Myricetin prevents high molecular weight Aβ1-42 oligomer-induced neurotoxicity through antioxidant effects in cell membranes and mitochondria
Excessive accumulation of amyloid β-protein (Aβ) is one of the primary mechanisms that leads to neuronal death with phosphorylated tau in the pathogenesis of Alzheimer's disease (AD). Protofibrils, one of the high-molecular-weight Aβ oligomers (HMW-Aβo), are implicated to be important targets o...
Saved in:
Published in | Free radical biology & medicine Vol. 171; pp. 232 - 244 |
---|---|
Main Authors | , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Inc
01.08.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Excessive accumulation of amyloid β-protein (Aβ) is one of the primary mechanisms that leads to neuronal death with phosphorylated tau in the pathogenesis of Alzheimer's disease (AD). Protofibrils, one of the high-molecular-weight Aβ oligomers (HMW-Aβo), are implicated to be important targets of disease modifying therapy of AD.
We previously reported that phenolic compounds such as myricetin inhibit Aβ1-40, Aβ1-42, and α-synuclein aggregations, including their oligomerizations, which may exert protective effects against AD and Parkinson's disease. The purpose of this study was to clarify the detailed mechanism of the protective effect of myricetin against the neurotoxicity of HMW-Aβo in SH-SY5Y cells.
To assess the effect of myricetin on HMW-Aβo-induced oxidative stress, we systematically examined the level of membrane oxidative damage by measuring cell membrane lipid peroxidation, membrane fluidity, and cell membrane potential, and the mitochondrial oxidative damage was evaluated by mitochondrial permeability transition (MPT), mitochondrial reactive oxygen species (ROS), and manganese-superoxide dismutase (Mn-SOD), and adenosine triphosphate (ATP) assay in SH-SY5Y cells.
Myricetin has been found to increased cell viability by suppression of HMW-Aβo-induced membrane disruption in SH-SY5Y cells, as shown in reducing membrane phospholipid peroxidation and increasing membrane fluidity and membrane resistance. Myricetin has also been found to suppress HMW-Aβo-induced mitochondria dysfunction, as demonstrated in decreasing MPT, Mn-SOD, and ATP generation, raising mitochondrial membrane potential, and increasing mitochondrial-ROS generation.
These results suggest that myricetin preventing HMW-Aβo-induced neurotoxicity through multiple antioxidant functions may be developed as a disease-modifying agent against AD.
[Display omitted]
•Myricetin suppresses neurotoxicity by high molecular weight amyloid β oligomers.•The therapeutic target is oxidative stress at the cell membrane and mitochondria.•It not only works as an antioxidant but boosts the antioxidant function of neurons.•Myricetin may be developed as a disease-modifying agent for Alzheimer's disease. |
---|---|
AbstractList | Excessive accumulation of amyloid β-protein (Aβ) is one of the primary mechanisms that leads to neuronal death with phosphorylated tau in the pathogenesis of Alzheimer's disease (AD). Protofibrils, one of the high-molecular-weight Aβ oligomers (HMW-Aβo), are implicated to be important targets of disease modifying therapy of AD.
We previously reported that phenolic compounds such as myricetin inhibit Aβ1-40, Aβ1-42, and α-synuclein aggregations, including their oligomerizations, which may exert protective effects against AD and Parkinson's disease. The purpose of this study was to clarify the detailed mechanism of the protective effect of myricetin against the neurotoxicity of HMW-Aβo in SH-SY5Y cells.
To assess the effect of myricetin on HMW-Aβo-induced oxidative stress, we systematically examined the level of membrane oxidative damage by measuring cell membrane lipid peroxidation, membrane fluidity, and cell membrane potential, and the mitochondrial oxidative damage was evaluated by mitochondrial permeability transition (MPT), mitochondrial reactive oxygen species (ROS), and manganese-superoxide dismutase (Mn-SOD), and adenosine triphosphate (ATP) assay in SH-SY5Y cells.
Myricetin has been found to increased cell viability by suppression of HMW-Aβo-induced membrane disruption in SH-SY5Y cells, as shown in reducing membrane phospholipid peroxidation and increasing membrane fluidity and membrane resistance. Myricetin has also been found to suppress HMW-Aβo-induced mitochondria dysfunction, as demonstrated in decreasing MPT, Mn-SOD, and ATP generation, raising mitochondrial membrane potential, and increasing mitochondrial-ROS generation.
These results suggest that myricetin preventing HMW-Aβo-induced neurotoxicity through multiple antioxidant functions may be developed as a disease-modifying agent against AD.
