The energy saving potential of thermo-responsive desiccants for air dehumidification

Traditional desiccant-based dehumidification systems suffer from low energy efficiency due to the desiccant’s fixed affinity to water, meaning it has a single moisture adsorption isotherm regardless of the temperature. We modeled a novel thermo-responsive desiccant with temperature-dependent isother...

Full description

Saved in:
Bibliographic Details
Published inEnergy conversion and management Vol. 244; no. C; p. 114520
Main Authors Zeng, Yi, Woods, Jason, Cui, Shuang
Format Journal Article
LanguageEnglish
Published Oxford Elsevier Ltd 15.09.2021
Elsevier Science Ltd
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Traditional desiccant-based dehumidification systems suffer from low energy efficiency due to the desiccant’s fixed affinity to water, meaning it has a single moisture adsorption isotherm regardless of the temperature. We modeled a novel thermo-responsive desiccant with temperature-dependent isotherms in a desiccant wheel model for three representative dehumidification scenarios. These cases show remarkable improvement in moisture removal efficiency of this material because of its switchable water affinity below/above the critical temperature. Our work discusses how to apply and tune the thermo-responsive desiccants for further enhancement in dehumidification performance, depending on application. [Display omitted] •Developed a thermo-responsive desiccant wheel model for air dehumidification.•Demonstrated how and why thermo-responsiveness improves dehumidification efficiency.•Quantified thermo-responsive desiccants’ improvement in dehumidification efficiency.•Provided guidance on desiccant material and system design for air dehumidification. The desiccant wheel is a promising technology for energy-efficient humidity control. However, its overall efficiency—hindered by the desiccant materials’ properties—remains low because traditional desiccants (e.g., silica gels) have a single isotherm regardless of their adsorption temperature. Thermo-responsive materials have been proposed to break this fixed affinity to water vapor, with drastically different adsorption isotherms depending on temperature. Its potential for improving dehumidification efficiency, however, has not been addressed. In this paper, we model the potential of a thermo-responsive interpenetrating polymer network (IPN) desiccant with temperature-dependent adsorption isotherms for energy-efficient dehumidification via a validated transient desiccant wheel model for humidity control of buildings. Thermo-responsive desiccants can improve the dehumidification performance due to their thermo-responsive switchable hydrophilicity below/above the lower critical solution temperature. Our analysis shows that thermo-responsive IPN desiccants can potentially reduce energy consumption by up to 30% compared to silica gels. The savings depend strongly on the critical temperature of the thermo-responsive desiccant and should be higher when the inlet temperatures are expected to be higher.
AbstractList The desiccant wheel is a promising technology for energy-efficient humidity control. However, its overall efficiency-hindered by the desiccant materials' properties-remains low because traditional desiccants (e.g., silica gels) have a single isotherm regardless of their adsorption temperature. Thermo-responsive materials have been proposed to break this fixed affinity to water vapor, with drastically different adsorption isotherms depending on temperature. Its potential for improving dehumidification efficiency, however, has not been addressed. In this paper, we model the potential of a thermo-responsive interpenetrating polymer network (IPN) desiccant with temperature-dependent adsorption isotherms for energy-efficient dehumidification via a validated transient desiccant wheel model for humidity control of buildings. Thermo-responsive desiccants can improve the dehumidification performance due to their thermo-responsive switchable hydrophilicity below/above the lower critical solution temperature. Our analysis shows that thermo-responsive IPN desiccants can potentially reduce energy consumption by up to 30% compared to silica gels. The savings depend strongly on the critical temperature of the thermo-responsive desiccant and should be higher when the inlet temperatures are expected to be higher.
Traditional desiccant-based dehumidification systems suffer from low energy efficiency due to the desiccant’s fixed affinity to water, meaning it has a single moisture adsorption isotherm regardless of the temperature. We modeled a novel thermo-responsive desiccant with temperature-dependent isotherms in a desiccant wheel model for three representative dehumidification scenarios. These cases show remarkable improvement in moisture removal efficiency of this material because of its switchable water affinity below/above the critical temperature. Our work discusses how to apply and tune the thermo-responsive desiccants for further enhancement in dehumidification performance, depending on application. [Display omitted] •Developed a thermo-responsive desiccant wheel model for air dehumidification.•Demonstrated how and why thermo-responsiveness improves dehumidification efficiency.•Quantified thermo-responsive desiccants’ improvement in dehumidification efficiency.•Provided guidance on desiccant material and system design for air dehumidification. The desiccant wheel is a promising technology for energy-efficient humidity control. However, its overall efficiency—hindered by the desiccant materials’ properties—remains low because traditional desiccants (e.g., silica gels) have a single isotherm regardless of their adsorption temperature. Thermo-responsive materials have been proposed to break this fixed affinity to water vapor, with drastically different adsorption isotherms depending on temperature. Its potential for improving dehumidification efficiency, however, has not been addressed. In this paper, we model the potential of a thermo-responsive interpenetrating polymer network (IPN) desiccant with temperature-dependent adsorption isotherms for energy-efficient dehumidification via a validated transient desiccant wheel model for humidity control of buildings. Thermo-responsive desiccants can improve the dehumidification performance due to their thermo-responsive switchable hydrophilicity below/above the lower critical solution temperature. Our analysis shows that thermo-responsive IPN desiccants can potentially reduce energy consumption by up to 30% compared to silica gels. The savings depend strongly on the critical temperature of the thermo-responsive desiccant and should be higher when the inlet temperatures are expected to be higher.
