Autophagosome maturation: An epic journey from the ER to lysosomes
Macroautophagy involves the sequestration of cytoplasmic contents in a double-membrane autophagosome and their delivery to lysosomes for degradation. In multicellular organisms, nascent autophagosomes fuse with vesicles originating from endolysosomal compartments before forming degradative autolysos...
Saved in:
Published in | The Journal of cell biology Vol. 218; no. 3; pp. 757 - 770 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
Rockefeller University Press
04.03.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Macroautophagy involves the sequestration of cytoplasmic contents in a double-membrane autophagosome and their delivery to lysosomes for degradation. In multicellular organisms, nascent autophagosomes fuse with vesicles originating from endolysosomal compartments before forming degradative autolysosomes, a process known as autophagosome maturation. ATG8 family members, tethering factors, Rab GTPases, and SNARE proteins act coordinately to mediate fusion of autophagosomes with endolysosomal vesicles. The machinery mediating autophagosome maturation is under spatiotemporal control and provides regulatory nodes to integrate nutrient availability with autophagy activity. Dysfunction of autophagosome maturation is associated with various human diseases, including neurodegenerative diseases, Vici syndrome, cancer, and lysosomal storage disorders. Understanding the molecular mechanisms underlying autophagosome maturation will provide new insights into the pathogenesis and treatment of these diseases. |
---|---|
AbstractList | Macroautophagy involves the sequestration of cytoplasmic contents in a double-membrane autophagosome and their delivery to lysosomes for degradation. In multicellular organisms, nascent autophagosomes fuse with vesicles originating from endolysosomal compartments before forming degradative autolysosomes, a process known as autophagosome maturation. ATG8 family members, tethering factors, Rab GTPases, and SNARE proteins act coordinately to mediate fusion of autophagosomes with endolysosomal vesicles. The machinery mediating autophagosome maturation is under spatiotemporal control and provides regulatory nodes to integrate nutrient availability with autophagy activity. Dysfunction of autophagosome maturation is associated with various human diseases, including neurodegenerative diseases, Vici syndrome, cancer, and lysosomal storage disorders. Understanding the molecular mechanisms underlying autophagosome maturation will provide new insights into the pathogenesis and treatment of these diseases.Macroautophagy involves the sequestration of cytoplasmic contents in a double-membrane autophagosome and their delivery to lysosomes for degradation. In multicellular organisms, nascent autophagosomes fuse with vesicles originating from endolysosomal compartments before forming degradative autolysosomes, a process known as autophagosome maturation. ATG8 family members, tethering factors, Rab GTPases, and SNARE proteins act coordinately to mediate fusion of autophagosomes with endolysosomal vesicles. The machinery mediating autophagosome maturation is under spatiotemporal control and provides regulatory nodes to integrate nutrient availability with autophagy activity. Dysfunction of autophagosome maturation is associated with various human diseases, including neurodegenerative diseases, Vici syndrome, cancer, and lysosomal storage disorders. Understanding the molecular mechanisms underlying autophagosome maturation will provide new insights into the pathogenesis and treatment of these diseases. Macroautophagy involves the sequestration of cytoplasmic contents in a double-membrane autophagosome and their delivery to lysosomes for degradation. In multicellular organisms, nascent autophagosomes fuse with vesicles originating from endolysosomal compartments before forming degradative autolysosomes, a process known as autophagosome maturation. ATG8 family members, tethering factors, Rab GTPases, and SNARE proteins act coordinately to mediate fusion of autophagosomes with endolysosomal vesicles. The machinery mediating autophagosome maturation is under spatiotemporal control and provides regulatory nodes to integrate nutrient availability with autophagy activity. Dysfunction of autophagosome maturation is associated with various human diseases, including neurodegenerative diseases, Vici syndrome, cancer, and lysosomal storage disorders. Understanding the molecular mechanisms underlying autophagosome maturation will provide new insights into the pathogenesis and treatment of these diseases. Zhao and Zhang summarize recent advances in our molecular understanding of the maturation of nascent autophagosomes into degradative autolysosomes in multicellular organisms. Macroautophagy involves the sequestration of cytoplasmic contents in a double-membrane autophagosome and their delivery to lysosomes for degradation. In multicellular organisms, nascent autophagosomes fuse with vesicles originating from endolysosomal compartments before forming degradative autolysosomes, a process known as autophagosome maturation. ATG8 family members, tethering factors, Rab GTPases, and SNARE proteins act coordinately to mediate fusion of autophagosomes with endolysosomal vesicles. The machinery mediating autophagosome maturation is under spatiotemporal control and provides regulatory nodes to integrate nutrient availability with autophagy activity. Dysfunction of autophagosome maturation is associated with various human diseases, including neurodegenerative diseases, Vici syndrome, cancer, and lysosomal storage disorders. Understanding the molecular mechanisms underlying autophagosome maturation will provide new insights into the pathogenesis and treatment of these diseases. |
Author | Zhang, Hong Zhao, Yan G. |
AuthorAffiliation | 3 National Laboratory of Biomacromolecules, Chinese Academy of Sciences Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China 2 College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China 1 Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA |
AuthorAffiliation_xml | – name: 3 National Laboratory of Biomacromolecules, Chinese Academy of Sciences Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China – name: 2 College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China – name: 1 Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA |
Author_xml | – sequence: 1 givenname: Yan G. surname: Zhao fullname: Zhao, Yan G. – sequence: 2 givenname: Hong orcidid: 0000-0002-3342-5377 surname: Zhang fullname: Zhang, Hong |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30578282$$D View this record in MEDLINE/PubMed |
BookMark | eNptkc9LwzAcxYMobv44epWAFy-d36RNmngQpswfIAii55C16dbRNjNJhf33xqlDh7nkkM97vLx3gHY72xmETgiMCIj0YlFMRxSIIABS7qAhYRkkgmSwi4YAlCSSUTZAB94vACDLs3QfDVJguaCCDtH1uA92Odcz621rcKtD73SobXeJxx02y7rAC9u7zqxw5WyLw9zgyTMOFjcrv9b4I7RX6cab4-_7EL3eTl5u7pPHp7uHm_FjUmSChCTVeZbTUujSUFYYzQ1nnE0Fp6QsqzznXBAOZFpGmucyhZgPKmmoZkREND1EV1--y37amrIwXXC6UUtXt9qtlNW1-vvS1XM1s--KZwCM0Whw_m3g7FtvfFBt7QvTNLoztveKEial4JJBRM-20HUL8XuKxiMpyYSM1OnvRJsoP_VGIP0CCme9d6ZSRR3W9caAdaMIqM8RVRxRbUaMqmRL9WP8P_8BQXacMw |
