Genetic determination of the cellular basis of the sympathetic regulation of bone mass accrual

The sympathetic nervous system, whose activity is regulated by leptin signaling in the brain, is a major regulator of bone mass accrual. To determine the identity of the cell type in which the sympathetic tone signals to inhibit bone mass accrual, we performed a systematic, cell-specific analysis of...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of experimental medicine Vol. 208; no. 4; pp. 841 - 851
Main Authors Kajimura, Daisuke, Hinoi, Eiichi, Ferron, Mathieu, Kode, Aruna, Riley, Kyle J., Zhou, Bin, Guo, X. Edward, Karsenty, Gerard
Format Journal Article
LanguageEnglish
Published United States The Rockefeller University Press 11.04.2011
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The sympathetic nervous system, whose activity is regulated by leptin signaling in the brain, is a major regulator of bone mass accrual. To determine the identity of the cell type in which the sympathetic tone signals to inhibit bone mass accrual, we performed a systematic, cell-specific analysis of the function of the β2 adrenergic receptor (Adrβ2) and various genes implicated in the pathway in the mouse. This was followed by leptin intracerebroventricular (ICV) infusion and bone histomorphometric analyses of bone parameters. We show that the sympathetic tone signals in the osteoblasts to inhibit CREB (cAMP-responsive element-binding protein) phosphorylation and thus decrease osteoblast proliferation and to promote ATF4 phosphorylation and thus increase RANKL (receptor activator of NF-κB ligand) expression, which then stimulates osteoclast differentiation. Leptin ICV infusion in various mouse models established that leptin-dependent inhibition of bone mass accrual relies on both transcriptional events taking place in osteoblasts. Thus, this study formally identifies the osteoblast as the major cell type in which the molecular events triggered by the sympathetic regulation of bone mass accrual take place. As such, it suggests that inhibiting sympathetic signaling could be beneficial in the treatment of low bone mass conditions.
AbstractList The sympathetic nervous system, whose activity is regulated by leptin signaling in the brain, is a major regulator of bone mass accrual. To determine the identity of the cell type in which the sympathetic tone signals to inhibit bone mass accrual, we performed a systematic, cell-specific analysis of the function of the β2 adrenergic receptor (Adrβ2) and various genes implicated in the pathway in the mouse. This was followed by leptin intracerebroventricular (ICV) infusion and bone histomorphometric analyses of bone parameters. We show that the sympathetic tone signals in the osteoblasts to inhibit CREB (cAMP-responsive element-binding protein) phosphorylation and thus decrease osteoblast proliferation and to promote ATF4 phosphorylation and thus increase RANKL (receptor activator of NF-κB ligand) expression, which then stimulates osteoclast differentiation. Leptin ICV infusion in various mouse models established that leptin-dependent inhibition of bone mass accrual relies on both transcriptional events taking place in osteoblasts. Thus, this study formally identifies the osteoblast as the major cell type in which the molecular events triggered by the sympathetic regulation of bone mass accrual take place. As such, it suggests that inhibiting sympathetic signaling could be beneficial in the treatment of low bone mass conditions.The sympathetic nervous system, whose activity is regulated by leptin signaling in the brain, is a major regulator of bone mass accrual. To determine the identity of the cell type in which the sympathetic tone signals to inhibit bone mass accrual, we performed a systematic, cell-specific analysis of the function of the β2 adrenergic receptor (Adrβ2) and various genes implicated in the pathway in the mouse. This was followed by leptin intracerebroventricular (ICV) infusion and bone histomorphometric analyses of bone parameters. We show that the sympathetic tone signals in the osteoblasts to inhibit CREB (cAMP-responsive element-binding protein) phosphorylation and thus decrease osteoblast proliferation and to promote ATF4 phosphorylation and thus increase RANKL (receptor activator of NF-κB ligand) expression, which then stimulates osteoclast differentiation. Leptin ICV infusion in various mouse models established that leptin-dependent inhibition of bone mass accrual relies on both transcriptional events taking place in osteoblasts. Thus, this study formally identifies the osteoblast as the major cell type in which the molecular events triggered by the sympathetic regulation of bone mass accrual take place. As such, it suggests that inhibiting sympathetic signaling could be beneficial in the treatment of low bone mass conditions.