ArticleNumber 114520
Author Woods, Jason
Zeng, Yi
Cui, Shuang
Author_xml – sequence: 1
  givenname: Yi
  surname: Zeng
  fullname: Zeng, Yi
– sequence: 2
  givenname: Jason
  surname: Woods
  fullname: Woods, Jason
  email: Jason.Woods@nrel.gov
– sequence: 3
  givenname: Shuang
  surname: Cui
  fullname: Cui, Shuang
  email: Shuang.Cui@nrel.gov
BackLink https://www.osti.gov/biblio/1809100$$D View this record in Osti.gov
BookMark eNqFkMtqwzAQRUVJoUnaXyimXTsdyZZs7VpCXxDoJnshy-NEIZFSSQnk72vjdt3VwHDucOfMyMR5h4TcU1hQoOJpt0BnvDtot2DA6ILSkjO4IlNaVzJnjFUTMgUqRV5LKG_ILMYdABQcxJSs11vM0GHYXLKoz9ZtsqNP6JLV-8x3WdpiOPg8YDx6F-0ZsxajNUa7FLPOh0zb0K-2p4NtbWeNTta7W3Ld6X3Eu985J-u31_XyI199vX8uX1a5KWuacta0wjCkZWNqjgUzBUpZNFSUJdO8Ai60Bg5AEYXkppKy0aixqbkQbQXFnDyMZ31MVkVjE5ptb8KhSYrWICkM0OMIHYP_PmFMaudPwfW1FOOVKETFyqqnxEiZ4GMM2KljsAcdLoqCGiyrnfqzrAbLarTcB5_HIPZ_ni2GoUdPYmvDUKP19r8TPxHEiwM
CitedBy_id crossref_primary_10_1002_rpm_20230011
crossref_primary_10_1016_j_jil_2023_100077
crossref_primary_10_1016_j_rser_2024_114278
crossref_primary_10_1002_aenm_202300990
crossref_primary_10_3390_buildings13051192
crossref_primary_10_1007_s10973_023_12506_5
crossref_primary_10_1016_j_enconman_2023_118029
crossref_primary_10_1016_j_enconman_2023_117169
crossref_primary_10_1557_s43577_021_00241_x
crossref_primary_10_1016_j_applthermaleng_2024_122780
crossref_primary_10_2355_isijinternational_ISIJINT_2022_204
crossref_primary_10_1016_j_enconman_2021_115158
crossref_primary_10_1016_j_enbuild_2021_111560
crossref_primary_10_1016_j_jclepro_2022_134583
crossref_primary_10_1016_j_enconman_2022_115251
crossref_primary_10_1016_j_jclepro_2023_137446
crossref_primary_10_1016_j_joule_2022_02_013
crossref_primary_10_1016_j_enconman_2022_115492
crossref_primary_10_1016_j_applthermaleng_2021_117608
crossref_primary_10_1016_j_molliq_2022_119401
crossref_primary_10_1016_j_energy_2024_131050
crossref_primary_10_1016_j_ijheatmasstransfer_2023_123946
Cites_doi 10.1016/j.energy.2014.11.084
10.1016/j.energy.2017.12.113
10.1007/s11630-020-1363-6
10.1016/j.enconman.2013.10.023
10.1016/0017-9310(87)90034-2
10.1016/j.desal.2019.02.002
10.1038/ncomms6088
10.1002/adma.201806446
10.1016/j.enconman.2019.111808
10.1016/j.applthermaleng.2010.01.012
10.1016/j.enconman.2017.01.042
10.2172/934386
10.1016/j.apenergy.2007.06.018
10.1016/j.energy.2015.10.091
10.1016/j.ijheatmasstransfer.2004.01.016
10.1016/0017-9310(87)90035-4
10.1007/s13233-016-4052-2
10.1016/j.ijheatmasstransfer.2012.12.036
10.1016/S1359-4311(03)00047-4
10.1023/A:1020135603052
10.1016/j.renene.2018.01.045
10.1016/j.enbuild.2010.03.007
10.1039/C5PY00998G
10.1016/j.applthermaleng.2015.01.036
10.1038/s41467-018-04810-8
10.1016/S1359-4311(01)00032-1
10.1016/j.renene.2019.08.082
10.1016/j.enbuild.2007.03.007
10.1016/j.ijrefrig.2009.01.003
10.1016/0017-9310(70)90031-1
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Copyright Elsevier Science Ltd. Sep 15, 2021
Copyright_xml – notice: 2021 Elsevier Ltd
– notice: Copyright Elsevier Science Ltd. Sep 15, 2021
DBID AAYXX
CITATION
7ST
7TB
8FD
C1K
FR3
H8D
KR7
L7M
SOI
OTOTI
DOI 10.1016/j.enconman.2021.114520
