The energy saving potential of thermo-responsive desiccants for air dehumidification
Traditional desiccant-based dehumidification systems suffer from low energy efficiency due to the desiccant’s fixed affinity to water, meaning it has a single moisture adsorption isotherm regardless of the temperature. We modeled a novel thermo-responsive desiccant with temperature-dependent isother...
Saved in:
Published in | Energy conversion and management Vol. 244; no. C; p. 114520 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Oxford
Elsevier Ltd
15.09.2021
Elsevier Science Ltd Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Traditional desiccant-based dehumidification systems suffer from low energy efficiency due to the desiccant’s fixed affinity to water, meaning it has a single moisture adsorption isotherm regardless of the temperature. We modeled a novel thermo-responsive desiccant with temperature-dependent isotherms in a desiccant wheel model for three representative dehumidification scenarios. These cases show remarkable improvement in moisture removal efficiency of this material because of its switchable water affinity below/above the critical temperature. Our work discusses how to apply and tune the thermo-responsive desiccants for further enhancement in dehumidification performance, depending on application.
[Display omitted]
•Developed a thermo-responsive desiccant wheel model for air dehumidification.•Demonstrated how and why thermo-responsiveness improves dehumidification efficiency.•Quantified thermo-responsive desiccants’ improvement in dehumidification efficiency.•Provided guidance on desiccant material and system design for air dehumidification.
The desiccant wheel is a promising technology for energy-efficient humidity control. However, its overall efficiency—hindered by the desiccant materials’ properties—remains low because traditional desiccants (e.g., silica gels) have a single isotherm regardless of their adsorption temperature. Thermo-responsive materials have been proposed to break this fixed affinity to water vapor, with drastically different adsorption isotherms depending on temperature. Its potential for improving dehumidification efficiency, however, has not been addressed. In this paper, we model the potential of a thermo-responsive interpenetrating polymer network (IPN) desiccant with temperature-dependent adsorption isotherms for energy-efficient dehumidification via a validated transient desiccant wheel model for humidity control of buildings. Thermo-responsive desiccants can improve the dehumidification performance due to their thermo-responsive switchable hydrophilicity below/above the lower critical solution temperature. Our analysis shows that thermo-responsive IPN desiccants can potentially reduce energy consumption by up to 30% compared to silica gels. The savings depend strongly on the critical temperature of the thermo-responsive desiccant and should be higher when the inlet temperatures are expected to be higher. |
---|---|
AbstractList | The desiccant wheel is a promising technology for energy-efficient humidity control. However, its overall efficiency-hindered by the desiccant materials' properties-remains low because traditional desiccants (e.g., silica gels) have a single isotherm regardless of their adsorption temperature. Thermo-responsive materials have been proposed to break this fixed affinity to water vapor, with drastically different adsorption isotherms depending on temperature. Its potential for improving dehumidification efficiency, however, has not been addressed. In this paper, we model the potential of a thermo-responsive interpenetrating polymer network (IPN) desiccant with temperature-dependent adsorption isotherms for energy-efficient dehumidification via a validated transient desiccant wheel model for humidity control of buildings. Thermo-responsive desiccants can improve the dehumidification performance due to their thermo-responsive switchable hydrophilicity below/above the lower critical solution temperature. Our analysis shows that thermo-responsive IPN desiccants can potentially reduce energy consumption by up to 30% compared to silica gels. The savings depend strongly on the critical temperature of the thermo-responsive desiccant and should be higher when the inlet temperatures are expected to be higher. Traditional desiccant-based dehumidification systems suffer from low