The sympathetic nervous system, whose activity is regulated by leptin signaling in the brain, is a major regulator of bone mass accrual. To determine the identity of the cell type in which the sympathetic tone signals to inhibit bone mass accrual, we performed a systematic, cell-specific analysis of the function of the β2 adrenergic receptor (Adrβ2) and various genes implicated in the pathway in the mouse. This was followed by leptin intracerebroventricular (ICV) infusion and bone histomorphometric analyses of bone parameters. We show that the sympathetic tone signals in the osteoblasts to inhibit CREB (cAMP-responsive element-binding protein) phosphorylation and thus decrease osteoblast proliferation and to promote ATF4 phosphorylation and thus increase RANKL (receptor activator of NF-κB ligand) expression, which then stimulates osteoclast differentiation. Leptin ICV infusion in various mouse models established that leptin-dependent inhibition of bone mass accrual relies on both transcriptional events taking place in osteoblasts. Thus, this study formally identifies the osteoblast as the major cell type in which the molecular events triggered by the sympathetic regulation of bone mass accrual take place. As such, it suggests that inhibiting sympathetic signaling could be beneficial in the treatment of low bone mass conditions.
The sympathetic nervous system regulates bone mass accrual by signaling via CREB and ATF4 in osteoblasts to promote proliferation and RANKL production, respectively. The sympathetic nervous system, whose activity is regulated by leptin signaling in the brain, is a major regulator of bone mass accrual. To determine the identity of the cell type in which the sympathetic tone signals to inhibit bone mass accrual, we performed a systematic, cell-specific analysis of the function of the β2 adrenergic receptor (Adrβ2) and various genes implicated in the pathway in the mouse. This was followed by leptin intracerebroventricular (ICV) infusion and bone histomorphometric analyses of bone parameters. We show that the sympathetic tone signals in the osteoblasts to inhibit CREB (cAMP-responsive element-binding protein) phosphorylation and thus decrease osteoblast proliferation and to promote ATF4 phosphorylation and thus increase RANKL (receptor activator of NF-κB ligand) expression, which then stimulates osteoclast differentiation. Leptin ICV infusion in various mouse models established that leptin-dependent inhibition of bone mass accrual relies on both transcriptional events taking place in osteoblasts. Thus, this study formally identifies the osteoblast as the major cell type in which the molecular events triggered by the sympathetic regulation of bone mass accrual take place. As such, it suggests that inhibiting sympathetic signaling could be beneficial in the treatment of low bone mass conditions.
The sympathetic nervous system, whose activity is regulated by leptin signaling in the brain, is a major regulator of bone mass accrual. To determine the identity of the cell type in which the sympathetic tone signals to inhibit bone mass accrual, we performed a systematic, cell-specific analysis of the function of the beta 2 adrenergic receptor (Adr beta 2) and various genes implicated in the pathway in the mouse. This was followed by leptin intracerebroventricular (ICV) infusion and bone histomorphometric analyses of bone parameters. We show that the sympathetic tone signals in the osteoblasts to inhibit CREB (cAMP-responsive element-binding protein) phosphorylation and thus decrease osteoblast proliferation and to promote ATF4 phosphorylation and thus increase RANKL (receptor activator of NF- Kappa B ligand) expression, which then stimulates osteoclast differentiation. Leptin ICV infusion in various mouse models established that leptin-dependent inhibition of bone mass accrual relies on both transcriptional events taking place in osteoblasts. Thus, this study formally identifies the osteoblast as the major cell type in which the molecular events triggered by the sympathetic regulation of bone mass accrual take place. As such, it suggests that inhibiting sympathetic signaling could be beneficial in the treatment of low bone mass conditions.
Author Zhou, Bin
Ferron, Mathieu
Riley, Kyle J.
Guo, X. Edward
Karsenty, Gerard
Kajimura, Daisuke
Hinoi, Eiichi
Kode, Aruna
AuthorAffiliation 1 Department of Genetics and Development and 2 Division of Endocrinology, Department of Medicine, College of Physicians and Surgeons and 3 Bone Bioengineering Laboratory, Department of Biomedical Engineering, Columbia University, New York, NY 10027
AuthorAffiliation_xml – name: 1 Department of Genetics and Development and 2 Division of Endocrinology, Department of Medicine, College of Physicians and Surgeons and 3 Bone Bioengineering Laboratory, Department of Biomedical Engineering, Columbia University, New York, NY 10027
Author_xml – sequence: 1
  givenname: Daisuke
  surname: Kajimura
  fullname: Kajimura, Daisuke
– sequence: 2
  givenname: Eiichi
  surname: Hinoi
  fullname: Hinoi, Eiichi
– sequence: 3
  givenname: Mathieu
  surname: Ferron
  fullname: Ferron, Mathieu
– sequence: 4
  givenname: Aruna
  surname: Kode
  fullname: Kode, Aruna
– sequence: 5
  givenname: Kyle J.
  surname: Riley
  fullname: Riley, Kyle J.