CitedBy_id | crossref_primary_10_1007_s00281_021_00860_1 crossref_primary_10_1016_j_jmb_2019_05_012 crossref_primary_10_1146_annurev_cellbio_100818_125300 crossref_primary_10_1083_jcb_202004062 crossref_primary_10_1016_j_phrs_2024_107120 crossref_primary_10_3389_fimmu_2022_857069 crossref_primary_10_1039_D1MO00205H crossref_primary_10_1080_15548627_2020_1823124 crossref_primary_10_1080_15548627_2021_1909407 crossref_primary_10_3389_fonc_2021_632956 crossref_primary_10_1007_s00018_024_05471_1 crossref_primary_10_1016_j_isci_2022_105612 crossref_primary_10_1016_j_ceb_2022_102121 crossref_primary_10_3390_biology11101410 crossref_primary_10_3389_fcell_2020_00047 crossref_primary_10_1016_j_tibs_2020_06_004 crossref_primary_10_1016_j_jcmgh_2021_09_017 crossref_primary_10_3390_cells11172621 crossref_primary_10_1080_01913123_2020_1840468 crossref_primary_10_1016_j_jmb_2020_01_024 crossref_primary_10_1002_pro_3828 crossref_primary_10_3390_biom10121637 crossref_primary_10_1080_14789450_2020_1808464 crossref_primary_10_1038_s41419_021_03670_3 crossref_primary_10_1152_ajpcell_00414_2021 crossref_primary_10_1128_mbio_03344_23 crossref_primary_10_3390_ijms252011160 crossref_primary_10_1021_acssensors_0c00809 crossref_primary_10_3389_fcell_2021_643996 crossref_primary_10_1080_27694127_2024_2305594 crossref_primary_10_1042_BST20190158 crossref_primary_10_1242_jcs_228114 crossref_primary_10_1128_IAI_00125_19 crossref_primary_10_3389_fphar_2024_1250918 crossref_primary_10_1038_s41419_025_07499_y crossref_primary_10_1002_jcp_30928 crossref_primary_10_3389_fimmu_2020_578038 crossref_primary_10_1083_jcb_202203083 crossref_primary_10_3389_fimmu_2024_1356369 crossref_primary_10_20411_pai_v5i1_377 crossref_primary_10_1073_pnas_2005134118 crossref_primary_10_1038_s41419_020_03011_w crossref_primary_10_1016_j_lfs_2024_123305 crossref_primary_10_1080_15548627_2022_2160564 crossref_primary_10_3390_brainsci12020247 crossref_primary_10_1016_j_cophys_2022_100596 crossref_primary_10_1080_23723556_2020_1789418 crossref_primary_10_31083_j_rcm2306213 crossref_primary_10_7554_eLife_100928_3 crossref_primary_10_1016_j_devcel_2021_02_002 crossref_primary_10_1016_j_virs_2024_01_001 crossref_primary_10_1016_j_molcel_2019_10_035 crossref_primary_10_3389_fcell_2020_614178 crossref_primary_10_1186_s12951_024_02875_w crossref_primary_10_3390_cells10061272 crossref_primary_10_3389_fneur_2022_951536 crossref_primary_10_3390_ijms20215253 crossref_primary_10_3390_ijms25010255 crossref_primary_10_15252_embr_202050733 crossref_primary_10_1083_jcb_202102001 crossref_primary_10_1016_j_cellin_2024_100152 crossref_primary_10_1021_acschemneuro_1c00524 crossref_primary_10_1016_j_cellin_2022_100031 crossref_primary_10_1083_jcb_202404047 crossref_primary_10_3389_fcell_2019_00113 crossref_primary_10_1016_j_ecoenv_2020_110610 crossref_primary_10_1016_j_semcdb_2022_02_019 crossref_primary_10_1016_j_phymed_2022_154406 crossref_primary_10_1371_journal_ppat_1011625 crossref_primary_10_3389_fimmu_2022_955407 crossref_primary_10_1038_s41467_023_37016_8 crossref_primary_10_1038_s12276_022_00849_2 crossref_primary_10_1073_pnas_2200085119 crossref_primary_10_1146_annurev_genet_022422_095608 crossref_primary_10_1007_s12272_020_01239_w crossref_primary_10_1186_s13045_021_01087_1 crossref_primary_10_1080_15376516_2024_2449423 crossref_primary_10_3390_cells10082022 crossref_primary_10_1016_j_bone_2025_117390 crossref_primary_10_1186_s12943_025_02277_y crossref_primary_10_3390_cells10092183 crossref_primary_10_1016_j_conb_2024_102937 crossref_primary_10_1083_jcb_201812051 crossref_primary_10_4167_jbv_2019_49_1_12 crossref_primary_10_1002_1873_3468_14788 crossref_primary_10_3389_fcell_2022_877344 crossref_primary_10_1080_15548627_2021_1994296 crossref_primary_10_3390_biomedicines10051027 crossref_primary_10_1186_s13195_020_00761_9 crossref_primary_10_1016_j_tibs_2024_03_004 crossref_primary_10_1016_j_devcel_2020_10_010 crossref_primary_10_5607_en_2019_28_6_643 crossref_primary_10_1038_s42003_021_01830_x crossref_primary_10_1038_s41420_023_01681_x crossref_primary_10_1186_s12964_023_01444_2 crossref_primary_10_1111_sji_13307 crossref_primary_10_1186_s12951_024_02534_0 crossref_primary_10_15252_embj_2022112845 crossref_primary_10_1007_s11357_020_00161_9 crossref_primary_10_1083_jcb_202312119 crossref_primary_10_3390_ijms21218196 crossref_primary_10_1016_j_devcel_2022_03_012 crossref_primary_10_1091_mbc_E23_01_0006 crossref_primary_10_15252_embj_2019102586 crossref_primary_10_26508_lsa_202201610 crossref_primary_10_1042_BST20210819 crossref_primary_10_1042_BSR20240137 crossref_primary_10_1007_s11427_020_1702_x crossref_primary_10_3389_fnagi_2023_1092607 crossref_primary_10_1038_s41422_022_00731_w crossref_primary_10_3389_fcimb_2019_00435 crossref_primary_10_3390_brainsci10120958 crossref_primary_10_3390_jof9101003 crossref_primary_10_1242_jcs_259421 crossref_primary_10_31083_j_fbl2803047 crossref_primary_10_1128_mmbr_00052_22 crossref_primary_10_3390_cells10030694 crossref_primary_10_1038_s41421_021_00268_z crossref_primary_10_3390_ijms222112083 crossref_primary_10_3390_medicina58081103 crossref_primary_10_1016_j_bbrc_2024_150198 crossref_primary_10_1038_s41418_021_00912_x crossref_primary_10_1016_j_celrep_2021_109937 crossref_primary_10_1016_j_devcel_2021_07_015 crossref_primary_10_1177_09731296231199860 crossref_primary_10_1080_15548627_2025_2479427 crossref_primary_10_5650_oleoscience_23_11 crossref_primary_10_1016_j_jnutbio_2023_109332 crossref_primary_10_3389_fcell_2020_615856 crossref_primary_10_1128_mbio_02141_23 crossref_primary_10_1083_jcb_202203139 crossref_primary_10_1083_jcb_202210011 crossref_primary_10_3390_biology14010097 crossref_primary_10_1016_j_devcel_2023_03_014 crossref_primary_10_1186_s13578_021_00576_7 crossref_primary_10_3389_ftubr_2023_1275882 crossref_primary_10_1080_15548627_2020_1838117 crossref_primary_10_1080_15548627_2023_2170962 crossref_primary_10_1083_jcb_202112024 crossref_primary_10_1083_jcb_202012091 crossref_primary_10_1016_j_bbcan_2021_188565 crossref_primary_10_1016_j_tcsw_2020_100045 crossref_primary_10_1016_j_virusres_2024_199422 crossref_primary_10_1007_s00109_020_01971_2 crossref_primary_10_1038_s41422_023_00916_x crossref_primary_10_1083_jcb_202306040 crossref_primary_10_1038_s41419_019_1950_1 crossref_primary_10_3389_fonc_2022_897703 crossref_primary_10_1038_s41580_019_0185_4 crossref_primary_10_1080_27694127_2022_2101335 crossref_primary_10_1038_s41576_022_00562_w crossref_primary_10_1242_jcs_234195 crossref_primary_10_1016_j_bioorg_2024_107466 crossref_primary_10_3389_fcell_2020_00464 crossref_primary_10_3389_fncel_2022_1061559 crossref_primary_10_1016_j_ijbiomac_2023_123862 crossref_primary_10_1080_15548627_2024_2347103 crossref_primary_10_1083_jcb_201909033 crossref_primary_10_3389_fnagi_2021_691881 crossref_primary_10_1093_plcell_koab235 crossref_primary_10_1002_cbin_11721 crossref_primary_10_4103_1673_5374_355745 crossref_primary_10_1016_j_cub_2021_01_081 crossref_primary_10_1091_mbc_E24_01_0025 crossref_primary_10_3390_medicina57060522 crossref_primary_10_1016_j_bioorg_2023_107039 crossref_primary_10_1038_s41392_021_00543_1 crossref_primary_10_1016_j_ejcb_2023_151301 crossref_primary_10_1016_j_bbrc_2019_11_089 crossref_primary_10_1002_ctm2_759 crossref_primary_10_3390_cells11244063 crossref_primary_10_3389_fnmol_2021_719100 crossref_primary_10_3389_fonc_2020_605314 crossref_primary_10_1038_s41418_020_0495_2 crossref_primary_10_1083_jcb_202002085 crossref_primary_10_1186_s40478_024_01791_2 crossref_primary_10_1016_j_ijantimicag_2025_107492 crossref_primary_10_1242_jcs_258824 crossref_primary_10_1002_advs_202003205 crossref_primary_10_1083_jcb_202105120 crossref_primary_10_1016_j_radonc_2023_109951 crossref_primary_10_1038_s41418_023_01215_z crossref_primary_10_4062_biomolther_2019_056 crossref_primary_10_1080_22221751_2022_2128434 crossref_primary_10_1242_jcs_262096 crossref_primary_10_1042_BCJ20200917 crossref_primary_10_1272_jnms_JNMS_2024_91_102 crossref_primary_10_3390_ijms23094576 crossref_primary_10_1080_27694127_2024_2395731 crossref_primary_10_3389_fnmol_2020_593724 crossref_primary_10_3389_fonc_2021_603224 crossref_primary_10_1016_j_biocel_2019_03_010 crossref_primary_10_3389_fcell_2019_00073 crossref_primary_10_1007_s13238_020_00793_9 crossref_primary_10_1038_s41467_022_28613_0 crossref_primary_10_1186_s12958_025_01368_1 crossref_primary_10_1007_s12026_022_09344_2 crossref_primary_10_1093_hmg_ddz126 crossref_primary_10_3389_fphar_2022_932807 crossref_primary_10_7554_eLife_100928 crossref_primary_10_1016_j_ceb_2019_08_003 crossref_primary_10_1016_j_devcel_2020_12_010 crossref_primary_10_1080_15548627_2022_2136340 crossref_primary_10_1016_j_scitotenv_2020_142355 crossref_primary_10_1016_j_tibs_2020_07_006 crossref_primary_10_1038_s41467_023_36096_w crossref_primary_10_1016_j_jmb_2019_06_032 crossref_primary_10_1111_tra_12881 crossref_primary_10_1016_j_devcel_2021_10_006 crossref_primary_10_1016_j_jmb_2020_02_012 