LSM-SEC: Tongue Segmentation by the Level Set Model with Symmetry and Edge Constraints
Accurate segmentation of the tongue body is an important prerequisite for computer-aided tongue diagnosis. In general, the size and shape of the tongue are very different, the color of the tongue is similar to the surrounding tissue, the edge of the tongue is fuzzy, and some of the tongue is interfe...
Saved in:
Published in | Computational intelligence and neuroscience Vol. 2021; no. 1; p. 6370526 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
Hindawi
2021
John Wiley & Sons, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Accurate segmentation of the tongue body is an important prerequisite for computer-aided tongue diagnosis. In general, the size and shape of the tongue are very different, the color of the tongue is similar to the surrounding tissue, the edge of the tongue is fuzzy, and some of the tongue is interfered by pathological details. The existing segmentation methods are often not ideal for tongue image processing. To solve these problems, this paper proposes a symmetry and edge-constrained level set model combined with the geometric features of the tongue for tongue segmentation. Based on the symmetry geometry of the tongue, a novel level set initialization method is proposed to improve the accuracy of subsequent model evolution. In order to increase the evolution force of the energy function, symmetry detection constraints are added to the evolution model. Combined with the latest convolution neural network, the edge probability input of the tongue image is obtained to guide the evolution of the edge stop function, so as to achieve accurate and automatic tongue segmentation. The experimental results show that the input tongue image is not subject to the external capturing facility or environment, and it is suitable for tongue segmentation under most realistic conditions. Qualitative and quantitative comparisons show that the proposed method is superior to the other methods in terms of robustness and accuracy. |
---|---|
AbstractList | Accurate segmentation of the tongue body is an important prerequisite for computer-aided tongue diagnosis. In general, the size and shape of the tongue are very different, the color of the tongue is similar to the surrounding tissue, the edge of the tongue is fuzzy, and some of the tongue is interfered by pathological details. The existing segmentation methods are often not ideal for tongue image processing. To solve these problems, this paper proposes a symmetry and edge-constrained level set model combined with the geometric features of the tongue for tongue segmentation. Based on the symmetry geometry of the tongue, a novel level set initialization method is proposed to improve the accuracy of subsequent model evolution. In order to increase the evolution force of the energy function, symmetry detection constraints are added to the evolution model. Combined with the latest convolution neural network, the edge probability input of the tongue image is obtained to guide the evolution of the edge stop function, so as to achieve accurate and automatic tongue segmentation. The experimental results show that the input tongue image is not subject to the external capturing facility or environment, and it is suitable for tongue segmentation under most realistic conditions. Qualitative and quantitative comparisons show that the proposed method is