– sequence: 6
  givenname: Bin
  surname: Zhou
  fullname: Zhou, Bin
– sequence: 7
  givenname: X. Edward
  surname: Guo
  fullname: Guo, X. Edward
– sequence: 8
  givenname: Gerard
  surname: Karsenty
  fullname: Karsenty, Gerard
BackLink https://www.ncbi.nlm.nih.gov/pubmed/21444660$$D View this record in MEDLINE/PubMed
BookMark eNqFUctKxTAUDKLo9bFzLd25sXqS5tFuBBFfILjRrSHJPdVIH9ekFfx7c9WKiuAqh5yZYc7MJlnt-g4J2aVwSKHkR0_YHjKgwCSUK2RGBYe8EkW5SmYAjOUUQG2QzRifACjnQq6TDZYGLiXMyP0Fdjh4l81xwND6zgy-77K-zoZHzBw2zdiYkFkTfZx-42u7MGlY0gI-JMDEscla1poYM-NcGE2zTdZq00Tc-Xy3yN352e3pZX59c3F1enKdO17SIadzq5DPlWK2lgxFXSheITprsS6YU7UCK0rOZGWAWsoFo7RGwaRIhypgxRY5_tBdjLbFucNuCKbRi-BbE151b7z-uen8o37oX3RBC1EIngT2PwVC_zxiHHTr4_J802E_Rl3BMjAF1b_IUlJVSllCQu59N_XlZko_AdgHwIU-xoC1dn54DzN59I2moJcV61SxnipOpINfpEn3T_gb6nuorg
CitedBy_id crossref_primary_10_1152_physrev_00014_2017
crossref_primary_10_3389_fendo_2018_00486
crossref_primary_10_3390_cancers14081881
crossref_primary_10_1016_j_bonr_2018_11_002
crossref_primary_10_1111_os_70010
crossref_primary_10_1186_s40729_021_00309_y
crossref_primary_10_1016_j_cmet_2022_04_010
crossref_primary_10_1002_smtd_202100763
crossref_primary_10_1002_jbmr_3133
crossref_primary_10_1002_jbmr_1594
crossref_primary_10_1016_j_bone_2020_115607
crossref_primary_10_1038_s41413_023_00285_6
crossref_primary_10_1212_WNL_0000000000002521
crossref_primary_10_1038_srep30918
crossref_primary_10_1172_jci_insight_165604
crossref_primary_10_1371_journal_pbio_1001363
crossref_primary_10_1101_cshperspect_a031344
crossref_primary_10_1073_pnas_1719089115
crossref_primary_10_1016_j_jare_2022_08_019
crossref_primary_10_1007_s00774_023_01402_5
crossref_primary_10_1126_scitranslmed_adk9129
crossref_primary_10_1002_jbmr_2425
crossref_primary_10_1002_jbmr_1734
crossref_primary_10_1158_2159_8290_CD_24_0287
crossref_primary_10_1172_JCI122151
crossref_primary_10_1002_bmm2_12138
crossref_primary_10_1007_s00198_024_07198_y
crossref_primary_10_1097_MED_0000000000000478
crossref_primary_10_1007_s12018_015_9183_z
crossref_primary_10_1302_2046_3758_117_BJR_2021_0355_R1
crossref_primary_10_1212_WNL_0000000000002580
crossref_primary_10_1016_j_clinbiochem_2012_03_006
crossref_primary_10_1083_jcb_201201057
crossref_primary_10_1002_jbmr_3822
crossref_primary_10_1007_s00223_016_0168_9
crossref_primary_10_1007_s00223_013_9752_4
crossref_primary_10_1016_j_abb_2014_05_022
crossref_primary_10_1038_s41413_022_00240_x
crossref_primary_10_1002_jbmr_4523
crossref_primary_10_1002_jbmr_4643
crossref_primary_10_1210_jc_2017_00169
crossref_primary_10_3389_fendo_2020_00646
crossref_primary_10_1016_j_jot_2024_10_008
crossref_primary_10_1210_en_2015_1614
crossref_primary_10_1002_jbmr_445
crossref_primary_10_1016_j_bone_2020_115229
crossref_primary_10_1172_JCI75157
crossref_primary_10_1007_s12018_011_9096_4
crossref_primary_10_1074_jbc_M113_481309
crossref_primary_10_1016_j_bone_2020_115221
crossref_primary_10_1016_j_ejphar_2021_174515
crossref_primary_10_1007_s00198_015_3312_x
crossref_primary_10_1038_s41413_024_00321_z
crossref_primary_10_3389_fneur_2024_1295429
crossref_primary_10_1002_med_22031
crossref_primary_10_3389_fendo_2022_997745
crossref_primary_10_1210_jc_2012_3205
crossref_primary_10_3390_ijms231810257
crossref_primary_10_1016_j_cmet_2022_09_025
crossref_primary_10_1242_dev_164004
crossref_primary_10_1248_yakushi_132_721
crossref_primary_10_3389_fpain_2023_1302014
crossref_primary_10_1128_MCB_06279_11
crossref_primary_10_1016_j_diff_2021_05_002
crossref_primary_10_3390_jcm12051958
crossref_primary_10_1002_jbmr_1708
crossref_primary_10_1016_j_febslet_2013_01_049
crossref_primary_10_3390_biom13040622
crossref_primary_10_1016_j_jff_2018_09_017
crossref_primary_10_1016_j_jff_2022_105363
crossref_primary_10_1152_ajpendo_00191_2012
crossref_primary_10_3389_fphys_2021_731523
