Genetic determination of the cellular basis of the sympathetic regulation of bone mass accrual
The sympathetic nervous system, whose activity is regulated by leptin signaling in the brain, is a major regulator of bone mass accrual. To determine the identity of the cell type in which the sympathetic tone signals to inhibit bone mass accrual, we performed a systematic, cell-specific analysis of...
Saved in:
Published in | The Journal of experimental medicine Vol. 208; no. 4; pp. 841 - 851 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
The Rockefeller University Press
11.04.2011
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The sympathetic nervous system, whose activity is regulated by leptin signaling in the brain, is a major regulator of bone mass accrual. To determine the identity of the cell type in which the sympathetic tone signals to inhibit bone mass accrual, we performed a systematic, cell-specific analysis of the function of the β2 adrenergic receptor (Adrβ2) and various genes implicated in the pathway in the mouse. This was followed by leptin intracerebroventricular (ICV) infusion and bone histomorphometric analyses of bone parameters. We show that the sympathetic tone signals in the osteoblasts to inhibit CREB (cAMP-responsive element-binding protein) phosphorylation and thus decrease osteoblast proliferation and to promote ATF4 phosphorylation and thus increase RANKL (receptor activator of NF-κB ligand) expression, which then stimulates osteoclast differentiation. Leptin ICV infusion in various mouse models established that leptin-dependent inhibition of bone mass accrual relies on both transcriptional events taking place in osteoblasts. Thus, this study formally identifies the osteoblast as the major cell type in which the molecular events triggered by the sympathetic regulation of bone mass accrual take place. As such, it suggests that inhibiting sympathetic signaling could be beneficial in the treatment of low bone mass conditions. |
---|---|
AbstractList | The sympathetic nervous system, whose activity is regulated by leptin signaling in the brain, is a major regulator of bone mass accrual. To determine the identity of the cell type in which the sympathetic tone signals to inhibit bone mass accrual, we performed a systematic, cell-specific analysis of the function of the β2 adrenergic receptor (Adrβ2) and various genes implicated in the pathway in the mouse. This was followed by leptin intracerebroventricular (ICV) infusion and bone histomorphometric analyses of bone parameters. We show that the sympathetic tone signals in the osteoblasts to inhibit CREB (cAMP-responsive element-binding protein) phosphorylation and thus decrease osteoblast proliferation and to promote ATF4 phosphorylation and thus increase RANKL (receptor activator of NF-κB ligand) expression, which then stimulates osteoclast differentiation. Leptin ICV infusion in various mouse models established that leptin-dependent inhibition of bone mass accrual relies on both transcriptional events taking place in osteoblasts. Thus, this study formally identifies the osteoblast as the major cell type in which the molecular events triggered by the sympathetic regulation of bone mass accrual take place. As such, it suggests that inhibiting sympathetic signaling could be beneficial in the treatment of low bone mass conditions.The sympathetic nervous system, whose activity is regulated by leptin signaling in the brain, is a major regulator of bone mass accrual. To determine the identity of the cell type in which the sympathetic tone signals to inhibit bone mass accrual, we performed a systematic, cell-specific analysis of the function of the β2 adrenergic receptor (Adrβ2) and various genes implicated in the pathway in the mouse. This was followed by leptin intracerebroventricular (ICV) infusion and bone histomorphometric analyses of bone parameters. We show that the sympathetic tone signals in the osteoblasts to inhibit CREB (cAMP-responsive element-binding protein) phosphorylation and thus decrease