[Display omitted]
•Myricetin suppresses neurotoxicity by high molecular weight amyloid β oligomers.•The therapeutic target is oxidative stress at the cell membrane and mitochondria.•It not only works as an antioxidant but boosts the antioxidant function of neurons.•Myricetin may be developed as a disease-modifying agent for Alzheimer's disease. Excessive accumulation of amyloid β-protein (Aβ) is one of the primary mechanisms that leads to neuronal death with phosphorylated tau in the pathogenesis of Alzheimer's disease (AD). Protofibrils, one of the high-molecular-weight Aβ oligomers (HMW-Aβo), are implicated to be important targets of disease modifying therapy of AD. We previously reported that phenolic compounds such as myricetin inhibit Aβ1-40, Aβ1-42, and α-synuclein aggregations, including their oligomerizations, which may exert protective effects against AD and Parkinson's disease. The purpose of this study was to clarify the detailed mechanism of the protective effect of myricetin against the neurotoxicity of HMW-Aβo in SH-SY5Y cells. To assess the effect of myricetin on HMW-Aβo-induced oxidative stress, we systematically examined the level of membrane oxidative damage by measuring cell membrane lipid peroxidation, membrane fluidity, and cell membrane potential, and the mitochondrial oxidative damage was evaluated by mitochondrial permeability transition (MPT), mitochondrial reactive oxygen species (ROS), and manganese-superoxide dismutase (Mn-SOD), and adenosine triphosphate (ATP) assay in SH-SY5Y cells. Myricetin has been found to increased cell viability by suppression of HMW-Aβo-induced membrane disruption in SH-SY5Y cells, as shown in reducing membrane phospholipid peroxidation and increasing membrane fluidity and membrane resistance. Myricetin has also been found to suppress HMW-Aβo-induced mitochondria dysfunction, as demonstrated in decreasing MPT, Mn-SOD, and ATP generation, raising mitochondrial membrane potential, and increasing mitochondrial-ROS generation. These results suggest that myricetin preventing HMW-Aβo-induced neurotoxicity through multiple antioxidant functions may be developed as a disease-modifying agent against AD.Excessive accumulation of amyloid β-protein (Aβ) is one of the primary mechanisms that leads to neuronal death with phosphorylated tau in the pathogenesis of Alzheimer's disease (AD). Protofibrils, one of the high-molecular-weight Aβ oligomers (HMW-Aβo), are implicated to be important targets of disease modifying therapy of AD. We previously reported that phenolic compounds such as myricetin inhibit Aβ1-40, Aβ1-42, and α-synuclein aggregations, including their oligomerizations, which may exert protective effects against AD and Parkinson's disease. The purpose of this study was to clarify the detailed mechanism of the protective effect of myricetin against the neurotoxicity of HMW-Aβo in SH-SY5Y cells. To assess the effect of myricetin on HMW-Aβo-induced oxidative stress, we systematically examined the level of membrane oxidative damage by measuring cell membrane lipid peroxidation, membrane fluidity, and cell membrane potential, and the mitochondrial oxidative damage was evaluated by mitochondrial permeability transition (MPT), mitochondrial reactive oxygen species (ROS), and manganese-superoxide dismutase (Mn-SOD), and adenosine triphosphate (ATP) assay in SH-SY5Y cells. Myricetin has been found to increased cell viability by suppression of HMW-Aβo-induced membrane disruption in SH-SY5Y cells, as shown in reducing membrane phospholipid peroxidation and increasing membrane fluidity and membrane resistance. Myricetin has also been found to suppress HMW-Aβo-induced mitochondria dysfunction, as demonstrated in decreasing MPT, Mn-SOD, and ATP generation, raising mitochondrial membrane potential, and increasing mitochondrial-ROS generation. These results suggest that myricetin preventing HMW-Aβo-induced neurotoxicity through multiple antioxidant functions may be developed as a disease-modifying agent against AD. |