superior to the other methods in terms of robustness and accuracy. Accurate segmentation of the tongue body is an important prerequisite for computer-aided tongue diagnosis. In general, the size and shape of the tongue are very different, the color of the tongue is similar to the surrounding tissue, the edge of the tongue is fuzzy, and some of the tongue is interfered by pathological details. The existing segmentation methods are often not ideal for tongue image processing. To solve these problems, this paper proposes a symmetry and edge-constrained level set model combined with the geometric features of the tongue for tongue segmentation. Based on the symmetry geometry of the tongue, a novel level set initialization method is proposed to improve the accuracy of subsequent model evolution. In order to increase the evolution force of the energy function, symmetry detection constraints are added to the evolution model. Combined with the latest convolution neural network, the edge probability input of the tongue image is obtained to guide the evolution of the edge stop function, so as to achieve accurate and automatic tongue segmentation. The experimental results show that the input tongue image is not subject to the external capturing facility or environment, and it is suitable for tongue segmentation under most realistic conditions. Qualitative and quantitative comparisons show that the proposed method is superior to the other methods in terms of robustness and accuracy.Accurate segmentation of the tongue body is an important prerequisite for computer-aided tongue diagnosis. In general, the size and shape of the tongue are very different, the color of the tongue is similar to the surrounding tissue, the edge of the tongue is fuzzy, and some of the tongue is interfered by pathological details. The existing segmentation methods are often not ideal for tongue image processing. To solve these problems, this paper proposes a symmetry and edge-constrained level set model combined with the geometric features of the tongue for tongue segmentation. Based on the symmetry geometry of the tongue, a novel level set initialization method is proposed to improve the accuracy of subsequent model evolution. In order to increase the evolution force of the energy function, symmetry detection constraints are added to the evolution model. Combined with the latest convolution neural network, the edge probability input of the tongue image is obtained to guide the evolution of the edge stop function, so as to achieve accurate and automatic tongue segmentation. The experimental results show that the input tongue image is not subject to the external capturing facility or environment, and it is suitable for tongue segmentation under most realistic conditions. Qualitative and quantitative comparisons show that the proposed method is superior to the other methods in terms of robustness and accuracy. |
Audience | Academic |
Author | Guo, Ningning Gao, Shanshan Mao, Deqian |
AuthorAffiliation | 3 Shandong China-U.S. Digital Media International Cooperation Research Center, Jinan 250014, China 1 Department of Computer Science and Technology, Shandong University of Finance and Economics, Jinan 250014, China 2 Shandong Provincial Key Laboratory of Digital Media Technology, Jinan 250014, China |
