Autophagosome maturation: An epic journey from the ER to lysosomes

Macroautophagy involves the sequestration of cytoplasmic contents in a double-membrane autophagosome and their delivery to lysosomes for degradation. In multicellular organisms, nascent autophagosomes fuse with vesicles originating from endolysosomal compartments before forming degradative autolysos...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of cell biology Vol. 218; no. 3; pp. 757 - 770
Main Authors Zhao, Yan G., Zhang, Hong
Format Journal Article
LanguageEnglish
Published United States Rockefeller University Press 04.03.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Macroautophagy involves the sequestration of cytoplasmic contents in a double-membrane autophagosome and their delivery to lysosomes for degradation. In multicellular organisms, nascent autophagosomes fuse with vesicles originating from endolysosomal compartments before forming degradative autolysosomes, a process known as autophagosome maturation. ATG8 family members, tethering factors, Rab GTPases, and SNARE proteins act coordinately to mediate fusion of autophagosomes with endolysosomal vesicles. The machinery mediating autophagosome maturation is under spatiotemporal control and provides regulatory nodes to integrate nutrient availability with autophagy activity. Dysfunction of autophagosome maturation is associated with various human diseases, including neurodegenerative diseases, Vici syndrome, cancer, and lysosomal storage disorders. Understanding the molecular mechanisms underlying autophagosome maturation will provide new insights into the pathogenesis and treatment of these diseases.
AbstractList Macroautophagy involves the sequestration of cytoplasmic contents in a double-membrane autophagosome and their delivery to lysosomes for degradation. In multicellular organisms, nascent autophagosomes fuse with vesicles originating from endolysosomal compartments before forming degradative autolysosomes, a process known as autophagosome maturation. ATG8 family members, tethering factors, Rab GTPases, and SNARE proteins act coordinately to mediate fusion of autophagosomes with endolysosomal vesicles. The machinery mediating autophagosome maturation is under spatiotemporal control and provides regulatory nodes to integrate nutrient availability with autophagy activity. Dysfunction of autophagosome maturation is associated with various human diseases, including neurodegenerative diseases, Vici syndrome, cancer, and lysosomal storage disorders. Understanding the molecular mechanisms underlying autophagosome maturation will provide new insights into the pathogenesis and treatment of these diseases.Macroautophagy involves the sequestration of cytoplasmic contents in a double-membrane autophagosome and their delivery to lysosomes for degradation. In multicellular organisms, nascent autophagosomes fuse with vesicles originating from endolysosomal compartments before forming degradative autolysosomes, a process known as autophagosome maturation. ATG8 family members, tethering factors, Rab GTPases, and SNARE proteins act coordinately to mediate fusion of autophagosomes with endolysosomal vesicles. The machinery mediating autophagosome maturation is under spatiotemporal control and provides regulatory nodes to integrate nutrient availability with autophagy activity. Dysfunction of autophagosome maturation is associated with various human diseases, including neurodegenerative diseases, Vici syndrome, cancer, and lysosomal storage disorders. Understanding the molecular mechanisms underlying autophagosome maturation will provide new insights into the pathogenesis and treatment of these diseases.
Macroautophagy involves the sequestration of cytoplasmic contents in a double-membrane autophagosome and their delivery to lysosomes for degradation. In multicellular organisms, nascent autophagosomes fuse with vesicles originating from endolysosomal compartments before forming degradative autolysosomes, a process known as autophagosome maturation. ATG8 family members, tethering factors, Rab GTPases, and SNARE proteins act coordinately to mediate fusion of autophagosomes with endolysosomal vesicles. The machinery mediating autophagosome maturation is under spatiotemporal control and provides regulatory nodes to integrate nutrient availability with autophagy activity. Dysfunction of autophagosome maturation is associated with various human diseases, including neurodegenerative diseases, Vici syndrome, cancer, and lysosomal storage disorders. Understanding the molecular mechanisms underlying autophagosome maturation will provide new insights into the pathogenesis and treatment of these diseases.
Zhao and Zhang summarize recent advances in our molecular understanding of the maturation of nascent autophagosomes into degradative autolysosomes in multicellular organisms. Macroautophagy involves the sequestration of cytoplasmic contents in a double-membrane autophagosome and their delivery to lysosomes for degradation. In multicellular organisms, nascent autophagosomes fuse with vesicles originating from endolysosomal compartments before forming degradative autolysosomes, a process known as autophagosome maturation. ATG8 family members, tethering factors, Rab GTPases, and SNARE proteins act coordinately to mediate fusion of autophagosomes with endolysosomal vesicles. The machinery mediating autophagosome maturation is under spatiotemporal control and provides regulatory nodes to integrate nutrient availability with autophagy activity. Dysfunction of autophagosome maturation is associated with various human diseases, including neurodegenerative diseases, Vici syndrome, cancer, and lysosomal storage disorders. Understanding the molecular mechanisms underlying autophagosome maturation will provide new insights into the pathogenesis and treatment of these diseases.
Author Zhang, Hong
Zhao, Yan G.
AuthorAffiliation 3 National Laboratory of Biomacromolecules, Chinese Academy of Sciences Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
2 College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
1 Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA
AuthorAffiliation_xml – name: 3 National Laboratory of Biomacromolecules, Chinese Academy of Sciences Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
– name: 2 College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
– name: 1 Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA
Author_xml – sequence: 1
  givenname: Yan G.
  surname: Zhao
  fullname: Zhao, Yan G.
– sequence: 2
  givenname: Hong
  orcidid: 0000-0002-3342-5377
  surname: Zhang
  fullname: Zhang, Hong
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30578282$$D View this record in MEDLINE/PubMed
BookMark eNptkc9LwzAcxYMobv44epWAFy-d36RNmngQpswfIAii55C16dbRNjNJhf33xqlDh7nkkM97vLx3gHY72xmETgiMCIj0YlFMRxSIIABS7qAhYRkkgmSwi4YAlCSSUTZAB94vACDLs3QfDVJguaCCDtH1uA92Odcz621rcKtD73SobXeJxx02y7rAC9u7zqxw5WyLw9zgyTMOFjcrv9b4I7RX6cab4-_7EL3eTl5u7pPHp7uHm_FjUmSChCTVeZbTUujSUFYYzQ1nnE0Fp6QsqzznXBAOZFpGmucyhZgPKmmoZkREND1EV1--y37amrIwXXC6UUtXt9qtlNW1-vvS1XM1s--KZwCM0Whw_m3g7FtvfFBt7QvTNLoztveKEial4JJBRM-20HUL8XuKxiMpyYSM1OnvRJsoP_VGIP0CCme9d6ZSRR3W9caAdaMIqM8RVRxRbUaMqmRL9WP8P_8BQXacMw
CitedBy_id crossref_primary_10_1007_s00281_021_00860_1
crossref_primary_10_1016_j_jmb_2019_05_012
crossref_primary_10_1146_annurev_cellbio_100818_125300
crossref_primary_10_1083_jcb_202004062
crossref_primary_10_1016_j_phrs_2024_107120
crossref_primary_10_3389_fimmu_2022_857069
crossref_primary_10_1039_D1MO00205H
crossref_primary_10_1080_15548627_2020_1823124
crossref_primary_10_1080_15548627_2021_1909407