DatabaseName CrossRef
Environment Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Aerospace Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Environment Abstracts
OSTI.GOV
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Engineering Research Database
Environment Abstracts
Advanced Technologies Database with Aerospace
Environmental Sciences and Pollution Management
DatabaseTitleList Aerospace Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-2227
ExternalDocumentID 1809100
10_1016_j_enconman_2021_114520
S0196890421006968
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABYKQ
ACBEA
ACDAQ
ACGFO
ACGFS
ACIWK
ACNCT
ACRLP
ADBBV
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSR
SST
SSZ
T5K
TN5
XPP
ZMT
~02
~G-
29G
6TJ
8WZ
A6W
AAHBH
AAQXK
AAXKI
AAYXX
ABXDB
ACNNM
ADMUD
AFFNX
AFJKZ
AKRWK
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FGOYB
G-2
G8K
HVGLF
HZ~
H~9
R2-
RIG
SAC
SEW
WUQ
7ST
7TB
8FD
C1K
FR3
H8D
KR7
L7M
SOI
AALMO
ABPIF
ABPTK
ABQIS
OTOTI
ID FETCH-LOGICAL-c481t-2bd6c2e14bc85e32c3e993b16442a57056aa05001ee695c799baeaeb8566d703
IEDL.DBID .~1
ISSN 0196-8904
IngestDate Fri May 19 01:55:50 EDT 2023
Thu Oct 10 18:50:51 EDT 2024
Thu Sep 26 16:54:43 EDT 2024
Fri Feb 23 02:42:37 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue C
Keywords Energy efficiency
Thermo-responsive solid desiccant
Dehumidification
Desiccant wheel
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c481t-2bd6c2e14bc85e32c3e993b16442a57056aa05001ee695c799baeaeb8566d703
Notes USDOE
OpenAccessLink http://manuscript.elsevier.com/S0196890421006968/pdf/S0196890421006968.pdf
PQID 2576367247
PQPubID 2047472
ParticipantIDs osti_scitechconnect_1809100
proquest_journals_2576367247
crossref_primary_10_1016_j_enconman_2021_114520
elsevier_sciencedirect_doi_10_1016_j_enconman_2021_114520
PublicationCentury 2000
PublicationDate 2021-09-15
PublicationDateYYYYMMDD 2021-09-15
PublicationDate_xml – month: 09
  year: 2021
  text: 2021-09-15
  day: 15
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
– name: United Kingdom
PublicationTitle Energy conversion and management
PublicationYear 2021
Publisher Elsevier Ltd
Elsevier Science Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Science Ltd
– name: Elsevier
References Matsumoto, Sakikawa, Miyata (b0105) 2018; 9
Al-Alili, Hwang, Radermacher (b0035) 2015; 81
Zhang, Dai, Wang (b0100) 2003; 23
Kocher (b0130) 2019
Pesaran, Mills (b0030) 1987; 30
Kodama, Hirayama, Goto, Hirose, Critoph (b0140) 2001; 21
Ge, Ziegler, Wang (b0090) 2010; 30
Cui (b0125) 2018
Zhao, Zhou, Liu, Shi, Dai, Yu (b0110) 2019; 31
ANSI, ASHRAE, ANSI/ASHRAE 55–2017: Thermal Environmental Conditions for Human Occupancy 2017 American Society of Heating, Refrigerating and Air-Conditioning Engineers Atlanta, USA.
Sultan, Miyazaki, Koyama (b0070) 2018; 121
Meyer, Thevenard (b0135) 2020
Mandegari, Farzad, Angrisani, Pahlavanzadeh (b0085) 2017; 137
Ritchie, Max (b0015) 2017
Stabat, Marchio (b0145) 2009; 86
Pesaran, A. A. (1994). Review of Desiccant Dehumidification Technology (No. NREL/TP-472-7010). National Renewable Energy Lab.(NREL), Golden, CO (United States).