AuthorAffiliation_xml | – name: 1 Department of Computer Science and Technology, Shandong University of Finance and Economics, Jinan 250014, China – name: 2 Shandong Provincial Key Laboratory of Digital Media Technology, Jinan 250014, China – name: 3 Shandong China-U.S. Digital Media International Cooperation Research Center, Jinan 250014, China |
Author_xml | – sequence: 1 givenname: Shanshan orcidid: 0000-0003-3920-3713 surname: Gao fullname: Gao, Shanshan organization: Department of Computer Science and TechnologyShandong University of Finance and EconomicsJinan 250014Chinasdufe.edu.cn – sequence: 2 givenname: Ningning surname: Guo fullname: Guo, Ningning organization: Department of Computer Science and TechnologyShandong University of Finance and EconomicsJinan 250014Chinasdufe.edu.cn – sequence: 3 givenname: Deqian surname: Mao fullname: Mao, Deqian organization: Department of Computer Science and TechnologyShandong University of Finance and EconomicsJinan 250014Chinasdufe.edu.cn |
BookMark | eNp9kstu1DAUhi3Uil5gxwNYYoMEaX13wgKpGk2h0lQsprC1nNjJuErsEjut5u1xOgMVlejKRzrf-X0u_wk48MFbAN5hdIYx5-cEEXwuqESciFfgGItSFpxIevA3FvwInMR4ixCXHJHX4IgyKiSR-Bj8XK2vi_Vy8RneBN9NFq5tN1ifdHLBw3oL08bClb23fc4keB1Mjh5c2sD1dhhsGrdQewOXprNwEXxMo3Y-xTfgsNV9tG_37yn4cbm8WXwrVt-_Xi0uVkXDSpwKJqkwlalYbaQwTJC60bwtaYmailSiFZQaxLm2WmNNGWtM2RrNDG4Zx8jW9BR82eneTfVgTZM7H3Wv7kY36HGrgnbq34x3G9WFe1VSRrAkWeDDXmAMvyYbkxpcbGzfa2_DFBXhvBJcllWV0ffP0NswjT6P90hRWnLMnqhO91Y534b8bzOLqgtR5YMIgsXLVEm5pBTNzZEd1YwhxtG2qnG7y8xr7hVGaraAmi2g9hbIRZ-eFf3Zxn_wjzt847zRD-5l-jcWMLuf |
CitedBy_id | crossref_primary_10_1089_big_2023_0014 crossref_primary_10_1142_S0192415X24500265 crossref_primary_10_1177_20552076221136362 crossref_primary_10_1142_S0219519424400098 crossref_primary_10_1016_j_neucom_2022_05_023 crossref_primary_10_1177_20552076231191044 crossref_primary_10_3390_math10224286 crossref_primary_10_3390_s24134046 |
Cites_doi | 10.1109/TPAMI.2017.2699184 10.1016/j.patcog.2009.03.004 10.1109/IFITA.2009.130 10.1109/access.2020.2976826 10.1109/TIP.2010.2069690 10.1109/IPTA.2008.4743772 10.1109/IHMSC.2010.24 10.1109/tmi.2020.3035253 10.1109/tpami.2004.60 10.1109/CVPR.1997.609299 10.1109/tip.2008.2002304 10.1109/ICBBE.2007.275 10.1109/34.857003 10.1118/1.4819824 10.1007/s11766-017-3534-0 10.1016/0021-9991(88)90002-2 10.1109/tpami.2016.2644615 10.1142/s0192415x05003466 10.1186/1749-8546-9-7 10.1109/ICIP.2019.8803154 10.1109/83.661186 10.1155/2020/6029258 10.1109/CVPR.2017.622 10.1016/j.patrec.2008.02.013 10.1109/CVPR.2018.00199 10.1155/2014/534507 10.1007/978-3-319-63309-1_23 10.1109/TPAMI.2016.2572683 10.1007/978-3-642-15615-1_27 10.1007/bf00133570 10.1109/83.902291 10.1007/bf01210742 10.1007/s11432-011-4428-z 10.1016/j.eswa.2015.06.032 |
ContentType | Journal Article |
Copyright | Copyright © 2021 Shanshan Gao et al. COPYRIGHT 2021 John Wiley & Sons, Inc. Copyright © 2021 Shanshan Gao et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0 Copyright © 2021 Shanshan Gao et al. 2021 |
Copyright_xml | – notice: Copyright © 2021 Shanshan Gao et al. – notice: COPYRIGHT 2021 John Wiley & Sons, Inc. – notice: Copyright © 2021 Shanshan Gao et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0 – notice: Copyright © 2021 Shanshan Gao et al. 2021 |
DBID | RHU RHW RHX AAYXX CITATION 3V. 7QF 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 7X7 7XB 8AL 8BQ 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU CWDGH DWQXO F28 FR3 FYUFA GHDGH GNUQQ H8D H8G HCIFZ JG9 JQ2 K7- K9. KR7 L6V L7M LK8 L~C L~D M0N M0S M1P M7P M7S P5Z P62 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ PTHSS Q9U 7X8 5PM |