crossref_primary_10_3389_fonc_2021_632956
crossref_primary_10_1007_s00018_024_05471_1
crossref_primary_10_1016_j_isci_2022_105612
crossref_primary_10_1016_j_ceb_2022_102121
crossref_primary_10_3390_biology11101410
crossref_primary_10_3389_fcell_2020_00047
crossref_primary_10_1016_j_tibs_2020_06_004
crossref_primary_10_1016_j_jcmgh_2021_09_017
crossref_primary_10_3390_cells11172621
crossref_primary_10_1080_01913123_2020_1840468
crossref_primary_10_1016_j_jmb_2020_01_024
crossref_primary_10_1002_pro_3828
crossref_primary_10_3390_biom10121637
crossref_primary_10_1080_14789450_2020_1808464
crossref_primary_10_1038_s41419_021_03670_3
crossref_primary_10_1152_ajpcell_00414_2021
crossref_primary_10_1128_mbio_03344_23
crossref_primary_10_3390_ijms252011160
crossref_primary_10_1021_acssensors_0c00809
crossref_primary_10_3389_fcell_2021_643996
crossref_primary_10_1080_27694127_2024_2305594
crossref_primary_10_1042_BST20190158
crossref_primary_10_1242_jcs_228114
crossref_primary_10_1128_IAI_00125_19
crossref_primary_10_3389_fphar_2024_1250918
crossref_primary_10_1038_s41419_025_07499_y
crossref_primary_10_1002_jcp_30928
crossref_primary_10_3389_fimmu_2020_578038
crossref_primary_10_1083_jcb_202203083
crossref_primary_10_3389_fimmu_2024_1356369
crossref_primary_10_20411_pai_v5i1_377
crossref_primary_10_1073_pnas_2005134118
crossref_primary_10_1038_s41419_020_03011_w
crossref_primary_10_1016_j_lfs_2024_123305
crossref_primary_10_1080_15548627_2022_2160564
crossref_primary_10_3390_brainsci12020247
crossref_primary_10_1016_j_cophys_2022_100596
crossref_primary_10_1080_23723556_2020_1789418
crossref_primary_10_31083_j_rcm2306213
crossref_primary_10_7554_eLife_100928_3
crossref_primary_10_1016_j_devcel_2021_02_002
crossref_primary_10_1016_j_virs_2024_01_001
crossref_primary_10_1016_j_molcel_2019_10_035
crossref_primary_10_3389_fcell_2020_614178
crossref_primary_10_1186_s12951_024_02875_w
crossref_primary_10_3390_cells10061272
crossref_primary_10_3389_fneur_2022_951536
crossref_primary_10_3390_ijms20215253
crossref_primary_10_3390_ijms25010255
crossref_primary_10_15252_embr_202050733
crossref_primary_10_1083_jcb_202102001
crossref_primary_10_1016_j_cellin_2024_100152
crossref_primary_10_1021_acschemneuro_1c00524
crossref_primary_10_1016_j_cellin_2022_100031
crossref_primary_10_1083_jcb_202404047
crossref_primary_10_3389_fcell_2019_00113
crossref_primary_10_1016_j_ecoenv_2020_110610
crossref_primary_10_1016_j_semcdb_2022_02_019
crossref_primary_10_1016_j_phymed_2022_154406
crossref_primary_10_1371_journal_ppat_1011625
crossref_primary_10_3389_fimmu_2022_955407
crossref_primary_10_1038_s41467_023_37016_8
crossref_primary_10_1038_s12276_022_00849_2
crossref_primary_10_1073_pnas_2200085119
crossref_primary_10_1146_annurev_genet_022422_095608
crossref_primary_10_1007_s12272_020_01239_w
crossref_primary_10_1186_s13045_021_01087_1
crossref_primary_10_1080_15376516_2024_2449423
crossref_primary_10_3390_cells10082022
crossref_primary_10_1016_j_bone_2025_117390
crossref_primary_10_1186_s12943_025_02277_y
crossref_primary_10_3390_cells10092183
crossref_primary_10_1016_j_conb_2024_102937
crossref_primary_10_1083_jcb_201812051
crossref_primary_10_4167_jbv_2019_49_1_12
crossref_primary_10_1002_1873_3468_14788
crossref_primary_10_3389_fcell_2022_877344
crossref_primary_10_1080_15548627_2021_1994296
crossref_primary_10_3390_biomedicines10051027
crossref_primary_10_1186_s13195_020_00761_9
crossref_primary_10_1016_j_tibs_2024_03_004
crossref_primary_10_1016_j_devcel_2020_10_010
crossref_primary_10_5607_en_2019_28_6_643
crossref_primary_10_1038_s42003_021_01830_x
crossref_primary_10_1038_s41420_023_01681_x
crossref_primary_10_1186_s12964_023_01444_2
crossref_primary_10_1111_sji_13307
crossref_primary_10_1186_s12951_024_02534_0
crossref_primary_10_15252_embj_2022112845
crossref_primary_10_1007_s11357_020_00161_9
crossref_primary_10_1083_jcb_202312119
crossref_primary_10_3390_ijms21218196
crossref_primary_10_1016_j_devcel_2022_03_012
crossref_primary_10_1091_mbc_E23_01_0006
crossref_primary_10_15252_embj_2019102586
crossref_primary_10_26508_lsa_202201610
crossref_primary_10_1042_BST20210819
crossref_primary_10_1042_BSR20240137
crossref_primary_10_1007_s11427_020_1702_x
crossref_primary_10_3389_fnagi_2023_1092607
crossref_primary_10_1038_s41422_022_00731_w
crossref_primary_10_3389_fcimb_2019_00435
crossref_primary_10_3390_brainsci10120958
crossref_primary_10_3390_jof9101003
crossref_primary_10_1242_jcs_259421
crossref_primary_10_31083_j_fbl2803047
crossref_primary_10_1128_mmbr_00052_22
crossref_primary_10_3390_cells10030694
crossref_primary_10_1038_s41421_021_00268_z
crossref_primary_10_3390_ijms222112083
crossref_primary_10_3390_medicina58081103
crossref_primary_10_1016_j_bbrc_2024_150198
crossref_primary_10_1038_s41418_021_00912_x
crossref_primary_10_1016_j_celrep_2021_109937
crossref_primary_10_1016_j_devcel_2021_07_015
crossref_primary_10_1177_09731296231199860
crossref_primary_10_1080_15548627_2025_2479427
crossref_primary_10_5650_oleoscience_23_11
crossref_primary_10_1016_j_jnutbio_2023_109332
crossref_primary_10_3389_fcell_2020_615856
crossref_primary_10_1128_mbio_02141_23
crossref_primary_10_1083_jcb_202203139
crossref_primary_10_1083_jcb_202210011
crossref_primary_10_3390_biology14010097
crossref_primary_10_1016_j_devcel_2023_03_014
crossref_primary_10_1186_s13578_021_00576_7
crossref_primary_10_3389_ftubr_2023_1275882
crossref_primary_10_1080_15548627_2020_1838117
crossref_primary_10_1080_15548627_2023_2170962
crossref_primary_10_1083_jcb_202112024
crossref_primary_10_1083_jcb_202012091
crossref_primary_10_1016_j_bbcan_2021_188565
crossref_primary_10_1016_j_tcsw_2020_100045
crossref_primary_10_1016_j_virusres_2024_199422
crossref_primary_10_1007_s00109_020_01971_2
crossref_primary_10_1038_s41422_023_00916_x
crossref_primary_10_1083_jcb_202306040
crossref_primary_10_1038_s41419_019_1950_1
crossref_primary_10_3389_fonc_2022_897703
crossref_primary_10_1038_s41580_019_0185_4
crossref_primary_10_1080_27694127_2022_2101335
crossref_primary_10_1038_s41576_022_00562_w
crossref_primary_10_1242_jcs_234195
crossref_primary_10_1016_j_bioorg_2024_107466
crossref_primary_10_3389_fcell_2020_00464
crossref_primary_10_3389_fncel_2022_1061559
crossref_primary_10_1016_j_ijbiomac_2023_123862
crossref_primary_10_1080_15548627_2024_2347103
crossref_primary_10_1083_jcb_201909033
crossref_primary_10_3389_fnagi_2021_691881
crossref_primary_10_1093_plcell_koab235
crossref_primary_10_1002_cbin_11721
crossref_primary_10_4103_1673_5374_355745
crossref_primary_10_1016_j_cub_2021_01_081
crossref_primary_10_1091_mbc_E24_01_0025
crossref_primary_10_3390_medicina57060522
crossref_primary_10_1016_j_bioorg_2023_107039
crossref_primary_10_1038_s41392_021_00543_1
crossref_primary_10_1016_j_ejcb_2023_151301
crossref_primary_10_1016_j_bbrc_2019_11_089
crossref_primary_10_1002_ctm2_759
crossref_primary_10_3390_cells11244063
crossref_primary_10_3389_fnmol_2021_719100
crossref_primary_10_3389_fonc_2020_605314
crossref_primary_10_1038_s41418_020_0495_2
crossref_primary_10_1083_jcb_202002085
crossref_primary_10_1186_s40478_024_01791_2
crossref_primary_10_1016_j_ijantimicag_2025_107492
crossref_primary_10_1242_jcs_258824
crossref_primary_10_1002_advs_202003205
crossref_primary_10_1083_jcb_202105120
crossref_primary_10_1016_j_radonc_2023_109951
crossref_primary_10_1038_s41418_023_01215_z
crossref_primary_10_4062_biomolther_2019_056
crossref_primary_10_1080_22221751_2022_2128434
crossref_primary_10_1242_jcs_262096
crossref_primary_10_1042_BCJ20200917
crossref_primary_10_1272_jnms_JNMS_2024_91_102
crossref_primary_10_3390_ijms23094576
crossref_primary_10_1080_27694127_2024_2395731
crossref_primary_10_3389_fnmol_2020_593724