energy efficiency due to the desiccant’s fixed affinity to water, meaning it has a single moisture adsorption isotherm regardless of the temperature. We modeled a novel thermo-responsive desiccant with temperature-dependent isotherms in a desiccant wheel model for three representative dehumidification scenarios. These cases show remarkable improvement in moisture removal efficiency of this material because of its switchable water affinity below/above the critical temperature. Our work discusses how to apply and tune the thermo-responsive desiccants for further enhancement in dehumidification performance, depending on application. [Display omitted] •Developed a thermo-responsive desiccant wheel model for air dehumidification.•Demonstrated how and why thermo-responsiveness improves dehumidification efficiency.•Quantified thermo-responsive desiccants’ improvement in dehumidification efficiency.•Provided guidance on desiccant material and system design for air dehumidification. The desiccant wheel is a promising technology for energy-efficient humidity control. However, its overall efficiency—hindered by the desiccant materials’ properties—remains low because traditional desiccants (e.g., silica gels) have a single isotherm regardless of their adsorption temperature. Thermo-responsive materials have been proposed to break this fixed affinity to water vapor, with drastically different adsorption isotherms depending on temperature. Its potential for improving dehumidification efficiency, however, has not been addressed. In this paper, we model the potential of a thermo-responsive interpenetrating polymer network (IPN) desiccant with temperature-dependent adsorption isotherms for energy-efficient dehumidification via a validated transient desiccant wheel model for humidity control of buildings. Thermo-responsive desiccants can improve the dehumidification performance due to their thermo-responsive switchable hydrophilicity below/above the lower critical solution temperature. Our analysis shows that thermo-responsive IPN desiccants can potentially reduce energy consumption by up to 30% compared to silica gels. The savings depend strongly on the critical temperature of the thermo-responsive desiccant and should be higher when the inlet temperatures are expected to be higher. |
ArticleNumber | 114520 |
Author | Woods, Jason Zeng, Yi Cui, Shuang |
Author_xml | – sequence: 1 givenname: Yi surname: Zeng fullname: Zeng, Yi – sequence: 2 givenname: Jason surname: Woods fullname: Woods, Jason email: Jason.Woods@nrel.gov – sequence: 3 givenname: Shuang surname: Cui fullname: Cui, Shuang email: Shuang.Cui@nrel.gov |
BackLink | https://www.osti.gov/biblio/1809100$$D View this record in Osti.gov |
BookMark | eNqFkMtqwzAQRUVJoUnaXyimXTsdyZZs7VpCXxDoJnshy-NEIZFSSQnk72vjdt3VwHDucOfMyMR5h4TcU1hQoOJpt0BnvDtot2DA6ILSkjO4IlNaVzJnjFUTMgUqRV5LKG_ILMYdABQcxJSs11vM0GHYXLKoz9ZtsqNP6JLV-8x3WdpiOPg8YDx6F-0ZsxajNUa7FLPOh0zb0K-2p4NtbWeNTta7W3Ld6X3Eu985J-u31_XyI199vX8uX1a5KWuacta0wjCkZWNqjgUzBUpZNFSUJdO8Ai60Bg5AEYXkppKy0aixqbkQbQXFnDyMZ31MVkVjE5ptb8KhSYrWICkM0OMIHYP_PmFMaudPwfW1FOOVKETFyqqnxEiZ4GMM2KljsAcdLoqCGiyrnfqzrAbLarTcB5_HIPZ_ni2GoUdPYmvDUKP19r8TPxHEiwM |
CitedBy_id | crossref_primary_10_1002_rpm_20230011 crossref_primary_10_1016_j_jil_2023_100077 crossref_primary_10_1016_j_rser_2024_114278 crossref_primary_10_1002_aenm_202300990 crossref_primary_10_3390_buildings13051192 crossref_primary_10_1007_s10973_023_12506_5 crossref_primary_10_1016_j_enconman_2023_118029 crossref_primary_10_1016_j_enconman_2023_117169 crossref_primary_10_1557_s43577_021_00241_x crossref_primary_10_1016_j_applthermaleng_2024_122780 crossref_primary_10_2355_isijinternational_ISIJINT_2022_204 crossref_primary_10_1016_j_enconman_2021_115158 crossref_primary_10_1016_j_enbuild_2021_111560 crossref_primary_10_1016_j_jclepro_2022_134583 crossref_primary_10_1016_j_enconman_2022_115251 crossref_primary_10_1016_j_jclepro_2023_137446 crossref_primary_10_1016_j_joule_2022_02_013 crossref_primary_10_1016_j_enconman_2022_115492 crossref_primary_10_1016_j_applthermaleng_2021_117608 crossref_primary_10_1016_j_molliq_2022_119401 crossref_primary_10_1016_j_energy_2024_131050 crossref_primary_10_1016_j_ijheatmasstransfer_2023_123946 |