osteoblast proliferation and to promote ATF4 phosphorylation and thus increase RANKL (receptor activator of NF-κB ligand) expression, which then stimulates osteoclast differentiation. Leptin ICV infusion in various mouse models established that leptin-dependent inhibition of bone mass accrual relies on both transcriptional events taking place in osteoblasts. Thus, this study formally identifies the osteoblast as the major cell type in which the molecular events triggered by the sympathetic regulation of bone mass accrual take place. As such, it suggests that inhibiting sympathetic signaling could be beneficial in the treatment of low bone mass conditions. The sympathetic nervous system, whose activity is regulated by leptin signaling in the brain, is a major regulator of bone mass accrual. To determine the identity of the cell type in which the sympathetic tone signals to inhibit bone mass accrual, we performed a systematic, cell-specific analysis of the function of the β2 adrenergic receptor (Adrβ2) and various genes implicated in the pathway in the mouse. This was followed by leptin intracerebroventricular (ICV) infusion and bone histomorphometric analyses of bone parameters. We show that the sympathetic tone signals in the osteoblasts to inhibit CREB (cAMP-responsive element-binding protein) phosphorylation and thus decrease osteoblast proliferation and to promote ATF4 phosphorylation and thus increase RANKL (receptor activator of NF-κB ligand) expression, which then stimulates osteoclast differentiation. Leptin ICV infusion in various mouse models established that leptin-dependent inhibition of bone mass accrual relies on both transcriptional events taking place in osteoblasts. Thus, this study formally identifies the osteoblast as the major cell type in which the molecular events triggered by the sympathetic regulation of bone mass accrual take place. As such, it suggests that inhibiting sympathetic signaling could be beneficial in the treatment of low bone mass conditions. The sympathetic nervous system regulates bone mass accrual by signaling via CREB and ATF4 in osteoblasts to promote proliferation and RANKL production, respectively. The sympathetic nervous system, whose activity is regulated by leptin signaling in the brain, is a major regulator of bone mass accrual. To determine the identity of the cell type in which the sympathetic tone signals to inhibit bone mass accrual, we performed a systematic, cell-specific analysis of the function of the β2 adrenergic receptor (Adrβ2) and various genes implicated in the pathway in the mouse. This was followed by leptin intracerebroventricular (ICV) infusion and bone histomorphometric analyses of bone parameters. We show that the sympathetic tone signals in the osteoblasts to inhibit CREB (cAMP-responsive element-binding protein) phosphorylation and thus decrease osteoblast proliferation and to promote ATF4 phosphorylation and thus increase RANKL (receptor activator of NF-κB ligand) expression, which then stimulates osteoclast differentiation. Leptin ICV infusion in various mouse models established that leptin-dependent inhibition of bone mass accrual relies on both transcriptional events taking place in osteoblasts. Thus, this study formally identifies the osteoblast as the major cell type in which the molecular events triggered by the sympathetic regulation of bone mass accrual take place. As such, it suggests that inhibiting sympathetic signaling could be beneficial in the treatment of low bone mass conditions. The sympathetic nervous system, whose activity is regulated by leptin signaling in the brain, is a major regulator of bone mass accrual. To determine the identity of the cell type in which the sympathetic tone signals to inhibit bone mass accrual, we performed a systematic, cell-specific analysis of the function of the beta 2 adrenergic receptor (Adr beta 2) and various genes implicated in the pathway in the mouse. This was followed by leptin intracerebroventricular (ICV) infusion and bone histomorphometric analyses of bone