crossref_primary_10_3389_fonc_2021_603224
crossref_primary_10_1016_j_biocel_2019_03_010
crossref_primary_10_3389_fcell_2019_00073
crossref_primary_10_1007_s13238_020_00793_9
crossref_primary_10_1038_s41467_022_28613_0
crossref_primary_10_1186_s12958_025_01368_1
crossref_primary_10_1007_s12026_022_09344_2
crossref_primary_10_1093_hmg_ddz126
crossref_primary_10_3389_fphar_2022_932807
crossref_primary_10_7554_eLife_100928
crossref_primary_10_1016_j_ceb_2019_08_003
crossref_primary_10_1016_j_devcel_2020_12_010
crossref_primary_10_1080_15548627_2022_2136340
crossref_primary_10_1016_j_scitotenv_2020_142355
crossref_primary_10_1016_j_tibs_2020_07_006
crossref_primary_10_1038_s41467_023_36096_w
crossref_primary_10_1016_j_jmb_2019_06_032
crossref_primary_10_1111_tra_12881
crossref_primary_10_1016_j_devcel_2021_10_006
crossref_primary_10_1016_j_jmb_2020_02_012
crossref_primary_10_1016_j_celrep_2022_110975
crossref_primary_10_1016_j_neuint_2024_105827
crossref_primary_10_1093_hmg_ddaa243
crossref_primary_10_1007_s11033_021_06334_9
crossref_primary_10_1080_15548627_2022_2070331
crossref_primary_10_3389_fncel_2024_1380064
crossref_primary_10_1038_s41580_021_00392_4
crossref_primary_10_3389_fphar_2021_773150
crossref_primary_10_1080_15548627_2025_2482724
crossref_primary_10_18632_aging_203787
crossref_primary_10_3389_fonc_2021_637594
crossref_primary_10_1111_sji_12978
crossref_primary_10_3390_biomedicines11030973
crossref_primary_10_3390_biomedicines9070801
crossref_primary_10_1016_j_expneurol_2021_113900
crossref_primary_10_1016_j_yjmcc_2020_06_004
crossref_primary_10_2174_0118715206262252231004110310
crossref_primary_10_1186_s12882_022_02936_y
crossref_primary_10_1177_13872877241307403
crossref_primary_10_3389_fphar_2024_1506401
crossref_primary_10_1016_j_canlet_2024_216779
crossref_primary_10_1083_jcb_202103175
crossref_primary_10_3389_fgene_2022_801382
crossref_primary_10_1021_acsinfecdis_4c00156
crossref_primary_10_1038_s41580_023_00676_x
crossref_primary_10_3389_fcell_2021_716208
crossref_primary_10_1186_s12929_019_0569_y
crossref_primary_10_3390_cells11233813
crossref_primary_10_1016_j_bbcan_2024_189214
crossref_primary_10_1038_s41556_021_00706_w
crossref_primary_10_1155_2021_5896931
crossref_primary_10_3390_cells12212566
Cites_doi 10.1016/j.tcb.2016.06.002
10.1074/jbc.M109.072389
10.1128/MCB.00392-17
10.1016/j.molcel.2017.08.005
10.1093/hmg/ddp460
10.1016/j.molcel.2016.08.021
10.1038/ncb1846
10.1073/pnas.1507263112
10.1083/jcb.200702115
10.1038/ncb3407
10.1038/ncomms8007
10.1016/j.devcel.2018.03.023
10.1083/jcb.200907015
10.7554/eLife.23367
10.1083/jcb.201607039
10.1016/j.neulet.2010.09.018
10.1091/mbc.e11-04-0279
10.4161/15548627.2014.984272
10.1091/mbc.e11-09-0746
10.1038/emboj.2010.74
10.1038/ncomms12420
10.1038/ncb2204
10.1016/j.molcel.2017.02.010
10.1038/ng1609
10.4161/auto.29395
10.4161/auto.6.6.12709
10.1146/annurev-biochem-052810-093700
10.1083/jcb.200811005
10.1016/j.cub.2007.09.032
10.1083/jcb.201211014
10.1080/15548627.2016.1238554
10.1016/j.tibs.2010.04.005
10.1038/s41467-018-02823-x
10.1093/hmg/ddq100
10.1038/nrm.2015.8
10.1038/nrm3696
10.1016/j.cell.2007.05.021
10.1038/ncb1740
10.1083/jcb.136.1.61
10.1016/j.cub.2010.08.002
10.1212/01.wnl.0000231510.89311.8b
10.1016/j.cub.2012.06.029
10.1083/jcb.201401126
10.1091/mbc.e13-08-0449
10.1083/jcb.110.6.1935
10.1038/ncb2078
10.1083/jcb.201708039
10.1083/jcb.111.2.329
10.1016/j.cub.2018.03.002
10.1126/science.1204592
10.1091/mbc.e13-08-0447
10.7554/eLife.00947
10.1242/jcs.196287
10.1038/s41467-018-05254-w
10.4161/auto.1.1.1270
10.1038/ng.2497
10.1038/nature04723
10.1016/j.devcel.2013.11.022
10.1126/science.aaf6136
10.1016/j.devcel.2013.03.005
10.1146/annurev.cellbio.042308.113327
10.1126/science.282.5391.1075
10.1038/emboj.2010.237
10.1111/j.1600-0854.2009.00915.x
10.15252/embj.201593148
10.1038/sj.emboj.7601051
10.1016/j.molcel.2015.11.019
10.1016/j.ceb.2017.03.010
10.1242/jcs.01114
10.1016/j.cell.2010.04.034
10.1074/jbc.M112.415968
10.7554/eLife.31145
10.1083/jcb.201804039
10.1038/nrm2728
10.1083/jcb.201804028
10.1091/mbc.e13-07-0381
10.1016/j.cell.2012.11.001
10.1038/nrm2002
10.1016/j.molcel.2013.01.024
10.1083/jcb.143.1.65
10.1016/j.molcel.2014.11.013
10.1038/emboj.2012.32
10.1091/mbc.e16-03-0205
10.1080/15548627.2017.1343768
10.1038/ncb3114
10.1074/jbc.M112.384305
10.4161/auto.24856
10.1083/jcb.200803137
10.1016/j.devcel.2017.02.016
10.1083/jcb.201412046
10.1016/j.tcb.2015.03.001
10.1038/ncb2979
10.1038/ncomms11808
10.1083/jcb.201710116
10.1083/jcb.201106120
10.1091/mbc.01-10-0498
10.15252/embr.201438618
10.1073/pnas.1705572114
10.1073/pnas.1010554107
10.1083/jcb.201712058
10.4161/auto.6259
10.1038/nature04724
10.1038/cr.2013.168
10.1038/nrm2708
10.1038/nature14147
10.1016/j.molcel.2014.11.006
10.1016/j.cell.2013.08.044
10.1091/mbc.e10-06-0495
10.1016/j.ceb.2018.04.003
10.1091/mbc.12.11.3690
10.1080/15548627.2015.1072669
10.1111/j.1600-0854.2008.00701.x
10.1083/jcb.201711083
10.1016/j.devcel.2011.02.006
10.1038/ncb1854
10.1016/j.cell.2010.04.009
10.1083/jcb.201211160
10.1146/annurev-cellbio-111315-125407
10.4161/auto.5.8.10274
10.1016/j.cub.2007.07.029
10.1016/j.devcel.2007.04.005
10.1038/ncb1991
10.1083/jcb.201611027
10.1083/jcb.200810098
10.1038/35022595
10.1242/jcs.01370
10.1073/pnas.1806727115
10.1038/ncb3066
10.1083/jcb.201607085
10.1091/mbc.e08-01-0080
10.15252/embr.201439464
10.1016/j.devcel.2014.06.001
ContentType Journal Article
Copyright 2019 Zhao and Zhang.
Copyright Rockefeller University Press Mar 2019
2019 Zhao and Zhang 2019
Copyright_xml – notice: 2019 Zhao and Zhang.
– notice: Copyright Rockefeller University Press Mar 2019
– notice: 2019 Zhao and Zhang 2019
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7QP
7QR
7TK
7TM
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
DOI 10.1083/jcb.201810099
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Technology Research Database
Nucleic Acids Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Genetics Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE

Virology and AIDS Abstracts
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
DocumentTitleAlternate Autophagosome maturation: Machinery and regulation
EISSN 1540-8140
EndPage 770
ExternalDocumentID PMC6400552
30578282
10_1083_jcb_201810099
Genre Research Support, Non-U.S. Gov't
Journal Article
Review
GrantInformation_xml – fundername: ;
  grantid: XDB19000000
– fundername: ;
  grantid: 31630048; 31421002; 31561143001
– fundername: Orphan Disease Center
  grantid: MDBR-18-104-BPAN
– fundername: ;
  grantid: QYZDY-SSW-SMC006
GroupedDBID ---
-DZ
-~X
.55
123
18M
29K
2WC
34G
36B
39C
4.4
53G
85S
AAYXX
ABDNZ
ABOCM
ABPPZ
ABRJW
ABZEH
ACGFO
ACGOD
ACIWK
ACKOT
ACNCT
ACPRK
ADBBV
AEILP
AENEX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BKOMP
BTFSW
C45
CITATION
CS3
D-I
D0L
DIK
DU5
E3Z
EBS
EJD
EMB
F5P
F9R
FRP
GX1
H13
HF~
HYE
IH2
JZ9
KQ8
N9A
NHB
O5R
O5S
OK1
P2P
PQQKQ
R.V
RHI
RNS
RXW
SJN
TAE
TN5
TR2
TRP
TWZ
UBX
UHB
UKR
UPT
W8F
WH7
WOQ
X7M
YKV
YNH
YOC
YQT
YSK
YWH
YZZ
ZCA
~KM
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7QP
7QR
7TK
7TM
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c481t-3a7472d8ade25cea6e6565b8621ddf776681601bd481679302820f9e2a5186563
ISSN 0021-9525
1540-8140
IngestDate Thu Aug 21 18:13:23 EDT 2025
Fri Jul 11 07:33:06 EDT 2025
Mon Jun 30 10:27:27 EDT 2025
Thu Apr 03 07:10:02 EDT 2025
Tue Jul 01 02:00:46 EDT 2025
Thu Apr 24 22:54:11 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License 2019 Zhao and Zhang.
This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms/). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 International license, as described at https://creativecommons.org/licenses/by-nc-sa/4.0/).
