cAMP controls rod photoreceptor sensitivity via multiple targets in the phototransduction cascade

In early studies, both cyclic AMP (cAMP) and cGMP were considered as potential secondary messengers regulating the conductivity of the vertebrate photoreceptor plasma membrane. Later discovery of the cGMP specificity of cyclic nucleotide-gated channels has shifted attention to cGMP as the only secon...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of general physiology Vol. 140; no. 4; pp. 421 - 433
Main Authors Astakhova, Luba A, Samoiliuk, Evgeniia V, Govardovskii, Victor I, Firsov, Michael L
Format Journal Article
LanguageEnglish
Published United States Rockefeller University Press 01.10.2012
The Rockefeller University Press
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In early studies, both cyclic AMP (cAMP) and cGMP were considered as potential secondary messengers regulating the conductivity of the vertebrate photoreceptor plasma membrane. Later discovery of the cGMP specificity of cyclic nucleotide-gated channels has shifted attention to cGMP as the only secondary messenger in the phototransduction cascade, and cAMP is not considered in modern schemes of phototransduction. Here, we report evidence that cAMP may also be involved in regulation of the phototransduction cascade. Using a suction pipette technique, we recorded light responses of isolated solitary rods from the frog retina in normal solution and in the medium containing 2 µM of adenylate cyclase activator forskolin. Under forskolin action, flash sensitivity rose more than twofold because of a retarded photoresponse turn-off. The same concentration of forskolin lead to a 2.5-fold increase in the rod outer segment cAMP, which is close to earlier reported natural day/night cAMP variations. Detailed analysis of cAMP action on the phototransduction cascade suggests that several targets are affected by cAMP increase: (a) basal dark phosphodiesterase (PDE) activity decreases; (b) at the same intensity of light background, steady background-induced PDE activity increases; (c) at light backgrounds, guanylate cyclase activity at a given fraction of open channels is reduced; and (d) the magnitude of the Ca(2+) exchanger current rises 1.6-fold, which would correspond to a 1.6-fold elevation of [Ca(2+)](in). Analysis by a complete model of rod phototransduction suggests that an increase of [Ca(2+)](in) might also explain effects (b) and (c). The mechanism(s) by which cAMP could regulate [Ca(2+)](in) and PDE basal activity is unclear. We suggest that these regulations may have adaptive significance and improve the performance of the visual system when it switches between day and night light conditions.
AbstractList In early studies, both cyclic AMP (cAMP) and cGMP were considered as potential secondary messengers regulating the conductivity of the vertebrate photoreceptor plasma membrane. Later discovery of the cGMP specificity of cyclic nucleotide–gated channels has shifted attention to cGMP as the only secondary messenger in the phototransduction cascade, and cAMP is not considered in modern schemes of phototransduction. Here, we report evidence that cAMP may also be involved in regulation of the phototransduction cascade. Using a suction pipette technique, we recorded light responses of isolated solitary rods from the frog retina in normal solution and in the medium containing 2 µM of adenylate cyclase activator forskolin. Under forskolin action, flash sensitivity rose more than twofold because of a retarded photoresponse turn-off. The same concentration of forskolin lead to a 2.5-fold increase in the rod outer segment cAMP, which is close to earlier reported natural day/night cAMP variations. Detailed analysis of cAMP action on the phototransduction cascade suggests that several targets are affected by cAMP increase: (a) basal dark phosphodiesterase (PDE) activity decreases; (b) at the same intensity of light background, steady background-induced PDE activity increases; (c) at light backgrounds, guanylate cyclase activity at a given fraction of open channels is reduced; and (d) the magnitude of the Ca2+ exchanger current rises 1.6-fold, which would correspond to a 1.6-fold elevation of [Ca2+]in. Analysis by a complete model of rod phototransduction suggests that an increase of [Ca2+]in might also explain effects (b) and (c). The mechanism(s) by which cAMP could regulate [Ca2+]in and PDE basal activity is unclear. We suggest that these regulations may have adaptive significance and improve the performance of the visual system when it switches between day and night light conditions.
In early studies, both cyclic AMP (cAMP) and cGMP were considered as potential secondary messengers regulating the conductivity of the vertebrate photoreceptor plasma membrane. Later discovery of the cGMP specificity of cyclic nucleotide-gated channels has shifted attention to cGMP as the only secondary messenger in the phototransduction cascade, and cAMP is not considered in modern schemes of phototransduction. Here, we report evidence that cAMP may also be involved in regulation of the phototransduction cascade. Using a suction pipette technique, we recorded light responses of isolated solitary rods from the frog retina in normal solution and in the medium containing 2 µM of adenylate cyclase activator forskolin. Under forskolin action, flash sensitivity rose more than twofold because of a retarded photoresponse turn-off. The same concentration of forskolin lead to a 2.5-fold increase in the rod outer segment cAMP, which is close to earlier reported natural day/night cAMP variations. Detailed analysis of cAMP action on the phototransduction cascade suggests that several targets are affected by cAMP increase: (a) basal dark phosphodiesterase (PDE) activity decreases; (b) at the same intensity of light background, steady background-induced PDE activity increases; (c) at light backgrounds, guanylate cyclase activity at a given fraction of open channels is reduced; and (d) the magnitude of the Ca(2+) exchanger current rises 1.6-fold, which would correspond to a 1.6-fold elevation of [Ca(2+)](in). Analysis by a complete model of rod phototransduction suggests that an increase of [Ca(2+)](in) might also explain effects (b) and (c). The mechanism(s) by which cAMP could regulate [Ca(2+)](in) and PDE basal activity is unclear. We suggest that these regulations may have adaptive significance and improve the performance of the visual system when it switches between day and night light conditions.