parameters. We show that the sympathetic tone signals in the osteoblasts to inhibit CREB (cAMP-responsive element-binding protein) phosphorylation and thus decrease osteoblast proliferation and to promote ATF4 phosphorylation and thus increase RANKL (receptor activator of NF- Kappa B ligand) expression, which then stimulates osteoclast differentiation. Leptin ICV infusion in various mouse models established that leptin-dependent inhibition of bone mass accrual relies on both transcriptional events taking place in osteoblasts. Thus, this study formally identifies the osteoblast as the major cell type in which the molecular events triggered by the sympathetic regulation of bone mass accrual take place. As such, it suggests that inhibiting sympathetic signaling could be beneficial in the treatment of low bone mass conditions. |
Author | Zhou, Bin Ferron, Mathieu Riley, Kyle J. Guo, X. Edward Karsenty, Gerard Kajimura, Daisuke Hinoi, Eiichi Kode, Aruna |
AuthorAffiliation | 1 Department of Genetics and Development and 2 Division of Endocrinology, Department of Medicine, College of Physicians and Surgeons and 3 Bone Bioengineering Laboratory, Department of Biomedical Engineering, Columbia University, New York, NY 10027 |
AuthorAffiliation_xml | – name: 1 Department of Genetics and Development and 2 Division of Endocrinology, Department of Medicine, College of Physicians and Surgeons and 3 Bone Bioengineering Laboratory, Department of Biomedical Engineering, Columbia University, New York, NY 10027 |
Author_xml | – sequence: 1 givenname: Daisuke surname: Kajimura fullname: Kajimura, Daisuke – sequence: 2 givenname: Eiichi surname: Hinoi fullname: Hinoi, Eiichi – sequence: 3 givenname: Mathieu surname: Ferron fullname: Ferron, Mathieu – sequence: 4 givenname: Aruna surname: Kode fullname: Kode, Aruna – sequence: 5 givenname: Kyle J. surname: Riley fullname: Riley, Kyle J. – sequence: 6 givenname: Bin surname: Zhou fullname: Zhou, Bin – sequence: 7 givenname: X. Edward surname: Guo fullname: Guo, X. Edward – sequence: 8 givenname: Gerard surname: Karsenty fullname: Karsenty, Gerard |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/21444660$$D View this record in MEDLINE/PubMed |
BookMark | eNqFUctKxTAUDKLo9bFzLd25sXqS5tFuBBFfILjRrSHJPdVIH9ekFfx7c9WKiuAqh5yZYc7MJlnt-g4J2aVwSKHkR0_YHjKgwCSUK2RGBYe8EkW5SmYAjOUUQG2QzRifACjnQq6TDZYGLiXMyP0Fdjh4l81xwND6zgy-77K-zoZHzBw2zdiYkFkTfZx-42u7MGlY0gI-JMDEscla1poYM-NcGE2zTdZq00Tc-Xy3yN352e3pZX59c3F1enKdO17SIadzq5DPlWK2lgxFXSheITprsS6YU7UCK0rOZGWAWsoFo7RGwaRIhypgxRY5_tBdjLbFucNuCKbRi-BbE151b7z-uen8o37oX3RBC1EIngT2PwVC_zxiHHTr4_J802E_Rl3BMjAF1b_IUlJVSllCQu59N_XlZko_AdgHwIU-xoC1dn54DzN59I2moJcV61SxnipOpINfpEn3T_gb6nuorg |
CitedBy_id | crossref_primary_10_1152_physrev_00014_2017 crossref_primary_10_3389_fendo_2018_00486 crossref_primary_10_3390_cancers14081881 crossref_primary_10_1016_j_bonr_2018_11_002 crossref_primary_10_1111_os_70010 crossref_primary_10_1186_s40729_021_00309_y crossref_primary_10_1016_j_cmet_2022_04_010 crossref_primary_10_1002_smtd_202100763 crossref_primary_10_1002_jbmr_3133 crossref_primary_10_1002_jbmr_1594 crossref_primary_10_1016_j_bone_2020_115607 crossref_primary_10_1038_s41413_023_00285_6 crossref_primary_10_1212_WNL_0000000000002521 crossref_primary_10_1038_srep30918 crossref_primary_10_1172_jci_insight_165604 crossref_primary_10_1371_journal_pbio_1001363 crossref_primary_10_1101_cshperspect_a031344 crossref_primary_10_1073_pnas_1719089115 crossref_primary_10_1016_j_jare_2022_08_019 crossref_primary_10_1007_s00774_023_01402_5 crossref_primary_10_1126_scitranslmed_adk9129 crossref_primary_10_1002_jbmr_2425 crossref_primary_10_1002_jbmr_1734 crossref_primary_10_1158_2159_8290_CD_24_0287 crossref_primary_10_1172_JCI122151 crossref_primary_10_1002_bmm2_12138 crossref_primary_10_1007_s00198_024_07198_y crossref_primary_10_1097_MED_0000000000000478 crossref_primary_10_1007_s12018_015_9183_z crossref_primary_10_1302_2046_3758_117_BJR_2021_0355_R1 crossref_primary_10_1212_WNL_0000000000002580 crossref_primary_10_1016_j_clinbiochem_2012_03_006 