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c481t-3a7472d8ade25cea6e6565b8621ddf776681601bd481679302820f9e2a5186563
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-3342-5377
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC6400552
PMID 30578282
PQID 2222921489
PQPubID 48855
PageCount 14
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6400552
proquest_miscellaneous_2159986950
proquest_journals_2222921489
pubmed_primary_30578282
crossref_citationtrail_10_1083_jcb_201810099
crossref_primary_10_1083_jcb_201810099
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20190304
PublicationDateYYYYMMDD 2019-03-04
PublicationDate_xml – month: 3
  year: 2019
  text: 20190304
  day: 4
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle The Journal of cell biology
PublicationTitleAlternate J Cell Biol
PublicationYear 2019
Publisher Rockefeller University Press
Publisher_xml – name: Rockefeller University Press
References Liou (2023072317132319800_bib61) 1997; 136
Axe (2023072317132319800_bib3) 2008; 182
Korolchuk (2023072317132319800_bib53) 2011; 13
Zhao (2023072317132319800_bib129) 2013; 9
Nakatogawa (2023072317132319800_bib75) 2009; 10
Ferguson (2023072317132319800_bib21) 2009; 18
Jahreiss (2023072317132319800_bib46) 2008; 9
Zhao (2023072317132319800_bib126) 2018; 53
Tabata (2023072317132319800_bib103) 2010; 21
Hasegawa (2023072317132319800_bib37) 2016; 35
Zhao (2023072317132319800_bib131) 2018; 28
Gómez-Sánchez (2023072317132319800_bib30) 2018; 217
Takáts (2023072317132319800_bib106) 2014; 25
Hardy (2023072317132319800_bib36) 1998; 282
Weidberg (2023072317132319800_bib114) 2010; 29
Eskelinen (2023072317132319800_bib19) 2005; 1
Rusten (2023072317132319800_bib92) 2007; 17
Liang (2023072317132319800_bib59) 2008; 10
Miao (2023072317132319800_bib72) 2016; 12
Nordmann (2023072317132319800_bib78) 2010; 20
Gary (2023072317132319800_bib28) 2002; 13
Komatsu (2023072317132319800_bib52) 2006; 441
Mauvezin (2023072317132319800_bib69) 2015; 6
Ge (2023072317132319800_bib29) 2013; 2
Liang (2023072317132319800_bib60) 2010; 285
Skibinski (2023072317132319800_bib96) 2005; 37
Mizuno-Yamasaki (2023072317132319800_bib73) 2012; 81
Zhang (2023072317132319800_bib123) 2015; 25
Graef (2023072317132319800_bib31) 2013; 24
Hailey (2023072317132319800_bib34) 2010; 141
Stolz (2023072317132319800_bib99) 2014; 16
Maday (2023072317132319800_bib63) 2014; 30
Tsuboyama (2023072317132319800_bib110) 2016; 354
Urwin (2023072317132319800_bib111) 2010; 19
Jiang (2023072317132319800_bib49) 2014; 25
Gao (2023072317132319800_bib26) 2018; 217
Karanasios (2023072317132319800_bib50) 2016; 7
Tooze (2023072317132319800_bib109) 1990; 111
Cheng (2023072317132319800_bib13) 2018; 217
Puri (2023072317132319800_bib87) 2013; 154
Gary (2023072317132319800_bib27) 1998; 143
Itakura (2023072317132319800_bib42) 2008; 19
Jäger (2023072317132319800_bib44) 2004; 117
Gutierrez (2023072317132319800_bib33) 2004; 117
Ravikumar (2023072317132319800_bib89) 2010; 12
Nguyen (2023072317132319800_bib76) 2016; 215
Yokota (2023072317132319800_bib120) 1995; 66
Yu (2023072317132319800_bib122) 2017; 47
Hara (2023072317132319800_bib35) 2006; 441
Settembre (2023072317132319800_bib95) 2012; 31
Kim (2023072317132319800_bib51) 2015; 57
Wu (2023072317132319800_bib118) 2014; 15
Cullup (2023072317132319800_bib14) 2013; 45
Gao (2023072317132319800_bib25) 2018; 7
Nixon (2023072317132319800_bib77) 2008; 4
Pontano Vaites (2023072317132319800_bib84) 2017; 38
Sun (2023072317132319800_bib101) 2010; 107
Kotani (2023072317132319800_bib54) 2018; 115
Bas (2023072317132319800_bib5) 2018; 217
Diao (2023072317132319800_bib16) 2015; 520
Kumar (2023072317132319800_bib55) 2018; 217
Ishihara (2023072317132319800_bib40) 2001; 12
Pu (2023072317132319800_bib86) 2016; 129
McEwan (2023072317132319800_bib70) 2015; 57
Raben (2023072317132319800_bib88) 2016; 32
Medina (2023072317132319800_bib71) 2015; 17
Bains (2023072317132319800_bib4) 2011; 488
Fraldi (2023072317132319800_bib23) 2010; 29
Razi (2023072317132319800_bib90) 2009; 185
Zhao (2023072317132319800_bib128) 2012; 287
Pankiv (2023072317132319800_bib80) 2010; 188
Maday (2023072317132319800_bib64) 2012; 196
Takahashi (2023072317132319800_bib104) 2018; 9
Itakura (2023072317132319800_bib43) 2012; 151
Orsi (2023072317132319800_bib79) 2012; 23
Chauhan (2023072317132319800_bib10) 2013; 50
Manil-Ségalen (2023072317132319800_bib65) 2014; 28
Nakatogawa (2023072317132319800_bib74) 2007; 130
Matsunaga (2023072317132319800_bib68) 2009; 11
Ebner (2023072317132319800_bib18) 2018; 9
Cheng (2023072317132319800_bib12) 2017; 65
Peng (2023072317132319800_bib82) 2012; 287
Marwaha (2023072317132319800_bib66) 2017; 216
Settembre (2023072317132319800_bib94) 2011; 332
Lőrincz (2023072317132319800_bib62) 2017; 216
Parkinson (2023072317132319800_bib81) 2006; 67
Guo (2023072317132319800_bib32) 2014; 16
Anding (2023072317132319800_bib2) 2017; 41
Zhong (2023072317132319800_bib133) 2009; 11
Filimonenko (2023072317132319800_bib22) 2007; 179
Matsui (2023072317132319800_bib67) 2018; 217
Li (2023072317132319800_bib58) 2016; 18
Zhao (2023072317132319800_bib127) 2013; 200
Cai (2023072317132319800_bib7) 2007; 12
Dunn (2023072317132319800_bib17) 1990; 110
Yu (2023072317132319800_bib121) 2010; 26
Abada (2023072317132319800_bib1) 2017; 114
Jahn (2023072317132319800_bib45) 2006; 7
Cheng (2023072317132319800_bib11) 2015; 209
Stenmark (2023072317132319800_bib98) 2009; 10
Itakura (2023072317132319800_bib41) 2010; 6
Lamb (2023072317132319800_bib56) 2013; 14
Rocha (2023072317132319800_bib91) 2009; 185
Fujita (2023072317132319800_bib24) 2017; 6
Stroupe (2023072317132319800_bib100) 2006; 25
Prinz (2023072317132319800_bib85) 2014; 205
Jia (2023072317132319800_bib48) 2017; 13
Tanaka (2023072317132319800_bib107) 2000; 406
Wu (2023072317132319800_bib117) 2015; 60
Zhao (2023072317132319800_bib130) 2017; 67
Szatmári (2023072317132319800_bib102) 2014; 10
de Lartigue (2023072317132319800_bib15) 2009; 10
Zhen (2023072317132319800_bib132) 2015; 11
Takáts (2023072317132319800_bib105) 2013; 201
Wijdeven (2023072317132319800_bib116) 2016; 7
Zhang (2023072317132319800_bib124) 2016; 26
Wang (2023072317132319800_bib112) 2015; 112
Zhang (2023072317132319800_bib125) 2018; 45
Jean (2023072317132319800_bib47) 2015; 16
Hayashi-Nishino (2023072317132319800_bib38) 2009; 11
Cebollero (2023072317132319800_bib9) 2012; 22
Phillips (2023072317132319800_bib83) 2016; 17
Sato (2023072317132319800_bib93) 2011; 22
Tian (2023072317132319800_bib108) 2010; 141
Hegedűs (2023072317132319800_bib39) 2016; 27
Brandstaetter (2023072317132319800_bib6) 2014; 10
Weidberg (2023072317132319800_bib115) 2011; 20
Slawson (2023072317132319800_bib97) 2010; 35
Carroll (2023072317132319800_bib8) 2013; 25
Lee (2023072317132319800_bib57) 2007; 17
Wang (2023072317132319800_bib113) 2016; 63
Feng (2023072317132319800_bib20) 2014; 24
Ylä-Anttila (2023072317132319800_bib119) 2009; 5
References_xml – volume: 26
  start-page: 934
  year: 2016
  ident: 2023072317132319800_bib124
  article-title: Shaping the endoplasmic reticulum into a social network
  publication-title: Trends Cell Biol.
  doi: 10.1016/j.tcb.2016.06.002
– volume: 285
  start-page: 3499
  year: 2010
  ident: 2023072317132319800_bib60
  article-title: Neural-specific deletion of FIP200 leads to cerebellar degeneration caused by increased neuronal death and axon degeneration
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M109.072389
– volume: 38
  start-page: MCB.00392-17
  year: 2017
  ident: 2023072317132319800_bib84
  article-title: Systematic analysis of human cells lacking ATG8 proteins uncovers roles for GABARAPs and the CCZ1/MON1 regulator C18orf8/RMC1 in macro and selective autophagic flux
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.00392-17
– volume: 67
  start-page: 974
  year: 2017
  ident: 2023072317132319800_bib130
  article-title: The ER-Localized Transmembrane Protein EPG-3/VMP1 Regulates SERCA Activity to Control ER-Isolation Membrane Contacts for Autophagosome Formation
  publication-title: Mol. Cell.