Cites_doi | 10.1016/j.energy.2014.11.084 10.1016/j.energy.2017.12.113 10.1007/s11630-020-1363-6 10.1016/j.enconman.2013.10.023 10.1016/0017-9310(87)90034-2 10.1016/j.desal.2019.02.002 10.1038/ncomms6088 10.1002/adma.201806446 10.1016/j.enconman.2019.111808 10.1016/j.applthermaleng.2010.01.012 10.1016/j.enconman.2017.01.042 10.2172/934386 10.1016/j.apenergy.2007.06.018 10.1016/j.energy.2015.10.091 10.1016/j.ijheatmasstransfer.2004.01.016 10.1016/0017-9310(87)90035-4 10.1007/s13233-016-4052-2 10.1016/j.ijheatmasstransfer.2012.12.036 10.1016/S1359-4311(03)00047-4 10.1023/A:1020135603052 10.1016/j.renene.2018.01.045 10.1016/j.enbuild.2010.03.007 10.1039/C5PY00998G 10.1016/j.applthermaleng.2015.01.036 10.1038/s41467-018-04810-8 10.1016/S1359-4311(01)00032-1 10.1016/j.renene.2019.08.082 10.1016/j.enbuild.2007.03.007 10.1016/j.ijrefrig.2009.01.003 10.1016/0017-9310(70)90031-1 |
ContentType | Journal Article |
Copyright | 2021 Elsevier Ltd Copyright Elsevier Science Ltd. Sep 15, 2021 |
Copyright_xml | – notice: 2021 Elsevier Ltd – notice: Copyright Elsevier Science Ltd. Sep 15, 2021 |
DBID | AAYXX CITATION 7ST 7TB 8FD C1K FR3 H8D KR7 L7M SOI OTOTI |
DOI | 10.1016/j.enconman.2021.114520 |
DatabaseName | CrossRef Environment Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Aerospace Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace Environment Abstracts OSTI.GOV |
DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Engineering Research Database Environment Abstracts Advanced Technologies Database with Aerospace Environmental Sciences and Pollution Management |
DatabaseTitleList | Aerospace Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1879-2227 |
ExternalDocumentID | 1809100 10_1016_j_enconman_2021_114520 S0196890421006968 |
GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AAXUO ABFNM ABFRF ABJNI ABMAC ABYKQ ACBEA ACDAQ ACGFO ACGFS ACIWK ACNCT ACRLP ADBBV ADEZE AEBSH AEFWE AEKER AENEX AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AHJVU AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SDP SES SPC SPCBC SSR SST SSZ T5K TN5 XPP ZMT ~02 ~G- 29G 6TJ 8WZ A6W AAHBH AAQXK AAXKI AAYXX ABXDB ACNNM ADMUD AFFNX AFJKZ AKRWK ASPBG AVWKF AZFZN CITATION EJD FEDTE FGOYB G-2 G8K HVGLF HZ~ H~9 R2- RIG SAC SEW WUQ 7ST 7TB 8FD C1K FR3 H8D KR7 L7M SOI AALMO ABPIF ABPTK ABQIS OTOTI |
ID | FETCH-LOGICAL-c481t-2bd6c2e14bc85e32c3e993b16442a57056aa05001ee695c799baeaeb8566d703 |
IEDL.DBID | .~1 |
ISSN | 0196-8904 |
IngestDate | Fri May 19 01:55:50 EDT 2023 Thu Oct 10 18:50:51 EDT 2024 Thu Sep 26 16:54:43 EDT 2024 Fri Feb 23 02:42:37 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | C |
Keywords | Energy efficiency Thermo-responsive solid desiccant Dehumidification Desiccant wheel |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c481t-2bd6c2e14bc85e32c3e993b16442a57056aa05001ee695c799baeaeb8566d703 |
Notes | USDOE |
OpenAccessLink | http://manuscript.elsevier.com/S0196890421006968/pdf/S0196890421006968.pdf |
PQID | 2576367247 |
PQPubID | 2047472 |
ParticipantIDs | osti_scitechconnect_1809100 proquest_journals_2576367247 crossref_primary_10_1016_j_enconman_2021_114520 elsevier_sciencedirect_doi_10_1016_j_enconman_2021_114520 |
PublicationCentury | 2000 |
PublicationDate | 2021-09-15 |
PublicationDateYYYYMMDD | 2021-09-15 |
PublicationDate_xml | – month: 09 year: 2021 text: 2021-09-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford – name: United Kingdom |
PublicationTitle | Energy conversion and management |
PublicationYear | 2021 |
Publisher | Elsevier Ltd Elsevier Science Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier Science Ltd – name: Elsevier |
References | Matsumoto, Sakikawa, Miyata (b0105) 2018; 9 Al-Alili, Hwang, Radermacher (b0035) 2015; 81 Zhang, Dai, Wang (b0100) 2003; 23 Kocher (b0130) 2019 Pesaran, Mills (b0030) 1987; 30 Kodama, Hirayama, Goto, Hirose, Critoph (b0140) 2001; 21 Ge, Ziegler, Wang (b0090) 2010; 30 Cui (b0125) 2018 Zhao, Zhou, Liu, Shi, Dai, Yu (b0110) 2019; 31 ANSI, ASHRAE, ANSI/ASHRAE 55–2017: Thermal Environmental Conditions for Human Occupancy 2017 American Society of Heating, Refrigerating and Air-Conditioning Engineers Atlanta, USA. Sultan, Miyazaki, Koyama (b0070) 2018; 121 Meyer, Thevenard (b0135) 2020 Mandegari, Farzad, Angrisani, Pahlavanzadeh (b0085) 2017; 137 Ritchie, Max (b0015) 2017 Stabat, Marchio (b0145) 2009; 86 Pesaran, A. A. (1994). Review of Desiccant Dehumidification Technology (No. NREL/TP-472-7010). National Renewable Energy Lab.