DOI | 10.1155/2021/6370526 |
DatabaseName | Hindawi Publishing Complete Hindawi Publishing Subscription Journals Hindawi Publishing Open Access CrossRef ProQuest Central (Corporate) Aluminium Industry Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Solid State and Superconductivity Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni Edition) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One Community College Middle East & Africa Database ProQuest Central Korea ANTE: Abstracts in New Technology & Engineering Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student Aerospace Database Copper Technical Reference Library SciTech Premium Collection Materials Research Database ProQuest Computer Science Collection Computer Science Database ProQuest Health & Medical Complete (Alumni) Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace ProQuest Biological Science Collection Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Health & Medical Collection (Alumni Edition) Medical Database Biological Science Database Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology Engineering Collection ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database ProQuest One Psychology Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China Materials Business File ProQuest One Applied & Life Sciences Engineered Materials Abstracts Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Engineering Database Aluminium Industry Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Ceramic Abstracts Biological Science Database Neurosciences Abstracts ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central Aerospace Database Copper Technical Reference Library ProQuest Health & Medical Research Collection ProQuest Engineering Collection Middle East & Africa Database Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest Medical Library Materials Science & Engineering Collection Corrosion Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: RHX name: Hindawi Publishing Open Access url: http://www.hindawi.com/journals/ sourceTypes: Publisher – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1687-5273 |
Editor | Zhang, Nian |
Editor_xml | – sequence: 1 givenname: Nian surname: Zhang fullname: Zhang, Nian |
ExternalDocumentID | PMC8342172 A696876216 A683573302 10_1155_2021_6370526 |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GrantInformation_xml | – fundername: Natural Science Foundation of Shandong Province grantid: ZR2020MF037; ZR2019MF016; ZR2019MF051 – fundername: Shandong University – fundername: Planning Foundation of Education Ministry grantid: 20YJA870013 – fundername: National Natural Science Foundation of China grantid: U1909210; 61772309 – fundername: Key Research and Development Project of Shandong Province grantid: 2019GGX101007 – fundername: Government of Shandong Province |
GroupedDBID | --- 188 29F 2WC 3V. 4.4 53G 5GY 5VS 6J9 7X7 8FE 8FG 8FH 8FI 8FJ 8R4 8R5 AAFWJ AAJEY AAKPC ABDBF ABIVO ABJCF ABUWG ACGFO ACIWK ACM ACPRK ADBBV ADRAZ AENEX AFKRA AHMBA AINHJ ALMA_UNASSIGNED_HOLDINGS AOIJS ARAPS AZQEC BAWUL BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI CCPQU CS3 CWDGH DIK DWQXO E3Z EBD EBS EMOBN ESX F5P FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HMCUK HYE I-F IAO ICD INH INR IPY ITC K6V K7- KQ8 L6V LK8 M0N M1P M48 M7P M7S MK~ O5R O5S OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO PSYQQ PTHSS Q2X RHU RHW RHX RNS RPM SV3 TR2 TUS UKHRP XH6 ~8M 0R~ 24P 2UF AAYXX ACCMX ACUHS C1A CITATION EJD H13 IHR IL9 OVT PGMZT PHGZM PHGZT UZ4 7QF 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 7XB 8AL 8BQ 8FD 8FK AAMMB AEFGJ AGXDD AIDQK AIDYY F28 FR3 H8D H8G JG9 JQ2 K9. KR7 L7M L~C L~D PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS Q9U 7X8 5PM |