In early studies, both cyclic AMP (cAMP) and cGMP were considered as potential secondary messengers regulating the conductivity of the vertebrate photoreceptor plasma membrane. Later discovery of the cGMP specificity of cyclic nucleotide–gated channels has shifted attention to cGMP as the only secondary messenger in the phototransduction cascade, and cAMP is not considered in modern schemes of phototransduction. Here, we report evidence that cAMP may also be involved in regulation of the phototransduction cascade. Using a suction pipette technique, we recorded light responses of isolated solitary rods from the frog retina in normal solution and in the medium containing 2 µM of adenylate cyclase activator forskolin. Under forskolin action, flash sensitivity rose more than twofold because of a retarded photoresponse turn-off. The same concentration of forskolin lead to a 2.5-fold increase in the rod outer segment cAMP, which is close to earlier reported natural day/night cAMP variations. Detailed analysis of cAMP action on the phototransduction cascade suggests that several targets are affected by cAMP increase: (a) basal dark phosphodiesterase (PDE) activity decreases; (b) at the same intensity of light background, steady background-induced PDE activity increases; (c) at light backgrounds, guanylate cyclase activity at a given fraction of open channels is reduced; and (d) the magnitude of the Ca 2+ exchanger current rises 1.6-fold, which would correspond to a 1.6-fold elevation of [Ca 2+ ] in . Analysis by a complete model of rod phototransduction suggests that an increase of [Ca 2+ ] in might also explain effects (b) and (c). The mechanism(s) by which cAMP could regulate [Ca 2+ ] in and PDE basal activity is unclear. We suggest that these regulations may have adaptive significance and improve the performance of the visual system when it switches between day and night light conditions.
In early studies, both cyclic AMP (cAMP) and cGMP were considered as potential secondary messengers regulating the conductivity of the vertebrate photoreceptor plasma membrane. Later discovery of the cGMP specificity of cyclic nucleotide-gated channels has shifted attention to cGMP as the only secondary messenger in the phototransduction cascade, and cAMP is not considered in modern schemes of phototransduction. Here, we report evidence that cAMP may also be involved in regulation of the phototransduction cascade. Using a suction pipette technique, we recorded light responses of isolated solitary rods from the frog retina in normal solution and in the medium containing 2 μM of adenylate cyclase activator forskolin. Under forskolin action, flash sensitivity rose more than twofold because of a retarded photoresponse turn-off. The same concentration of forskolin lead to a 2.5-fold increase in the rod outer segment cAMP, which is close to earlier reported natural day/night cAMP variations. Detailed analysis of cAMP action on the phototransduction cascade suggests that several targets are affected by cAMP increase: (a) basal dark phosphodiesterase (PDE) activity decreases; (b) at the same intensity of light background, steady background-induced PDE activity increases; (c) at light backgrounds, guanylate cyclase activity at a given fraction of open channels is reduced; and (d) the magnitude of the Ca2+ exchanger current rises 1.6-fold, which would correspond to a 1.6-fold elevation of [Ca2+]in. Analysis by a complete model of rod phototransduction suggests that an increase of [Ca2+]in might also explain effects (b) and (c). The mechanism(s) by which cAMP could regulate [Ca2+]in and PDE basal activity is unclear. We suggest that these regulations may have adaptive significance and improve the performance of the visual system when it switches between day and night light conditions. [PUBLICATION ABSTRACT]
Author Firsov, Michael L
Astakhova, Luba A
Govardovskii, Victor I
Samoiliuk, Evgeniia V
AuthorAffiliation I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 194223 St. Petersburg, Russia
AuthorAffiliation_xml – name: I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 194223 St. Petersburg, Russia
Author_xml – sequence: 1
  givenname: Luba A
  surname: Astakhova
  fullname: Astakhova, Luba A
  organization: IM Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 194223 St. Petersburg, Russia
– sequence: 2
  givenname: Evgeniia V
  surname: Samoiliuk
  fullname: Samoiliuk, Evgeniia V
– sequence: 3
  givenname: Victor I
  surname: Govardovskii
  fullname: Govardovskii, Victor I
– sequence: 4
  givenname: Michael L
  surname: Firsov
  fullname: Firsov, Michael L
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23008435$$D View this record in MEDLINE/PubMed
BookMark eNpdkc9LHDEUx0Ox1HXt0asEvPQymp8zyUUQabWg1IOeQzbzdjfLbDImmQX_-6asXWwDj0d4n3x533xP0FGIARA6o-SSEiWvNqvxkhHK6oXST2hGpSBN1wl1hGaEMNZQpuUxOsl5Q-qRjHxBx4wTogSXM2TdzeMTdjGUFIeMU-zxuI4lJnAw1oYzhOyL3_nyhnfe4u00FD8OgItNKygZ-4DLGvavSrIh95MrPgbsbHa2h1P0eWmHDF_f-xy9_Pj-fHvfPPy6-3l789A4oWhpOGdUdYJT0ruFFko4YEq7TjKrhdaLjsqOcN0K6bQifdsLC1r0SweiXToi-Bxd73XHabGF3kG1ZAczJr-16c1E682_k-DXZhV3hgvZtUpVgW_vAim-TpCL2frsYBhsgDhlU3-YtJSzWnN08R-6iVMK1V6lupZLVe1UqtlTLsWcEywPy1DyR02aGp45hFf5848ODvTftPhvSZ-YVw
