ0zazGZc20RaLjvaKFGkLG0biI5kIRmzbSGUUypWjHNj08IqbuOCg8oC3P5DlvzIu7-ExlbKIpHcSSe4ElqxjpVto1wKntBq0yJHs7PMTegyjpt7ziu0IUSOJ5-Hk2-Rg_nql7q7xhfrtlEsOSodvM2ACpi8KyF6TBhrd74gZxJNfQxP7wdp_sRkJuo8KPI4_7h2LbI3JyMDLE7zbjSp10iwfFnWIknjisz5YRPvJsU_PVbNvFPGcUbYv--Zb5EV3Gqd-9kmS-XrxO1ANFTq3erKvwNl7QR2
  priority: 102
  providerName: ProQuest
Title LSM-SEC: Tongue Segmentation by the Level Set Model with Symmetry and Edge Constraints
URI https://dx.doi.org/10.1155/2021/6370526
https://www.proquest.com/docview/2559338514
https://www.proquest.com/docview/2559657899
https://pubmed.ncbi.nlm.nih.gov/PMC8342172
Volume 2021
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELf2ISReEDAQHaMy0uAFBZr6K0FCqEztKrROaF1R3iI7drpJbbp1qSD_PXf5qAhigpdI1tmxdec738-53BFyzLQNhAm0pxwzHncAWENrtGdCrAYJILtfSnpyLscz_jUS0Q5pqo3WDLz7K7TDelKz9eL9z9viMyj8p1LhhUD87n-QTGHqkl2yD2eSQhWd8O33BJi3ij6UoFKYEL4Jgf9jdOtwqk30gysExz-uWy5oO4DytxNp9Jg8ql1JOqhk_4TsuOwpORhkAKOXBX1Ly-DO8tb8gHw_m07AdJ58pJerbL5xdOrmy_q3o4yagoIfSM8wgAgoOcUKaQuKd7R0WiyXLl8XVGeWDu3cUazxWVaWyO-ekdloeHky9uqSCl7CAz_3uGLShjbkxippueybRIs0YEEvAT9JppIx2xNCO619zThPbJBaza2fclBeAN7PyV62ytwLQn0rZaokd9IJroXRrG9lL9EugDPRmqRD3jW8jJM63zgubhGXuEOIGDkf15zvkDfb3jdVno17-h2hWGLcEPC2BJQhiQcS_EjFWK9_DzmUaPR9GH1cS_NfkzSijpsdGSP2AjwPDmaHvN6ScQIMU8vcalP1kWADw7BDVGuLbOfDdN5tSnZ9Vab1DhjHamGH_7fGl-QhNqvboCOyl6837hX4R7npkl0VKXgGo9Mu2f8yPP92Aa3TyO-WSgHPi3H0C7EDDQM
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Jb9NAFB6VVggubAURKDBILRfkNvYstpE4RGlLSpNekkJv7mxJKxobNY4q81f4K_w43vMSCFLhVInzjGf95i3jb94jZJMpGwkdKS90THvcgcMaW608HWM2SHCyg3KnB0eyd8w_noiTFfK9eQuDtMpGJpaC2mYG78h30PQFdwr0e82gPHTFFfhns_cHu7CZW0Gwvzfq9rw6hYBneOTnHg-ZtLGNubahtFwG2igxjljUNmAXyLFkzLaFUE4pXzHOjY3GVnHrjzmAFRxNaPcWWQOvQsDxWet-3v3QawQ9TKaiNEo4pxhlvuHVC4FXCv6OZCFGU1nSeLXcv32GHvfV-ZJdu8zK_E3N7d8nP5oFqtgtX7bnud423_6IHfmfruADcq82r2mnOg8PyYpLH5H1TqrybFrQN7QkvJZ_EtbJp_5wAOqk-46OsnQyd3ToJtP6KVZKdUHBNqZ9JFVBSU4xa9wFxXtrOiymU5dfFlSllu7ZiaOY97TMtpHPHpPjG5nhE7KaZql7SqhvpRyHkjvpBFdCKxZY2TbKRWAnWG1a5G0DhcTUMdhxcBdJ6YsJkSBwkho4LbK1qP21ij1yTb0NRFWCIglaMyAgTNKRYFuHjLWDa4pjiYrQh683azD-q5MGVUkt5mbJL0i1yOtFMXaA1L3UZfOqjgS9EMctEi4hfNEfhjhfLknPz8pQ5xHjmEHt2d87f0Xu9EaDftI_ODp8Tu7isKtbsg2yml_O3QuwG3P9sj6_lJzeNOB_Av4-d14
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFLZGJxAv3AaiMMBIGy8oaxM7ToKEUNWudKybkLqNvQXf0k2syVhTTeWn8Vf4M5yTS6FIg6c98GzHdpLP5-J8OR8hG0ya0FehdALLlMMtJKyRUdJREapBQpLtFW96b18MDvmHY_94hXyv_4VBWmVtEwtDbTKNZ-QtDH0hnQL_3koqWsTHXv_d-VcHFaTwS2stp1FCZNfOLyF9m77d6cG73vS8_vZBd-BUCgOO5qGbOzxgwkQm4soEwnDhKS39JGRhW0PYIBLBmGn7vrRSupJxrk2YGMmNm3DAMuShMO4NsoqqTrxBVrufeu8HtR-Aey0ZjwK2MRahr2n3vo8nDm5LsACLrSw5xMot3DzBhPzydCnsXSZt_uYF-3fJj_r5leSXL1uzXG3pb3-Ulvw_H_A9cqcKzmmn3E33yYpNH5C1TirzbDKnr2hBly2-Q6yRo-FoD5xR9w09yNLxzNKRHU-qH7lSquYUIms6REoWtOQUNefOKJ5609F8MrH5xZzK1NBtM7YUVVMLrY58-pAcXssdPiKNNEvtY0JdI0QSCG6F9bn0lWSeEW0tbQhRhlG6SV7XSIl1VcEdF3cWF5mc78eIq7jCVZNsLnqfl5VLrui3jqCL0aDBaBrMi447AiLzgLG2d0VzJNCNunD1RoXVf01Sgy6ujOQ0_oW4Jnm5aMYJkPiX2mxW9hHgVaKoSYKlDbCYDwukL7ekpydFofSQcdRfe_L3yV-QWwD0eLizv_uU3MZVl0ds66SRX8zsMwg6c_W82t2UfL5uvP8EvQ2PLg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=LSM-SEC%3A+Tongue+Segmentation+by+the+Level+Set+Model+with+Symmetry+and+Edge+Constraints&rft.jtitle=Computational+intelligence+and+neuroscience&rft.au=Gao%2C+Shanshan&rft.au=Guo%2C+Ningning&rft.au=Mao%2C+Deqian&rft.date=2021&rft.pub=Hindawi&rft.issn=1687-5265&rft.eissn=1687-5273&rft.volume=2021&rft_id=info:doi/10.1155%2F2021%2F6370526&rft.externalDocID=10_1155_2021_6370526
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1687-5265&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1687-5265&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1687-5265&client=summon