crossref_primary_10_1172_JCI122992
crossref_primary_10_1016_j_cej_2024_159079
crossref_primary_10_1093_qjmed_hcad108
crossref_primary_10_1002_jbmr_4024
crossref_primary_10_1007_s00198_015_3087_0
crossref_primary_10_3390_ijms18050931
crossref_primary_10_1083_JCB1931OIA2
crossref_primary_10_1002_1873_3468_13282
crossref_primary_10_1016_j_pmr_2012_08_005
crossref_primary_10_1186_s12974_019_1415_6
crossref_primary_10_1016_j_bone_2012_11_039
crossref_primary_10_1016_j_molmet_2015_01_002
crossref_primary_10_1016_j_kint_2019_01_004
crossref_primary_10_1210_en_2014_1452
crossref_primary_10_1002_ajpa_23684
crossref_primary_10_1002_jbmr_1538
crossref_primary_10_1016_j_beem_2021_101522
crossref_primary_10_1038_bonekey_2015_61
crossref_primary_10_3390_cells13242110
crossref_primary_10_1002_jbm4_10021
crossref_primary_10_1016_j_biochi_2023_05_002
crossref_primary_10_1002_jor_22619
crossref_primary_10_1083_jcb_201403138
crossref_primary_10_1016_j_jocd_2024_101501
crossref_primary_10_1186_s13023_015_0235_8
crossref_primary_10_1089_thy_2018_0259
crossref_primary_10_1172_JCI136105
crossref_primary_10_3389_fcell_2023_1184550
crossref_primary_10_3803_EnM_2018_33_1_1
crossref_primary_10_1002_jbm4_10541
crossref_primary_10_1007_s11064_024_04118_8
crossref_primary_10_1007_s11914_013_0157_0
crossref_primary_10_1007_s12018_019_9257_4
crossref_primary_10_1016_j_biochi_2012_04_015
crossref_primary_10_1254_fpj_145_140
crossref_primary_10_3390_cancers13122887
crossref_primary_10_1002_advs_202207602
crossref_primary_10_3390_ani11061494
crossref_primary_10_12998_wjcc_v9_i30_8967
crossref_primary_10_3892_br_2018_1075
crossref_primary_10_1016_j_bone_2017_08_004
crossref_primary_10_1016_j_jnutbio_2021_108909
crossref_primary_10_3389_fcell_2022_976736
crossref_primary_10_1016_j_bone_2017_08_006
crossref_primary_10_1138_20110509
crossref_primary_10_7554_eLife_39689
crossref_primary_10_1093_jbmr_zjae200
crossref_primary_10_1186_s12891_021_04598_7
crossref_primary_10_1038_s41598_021_02783_1
crossref_primary_10_1080_00207454_2020_1770247
crossref_primary_10_1016_j_bone_2014_10_024
crossref_primary_10_1016_j_archger_2017_02_005
crossref_primary_10_1111_j_1476_5381_2012_01856_x
crossref_primary_10_1016_j_bone_2018_06_023
crossref_primary_10_1038_s41368_022_00193_1
crossref_primary_10_1212_WNL_0000000000002532
crossref_primary_10_3390_ijms23073500
crossref_primary_10_1016_j_semcdb_2021_11_001
crossref_primary_10_1186_s40001_024_01918_0
crossref_primary_10_1248_bpb_b12_00893
Cites_doi 10.1210/endo-123-5-2600
10.1172/JCI39366
10.1016/j.cmet.2006.10.008
10.1002/dvdy.21841
10.1073/pnas.0808701106
10.1038/nature03398
10.1016/S1074-7613(01)00088-7
10.1016/S0092-8674(00)81558-5
10.1016/S0065-1281(87)80012-0
10.1002/jbmr.5650020617
10.1016/j.cell.2009.06.051
10.1016/j.cmet.2006.10.010
10.1016/j.cell.2010.06.003
10.1016/S0092-8674(02)01049-8
10.1016/j.cellsig.2009.02.012
10.1083/jcb.200809113
10.1101/gad.1977210
10.1002/dvdy.10100
10.1016/j.cell.2005.06.028
10.1002/jcp.21564
10.1016/S0092-8674(04)00344-7
10.1016/j.cell.2008.09.059
10.1359/jbmr.1999.14.7.1167
10.1056/NEJM200008313430911
10.1073/pnas.0308744101
ContentType Journal Article
Copyright 2011 Kajimura et al. 2011
Copyright_xml – notice: 2011 Kajimura et al. 2011
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7QP
7T5
8FD
FR3
H94
P64
RC3
5PM
DOI 10.1084/jem.20102608
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Calcium & Calcified Tissue Abstracts
Immunology Abstracts
Technology Research Database
Engineering Research Database
AIDS and Cancer Research Abstracts
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Genetics Abstracts
Technology Research Database
AIDS and Cancer Research Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Biotechnology and BioEngineering Abstracts
DatabaseTitleList MEDLINE - Academic
MEDLINE