crossref_primary_10_1083_jcb_201201057 crossref_primary_10_1002_jbmr_3822 crossref_primary_10_1007_s00223_016_0168_9 crossref_primary_10_1007_s00223_013_9752_4 crossref_primary_10_1016_j_abb_2014_05_022 crossref_primary_10_1038_s41413_022_00240_x crossref_primary_10_1002_jbmr_4523 crossref_primary_10_1002_jbmr_4643 crossref_primary_10_1210_jc_2017_00169 crossref_primary_10_3389_fendo_2020_00646 crossref_primary_10_1016_j_jot_2024_10_008 crossref_primary_10_1210_en_2015_1614 crossref_primary_10_1002_jbmr_445 crossref_primary_10_1016_j_bone_2020_115229 crossref_primary_10_1172_JCI75157 crossref_primary_10_1007_s12018_011_9096_4 crossref_primary_10_1074_jbc_M113_481309 crossref_primary_10_1016_j_bone_2020_115221 crossref_primary_10_1016_j_ejphar_2021_174515 crossref_primary_10_1007_s00198_015_3312_x crossref_primary_10_1038_s41413_024_00321_z crossref_primary_10_3389_fneur_2024_1295429 crossref_primary_10_1002_med_22031 crossref_primary_10_3389_fendo_2022_997745 crossref_primary_10_1210_jc_2012_3205 crossref_primary_10_3390_ijms231810257 crossref_primary_10_1016_j_cmet_2022_09_025 crossref_primary_10_1242_dev_164004 crossref_primary_10_1248_yakushi_132_721 crossref_primary_10_3389_fpain_2023_1302014 crossref_primary_10_1128_MCB_06279_11 crossref_primary_10_1016_j_diff_2021_05_002 crossref_primary_10_3390_jcm12051958 crossref_primary_10_1002_jbmr_1708 crossref_primary_10_1016_j_febslet_2013_01_049 crossref_primary_10_3390_biom13040622 crossref_primary_10_1016_j_jff_2018_09_017 crossref_primary_10_1016_j_jff_2022_105363 crossref_primary_10_1152_ajpendo_00191_2012 crossref_primary_10_3389_fphys_2021_731523 crossref_primary_10_1172_JCI122992 crossref_primary_10_1016_j_cej_2024_159079 crossref_primary_10_1093_qjmed_hcad108 crossref_primary_10_1002_jbmr_4024 crossref_primary_10_1007_s00198_015_3087_0 crossref_primary_10_3390_ijms18050931 crossref_primary_10_1083_JCB1931OIA2 crossref_primary_10_1002_1873_3468_13282 crossref_primary_10_1016_j_pmr_2012_08_005 crossref_primary_10_1186_s12974_019_1415_6 crossref_primary_10_1016_j_bone_2012_11_039 crossref_primary_10_1016_j_molmet_2015_01_002 crossref_primary_10_1016_j_kint_2019_01_004 crossref_primary_10_1210_en_2014_1452 crossref_primary_10_1002_ajpa_23684 crossref_primary_10_1002_jbmr_1538 crossref_primary_10_1016_j_beem_2021_101522 crossref_primary_10_1038_bonekey_2015_61 crossref_primary_10_3390_cells13242110 crossref_primary_10_1002_jbm4_10021 crossref_primary_10_1016_j_biochi_2023_05_002 crossref_primary_10_1002_jor_22619 crossref_primary_10_1083_jcb_201403138 crossref_primary_10_1016_j_jocd_2024_101501 crossref_primary_10_1186_s13023_015_0235_8 crossref_primary_10_1089_thy_2018_0259 crossref_primary_10_1172_JCI136105 crossref_primary_10_3389_fcell_2023_1184550 crossref_primary_10_3803_EnM_2018_33_1_1 crossref_primary_10_1002_jbm4_10541 crossref_primary_10_1007_s11064_024_04118_8 crossref_primary_10_1007_s11914_013_0157_0 crossref_primary_10_1007_s12018_019_9257_4 crossref_primary_10_1016_j_biochi_2012_04_015 crossref_primary_10_1254_fpj_145_140 crossref_primary_10_3390_cancers13122887 crossref_primary_10_1002_advs_202207602 crossref_primary_10_3390_ani11061494 crossref_primary_10_12998_wjcc_v9_i30_8967 crossref_primary_10_3892_br_2018_1075 crossref_primary_10_1016_j_bone_2017_08_004 crossref_primary_10_1016_j_jnutbio_2021_108909 crossref_primary_10_3389_fcell_2022_976736 crossref_primary_10_1016_j_bone_2017_08_006 crossref_primary_10_1138_20110509 crossref_primary_10_7554_eLife_39689 crossref_primary_10_1093_jbmr_zjae200 crossref_primary_10_1186_s12891_021_04598_7 crossref_primary_10_1038_s41598_021_02783_1 crossref_primary_10_1080_00207454_2020_1770247 crossref_primary_10_1016_j_bone_2014_10_024 crossref_primary_10_1016_j_archger_2017_02_005 crossref_primary_10_1111_j_1476_5381_2012_01856_x crossref_primary_10_1016_j_bone_2018_06_023 crossref_primary_10_1038_s41368_022_00193_1 crossref_primary_10_1212_WNL_0000000000002532 crossref_primary_10_3390_ijms23073500 crossref_primary_10_1016_j_semcdb_2021_11_001 crossref_primary_10_1186_s40001_024_01918_0 crossref_primary_10_1248_bpb_b12_00893 |