Leuenberger (b0165) 2002; 4
Pérez-Lombard, Ortiz, Pout (b0005) 2008; 40
De Antonellis, Joppolo, Molinaroli (b0095) 2010; 42
Chung, Lee (b0060) 2009; 32
Intini, Goldsworthy, White, Joppolo (b0040) 2015; 80
Chen, Tan (b0050) 2020; 146
Pesaran, Mills (b0025) 1987; 30
Sherony, Solbrig (b0175) 1970; 13
Zhao, Lu, Liu, Lee, McDowell, Cui (b0160) 2014; 5
Ashraf, Park, Park, Lee (b0120) 2016; 24
Kang, Lee, Lee (b0150) 2015; 93
Abdelgaied, Kabeel, Zakaria (b0045) 2019; 198
Vakiloroaya, Samali, Fakhar, Pishghadam (b0010) 2014; 77
Yamaguchi, Saito (b0080) 2013; 60
Jain, Vedarajan, Watanabe, Ishikiriyama, Matsumi (b0170) 2015; 6
Fong, Lee (b0065) 2018; 144
Zeng, Cui, Wang, Chen (b0115) 2019; 459
Sphaier, Worek (b0075) 2004; 47
Xu, Sui, Dai, Liu, Liu (b0055) 2020; 29
Meyer (10.1016/j.enconman.2021.114520_b0135) 2020
Kocher (10.1016/j.enconman.2021.114520_b0130) 2019
Matsumoto (10.1016/j.enconman.2021.114520_b0105) 2018; 9
Sherony (10.1016/j.enconman.2021.114520_b0175) 1970; 13
Pesaran (10.1016/j.enconman.2021.114520_b0025) 1987; 30
Zeng (10.1016/j.enconman.2021.114520_b0115) 2019; 459
Yamaguchi (10.1016/j.enconman.2021.114520_b0080) 2013; 60
Jain (10.1016/j.enconman.2021.114520_b0170) 2015; 6
Ashraf (10.1016/j.enconman.2021.114520_b0120) 2016; 24
Zhang (10.1016/j.enconman.2021.114520_b0100) 2003; 23
Kodama (10.1016/j.enconman.2021.114520_b0140) 2001; 21
Ge (10.1016/j.enconman.2021.114520_b0090) 2010; 30
Fong (10.1016/j.enconman.2021.114520_b0065) 2018; 144
Xu (10.1016/j.enconman.2021.114520_b0055) 2020; 29
Abdelgaied (10.1016/j.enconman.2021.114520_b0045) 2019; 198
De Antonellis (10.1016/j.enconman.2021.114520_b0095) 2010; 42
Vakiloroaya (10.1016/j.enconman.2021.114520_b0010) 2014; 77
Chung (10.1016/j.enconman.2021.114520_b0060) 2009; 32
Chen (10.1016/j.enconman.2021.114520_b0050) 2020; 146
10.1016/j.enconman.2021.114520_b0155
Kang (10.1016/j.enconman.2021.114520_b0150) 2015; 93
Ritchie (10.1016/j.enconman.2021.114520_b0015) 2017
Al-Alili (10.1016/j.enconman.2021.114520_b0035) 2015; 81
Stabat (10.1016/j.enconman.2021.114520_b0145) 2009; 86
Pesaran (10.1016/j.enconman.2021.114520_b0030) 1987; 30
Pérez-Lombard (10.1016/j.enconman.2021.114520_b0005) 2008; 40
Sphaier (10.1016/j.enconman.2021.114520_b0075) 2004; 47
Cui (10.1016/j.enconman.2021.114520_b0125) 2018
Leuenberger (10.1016/j.enconman.2021.114520_b0165) 2002; 4
Sultan (10.1016/j.enconman.2021.114520_b0070) 2018; 121
Mandegari (10.1016/j.enconman.2021.114520_b0085) 2017; 137
Zhao (10.1016/j.enconman.2021.114520_b0110) 2019; 31
10.1016/j.enconman.2021.114520_b0020
Intini (10.1016/j.enconman.2021.114520_b0040) 2015; 80
Zhao (10.1016/j.enconman.2021.114520_b0160) 2014; 5
References_xml – volume: 144
  start-page: 1003
  year: 2018
  end-page: 1012
  ident: b0065
  article-title: Impact of adsorbent characteristics on performance of solid desiccant wheel
  publication-title: Energy
  contributor:
    fullname: Lee
– volume: 93
  start-page: 2559
  year: 2015
  end-page: 2567
  ident: b0150
  article-title: Explicit analytic solution for heat and mass transfer in a desiccant wheel using a simplified model
  publication-title: Energy
  contributor:
    fullname: Lee
– volume: 137
  start-page: 12
  year: 2017
  end-page: 20
  ident: b0085
  article-title: Study of purge angle effects on the desiccant wheel performance
  publication-title: Energy Convers. Manag.
  contributor:
    fullname: Pahlavanzadeh
– volume: 23
  start-page: 989
  year: 2003
  end-page: 1003
  ident: b0100
  article-title: A simulation study of heat and mass transfer in a honeycombed rotary desiccant dehumidifier
  publication-title: Appl. Therm. Eng.
  contributor:
    fullname: Wang
– volume: 29
  start-page: 1193
  year: 2020
  end-page: 1205
  ident: b0055
  article-title: Performance Analysis of a Combined Absorption Refrigeration-Liquid Desiccant Dehumidification THIC System Driven by Low-Grade Heat Source
  publication-title: J. Therm. Sci.
  contributor:
    fullname: Liu
– volume: 40
  start-page: 394
  year: 2008
  end-page: 398
  ident: b0005
  article-title: A review on buildings energy consumption information
  publication-title: Energy Build.
  contributor:
    fullname: Pout
– volume: 146
  start-page: 2142
  year: 2020
  end-page: 2157
  ident: b0050
  article-title: The performance of a desiccant wheel air conditioning system with high-temperature chilled water from natural cold source
  publication-title: Renew. Energy
  contributor:
    fullname: Tan
– volume: 47
  start-page: 3415
  year: 2004
  end-page: 3430
  ident: b0075
  article-title: Analysis of heat and mass transfer in porous sorbents used in rotary regenerators
  publication-title: Int. J. Heat Mass Transf.