CrossRef

Genetics Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
DocumentTitleAlternate Sympathetic control of bone mass via osteoblasts
EISSN 1540-9538
EndPage 851
ExternalDocumentID PMC3135354
21444660
10_1084_jem_20102608
Genre Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIDDK NIH HHS
  grantid: DK58883
– fundername: NIDDK NIH HHS
  grantid: R01 DK058883
GroupedDBID ---
-~X
0VX
18M
29K
2WC
36B
4.4
53G
5GY
5RE
5VS
AAYXX
ABOCM
ABZEH
ACGFO
ACNCT
ACPRK
ADBBV
AENEX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BTFSW
C45
CITATION
CS3
D-I
DIK
DU5
E3Z
EBS
EJD
EMB
EMOBN
F5P
F9R
GX1
H13
HYE
H~9
IH2
K-O
KQ8
L7B
MK0
N9A
O5R
O5S
OK1
P2P
P6G
R.V
RHI
SJN
SV3
TR2
TRP
UHB
W8F
WOQ
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7QP
7T5
8FD
FR3
H94
P64
RC3
5PM
ID FETCH-LOGICAL-c481t-1db7e4d772bf62e5f3749eecbbef32c7f70b584269a01b145211fe52655387023
ISSN 0022-1007
1540-9538
IngestDate Thu Aug 21 13:46:29 EDT 2025
Fri Jul 11 09:38:05 EDT 2025
Fri Jul 11 09:34:12 EDT 2025
Thu Apr 03 07:07:43 EDT 2025
Tue Jul 01 03:30:34 EDT 2025
Thu Apr 24 22:51:23 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 3.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/3.0/).
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c481t-1db7e4d772bf62e5f3749eecbbef32c7f70b584269a01b145211fe52655387023
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC3135354
PMID 21444660
PQID 861786680
PQPubID 23479
PageCount 11
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3135354
proquest_miscellaneous_904466709
proquest_miscellaneous_861786680
pubmed_primary_21444660
crossref_citationtrail_10_1084_jem_20102608
crossref_primary_10_1084_jem_20102608
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2011-04-11
PublicationDateYYYYMMDD 2011-04-11
PublicationDate_xml – month: 04
  year: 2011
  text: 2011-04-11
  day: 11
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle The Journal of experimental medicine
PublicationTitleAlternate J Exp Med
PublicationYear 2011
Publisher The Rockefeller University Press
Publisher_xml – name: The Rockefeller University Press
References Couillard (2023072920345458600_bib3) 2009; 238
Elefteriou (2023072920345458600_bib10) 2006; 4
Fu (2023072920345458600_bib12) 2005; 122
Karsenty (2023072920345458600_bib15) 2006; 4
Parfitt (2023072920345458600_bib17) 1987; 2
de Alboran (2023072920345458600_bib6) 2001; 14
Hildebrand (2023072920345458600_bib13) 1999; 14
Ferron (2023072920345458600_bib11) 2010; 142
Yang (2023072920345458600_bib24) 2004; 117
Datta (2023072920345458600_bib5) 2009; 21
Yadav (2023072920345458600_bib23) 2009; 138
Chappard (2023072920345458600_bib2) 1987; 81
Takeda (2023072920345458600_bib21) 2002; 111
Schwartzman (2023072920345458600_bib18) 2000; 343
Elefteriou (2023072920345458600_bib8) 2004; 101
Elefteriou (2023072920345458600_bib9) 2005; 434
Bonnet (2023072920345458600_bib1) 2008; 217
Dacquin (2023072920345458600_bib4) 2002; 224
Yoshizawa (2023072920345458600_bib25) 2009; 119
Hinoi (2023072920345458600_bib14) 2008; 183
Oury (2023072920345458600_bib16) 2010; 24
Takahashi (2023072920345458600_bib20) 1988; 123
Shi (2023072920345458600_bib19) 2008; 105
Yadav (2023072920345458600_bib22) 2008; 135
Ducy (2023072920345458600_bib7) 2000; 100
3111154 - Acta Histochem. 1987;81(2):183-90
2844518 - Endocrinology. 1988 Nov;123(5):2600-2
18727092 - J Cell Physiol. 2008 Dec;217(3):819-27
17084709 - Cell Metab. 2006 Nov;4(5):341-8
10979798 - N Engl J Med. 2000 Aug 31;343(9):654-6
12112477 - Dev Dyn. 2002 Jun;224(2):245-51
15724149 - Nature. 2005 Mar 24;434(7032):514-20
10404017 - J Bone Miner Res. 1999 Jul;14(7):1167-74
11163229 - Immunity. 2001 Jan;14(1):45-55
19161241 - Dev Dyn. 2009 Feb;238(2):405-14
19103808 - J Cell Biol. 2008 Dec 29;183(7):1235-42
14978271 - Proc Natl Acad Sci U S A. 2004 Mar 2;101(9):3258-63