Cites_doi | 10.1210/endo-123-5-2600 10.1172/JCI39366 10.1016/j.cmet.2006.10.008 10.1002/dvdy.21841 10.1073/pnas.0808701106 10.1038/nature03398 10.1016/S1074-7613(01)00088-7 10.1016/S0092-8674(00)81558-5 10.1016/S0065-1281(87)80012-0 10.1002/jbmr.5650020617 10.1016/j.cell.2009.06.051 10.1016/j.cmet.2006.10.010 10.1016/j.cell.2010.06.003 10.1016/S0092-8674(02)01049-8 10.1016/j.cellsig.2009.02.012 10.1083/jcb.200809113 10.1101/gad.1977210 10.1002/dvdy.10100 10.1016/j.cell.2005.06.028 10.1002/jcp.21564 10.1016/S0092-8674(04)00344-7 10.1016/j.cell.2008.09.059 10.1359/jbmr.1999.14.7.1167 10.1056/NEJM200008313430911 10.1073/pnas.0308744101 |
ContentType | Journal Article |
Copyright | 2011 Kajimura et al. 2011 |
Copyright_xml | – notice: 2011 Kajimura et al. 2011 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7QP 7T5 8FD FR3 H94 P64 RC3 5PM |
DOI | 10.1084/jem.20102608 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Calcium & Calcified Tissue Abstracts Immunology Abstracts Technology Research Database Engineering Research Database AIDS and Cancer Research Abstracts Biotechnology and BioEngineering Abstracts Genetics Abstracts PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Genetics Abstracts Technology Research Database AIDS and Cancer Research Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Biotechnology and BioEngineering Abstracts |
DatabaseTitleList | MEDLINE - Academic MEDLINE CrossRef Genetics Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
DocumentTitleAlternate | Sympathetic control of bone mass via osteoblasts |
EISSN | 1540-9538 |
EndPage | 851 |
ExternalDocumentID | PMC3135354 21444660 10_1084_jem_20102608 |
Genre | Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIDDK NIH HHS grantid: DK58883 – fundername: NIDDK NIH HHS grantid: R01 DK058883 |
GroupedDBID | --- -~X 0VX 18M 29K 2WC 36B 4.4 53G 5GY 5RE 5VS AAYXX ABOCM ABZEH ACGFO ACNCT ACPRK ADBBV AENEX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BTFSW C45 CITATION CS3 D-I DIK DU5 E3Z EBS EJD EMB EMOBN F5P F9R GX1 H13 HYE H~9 IH2 K-O KQ8 L7B MK0 N9A O5R O5S OK1 P2P P6G R.V RHI SJN SV3 TR2 TRP UHB W8F WOQ CGR CUY CVF ECM EIF NPM 7X8 7QP 7T5 8FD FR3 H94 P64 RC3 5PM |
ID | FETCH-LOGICAL-c481t-1db7e4d772bf62e5f3749eecbbef32c7f70b584269a01b145211fe52655387023 |
ISSN | 0022-1007 1540-9538 |
IngestDate | Thu Aug 21 13:46:29 EDT 2025 Fri Jul 11 09:38:05 EDT 2025 Fri Jul 11 09:34:12 EDT 2025 Thu Apr 03 07:07:43 EDT 2025 Tue Jul 01 03:30:34 EDT 2025 Thu Apr 24 22:51:23 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 3.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/3.0/). |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c481t-1db7e4d772bf62e5f3749eecbbef32c7f70b584269a01b145211fe52655387023 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC3135354 |
PMID | 21444660 |
PQID | 861786680 |
PQPubID | 23479 |
PageCount | 11 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3135354 proquest_miscellaneous_904466709 proquest_miscellaneous_861786680 pubmed_primary_21444660 crossref_citationtrail_10_1084_jem_20102608 crossref_primary_10_1084_jem_20102608 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2011-04-11 |
PublicationDateYYYYMMDD | 2011-04-11 |
PublicationDate_xml | – month: 04 year: 2011 text: 2011-04-11 day: 11 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | The Journal of experimental medicine |
PublicationTitleAlternate | J Exp Med |
PublicationYear | 2011 |
Publisher | The Rockefeller University Press |
Publisher_xml | – name: The Rockefeller University Press |