CODEN JGPLAD
CitedBy_id crossref_primary_10_1016_j_cub_2019_11_021
crossref_primary_10_1038_s41598_023_34361_y
crossref_primary_10_1016_j_ydbio_2017_03_018
crossref_primary_10_1073_pnas_2009164117
crossref_primary_10_17116_jnevro201711791124_131
crossref_primary_10_17816_gc623331
crossref_primary_10_31857_S0235009224010032
crossref_primary_10_3390_cells12242839
crossref_primary_10_1074_jbc_M115_650408
crossref_primary_10_1016_j_jbc_2022_102636
crossref_primary_10_1085_jgp_201611744
crossref_primary_10_1007_s11055_014_9967_5
crossref_primary_10_1007_s11055_020_01045_3
crossref_primary_10_1007_s11055_015_0210_9
crossref_primary_10_1172_JCI125898
crossref_primary_10_2142_biophysics_9_183
crossref_primary_10_1111_jfb_14815
crossref_primary_10_3389_fnmol_2023_1135088
crossref_primary_10_1038_s41598_018_37661_w
crossref_primary_10_3390_cells12081157
crossref_primary_10_1007_s00424_021_02556_9
Cites_doi 10.1085/jgp.200810034
10.1111/j.1471-4159.2008.05691.x
10.1074/jbc.R111.305243
10.1111/j.1471-4159.2006.04154.x
10.1074/jbc.M111.230904
10.1111/j.1471-4159.2009.05920.x
10.1017/S0952523800176072
10.1038/334064a0
10.1021/bi960699e
10.1074/mcp.M700054-MCP200
10.1523/JNEUROSCI.15-10-06475.1995
10.1021/bi200491b
10.1167/iovs.06-0849
10.1074/jbc.M408683200
10.1146/annurev.neuro.24.1.779
10.1113/jphysiol.1989.sp017511
10.1113/jphysiol.1979.sp012715
10.1046/j.1471-4159.1999.0721812.x
10.1046/j.1460-9568.2000.00235.x
10.1021/bi973087i
10.1017/S0952523800006441
10.1016/j.brainres.2008.02.025
10.1111/j.1471-4159.1986.tb12921.x
10.1113/jphysiol.1992.sp019293
10.1073/pnas.70.12.3820
10.1073/pnas.68.3.561
10.1073/pnas.93.4.1475
10.1523/JNEUROSCI.22-06-02063.2002
10.1523/JNEUROSCI.0174-11.2011
10.1113/jphysiol.2006.121772
10.1016/S0896-6273(02)00636-0
10.1523/JNEUROSCI.2973-07.2008
10.1111/j.1471-4159.1989.tb07330.x
10.1523/JNEUROSCI.4988-03.2004
10.1074/jbc.M106328200
10.1007/BF00539174
10.1085/jgp.79.5.759
10.1016/S0006-3495(95)79917-9
10.1016/j.cell.2009.09.029
10.1016/S0006-3495(00)76443-5
10.1038/313310a0
10.1074/jbc.M505117200
10.1113/jphysiol.1988.sp017258
10.1085/jgp.79.5.775
10.1523/JNEUROSCI.3560-03.2004
10.1085/jgp.70.6.771
10.1074/jbc.M803875200
10.1113/jphysiol.1985.sp015561
10.1016/j.bbrc.2009.10.106
10.1016/j.brainres.2003.08.003
10.1002/bies.20777
ContentType Journal Article
Copyright Copyright Rockefeller University Press Oct 2012
2012 Astakhova et al. 2012
Copyright_xml – notice: Copyright Rockefeller University Press Oct 2012
– notice: 2012 Astakhova et al. 2012
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QP
7QR
7TK
7TS
8FD
FR3
K9.
P64
7X8
5PM
DOI 10.1085/jgp.201210811
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Neurosciences Abstracts
Physical Education Index
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Technology Research Database
ProQuest Health & Medical Complete (Alumni)
Chemoreception Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Physical Education Index
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE

Technology Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
DocumentTitleAlternate cAMP regulates the rod phototransduction cascade
EISSN 1540-7748
EndPage 433
ExternalDocumentID 2771020451
10_1085_jgp_201210811
23008435
Genre Research Support, Non-U.S. Gov't
Journal Article
Feature
GroupedDBID ---
-DZ
-~X
.55
.GJ
0VX
123
18M
1CY
29K
2WC
36B
39C
3O-
4.4
53G
5RE
5VS
79B
85S
9M8
ACGFO
ACGOD
ACIWK
ACNCT
ACPRK
ADBBV
AENEX
AFFNX
AHMBA
AI.
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BKOMP
BTFSW
C1A
C45
CGR
CS3
CUY
CVF
D-I
D0L
DIK
DU5
E3Z
EBS
ECM
EIF
EJD
EMB
EMOBN
F20
F5P
F9R
GX1
H13
HF~
HYE
KQ8
L7B
MVM
NEJ
NPM
O5R
O5S
OHT
OK1
P2P
PQQKQ
RHF
RHI
RPM
RXW
SJN
SV3
TAE
TAF
TR2
TRP
TWZ
UHB
UKR
UPT
VH1
W8F
WH7
WOQ
X7M
XOL
YKV
YOC
YQT
YSK
YWH
YYQ
YZZ
ZCA
ZGI
ZUP
AAYXX
CITATION
7QP
7QR
7TK
7TS
8FD
FR3
K9.
P64
7X8
AFNDN
5PM
ID FETCH-LOGICAL-c481t-3321874310dcb9484ce289c752a9499b7157039645c980d6d4ae94dfce46fc043
IEDL.DBID RPM
ISSN 0022-1295
IngestDate Tue Sep 17 21:26:06 EDT 2024
Thu Apr 11 20:53:49 EDT 2024
Tue Sep 24 21:03:06 EDT 2024
Thu Sep 26 17:18:00 EDT 2024
Sat Sep 28 08:05:24 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 3.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/3.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c481t-3321874310dcb9484ce289c752a9499b7157039645c980d6d4ae94dfce46fc043
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3457688/
PMID 23008435
PQID 1076358332
PQPubID 42336
PageCount 13
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3457688
proquest_miscellaneous_1080613261
proquest_journals_1076358332
crossref_primary_10_1085_jgp_201210811
pubmed_primary_23008435
PublicationCentury 2000
PublicationDate 2012-10-01
PublicationDateYYYYMMDD 2012-10-01
PublicationDate_xml – month: 10
  year: 2012
  text: 2012-10-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle The Journal of general physiology
PublicationTitleAlternate J Gen Physiol
PublicationYear 2012
Publisher Rockefeller University Press
The Rockefeller University Press
Publisher_xml – name: Rockefeller University Press
– name: The Rockefeller University Press