17141628 - Cell Metab. 2006 Dec;4(6):441-51
3455637 - J Bone Miner Res. 1987 Dec;2(6):595-610
20952540 - Genes Dev. 2010 Oct 15;24(20):2330-42
19249350 - Cell Signal. 2009 Aug;21(8):1245-54
19737523 - Cell. 2009 Sep 4;138(5):976-89
19074282 - Proc Natl Acad Sci U S A. 2008 Dec 23;105(51):20529-33
10660043 - Cell. 2000 Jan 21;100(2):197-207
16143109 - Cell. 2005 Sep 9;122(5):803-15
19726872 - J Clin Invest. 2009 Sep;119(9):2807-17
19041748 - Cell. 2008 Nov 28;135(5):825-37
12419242 - Cell. 2002 Nov 1;111(3):305-17
15109498 - Cell. 2004 Apr 30;117(3):387-98
20655470 - Cell. 2010 Jul 23;142(2):296-308
References_xml – volume: 123
  start-page: 2600
  year: 1988
  ident: 2023072920345458600_bib20
  article-title: Osteoblastic cells are involved in osteoclast formation
  publication-title: Endocrinology.
  doi: 10.1210/endo-123-5-2600
– volume: 119
  start-page: 2807
  year: 2009
  ident: 2023072920345458600_bib25
  article-title: The transcription factor ATF4 regulates glucose metabolism in mice through its expression in osteoblasts
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI39366
– volume: 4
  start-page: 341
  year: 2006
  ident: 2023072920345458600_bib15
  article-title: Convergence between bone and energy homeostases: leptin regulation of bone mass
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2006.10.008
– volume: 238
  start-page: 405
  year: 2009
  ident: 2023072920345458600_bib3
  article-title: C-myc as a modulator of renal stem/progenitor cell population
  publication-title: Dev. Dyn.
  doi: 10.1002/dvdy.21841
– volume: 105
  start-page: 20529
  year: 2008
  ident: 2023072920345458600_bib19
  article-title: Dissociation of the neuronal regulation of bone mass and energy metabolism by leptin in vivo
  publication-title: Proc. Natl. Acad. Sci. USA.
  doi: 10.1073/pnas.0808701106
– volume: 434
  start-page: 514
  year: 2005
  ident: 2023072920345458600_bib9
  article-title: Leptin regulation of bone resorption by the sympathetic nervous system and CART
  publication-title: Nature.
  doi: 10.1038/nature03398
– volume: 14
  start-page: 45
  year: 2001
  ident: 2023072920345458600_bib6
  article-title: Analysis of C-MYC function in normal cells via conditional gene-targeted mutation
  publication-title: Immunity.
  doi: 10.1016/S1074-7613(01)00088-7
– volume: 100
  start-page: 197
  year: 2000
  ident: 2023072920345458600_bib7
  article-title: Leptin inhibits bone formation through a hypothalamic relay: a central control of bone mass
  publication-title: Cell.
  doi: 10.1016/S0092-8674(00)81558-5
– volume: 81
  start-page: 183
  year: 1987
  ident: 2023072920345458600_bib2
  article-title: Bone embedding in pure methyl methacrylate at low temperature preserves enzyme activities
  publication-title: Acta Histochem.
  doi: 10.1016/S0065-1281(87)80012-0
– volume: 2
  start-page: 595
  year: 1987
  ident: 2023072920345458600_bib17
  article-title: Bone histomorphometry: standardization of nomenclature, symbols, and units
  publication-title: J. Bone Miner. Res.
  doi: 10.1002/jbmr.5650020617
– volume: 138
  start-page: 976
  year: 2009
  ident: 2023072920345458600_bib23
  article-title: A serotonin-dependent mechanism explains the leptin regulation of bone mass, appetite, and energy expenditure
  publication-title: Cell.
  doi: 10.1016/j.cell.2009.06.051
– volume: 4
  start-page: 441
  year: 2006
  ident: 2023072920345458600_bib10
  article-title: ATF4 mediation of NF1 functions in osteoblast reveals a nutritional basis for congenital skeletal dysplasiae
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2006.10.010
– volume: 142
  start-page: 296
  year: 2010
  ident: 2023072920345458600_bib11
  article-title: Insulin signaling in osteoblasts integrates bone remodeling and energy metabolism
  publication-title: Cell.