ID | FETCH-LOGICAL-c481t-4736d9d94bd76d462bca5f8380c9296f633d055aeaa1a344cd8fda4d1f4510eb3 |
IEDL.DBID | M48 |
ISSN | 1687-5265 1687-5273 |
IngestDate | Thu Aug 21 13:17:59 EDT 2025 Fri Jul 11 00:53:51 EDT 2025 Fri Jul 25 09:29:09 EDT 2025 Tue Jun 17 22:02:57 EDT 2025 Tue Jun 17 22:03:04 EDT 2025 Tue Jul 01 01:38:54 EDT 2025 Thu Apr 24 23:12:13 EDT 2025 Sun Jun 02 18:51:56 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c481t-4736d9d94bd76d462bca5f8380c9296f633d055aeaa1a344cd8fda4d1f4510eb3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Academic Editor: Nian Zhang |
ORCID | 0000-0003-3920-3713 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1155/2021/6370526 |
PMID | 34367271 |
PQID | 2559338514 |
PQPubID | 237303 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8342172 proquest_miscellaneous_2559657899 proquest_journals_2559338514 gale_infotracmisc_A696876216 gale_infotracmisc_A683573302 crossref_citationtrail_10_1155_2021_6370526 crossref_primary_10_1155_2021_6370526 hindawi_primary_10_1155_2021_6370526 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-00-00 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – year: 2021 text: 2021-00-00 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Computational intelligence and neuroscience |
PublicationYear | 2021 |
Publisher | Hindawi John Wiley & Sons, Inc |
Publisher_xml | – name: Hindawi – name: John Wiley & Sons, Inc |
References | e_1_2_10_22_2 e_1_2_10_23_2 e_1_2_10_20_2 e_1_2_10_21_2 Sun X. (e_1_2_10_30_2) 2013; 36 Huang Z. P. (e_1_2_10_19_2) 2017; 28 e_1_2_10_1_2 e_1_2_10_3_2 e_1_2_10_17_2 e_1_2_10_2_2 e_1_2_10_18_2 e_1_2_10_5_2 e_1_2_10_15_2 e_1_2_10_4_2 e_1_2_10_16_2 e_1_2_10_37_2 e_1_2_10_7_2 e_1_2_10_13_2 e_1_2_10_36_2 e_1_2_10_6_2 e_1_2_10_14_2 e_1_2_10_35_2 e_1_2_10_9_2 e_1_2_10_11_2 e_1_2_10_34_2 e_1_2_10_8_2 e_1_2_10_12_2 e_1_2_10_33_2 e_1_2_10_32_2 e_1_2_10_10_2 e_1_2_10_31_2 e_1_2_10_28_2 e_1_2_10_29_2 e_1_2_10_26_2 e_1_2_10_27_2 e_1_2_10_24_2 e_1_2_10_25_2 |
References_xml | – ident: e_1_2_10_4_2 doi: 10.1109/TPAMI.2017.2699184 – ident: e_1_2_10_37_2 doi: 10.1016/j.patcog.2009.03.004 – ident: e_1_2_10_16_2 doi: 10.1109/IFITA.2009.130 – ident: e_1_2_10_20_2 doi: 10.1109/access.2020.2976826 – ident: e_1_2_10_33_2 doi: 10.1109/TIP.2010.2069690 – ident: e_1_2_10_15_2 doi: 10.1109/IPTA.2008.4743772 – ident: e_1_2_10_35_2 doi: 10.1109/IHMSC.2010.24 – ident: e_1_2_10_14_2 doi: 10.1109/tmi.2020.3035253 – ident: e_1_2_10_1_2 doi: 10.1109/tpami.2004.60 – ident: e_1_2_10_27_2 doi: 10.1109/CVPR.1997.609299 – ident: e_1_2_10_11_2 doi: 10.1109/tip.2008.2002304 – ident: e_1_2_10_23_2 doi: 10.1109/ICBBE.2007.275 – ident: e_1_2_10_2_2 doi: 10.1109/34.857003 – ident: e_1_2_10_3_2 doi: 10.1118/1.4819824 – ident: e_1_2_10_34_2 doi: 10.1007/s11766-017-3534-0 – volume: 28 start-page: 3062 year: 2017 ident: e_1_2_10_19_2 article-title: An automatic tongue segmentation algorithm based on OTSU and region growing publication-title: LiShiZhen Medicine and Materia Medica Research – ident: e_1_2_10_32_2 doi: 10.1016/0021-9991(88)90002-2 – ident: e_1_2_10_6_2 doi: 