  doi: 10.1016/j.molcel.2017.08.005
– volume: 18
  start-page: 4868
  year: 2009
  ident: 2023072317132319800_bib21
  article-title: Defective autophagy in neurons and astrocytes from mice deficient in PI(3,5)P2
  publication-title: Hum. Mol. Genet.
  doi: 10.1093/hmg/ddp460
– volume: 63
  start-page: 781
  year: 2016
  ident: 2023072317132319800_bib113
  article-title: The Vici Syndrome Protein EPG5 Is a Rab7 Effector that Determines the Fusion Specificity of Autophagosomes with Late Endosomes/Lysosomes
  publication-title: Mol. Cell.
  doi: 10.1016/j.molcel.2016.08.021
– volume: 11
  start-page: 385
  year: 2009
  ident: 2023072317132319800_bib68
  article-title: Two Beclin 1-binding proteins, Atg14L and Rubicon, reciprocally regulate autophagy at different stages
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb1846
– volume: 112
  start-page: 7015
  year: 2015
  ident: 2023072317132319800_bib112
  article-title: GABARAPs regulate PI4P-dependent autophagosome:lysosome fusion
  publication-title: Proc. Natl. Acad. Sci. USA.
  doi: 10.1073/pnas.1507263112
– volume: 179
  start-page: 485
  year: 2007
  ident: 2023072317132319800_bib22
  article-title: Functional multivesicular bodies are required for autophagic clearance of protein aggregates associated with neurodegenerative disease
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.200702115
– volume: 18
  start-page: 1065
  year: 2016
  ident: 2023072317132319800_bib58
  article-title: Protein kinase C controls lysosome biogenesis independently of mTORC1
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb3407
– volume: 6
  start-page: 7007
  year: 2015
  ident: 2023072317132319800_bib69
  article-title: Autophagosome-lysosome fusion is independent of V-ATPase-mediated acidification
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms8007
– volume: 45
  start-page: 245
  year: 2018
  ident: 2023072317132319800_bib125
  article-title: GRASP55 Senses Glucose Deprivation through O-GlcNAcylation to Promote Autophagosome-Lysosome Fusion
  publication-title: Dev. Cell.
  doi: 10.1016/j.devcel.2018.03.023
– volume: 188
  start-page: 253
  year: 2010
  ident: 2023072317132319800_bib80
  article-title: FYCO1 is a Rab7 effector that binds to LC3 and PI3P to mediate microtubule plus end-directed vesicle transport
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.200907015
– volume: 6
  start-page: e23367
  year: 2017
  ident: 2023072317132319800_bib24
  article-title: Genetic screen in Drosophila muscle identifies autophagy-mediated T-tubule remodeling and a Rab2 role in autophagy
  publication-title: eLife.
  doi: 10.7554/eLife.23367
– volume: 215
  start-page: 857
  year: 2016
  ident: 2023072317132319800_bib76
  article-title: Atg8 family LC3/GABARAP proteins are crucial for autophagosome-lysosome fusion but not autophagosome formation during PINK1/Parkin mitophagy and starvation
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.201607039
– volume: 488
  start-page: 112
  year: 2011
  ident: 2023072317132319800_bib4
  article-title: IGF-I stimulates Rab7-RILP interaction during neuronal autophagy
  publication-title: Neurosci. Lett.
  doi: 10.1016/j.neulet.2010.09.018
– volume: 22
  start-page: 2579
  year: 2011
  ident: 2023072317132319800_bib93
  article-title: Caenorhabditis elegans SNAP-29 is required for organellar integrity of the endomembrane system and general exocytosis in intestinal epithelial cells
  publication-title: Mol. Biol. Cell.
  doi: 10.1091/mbc.e11-04-0279
– volume: 10
  start-page: 2310
  year: 2014
  ident: 2023072317132319800_bib6
  article-title: Loss of functional MYO1C/myosin 1c, a motor protein involved in lipid raft trafficking, disrupts autophagosome-lysosome fusion
  publication-title: Autophagy.
  doi: 10.4161/15548627.2014.984272
– volume: 23
  start-page: 1860
  year: 2012
  ident: 2023072317132319800_bib79
  article-title: Dynamic and transient interactions of Atg9 with autophagosomes, but not membrane integration, are required for autophagy
  publication-title: Mol. Biol. Cell.
  doi: 10.1091/mbc.e11-09-0746
– volume: 29
  start-page: 1792
  year: 2010
  ident: 2023072317132319800_bib114
  article-title: LC3 and GATE-16/GABARAP subfamilies are both essential yet act differently in autophagosome biogenesis
  publication-title: EMBO J.
  doi: 10.1038/emboj.2010.74
– volume: 7
  start-page: 12420
  year: 2016
  ident: 2023072317132319800_bib50
  article-title: Autophagy initiation by ULK complex assembly on ER tubulovesicular regions marked by ATG9 vesicles
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms12420
– volume: 13
  start-page: 453
  year: 2011
  ident: 2023072317132319800_bib53
  article-title: Lysosomal positioning coordinates cellular nutrient responses
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb2204
– volume: 65
  start-page: 1029
  year: 2017
  ident: 2023072317132319800_bib12
  article-title: Pacer Mediates the Function of Class III PI3K and HOPS Complexes in Autophagosome Maturation by Engaging Stx17
  publication-title: Mol. Cell.
  doi: 10.1016/j.molcel.2017.02.010
– volume: 37
  start-page: 806
  year: 2005
  ident: 2023072317132319800_bib96
  article-title: Mutations in the endosomal ESCRTIII-complex subunit CHMP2B in frontotemporal dementia
  publication-title: Nat. Genet.
  doi: 10.1038/ng1609
– volume: 10
  start-page: 1154
  year: 2014
  ident: 2023072317132319800_bib102
  article-title: The autophagic roles of Rab small GTPases and their upstream regulators: a review
  publication-title: Autophagy.
  doi: 10.4161/auto.29395
– volume: 6
  start-page: 764
  year: 2010
  ident: 2023072317132319800_bib41
  article-title: Characterization of autophagosome formation site by a hierarchical analysis of mammalian Atg proteins
  publication-title: Autophagy.
  doi: 10.4161/auto.6.6.12709
– volume: 81
  start-page: 637
  year: 2012
  ident: 2023072317132319800_bib73
  article-title: GTPase networks in membrane traffic
  publication-title: Annu. Rev. Biochem.
  doi: 10.1146/annurev-biochem-052810-093700
– volume: 185
  start-page: 1209
  year: 2009
  ident: 2023072317132319800_bib91
  article-title: Cholesterol sensor ORP1L contacts the ER protein VAP to control Rab7-RILP-p150 Glued and late endosome positioning
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.200811005
– volume: 17
  start-page: 1817
  year: 2007
  ident: 2023072317132319800_bib92
  article-title: ESCRTs and Fab1 regulate distinct steps of autophagy
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2007.09.032
– volume: 200
  start-page: 731
  year: 2013
  ident: 2023072317132319800_bib127
  article-title: Mice deficient in Epg5 exhibit selective neuronal vulnerability to degeneration
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.201211014
– volume: 12
  start-page: 2263
  year: 2016
  ident: 2023072317132319800_bib72
  article-title: Mice deficient in the Vici syndrome gene Epg5 exhibit features of retinitis pigmentosa
  publication-title: Autophagy.
  doi: 10.1080/15548627.2016.1238554
– volume: 35
  start-page: 547
  year: 2010
  ident: 2023072317132319800_bib97
  article-title: O-GlcNAc signaling: a metabolic link between diabetes and cancer?
  publication-title: Trends Biochem. Sci.
  doi: 10.1016/j.tibs.2010.04.005
– volume: 9
  start-page: 599
  year: 2018
  ident: 2023072317132319800_bib18
  article-title: The IAP family member BRUCE regulates autophagosome-lysosome fusion
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-02823-x
– volume: 19
  start-page: 2228
  year: 2010
  ident: 2023072317132319800_bib111
  article-title: Disruption of endocytic trafficking in frontotemporal dementia with CHMP2B mutations
  publication-title: Hum. Mol. Genet.
  doi: 10.1093/hmg/ddq100
– volume: 17
  start-page: 69
  year: 2016
  ident: 2023072317132319800_bib83
  article-title: Structure and function of ER membrane contact sites with other organelles
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm.2015.8
– volume: 14
  start-page: 759
  year: 2013
  ident: 2023072317132319800_bib56
  article-title: The autophagosome: origins unknown, biogenesis complex
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm3696
– volume: 130
  start-page: 165
  year: 2007
  ident: 2023072317132319800_bib74
  article-title: Atg8, a ubiquitin-like protein required for autophagosome formation, mediates membrane tethering and hemifusion
  publication-title: Cell.
  doi: 10.1016/j.cell.2007.05.021
– volume: 10
  start-page: 776
  year: 2008
  ident: 2023072317132319800_bib59
  article-title: Beclin1-binding UVRAG targets the class C Vps complex to coordinate autophagosome maturation and endocytic trafficking
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb1740
– volume: 136
  start-page: 61
  year: 1997
  ident: 2023072317132319800_bib61
  article-title: The autophagic and endocytic pathways converge at the nascent autophagic vacuoles
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.136.1.61
– volume: 20
  start-page: 1654
  year: 2010
  ident: 2023072317132319800_bib78
  article-title: The Mon1-Ccz1 complex is the GEF of the late endosomal Rab7 homolog Ypt7
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2010.08.002
– volume: 67
  start-page: 1074
  year: 2006
  ident: 2023072317132319800_bib81
  article-title: ALS phenotypes with mutations in CHMP2B (charged multivesicular body protein 2B)
  publication-title: Neurology.