  doi: 10.1016/j.cell.2010.06.003
– volume: 111
  start-page: 305
  year: 2002
  ident: 2023072920345458600_bib21
  article-title: Leptin regulates bone formation via the sympathetic nervous system
  publication-title: Cell.
  doi: 10.1016/S0092-8674(02)01049-8
– volume: 21
  start-page: 1245
  year: 2009
  ident: 2023072920345458600_bib5
  article-title: PTH and PTHrP signaling in osteoblasts
  publication-title: Cell. Signal.
  doi: 10.1016/j.cellsig.2009.02.012
– volume: 183
  start-page: 1235
  year: 2008
  ident: 2023072920345458600_bib14
  article-title: The sympathetic tone mediates leptin’s inhibition of insulin secretion by modulating osteocalcin bioactivity
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.200809113
– volume: 24
  start-page: 2330
  year: 2010
  ident: 2023072920345458600_bib16
  article-title: CREB mediates brain serotonin regulation of bone mass through its expression in ventromedial hypothalamic neurons
  publication-title: Genes Dev.
  doi: 10.1101/gad.1977210
– volume: 224
  start-page: 245
  year: 2002
  ident: 2023072920345458600_bib4
  article-title: Mouse alpha1(I)-collagen promoter is the best known promoter to drive efficient Cre recombinase expression in osteoblast
  publication-title: Dev. Dyn.
  doi: 10.1002/dvdy.10100
– volume: 122
  start-page: 803
  year: 2005
  ident: 2023072920345458600_bib12
  article-title: The molecular clock mediates leptin-regulated bone formation
  publication-title: Cell.
  doi: 10.1016/j.cell.2005.06.028
– volume: 217
  start-page: 819
  year: 2008
  ident: 2023072920345458600_bib1
  article-title: Low dose beta-blocker prevents ovariectomy-induced bone loss in rats without affecting heart functions
  publication-title: J. Cell. Physiol.
  doi: 10.1002/jcp.21564
– volume: 117
  start-page: 387
  year: 2004
  ident: 2023072920345458600_bib24
  article-title: ATF4 is a substrate of RSK2 and an essential regulator of osteoblast biology; implication for Coffin-Lowry Syndrome
  publication-title: Cell.
  doi: 10.1016/S0092-8674(04)00344-7
– volume: 135
  start-page: 825
  year: 2008
  ident: 2023072920345458600_bib22
  article-title: Lrp5 controls bone formation by inhibiting serotonin synthesis in the duodenum
  publication-title: Cell.
  doi: 10.1016/j.cell.2008.09.059
– volume: 14
  start-page: 1167
  year: 1999
  ident: 2023072920345458600_bib13
  article-title: Direct three-dimensional morphometric analysis of human cancellous bone: microstructural data from spine, femur, iliac crest, and calcaneus
  publication-title: J. Bone Miner. Res.
  doi: 10.1359/jbmr.1999.14.7.1167
– volume: 343
  start-page: 654
  year: 2000
  ident: 2023072920345458600_bib18
  article-title: New treatments for reflex sympathetic dystrophy
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJM200008313430911
– volume: 101
  start-page: 3258
  year: 2004
  ident: 2023072920345458600_bib8
  article-title: Serum leptin level is a regulator of bone mass
  publication-title: Proc. Natl. Acad. Sci. USA.
  doi: 10.1073/pnas.0308744101
– reference: 19737523 - Cell. 2009 Sep 4;138(5):976-89
– reference: 2844518 - Endocrinology. 1988 Nov;123(5):2600-2
– reference: 10660043 - Cell. 2000 Jan 21;100(2):197-207
– reference: 19161241 - Dev Dyn. 2009 Feb;238(2):405-14
– reference: 17084709 - Cell Metab. 2006 Nov;4(5):341-8
– reference: 17141628 - Cell Metab. 2006 Dec;4(6):441-51
– reference: 10979798 - N Engl J Med. 2000 Aug 31;343(9):654-6
– reference: 20655470 - Cell. 2010 Jul 23;142(2):296-308
– reference: 15724149 - Nature. 2005 Mar 24;434(7032):514-20
– reference: 3111154 - Acta Histochem. 1987;81(2):183-90
– reference: 19249350 - Cell Signal. 2009 Aug;21(8):1245-54
– reference: 19041748 - Cell. 2008 Nov 28;135(5):825-37
– reference: 11163229 - Immunity. 2001 Jan;14(1):45-55
– reference: 14978271 - Proc Natl Acad Sci U S A. 2004 Mar 2;101(9):3258-63
– reference: 19103808 - J Cell Biol. 2008 Dec 29;183(7):1235-42
– reference: 12419242 - Cell. 2002 Nov 1;111(3):305-17
– reference: 15109498 - Cell. 2004 Apr 30;117(3):387-98
– reference: 3455637 - J Bone Miner Res. 1987 Dec;2(6):595-610
– reference: 12112477 - Dev Dyn. 2002 Jun;224(2):245-51
– reference: 16143109 - Cell. 2005 Sep 9;122(5):803-15
– reference: 18727092 - J Cell Physiol. 2008 Dec;217(3):819-27
– reference: 10404017 - J Bone Miner Res. 1999 Jul;14(7):1167-74
– reference: 20952540 - Genes Dev. 2010 Oct 15;24(20):2330-42
– reference: 19726872 - J Clin Invest. 2009 Sep;119(9):2807-17
– reference: 19074282 - Proc Natl Acad Sci U S A. 2008 Dec 23;105(51):20529-33
SSID ssj0014456
Score 2.4227953
Snippet The sympathetic nervous system, whose activity is regulated by leptin signaling in the brain, is a major regulator of bone mass accrual. To determine the...