  contributor:
    fullname: Worek
– year: 2017
  ident: b0015
  article-title: CO₂ and greenhouse gas emissions
  publication-title: Our world in data
  contributor:
    fullname: Max
– volume: 459
  start-page: 105
  year: 2019
  end-page: 113
  ident: b0115
  article-title: Multi-layer temperature-responsive hydrogel for forward-osmosis desalination with high permeable flux and fast water release
  publication-title: Desalination
  contributor:
    fullname: Chen
– year: 2020
  ident: b0135
  article-title: PsychroLib: a library of psychrometric functions to calculate thermodynamic properties of air (2.5.0)
  contributor:
    fullname: Thevenard
– volume: 86
  start-page: 762
  year: 2009
  end-page: 771
  ident: b0145
  article-title: Heat and mass transfer modeling in rotary desiccant dehumidifiers
  publication-title: Appl. Energy
  contributor:
    fullname: Marchio
– volume: 30
  start-page: 1005
  year: 2010
  end-page: 1015
  ident: b0090
  article-title: A mathematical model for predicting the performance of a compound desiccant wheel (A model of compound desiccant wheel)
  publication-title: Appl. Therm. Eng.
  contributor:
    fullname: Wang
– volume: 9
  start-page: 1
  year: 2018
  end-page: 7
  ident: b0105
  article-title: Thermo-responsive gels that absorb moisture and ooze water
  publication-title: Nat. Commun.
  contributor:
    fullname: Miyata
– volume: 31
  start-page: 1806446
  year: 2019
  ident: b0110
  article-title: Super moisture-absorbent gels for all-weather atmospheric water harvesting
  publication-title: Adv. Mater.
  contributor:
    fullname: Yu
– volume: 77
  start-page: 738
  year: 2014
  end-page: 754
  ident: b0010
  article-title: A review of different strategies for HVAC energy saving
  publication-title: Energy Convers. Manag.
  contributor:
    fullname: Pishghadam
– year: 2018
  ident: b0125
  article-title: Thermal Transport and Transformation in Micro-Structured Materials
  contributor:
    fullname: Cui
– volume: 5
  start-page: 1
  year: 2014
  end-page: 8
  ident: b0160
  article-title: Dry-air-stable lithium silicide–lithium oxide core–shell nanoparticles as high-capacity prelithiation reagents
  publication-title: Nat. Commun.
  contributor:
    fullname: Cui
– volume: 30
  start-page: 1037
  year: 1987
  end-page: 1049
  ident: b0025
  article-title: Moisture transport in silica gel packed beds—I. Theoretical study
  publication-title: Int. J. Heat Mass Transf.
  contributor:
    fullname: Mills
– volume: 42
  start-page: 1386
  year: 2010
  end-page: 1393
  ident: b0095
  article-title: Simulation, performance analysis and optimization of desiccant wheels
  publication-title: Energ. Buildings
  contributor:
    fullname: Molinaroli
– volume: 24
  start-page: 297
  year: 2016
  end-page: 304
  ident: b0120
  article-title: Snapshot of phase transition in thermoresponsive hydrogel PNIPAM: Role in drug delivery and tissue engineering
  publication-title: Macromol. Res.
  contributor:
    fullname: Lee
– volume: 121
  start-page: 441
  year: 2018
  end-page: 450
  ident: b0070
  article-title: Optimization of adsorption isotherm types for desiccant air-conditioning applications
  publication-title: Renew. Energy
  contributor:
    fullname: Koyama
– volume: 21
  start-page: 1657
  year: 2001
  end-page: 1674
  ident: b0140
  article-title: The use of psychrometric charts for the optimisation of a thermal swing desiccant wheel
  publication-title: Appl. Therm. Eng.
  contributor:
    fullname: Critoph
– volume: 81
  start-page: 137
  year: 2015
  end-page: 145
  ident: b0035
  article-title: Performance of a desiccant wheel cycle utilizing new zeolite material: Experimental investigation
  publication-title: Energy
  contributor:
    fullname: Radermacher
– volume: 80
  start-page: 20
  year: 2015
  end-page: 30
  ident: b0040
  article-title: Experimental analysis and numerical modelling of an AQSOA zeolite desiccant wheel
  publication-title: Appl. Therm. Eng.
  contributor:
    fullname: Joppolo
– volume: 32
  start-page: 720
  year: 2009
  end-page: 726
  ident: b0060
  article-title: Effect of desiccant isotherm on the performance of desiccant wheel
  publication-title: Int. J. Refrig.
  contributor:
    fullname: Lee
– year: 2019
  ident: b0130
  article-title: Analyzing the Opportunities for NIPAAm Dehumidification in Air Conditioning Systems
  contributor:
    fullname: Kocher
– volume: 198
  start-page: 111808
  year: 2019
  ident: b0045
  article-title: Performance improvement of desiccant air conditioner coupled with humidification-dehumidification desalination unit using solar reheating of regeneration air
  publication-title: Energy Convers. Manag.
  contributor:
    fullname: Zakaria
– volume: 4
  start-page: 111
  year: 2002
  end-page: 119
  ident: b0165
  article-title: Spray freeze-drying–the process of choice for low water soluble drugs?
  publication-title: J. Nanoparticle Res.