  doi: 10.1212/01.wnl.0000231510.89311.8b
– volume: 22
  start-page: 1545
  year: 2012
  ident: 2023072317132319800_bib9
  article-title: Phosphatidylinositol-3-phosphate clearance plays a key role in autophagosome completion
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2012.06.029
– volume: 205
  start-page: 759
  year: 2014
  ident: 2023072317132319800_bib85
  article-title: Bridging the gap: membrane contact sites in signaling, metabolism, and organelle dynamics
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.201401126
– volume: 25
  start-page: 1338
  year: 2014
  ident: 2023072317132319800_bib106
  article-title: Interaction of the HOPS complex with Syntaxin 17 mediates autophagosome clearance in Drosophila
  publication-title: Mol. Biol. Cell.
  doi: 10.1091/mbc.e13-08-0449
– volume: 110
  start-page: 1935
  year: 1990
  ident: 2023072317132319800_bib17
  article-title: Studies on the mechanisms of autophagy: maturation of the autophagic vacuole
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.110.6.1935
– volume: 12
  start-page: 747
  year: 2010
  ident: 2023072317132319800_bib89
  article-title: Plasma membrane contributes to the formation of pre-autophagosomal structures
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb2078
– volume: 217
  start-page: 997
  year: 2018
  ident: 2023072317132319800_bib55
  article-title: Mechanism of Stx17 recruitment to autophagosomes via IRGM and mammalian Atg8 proteins
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.201708039
– volume: 111
  start-page: 329
  year: 1990
  ident: 2023072317132319800_bib109
  article-title: In exocrine pancreas, the basolateral endocytic pathway converges with the autophagic pathway immediately after the early endosome
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.111.2.329
– volume: 66
  start-page: 15
  year: 1995
  ident: 2023072317132319800_bib120
  article-title: Formation of autophagosomes during degradation of excess peroxisomes induced by di-(2-ethylhexyl)-phthalate treatment. III. Fusion of early autophagosomes with lysosomal compartments
  publication-title: Eur. J. Cell Biol.
– volume: 28
  start-page: 1234
  year: 2018
  ident: 2023072317132319800_bib131
  article-title: The ER Contact Proteins VAPA/B Interact with Multiple Autophagy Proteins to Modulate Autophagosome Biogenesis
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2018.03.002
– volume: 332
  start-page: 1429
  year: 2011
  ident: 2023072317132319800_bib94
  article-title: TFEB links autophagy to lysosomal biogenesis
  publication-title: Science.
  doi: 10.1126/science.1204592
– volume: 25
  start-page: 1327
  year: 2014
  ident: 2023072317132319800_bib49
  article-title: The HOPS complex mediates autophagosome-lysosome fusion through interaction with syntaxin 17
  publication-title: Mol. Biol. Cell.
  doi: 10.1091/mbc.e13-08-0447
– volume: 2
  start-page: e00947
  year: 2013
  ident: 2023072317132319800_bib29
  article-title: The ER-Golgi intermediate compartment is a key membrane source for the LC3 lipidation step of autophagosome biogenesis
  publication-title: eLife.
  doi: 10.7554/eLife.00947
– volume: 129
  start-page: 4329
  year: 2016
  ident: 2023072317132319800_bib86
  article-title: Mechanisms and functions of lysosome positioning
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.196287
– volume: 9
  start-page: 2855
  year: 2018
  ident: 2023072317132319800_bib104
  article-title: An autophagy assay reveals the ESCRT-III component CHMP2A as a regulator of phagophore closure
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-05254-w
– volume: 1
  start-page: 1
  year: 2005
  ident: 2023072317132319800_bib19
  article-title: Maturation of autophagic vacuoles in Mammalian cells
  publication-title: Autophagy.
  doi: 10.4161/auto.1.1.1270
– volume: 45
  start-page: 83
  year: 2013
  ident: 2023072317132319800_bib14
  article-title: Recessive mutations in EPG5 cause Vici syndrome, a multisystem disorder with defective autophagy
  publication-title: Nat. Genet.
  doi: 10.1038/ng.2497
– volume: 441
  start-page: 880
  year: 2006
  ident: 2023072317132319800_bib52
  article-title: Loss of autophagy in the central nervous system causes neurodegeneration in mice
  publication-title: Nature.
  doi: 10.1038/nature04723
– volume: 28
  start-page: 43
  year: 2014
  ident: 2023072317132319800_bib65
  article-title: The C. elegans LC3 acts downstream of GABARAP to degrade autophagosomes by interacting with the HOPS subunit VPS39
  publication-title: Dev. Cell.
  doi: 10.1016/j.devcel.2013.11.022
– volume: 354
  start-page: 1036
  year: 2016
  ident: 2023072317132319800_bib110
  article-title: The ATG conjugation systems are important for degradation of the inner autophagosomal membrane
  publication-title: Science.
  doi: 10.1126/science.aaf6136
– volume: 25
  start-page: 15
  year: 2013
  ident: 2023072317132319800_bib8
  article-title: The TBC/RabGAP Armus coordinates Rac1 and Rab7 functions during autophagy
  publication-title: Dev. Cell.
  doi: 10.1016/j.devcel.2013.03.005
– volume: 26
  start-page: 137
  year: 2010
  ident: 2023072317132319800_bib121
  article-title: Tethering factors as organizers of intracellular vesicular traffic
  publication-title: Annu. Rev. Cell Dev. Biol.
  doi: 10.1146/annurev.cellbio.042308.113327
– volume: 282
  start-page: 1075
  year: 1998
  ident: 2023072317132319800_bib36
  article-title: Genetic classification of primary neurodegenerative disease
  publication-title: Science.
  doi: 10.1126/science.282.5391.1075
– volume: 29
  start-page: 3607
  year: 2010
  ident: 2023072317132319800_bib23
  article-title: Lysosomal fusion and SNARE function are impaired by cholesterol accumulation in lysosomal storage disorders
  publication-title: EMBO J.
  doi: 10.1038/emboj.2010.237
– volume: 10
  start-page: 883
  year: 2009
  ident: 2023072317132319800_bib15
  article-title: PIKfyve regulation of endosome-linked pathways
  publication-title: Traffic.
  doi: 10.1111/j.1600-0854.2009.00915.x
– volume: 35
  start-page: 1853
  year: 2016
  ident: 2023072317132319800_bib37
  article-title: Autophagosome-lysosome fusion in neurons requires INPP5E, a protein associated with Joubert syndrome
  publication-title: EMBO J.
  doi: 10.15252/embj.201593148
– volume: 25
  start-page: 1579
  year: 2006
  ident: 2023072317132319800_bib100
  article-title: Purification of active HOPS complex reveals its affinities for phosphoinositides and the SNARE Vam7p
  publication-title: EMBO J.
  doi: 10.1038/sj.emboj.7601051
– volume: 60
  start-page: 914
  year: 2015
  ident: 2023072317132319800_bib117
  article-title: Structural Basis of the Differential Function of the Two C. elegans Atg8 Homologs, LGG-1 and LGG-2, in Autophagy
  publication-title: Mol. Cell.
  doi: 10.1016/j.molcel.2015.11.019
– volume: 47
  start-page: 92
  year: 2017
  ident: 2023072317132319800_bib122
  article-title: The coordination of membrane fission and fusion at the end of autophagosome maturation
  publication-title: Curr. Opin. Cell Biol.
  doi: 10.1016/j.ceb.2017.03.010
– volume: 117
  start-page: 2687
  year: 2004
  ident: 2023072317132319800_bib33
  article-title: Rab7 is required for the normal progression of the autophagic pathway in mammalian cells
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.01114
– volume: 141
  start-page: 1042
  year: 2010
  ident: 2023072317132319800_bib108
  article-title: C. elegans screen identifies autophagy genes specific to multicellular organisms
  publication-title: Cell.
  doi: 10.1016/j.cell.2010.04.034
– volume: 287
  start-page: 42053
  year: 2012
  ident: 2023072317132319800_bib128
  article-title: The p53-induced gene Ei24 is an essential component of the basal autophagy pathway
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M112.415968
– volume: 7
  start-page: e31145
  year: 2018
  ident: 2023072317132319800_bib25
  article-title: Molecular mechanism to target the endosomal Mon1-Ccz1 GEF complex to the pre-autophagosomal structure
  publication-title: eLife.
  doi: 10.7554/eLife.31145
– volume: 217
  start-page: 3670
  year: 2018
  ident: 2023072317132319800_bib26
  article-title: A novel in vitro assay reveals SNARE topology and the role of Ykt6 in autophagosome fusion with vacuoles
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.201804039
– volume: 10
  start-page: 513
  year: 2009
  ident: 2023072317132319800_bib98
  article-title: Rab GTPases as coordinators of vesicle traffic
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm2728
– volume: 217
  start-page: 3656
  year: 2018
  ident: 2023072317132319800_bib5
  article-title: Reconstitution reveals Ykt6 as the autophagosomal SNARE in autophagosome-vacuole fusion
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.201804028
– volume: 24
  start-page: 2918
  year: 2013
  ident: 2023072317132319800_bib31
  article-title: ER exit sites are physical and functional core autophagosome biogenesis components
  publication-title: Mol. Biol. Cell.