References | Couillard (2023072920345458600_bib3) 2009; 238 Elefteriou (2023072920345458600_bib10) 2006; 4 Fu (2023072920345458600_bib12) 2005; 122 Karsenty (2023072920345458600_bib15) 2006; 4 Parfitt (2023072920345458600_bib17) 1987; 2 de Alboran (2023072920345458600_bib6) 2001; 14 Hildebrand (2023072920345458600_bib13) 1999; 14 Ferron (2023072920345458600_bib11) 2010; 142 Yang (2023072920345458600_bib24) 2004; 117 Datta (2023072920345458600_bib5) 2009; 21 Yadav (2023072920345458600_bib23) 2009; 138 Chappard (2023072920345458600_bib2) 1987; 81 Takeda (2023072920345458600_bib21) 2002; 111 Schwartzman (2023072920345458600_bib18) 2000; 343 Elefteriou (2023072920345458600_bib8) 2004; 101 Elefteriou (2023072920345458600_bib9) 2005; 434 Bonnet (2023072920345458600_bib1) 2008; 217 Dacquin (2023072920345458600_bib4) 2002; 224 Yoshizawa (2023072920345458600_bib25) 2009; 119 Hinoi (2023072920345458600_bib14) 2008; 183 Oury (2023072920345458600_bib16) 2010; 24 Takahashi (2023072920345458600_bib20) 1988; 123 Shi (2023072920345458600_bib19) 2008; 105 Yadav (2023072920345458600_bib22) 2008; 135 Ducy (2023072920345458600_bib7) 2000; 100 3111154 - Acta Histochem. 1987;81(2):183-90 2844518 - Endocrinology. 1988 Nov;123(5):2600-2 18727092 - J Cell Physiol. 2008 Dec;217(3):819-27 17084709 - Cell Metab. 2006 Nov;4(5):341-8 10979798 - N Engl J Med. 2000 Aug 31;343(9):654-6 12112477 - Dev Dyn. 2002 Jun;224(2):245-51 15724149 - Nature. 2005 Mar 24;434(7032):514-20 10404017 - J Bone Miner Res. 1999 Jul;14(7):1167-74 11163229 - Immunity. 2001 Jan;14(1):45-55 19161241 - Dev Dyn. 2009 Feb;238(2):405-14 19103808 - J Cell Biol. 2008 Dec 29;183(7):1235-42 14978271 - Proc Natl Acad Sci U S A. 2004 Mar 2;101(9):3258-63 17141628 - Cell Metab. 2006 Dec;4(6):441-51 3455637 - J Bone Miner Res. 1987 Dec;2(6):595-610 20952540 - Genes Dev. 2010 Oct 15;24(20):2330-42 19249350 - Cell Signal. 2009 Aug;21(8):1245-54 19737523 - Cell. 2009 Sep 4;138(5):976-89 19074282 - Proc Natl Acad Sci U S A. 2008 Dec 23;105(51):20529-33 10660043 - Cell. 2000 Jan 21;100(2):197-207 16143109 - Cell. 2005 Sep 9;122(5):803-15 19726872 - J Clin Invest. 2009 Sep;119(9):2807-17 19041748 - Cell. 2008 Nov 28;135(5):825-37 12419242 - Cell. 2002 Nov 1;111(3):305-17 15109498 - Cell. 2004 Apr 30;117(3):387-98 20655470 - Cell. 2010 Jul 23;142(2):296-308 |
References_xml | – volume: 123 start-page: 2600 year: 1988 ident: 2023072920345458600_bib20 article-title: Osteoblastic cells are involved in osteoclast formation publication-title: Endocrinology. doi: 10.1210/endo-123-5-2600 – volume: 119 start-page: 2807 year: 2009 ident: 2023072920345458600_bib25 article-title: The transcription factor ATF4 regulates glucose metabolism in mice through its expression in osteoblasts publication-title: J. Clin. Invest. doi: 10.1172/JCI39366 – volume: 4 start-page: 341 year: 2006 ident: 2023072920345458600_bib15 article-title: Convergence between bone and energy homeostases: leptin regulation of bone mass publication-title: Cell Metab. doi: 10.1016/j.cmet.2006.10.008 – volume: 238 start-page: 405 year: 2009 ident: 2023072920345458600_bib3 article-title: C-myc as a modulator of renal stem/progenitor cell population publication-title: Dev. Dyn. doi: 10.1002/dvdy.21841 – volume: 105 start-page: 20529 year: 2008 ident: 2023072920345458600_bib19 article-title: Dissociation of the neuronal regulation of bone mass and energy metabolism by leptin in vivo publication-title: Proc. Natl. Acad. Sci. USA. doi: 10.1073/pnas.0808701106 – volume: 434 start-page: 514 year: 2005 ident: 2023072920345458600_bib9 article-title: Leptin regulation of bone resorption by the sympathetic nervous system and CART publication-title: Nature. doi: 10.1038/nature03398 – volume: 14 start-page: 45 year: 2001 ident: 2023072920345458600_bib6 article-title: Analysis of C-MYC function in normal cells via conditional gene-targeted mutation publication-title: Immunity. doi: 10.1016/S1074-7613(01)00088-7 – volume: 100 start-page: 197 year: 2000 ident: 2023072920345458600_bib7 article-title: Leptin inhibits bone formation through a hypothalamic relay: a central control of bone mass publication-title: Cell. doi: 10.1016/S0092-8674(00)81558-5 – volume: 81 start-page: 183 year: 1987 ident: 2023072920345458600_bib2 article-title: Bone embedding in pure methyl methacrylate at low temperature preserves enzyme activities publication-title: Acta Histochem. doi: 10.1016/S0065-1281(87)80012-0 – volume: 2 start-page: 595 year: 1987 ident: 2023072920345458600_bib17 