crossref_primary_10_1016_j_celrep_2022_110975 crossref_primary_10_1016_j_neuint_2024_105827 crossref_primary_10_1093_hmg_ddaa243 crossref_primary_10_1007_s11033_021_06334_9 crossref_primary_10_1080_15548627_2022_2070331 crossref_primary_10_3389_fncel_2024_1380064 crossref_primary_10_1038_s41580_021_00392_4 crossref_primary_10_3389_fphar_2021_773150 crossref_primary_10_1080_15548627_2025_2482724 crossref_primary_10_18632_aging_203787 crossref_primary_10_3389_fonc_2021_637594 crossref_primary_10_1111_sji_12978 crossref_primary_10_3390_biomedicines11030973 crossref_primary_10_3390_biomedicines9070801 crossref_primary_10_1016_j_expneurol_2021_113900 crossref_primary_10_1016_j_yjmcc_2020_06_004 crossref_primary_10_2174_0118715206262252231004110310 crossref_primary_10_1186_s12882_022_02936_y crossref_primary_10_1177_13872877241307403 crossref_primary_10_3389_fphar_2024_1506401 crossref_primary_10_1016_j_canlet_2024_216779 crossref_primary_10_1083_jcb_202103175 crossref_primary_10_3389_fgene_2022_801382 crossref_primary_10_1021_acsinfecdis_4c00156 crossref_primary_10_1038_s41580_023_00676_x crossref_primary_10_3389_fcell_2021_716208 crossref_primary_10_1186_s12929_019_0569_y crossref_primary_10_3390_cells11233813 crossref_primary_10_1016_j_bbcan_2024_189214 crossref_primary_10_1038_s41556_021_00706_w crossref_primary_10_1155_2021_5896931 crossref_primary_10_3390_cells12212566 |
Cites_doi | 10.1016/j.tcb.2016.06.002 10.1074/jbc.M109.072389 10.1128/MCB.00392-17 10.1016/j.molcel.2017.08.005 10.1093/hmg/ddp460 10.1016/j.molcel.2016.08.021 10.1038/ncb1846 10.1073/pnas.1507263112 10.1083/jcb.200702115 10.1038/ncb3407 10.1038/ncomms8007 10.1016/j.devcel.2018.03.023 10.1083/jcb.200907015 10.7554/eLife.23367 10.1083/jcb.201607039 10.1016/j.neulet.2010.09.018 10.1091/mbc.e11-04-0279 10.4161/15548627.2014.984272 10.1091/mbc.e11-09-0746 10.1038/emboj.2010.74 10.1038/ncomms12420 10.1038/ncb2204 10.1016/j.molcel.2017.02.010 10.1038/ng1609 10.4161/auto.29395 10.4161/auto.6.6.12709 10.1146/annurev-biochem-052810-093700 10.1083/jcb.200811005 10.1016/j.cub.2007.09.032 10.1083/jcb.201211014 10.1080/15548627.2016.1238554 10.1016/j.tibs.2010.04.005 10.1038/s41467-018-02823-x 10.1093/hmg/ddq100 10.1038/nrm.2015.8 10.1038/nrm3696 10.1016/j.cell.2007.05.021 10.1038/ncb1740 10.1083/jcb.136.1.61 10.1016/j.cub.2010.08.002 10.1212/01.wnl.0000231510.89311.8b 10.1016/j.cub.2012.06.029 10.1083/jcb.201401126 10.1091/mbc.e13-08-0449 10.1083/jcb.110.6.1935 10.1038/ncb2078 10.1083/jcb.201708039 10.1083/jcb.111.2.329 10.1016/j.cub.2018.03.002 10.1126/science.1204592 10.1091/mbc.e13-08-0447 10.7554/eLife.00947 10.1242/jcs.196287 10.1038/s41467-018-05254-w 10.4161/auto.1.1.1270 10.1038/ng.2497 10.1038/nature04723 10.1016/j.devcel.2013.11.022 10.1126/science.aaf6136 10.1016/j.devcel.2013.03.005 10.1146/annurev.cellbio.042308.113327 10.1126/science.282.5391.1075 10.1038/emboj.2010.237 10.1111/j.1600-0854.2009.00915.x 10.15252/embj.201593148 10.1038/sj.emboj.7601051 10.1016/j.molcel.2015.11.019 10.1016/j.ceb.2017.03.010 10.1242/jcs.01114 10.1016/j.cell.2010.04.034 10.1074/jbc.M112.415968 10.7554/eLife.31145 10.1083/jcb.201804039 10.1038/nrm2728 10.1083/jcb.201804028 10.1091/mbc.e13-07-0381 10.1016/j.cell.2012.11.001 10.1038/nrm2002 10.1016/j.molcel.2013.01.024 10.1083/jcb.143.1.65 10.1016/j.molcel.2014.11.013 10.1038/emboj.2012.32 10.1091/mbc.e16-03-0205 10.1080/15548627.2017.1343768 10.1038/ncb3114 10.1074/jbc.M112.384305 10.4161/auto.24856 10.1083/jcb.200803137 10.1016/j.devcel.2017.02.016 10.1083/jcb.201412046 10.1016/j.tcb.2015.03.001 10.1038/ncb2979 10.1038/ncomms11808 10.1083/jcb.201710116 10.1083/jcb.201106120 10.1091/mbc.01-10-0498 10.15252/embr.201438618 10.1073/pnas.1705572114 10.1073/pnas.1010554107 10.1083/jcb.201712058 10.4161/auto.6259 10.1038/nature04724 10.1038/cr.2013.168 10.1038/nrm2708 10.1038/nature14147 10.1016/j.molcel.2014.11.006 10.1016/j.cell.2013.08.044 10.1091/mbc.e10-06-0495 10.1016/j.ceb.2018.04.003 10.1091/mbc.12.11.3690 10.1080/15548627.2015.1072669 10.1111/j.1600-0854.2008.00701.x 10.1083/jcb.201711083 10.1016/j.devcel.2011.02.006 10.1038/ncb1854 10.1016/j.cell.2010.04.009 10.1083/jcb.201211160 10.1146/annurev-cellbio-111315-125407 10.4161/auto.5.8.10274 10.1016/j.cub.2007.07.029 10.1016/j.devcel.2007.04.005 10.1038/ncb1991 10.1083/jcb.201611027 10.1083/jcb.200810098 10.1038/35022595 10.1242/jcs.01370 10.1073/pnas.1806727115 10.1038/ncb3066 10.1083/jcb.201607085 10.1091/mbc.e08-01-0080 10.15252/embr.201439464 10.1016/j.devcel.2014.06.001 |
ContentType | Journal Article |
Copyright | 2019 Zhao and Zhang. Copyright Rockefeller University Press Mar 2019 2019 Zhao and Zhang 2019 |
Copyright_xml | – notice: 2019 Zhao and Zhang. – notice: Copyright Rockefeller University Press Mar 2019 – notice: 2019 Zhao and Zhang 2019 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QL 7QP 7QR 7TK 7TM 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
DOI | 10.1083/jcb.201810099 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Technology Research Database Nucleic Acids Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Genetics Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE Virology and AIDS Abstracts CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
DocumentTitleAlternate | Autophagosome maturation: Machinery and regulation |
EISSN | 1540-8140 |
EndPage | 770 |
ExternalDocumentID | PMC6400552 30578282 10_1083_jcb_201810099 |
Genre | Research Support, Non-U.S. Gov't Journal Article Review |
GrantInformation_xml | – fundername: ; grantid: XDB19000000 – fundername: ; grantid: 31630048; 31421002; 31561143001 – fundername: Orphan Disease Center grantid: MDBR-18-104-BPAN – fundername: ; grantid: QYZDY-SSW-SMC006 |
GroupedDBID | --- -DZ -~X .55 123 18M 29K 2WC 34G 36B 39C 4.4 53G 85S AAYXX ABDNZ ABOCM ABPPZ ABRJW ABZEH ACGFO ACGOD ACIWK ACKOT ACNCT ACPRK ADBBV AEILP AENEX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BKOMP BTFSW C45 CITATION CS3 D-I D0L DIK DU5 E3Z EBS EJD EMB F5P F9R FRP GX1 H13 HF~ HYE IH2 JZ9 KQ8 N9A NHB O5R O5S OK1 P2P PQQKQ R.V RHI RNS RXW SJN TAE TN5 TR2 TRP TWZ UBX UHB UKR UPT W8F WH7 WOQ X7M YKV YNH YOC YQT YSK YWH YZZ ZCA ~KM CGR CUY CVF ECM EIF NPM 7QL 7QP 7QR 7TK 7TM 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c481t-3a7472d8ade25cea6e6565b8621ddf776681601bd481679302820f9e2a5186563 |
ISSN | 0021-9525 1540-8140 |
IngestDate | Thu Aug 21 18:13:23 EDT 2025 Fri Jul 11 07:33:06 EDT 2025 Mon Jun 30 10:27:27 EDT 2025 Thu Apr 03 07:10:02 EDT 2025 Tue Jul 01 02:00:46 EDT 2025 Thu Apr 24 22:54:11 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | 2019 Zhao and Zhang. This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms/). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 International license, as described at https://creativecommons.org/licenses/by-nc-sa/4.0/). |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c481t-3a7472d8ade25cea6e6565b8621ddf776681601bd481679302820f9e2a5186563 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-3342-5377 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC6400552 |
PMID | 30578282 |
PQID | 2222921489 |
PQPubID | 48855 |
PageCount | 14 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6400552 proquest_miscellaneous_2159986950 proquest_journals_2222921489 pubmed_primary_30578282 crossref_citationtrail_10_1083_jcb_201810099 crossref_primary_10_1083_jcb_201810099 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20190304 |
PublicationDateYYYYMMDD | 2019-03-04 |
PublicationDate_xml | – month: 3 year: 2019 text: 20190304 day: 4 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | The Journal of cell biology |
PublicationTitleAlternate | J Cell Biol |
PublicationYear | 2019 |
Publisher | Rockefeller University Press |
Publisher_xml | – name: Rockefeller University Press |