References 1739680 - Vis Neurosci. 1992 Jan;8(1):9-18
112242 - J Physiol. 1979 Mar;288:589-611
2580087 - J Physiol. 1985 Jan;358:447-68
11896146 - J Neurosci. 2002 Mar 15;22(6):2063-73
19837030 - Cell. 2009 Oct 16;139(2):246-64
2470863 - J Neurochem. 1989 Jul;53(1):307-10
8780502 - Biochemistry. 1996 Aug 27;35(34):11013-8
19166506 - J Neurochem. 2009 Apr;109(1):148-57
2479741 - J Physiol. 1989 Feb;409:525-48
10217257 - J Neurochem. 1999 May;72(5):1812-20
6284859 - J Gen Physiol. 1982 May;79(5):759-74
18305241 - J Neurosci. 2008 Feb 27;28(9):2064-74
4359491 - Proc Natl Acad Sci U S A. 1973 Dec;70(12):3820-4
11023899 - Biophys J. 2000 Oct;79(4):1945-53
2455233 - Nature. 1988 Jul 7;334(6177):64-6
17122096 - Invest Ophthalmol Vis Sci. 2006 Dec;47(12):5137-52
2473195 - J Physiol. 1988 Sep;403:439-71
201724 - J Gen Physiol. 1977 Dec;70(6):771-91
15448139 - J Biol Chem. 2004 Nov 26;279(48):50342-9
11029623 - Eur J Neurosci. 2000 Oct;12(10):3537-48
4322522 - Proc Natl Acad Sci U S A. 1971 Mar;68(3):561-2
18536031 - Bioessays. 2008 Jul;30(7):624-33
21504899 - J Biol Chem. 2011 Jun 10;286(23):20923-9
11741972 - J Biol Chem. 2002 Feb 15;277(7):5017-23
2415681 - J Neurochem. 1986 Jan;46(1):33-9
14960600 - J Neurosci. 2004 Feb 11;24(6):1296-304
8643657 - Proc Natl Acad Sci U S A. 1996 Feb 20;93(4):1475-9
18371938 - Brain Res. 2008 May 1;1207:111-9
18803695 - J Neurochem. 2008 Dec;107(5):1314-24
6284860 - J Gen Physiol. 1982 May;79(5):775-90
18955597 - J Gen Physiol. 2008 Nov;132(5):587-604
22074925 - J Biol Chem. 2012 Jan 13;287(3):1620-6
16981891 - J Neurochem. 2006 Nov;99(4):1142-50
21632928 - J Neurosci. 2011 Jun 1;31(22):8067-77
17494944 - Mol Cell Proteomics. 2007 Aug;6(8):1299-317
19878658 - Biochem Biophys Res Commun. 2009 Dec 25;390(4):1149-53
17138607 - J Physiol. 2007 Mar 1;579(Pt 2):303-12
11520918 - Annu Rev Neurosci. 2001;24:779-805
14985420 - J Neurosci. 2004 Feb 25;24(8):1803-11
11931744 - Neuron. 2002 Mar 28;34(1):95-106
6268219 - Biophys Struct Mech. 1981;7(3):125-30
11980887 - Invest Ophthalmol Vis Sci. 2002 May;43(5):1655-61
9558360 - Biochemistry. 1998 Apr 28;37(17):6205-13
11193104 - Vis Neurosci. 2000 Nov-Dec;17(6):887-92
15946941 - J Biol Chem. 2005 Aug 5;280(31):28241-50
8527658 - Biophys J. 1995 Aug;69(2):439-50
18687681 - J Biol Chem. 2008 Nov 14;283(46):31673-8
21598940 - Biochemistry. 2011 Jun 28;50(25):5590-600
2578616 - Nature. 1985 Jan 24-30;313(6000):310-3
7472410 - J Neurosci. 1995 Oct;15(10):6475-88
14575881 - Brain Res. 2003 Nov 21;991(1-2):96-103
1282928 - J Physiol. 1992 Sep;455:111-42
Fukuhara (2023072521395432100_bib11) 2004; 24
Baylor (2023072521395432100_bib3) 1979; 288
Burns (2023072521395432100_bib6) 2001; 24
Miki (2023072521395432100_bib32) 1973; 70
Hasegawa (2023072521395432100_bib13) 1999; 72
Sheng (2023072521395432100_bib44) 2000; 79
Willardson (2023072521395432100_bib50) 1996; 93
Ivanova (2023072521395432100_bib19) 2008; 1207
Paglia (2023072521395432100_bib38) 2002; 277
Pugh (2023072521395432100_bib43) 2000
Hodgkin (2023072521395432100_bib15) 1985; 358
Tsang (2023072521395432100_bib49) 2007; 579
Chaurasia (2023072521395432100_bib8) 2006; 99
Fesenko (2023072521395432100_bib10) 1985; 313
Besharse (2023072521395432100_bib4) 1982; 79
Ko (2023072521395432100_bib23) 2004; 24
Ivanova (2023072521395432100_bib18) 2003; 991
Li (2023072521395432100_bib29) 2008; 283
Traverso (2023072521395432100_bib48) 2002; 43
Wolbring (2023072521395432100_bib51) 1996; 35
Janisch (2023072521395432100_bib21) 2009; 390
Pagh-Roehl (2023072521395432100_bib37) 1995; 15
Koch (2023072521395432100_bib24) 1988; 334
Stella (2023072521395432100_bib46) 2000; 12
Woodruff (2023072521395432100_bib52) 2008; 28
Arshavsky (2023072521395432100_bib1) 2012; 287
Peshenko (2023072521395432100_bib41) 2011; 50
Yau (2023072521395432100_bib54) 2009; 139
Astakhova (2023072521395432100_bib2) 2008; 132
Jindrova (2023072521395432100_bib22) 2000; 17
Hodgkin (2023072521395432100_bib14) 1988; 403
Bitensky (2023072521395432100_bib5) 1971; 68
Iuvone (2023072521395432100_bib17) 1986; 46
Lagnado (2023072521395432100_bib27) 1992; 455
Kuzmin (2023072521395432100_bib26) 2004; 18
Pepperberg (2023072521395432100_bib39) 1992; 8
Nakatani (2023072521395432100_bib33) 1989; 409
Osawa (2023072521395432100_bib35) 2008; 107
Horner (2023072521395432100_bib16) 2005; 280
Pierce (2023072521395432100_bib42) 1989; 53
Lamb (2023072521395432100_bib28) 2006; 47
Tosini (2023072521395432100_bib47) 2008; 30
Kolesnikov (2023072521395432100_bib25) 2011; 31
Sokolov (2023072521395432100_bib45) 2002; 34
Liu (2023072521395432100_bib31) 2007; 6
Xu (2023072521395432100_bib53) 1998; 37
Govardovskii (2023072521395432100_bib12) 1981; 7
Burnside (2023072521395432100_bib7) 1982; 79
Peshenko (2023072521395432100_bib40) 2004; 279
Demontis (2023072521395432100_bib9) 1995; 69
Jackson (2023072521395432100_bib20) 2009; 109
Osawa (2023072521395432100_bib36) 2011; 286
Lipton (2023072521395432100_bib30) 1977; 70
Nir (2023072521395432100_bib34) 2002; 22
References_xml – volume: 132
  start-page: 587
  year: 2008
  ident: 2023072521395432100_bib2
  article-title: Kinetics of turn-offs of frog rod phototransduction cascade
  publication-title: J. Gen. Physiol.