article-title: Bone histomorphometry: standardization of nomenclature, symbols, and units publication-title: J. Bone Miner. Res. doi: 10.1002/jbmr.5650020617 – volume: 138 start-page: 976 year: 2009 ident: 2023072920345458600_bib23 article-title: A serotonin-dependent mechanism explains the leptin regulation of bone mass, appetite, and energy expenditure publication-title: Cell. doi: 10.1016/j.cell.2009.06.051 – volume: 4 start-page: 441 year: 2006 ident: 2023072920345458600_bib10 article-title: ATF4 mediation of NF1 functions in osteoblast reveals a nutritional basis for congenital skeletal dysplasiae publication-title: Cell Metab. doi: 10.1016/j.cmet.2006.10.010 – volume: 142 start-page: 296 year: 2010 ident: 2023072920345458600_bib11 article-title: Insulin signaling in osteoblasts integrates bone remodeling and energy metabolism publication-title: Cell. doi: 10.1016/j.cell.2010.06.003 – volume: 111 start-page: 305 year: 2002 ident: 2023072920345458600_bib21 article-title: Leptin regulates bone formation via the sympathetic nervous system publication-title: Cell. doi: 10.1016/S0092-8674(02)01049-8 – volume: 21 start-page: 1245 year: 2009 ident: 2023072920345458600_bib5 article-title: PTH and PTHrP signaling in osteoblasts publication-title: Cell. Signal. doi: 10.1016/j.cellsig.2009.02.012 – volume: 183 start-page: 1235 year: 2008 ident: 2023072920345458600_bib14 article-title: The sympathetic tone mediates leptin’s inhibition of insulin secretion by modulating osteocalcin bioactivity publication-title: J. Cell Biol. doi: 10.1083/jcb.200809113 – volume: 24 start-page: 2330 year: 2010 ident: 2023072920345458600_bib16 article-title: CREB mediates brain serotonin regulation of bone mass through its expression in ventromedial hypothalamic neurons publication-title: Genes Dev. doi: 10.1101/gad.1977210 – volume: 224 start-page: 245 year: 2002 ident: 2023072920345458600_bib4 article-title: Mouse alpha1(I)-collagen promoter is the best known promoter to drive efficient Cre recombinase expression in osteoblast publication-title: Dev. Dyn. doi: 10.1002/dvdy.10100 – volume: 122 start-page: 803 year: 2005 ident: 2023072920345458600_bib12 article-title: The molecular clock mediates leptin-regulated bone formation publication-title: Cell. doi: 10.1016/j.cell.2005.06.028 – volume: 217 start-page: 819 year: 2008 ident: 2023072920345458600_bib1 article-title: Low dose beta-blocker prevents ovariectomy-induced bone loss in rats without affecting heart functions publication-title: J. Cell. Physiol. doi: 10.1002/jcp.21564 – volume: 117 start-page: 387 year: 2004 ident: 2023072920345458600_bib24 article-title: ATF4 is a substrate of RSK2 and an essential regulator of osteoblast biology; implication for Coffin-Lowry Syndrome publication-title: Cell. doi: 10.1016/S0092-8674(04)00344-7 – volume: 135 start-page: 825 year: 2008 ident: 2023072920345458600_bib22 article-title: Lrp5 controls bone formation by inhibiting serotonin synthesis in the duodenum publication-title: Cell. doi: 10.1016/j.cell.2008.09.059 – volume: 14 start-page: 1167 year: 1999 ident: 2023072920345458600_bib13 article-title: Direct three-dimensional morphometric analysis of human cancellous bone: microstructural data from spine, femur, iliac crest, and calcaneus publication-title: J. Bone Miner. Res. doi: 10.1359/jbmr.1999.14.7.1167 – volume: 343 start-page: 654 year: 2000 ident: 2023072920345458600_bib18 article-title: New treatments for reflex sympathetic dystrophy publication-title: N. Engl. J. Med. doi: 10.1056/NEJM200008313430911 – volume: 101 start-page: 3258 year: 2004 ident: 2023072920345458600_bib8 article-title: Serum leptin level is a regulator of bone mass publication-title: Proc. Natl. Acad. Sci. USA. doi: 10.1073/pnas.0308744101 – reference: 19737523 - Cell. 2009 Sep 4;138(5):976-89 – reference: 2844518 - Endocrinology. 1988 Nov;123(5):2600-2 – reference: 10660043 - Cell. 2000 Jan 21;100(2):197-207 – reference: 19161241 - Dev Dyn. 2009 Feb;238(2):405-14 – reference: 17084709 - Cell Metab. 2006 Nov;4(5):341-8 – reference: 17141628 - Cell Metab. 