10.1109/tpami.2016.2644615 – ident: e_1_2_10_17_2 doi: 10.1142/s0192415x05003466 – ident: e_1_2_10_18_2 doi: 10.1186/1749-8546-9-7 – ident: e_1_2_10_9_2 doi: 10.1109/ICIP.2019.8803154 – ident: e_1_2_10_26_2 doi: 10.1109/83.661186 – ident: e_1_2_10_21_2 doi: 10.1155/2020/6029258 – ident: e_1_2_10_36_2 doi: 10.1109/CVPR.2017.622 – ident: e_1_2_10_13_2 doi: 10.1016/j.patrec.2008.02.013 – ident: e_1_2_10_7_2 doi: 10.1109/CVPR.2018.00199 – ident: e_1_2_10_29_2 doi: 10.1155/2014/534507 – ident: e_1_2_10_22_2 doi: 10.1007/978-3-319-63309-1_23 – ident: e_1_2_10_5_2 doi: 10.1109/TPAMI.2016.2572683 – ident: e_1_2_10_25_2 doi: 10.1007/978-3-642-15615-1_27 – ident: e_1_2_10_10_2 doi: 10.1007/bf00133570 – ident: e_1_2_10_12_2 doi: 10.1109/83.902291 – ident: e_1_2_10_31_2 doi: 10.1007/bf01210742 – ident: e_1_2_10_8_2 – ident: e_1_2_10_28_2 doi: 10.1007/s11432-011-4428-z – volume: 36 start-page: 154 year: 2013 ident: e_1_2_10_30_2 article-title: An improved Snake model method on tongue segmentation publication-title: Journal of Changchun University of Science & Technology – ident: e_1_2_10_24_2 doi: 10.1016/j.eswa.2015.06.032 |
SSID | ssj0057502 |
Score | 2.277173 |
Snippet | Accurate segmentation of the tongue body is an important prerequisite for computer-aided tongue diagnosis. In general, the size and shape of the tongue are... Accurate segmentation of the tongue body is an important prerequisite for computer‐aided tongue diagnosis. In general, the size and shape of the tongue are... |
SourceID | pubmedcentral proquest gale crossref hindawi |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 6370526 |
SubjectTerms | Accuracy Algorithms Analysis Artificial neural networks Constraint modelling Deep learning Evolution Image processing Image segmentation Medical research Methods Model accuracy Neural networks Partial differential equations Symmetry Symmetry detection Tongue Traditional Chinese medicine |
SummonAdditionalLinks | – databaseName: Hindawi Publishing Open Access dbid: RHX link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1La9tAEF6aQCGX0sQJdZqUDTi5FFHL-5CUmzEJJti5OCm-iX3JCcTrEssU__vMSGtTtZjmKGYfYuf5rUYzhHSYsqnQqYoSx3TEHQDWzGoV6Qy7QQLI7lWcHt_L4SO_m4ppKJK0_PcTPng7hOfxD8kSrEyyR_ZAwBCUD6cbgwuL1qmFEvQFq71v8tv_mtvwPMH-fnxC5Pv7uRFfNrMj_3A3t5_JpxAn0n7N2EPywfkj0up7wMjzNb2iVeZmdSXeIj9HkzHYxcE1fVj42crRiZvNwz9Fnuo1hSCPjjA7CCglxfZnLxQvYOlkPZ-78nVNlbf0xs4cxQaeVduIcnlMHm9vHgbDKPRLiAxP4zLiCZM2sxnXNpGWy542ShQpS7sGgiBZSMZsVwjllIoV49zYtLCK27jgoJmAqk_Ivl9494XQ2EpZJJI76QRXQivWs7JrlEvB4Vlt2uT75ixzE4qJ48u95BWoECLHk8_DybfJ5Xb0r7qIxo5xZ8iWHHULVjMg6SbvSwgSE8a6vR3kTKJFj2F2J3Dzf5tsWJ0HfV3mCKwArEP02CYXWzJugDlo3i1W9RgJBi7L2iRpiMh2P6zV3aT456eqZnfKOLYCO33fO34lB_hYX_Wckf3ydeXOIfgp9bdK9N8ALbb6Ew priority: 102 providerName: Hindawi Publishing – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1bS-tAEF68cMAX8XIOp8cLK6gvEmy6lyS-SBFFRH2pSt_C3lIFu_XYFOm_dybZVvOgPs8ms-zsXL7JZIaQfaZsKnSqosQxHXEHgDWzWkU6w2mQALI7laRvbuXlPb_qi35IuI1DWeXMJlaG2o4M5siPMfQFOAX-_fTlf4RTo_DrahihsUiWsXUZlnQl_TngAm51zaEERcI28LPCdyEQ88fHkiXY7qThkoJh_vWIkPjtqRF4NssmP_mhizWyGgJI2q0lvk4WnN8gm10P4Hk4pYe0KumscuWb5OG6dwMG8-yE3o38YOJozw2G4WcjT_WUQvRHr7FsCCglxblozxQzs7Q3HQ5d-Tqlylt6bgeO4mTPap5EOf5N7i_O784uozBIITI8jcuIJ0zazGZc20RaLjvaKFGkLG0biI5kIRmzbSGUUypWjHNj08IqbuOCg8oC3P5DlvzIu7-ExlbKIpHcSSe4ElqxjpVto1wKntBq0yJHs7PMTegyjpt7ziu0IUSOJ5-Hk2-Rg_nql7q7xhfrtlEsOSodvM2ACpi8KyF6TBhrd74gZxJNfQxP7wdp_sRkJuo8KPI4_7h2LbI3JyMDLE7zbjSp10iwfFnWIknjisz5YRPvJsU_PVbNvFPGcUbYv--Zb5EV3Gqd-9kmS-XrxO1ANFTq3erKvwNl7QR2 priority: 102 providerName: ProQuest |