  contributor:
    fullname: Leuenberger
– volume: 6
  start-page: 6819
  year: 2015
  end-page: 6825
  ident: b0170
  article-title: Tunable LCST behavior of poly (N-isopropylacrylamide/ionic liquid) copolymers
  publication-title: Polym. Chem.
  contributor:
    fullname: Matsumi
– volume: 60
  start-page: 51
  year: 2013
  end-page: 60
  ident: b0080
  article-title: Numerical and experimental performance analysis of rotary desiccant wheels
  publication-title: Int. J. Heat Mass Transf.
  contributor:
    fullname: Saito
– volume: 13
  start-page: 145
  year: 1970
  end-page: 159
  ident: b0175
  article-title: Analytical investigation of heat or mass transfer and friction factors in a corrugated duct heat or mass exchanger.“
  publication-title: Int. J. Heat Mass Transf.
  contributor:
    fullname: Solbrig
– volume: 30
  start-page: 1051
  year: 1987
  end-page: 1060
  ident: b0030
  article-title: Moisture transport in silica gel packed beds—II. Experimental study
  publication-title: Int. J. Heat Mass Transf.
  contributor:
    fullname: Mills
– volume: 81
  start-page: 137
  year: 2015
  ident: 10.1016/j.enconman.2021.114520_b0035
  article-title: Performance of a desiccant wheel cycle utilizing new zeolite material: Experimental investigation
  publication-title: Energy
  doi: 10.1016/j.energy.2014.11.084
  contributor:
    fullname: Al-Alili
– volume: 144
  start-page: 1003
  year: 2018
  ident: 10.1016/j.enconman.2021.114520_b0065
  article-title: Impact of adsorbent characteristics on performance of solid desiccant wheel
  publication-title: Energy
  doi: 10.1016/j.energy.2017.12.113
  contributor:
    fullname: Fong
– year: 2018
  ident: 10.1016/j.enconman.2021.114520_b0125
  contributor:
    fullname: Cui
– volume: 29
  start-page: 1193
  issue: 5
  year: 2020
  ident: 10.1016/j.enconman.2021.114520_b0055
  article-title: Performance Analysis of a Combined Absorption Refrigeration-Liquid Desiccant Dehumidification THIC System Driven by Low-Grade Heat Source
  publication-title: J. Therm. Sci.
  doi: 10.1007/s11630-020-1363-6
  contributor:
    fullname: Xu
– volume: 77
  start-page: 738
  year: 2014
  ident: 10.1016/j.enconman.2021.114520_b0010
  article-title: A review of different strategies for HVAC energy saving
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2013.10.023
  contributor:
    fullname: Vakiloroaya
– volume: 30
  start-page: 1037
  issue: 6
  year: 1987
  ident: 10.1016/j.enconman.2021.114520_b0025
  article-title: Moisture transport in silica gel packed beds—I. Theoretical study
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/0017-9310(87)90034-2
  contributor:
    fullname: Pesaran
– volume: 459
  start-page: 105
  year: 2019
  ident: 10.1016/j.enconman.2021.114520_b0115
  article-title: Multi-layer temperature-responsive hydrogel for forward-osmosis desalination with high permeable flux and fast water release
  publication-title: Desalination
  doi: 10.1016/j.desal.2019.02.002
  contributor:
    fullname: Zeng
– volume: 5
  start-page: 1
  issue: 1
  year: 2014
  ident: 10.1016/j.enconman.2021.114520_b0160
  article-title: Dry-air-stable lithium silicide–lithium oxide core–shell nanoparticles as high-capacity prelithiation reagents
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms6088
  contributor:
    fullname: Zhao
– volume: 31
  start-page: 1806446
  issue: 10
  year: 2019
  ident: 10.1016/j.enconman.2021.114520_b0110
  article-title: Super moisture-absorbent gels for all-weather atmospheric water harvesting
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201806446
  contributor:
    fullname: Zhao
– year: 2019
  ident: 10.1016/j.enconman.2021.114520_b0130
  contributor:
    fullname: Kocher
– volume: 198
  start-page: 111808
  year: 2019
  ident: 10.1016/j.enconman.2021.114520_b0045
  article-title: Performance improvement of desiccant air conditioner coupled with humidification-dehumidification desalination unit using solar reheating of regeneration air
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2019.111808
  contributor:
    fullname: Abdelgaied
– volume: 30
  start-page: 1005
  issue: 8-9
  year: 2010
  ident: 10.1016/j.enconman.2021.114520_b0090
  article-title: A mathematical model for predicting the performance of a compound desiccant wheel (A model of compound desiccant wheel)
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2010.01.012
  contributor:
    fullname: Ge
– volume: 137
  start-page: 12
  year: 2017
  ident: 10.1016/j.enconman.2021.114520_b0085
  article-title: Study of purge angle effects on the desiccant wheel performance
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2017.01.042
  contributor:
    fullname: Mandegari
– ident: 10.1016/j.enconman.2021.114520_b0020
  doi: 10.2172/934386
– volume: 86
  start-page: 762
  issue: 5
  year: 2009
  ident: 10.1016/j.enconman.2021.114520_b0145
  article-title: Heat and mass transfer modeling in rotary desiccant dehumidifiers
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2007.06.018
  contributor:
    fullname: Stabat
– year: 2020
  ident: 10.1016/j.enconman.2021.114520_b0135
  contributor:
    fullname: Meyer
– volume: 93
  start-page: 2559
  year: 2015
  ident: 10.1016/j.enconman.2021.114520_b0150
  article-title: Explicit analytic solution for heat and mass transfer in a desiccant wheel using a simplified model
  publication-title: Energy
  doi: 10.1016/j.energy.2015.10.091
  contributor:
    fullname: Kang
– volume: 47
  start-page: 3415
  issue: 14-16
  year: 2004
  ident: 10.1016/j.enconman.2021.114520_b0075
  article-title: Analysis of heat and mass transfer in porous sorbents used in rotary regenerators
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2004.01.016
  contributor:
    fullname: Sphaier
– volume: 30
  start-page: 1051
  issue: 6
  year: 1987
  ident: 10.1016/j.enconman.2021.114520_b0030
  article-title: Moisture transport in silica gel packed beds—II. Experimental study
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/0017-9310(87)90035-4
  contributor:
    fullname: Pesaran
– volume: 24
  start-page: 297
  issue: 4
  year: 2016
  ident: 10.1016/j.enconman.2021.114520_b0120
  article-title: Snapshot of phase transition in thermoresponsive hydrogel PNIPAM: Role in drug delivery and tissue engineering
  publication-title: Macromol. Res.