  doi: 10.1085/jgp.200810034
  contributor:
    fullname: Astakhova
– volume: 18
  start-page: 305
  year: 2004
  ident: 2023072521395432100_bib26
  article-title: Mathematical modeling of phototransduction and light adaptation in frog retinal rods
  publication-title: Sens. Syst.
  contributor:
    fullname: Kuzmin
– volume: 107
  start-page: 1314
  year: 2008
  ident: 2023072521395432100_bib35
  article-title: Phosphorylation of GRK7 by PKA in cone photoreceptor cells is regulated by light
  publication-title: J. Neurochem.
  doi: 10.1111/j.1471-4159.2008.05691.x
  contributor:
    fullname: Osawa
– volume: 43
  start-page: 1655
  year: 2002
  ident: 2023072521395432100_bib48
  article-title: Retinal cAMP levels during the progression of retinal degeneration in rhodopsin P23H and S334ter transgenic rats
  publication-title: Invest. Ophthalmol. Vis. Sci.
  contributor:
    fullname: Traverso
– volume: 287
  start-page: 1620
  year: 2012
  ident: 2023072521395432100_bib1
  article-title: Photoreceptor signaling: supporting vision across a wide range of light intensities
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.R111.305243
  contributor:
    fullname: Arshavsky
– volume: 99
  start-page: 1142
  year: 2006
  ident: 2023072521395432100_bib8
  article-title: Temporal coupling of cyclic AMP and Ca/calmodulin-stimulated adenylyl cyclase to the circadian clock in chick retinal photoreceptor cells
  publication-title: J. Neurochem.
  doi: 10.1111/j.1471-4159.2006.04154.x
  contributor:
    fullname: Chaurasia
– volume: 286
  start-page: 20923
  year: 2011
  ident: 2023072521395432100_bib36
  article-title: Phosphorylation of G protein-coupled receptor kinase 1 (GRK1) is regulated by light but independent of phototransduction in rod photoreceptors
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M111.230904
  contributor:
    fullname: Osawa
– volume: 109
  start-page: 148
  year: 2009
  ident: 2023072521395432100_bib20
  article-title: Essential roles of dopamine D4 receptors and the type 1 adenylyl cyclase in photic control of cyclic AMP in photoreceptor cells
  publication-title: J. Neurochem.
  doi: 10.1111/j.1471-4159.2009.05920.x
  contributor:
    fullname: Jackson
– volume: 17
  start-page: 887
  year: 2000
  ident: 2023072521395432100_bib22
  article-title: Cyclic AMP has no effect on the generation, recovery, or background adaptation of light responses in functionally intact rod outer segments: with implications about the function of phosducin
  publication-title: Vis. Neurosci.
  doi: 10.1017/S0952523800176072
  contributor:
    fullname: Jindrova
– volume: 334
  start-page: 64
  year: 1988
  ident: 2023072521395432100_bib24
  article-title: Highly cooperative feedback control of retinal rod guanylate cyclase by calcium ions
  publication-title: Nature.
  doi: 10.1038/334064a0
  contributor:
    fullname: Koch
– volume: 35
  start-page: 11013
  year: 1996
  ident: 2023072521395432100_bib51
  article-title: Modulation of the calcium sensitivity of bovine retinal rod outer segment guanylyl cyclase by sodium ions and protein kinase A
  publication-title: Biochemistry.
  doi: 10.1021/bi960699e
  contributor:
    fullname: Wolbring
– volume: 6
  start-page: 1299
  year: 2007
  ident: 2023072521395432100_bib31
  article-title: The proteome of the mouse photoreceptor sensory cilium complex
  publication-title: Mol. Cell. Proteomics.
  doi: 10.1074/mcp.M700054-MCP200
  contributor:
    fullname: Liu
– volume: 15
  start-page: 6475
  year: 1995
  ident: 2023072521395432100_bib37
  article-title: Phosducin and PP33 are in vivo targets of PKA and type 1 or 2A phosphatases, regulators of cell elongation in teleost rod inner-outer segments
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.15-10-06475.1995
  contributor:
    fullname: Pagh-Roehl
– volume: 50
  start-page: 5590
  year: 2011
  ident: 2023072521395432100_bib41
  article-title: Enzymatic properties and regulation of the native isozymes of retinal membrane guanylyl cyclase (RetGC) from mouse photoreceptors
  publication-title: Biochemistry.
  doi: 10.1021/bi200491b
  contributor:
    fullname: Peshenko
– volume: 47
  start-page: 5137
  year: 2006
  ident: 2023072521395432100_bib28
  article-title: Phototransduction, dark adaptation, and rhodopsin regeneration. The Proctor lecture
  publication-title: Invest. Ophthalmol. Vis. Sci.
  doi: 10.1167/iovs.06-0849
  contributor:
    fullname: Lamb
– volume: 279
  start-page: 50342
  year: 2004
  ident: 2023072521395432100_bib40
  article-title: Ca2+-dependent conformational changes in guanylyl cyclase-activating protein 2 (GCAP-2) revealed by site-specific phosphorylation and partial proteolysis
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M408683200
  contributor:
    fullname: Peshenko
– volume: 24
  start-page: 779
  year: 2001
  ident: 2023072521395432100_bib6
  article-title: Activation, deactivation, and adaptation in vertebrate photoreceptor cells
  publication-title: Annu. Rev. Neurosci.
  doi: 10.1146/annurev.neuro.24.1.779
  contributor:
    fullname: Burns
– volume: 409
  start-page: 525
  year: 1989
  ident: 2023072521395432100_bib33
  article-title: Sodium-dependent calcium extrusion and sensitivity regulation in retinal cones of the salamander
  publication-title: J. Physiol.
  doi: 10.1113/jphysiol.1989.sp017511
  contributor:
    fullname: Nakatani
– volume: 288
  start-page: 589
  year: 1979
  ident: 2023072521395432100_bib3
  article-title: The membrane current of single rod outer segments
  publication-title: J. Physiol.