References | Liou (2023072317132319800_bib61) 1997; 136 Axe (2023072317132319800_bib3) 2008; 182 Korolchuk (2023072317132319800_bib53) 2011; 13 Zhao (2023072317132319800_bib129) 2013; 9 Nakatogawa (2023072317132319800_bib75) 2009; 10 Ferguson (2023072317132319800_bib21) 2009; 18 Jahreiss (2023072317132319800_bib46) 2008; 9 Zhao (2023072317132319800_bib126) 2018; 53 Tabata (2023072317132319800_bib103) 2010; 21 Hasegawa (2023072317132319800_bib37) 2016; 35 Zhao (2023072317132319800_bib131) 2018; 28 Gómez-Sánchez (2023072317132319800_bib30) 2018; 217 Takáts (2023072317132319800_bib106) 2014; 25 Hardy (2023072317132319800_bib36) 1998; 282 Weidberg (2023072317132319800_bib114) 2010; 29 Eskelinen (2023072317132319800_bib19) 2005; 1 Rusten (2023072317132319800_bib92) 2007; 17 Liang (2023072317132319800_bib59) 2008; 10 Miao (2023072317132319800_bib72) 2016; 12 Nordmann (2023072317132319800_bib78) 2010; 20 Gary (2023072317132319800_bib28) 2002; 13 Komatsu (2023072317132319800_bib52) 2006; 441 Mauvezin (2023072317132319800_bib69) 2015; 6 Ge (2023072317132319800_bib29) 2013; 2 Liang (2023072317132319800_bib60) 2010; 285 Skibinski (2023072317132319800_bib96) 2005; 37 Mizuno-Yamasaki (2023072317132319800_bib73) 2012; 81 Zhang (2023072317132319800_bib123) 2015; 25 Graef (2023072317132319800_bib31) 2013; 24 Hailey (2023072317132319800_bib34) 2010; 141 Stolz (2023072317132319800_bib99) 2014; 16 Maday (2023072317132319800_bib63) 2014; 30 Tsuboyama (2023072317132319800_bib110) 2016; 354 Urwin (2023072317132319800_bib111) 2010; 19 Jiang (2023072317132319800_bib49) 2014; 25 Gao (2023072317132319800_bib26) 2018; 217 Karanasios (2023072317132319800_bib50) 2016; 7 Tooze (2023072317132319800_bib109) 1990; 111 Cheng (2023072317132319800_bib13) 2018; 217 Puri (2023072317132319800_bib87) 2013; 154 Gary (2023072317132319800_bib27) 1998; 143 Itakura (2023072317132319800_bib42) 2008; 19 Jäger (2023072317132319800_bib44) 2004; 117 Gutierrez (2023072317132319800_bib33) 2004; 117 Ravikumar (2023072317132319800_bib89) 2010; 12 Nguyen (2023072317132319800_bib76) 2016; 215 Yokota (2023072317132319800_bib120) 1995; 66 Yu (2023072317132319800_bib122) 2017; 47 Hara (2023072317132319800_bib35) 2006; 441 Settembre (2023072317132319800_bib95) 2012; 31 Kim (2023072317132319800_bib51) 2015; 57 Wu (2023072317132319800_bib118) 2014; 15 Cullup (2023072317132319800_bib14) 2013; 45 Gao (2023072317132319800_bib25) 2018; 7 Nixon (2023072317132319800_bib77) 2008; 4 Pontano Vaites (2023072317132319800_bib84) 2017; 38 Sun (2023072317132319800_bib101) 2010; 107 Kotani (2023072317132319800_bib54) 2018; 115 Bas (2023072317132319800_bib5) 2018; 217 Diao (2023072317132319800_bib16) 2015; 520 Kumar (2023072317132319800_bib55) 2018; 217 Ishihara (2023072317132319800_bib40) 2001; 12 Pu (2023072317132319800_bib86) 2016; 129 McEwan (2023072317132319800_bib70) 2015; 57 Raben (2023072317132319800_bib88) 2016; 32 Medina (2023072317132319800_bib71) 2015; 17 Bains (2023072317132319800_bib4) 2011; 488 Fraldi (2023072317132319800_bib23) 2010; 29 Razi (2023072317132319800_bib90) 2009; 185 Zhao (2023072317132319800_bib128) 2012; 287 Pankiv (2023072317132319800_bib80) 2010; 188 Maday (2023072317132319800_bib64) 2012; 196 Takahashi (2023072317132319800_bib104) 2018; 9 Itakura (2023072317132319800_bib43) 2012; 151 Orsi (2023072317132319800_bib79) 2012; 23 Chauhan (2023072317132319800_bib10) 2013; 50 Manil-Ségalen (2023072317132319800_bib65) 2014; 28 Nakatogawa (2023072317132319800_bib74) 2007; 130 Matsunaga (2023072317132319800_bib68) 2009; 11 Ebner (2023072317132319800_bib18) 2018; 9 Cheng (2023072317132319800_bib12) 2017; 65 Peng (2023072317132319800_bib82) 2012; 287 Marwaha (2023072317132319800_bib66) 2017; 216 Settembre (2023072317132319800_bib94) 2011; 332 Lőrincz (2023072317132319800_bib62) 2017; 216 Parkinson (2023072317132319800_bib81) 2006; 67 Guo (2023072317132319800_bib32) 2014; 16 Anding (2023072317132319800_bib2) 2017; 41 Zhong (2023072317132319800_bib133) 2009; 11 Filimonenko (2023072317132319800_bib22) 2007; 179 Matsui (2023072317132319800_bib67) 2018; 217 Li (2023072317132319800_bib58) 2016; 18 Zhao (2023072317132319800_bib127) 2013; 200 Cai (2023072317132319800_bib7) 2007; 12 Dunn (2023072317132319800_bib17) 1990; 110 Yu (2023072317132319800_bib121) 2010; 26 Abada (2023072317132319800_bib1) 2017; 114 Jahn (2023072317132319800_bib45) 2006; 7 Cheng (2023072317132319800_bib11) 2015; 209 Stenmark (2023072317132319800_bib98) 2009; 10 Itakura (2023072317132319800_bib41) 2010; 6 Lamb (2023072317132319800_bib56) 2013; 14 Rocha (2023072317132319800_bib91) 2009; 185 Fujita (2023072317132319800_bib24) 2017; 6 Stroupe (2023072317132319800_bib100) 2006; 25 Prinz (2023072317132319800_bib85) 2014; 205 Jia (2023072317132319800_bib48) 2017; 13 Tanaka (2023072317132319800_bib107) 2000; 406 Wu (2023072317132319800_bib117) 2015; 60 Zhao (2023072317132319800_bib130) 2017; 67 Szatmári (2023072317132319800_bib102) 2014; 10 de Lartigue (2023072317132319800_bib15) 2009; 10 Zhen (2023072317132319800_bib132) 2015; 11 Takáts (2023072317132319800_bib105) 2013; 201 Wijdeven (2023072317132319800_bib116) 2016; 7 Zhang (2023072317132319800_bib124) 2016; 26 Wang (2023072317132319800_bib112) 2015; 112 Zhang (2023072317132319800_bib125) 2018; 45 Jean (2023072317132319800_bib47) 2015; 16 Hayashi-Nishino (2023072317132319800_bib38) 2009; 11 Cebollero (2023072317132319800_bib9) 2012; 22 Phillips (2023072317132319800_bib83) 2016; 17 Sato (2023072317132319800_bib93) 2011; 22 Tian (2023072317132319800_bib108) 2010; 141 Hegedűs (2023072317132319800_bib39) 2016; 27 Brandstaetter (2023072317132319800_bib6) 2014; 10 Weidberg (2023072317132319800_bib115) 2011; 20 Slawson (2023072317132319800_bib97) 2010; 35 Carroll (2023072317132319800_bib8) 2013; 25 Lee (2023072317132319800_bib57) 2007; 17 Wang (2023072317132319800_bib113) 2016; 63 Feng (2023072317132319800_bib20) 2014; 24 Ylä-Anttila (2023072317132319800_bib119) 2009; 5 |
References_xml | – volume: 26 start-page: 934 year: 2016 ident: 2023072317132319800_bib124 article-title: Shaping the endoplasmic reticulum into a social network publication-title: Trends Cell Biol. doi: 10.1016/j.tcb.2016.06.002 – volume: 285 start-page: 3499 year: 2010 ident: 2023072317132319800_bib60 article-title: Neural-specific deletion of FIP200 leads to cerebellar degeneration caused by increased neuronal death and axon degeneration publication-title: J. Biol. Chem. doi: 10.1074/jbc.M109.072389 – volume: 38 start-page: MCB.00392-17 year: 2017 ident: 2023072317132319800_bib84 article-title: Systematic analysis of human cells lacking ATG8 proteins uncovers roles for GABARAPs and the CCZ1/MON1 regulator C18orf8/RMC1 in macro and selective autophagic flux publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.00392-17 – volume: 67 start-page: 974 year: 2017 ident: 2023072317132319800_bib130 article-title: The ER-Localized Transmembrane Protein EPG-3/VMP1 Regulates SERCA Activity to Control ER-Isolation Membrane Contacts for Autophagosome Formation publication-title: Mol. Cell. doi: 10.1016/j.molcel.2017.08.005 – volume: 18 start-page: 4868 year: 2009 ident: 2023072317132319800_bib21 article-title: Defective autophagy in neurons and astrocytes from mice deficient in PI(3,5)P2 publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/ddp460 – volume: 63 start-page: 781 year: 2016 ident: 2023072317132319800_bib113 article-title: The Vici Syndrome Protein EPG5 Is a Rab7 Effector that Determines the Fusion Specificity of Autophagosomes with Late Endosomes/Lysosomes publication-title: Mol. Cell. doi: 10.1016/j.molcel.2016.08.021 – volume: 11 start-page: 385 year: 2009 ident: 2023072317132319800_bib68 article-title: Two Beclin 1-binding proteins, Atg14L and Rubicon, reciprocally regulate autophagy at different stages publication-title: Nat. Cell Biol. doi: 10.1038/ncb1846 – volume: 112 start-page: 7015 year: 2015 ident: 2023072317132319800_bib112 article-title: GABARAPs regulate PI4P-dependent autophagosome:lysosome fusion publication-title: Proc. Natl. Acad. Sci. USA. doi: 10.1073/pnas.1507263112 – volume: 179 start-page: 485 year: 2007 ident: 2023072317132319800_bib22 article-title: Functional multivesicular bodies are required for autophagic clearance of protein aggregates associated with neurodegenerative disease publication-title: J. Cell Biol. doi: 10.1083/jcb.200702115 – volume: 18 start-page: 1065 year: 