  doi: 10.1007/s13233-016-4052-2
  contributor:
    fullname: Ashraf
– volume: 60
  start-page: 51
  year: 2013
  ident: 10.1016/j.enconman.2021.114520_b0080
  article-title: Numerical and experimental performance analysis of rotary desiccant wheels
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2012.12.036
  contributor:
    fullname: Yamaguchi
– volume: 23
  start-page: 989
  issue: 8
  year: 2003
  ident: 10.1016/j.enconman.2021.114520_b0100
  article-title: A simulation study of heat and mass transfer in a honeycombed rotary desiccant dehumidifier
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/S1359-4311(03)00047-4
  contributor:
    fullname: Zhang
– volume: 4
  start-page: 111
  issue: 1
  year: 2002
  ident: 10.1016/j.enconman.2021.114520_b0165
  article-title: Spray freeze-drying–the process of choice for low water soluble drugs?
  publication-title: J. Nanoparticle Res.
  doi: 10.1023/A:1020135603052
  contributor:
    fullname: Leuenberger
– volume: 121
  start-page: 441
  year: 2018
  ident: 10.1016/j.enconman.2021.114520_b0070
  article-title: Optimization of adsorption isotherm types for desiccant air-conditioning applications
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2018.01.045
  contributor:
    fullname: Sultan
– volume: 42
  start-page: 1386
  issue: 9
  year: 2010
  ident: 10.1016/j.enconman.2021.114520_b0095
  article-title: Simulation, performance analysis and optimization of desiccant wheels
  publication-title: Energ. Buildings
  doi: 10.1016/j.enbuild.2010.03.007
  contributor:
    fullname: De Antonellis
– volume: 6
  start-page: 6819
  issue: 38
  year: 2015
  ident: 10.1016/j.enconman.2021.114520_b0170
  article-title: Tunable LCST behavior of poly (N-isopropylacrylamide/ionic liquid) copolymers
  publication-title: Polym. Chem.
  doi: 10.1039/C5PY00998G
  contributor:
    fullname: Jain
– year: 2017
  ident: 10.1016/j.enconman.2021.114520_b0015
  article-title: CO₂ and greenhouse gas emissions
  contributor:
    fullname: Ritchie
– volume: 80
  start-page: 20
  year: 2015
  ident: 10.1016/j.enconman.2021.114520_b0040
  article-title: Experimental analysis and numerical modelling of an AQSOA zeolite desiccant wheel
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2015.01.036
  contributor:
    fullname: Intini
– volume: 9
  start-page: 1
  issue: 1
  year: 2018
  ident: 10.1016/j.enconman.2021.114520_b0105
  article-title: Thermo-responsive gels that absorb moisture and ooze water
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-04810-8
  contributor:
    fullname: Matsumoto
– volume: 21
  start-page: 1657
  issue: 16
  year: 2001
  ident: 10.1016/j.enconman.2021.114520_b0140
  article-title: The use of psychrometric charts for the optimisation of a thermal swing desiccant wheel
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/S1359-4311(01)00032-1
  contributor:
    fullname: Kodama
– volume: 146
  start-page: 2142
  year: 2020
  ident: 10.1016/j.enconman.2021.114520_b0050
  article-title: The performance of a desiccant wheel air conditioning system with high-temperature chilled water from natural cold source
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2019.08.082
  contributor:
    fullname: Chen
– volume: 40
  start-page: 394
  issue: 3
  year: 2008
  ident: 10.1016/j.enconman.2021.114520_b0005
  article-title: A review on buildings energy consumption information
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2007.03.007
  contributor:
    fullname: Pérez-Lombard
– volume: 32
  start-page: 720
  issue: 4
  year: 2009
  ident: 10.1016/j.enconman.2021.114520_b0060
  article-title: Effect of desiccant isotherm on the performance of desiccant wheel
  publication-title: Int. J. Refrig.