(NREL), Golden, CO (United States). Leuenberger (b0165) 2002; 4 Pérez-Lombard, Ortiz, Pout (b0005) 2008; 40 De Antonellis, Joppolo, Molinaroli (b0095) 2010; 42 Chung, Lee (b0060) 2009; 32 Intini, Goldsworthy, White, Joppolo (b0040) 2015; 80 Chen, Tan (b0050) 2020; 146 Pesaran, Mills (b0025) 1987; 30 Sherony, Solbrig (b0175) 1970; 13 Zhao, Lu, Liu, Lee, McDowell, Cui (b0160) 2014; 5 Ashraf, Park, Park, Lee (b0120) 2016; 24 Kang, Lee, Lee (b0150) 2015; 93 Abdelgaied, Kabeel, Zakaria (b0045) 2019; 198 Vakiloroaya, Samali, Fakhar, Pishghadam (b0010) 2014; 77 Yamaguchi, Saito (b0080) 2013; 60 Jain, Vedarajan, Watanabe, Ishikiriyama, Matsumi (b0170) 2015; 6 Fong, Lee (b0065) 2018; 144 Zeng, Cui, Wang, Chen (b0115) 2019; 459 Sphaier, Worek (b0075) 2004; 47 Xu, Sui, Dai, Liu, Liu (b0055) 2020; 29 Meyer (10.1016/j.enconman.2021.114520_b0135) 2020 Kocher (10.1016/j.enconman.2021.114520_b0130) 2019 Matsumoto (10.1016/j.enconman.2021.114520_b0105) 2018; 9 Sherony (10.1016/j.enconman.2021.114520_b0175) 1970; 13 Pesaran (10.1016/j.enconman.2021.114520_b0025) 1987; 30 Zeng (10.1016/j.enconman.2021.114520_b0115) 2019; 459 Yamaguchi (10.1016/j.enconman.2021.114520_b0080) 2013; 60 Jain (10.1016/j.enconman.2021.114520_b0170) 2015; 6 Ashraf (10.1016/j.enconman.2021.114520_b0120) 2016; 24 Zhang (10.1016/j.enconman.2021.114520_b0100) 2003; 23 Kodama (10.1016/j.enconman.2021.114520_b0140) 2001; 21 Ge (10.1016/j.enconman.2021.114520_b0090) 2010; 30 Fong (10.1016/j.enconman.2021.114520_b0065) 2018; 144 Xu (10.1016/j.enconman.2021.114520_b0055) 2020; 29 Abdelgaied (10.1016/j.enconman.2021.114520_b0045) 2019; 198 De Antonellis (10.1016/j.enconman.2021.114520_b0095) 2010; 42 Vakiloroaya (10.1016/j.enconman.2021.114520_b0010) 2014; 77 Chung (10.1016/j.enconman.2021.114520_b0060) 2009; 32 Chen (10.1016/j.enconman.2021.114520_b0050) 2020; 146 10.1016/j.enconman.2021.114520_b0155 Kang (10.1016/j.enconman.2021.114520_b0150) 2015; 93 Ritchie (10.1016/j.enconman.2021.114520_b0015) 2017 Al-Alili (10.1016/j.enconman.2021.114520_b0035) 2015; 81 Stabat (10.1016/j.enconman.2021.114520_b0145) 2009; 86 Pesaran (10.1016/j.enconman.2021.114520_b0030) 1987; 30 Pérez-Lombard (10.1016/j.enconman.2021.114520_b0005) 2008; 40 Sphaier (10.1016/j.enconman.2021.114520_b0075) 2004; 47 Cui (10.1016/j.enconman.2021.114520_b0125) 2018 Leuenberger (10.1016/j.enconman.2021.114520_b0165) 2002; 4 Sultan (10.1016/j.enconman.2021.114520_b0070) 2018; 121 Mandegari (10.1016/j.enconman.2021.114520_b0085) 2017; 137 Zhao (10.1016/j.enconman.2021.114520_b0110) 2019; 31 10.1016/j.enconman.2021.114520_b0020 Intini (10.1016/j.enconman.2021.114520_b0040) 2015; 80 Zhao (10.1016/j.enconman.2021.114520_b0160) 2014; 5 |
References_xml | – volume: 144 start-page: 1003 year: 2018 end-page: 1012 ident: b0065 article-title: Impact of adsorbent characteristics on performance of solid desiccant wheel publication-title: Energy contributor: fullname: Lee – volume: 93 start-page: 2559 year: 2015 end-page: 2567 ident: b0150 article-title: Explicit analytic solution for heat and mass transfer in a desiccant wheel using a simplified model publication-title: Energy contributor: fullname: Lee – volume: 137 start-page: 12 year: 2017 end-page: 20 ident: b0085 article-title: Study of purge angle effects on the desiccant wheel performance publication-title: Energy Convers. Manag. contributor: fullname: Pahlavanzadeh – volume: 23 start-page: 989 year: 2003 end-page: 1003 ident: b0100 article-title: A simulation study of heat and mass transfer in a honeycombed rotary desiccant dehumidifier publication-title: Appl. Therm. Eng. contributor: fullname: Wang – volume: 29 start-page: 1193 year: 2020 end-page: 1205 ident: b0055 article-title: Performance Analysis of a Combined Absorption Refrigeration-Liquid Desiccant Dehumidification THIC System Driven by Low-Grade Heat Source publication-title: J. Therm. Sci. contributor: fullname: Liu – volume: 40 start-page: 394 year: 2008 end-page: 398 ident: b0005 article-title: A review on buildings energy consumption information publication-title: Energy Build. contributor: fullname: Pout – volume: 146 start-page: 2142 year: 2020 end-page: 2157 ident: b0050 article-title: The performance of a desiccant wheel air conditioning system with high-temperature chilled water from natural cold source publication-title: Renew. Energy contributor: fullname: Tan – volume: 47 start-page: 3415 year: 2004 end-page: 3430 ident: b0075 article-title: Analysis of heat and mass transfer in porous sorbents used in rotary regenerators publication-title: Int. J. Heat Mass Transf. contributor: fullname: Worek – year: 2017 ident: b0015 article-title: CO₂ and greenhouse gas emissions publication-title: Our world in data contributor: fullname: Max – volume: 459 start-page: 105 year: 2019 end-page: 113 ident: b0115 article-title: Multi-layer temperature-responsive hydrogel for forward-osmosis desalination with high permeable flux and fast water release publication-title: Desalination contributor: fullname: Chen – year: 2020 ident: b0135 article-title: PsychroLib: a library of psychrometric functions to calculate thermodynamic properties of air (2.5.0) contributor: fullname: Thevenard – volume: 86 start-page: 762 year: 2009 end-page: 771 ident: b0145 article-title: Heat and mass transfer modeling in rotary desiccant dehumidifiers publication-title: Appl. Energy contributor: fullname: Marchio – volume: 30 start-page: 1005 year: 2010 end-page: 1015 ident: b0090 article-title: A mathematical model for predicting the performance of a compound desiccant wheel (A model of compound desiccant wheel) publication-title: Appl. Therm. Eng. contributor: fullname: Wang – volume: 9 start-page: 1 year: 2018 end-page: 7 ident: b0105 article-title: Thermo-responsive gels that absorb moisture and ooze water publication-title: Nat. Commun. contributor: fullname: Miyata – volume: 31 start-page: 1806446 year: 2019 ident: b0110 article-title: Super moisture-absorbent gels for all-weather atmospheric water harvesting publication-title: Adv. Mater. contributor: fullname: Yu – volume: 77 start-page: 738 year: 2014 end-page: 754 ident: b0010 article-title: A review of different strategies for HVAC energy saving publication-title: Energy Convers. Manag. contributor: fullname: Pishghadam – year: 2018 ident: b0125 article-title: Thermal Transport and Transformation in Micro-Structured Materials contributor: fullname: Cui – volume: 5 start-page: 1 year: 2014 end-page: 8 ident: b0160 article-title: Dry-air-stable lithium silicide–lithium oxide core–shell nanoparticles as high-capacity prelithiation reagents publication-title: Nat. Commun. contributor: fullname: Cui – volume: 30 start-page: 1037 year: 1987 end-page: 1049 ident: b0025 article-title: Moisture transport in silica gel packed beds—I. Theoretical study publication-title: Int. J. Heat Mass Transf. contributor: fullname: Mills – volume: 42 start-page: 1386 year: 2010 end-page: 1393 ident: b0095 article-title: Simulation, performance analysis and optimization of desiccant wheels publication-title: Energ. Buildings contributor: fullname: Molinaroli – volume: 24 start-page: 297 year: 2016 end-page: 304 ident: b0120 article-title: Snapshot of phase transition in thermoresponsive hydrogel PNIPAM: Role in drug delivery and tissue engineering publication-title: Macromol. Res. contributor: fullname: Lee – volume: 121 start-page: 441 year: 2018 end-page: 450 ident: b0070 article-title: Optimization of adsorption isotherm types for desiccant air-conditioning applications publication-title: Renew. Energy contributor: fullname: Koyama – volume: 21 start-page: 1657 year: 2001 end-page: 1674 ident: b0140 article-title: The use of psychrometric charts for the optimisation of a thermal swing desiccant wheel publication-title: Appl. Therm. Eng. contributor: fullname: Critoph – volume: 81 start-page: 137 year: 2015 end-page: 145 ident: b0035 article-title: Performance of a desiccant wheel cycle utilizing new zeolite material: Experimental investigation publication-title: Energy contributor: fullname: Radermacher – volume: 80 start-page: 20 year: 2015 end-page: 30 ident: b0040 article-title: Experimental analysis and numerical modelling of an AQSOA zeolite desiccant wheel publication-title: Appl. Therm. Eng. contributor: fullname: Joppolo – volume: 32 start-page: 720 year: 2009 end-page: 726 ident: b0060 article-title: Effect of desiccant isotherm on the performance of desiccant wheel publication-title: Int. J. Refrig. contributor: fullname: Lee – year: 2019 ident: b0130 article-title: Analyzing the Opportunities for NIPAAm Dehumidification in Air Conditioning Systems contributor: fullname: Kocher – volume: 198 start-page: 111808 year: 2019 ident: b0045 article-title: Performance improvement of desiccant air conditioner coupled with humidification-dehumidification desalination unit using solar reheating of regeneration air publication-title: Energy Convers. Manag. contributor: fullname: Zakaria – volume: 4 start-page: 111 year: 2002 end-page: 119 ident: b0165 article-title: Spray freeze-drying–the process of choice for low water soluble drugs? publication-title: J. Nanoparticle Res. contributor: fullname: Leuenberger – volume: 6 start-page: 6819 year: 2015 end-page: 6825 ident: b0170 article-title: Tunable LCST behavior of poly (N-isopropylacrylamide/ionic liquid) copolymers publication-title: Polym. Chem. contributor: fullname: Matsumi – volume: 60 start-page: 51 year: 2013 end-page: 60 ident: b0080 article-title: Numerical and experimental performance analysis of rotary desiccant wheels publication-title: Int. J. Heat Mass Transf. contributor: fullname: Saito – volume: 13 start-page: 145 year: 1970 end-page: 159 ident: b0175 article-title: Analytical investigation of heat or mass transfer and friction factors in a corrugated duct heat or mass exchanger.“ publication-title: Int. J. Heat Mass Transf. contributor: fullname: Solbrig – volume: 30 start-page: 1051 year: 1987 end-page: 1060 ident: b0030 article-title: Moisture transport in silica gel packed beds—II. Experimental study publication-title: Int. J. Heat Mass Transf. contributor: fullname: Mills – volume: 81 start-page: 137 year: 2015 ident: 10.1016/j.enconman.2021.114520_b0035 article-title: Performance of a desiccant wheel cycle utilizing new zeolite material: Experimental investigation publication-title: Energy doi: 10.1016/j.energy.2014.11.084 contributor: fullname: Al-Alili – volume: 144 start-page: 1003 year: 2018 ident: 10.1016/j.enconman.2021.114520_b0065 article-title: Impact of adsorbent characteristics on performance of solid desiccant wheel publication-title: Energy doi: 10.1016/j.energy.2017.12.113 contributor: fullname: Fong – year: 2018 ident: 10.1016/j.enconman.2021.114520_b0125 contributor: fullname: Cui – volume: 29 start-page: 1193 issue: 5 year: 2020 ident: 10.1016/j.enconman.2021.114520_b0055 article-title: Performance Analysis of a Combined Absorption Refrigeration-Liquid Desiccant Dehumidification THIC System Driven by Low-Grade Heat Source publication-title: J. Therm. Sci. doi: 10.1007/s11630-020-1363-6 contributor: fullname: Xu – volume: 77 start-page: 738 year: 2014 ident: 10.1016/j.enconman.2021.114520_b0010 article-title: A review of different strategies for HVAC energy saving publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2013.10.023 contributor: fullname: Vakiloroaya – volume: 30 start-page: 1037 issue: 6 year: 1987 ident: 10.1016/j.enconman.2021.114520_b0025 article-title: Moisture transport in silica gel packed beds—I. Theoretical study publication-title: Int. J. Heat Mass Transf. doi: 10.1016/0017-9310(87)90034-2 contributor: fullname: Pesaran – volume: 459 start-page: 105 year: 2019 ident: 10.1016/j.enconman.2021.114520_b0115 article-title: Multi-layer temperature-responsive hydrogel for forward-osmosis desalination with high permeable flux and fast water release publication-title: Desalination doi: 10.1016/j.desal.2019.02.002 contributor: fullname: Zeng – volume: 5 start-page: 1 issue: 1 year: 2014 ident: 10.1016/j.enconman.2021.114520_b0160 article-title: Dry-air-stable lithium silicide–lithium oxide core–shell nanoparticles as high-capacity prelithiation reagents publication-title: Nat. Commun. doi: 10.1038/ncomms6088 contributor: fullname: Zhao – volume: 31 start-page: 1806446 issue: 10 year: 2019 ident: 10.1016/j.enconman.2021.114520_b0110 article-title: Super moisture-absorbent gels for all-weather atmospheric water harvesting publication-title: Adv. Mater. doi: 10.1002/adma.201806446 contributor: fullname: Zhao – year: 2019 ident: 10.1016/j.enconman.2021.114520_b0130 contributor: fullname: Kocher – volume: 198 start-page: 111808 year: 2019 ident: 10.1016/j.enconman.2021.114520_b0045 article-title: Performance improvement of desiccant air conditioner coupled with humidification-dehumidification desalination unit using solar reheating of regeneration air publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2019.111808 contributor: fullname: Abdelgaied – volume: 30 start-page: 1005 issue: 8-9 year: 2010 ident: 10.1016/j.enconman.2021.114520_b0090 article-title: A mathematical model for predicting the performance of a compound desiccant wheel (A model of compound desiccant wheel) publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2010.01.012 contributor: fullname: Ge – volume: 137 start-page: 12 year: 2017 