  doi: 10.1091/mbc.e13-07-0381
– volume: 151
  start-page: 1256
  year: 2012
  ident: 2023072317132319800_bib43
  article-title: The hairpin-type tail-anchored SNARE syntaxin 17 targets to autophagosomes for fusion with endosomes/lysosomes
  publication-title: Cell.
  doi: 10.1016/j.cell.2012.11.001
– volume: 7
  start-page: 631
  year: 2006
  ident: 2023072317132319800_bib45
  article-title: SNAREs--engines for membrane fusion
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm2002
– volume: 50
  start-page: 16
  year: 2013
  ident: 2023072317132319800_bib10
  article-title: ZKSCAN3 is a master transcriptional repressor of autophagy
  publication-title: Mol. Cell.
  doi: 10.1016/j.molcel.2013.01.024
– volume: 143
  start-page: 65
  year: 1998
  ident: 2023072317132319800_bib27
  article-title: Fab1p is essential for PtdIns(3)P 5-kinase activity and the maintenance of vacuolar size and membrane homeostasis
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.143.1.65
– volume: 57
  start-page: 207
  year: 2015
  ident: 2023072317132319800_bib51
  article-title: mTORC1 phosphorylates UVRAG to negatively regulate autophagosome and endosome maturation
  publication-title: Mol. Cell.
  doi: 10.1016/j.molcel.2014.11.013
– volume: 31
  start-page: 1095
  year: 2012
  ident: 2023072317132319800_bib95
  article-title: A lysosome-to-nucleus signalling mechanism senses and regulates the lysosome via mTOR and TFEB
  publication-title: EMBO J.
  doi: 10.1038/emboj.2012.32
– volume: 27
  start-page: 3132
  year: 2016
  ident: 2023072317132319800_bib39
  article-title: The Ccz1-Mon1-Rab7 module and Rab5 control distinct steps of autophagy
  publication-title: Mol. Biol. Cell.
  doi: 10.1091/mbc.e16-03-0205
– volume: 13
  start-page: 1648
  year: 2017
  ident: 2023072317132319800_bib48
  article-title: BORC coordinates encounter and fusion of lysosomes with autophagosomes
  publication-title: Autophagy.
  doi: 10.1080/15548627.2017.1343768
– volume: 17
  start-page: 288
  year: 2015
  ident: 2023072317132319800_bib71
  article-title: Lysosomal calcium signalling regulates autophagy through calcineurin and TFEB
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb3114
– volume: 287
  start-page: 32861
  year: 2012
  ident: 2023072317132319800_bib82
  article-title: Ablation of vacuole protein sorting 18 (Vps18) gene leads to neurodegeneration and impaired neuronal migration by disrupting multiple vesicle transport pathways to lysosomes
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M112.384305
– volume: 9
  start-page: 1258
  year: 2013
  ident: 2023072317132319800_bib129
  article-title: Role of Epg5 in selective neurodegeneration and Vici syndrome
  publication-title: Autophagy.
  doi: 10.4161/auto.24856
– volume: 182
  start-page: 685
  year: 2008
  ident: 2023072317132319800_bib3
  article-title: Autophagosome formation from membrane compartments enriched in phosphatidylinositol 3-phosphate and dynamically connected to the endoplasmic reticulum
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.200803137
– volume: 41
  start-page: 10
  year: 2017
  ident: 2023072317132319800_bib2
  article-title: Cleaning House: Selective Autophagy of Organelles
  publication-title: Dev. Cell.
  doi: 10.1016/j.devcel.2017.02.016
– volume: 209
  start-page: 377
  year: 2015
  ident: 2023072317132319800_bib11
  article-title: Axonal autophagosomes recruit dynein for retrograde transport through fusion with late endosomes
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.201412046
– volume: 25
  start-page: 376
  year: 2015
  ident: 2023072317132319800_bib123
  article-title: Eaten alive: novel insights into autophagy from multicellular model systems
  publication-title: Trends Cell Biol.
  doi: 10.1016/j.tcb.2015.03.001
– volume: 16
  start-page: 495
  year: 2014
  ident: 2023072317132319800_bib99
  article-title: Cargo recognition and trafficking in selective autophagy
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb2979
– volume: 7
  start-page: 11808
  year: 2016
  ident: 2023072317132319800_bib116
  article-title: Cholesterol and ORP1L-mediated ER contact sites control autophagosome transport and fusion with the endocytic pathway
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms11808
– volume: 217
  start-page: 2743
  year: 2018
  ident: 2023072317132319800_bib30
  article-title: Atg9 establishes Atg2-dependent contact sites between the endoplasmic reticulum and phagophores
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.201710116
– volume: 196
  start-page: 407
  year: 2012
  ident: 2023072317132319800_bib64
  article-title: Autophagosomes initiate distally and mature during transport toward the cell soma in primary neurons
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.201106120
– volume: 13
  start-page: 1238
  year: 2002
  ident: 2023072317132319800_bib28
  article-title: Regulation of Fab1 phosphatidylinositol 3-phosphate 5-kinase pathway by Vac7 protein and Fig4, a polyphosphoinositide phosphatase family member
  publication-title: Mol. Biol. Cell.
  doi: 10.1091/mbc.01-10-0498
– volume: 15
  start-page: 973
  year: 2014
  ident: 2023072317132319800_bib118
  article-title: PI3P phosphatase activity is required for autophagosome maturation and autolysosome formation
  publication-title: EMBO Rep.
  doi: 10.15252/embr.201438618
– volume: 114
  start-page: 12749
  year: 2017
  ident: 2023072317132319800_bib1
  article-title: SNARE priming is essential for maturation of autophagosomes but not for their formation
  publication-title: Proc. Natl. Acad. Sci. USA.
  doi: 10.1073/pnas.1705572114
– volume: 107
  start-page: 19338
  year: 2010
  ident: 2023072317132319800_bib101
  article-title: Rubicon controls endosome maturation as a Rab7 effector
  publication-title: Proc. Natl. Acad. Sci. USA.
  doi: 10.1073/pnas.1010554107
– volume: 217
  start-page: 2633
  year: 2018
  ident: 2023072317132319800_bib67
  article-title: Autophagosomal YKT6 is required for fusion with lysosomes independently of syntaxin 17
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.201712058
– volume: 4
  start-page: 590
  year: 2008
  ident: 2023072317132319800_bib77
  article-title: Neurodegenerative lysosomal disorders: a continuum from development to late age
  publication-title: Autophagy.
  doi: 10.4161/auto.6259
– volume: 441
  start-page: 885
  year: 2006
  ident: 2023072317132319800_bib35
  article-title: Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice
  publication-title: Nature.
  doi: 10.1038/nature04724
– volume: 24
  start-page: 24
  year: 2014
  ident: 2023072317132319800_bib20
  article-title: The machinery of macroautophagy
  publication-title: Cell Res.
  doi: 10.1038/cr.2013.168
– volume: 10
  start-page: 458
  year: 2009
  ident: 2023072317132319800_bib75
  article-title: Dynamics and diversity in autophagy mechanisms: lessons from yeast
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm2708
– volume: 520
  start-page: 563
  year: 2015
  ident: 2023072317132319800_bib16
  article-title: ATG14 promotes membrane tethering and fusion of autophagosomes to endolysosomes
  publication-title: Nature.
  doi: 10.1038/nature14147
– volume: 57
  start-page: 39
  year: 2015
  ident: 2023072317132319800_bib70
  article-title: PLEKHM1 regulates autophagosome-lysosome fusion through HOPS complex and LC3/GABARAP proteins
  publication-title: Mol. Cell.
  doi: 10.1016/j.molcel.2014.11.006
– volume: 154
  start-page: 1285
  year: 2013
  ident: 2023072317132319800_bib87
  article-title: Diverse autophagosome membrane sources coalesce in recycling endosomes
  publication-title: Cell.
  doi: 10.1016/j.cell.2013.08.044
– volume: 21
  start-page: 4162
  year: 2010
  ident: 2023072317132319800_bib103
  article-title: Rubicon and PLEKHM1 negatively regulate the endocytic/autophagic pathway via a novel Rab7-binding domain
  publication-title: Mol. Biol. Cell.
  doi: 10.1091/mbc.e10-06-0495
– volume: 53
  start-page: 29
  year: 2018
  ident: 2023072317132319800_bib126
  article-title: Formation and maturation of autophagosomes in higher eukaryotes: a social network
  publication-title: Curr. Opin. Cell Biol.
  doi: 10.1016/j.ceb.2018.04.003
– volume: 12
  start-page: 3690
  year: 2001
  ident: 2023072317132319800_bib40
  article-title: Autophagosome requires specific early Sec proteins for its formation and NSF/SNARE for vacuolar fusion
  publication-title: Mol. Biol. Cell.
  doi: 10.1091/mbc.12.11.3690
– volume: 11
  start-page: 1608
  year: 2015
  ident: 2023072317132319800_bib132
  article-title: Impairment of autophagosome-lysosome fusion in the buff mutant mice with the VPS33A(D251E) mutation
  publication-title: Autophagy.