2016 ident: 2023072317132319800_bib58 article-title: Protein kinase C controls lysosome biogenesis independently of mTORC1 publication-title: Nat. Cell Biol. doi: 10.1038/ncb3407 – volume: 6 start-page: 7007 year: 2015 ident: 2023072317132319800_bib69 article-title: Autophagosome-lysosome fusion is independent of V-ATPase-mediated acidification publication-title: Nat. Commun. doi: 10.1038/ncomms8007 – volume: 45 start-page: 245 year: 2018 ident: 2023072317132319800_bib125 article-title: GRASP55 Senses Glucose Deprivation through O-GlcNAcylation to Promote Autophagosome-Lysosome Fusion publication-title: Dev. Cell. doi: 10.1016/j.devcel.2018.03.023 – volume: 188 start-page: 253 year: 2010 ident: 2023072317132319800_bib80 article-title: FYCO1 is a Rab7 effector that binds to LC3 and PI3P to mediate microtubule plus end-directed vesicle transport publication-title: J. Cell Biol. doi: 10.1083/jcb.200907015 – volume: 6 start-page: e23367 year: 2017 ident: 2023072317132319800_bib24 article-title: Genetic screen in Drosophila muscle identifies autophagy-mediated T-tubule remodeling and a Rab2 role in autophagy publication-title: eLife. doi: 10.7554/eLife.23367 – volume: 215 start-page: 857 year: 2016 ident: 2023072317132319800_bib76 article-title: Atg8 family LC3/GABARAP proteins are crucial for autophagosome-lysosome fusion but not autophagosome formation during PINK1/Parkin mitophagy and starvation publication-title: J. Cell Biol. doi: 10.1083/jcb.201607039 – volume: 488 start-page: 112 year: 2011 ident: 2023072317132319800_bib4 article-title: IGF-I stimulates Rab7-RILP interaction during neuronal autophagy publication-title: Neurosci. Lett. doi: 10.1016/j.neulet.2010.09.018 – volume: 22 start-page: 2579 year: 2011 ident: 2023072317132319800_bib93 article-title: Caenorhabditis elegans SNAP-29 is required for organellar integrity of the endomembrane system and general exocytosis in intestinal epithelial cells publication-title: Mol. Biol. Cell. doi: 10.1091/mbc.e11-04-0279 – volume: 10 start-page: 2310 year: 2014 ident: 2023072317132319800_bib6 article-title: Loss of functional MYO1C/myosin 1c, a motor protein involved in lipid raft trafficking, disrupts autophagosome-lysosome fusion publication-title: Autophagy. doi: 10.4161/15548627.2014.984272 – volume: 23 start-page: 1860 year: 2012 ident: 2023072317132319800_bib79 article-title: Dynamic and transient interactions of Atg9 with autophagosomes, but not membrane integration, are required for autophagy publication-title: Mol. Biol. Cell. doi: 10.1091/mbc.e11-09-0746 – volume: 29 start-page: 1792 year: 2010 ident: 2023072317132319800_bib114 article-title: LC3 and GATE-16/GABARAP subfamilies are both essential yet act differently in autophagosome biogenesis publication-title: EMBO J. doi: 10.1038/emboj.2010.74 – volume: 7 start-page: 12420 year: 2016 ident: 2023072317132319800_bib50 article-title: Autophagy initiation by ULK complex assembly on ER tubulovesicular regions marked by ATG9 vesicles publication-title: Nat. Commun. doi: 10.1038/ncomms12420 – volume: 13 start-page: 453 year: 2011 ident: 2023072317132319800_bib53 article-title: Lysosomal positioning coordinates cellular nutrient responses publication-title: Nat. Cell Biol. doi: 10.1038/ncb2204 – volume: 65 start-page: 1029 year: 2017 ident: 2023072317132319800_bib12 article-title: Pacer Mediates the Function of Class III PI3K and HOPS Complexes in Autophagosome Maturation by Engaging Stx17 publication-title: Mol. Cell. doi: 10.1016/j.molcel.2017.02.010 – volume: 37 start-page: 806 year: 2005 ident: 2023072317132319800_bib96 article-title: Mutations in the endosomal ESCRTIII-complex subunit CHMP2B in frontotemporal dementia publication-title: Nat. Genet. doi: 10.1038/ng1609 – volume: 10 start-page: 1154 year: 2014 ident: 2023072317132319800_bib102 article-title: The autophagic roles of Rab small GTPases and their upstream regulators: a review publication-title: Autophagy. doi: 10.4161/auto.29395 – volume: 6 start-page: 764 year: 2010 ident: 2023072317132319800_bib41 article-title: Characterization of autophagosome formation site by a hierarchical analysis of mammalian Atg proteins publication-title: Autophagy. doi: 10.4161/auto.6.6.12709 – volume: 81 start-page: 637 year: 2012 ident: 2023072317132319800_bib73 article-title: GTPase networks in membrane traffic publication-title: Annu. Rev. Biochem. doi: 10.1146/annurev-biochem-052810-093700 – volume: 185 start-page: 1209 year: 2009 ident: 2023072317132319800_bib91 article-title: Cholesterol sensor ORP1L contacts the ER protein VAP to control Rab7-RILP-p150 Glued and late endosome positioning publication-title: J. Cell Biol. doi: 10.1083/jcb.200811005 – volume: 17 start-page: 1817 year: 2007 ident: 2023072317132319800_bib92 article-title: ESCRTs and Fab1 regulate distinct steps of autophagy publication-title: Curr. Biol. doi: 10.1016/j.cub.2007.09.032 – volume: 200 start-page: 731 year: 2013 ident: 2023072317132319800_bib127 article-title: Mice deficient in Epg5 exhibit selective neuronal vulnerability to degeneration publication-title: J. Cell Biol. doi: 10.1083/jcb.201211014 – volume: 12 start-page: 2263 year: 2016 ident: 2023072317132319800_bib72 article-title: Mice deficient in the Vici syndrome gene Epg5 exhibit features of retinitis pigmentosa publication-title: Autophagy. doi: 10.1080/15548627.2016.1238554 – volume: 35 start-page: 547 year: 2010 ident: 2023072317132319800_bib97 article-title: O-GlcNAc signaling: a metabolic link between diabetes and cancer? publication-title: Trends Biochem. Sci. doi: 10.1016/j.tibs.2010.04.005 – volume: 9 start-page: 599 year: 2018 ident: 2023072317132319800_bib18 article-title: The IAP family member BRUCE regulates autophagosome-lysosome fusion publication-title: Nat. Commun. doi: 10.1038/s41467-018-02823-x – volume: 19 start-page: 2228 year: 2010 ident: 2023072317132319800_bib111 article-title: Disruption of endocytic trafficking in frontotemporal dementia with CHMP2B mutations publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/ddq100 – volume: 17 start-page: 69 year: 2016 ident: 2023072317132319800_bib83 article-title: Structure and function of ER membrane contact sites with other organelles publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm.2015.8 – volume: 14 start-page: 759 year: 2013 ident: 2023072317132319800_bib56 article-title: The autophagosome: origins unknown, biogenesis complex publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm3696 – volume: 130 start-page: 165 year: 2007 ident: 2023072317132319800_bib74 article-title: Atg8, a ubiquitin-like protein required for autophagosome formation, mediates membrane tethering and hemifusion publication-title: Cell. doi: 10.1016/j.cell.2007.05.021 – volume: 10 start-page: 776 year: 2008 ident: 2023072317132319800_bib59 article-title: Beclin1-binding UVRAG targets the class C Vps complex to coordinate autophagosome maturation and endocytic trafficking publication-title: Nat. Cell Biol. doi: 10.1038/ncb1740 – volume: 136 start-page: 61 year: 1997 ident: 2023072317132319800_bib61 article-title: The autophagic and endocytic pathways converge at the nascent autophagic vacuoles publication-title: J. Cell Biol. doi: 10.1083/jcb.136.1.61 – volume: 20 start-page: 1654 year: 2010 ident: 2023072317132319800_bib78 article-title: The Mon1-Ccz1 complex is the GEF of the late endosomal Rab7 homolog Ypt7 publication-title: Curr. Biol. doi: 10.1016/j.cub.2010.08.002 – volume: 67 start-page: 1074 year: 2006 ident: 2023072317132319800_bib81 article-title: ALS phenotypes with mutations in CHMP2B (charged multivesicular body protein 2B) publication-title: Neurology. doi: 10.1212/01.wnl.0000231510.89311.8b – volume: 22 start-page: 1545 year: 2012 ident: 2023072317132319800_bib9 article-title: Phosphatidylinositol-3-phosphate clearance plays a key role in autophagosome completion publication-title: Curr. Biol. doi: 10.1016/j.cub.2012.06.029 – volume: 205 start-page: 759 year: 2014 ident: 2023072317132319800_bib85 article-title: Bridging the gap: membrane contact sites in signaling, metabolism, and