  doi: 10.1113/jphysiol.1979.sp012715
  contributor:
    fullname: Baylor
– volume: 72
  start-page: 1812
  year: 1999
  ident: 2023072521395432100_bib13
  article-title: A role for cyclic AMP in entrainment of the circadian oscillator in Xenopus retinal photoreceptors by dopamine but not by light
  publication-title: J. Neurochem.
  doi: 10.1046/j.1471-4159.1999.0721812.x
  contributor:
    fullname: Hasegawa
– volume: 12
  start-page: 3537
  year: 2000
  ident: 2023072521395432100_bib46
  article-title: Differential modulation of rod and cone calcium currents in tiger salamander retina by D2 dopamine receptors and cAMP
  publication-title: Eur. J. Neurosci.
  doi: 10.1046/j.1460-9568.2000.00235.x
  contributor:
    fullname: Stella
– volume: 37
  start-page: 6205
  year: 1998
  ident: 2023072521395432100_bib53
  article-title: Phosphorylation of the gamma subunit of the retinal photoreceptor cGMP phosphodiesterase by the cAMP-dependent protein kinase and its effect on the gamma subunit interaction with other proteins
  publication-title: Biochemistry.
  doi: 10.1021/bi973087i
  contributor:
    fullname: Xu
– volume: 8
  start-page: 9
  year: 1992
  ident: 2023072521395432100_bib39
  article-title: Light-dependent delay in the falling phase of the retinal rod photoresponse
  publication-title: Vis. Neurosci.
  doi: 10.1017/S0952523800006441
  contributor:
    fullname: Pepperberg
– volume: 1207
  start-page: 111
  year: 2008
  ident: 2023072521395432100_bib19
  article-title: Dopamine D4 receptors regulate intracellular calcium concentration in cultured chicken cone photoreceptor cells: relationship to dopamine receptor-mediated inhibition of cAMP formation
  publication-title: Brain Res.
  doi: 10.1016/j.brainres.2008.02.025
  contributor:
    fullname: Ivanova
– volume: 46
  start-page: 33
  year: 1986
  ident: 2023072521395432100_bib17
  article-title: Cyclic AMP stimulates serotonin N-acetyltransferase activity in Xenopus retina in vitro
  publication-title: J. Neurochem.
  doi: 10.1111/j.1471-4159.1986.tb12921.x
  contributor:
    fullname: Iuvone
– volume: 455
  start-page: 111
  year: 1992
  ident: 2023072521395432100_bib27
  article-title: Calcium homeostasis in the outer segments of retinal rods from the tiger salamander
  publication-title: J. Physiol.
  doi: 10.1113/jphysiol.1992.sp019293
  contributor:
    fullname: Lagnado
– volume: 70
  start-page: 3820
  year: 1973
  ident: 2023072521395432100_bib32
  article-title: Regulation of cyclic nucleotide concentrations in photoreceptors: an ATP-dependent stimulation of cyclic nucleotide phosphodiesterase by light
  publication-title: Proc. Natl. Acad. Sci. USA.
  doi: 10.1073/pnas.70.12.3820
  contributor:
    fullname: Miki
– volume: 68
  start-page: 561
  year: 1971
  ident: 2023072521395432100_bib5
  article-title: Adenyl cyclase as a link between photon capture and changes in membrane permeability of frog photoreceptors
  publication-title: Proc. Natl. Acad. Sci. USA.
  doi: 10.1073/pnas.68.3.561
  contributor:
    fullname: Bitensky
– volume: 93
  start-page: 1475
  year: 1996
  ident: 2023072521395432100_bib50
  article-title: Regulation of phosducin phosphorylation in retinal rods by Ca2+/calmodulin-dependent adenylyl cyclase
  publication-title: Proc. Natl. Acad. Sci. USA.
  doi: 10.1073/pnas.93.4.1475
  contributor:
    fullname: Willardson
– volume: 22
  start-page: 2063
  year: 2002
  ident: 2023072521395432100_bib34
  article-title: Dysfunctional light-evoked regulation of cAMP in photoreceptors and abnormal retinal adaptation in mice lacking dopamine D4 receptors
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.22-06-02063.2002
  contributor:
    fullname: Nir
– volume: 31
  start-page: 8067
  year: 2011
  ident: 2023072521395432100_bib25
  article-title: G-protein betagamma-complex is crucial for efficient signal amplification in vision
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.0174-11.2011
  contributor:
    fullname: Kolesnikov
– volume: 579
  start-page: 303
  year: 2007
  ident: 2023072521395432100_bib49
  article-title: Removal of phosphorylation sites of gamma subunit of phosphodiesterase 6 alters rod light response
  publication-title: J. Physiol.
  doi: 10.1113/jphysiol.2006.121772
  contributor:
    fullname: Tsang
– volume: 34
  start-page: 95
  year: 2002
  ident: 2023072521395432100_bib45
  article-title: Massive light-driven translocation of transducin between the two major compartments of rod cells: a novel mechanism of light adaptation
  publication-title: Neuron.
  doi: 10.1016/S0896-6273(02)00636-0
  contributor:
    fullname: Sokolov
– volume: 28
  start-page: 2064
  year: 2008
  ident: 2023072521395432100_bib52
  article-title: Modulation of phosphodiesterase6 turnoff during background illumination in mouse rod photoreceptors
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.2973-07.2008
  contributor:
    fullname: Woodruff
– volume: 53
  start-page: 307
  year: 1989
  ident: 2023072521395432100_bib42
  article-title: Cyclic AMP-dependent melatonin production in Y79 human retinoblastoma cells
  publication-title: J. Neurochem.
  doi: 10.1111/j.1471-4159.1989.tb07330.x
  contributor:
    fullname: Pierce
– volume: 24
  start-page: 1803
  year: 2004
  ident: 2023072521395432100_bib11
  article-title: Gating of the cAMP signaling cascade and melatonin synthesis by the circadian clock in mammalian retina
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.4988-03.2004
  contributor:
    fullname: Fukuhara
– volume: 277
  start-page: 5017
  year: 2002
  ident: 2023072521395432100_bib38
  article-title: Regulation of photoreceptor phosphodiesterase (PDE6) by phosphorylation of its inhibitory gamma subunit re-evaluated
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M106328200
  contributor:
    fullname: Paglia
– volume: 7
  start-page: 125
  year: 1981
  ident: 2023072521395432100_bib12
  article-title: Light-induced changes of cyclic GMP content in frog retinal rod outer segments measured with rapid freezing and microdissection
  publication-title: Biophys. Struct. Mech.