Author | Nishikawa, Toru Yasumoto, Taro Yamada, Masahito Ono, Kenjiro Inoue, Tomio Tsuji, Mayumi Mori, Yukiko Oguchi, Tatsunori Tsuji, Yuya Kimura, Atsushi Michael Umino, Masakazu Kiuchi, Yuji Umino, Asami Teplow, David B. Nakamura, Shiro |
Author_xml | – sequence: 1 givenname: Atsushi Michael surname: Kimura fullname: Kimura, Atsushi Michael organization: Department of Pharmacology, Division of Medical Pharmacology, School of Medicine, Showa University, Tokyo, 142-8555, Japan – sequence: 2 givenname: Mayumi surname: Tsuji fullname: Tsuji, Mayumi email: tsujim@med.showa-u.ac.jp organization: Pharmacological Research Center, Showa University, Tokyo, 142-8555, Japan – sequence: 3 givenname: Taro surname: Yasumoto fullname: Yasumoto, Taro organization: Department of Internal Medicine, Division of Neurology, School of Medicine, Showa University, Tokyo, 142-8666, Japan – sequence: 4 givenname: Yukiko surname: Mori fullname: Mori, Yukiko organization: Department of Internal Medicine, Division of Neurology, School of Medicine, Showa University, Tokyo, 142-8666, Japan – sequence: 5 givenname: Tatsunori surname: Oguchi fullname: Oguchi, Tatsunori organization: Department of Pharmacology, Division of Medical Pharmacology, School of Medicine, Showa University, Tokyo, 142-8555, Japan – sequence: 6 givenname: Yuya surname: Tsuji fullname: Tsuji, Yuya organization: Department of Pharmacology, Division of Medical Pharmacology, School of Medicine, Showa University, Tokyo, 142-8555, Japan – sequence: 7 givenname: Masakazu surname: Umino fullname: Umino, Masakazu organization: Department of Pharmacology, Division of Medical Pharmacology, School of Medicine, Showa University, Tokyo, 142-8555, Japan – sequence: 8 givenname: Asami surname: Umino fullname: Umino, Asami organization: Department of Pharmacology, Division of Medical Pharmacology, School of Medicine, Showa University, Tokyo, 142-8555, Japan – sequence: 9 givenname: Toru surname: Nishikawa fullname: Nishikawa, Toru organization: Department of Pharmacology, Division of Medical Pharmacology, School of Medicine, Showa University, Tokyo, 142-8555, Japan – sequence: 10 givenname: Shiro surname: Nakamura fullname: Nakamura, Shiro organization: Department of Oral Physiology, School of Dentistry, Showa University, Tokyo, 142-8555, Japan – sequence: 11 givenname: Tomio surname: Inoue fullname: Inoue, Tomio organization: Department of Oral Physiology, School of Dentistry, Showa University, Tokyo, 142-8555, Japan – sequence: 12 givenname: Yuji surname: Kiuchi fullname: Kiuchi, Yuji organization: Department of Pharmacology, Division of Medical Pharmacology, School of Medicine, Showa University, Tokyo, 142-8555, Japan – sequence: 13 givenname: Masahito surname: Yamada fullname: Yamada, Masahito organization: Department of Neurology and Neurobiology of Aging, Kanazawa University Graduate School of Medical Sciences, Kanazawa University, Kanazawa, 920-8640, Japan – sequence: 14 givenname: David B. orcidid: 0000-0002-2389-3417 surname: Teplow fullname: Teplow, David B. organization: Department of Neurology, David Geffen School of Medicine at UCLA, 635 Charles E. Young Drive South, Room 445, Los Angeles, CA, 90095, USA – sequence: 15 givenname: Kenjiro orcidid: 0000-0001-8454-6155 surname: Ono fullname: Ono, Kenjiro email: onoken@med.showa-u.ac.jp organization: Department of Internal Medicine, Division of Neurology, School of Medicine, Showa University, Tokyo, 142-8666, Japan |