ident: 10.1016/j.enconman.2021.114520_b0085 article-title: Study of purge angle effects on the desiccant wheel performance publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2017.01.042 contributor: fullname: Mandegari – ident: 10.1016/j.enconman.2021.114520_b0020 doi: 10.2172/934386 – volume: 86 start-page: 762 issue: 5 year: 2009 ident: 10.1016/j.enconman.2021.114520_b0145 article-title: Heat and mass transfer modeling in rotary desiccant dehumidifiers publication-title: Appl. Energy doi: 10.1016/j.apenergy.2007.06.018 contributor: fullname: Stabat – year: 2020 ident: 10.1016/j.enconman.2021.114520_b0135 contributor: fullname: Meyer – volume: 93 start-page: 2559 year: 2015 ident: 10.1016/j.enconman.2021.114520_b0150 article-title: Explicit analytic solution for heat and mass transfer in a desiccant wheel using a simplified model publication-title: Energy doi: 10.1016/j.energy.2015.10.091 contributor: fullname: Kang – volume: 47 start-page: 3415 issue: 14-16 year: 2004 ident: 10.1016/j.enconman.2021.114520_b0075 article-title: Analysis of heat and mass transfer in porous sorbents used in rotary regenerators publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2004.01.016 contributor: fullname: Sphaier – volume: 30 start-page: 1051 issue: 6 year: 1987 ident: 10.1016/j.enconman.2021.114520_b0030 article-title: Moisture transport in silica gel packed beds—II. Experimental study publication-title: Int. J. Heat Mass Transf. doi: 10.1016/0017-9310(87)90035-4 contributor: fullname: Pesaran – volume: 24 start-page: 297 issue: 4 year: 2016 ident: 10.1016/j.enconman.2021.114520_b0120 article-title: Snapshot of phase transition in thermoresponsive hydrogel PNIPAM: Role in drug delivery and tissue engineering publication-title: Macromol. Res. doi: 10.1007/s13233-016-4052-2 contributor: fullname: Ashraf – volume: 60 start-page: 51 year: 2013 ident: 10.1016/j.enconman.2021.114520_b0080 article-title: Numerical and experimental performance analysis of rotary desiccant wheels publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2012.12.036 contributor: fullname: Yamaguchi – volume: 23 start-page: 989 issue: 8 year: 2003 ident: 10.1016/j.enconman.2021.114520_b0100 article-title: A simulation study of heat and mass transfer in a honeycombed rotary desiccant dehumidifier publication-title: Appl. Therm. Eng. doi: 10.1016/S1359-4311(03)00047-4 contributor: fullname: Zhang – volume: 4 start-page: 111 issue: 1 year: 2002 ident: 10.1016/j.enconman.2021.114520_b0165 article-title: Spray freeze-drying–the process of choice for low water soluble drugs? publication-title: J. Nanoparticle Res. doi: 10.1023/A:1020135603052 contributor: fullname: Leuenberger – volume: 121 start-page: 441 year: 2018 ident: 10.1016/j.enconman.2021.114520_b0070 article-title: Optimization of adsorption isotherm types for desiccant air-conditioning applications publication-title: Renew. Energy doi: 10.1016/j.renene.2018.01.045 contributor: fullname: Sultan – volume: 42 start-page: 1386 issue: 9 year: 2010 ident: 10.1016/j.enconman.2021.114520_b0095 article-title: Simulation, performance analysis and optimization of desiccant wheels publication-title: Energ. Buildings doi: 10.1016/j.enbuild.2010.03.007 contributor: fullname: De Antonellis – volume: 6 start-page: 6819 issue: 38 year: 2015 ident: 10.1016/j.enconman.2021.114520_b0170 article-title: Tunable LCST behavior of poly (N-isopropylacrylamide/ionic liquid) copolymers publication-title: Polym. Chem. doi: 10.1039/C5PY00998G contributor: fullname: Jain – year: 2017 ident: 10.1016/j.enconman.2021.114520_b0015 article-title: CO₂ and greenhouse gas emissions contributor: fullname: Ritchie – volume: 80 start-page: 20 year: 2015 ident: 10.1016/j.enconman.2021.114520_b0040 article-title: Experimental analysis and numerical modelling of an AQSOA zeolite desiccant wheel publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2015.01.036 contributor: fullname: Intini – volume: 9 start-page: 1 issue: 1 year: 2018 ident: 10.1016/j.enconman.2021.114520_b0105 article-title: Thermo-responsive gels that absorb moisture and ooze water publication-title: Nat. Commun. doi: 10.1038/s41467-018-04810-8 contributor: fullname: Matsumoto – volume: 21 start-page: 1657 issue: 16 year: 2001 ident: 10.1016/j.enconman.2021.114520_b0140 article-title: The use of psychrometric charts for the optimisation of a thermal swing desiccant wheel publication-title: Appl. Therm. Eng. doi: 10.1016/S1359-4311(01)00032-1 contributor: fullname: Kodama – volume: 146 start-page: 2142 year: 2020 ident: 10.1016/j.enconman.2021.114520_b0050 article-title: The performance of a desiccant wheel air conditioning system with high-temperature chilled water from natural cold source publication-title: Renew. Energy doi: 10.1016/j.renene.2019.08.082 contributor: fullname: Chen – volume: 40 start-page: 394 issue: 3 year: 2008 ident: 10.1016/j.enconman.2021.114520_b0005 article-title: A review on buildings energy consumption information publication-title: Energy Build. doi: 10.1016/j.enbuild.2007.03.007 contributor: fullname: Pérez-Lombard – volume: 32 start-page: 720 issue: 4 year: 2009 ident: 10.1016/j.enconman.2021.114520_b0060 article-title: Effect of desiccant isotherm on the performance of desiccant wheel publication-title: Int. J. Refrig. doi: 10.1016/j.ijrefrig.2009.01.003 contributor: fullname: Chung – ident: 10.1016/j.enconman.2021.114520_b0155 – volume: 13 start-page: 145 issue: 1 year: 1970 ident: 10.1016/j.enconman.2021.114520_b0175 article-title: Analytical investigation of heat or mass transfer and friction factors in a corrugated duct heat or mass exchanger.“ publication-title: Int. J. Heat Mass Transf. doi: 10.1016/0017-9310(70)90031-1 contributor: fullname: Sherony |
SSID | ssj0003506 |
Score | 2.5193212 |
Snippet | Traditional desiccant-based dehumidification systems suffer from low energy efficiency due to the desiccant’s fixed affinity to water, meaning it has a single... The desiccant wheel is a promising technology for energy-efficient humidity control. However, its overall efficiency-hindered by the desiccant materials'... |
SourceID | osti proquest crossref elsevier |
SourceType | Open Access Repository Aggregation Database Publisher |
StartPage | 114520 |
SubjectTerms | Adsorption Critical temperature Dehumidification Desiccant wheel Desiccants Energy conservation Energy consumption Energy efficiency Gels Humidity Humidity control Interpenetrating networks Isotherms Moisture control Polymers Silica Silica gel Silicon dioxide Temperature Temperature dependence Thermo-responsive solid desiccant Water vapor |
Title | The energy saving potential of thermo-responsive desiccants for air dehumidification |
URI | https://dx.doi.org/10.1016/j.enconman.2021.114520 https://www.proquest.com/docview/2576367247 https://www.osti.gov/biblio/1809100 |
Volume | 244 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF5KvehBfGJtlT143abZvI-lWKpiL1bobdlNJthCk9KmHv3tzuSBFQUPHrPskDCzO_Nt-OZbxu5S3_HT2JYC0QUIN5FaaKwkIolIWyZJAQbU4Pw89Sev7uPcm7fYqOmFIVplnfurnF5m63rEqr1prRcL64WUXcIIF51Ncrs-Nfy6WP5wTfc_vmgejlfer0mTBc3e6xJe9kkrMltp0kGVNsnmenTv9-8Fqp3jnvuRscsyND5hxzV-5MPqE09ZC7IzdrSnKnjOZhh6DmVPH99q-mHA13lBrCA0zFNOkG-Vi03Njn0HngDGiny85YhhuV5scOhtt1okRCQqY3fBZuP72Wgi6ssTROyGdiGkSfxYgu2aOPTAkbEDCEUMno5cqb0AcY_WAw-LFIAfeXEQRUaDBhMivkswDVyydpZncMU4hClaJ0Yb47tRQD92jE6DWBo70FJCh1mNw9S6kshQDXdsqRoXK3KxqlzcYVHjV_Ut2Arz-J-2XQoE2ZHKbUx0IDQkGTJcBx3Wa-Kj6s24VXSmcvxAusH1P17cZYf0RFwR2-uxdrHZwQ0CksLclivulh0MH54m00-fgOEJ |
link.rule.ids | 230,315,783,787,888,4509,24128,27936,27937,45597,45691 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED5BGYAB8RSFAh5YTRrnPSIEKs-FIHWz7OQiitSm6oOR385dmogikBhYE58S3Z3Pn63vPgOcF6EXFpmrJKELlH6ujDS0ksg8YW2ZvEDscoPz41PYe_Hv-kF_Ba6aXhimVda1f1HTq2pdP3FqbzrjwcB5ZmWXOKGkc1luN4xXYc1nfExJffHxxfPwguqCTR4tefhSm_DbBYtFjoaGhVCVy7q5AV_8_fsK1Spp0v0o2dU6dLMNWzWAFJeLf9yBFRztwuaSrOAepBR7gVVTn5gaPjEQ43LGtCAyLAvBmG9YyklNj31HkSMFi508FQRihRlM6NHrfDjImUlUBW8f0pvr9Kon69sTZObH7kwqm4eZQte3WRygpzIPCYtY2h75ygQRAR9jugGtUohhEmRRkliDBm1MAC-nOnAArVE5wkMQGBdknVtjbegnEZ_sWFNEmbJuZJTCNjiNw_R4oZGhG_LYm25crNnFeuHiNiSNX_W3aGsq5H_aHnMg2I5lbjPmA5Eh65BRIrSh08RH17NxqnlT5YWR8qOjf3z4DNZ76eODfrh9uj-GDX7DxBE36EBrNpnjCaGTmT2tsu8T9v7iog |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+energy+saving+potential+of+thermo-responsive+desiccants+for+air+dehumidification&rft.jtitle=Energy+conversion+and+management&rft.au=Zeng%2C+Yi&rft.au=Woods%2C+Jason&rft.au=Cui%2C+Shuang&rft.date=2021-09-15&rft.issn=0196-8904&rft.volume=244&rft.spage=114520&rft_id=info:doi/10.1016%2Fj.enconman.2021.114520&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_enconman_2021_114520 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-8904&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-8904&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-8904&client=summon |