2006 Dec;4(6):441-51 – reference: 10979798 - N Engl J Med. 2000 Aug 31;343(9):654-6 – reference: 20655470 - Cell. 2010 Jul 23;142(2):296-308 – reference: 15724149 - Nature. 2005 Mar 24;434(7032):514-20 – reference: 3111154 - Acta Histochem. 1987;81(2):183-90 – reference: 19249350 - Cell Signal. 2009 Aug;21(8):1245-54 – reference: 19041748 - Cell. 2008 Nov 28;135(5):825-37 – reference: 11163229 - Immunity. 2001 Jan;14(1):45-55 – reference: 14978271 - Proc Natl Acad Sci U S A. 2004 Mar 2;101(9):3258-63 – reference: 19103808 - J Cell Biol. 2008 Dec 29;183(7):1235-42 – reference: 12419242 - Cell. 2002 Nov 1;111(3):305-17 – reference: 15109498 - Cell. 2004 Apr 30;117(3):387-98 – reference: 3455637 - J Bone Miner Res. 1987 Dec;2(6):595-610 – reference: 12112477 - Dev Dyn. 2002 Jun;224(2):245-51 – reference: 16143109 - Cell. 2005 Sep 9;122(5):803-15 – reference: 18727092 - J Cell Physiol. 2008 Dec;217(3):819-27 – reference: 10404017 - J Bone Miner Res. 1999 Jul;14(7):1167-74 – reference: 20952540 - Genes Dev. 2010 Oct 15;24(20):2330-42 – reference: 19726872 - J Clin Invest. 2009 Sep;119(9):2807-17 – reference: 19074282 - Proc Natl Acad Sci U S A. 2008 Dec 23;105(51):20529-33 |
SSID | ssj0014456 |
Score | 2.4227953 |
Snippet | The sympathetic nervous system, whose activity is regulated by leptin signaling in the brain, is a major regulator of bone mass accrual. To determine the... The sympathetic nervous system regulates bone mass accrual by signaling via CREB and ATF4 in osteoblasts to promote proliferation and RANKL production,... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 841 |
SubjectTerms | Activating Transcription Factor 4 - genetics Activating Transcription Factor 4 - physiology Animals Bone Density Bone Resorption - etiology Cyclic AMP Response Element-Binding Protein - metabolism Leptin - physiology Mice Mice, Inbred C57BL Osteoblasts - physiology Phosphorylation Proto-Oncogene Proteins c-myc - physiology Receptors, Adrenergic, beta-2 - genetics Receptors, Adrenergic, beta-2 - physiology Sympathetic Nervous System - physiology |
Title | Genetic determination of the cellular basis of the sympathetic regulation of bone mass accrual |
URI | https://www.ncbi.nlm.nih.gov/pubmed/21444660 https://www.proquest.com/docview/861786680 https://www.proquest.com/docview/904466709 https://pubmed.ncbi.nlm.nih.gov/PMC3135354 |
Volume | 208 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbKkBAvE3c6LvIDPKFAkjq3x2kaTKAihDapT0Sx67BsNJnS5gF-Gr-Oc3xJnJZJsJeqcpw49fl6fGx__g4hr7JlwhMIhL2sCGceS8Kll_mZ8AopOIy3WVRyPO88_xyfnLGPi2gxmfx2WEvdhr8Vv_56ruQmVoUysCuekv0Py_YPhQL4DvaFT7AwfP6TjVEzGgVXl5bTYsM_jCZxSV5xTGGg0qIjWLr-ucIkxFJLN383ybvwKm9qJLOC4yuEaDvT9sWAJid2HeUF2N6e_1RcVKuu1RtJRbXuLgfwVHWj6APHVSXOK2cxuzUsfiRDyq5_VKNVgQ_bTmf5tgsUuOLKvGBYoMAX_Aq-XZa4E9HunIB0vTNMjJG1occm45CZj1vMqeuxQz91oMkc_5tqFS07lGst251Rwk8ZjhJypah9MKNL3Wpg46uVQgzKybFY5zvYUuX-Mj-aYcqQiN0it0OYomD2jA-Lnl4Ed6rMwf1vMocuoOl3bsNKjFq3Mo6MdqY726xdJww6vUf2DQbooQbjfTKR9QNyZ24g8JB8M5ikI0zSpqQAOmoxSRUmbamDSTpgEq8iJilikhpMPiJn749Pj048k8PDEywNNl6A8t1sCR3EyziUUTlLWCbBEXBZzkKRlInPIQYO46zwAx4wiCaDUmLOBrB5AgHlY7JXQ1tPCY2lhNl3yQSEUKwQyyLC-TQ8KRDwDmUxJW9s_-XCCNxjnpUfuSJapCyHjs9tx0_J6772lRZ2uaYetabIwfNiPxW1bLp1nuLp2jhO_eurZIoukfjZlDzRxuvbslafkmRk1r4C6r6Pr9TVudJ_N8A7uPGdz8jd4Y_6nOxt2k6-gNh6w18qEP8BjGHWDw |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Genetic+determination+of+the+cellular+basis+of+the+sympathetic+regulation+of+bone+mass+accrual&rft.jtitle=The+Journal+of+experimental+medicine&rft.au=Kajimura%2C+Daisuke&rft.au=Hinoi%2C+Eiichi&rft.au=Ferron%2C+Mathieu&rft.au=Kode%2C+Aruna&rft.date=2011-04-11&rft.pub=The+Rockefeller+University+Press&rft.issn=0022-1007&rft.eissn=1540-9538&rft.volume=208&rft.issue=4&rft.spage=841&rft.epage=851&rft_id=info:doi/10.1084%2Fjem.20102608&rft_id=info%3Apmid%2F21444660&rft.externalDocID=PMC3135354 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1007&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1007&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1007&client=summon |