BookMark | eNqNUUtuFDEUtFCQmATuYIkNm26e23Z_xGoUhYCUiA2sLbf9OuNRtz3Y7sBcIofhIJwJj4YNrLIq2aqq917VJbnwwSMhbxnUDFj7fl9PETFqO7qwoK0baFgNsgY2vCAb1ne8EnJoL8gG-oFVshfDK3KZ0h4AhOT9hjzdH6MzmJ2nh4iP6HOiO_ewo0uY0ayzjvQHlnem29-_WCUaGmb3UIbFynm7GrTU4xpDDj-dcflI8y6Gtei1z6782YIUpwlNMS5DDM4zXXAZo_aYCsvSxeVgdsHb6PRr8nLSc8I3f_GKfPt48_X6U3X35fbz9fauMqJnuWKjFgMT2AgYgU_cAmcDNtDJApwBStQwWC46i6NE2bWWtbzroBUGdN_yK_Lu7HuI4fuKKavFpdNuZauwJtVIzhrGmYRC3Z6pJoaUIk6q3KnLcT5H7WbFQJ26UHv1Txfq1IUCqUoXxePDfx6H6BYdj89U35zVWBJ5dBhVMg59yd7FkquywT3L5w84BLQk |
CitedBy_id | crossref_primary_10_1002_ptr_7908 crossref_primary_10_1007_s11033_023_08350_3 crossref_primary_10_1021_acschemneuro_3c00276 crossref_primary_10_1155_2023_6739691 crossref_primary_10_3390_molecules29215023 crossref_primary_10_1016_j_biopha_2024_116963 crossref_primary_10_26599_FSHW_2022_9250150 crossref_primary_10_1016_j_taap_2022_116246 crossref_primary_10_3390_ijms24043089 crossref_primary_10_53879_id_59_12_13345 crossref_primary_10_3390_pharmaceutics13091484 crossref_primary_10_1016_j_biopha_2023_115406 crossref_primary_10_1007_s11274_022_03442_x crossref_primary_10_1021_acs_bioconjchem_4c00073 crossref_primary_10_3390_nu14224731 crossref_primary_10_3390_antiox14010046 crossref_primary_10_1016_j_ejmcr_2024_100219 crossref_primary_10_1007_s11033_022_08238_8 crossref_primary_10_1002_med_21965 crossref_primary_10_1096_fj_202402622R crossref_primary_10_3390_ph16070913 crossref_primary_10_1007_s10787_023_01173_5 crossref_primary_10_1016_j_heliyon_2024_e40756 crossref_primary_10_3390_ijms23179685 crossref_primary_10_2174_0118715273273539231114095300 crossref_primary_10_1016_j_aca_2023_342173 crossref_primary_10_1248_bpbreports_4_6_206 crossref_primary_10_1016_j_arr_2023_101910 crossref_primary_10_2169_internalmedicine_4569_24 crossref_primary_10_1016_j_tifs_2024_104822 crossref_primary_10_3390_antiox11010132 crossref_primary_10_1021_acs_langmuir_3c01169 crossref_primary_10_1021_acs_jafc_1c04049 crossref_primary_10_1039_D4TB00923A crossref_primary_10_1021_acschemneuro_1c00591 crossref_primary_10_1080_10408398_2022_2155106 crossref_primary_10_3390_antiox10091479 |
Cites_doi | 10.1021/tx700210j 10.3174/ajnr.A5143 10.1089/ars.2009.2513 10.1074/jbc.M110.173856 10.2174/138161206778793010 10.1677/jme.1.01783 10.1371/journal.pone.0186636 10.1016/S0378-4347(98)00339-9 10.1523/JNEUROSCI.0364-08.2008 10.1016/j.neulet.2017.08.004 10.1096/fj.201900604R 10.1111/j.1471-4159.2006.03707.x 10.1016/j.mcn.2012.07.011 10.1074/jbc.M111.325456 10.1146/annurev.nutr.22.111401.144957 10.1002/jnr.20025 10.1016/j.biopha.2019.109506 10.1016/j.bbrc.2005.08.148 10.1021/bi500373k 10.3358/shokueishi.42.174 10.1016/j.neuint.2010.12.004 10.1111/jnc.13180 10.1016/j.neuint.2017.08.010 10.1016/j.jphs.2019.04.009 10.1021/acs.jafc.8b05447 10.3923/ajbs.2013.76.83 10.1016/j.jalz.2019.01.010 10.1155/2016/7432797 10.3233/JAD-2011-101629 10.1155/2017/8416763 10.1523/JNEUROSCI.19-20-08876.1999 10.3390/antiox9050430 10.1080/09168451.2016.1171697 10.1046/j.1471-4159.2003.01976.x 10.1074/jbc.272.35.22364 10.1039/C6FO00419A 10.1074/mcp.R115.053330 