Title | LSM-SEC: Tongue Segmentation by the Level Set Model with Symmetry and Edge Constraints |
URI | https://dx.doi.org/10.1155/2021/6370526 https://www.proquest.com/docview/2559338514 https://www.proquest.com/docview/2559657899 https://pubmed.ncbi.nlm.nih.gov/PMC8342172 |
Volume | 2021 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELf2ISReEDAQHaMy0uAFBZr6K0FCqEztKrROaF1R3iI7drpJbbp1qSD_PXf5qAhigpdI1tmxdec738-53BFyzLQNhAm0pxwzHncAWENrtGdCrAYJILtfSnpyLscz_jUS0Q5pqo3WDLz7K7TDelKz9eL9z9viMyj8p1LhhUD87n-QTGHqkl2yD2eSQhWd8O33BJi3ij6UoFKYEL4Jgf9jdOtwqk30gysExz-uWy5oO4DytxNp9Jg8ql1JOqhk_4TsuOwpORhkAKOXBX1Ly-DO8tb8gHw_m07AdJ58pJerbL5xdOrmy_q3o4yagoIfSM8wgAgoOcUKaQuKd7R0WiyXLl8XVGeWDu3cUazxWVaWyO-ekdloeHky9uqSCl7CAz_3uGLShjbkxippueybRIs0YEEvAT9JppIx2xNCO619zThPbJBaza2fclBeAN7PyV62ytwLQn0rZaokd9IJroXRrG9lL9EugDPRmqRD3jW8jJM63zgubhGXuEOIGDkf15zvkDfb3jdVno17-h2hWGLcEPC2BJQhiQcS_EjFWK9_DzmUaPR9GH1cS_NfkzSijpsdGSP2AjwPDmaHvN6ScQIMU8vcalP1kWADw7BDVGuLbOfDdN5tSnZ9Vab1DhjHamGH_7fGl-QhNqvboCOyl6837hX4R7npkl0VKXgGo9Mu2f8yPP92Aa3TyO-WSgHPi3H0C7EDDQM |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Jb9NAFB6VVggubAURKDBILRfkNvYstpE4RGlLSpNekkJv7mxJKxobNY4q81f4K_w43vMSCFLhVInzjGf95i3jb94jZJMpGwkdKS90THvcgcMaW608HWM2SHCyg3KnB0eyd8w_noiTFfK9eQuDtMpGJpaC2mYG78h30PQFdwr0e82gPHTFFfhns_cHu7CZW0Gwvzfq9rw6hYBneOTnHg-ZtLGNubahtFwG2igxjljUNmAXyLFkzLaFUE4pXzHOjY3GVnHrjzmAFRxNaPcWWQOvQsDxWet-3v3QawQ9TKaiNEo4pxhlvuHVC4FXCv6OZCFGU1nSeLXcv32GHvfV-ZJdu8zK_E3N7d8nP5oFqtgtX7bnud423_6IHfmfruADcq82r2mnOg8PyYpLH5H1TqrybFrQN7QkvJZ_EtbJp_5wAOqk-46OsnQyd3ToJtP6KVZKdUHBNqZ9JFVBSU4xa9wFxXtrOiymU5dfFlSllu7ZiaOY97TMtpHPHpPjG5nhE7KaZql7SqhvpRyHkjvpBFdCKxZY2TbKRWAnWG1a5G0DhcTUMdhxcBdJ6YsJkSBwkho4LbK1qP21ij1yTb0NRFWCIglaMyAgTNKRYFuHjLWDa4pjiYrQh683azD-q5MGVUkt5mbJL0i1yOtFMXaA1L3UZfOqjgS9EMctEi4hfNEfhjhfLknPz8pQ5xHjmEHt2d87f0Xu9EaDftI_ODp8Tu7isKtbsg2yml_O3QuwG3P9sj6_lJzeNOB_Av4-d14 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFLZGJxAv3AaiMMBIGy8oaxM7ToKEUNWudKybkLqNvQXf0k2syVhTTeWn8Vf4M5yTS6FIg6c98GzHdpLP5-J8OR8hG0ya0FehdALLlMMtJKyRUdJREapBQpLtFW96b18MDvmHY_94hXyv_4VBWmVtEwtDbTKNZ-QtDH0hnQL_3koqWsTHXv_d-VcHFaTwS2stp1FCZNfOLyF9m77d6cG73vS8_vZBd-BUCgOO5qGbOzxgwkQm4soEwnDhKS39JGRhW0PYIBLBmGn7vrRSupJxrk2YGMmNm3DAMuShMO4NsoqqTrxBVrufeu8HtR-Aey0ZjwK2MRahr2n3vo8nDm5LsACLrSw5xMot3DzBhPzydCnsXSZt_uYF-3fJj_r5leSXL1uzXG3pb3-Ulvw_H_A9cqcKzmmn3E33yYpNH5C1TirzbDKnr2hBly2-Q6yRo-FoD5xR9w09yNLxzNKRHU-qH7lSquYUIms6REoWtOQUNefOKJ5609F8MrH5xZzK1NBtM7YUVVMLrY58-pAcXssdPiKNNEvtY0JdI0QSCG6F9bn0lWSeEW0tbQhRhlG6SV7XSIl1VcEdF3cWF5mc78eIq7jCVZNsLnqfl5VLrui3jqCL0aDBaBrMi447AiLzgLG2d0VzJNCNunD1RoXVf01Sgy6ujOQ0_oW4Jnm5aMYJkPiX2mxW9hHgVaKoSYKlDbCYDwukL7ekpydFofSQcdRfe_L3yV-QWwD0eLizv_uU3MZVl0ds66SRX8zsMwg6c_W82t2UfL5uvP8EvQ2PLg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=LSM-SEC%3A+Tongue+Segmentation+by+the+Level+Set+Model+with+Symmetry+and+Edge+Constraints&rft.jtitle=Computational+intelligence+and+neuroscience&rft.au=Gao%2C+Shanshan&rft.au=Guo%2C+Ningning&rft.au=Mao%2C+Deqian&rft.date=2021&rft.pub=Hindawi&rft.issn=1687-5265&rft.eissn=1687-5273&rft.volume=2021&rft_id=info:doi/10.1155%2F2021%2F6370526&rft.externalDocID=10_1155_2021_6370526 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1687-5265&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1687-5265&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1687-5265&client=summon |