  doi: 10.1080/15548627.2015.1072669
– volume: 9
  start-page: 574
  year: 2008
  ident: 2023072317132319800_bib46
  article-title: The itinerary of autophagosomes: from peripheral formation to kiss-and-run fusion with lysosomes
  publication-title: Traffic.
  doi: 10.1111/j.1600-0854.2008.00701.x
– volume: 217
  start-page: 3127
  year: 2018
  ident: 2023072317132319800_bib13
  article-title: Characterization of LAMP1-labeled nondegradative lysosomal and endocytic compartments in neurons
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.201711083
– volume: 20
  start-page: 444
  year: 2011
  ident: 2023072317132319800_bib115
  article-title: LC3 and GATE-16 N termini mediate membrane fusion processes required for autophagosome biogenesis
  publication-title: Dev. Cell.
  doi: 10.1016/j.devcel.2011.02.006
– volume: 11
  start-page: 468
  year: 2009
  ident: 2023072317132319800_bib133
  article-title: Distinct regulation of autophagic activity by Atg14L and Rubicon associated with Beclin 1-phosphatidylinositol-3-kinase complex
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb1854
– volume: 141
  start-page: 656
  year: 2010
  ident: 2023072317132319800_bib34
  article-title: Mitochondria supply membranes for autophagosome biogenesis during starvation
  publication-title: Cell.
  doi: 10.1016/j.cell.2010.04.009
– volume: 201
  start-page: 531
  year: 2013
  ident: 2023072317132319800_bib105
  article-title: Autophagosomal Syntaxin17-dependent lysosomal degradation maintains neuronal function in Drosophila
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.201211160
– volume: 32
  start-page: 255
  year: 2016
  ident: 2023072317132319800_bib88
  article-title: TFEB and TFE3: Linking Lysosomes to Cellular Adaptation to Stress
  publication-title: Annu. Rev. Cell Dev. Biol.
  doi: 10.1146/annurev-cellbio-111315-125407
– volume: 5
  start-page: 1180
  year: 2009
  ident: 2023072317132319800_bib119
  article-title: 3D tomography reveals connections between the phagophore and endoplasmic reticulum
  publication-title: Autophagy.
  doi: 10.4161/auto.5.8.10274
– volume: 17
  start-page: 1561
  year: 2007
  ident: 2023072317132319800_bib57
  article-title: ESCRT-III dysfunction causes autophagosome accumulation and neurodegeneration
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2007.07.029
– volume: 12
  start-page: 671
  year: 2007
  ident: 2023072317132319800_bib7
  article-title: Coats, tethers, Rabs, and SNAREs work together to mediate the intracellular destination of a transport vesicle
  publication-title: Dev. Cell.
  doi: 10.1016/j.devcel.2007.04.005
– volume: 11
  start-page: 1433
  year: 2009
  ident: 2023072317132319800_bib38
  article-title: A subdomain of the endoplasmic reticulum forms a cradle for autophagosome formation
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb1991
– volume: 216
  start-page: 1937
  year: 2017
  ident: 2023072317132319800_bib62
  article-title: Rab2 promotes autophagic and endocytic lysosomal degradation
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.201611027
– volume: 185
  start-page: 305
  year: 2009
  ident: 2023072317132319800_bib90
  article-title: Early endosomes and endosomal coatomer are required for autophagy
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.200810098
– volume: 406
  start-page: 902
  year: 2000
  ident: 2023072317132319800_bib107
  article-title: Accumulation of autophagic vacuoles and cardiomyopathy in LAMP-2-deficient mice
  publication-title: Nature.
  doi: 10.1038/35022595
– volume: 117
  start-page: 4837
  year: 2004
  ident: 2023072317132319800_bib44
  article-title: Role for Rab7 in maturation of late autophagic vacuoles
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.01370
– volume: 115
  start-page: 10363
  year: 2018
  ident: 2023072317132319800_bib54
  article-title: The Atg2-Atg18 complex tethers pre-autophagosomal membranes to the endoplasmic reticulum for autophagosome formation
  publication-title: Proc. Natl. Acad. Sci. USA.
  doi: 10.1073/pnas.1806727115
– volume: 16
  start-page: 1215
  year: 2014
  ident: 2023072317132319800_bib32
  article-title: O-GlcNAc-modification of SNAP-29 regulates autophagosome maturation
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb3066
– volume: 216
  start-page: 1051
  year: 2017
  ident: 2023072317132319800_bib66
  article-title: The Rab7 effector PLEKHM1 binds Arl8b to promote cargo traffic to lysosomes
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.201607085
– volume: 19
  start-page: 5360
  year: 2008
  ident: 2023072317132319800_bib42
  article-title: Beclin 1 forms two distinct phosphatidylinositol 3-kinase complexes with mammalian Atg14 and UVRAG
  publication-title: Mol. Biol. Cell.
  doi: 10.1091/mbc.e08-01-0080
– volume: 16
  start-page: 297
  year: 2015
  ident: 2023072317132319800_bib47
  article-title: Starvation-induced MTMR13 and RAB21 activity regulates VAMP8 to promote autophagosome-lysosome fusion
  publication-title: EMBO Rep.
  doi: 10.15252/embr.201439464
– volume: 30
  start-page: 71
  year: 2014
  ident: 2023072317132319800_bib63
  article-title: Autophagosome biogenesis in primary neurons follows an ordered and spatially regulated pathway
  publication-title: Dev. Cell.
  doi: 10.1016/j.devcel.2014.06.001
SSID ssj0004743
Score 2.653928
SecondaryResourceType review_article
Snippet Macroautophagy involves the sequestration of cytoplasmic contents in a double-membrane autophagosome and their delivery to lysosomes for degradation. In...
Zhao and Zhang summarize recent advances in our molecular understanding of the maturation of nascent autophagosomes into degradative autolysosomes in...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 757
SubjectTerms Animals
Autophagic Cell Death
Autophagosomes - metabolism
Autophagosomes - pathology
Autophagy
Biological Transport, Active
Endoplasmic Reticulum - metabolism
Endoplasmic Reticulum - pathology
Humans
Lysosomal storage diseases
Lysosomes
Lysosomes - metabolism
Lysosomes - pathology
Maturation
Molecular modelling
Neurodegenerative diseases
Neurodegenerative Diseases - metabolism
Neurodegenerative Diseases - pathology
Neurological diseases
Nutrient availability
Pathogenesis
Phagocytosis
Phagosomes
Reviews
SNAP receptors
Tethering
Vesicles
Title Autophagosome maturation: An epic journey from the ER to lysosomes
URI https://www.ncbi.nlm.nih.gov/pubmed/30578282
https://www.proquest.com/docview/2222921489
https://www.proquest.com/docview/2159986950
https://pubmed.ncbi.nlm.nih.gov/PMC6400552
Volume 218
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfQEGgvE-Oz20BGQryMlMRJbIe3bipUoCGoNmk8RY7jsElbUq3pw_jruUucrxYk2EtUxZda9Z1_ubve_UzIGxlJcIOTFLtxXCdIXeFErsycRCjuG61YZjDfcfKVz86Cz-fh-Vp3SZmM9a8_9pXcRatwD_SKXbL_odn2S-EGfAb9whU0DNd_0vFkhbQA6mexLK6xEBU5NJpijUl-aBaXuqaGgI3f9pFM5-hvXt0uq6eWfe-06xOrPFRM6h9alqZegrlKrv4AXPg03kg7zwr7JrSJBOxd8h23SyTOAX9Nhv8W3Gx0KfYRFEs6wrpZeWwsaAYuphLdPqqyDla7qLvCSFEzUtvXrajPDdlAcnANEcl1guV30kNPti8HC7m4rtQKgAVeTn2C0Rp19reTYx4gyxi8o-8ziCMQCL9879HJC1tWaX-UJWGFud8PZt4mD5tphv7LRlCyXlvbc1ZOH5Edq0M6qU1ml9wz-WPyoD539PYJORoYDu0M5wOd5BTNhlqzoWg2FMyGTue0LGhrNk_J2cfp6fHMsYdpODqQXun4CgJHlkqVGhZqo7gBTz5MIKD10jQTgnPpQXCepCDNAbQxFnezyDAVehJE_WdkKy9y84JQraNUcRUZwcJAy0QiiZDgga7o7rQ_Iu-aJYq1ZZrHA0-u4qriQfoxLG7cLu6IvG3FFzXFyt8ED5r1ju0uXMYMD6RnENTD8Ot2GDAS94jKTbECGfDZI8mj0B2R57V62pkavY6IGCiuFUD-9eFIfnlR8bBb29q785P7ZLvbiAdkq7xZmZfg45bJq8pOfwMH2KVv
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Autophagosome+maturation%3A+An+epic+journey+from+the+ER+to+lysosomes&rft.jtitle=The+Journal+of+cell+biology&rft.au=Zhao%2C+Yan+G.&rft.au=Zhang%2C+Hong&rft.date=2019-03-04&rft.pub=Rockefeller+University+Press&rft.issn=0021-9525&rft.eissn=1540-8140&rft.volume=218&rft.issue=3&rft.spage=757&rft.epage=770&rft_id=info:doi/10.1083%2Fjcb.201810099&rft_id=info%3Apmid%2F30578282&rft.externalDocID=PMC6400552
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9525&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9525&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9525&client=summon