10.1021/acs.jafc.8b05404 10.1155/2012/145380 10.1089/ars.2011.3923 10.1016/j.jff.2016.01.038 10.1016/j.neuint.2008.12.002 10.1038/srep27738 10.1590/S0100-879X2003001200002 10.2353/ajpath.2009.090417 10.1007/s10571-007-9195-4 10.1016/0006-2952(88)90169-4 10.3390/nu8020090 10.1046/j.1471-4159.2002.00904.x 10.1016/j.ceca.2009.12.014 10.1073/pnas.1421182112 10.1007/s11101-018-9591-z 10.3390/ijms11114348 10.1186/s12906-020-03033-z 10.1016/S0014-5793(00)01587-8 10.1016/j.ab.2016.12.022 10.1016/j.jnutbio.2004.05.002 10.1016/j.etap.2009.08.007 10.1016/0006-2952(89)90442-5 10.15252/emmm.201606210 10.1016/j.foodchem.2015.12.026 10.1517/14740330903026944 10.1016/S0306-4522(97)00053-5 |
ContentType | Journal Article |
Copyright | 2021 Elsevier Inc. Copyright © 2021 Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2021 Elsevier Inc. – notice: Copyright © 2021 Elsevier Inc. All rights reserved. |
DBID | AAYXX CITATION 7X8 |
DOI | 10.1016/j.freeradbiomed.2021.05.019 |
DatabaseName | CrossRef MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Biology |
EISSN | 1873-4596 |
EndPage | 244 |
ExternalDocumentID | 10_1016_j_freeradbiomed_2021_05_019 S0891584921003075 |
GroupedDBID | --- --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JM AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABBQC ABFNM ABFRF ABGSF ABJNI ABLJU ABLVK ABMAC ABMZM ABUDA ABYKQ ACDAQ ACGFO ACGFS ACIUM ACRLP ADBBV ADEZE ADUVX AEBSH AEFWE AEHWI AEKER AENEX AFKWA AFTJW AFXIZ AGUBO AGYEJ AIEXJ AIKHN AITUG AJOXV AJRQY ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ANZVX AXJTR BKOJK BLXMC BNPGV C45 CS3 DOVZS DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KOM LCYCR LX3 LZ2 M29 M41 MO0 N9A O-L O9- OAUVE OVD OZT P-8 P-9 P2P PC. Q38 ROL RPZ SAE SCC SDF SDG SDP SES SPCBC SSH SSU SSZ T5K TEORI ~G- .GJ .HR 29H 53G AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACIEU ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGHFR AGQPQ AGRDE AGRNS AHHHB AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EJD FEDTE FGOYB G-2 HEA HLW HMK HMO HVGLF HX~ HZ~ R2- RIG SBG SEW WUQ XPP ZGI 7X8 EFKBS |
ID | FETCH-LOGICAL-c481t-1ba4914e240b03f3d0319e207519e310e5ea09d347deb5e576d16377064c0a863 |
IEDL.DBID | .~1 |
ISSN | 0891-5849 1873-4596 |
IngestDate | Mon Jul 21 10:54:52 EDT 2025 Thu Apr 24 23:12:27 EDT 2025 Tue Jul 01 01:11:32 EDT 2025 Fri Feb 23 02:39:38 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | amyloid β-protein Oxidative stress Neurotoxicity Myricetin Alzheimer's disease HMW-Aβ oligomers |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c481t-1ba4914e240b03f3d0319e207519e310e5ea09d347deb5e576d16377064c0a863 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-2389-3417 0000-0001-8454-6155 |
PQID | 2531213150 |
PQPubID | 23479 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_2531213150 crossref_citationtrail_10_1016_j_freeradbiomed_2021_05_019 crossref_primary_10_1016_j_freeradbiomed_2021_05_019 elsevier_sciencedirect_doi_10_1016_j_freeradbiomed_2021_05_019 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-08-01 |
PublicationDateYYYYMMDD | 2021-08-01 |
PublicationDate_xml | – month: 08 year: 2021 text: 2021-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Free radical biology & medicine |