organelle dynamics publication-title: J. Cell Biol. doi: 10.1083/jcb.201401126 – volume: 25 start-page: 1338 year: 2014 ident: 2023072317132319800_bib106 article-title: Interaction of the HOPS complex with Syntaxin 17 mediates autophagosome clearance in Drosophila publication-title: Mol. Biol. Cell. doi: 10.1091/mbc.e13-08-0449 – volume: 110 start-page: 1935 year: 1990 ident: 2023072317132319800_bib17 article-title: Studies on the mechanisms of autophagy: maturation of the autophagic vacuole publication-title: J. Cell Biol. doi: 10.1083/jcb.110.6.1935 – volume: 12 start-page: 747 year: 2010 ident: 2023072317132319800_bib89 article-title: Plasma membrane contributes to the formation of pre-autophagosomal structures publication-title: Nat. Cell Biol. doi: 10.1038/ncb2078 – volume: 217 start-page: 997 year: 2018 ident: 2023072317132319800_bib55 article-title: Mechanism of Stx17 recruitment to autophagosomes via IRGM and mammalian Atg8 proteins publication-title: J. Cell Biol. doi: 10.1083/jcb.201708039 – volume: 111 start-page: 329 year: 1990 ident: 2023072317132319800_bib109 article-title: In exocrine pancreas, the basolateral endocytic pathway converges with the autophagic pathway immediately after the early endosome publication-title: J. Cell Biol. doi: 10.1083/jcb.111.2.329 – volume: 66 start-page: 15 year: 1995 ident: 2023072317132319800_bib120 article-title: Formation of autophagosomes during degradation of excess peroxisomes induced by di-(2-ethylhexyl)-phthalate treatment. III. Fusion of early autophagosomes with lysosomal compartments publication-title: Eur. J. Cell Biol. – volume: 28 start-page: 1234 year: 2018 ident: 2023072317132319800_bib131 article-title: The ER Contact Proteins VAPA/B Interact with Multiple Autophagy Proteins to Modulate Autophagosome Biogenesis publication-title: Curr. Biol. doi: 10.1016/j.cub.2018.03.002 – volume: 332 start-page: 1429 year: 2011 ident: 2023072317132319800_bib94 article-title: TFEB links autophagy to lysosomal biogenesis publication-title: Science. doi: 10.1126/science.1204592 – volume: 25 start-page: 1327 year: 2014 ident: 2023072317132319800_bib49 article-title: The HOPS complex mediates autophagosome-lysosome fusion through interaction with syntaxin 17 publication-title: Mol. Biol. Cell. doi: 10.1091/mbc.e13-08-0447 – volume: 2 start-page: e00947 year: 2013 ident: 2023072317132319800_bib29 article-title: The ER-Golgi intermediate compartment is a key membrane source for the LC3 lipidation step of autophagosome biogenesis publication-title: eLife. doi: 10.7554/eLife.00947 – volume: 129 start-page: 4329 year: 2016 ident: 2023072317132319800_bib86 article-title: Mechanisms and functions of lysosome positioning publication-title: J. Cell Sci. doi: 10.1242/jcs.196287 – volume: 9 start-page: 2855 year: 2018 ident: 2023072317132319800_bib104 article-title: An autophagy assay reveals the ESCRT-III component CHMP2A as a regulator of phagophore closure publication-title: Nat. Commun. doi: 10.1038/s41467-018-05254-w – volume: 1 start-page: 1 year: 2005 ident: 2023072317132319800_bib19 article-title: Maturation of autophagic vacuoles in Mammalian cells publication-title: Autophagy. doi: 10.4161/auto.1.1.1270 – volume: 45 start-page: 83 year: 2013 ident: 2023072317132319800_bib14 article-title: Recessive mutations in EPG5 cause Vici syndrome, a multisystem disorder with defective autophagy publication-title: Nat. Genet. doi: 10.1038/ng.2497 – volume: 441 start-page: 880 year: 2006 ident: 2023072317132319800_bib52 article-title: Loss of autophagy in the central nervous system causes neurodegeneration in mice publication-title: Nature. doi: 10.1038/nature04723 – volume: 28 start-page: 43 year: 2014 ident: 2023072317132319800_bib65 article-title: The C. elegans LC3 acts downstream of GABARAP to degrade autophagosomes by interacting with the HOPS subunit VPS39 publication-title: Dev. Cell. doi: 10.1016/j.devcel.2013.11.022 – volume: 354 start-page: 1036 year: 2016 ident: 2023072317132319800_bib110 article-title: The ATG conjugation systems are important for degradation of the inner autophagosomal membrane publication-title: Science. doi: 10.1126/science.aaf6136 – volume: 25 start-page: 15 year: 2013 ident: 2023072317132319800_bib8 article-title: The TBC/RabGAP Armus coordinates Rac1 and Rab7 functions during autophagy publication-title: Dev. Cell. doi: 10.1016/j.devcel.2013.03.005 – volume: 26 start-page: 137 year: 2010 ident: 2023072317132319800_bib121 article-title: Tethering factors as organizers of intracellular vesicular traffic publication-title: Annu. Rev. Cell Dev. Biol. doi: 10.1146/annurev.cellbio.042308.113327 – volume: 282 start-page: 1075 year: 1998 ident: 2023072317132319800_bib36 article-title: Genetic classification of primary neurodegenerative disease publication-title: Science. doi: 10.1126/science.282.5391.1075 – volume: 29 start-page: 3607 year: 2010 ident: 2023072317132319800_bib23 article-title: Lysosomal fusion and SNARE function are impaired by cholesterol accumulation in lysosomal storage disorders publication-title: EMBO J. doi: 10.1038/emboj.2010.237 – volume: 10 start-page: 883 year: 2009 ident: 2023072317132319800_bib15 article-title: PIKfyve regulation of endosome-linked pathways publication-title: Traffic. doi: 10.1111/j.1600-0854.2009.00915.x – volume: 35 start-page: 1853 year: 2016 ident: 2023072317132319800_bib37 article-title: Autophagosome-lysosome fusion in neurons requires INPP5E, a protein associated with Joubert syndrome publication-title: EMBO J. doi: 10.15252/embj.201593148 – volume: 25 start-page: 1579 year: 2006 ident: 2023072317132319800_bib100 article-title: Purification of active HOPS complex reveals its affinities for phosphoinositides and the SNARE Vam7p publication-title: EMBO J. doi: 10.1038/sj.emboj.7601051 – volume: 60 start-page: 914 year: 2015 ident: 2023072317132319800_bib117 article-title: Structural Basis of the Differential Function of the Two C. elegans Atg8 Homologs, LGG-1 and LGG-2, in Autophagy publication-title: Mol. Cell. doi: 10.1016/j.molcel.2015.11.019 – volume: 47 start-page: 92 year: 2017 ident: 2023072317132319800_bib122 article-title: The coordination of membrane fission and fusion at the end of autophagosome maturation publication-title: Curr. Opin. Cell Biol. doi: 10.1016/j.ceb.2017.03.010 – volume: 117 start-page: 2687 year: 2004 ident: 2023072317132319800_bib33 article-title: Rab7 is required for the normal progression of the autophagic pathway in mammalian cells publication-title: J. Cell Sci. doi: 10.1242/jcs.01114 – volume: 141 start-page: 1042 year: 2010 ident: 2023072317132319800_bib108 article-title: C. elegans screen identifies autophagy genes specific to multicellular organisms publication-title: Cell. doi: 10.1016/j.cell.2010.04.034 – volume: 287 start-page: 42053 year: 2012 ident: 2023072317132319800_bib128 article-title: The p53-induced gene Ei24 is an essential component of the basal autophagy pathway publication-title: J. Biol. Chem. doi: 10.1074/jbc.M112.415968 – volume: 7 start-page: e31145 year: 2018 ident: 2023072317132319800_bib25 article-title: Molecular mechanism to target the endosomal Mon1-Ccz1 GEF complex to the pre-autophagosomal structure publication-title: eLife. doi: 10.7554/eLife.31145 – volume: 217 start-page: 3670 year: 2018 ident: 2023072317132319800_bib26 article-title: A novel in vitro assay reveals SNARE topology and the role of Ykt6 in autophagosome fusion with vacuoles publication-title: J. Cell Biol. doi: 10.1083/jcb.201804039 – volume: 10 start-page: 513 year: 2009 ident: 2023072317132319800_bib98 article-title: Rab GTPases as coordinators of vesicle traffic publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm2728 – volume: 217 start-page: 3656 year: 2018 ident: 2023072317132319800_bib5 article-title: Reconstitution reveals Ykt6 as the autophagosomal SNARE in autophagosome-vacuole fusion publication-title: J. Cell Biol. doi: 10.1083/jcb.201804028 – volume: 24 start-page: 2918 year: 2013 ident: 2023072317132319800_bib31 article-title: ER exit sites are physical and functional core autophagosome