  doi: 10.1016/j.ijrefrig.2009.01.003
  contributor:
    fullname: Chung
– ident: 10.1016/j.enconman.2021.114520_b0155
– volume: 13
  start-page: 145
  issue: 1
  year: 1970
  ident: 10.1016/j.enconman.2021.114520_b0175
  article-title: Analytical investigation of heat or mass transfer and friction factors in a corrugated duct heat or mass exchanger.“
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/0017-9310(70)90031-1
  contributor:
    fullname: Sherony
SSID ssj0003506
Score 2.5193212
Snippet Traditional desiccant-based dehumidification systems suffer from low energy efficiency due to the desiccant’s fixed affinity to water, meaning it has a single...
The desiccant wheel is a promising technology for energy-efficient humidity control. However, its overall efficiency-hindered by the desiccant materials'...
SourceID osti
proquest
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Publisher
StartPage 114520
SubjectTerms Adsorption
Critical temperature
Dehumidification
Desiccant wheel
Desiccants
Energy conservation
Energy consumption
Energy efficiency
Gels
Humidity
Humidity control
Interpenetrating networks
Isotherms
Moisture control
Polymers
Silica
Silica gel
Silicon dioxide
Temperature
Temperature dependence
Thermo-responsive solid desiccant
Water vapor
Title The energy saving potential of thermo-responsive desiccants for air dehumidification
URI https://dx.doi.org/10.1016/j.enconman.2021.114520
https://www.proquest.com/docview/2576367247
https://www.osti.gov/biblio/1809100
Volume 244
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF5KvehBfGJtlT143abZvI-lWKpiL1bobdlNJthCk9KmHv3tzuSBFQUPHrPskDCzO_Nt-OZbxu5S3_HT2JYC0QUIN5FaaKwkIolIWyZJAQbU4Pw89Sev7uPcm7fYqOmFIVplnfurnF5m63rEqr1prRcL64WUXcIIF51Ncrs-Nfy6WP5wTfc_vmgejlfer0mTBc3e6xJe9kkrMltp0kGVNsnmenTv9-8Fqp3jnvuRscsyND5hxzV-5MPqE09ZC7IzdrSnKnjOZhh6DmVPH99q-mHA13lBrCA0zFNOkG-Vi03Njn0HngDGiny85YhhuV5scOhtt1okRCQqY3fBZuP72Wgi6ssTROyGdiGkSfxYgu2aOPTAkbEDCEUMno5cqb0AcY_WAw-LFIAfeXEQRUaDBhMivkswDVyydpZncMU4hClaJ0Yb47tRQD92jE6DWBo70FJCh1mNw9S6kshQDXdsqRoXK3KxqlzcYVHjV_Ut2Arz-J-2XQoE2ZHKbUx0IDQkGTJcBx3Wa-Kj6s24VXSmcvxAusH1P17cZYf0RFwR2-uxdrHZwQ0CksLclivulh0MH54m00-fgOEJ
link.rule.ids 230,315,783,787,888,4509,24128,27936,27937,45597,45691
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED5BGYAB8RSFAh5YTRrnPSIEKs-FIHWz7OQiitSm6oOR385dmogikBhYE58S3Z3Pn63vPgOcF6EXFpmrJKELlH6ujDS0ksg8YW2ZvEDscoPz41PYe_Hv-kF_Ba6aXhimVda1f1HTq2pdP3FqbzrjwcB5ZmWXOKGkc1luN4xXYc1nfExJffHxxfPwguqCTR4tefhSm_DbBYtFjoaGhVCVy7q5AV_8_fsK1Spp0v0o2dU6dLMNWzWAFJeLf9yBFRztwuaSrOAepBR7gVVTn5gaPjEQ43LGtCAyLAvBmG9YyklNj31HkSMFi508FQRihRlM6NHrfDjImUlUBW8f0pvr9Kon69sTZObH7kwqm4eZQte3WRygpzIPCYtY2h75ygQRAR9jugGtUohhEmRRkliDBm1MAC-nOnAArVE5wkMQGBdknVtjbegnEZ_sWFNEmbJuZJTCNjiNw_R4oZGhG_LYm25crNnFeuHiNiSNX_W3aGsq5H_aHnMg2I5lbjPmA5Eh65BRIrSh08RH17NxqnlT5YWR8qOjf3z4DNZ76eODfrh9uj-GDX7DxBE36EBrNpnjCaGTmT2tsu8T9v7iog
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+energy+saving+potential+of+thermo-responsive+desiccants+for+air+dehumidification&rft.jtitle=Energy+conversion+and+management&rft.au=Zeng%2C+Yi&rft.au=Woods%2C+Jason&rft.au=Cui%2C+Shuang&rft.date=2021-09-15&rft.issn=0196-8904&rft.volume=244&rft.spage=114520&rft_id=info:doi/10.1016%2Fj.enconman.2021.114520&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_enconman_2021_114520
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-8904&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-8904&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-8904&client=summon