PublicationYear | 2021 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Brieger, Schiavone, Miller, Krause (bib47) 2012; 142 Yamamoto, Hagino, Kotaki, Iga (bib40) 1998; 720 Yang, Sheng, Sun, Lee (bib54) 2011; 58 Supnet, Bezprozvanny (bib60) 2010; 47 Pool, Quintanar, Figueroa, Marinho Mano, Bechara, Godínez, Mendoza (bib69) 2012; 2012 Robak, Gryglewski (bib24) 1988; 37 Nakagawa, Deli, Kawaguchi, Shimizudani, Shimono, Kittel, Tanaka, Niwa (bib37) 2009; 54 Sadžak, Mravljak, Maltar-Strmečki, Arsov, Baranović, Erceg, Kriechbaum, Strasser, Přibyl, Šegota (bib58) 2020; 9 Ohnishi, Yanazawa, Sasahara, Kitamura, Hiroaki, Fukazawa, Kii, Nishiyama, Kakita, Takeda, Takeuchi, Arai, Ito, Komura, Hirao, Satomura, Inoue, Muramatsu, Matsui, Tada, Sato, Saijo, Shigemitsu, Sakai, Umetsu, Goda, Takino, Takahashi, Hagiwara, Sawasaki, Iwasaki, Nakamura, Nabeshima, Teplow, Hoshi (bib64) 2015; 112 Ossola, Kääriäinen, Männistö (bib56) 2009; 8 Weinreb, Mandel, Amit, Youdim (bib7) 2004; 15 Ross, Kasum (bib9) 2002; 22 Gan, Liu, Jiang, Cao, Dong (bib41) 2007; 26 Dragicevic, Smith, Lin, Yuan, Copes, Delic, Tan, Cao, Shytle, Bradshaw (bib49) 2011; 26 Ono, Hasegawa, Naiki, Yamada (bib32) 2004; 75 Meng, Xin, Li, Li, Sun, Yan, Li, Shi, Cao, Meng (bib50) 2018; 66 Laughton, Halliwell, Evans, Robin, Hoult (bib53) 1989; 38 Schon, Area-Gomez (bib66) 2013; 55 Barzegar (bib11) 2016; 5 Wu, Yue, Peng, Zhang, Xiang, Cao, Ding, Yin (bib21) 2016; 7 Maggiolini, Recchia, Bonofiglio, Catalano, Vivacqua, Carpino, Rago, Rossi, Andò (bib10) 2005; 35 Semwal, Semwal, Combrinck, Viljoen (bib26) 2016; 8 Yasumoto, Takamura, Tsuji, Watanabe‐Nakayama, Imamura, Inoue, Nakamura, Inoue, Kimura, Yano, Nishijo, Kiuchi, Teplow, Ono (bib8) 2019; 33 Pizzino, Irrera, Cucinotta, Pallio, Mannino, Arcoraci, Squadrito, Altavilla, Bitto (bib45) 2017; 2017 Sayre, Perry, Smith (bib55) 2008; 21 Khaleq (bib20) 2020; 14 Sarsour, Kumar, Chaudhuri, Kalen, Goswami (bib46) 2009; 11 Ono, Hirohata, Yamada (bib33) 2005; 336 Wang, Ho, Zhao, Ono, Rosensweig, Chen, Humala, Teplow, Pasinetti (bib43) 2008; 28 Wang, Ah Kang, Zhang, Piao, Jo, Kim, Kang, Lee, Park, Hyun (bib23) 2010; 29 Selkoe, Hardy (bib3) 2016; 8 Ma, Cao, Wang, Lu, Wang, Tu, Dai, Meng, Li, Yu, Man, Diao (bib15) 2019; 67 Kang, Wang, Zhang, Piao, Kim, Kang, Kim, Lee, Park, Hyun (bib25) 2010; 11 Dajas, Rivera-Megret, Blasina, Arredondo, Abin-Carriquiry, Costa, Echeverry, Lafon, Heizen, Ferreira, Morquio (bib19) 2003; 36 Krishtal, Bragina, Metsla, Palumaa, Tõugu (bib35) 2017; 12 Taheri, Suleria, Martins, Sytar, Beyatli, Yeskaliyeva, Seitimova, Salehi, Semwal, Painuli, Kumar, Azzini, Martorell, Setzer, Maroyi, Sharifi-Rad (bib12) 2020; 20 Nakagawa, Deli, Nakao, Honda, Hayashi, Nakaoke, Kataoka, Niwa (bib38) 2007; 27 Ono, Naiki, Yamada (bib34) 2006; 12 Arumugam, Palanisamy, Chua, Kuppusamy (bib17) 2016; 22 Takahashi, Ono, Takamura, Mizuguchi, Ikeda, Nishijo, Yamada (bib27) 2015; 134 Mata (bib61) 2018; 663 Cho, Yin, Park, Byun, Ha, Jang (bib16) 2016; 80 Lehner, Gehwolf, Tempfer, Krizbai, Hennig, Bauer, Bauer (bib70) 2011; 15 Górniak, Bartoszewski, Króliczewski (bib13) 2019; 18 Zhang, Hu, Guo, Shi, He, Zhang, Yu, Zhao (bib22) 2019; 140 Ono, Yamada (bib28) 2006; 97 Ono (bib4) 2018; 119 Hamaguchi, Ono, Murase, Yamada (bib44) 2009; 175 Di Scala, Chahinian, Yahi, Garmy, Fantini (bib59) 2014; 53 Hartley, Walsh, Ye, Diehl, Vasquez, Vassilev, Teplow, Selkoe (bib6) 1999; 19 Ladiwala, Dordick, Tessier (bib42) 2011; 286 Chiang, Mao, Kang, Chang, Pandya, Vallabhajosula, Isaacson, Ravdin, Shungu (bib68) 2017; 38 Moya-Alvarado, Gershoni-Emek, Perlson, Bronfman (bib2) 2016; 15 Rae, Williams (bib67) 2017; 529 DiChiara, DiNunno, Clark, Bu, Cline, Rollins, Gong, Brody, Sligar, Velasco, Viola, Klein (bib63) 2017; 90 Jiang, Zhu, Wang, Yu (bib14) 2019; 120 Saito, Sugisawa, Umegaki (bib39) 2001; 42 Association (bib1) 2019; 15 Ono, Li, Takamura, Yoshiike, Zhu, Han, Mao, Ikeda, Takasaki, Nishijo, Takashima, Teplow, Zagorski, Yamada (bib30) 2012; 287 Mokrani, Krisa, Cluzet, Da Costa, Temsamani, Renouf, Mérillon, Madani, Mesnil, Monvoisin, Richard (bib51) 2016; 202 Mahmoud (bib57) 2013; 6 Walsh, Lomakin, Benedek, Condron, Teplow (bib5) 1997; 272 Petrushanko, Mitkevich, Anashkina, Adzhubei, Burnysheva, Lakunina, Kamanina, Dergousova, Lopina, Ogunshola, Bogdanova, Makarov (bib65) 2016; 6 Ono, Yoshiike, Takashima, Hasegawa, Naiki, Yamada (bib29) 2003; 87 Wu, Derrico, Hatem, Colvin (bib62) 1997; 80 Okimoto, Watanabe, Niki, Yamashita, Noguchi (bib36) 2000; 474 Hussain, Tan, Yin, Blachier, Tossou, Rahu (bib48) 2016; 2016 Ahn, Choe, Kwon (bib18) 2003; 12 Ono, Hasegawa, Yoshiike, Takashima, Yamada, Naiki (bib31) 2002; 81 Zhang, Ma, Rowlands, Gou, Fok, Wong, Yu, Tsang, Mu, Chen, Yung, Chung, Zhang, Zhao, Chan (bib52) 2012 Wu (10.1016/j.freeradbiomed.2021.05.019_bib21) 2016; 7 Ono (10.1016/j.freeradbiomed.2021.05.019_bib32) 2004; 75 Wang (10.1016/j.freeradbiomed.2021.05.019_bib23) 2010; 29 Di Scala (10.1016/j.freeradbiomed.2021.05.019_bib59) 2014; 53 Ma (10.1016/j.freeradbiomed.2021.05.019_bib15) 2019; 67 Wang (10.1016/j.freeradbiomed.2021.05.019_bib43) 2008; 28 Ono (10.1016/j.freeradbiomed.2021.05.019_bib29) 2003; 87 Hartley (10.1016/j.freeradbiomed.2021.05.019_bib6) 1999; 19 Górniak (10.1016/j.freeradbiomed.2021.05.019_bib13) 2019; 18 Ladiwala (10.1016/j.freeradbiomed.2021.05.019_bib42) 2011; 286 Taheri (10.1016/j.freeradbiomed.2021.05.019_bib12) 2020; 20 Kang (10.1016/j.freeradbiomed.2021.05.019_bib25) 2010; 11 Pool (10.1016/j.freeradbiomed.2021.05.019_bib69) 2012; 2012 Yang (10.1016/j.freeradbiomed.2021.05.019_bib54) 2011; 58 Robak (10.1016/j.freeradbiomed.2021.05.019_bib24) 1988; 37 Khaleq (10.1016/j.freeradbiomed.2021.05.019_bib20) 2020; 14 Sadžak (10.1016/j.freeradbiomed.2021.05.019_bib58) 2020; 9 DiChiara (10.1016/j.freeradbiomed.2021.05.019_bib63) 2017; 90 Hamaguchi (10.1016/j.freeradbiomed.2021.05.019_bib44) 2009; 175 Mata (10.1016/j.freeradbiomed.2021.05.019_bib61) 2018; 663 Zhang (10.1016/j.freeradbiomed.2021.05.019_bib52) 2012 Dajas (10.1016/j.freeradbiomed.2021.05.019_bib19) 2003; 36 Dragicevic (10.1016/j.freeradbiomed.2021.05.019_bib49) 2011; 26 Maggiolini (10.1016/j.freeradbiomed.2021.05.019_bib10) 2005; 35 Rae (10.1016/j.freeradbiomed.2021.05.019_bib67) 2017; 529 Meng (10.1016/j.freeradbiomed.2021.05.019_bib50) 2018; 66 Barzegar (10.1016/j.freeradbiomed.2021.05.019_bib11) 2016; 5 Krishtal (10.1016/j.freeradbiomed.2021.05.019_bib35) 2017; 12 Ono (10.1016/j.freeradbiomed.2021.05.019_bib33) 2005; 336 Petrushanko (10.1016/j.freeradbiomed.2021.05.019_bib65) 2016; 6 Chiang (10.1016/j.freeradbiomed.2021.05.019_bib68) 2017; 38 Arumugam (10.1016/j.freeradbiomed.2021.05.019_bib17) 2016; 22 Ahn (10.1016/j.freeradbiomed.2021.05.019_bib18) 2003; 12 Takahashi (10.1016/j.freeradbiomed.2021.05.019_bib27) 2015; 134 Ross (10.1016/j.freeradbiomed.2021.05.019_bib9) 2002; 22 Hussain (10.1016/j.freeradbiomed.2021.05.019_bib48) 2016; 2016 Ossola (10.1016/j.freeradbiomed.2021.05.019_bib56) 2009; 8 Weinreb (10.1016/j.freeradbiomed.2021.05.019_bib7) 2004; 15 Saito (10.1016/j.freeradbiomed.2021.05.019_bib39) 2001; 42 Jiang (10.1016/j.freeradbiomed.2021.05.019_bib14) 2019; 120 Sarsour (10.1016/j.freeradbiomed.2021.05.019_bib46) 2009; 11 Zhang (10.1016/j.freeradbiomed.2021.05.019_bib22) 2019; 140 Cho (10.1016/j.freeradbiomed.2021.05.019_bib16) 2016; 80 