biogenesis components publication-title: Mol. Biol. Cell. doi: 10.1091/mbc.e13-07-0381 – volume: 151 start-page: 1256 year: 2012 ident: 2023072317132319800_bib43 article-title: The hairpin-type tail-anchored SNARE syntaxin 17 targets to autophagosomes for fusion with endosomes/lysosomes publication-title: Cell. doi: 10.1016/j.cell.2012.11.001 – volume: 7 start-page: 631 year: 2006 ident: 2023072317132319800_bib45 article-title: SNAREs--engines for membrane fusion publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm2002 – volume: 50 start-page: 16 year: 2013 ident: 2023072317132319800_bib10 article-title: ZKSCAN3 is a master transcriptional repressor of autophagy publication-title: Mol. Cell. doi: 10.1016/j.molcel.2013.01.024 – volume: 143 start-page: 65 year: 1998 ident: 2023072317132319800_bib27 article-title: Fab1p is essential for PtdIns(3)P 5-kinase activity and the maintenance of vacuolar size and membrane homeostasis publication-title: J. Cell Biol. doi: 10.1083/jcb.143.1.65 – volume: 57 start-page: 207 year: 2015 ident: 2023072317132319800_bib51 article-title: mTORC1 phosphorylates UVRAG to negatively regulate autophagosome and endosome maturation publication-title: Mol. Cell. doi: 10.1016/j.molcel.2014.11.013 – volume: 31 start-page: 1095 year: 2012 ident: 2023072317132319800_bib95 article-title: A lysosome-to-nucleus signalling mechanism senses and regulates the lysosome via mTOR and TFEB publication-title: EMBO J. doi: 10.1038/emboj.2012.32 – volume: 27 start-page: 3132 year: 2016 ident: 2023072317132319800_bib39 article-title: The Ccz1-Mon1-Rab7 module and Rab5 control distinct steps of autophagy publication-title: Mol. Biol. Cell. doi: 10.1091/mbc.e16-03-0205 – volume: 13 start-page: 1648 year: 2017 ident: 2023072317132319800_bib48 article-title: BORC coordinates encounter and fusion of lysosomes with autophagosomes publication-title: Autophagy. doi: 10.1080/15548627.2017.1343768 – volume: 17 start-page: 288 year: 2015 ident: 2023072317132319800_bib71 article-title: Lysosomal calcium signalling regulates autophagy through calcineurin and TFEB publication-title: Nat. Cell Biol. doi: 10.1038/ncb3114 – volume: 287 start-page: 32861 year: 2012 ident: 2023072317132319800_bib82 article-title: Ablation of vacuole protein sorting 18 (Vps18) gene leads to neurodegeneration and impaired neuronal migration by disrupting multiple vesicle transport pathways to lysosomes publication-title: J. Biol. Chem. doi: 10.1074/jbc.M112.384305 – volume: 9 start-page: 1258 year: 2013 ident: 2023072317132319800_bib129 article-title: Role of Epg5 in selective neurodegeneration and Vici syndrome publication-title: Autophagy. doi: 10.4161/auto.24856 – volume: 182 start-page: 685 year: 2008 ident: 2023072317132319800_bib3 article-title: Autophagosome formation from membrane compartments enriched in phosphatidylinositol 3-phosphate and dynamically connected to the endoplasmic reticulum publication-title: J. Cell Biol. doi: 10.1083/jcb.200803137 – volume: 41 start-page: 10 year: 2017 ident: 2023072317132319800_bib2 article-title: Cleaning House: Selective Autophagy of Organelles publication-title: Dev. Cell. doi: 10.1016/j.devcel.2017.02.016 – volume: 209 start-page: 377 year: 2015 ident: 2023072317132319800_bib11 article-title: Axonal autophagosomes recruit dynein for retrograde transport through fusion with late endosomes publication-title: J. Cell Biol. doi: 10.1083/jcb.201412046 – volume: 25 start-page: 376 year: 2015 ident: 2023072317132319800_bib123 article-title: Eaten alive: novel insights into autophagy from multicellular model systems publication-title: Trends Cell Biol. doi: 10.1016/j.tcb.2015.03.001 – volume: 16 start-page: 495 year: 2014 ident: 2023072317132319800_bib99 article-title: Cargo recognition and trafficking in selective autophagy publication-title: Nat. Cell Biol. doi: 10.1038/ncb2979 – volume: 7 start-page: 11808 year: 2016 ident: 2023072317132319800_bib116 article-title: Cholesterol and ORP1L-mediated ER contact sites control autophagosome transport and fusion with the endocytic pathway publication-title: Nat. Commun. doi: 10.1038/ncomms11808 – volume: 217 start-page: 2743 year: 2018 ident: 2023072317132319800_bib30 article-title: Atg9 establishes Atg2-dependent contact sites between the endoplasmic reticulum and phagophores publication-title: J. Cell Biol. doi: 10.1083/jcb.201710116 – volume: 196 start-page: 407 year: 2012 ident: 2023072317132319800_bib64 article-title: Autophagosomes initiate distally and mature during transport toward the cell soma in primary neurons publication-title: J. Cell Biol. doi: 10.1083/jcb.201106120 – volume: 13 start-page: 1238 year: 2002 ident: 2023072317132319800_bib28 article-title: Regulation of Fab1 phosphatidylinositol 3-phosphate 5-kinase pathway by Vac7 protein and Fig4, a polyphosphoinositide phosphatase family member publication-title: Mol. Biol. Cell. doi: 10.1091/mbc.01-10-0498 – volume: 15 start-page: 973 year: 2014 ident: 2023072317132319800_bib118 article-title: PI3P phosphatase activity is required for autophagosome maturation and autolysosome formation publication-title: EMBO Rep. doi: 10.15252/embr.201438618 – volume: 114 start-page: 12749 year: 2017 ident: 2023072317132319800_bib1 article-title: SNARE priming is essential for maturation of autophagosomes but not for their formation publication-title: Proc. Natl. Acad. Sci. USA. doi: 10.1073/pnas.1705572114 – volume: 107 start-page: 19338 year: 2010 ident: 2023072317132319800_bib101 article-title: Rubicon controls endosome maturation as a Rab7 effector publication-title: Proc. Natl. Acad. Sci. USA. doi: 10.1073/pnas.1010554107 – volume: 217 start-page: 2633 year: 2018 ident: 2023072317132319800_bib67 article-title: Autophagosomal YKT6 is required for fusion with lysosomes independently of syntaxin 17 publication-title: J. Cell Biol. doi: 10.1083/jcb.201712058 – volume: 4 start-page: 590 year: 2008 ident: 2023072317132319800_bib77 article-title: Neurodegenerative lysosomal disorders: a continuum from development to late age publication-title: Autophagy. doi: 10.4161/auto.6259 – volume: 441 start-page: 885 year: 2006 ident: 2023072317132319800_bib35 article-title: Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice publication-title: Nature. doi: 10.1038/nature04724 – volume: 24 start-page: 24 year: 2014 ident: 2023072317132319800_bib20 article-title: The machinery of macroautophagy publication-title: Cell Res. doi: 10.1038/cr.2013.168 – volume: 10 start-page: 458 year: 2009 ident: 2023072317132319800_bib75 article-title: Dynamics and diversity in autophagy mechanisms: lessons from yeast publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm2708 – volume: 520 start-page: 563 year: 2015 ident: 2023072317132319800_bib16 article-title: ATG14 promotes membrane tethering and fusion of autophagosomes to endolysosomes publication-title: Nature. doi: 10.1038/nature14147 – volume: 57 start-page: 39 year: 2015 ident: 2023072317132319800_bib70 article-title: PLEKHM1 regulates autophagosome-lysosome fusion through HOPS complex and LC3/GABARAP proteins publication-title: Mol. Cell. doi: 10.1016/j.molcel.2014.11.006 – volume: 154 start-page: 1285 year: 2013 ident: 2023072317132319800_bib87 article-title: Diverse autophagosome membrane sources coalesce in recycling endosomes publication-title: Cell. doi: 10.1016/j.cell.2013.08.044 – volume: 21 start-page: 4162 year: 2010 ident: 2023072317132319800_bib103 article-title: Rubicon and PLEKHM1 negatively regulate the endocytic/autophagic pathway via a novel Rab7-binding domain publication-title: Mol. Biol. Cell. doi: 10.1091/mbc.e10-06-0495 – volume: 53 start-page: 29 year: 2018 ident: 2023072317132319800_bib126 article-title: Formation and maturation of autophagosomes in higher eukaryotes: a social network publication-title: Curr. Opin. Cell Biol. doi: 10.1016/j.ceb.2018.04.003 – volume: 12 start-page: 3690 year: 2001 ident: 2023072317132319800_bib40 article-title: Autophagosome requires specific early Sec proteins for its formation and NSF/SNARE for vacuolar fusion publication-title: Mol. Biol. Cell. doi: 10.1091/mbc.12.11.3690 – volume: 11 start-page: 1608 year: 2015 ident: 2023072317132319800_bib132 article-title: Impairment of autophagosome-lysosome fusion in the buff mutant mice with the VPS33A(D251E) mutation publication-title: Autophagy. doi: 10.1080/15548627.2015.1072669 – volume: 9 start-page: 574 year: 2008 ident: 2023072317132319800_bib46 article-title: The itinerary of autophagosomes: from peripheral formation to kiss-and-run fusion with lysosomes publication-title: Traffic. doi: 10.1111/j.1600-0854.2008.00701.x – volume: 217 start-page: 3127 year: 2018 ident: 2023072317132319800_bib13 article-title: Characterization of LAMP1-labeled nondegradative lysosomal and endocytic compartments in neurons publication-title: J. Cell Biol. doi: 10.1083/jcb.201711083 – volume: 20 start-page: 444 year: 2011 ident: 2023072317132319800_bib115 article-title: LC3 and GATE-16 N termini mediate membrane fusion processes required for autophagosome biogenesis publication-title: Dev. Cell. doi: 10.1016/j.devcel.2011.02.006 – volume: 11 start-page: 468 year: 2009 ident: 2023072317132319800_bib133 article-title: Distinct regulation of autophagic activity by Atg14L and Rubicon associated with Beclin 1-phosphatidylinositol-3-kinase complex publication-title: Nat. Cell Biol. doi: 10.1038/ncb1854 – volume: 141 start-page: 656 year: 2010 ident: 2023072317132319800_bib34 article-title: Mitochondria supply membranes for autophagosome biogenesis during starvation publication-title: Cell. doi: 10.1016/j.cell.2010.04.009 – volume: 201 start-page: 531 year: 2013 ident: 2023072317132319800_bib105 article-title: Autophagosomal Syntaxin17-dependent lysosomal degradation maintains neuronal function in Drosophila publication-title: J. Cell Biol. doi: 10.1083/jcb.201211160 – volume: 32 start-page: 255 year: 2016 ident: 2023072317132319800_bib88 article-title: TFEB and TFE3: Linking Lysosomes to Cellular Adaptation to Stress publication-title: Annu. Rev. Cell Dev. Biol. doi: 10.1146/annurev-cellbio-111315-125407 – volume: 5 start-page: 1180 year: 2009 ident: 2023072317132319800_bib119 article-title: 3D tomography reveals connections between the phagophore and endoplasmic reticulum publication-title: Autophagy. doi: 10.4161/auto.5.8.10274 – volume: 17 start-page: 1561 year: 2007 ident: 2023072317132319800_bib57 article-title: ESCRT-III dysfunction causes autophagosome accumulation and neurodegeneration publication-title: Curr. Biol. doi: 10.1016/j.cub.2007.07.029 – volume: 12 start-page: 671 year: 2007 ident: 2023072317132319800_bib7 article-title: Coats, tethers, Rabs, and SNAREs work together to mediate the intracellular destination of a transport vesicle publication-title: Dev. Cell. doi: 10.1016/j.devcel.2007.04.005 – volume: 11 start-page: 1433 year: 2009 ident: 2023072317132319800_bib38 article-title: A subdomain of the endoplasmic reticulum forms a cradle for autophagosome formation publication-title: Nat. Cell Biol. doi: 10.1038/ncb1991 – volume: 216 start-page: 1937 year: 2017 ident: 2023072317132319800_bib62 article-title: Rab2 promotes autophagic and endocytic lysosomal degradation publication-title: J. Cell Biol. doi: 10.1083/jcb.201611027 – volume: 185 start-page: 305 year: 2009 ident: 2023072317132319800_bib90 article-title: Early endosomes and endosomal coatomer are required for autophagy publication-title: J. Cell Biol. doi: 10.1083/jcb.200810098 – volume: 406 start-page: 902 year: 2000 ident: 2023072317132319800_bib107 article-title: Accumulation of autophagic vacuoles and cardiomyopathy in LAMP-2-deficient mice publication-title: Nature. doi: 10.1038/35022595 – volume: 117 start-page: 4837 year: 2004 ident: 2023072317132319800_bib44 article-title: Role for Rab7 in maturation of late autophagic vacuoles publication-title: J. Cell Sci. doi: 10.1242/jcs.01370 – volume: 115 start-page: 10363 year: 2018 ident: 2023072317132319800_bib54 article-title: The Atg2-Atg18 complex tethers pre-autophagosomal membranes to the endoplasmic reticulum for autophagosome formation publication-title: Proc. Natl. Acad. Sci. USA. doi: 10.1073/pnas.1806727115 – volume: 16 start-page: 1215 year: 2014 ident: 2023072317132319800_bib32 article-title: O-GlcNAc-modification of SNAP-29 regulates autophagosome maturation publication-title: Nat. Cell Biol. doi: 10.1038/ncb3066 – volume: 216 start-page: 1051 year: 2017 ident: 2023072317132319800_bib66 article-title: The Rab7 effector PLEKHM1 binds Arl8b to promote cargo traffic to lysosomes publication-title: J. Cell Biol. doi: 10.1083/jcb.201607085 – volume: 19 start-page: 5360 year: 2008 ident: 2023072317132319800_bib42 article-title: Beclin 1 forms two distinct phosphatidylinositol 3-kinase complexes with mammalian Atg14 and UVRAG publication-title: Mol. Biol. Cell. doi: 10.1091/mbc.e08-01-0080 – volume: 16 start-page: 297 year: 2015 ident: 2023072317132319800_bib47 article-title: Starvation-induced MTMR13 and RAB21 activity regulates VAMP8 to promote autophagosome-lysosome fusion publication-title: EMBO Rep. doi: 10.15252/embr.201439464 – volume: 30 start-page: 71 year: 2014 ident: 2023072317132319800_bib63 article-title: Autophagosome biogenesis in primary neurons follows an ordered and spatially regulated pathway publication-title: Dev. Cell. doi: 10.1016/j.devcel.2014.06.001 |
SSID | ssj0004743 |
Score | 2.653928 |
SecondaryResourceType | review_article |
Snippet | Macroautophagy involves the sequestration of cytoplasmic contents in a double-membrane autophagosome and their delivery to lysosomes for degradation. In... Zhao and Zhang summarize recent advances in our molecular understanding of the maturation of nascent autophagosomes into degradative autolysosomes in... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 757 |
SubjectTerms | Animals Autophagic Cell Death Autophagosomes - metabolism Autophagosomes - pathology Autophagy Biological Transport, Active Endoplasmic Reticulum - metabolism Endoplasmic Reticulum - pathology Humans Lysosomal storage diseases Lysosomes Lysosomes - metabolism Lysosomes - pathology Maturation Molecular modelling Neurodegenerative diseases Neurodegenerative Diseases - metabolism Neurodegenerative Diseases - pathology Neurological diseases Nutrient availability Pathogenesis Phagocytosis Phagosomes Reviews SNAP receptors Tethering Vesicles |
Title | Autophagosome maturation: An epic journey from the ER to lysosomes |
URI | https://www.ncbi.nlm.nih.gov/pubmed/30578282 https://www.proquest.com/docview/2222921489 https://www.proquest.com/docview/2159986950 https://pubmed.ncbi.nlm.nih.gov/PMC6400552 |
Volume | 218 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfQEGgvE-Oz20BGQryMlMRJbIe3bipUoCGoNmk8RY7jsElbUq3pw_jruUucrxYk2EtUxZda9Z1_ubve_UzIGxlJcIOTFLtxXCdIXeFErsycRCjuG61YZjDfcfKVz86Cz-fh-Vp3SZmM9a8_9pXcRatwD_SKXbL_odn2S-EGfAb9whU0DNd_0vFkhbQA6mexLK6xEBU5NJpijUl-aBaXuqaGgI3f9pFM5-hvXt0uq6eWfe-06xOrPFRM6h9alqZegrlKrv4AXPg03kg7zwr7JrSJBOxd8h23SyTOAX9Nhv8W3Gx0KfYRFEs6wrpZeWwsaAYuphLdPqqyDla7qLvCSFEzUtvXrajPDdlAcnANEcl1guV30kNPti8HC7m4rtQKgAVeTn2C0Rp19reTYx4gyxi8o-8ziCMQCL9879HJC1tWaX-UJWGFud8PZt4mD5tphv7LRlCyXlvbc1ZOH5Edq0M6qU1ml9wz-WPyoD539PYJORoYDu0M5wOd5BTNhlqzoWg2FMyGTue0LGhrNk_J2cfp6fHMsYdpODqQXun4CgJHlkqVGhZqo7gBTz5MIKD10jQTgnPpQXCepCDNAbQxFnezyDAVehJE_WdkKy9y84JQraNUcRUZwcJAy0QiiZDgga7o7rQ_Iu-aJYq1ZZrHA0-u4qriQfoxLG7cLu6IvG3FFzXFyt8ED5r1ju0uXMYMD6RnENTD8Ot2GDAS94jKTbECGfDZI8mj0B2R57V62pkavY6IGCiuFUD-9eFIfnlR8bBb29q785P7ZLvbiAdkq7xZmZfg45bJq8pOfwMH2KVv |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Autophagosome+maturation%3A+An+epic+journey+from+the+ER+to+lysosomes&rft.jtitle=The+Journal+of+cell+biology&rft.au=Zhao%2C+Yan+G.&rft.au=Zhang%2C+Hong&rft.date=2019-03-04&rft.pub=Rockefeller+University+Press&rft.issn=0021-9525&rft.eissn=1540-8140&rft.volume=218&rft.issue=3&rft.spage=757&rft.epage=770&rft_id=info:doi/10.1083%2Fjcb.201810099&rft_id=info%3Apmid%2F30578282&rft.externalDocID=PMC6400552 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9525&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9525&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9525&client=summon |