  doi: 10.1007/BF00539174
  contributor:
    fullname: Govardovskii
– volume: 79
  start-page: 759
  year: 1982
  ident: 2023072521395432100_bib7
  article-title: Induction of dark-adaptive retinomotor movement (cell elongation) in teleost retinal cones by cyclic adenosine 3′,′5-monophosphate
  publication-title: J. Gen. Physiol.
  doi: 10.1085/jgp.79.5.759
  contributor:
    fullname: Burnside
– volume: 69
  start-page: 439
  year: 1995
  ident: 2023072521395432100_bib9
  article-title: Effect of blocking the Na+/K+ ATPase on Ca2+ extrusion and light adaptation in mammalian retinal rods
  publication-title: Biophys. J.
  doi: 10.1016/S0006-3495(95)79917-9
  contributor:
    fullname: Demontis
– start-page: 183
  volume-title: Handbook of Biological Physics.
  year: 2000
  ident: 2023072521395432100_bib43
  article-title: Phototransduction in vertebrate rods and cones: molecular mechanisms of amplification, recovery and light adaptation
  contributor:
    fullname: Pugh
– volume: 139
  start-page: 246
  year: 2009
  ident: 2023072521395432100_bib54
  article-title: Phototransduction motifs and variations
  publication-title: Cell.
  doi: 10.1016/j.cell.2009.09.029
  contributor:
    fullname: Yau
– volume: 79
  start-page: 1945
  year: 2000
  ident: 2023072521395432100_bib44
  article-title: Na+-Ca2+-K+ currents measured in insect cells transfected with the retinal cone or rod Na+-Ca2+-K+ exchanger cDNA
  publication-title: Biophys. J.
  doi: 10.1016/S0006-3495(00)76443-5
  contributor:
    fullname: Sheng
– volume: 313
  start-page: 310
  year: 1985
  ident: 2023072521395432100_bib10
  article-title: Induction by cyclic GMP of cationic conductance in plasma membrane of retinal rod outer segment
  publication-title: Nature.
  doi: 10.1038/313310a0
  contributor:
    fullname: Fesenko
– volume: 280
  start-page: 28241
  year: 2005
  ident: 2023072521395432100_bib16
  article-title: Phosphorylation of GRK1 and GRK7 by cAMP-dependent protein kinase attenuates their enzymatic activities
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M505117200
  contributor:
    fullname: Horner
– volume: 403
  start-page: 439
  year: 1988
  ident: 2023072521395432100_bib14
  article-title: Control of light-sensitive current in salamander rods
  publication-title: J. Physiol.
  doi: 10.1113/jphysiol.1988.sp017258
  contributor:
    fullname: Hodgkin
– volume: 79
  start-page: 775
  year: 1982
  ident: 2023072521395432100_bib4
  article-title: Effects of cyclic adenosine 3′,5′-monophosphate on photoreceptor disc shedding and retinomotor movement. Inhibition of rod shedding and stimulation of cone elongation
  publication-title: J. Gen. Physiol.
  doi: 10.1085/jgp.79.5.775
  contributor:
    fullname: Besharse
– volume: 24
  start-page: 1296
  year: 2004
  ident: 2023072521395432100_bib23
  article-title: Circadian regulation of cGMP-gated channels of vertebrate cone photoreceptors: role of cAMP and Ras
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.3560-03.2004
  contributor:
    fullname: Ko
– volume: 70
  start-page: 771
  year: 1977
  ident: 2023072521395432100_bib30
  article-title: Electrical and adaptive properties of rod photoreceptors in Bufo marinus. II. Effects of cyclic nucleotides and prostaglandins
  publication-title: J. Gen. Physiol.
  doi: 10.1085/jgp.70.6.771
  contributor:
    fullname: Lipton
– volume: 283
  start-page: 31673
  year: 2008
  ident: 2023072521395432100_bib29
  article-title: CLOCK is required for maintaining the circadian rhythms of Opsin mRNA expression in photoreceptor cells
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M803875200
  contributor:
    fullname: Li
– volume: 358
  start-page: 447
  year: 1985
  ident: 2023072521395432100_bib15
  article-title: The ionic selectivity and calcium dependence of the light-sensitive pathway in toad rods
  publication-title: J. Physiol.
  doi: 10.1113/jphysiol.1985.sp015561
  contributor:
    fullname: Hodgkin
– volume: 390
  start-page: 1149
  year: 2009
  ident: 2023072521395432100_bib21
  article-title: Light-dependent phosphorylation of the gamma subunit of cGMP-phophodiesterase (PDE6gamma) at residue threonine 22 in intact photoreceptor neurons
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2009.10.106
  contributor:
    fullname: Janisch
– volume: 991
  start-page: 96
  year: 2003
  ident: 2023072521395432100_bib18
  article-title: Circadian rhythm and photic control of cAMP level in chick retinal cell cultures: a mechanism for coupling the circadian oscillator to the melatonin-synthesizing enzyme, arylalkylamine N-acetyltransferase, in photoreceptor cells
  publication-title: Brain Res.
  doi: 10.1016/j.brainres.2003.08.003
  contributor:
    fullname: Ivanova
– volume: 30
  start-page: 624
  year: 2008
  ident: 2023072521395432100_bib47
  article-title: The circadian clock system in the mammalian retina
  publication-title: Bioessays.
  doi: 10.1002/bies.20777
  contributor:
    fullname: Tosini
SSID ssj0000520
Score 2.188609
Snippet In early studies, both cyclic AMP (cAMP) and cGMP were considered as potential secondary messengers regulating the conductivity of the vertebrate photoreceptor...