The sympathetic nervous system regulates bone mass accrual by signaling via CREB and ATF4 in osteoblasts to promote proliferation and RANKL production,...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 841
SubjectTerms Activating Transcription Factor 4 - genetics
Activating Transcription Factor 4 - physiology
Animals
Bone Density
Bone Resorption - etiology
Cyclic AMP Response Element-Binding Protein - metabolism
Leptin - physiology
Mice
Mice, Inbred C57BL
Osteoblasts - physiology
Phosphorylation
Proto-Oncogene Proteins c-myc - physiology
Receptors, Adrenergic, beta-2 - genetics
Receptors, Adrenergic, beta-2 - physiology
Sympathetic Nervous System - physiology
Title Genetic determination of the cellular basis of the sympathetic regulation of bone mass accrual
URI https://www.ncbi.nlm.nih.gov/pubmed/21444660
https://www.proquest.com/docview/861786680
https://www.proquest.com/docview/904466709
https://pubmed.ncbi.nlm.nih.gov/PMC3135354
Volume 208
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbKkBAvE3c6LvIDPKFAkjq3x2kaTKAihDapT0Sx67BsNJnS5gF-Gr-Oc3xJnJZJsJeqcpw49fl6fGx__g4hr7JlwhMIhL2sCGceS8Kll_mZ8AopOIy3WVRyPO88_xyfnLGPi2gxmfx2WEvdhr8Vv_56ruQmVoUysCuekv0Py_YPhQL4DvaFT7AwfP6TjVEzGgVXl5bTYsM_jCZxSV5xTGGg0qIjWLr-ucIkxFJLN383ybvwKm9qJLOC4yuEaDvT9sWAJid2HeUF2N6e_1RcVKuu1RtJRbXuLgfwVHWj6APHVSXOK2cxuzUsfiRDyq5_VKNVgQ_bTmf5tgsUuOLKvGBYoMAX_Aq-XZa4E9HunIB0vTNMjJG1occm45CZj1vMqeuxQz91oMkc_5tqFS07lGst251Rwk8ZjhJypah9MKNL3Wpg46uVQgzKybFY5zvYUuX-Mj-aYcqQiN0it0OYomD2jA-Lnl4Ed6rMwf1vMocuoOl3bsNKjFq3Mo6MdqY726xdJww6vUf2DQbooQbjfTKR9QNyZ24g8JB8M5ikI0zSpqQAOmoxSRUmbamDSTpgEq8iJilikhpMPiJn749Pj048k8PDEywNNl6A8t1sCR3EyziUUTlLWCbBEXBZzkKRlInPIQYO46zwAx4wiCaDUmLOBrB5AgHlY7JXQ1tPCY2lhNl3yQSEUKwQyyLC-TQ8KRDwDmUxJW9s_-XCCNxjnpUfuSJapCyHjs9tx0_J6772lRZ2uaYetabIwfNiPxW1bLp1nuLp2jhO_eurZIoukfjZlDzRxuvbslafkmRk1r4C6r6Pr9TVudJ_N8A7uPGdz8jd4Y_6nOxt2k6-gNh6w18qEP8BjGHWDw
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Genetic+determination+of+the+cellular+basis+of+the+sympathetic+regulation+of+bone+mass+accrual&rft.jtitle=The+Journal+of+experimental+medicine&rft.au=Kajimura%2C+Daisuke&rft.au=Hinoi%2C+Eiichi&rft.au=Ferron%2C+Mathieu&rft.au=Kode%2C+Aruna&rft.date=2011-04-11&rft.pub=The+Rockefeller+University+Press&rft.issn=0022-1007&rft.eissn=1540-9538&rft.volume=208&rft.issue=4&rft.spage=841&rft.epage=851&rft_id=info:doi/10.1084%2Fjem.20102608&rft_id=info%3Apmid%2F21444660&rft.externalDocID=PMC3135354
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1007&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1007&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1007&client=summon