SourceID pubmedcentral
proquest
crossref
pubmed
SourceType Open Access Repository
Aggregation Database
Index Database
StartPage 421
SubjectTerms 3',5'-Cyclic-AMP Phosphodiesterases - metabolism
Adenylyl Cyclases - drug effects
Animals
Calcium
Calcium - metabolism
Colforsin - pharmacology
Cyclic AMP - agonists
Cyclic AMP - metabolism
Guanylate Cyclase - metabolism
Light
Light Signal Transduction
Membranes
Molecules
Physiology
Rana ridibunda
Rod Cell Outer Segment - metabolism
Rod Cell Outer Segment - physiology
Signal transduction
Vertebrates
Vision, Ocular
Title cAMP controls rod photoreceptor sensitivity via multiple targets in the phototransduction cascade
URI https://www.ncbi.nlm.nih.gov/pubmed/23008435
https://www.proquest.com/docview/1076358332/abstract/
https://search.proquest.com/docview/1080613261
https://pubmed.ncbi.nlm.nih.gov/PMC3457688
Volume 140
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1RT9swED6VPvEybQO2MKg8CfGWNmnOSfxYoSFgKuoDSLxFju2unda0IgWJf8-dk1Swve3ZtuL4Lufv4s_fAZxppiLYiNISVIYTFB0qCoThnGyvXIk2tnzBeXqbXt3jzYN86IHs7sJ40r4pl8Pqz2pYLReeW7lZmVHHExvNphcJMkrOR3uwlyVJl6J34Ve2WoxjrtqhZCusSdBi9PsXK1SyZFYec4kYgt9Rjr7S25s96R-g-Tdf8s0GdPkRPrTIUUyaGX6Cnqs-w8Gkoqx59SLOhedy-p_kB6DNZDoTLQ29FhQkxWaxpvTaMYtl_Shq5q03hSPE81KLjlcoGmZ4LZaVIGjYjNryfmYbmVlhdM2U-kO4v_xxd3EVtsUUQoN5vA2TZMzl9wjNWVMqzNE4yrVMJsea9WnKLGYtLpWiNGQsm1rUTqGdG4fp3ESYHEG_WlfuKwgXZ5mLUUaIFjNtyzjTKJUm5FeqKLUBnHfLWWwazYzCn3XnsiATFDsTBHDSLXbRfjo1dWONvJzmG8D3XTM5PZ9k6Mqtn2qvako4hLK_AL40ttk9qTNqANk7q-06sKD2-xbyMy-s3frV8X-P_Ab7_HIN2e8E-tvHJ3dKoGVbDgiuX_8ceFd9BUXe7io
link.rule.ids 230,315,733,786,790,891,27957,27958,53827,53829
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB2VcoALX-UjUMBIqLfsJrvjJD6uKqoFulUPLeotcmwvXWCzqyaLBL-emTheteUEZ9uKreePN_HzG4D3mqUINqGwBJXhAEXHijbCeE7YK1ehTS0_cJ6dZNNz_HQhL3ZAhrcwnWjfVItB_WM5qBeXnbZyvTTDoBMbns4Ox8gsuRjegbu0Xkd5CNLDBix7N8YR5-1QsrfWJHIx_PaVPSrZNKtIOUkMEfCkwC7X27VT6S-qeVsxee0IOnoIX0LnvfLk-2DTVgPz-5av4z-P7hE86EmpmPjix7Dj6iewN6kpIF_-Egeik4l2_9_3QJvJ7FT0CvdG0P4r1pcritwdC2RWV6JhSbzPSSF-LrQIkkXhReeNWNSCWKdv1fJRab2DrTC6YbX-Uzg_-nB2OI37PA2xwSJt4_F4xJn9iChaUyks0DgK40wuR5qtb6o8ZZsvlaE0NA9sZlE7hXZuHGZzk-D4GezWq9q9AOHSPHcpygTRYq5tleYapdJEKiuVZDaCg4BTufZ2HGV3jV7IkrAtt9hGsB9QLPtV2VA1tt8rqL8RvNsW03riSxJdu9Wm6QxTieJQYBnBcw_69kthtkSQ35gO2wrs1X2zhEDuPLt7UF_-d8u3cG96Njsujz-efH4F93mgXlO4D7vt1ca9Jm7UVm-6lfAHEI0PQQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFL2CISFe-BqwwAAjob2lSdqbDz9Wg2p8dOoDkyZeIsd2WWFNqyVFgl_PvXZSdeNtz7aVWMfXPjc-ORfgvWIpgokpLUGpOUFRoaSNMJwT9tJWaBLDPzhPT7OTM_x8np7vlPpyon1dLQb15XJQLy6ctnK91FGvE4tm0-MRMksuorWZR3fhHsXsUPaJer8Jp50j45Brd8i0s9ckghH9_ME-lWycVSRcKIZIeFygq_e2czL9RzdvqiZ3jqHJI_jeT8CrT34NNm010H9veDveaoaP4WFHTsXYd3kCd2z9FPbHNSXmyz_iSDi5qPsOvw9Kj6cz0SndG0H7sFhfrCiDtyyUWV2JhqXxvjaF-L1QopcuCi8-b8SiFsQ-_aiWj0zjnWyFVg2r9p_B2eTjt-OTsKvXEGoskjYcjYZc4Y8Io9GVxAK1pXRO5-lQsQVOlSds9yUzTDWtB5MZVFaimWuL2VzHOHoOe_WqtgcgbJLnNsE0RjSYK1MlucJUKiKXlYwzE8BRj1W59rYcpbtOL9KS8C23-AZw2CNZdtHZUDe24SvofQN4t22muOLLElXb1aZxxqlEdSjBDOCFB377pH7FBJBfWxLbDuzZfb2FgHbe3R2wL2898i3cn32YlF8_nX55BQ94nl5aeAh77dXGviaK1FZvXDD8A4y8EcE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=cAMP+controls+rod+photoreceptor+sensitivity+via+multiple+targets+in+the+phototransduction+cascade&rft.jtitle=The+Journal+of+general+physiology&rft.au=Astakhova%2C+Luba+A&rft.au=Samoiliuk%2C+Evgeniia+V&rft.au=Govardovskii%2C+Victor+I&rft.au=Firsov%2C+Michael+L&rft.date=2012-10-01&rft.pub=Rockefeller+University+Press&rft.issn=0022-1295&rft.eissn=1540-7748&rft.volume=140&rft.issue=4&rft.spage=421&rft_id=info:doi/10.1085%2Fjgp.201210811&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=2771020451
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1295&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1295&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1295&client=summon