Gan (10.1016/j.freeradbiomed.2021.05.019_bib41) 2007; 26 Nakagawa (10.1016/j.freeradbiomed.2021.05.019_bib37) 2009; 54 Lehner (10.1016/j.freeradbiomed.2021.05.019_bib70) 2011; 15 Ono (10.1016/j.freeradbiomed.2021.05.019_bib30) 2012; 287 Laughton (10.1016/j.freeradbiomed.2021.05.019_bib53) 1989; 38 Sayre (10.1016/j.freeradbiomed.2021.05.019_bib55) 2008; 21 Mahmoud (10.1016/j.freeradbiomed.2021.05.019_bib57) 2013; 6 Wu (10.1016/j.freeradbiomed.2021.05.019_bib62) 1997; 80 Walsh (10.1016/j.freeradbiomed.2021.05.019_bib5) 1997; 272 Brieger (10.1016/j.freeradbiomed.2021.05.019_bib47) 2012; 142 Ono (10.1016/j.freeradbiomed.2021.05.019_bib28) 2006; 97 Ono (10.1016/j.freeradbiomed.2021.05.019_bib34) 2006; 12 Yamamoto (10.1016/j.freeradbiomed.2021.05.019_bib40) 1998; 720 Supnet (10.1016/j.freeradbiomed.2021.05.019_bib60) 2010; 47 Ono (10.1016/j.freeradbiomed.2021.05.019_bib4) 2018; 119 Yasumoto (10.1016/j.freeradbiomed.2021.05.019_bib8) 2019; 33 Okimoto (10.1016/j.freeradbiomed.2021.05.019_bib36) 2000; 474 Nakagawa (10.1016/j.freeradbiomed.2021.05.019_bib38) 2007; 27 Ono (10.1016/j.freeradbiomed.2021.05.019_bib31) 2002; 81 Schon (10.1016/j.freeradbiomed.2021.05.019_bib66) 2013; 55 Moya-Alvarado (10.1016/j.freeradbiomed.2021.05.019_bib2) 2016; 15 Selkoe (10.1016/j.freeradbiomed.2021.05.019_bib3) 2016; 8 Association (10.1016/j.freeradbiomed.2021.05.019_bib1) 2019; 15 Mokrani (10.1016/j.freeradbiomed.2021.05.019_bib51) 2016; 202 Pizzino (10.1016/j.freeradbiomed.2021.05.019_bib45) 2017; 2017 Ohnishi (10.1016/j.freeradbiomed.2021.05.019_bib64) 2015; 112 Semwal (10.1016/j.freeradbiomed.2021.05.019_bib26) 2016; 8 |
References_xml | – volume: 42 start-page: 174 year: 2001 end-page: 178 ident: bib39 article-title: Comparison of photometric, electrochemical and post-column fluorescence detection for the determination of flavonoids by HPLC publication-title: Shokuhin Eiseigaku Zasshi – volume: 272 start-page: 22364 year: 1997 end-page: 22372 ident: bib5 article-title: Amyloid β-protein fibrillogenesis publication-title: J. Biol. Chem. – volume: 22 start-page: 325 year: 2016 end-page: 336 ident: bib17 article-title: Potential antihyperglycaemic effect of myricetin derivatives from Syzygium malaccense publication-title: J. Funct. Foods – volume: 28 start-page: 6388 year: 2008 end-page: 6392 ident: bib43 article-title: Grape-derived polyphenolics prevent A oligomerization and attenuate cognitive deterioration in a mouse model of Alzheimer's disease publication-title: J. Neurosci. – volume: 80 start-page: 675 year: 1997 end-page: 684 ident: bib62 article-title: Alzheimer's amyloid-beta peptide inhibits sodium/calcium exchange measured in rat and human brain plasma membrane vesicles publication-title: Neuroscience – volume: 112 start-page: E4465 year: 2015 end-page: E4474 ident: bib64 article-title: Na, K-ATPase α3 is a death target of Alzheimer patient amyloid-β assembly publication-title: Proc. Natl. Acad. Sci. Unit. States Am. – volume: 97 start-page: 105 year: 2006 end-page: 115 ident: bib28 article-title: Antioxidant compounds have potent anti-fibrillogenic and fibril-destabilizing effects for alpha-synuclein fibrils in vitro publication-title: J. Neurochem. – volume: 66 start-page: 12967 year: 2018 end-page: 12977 ident: bib50 article-title: Anthocyanins extracted from aronia melanocarpa protect SH-SY5Y cells against amyloid-beta (1-42)-induced apoptosis by regulating Ca(2+) homeostasis and inhibiting mitochondrial dysfunction publication-title: J. Agric. Food Chem. – volume: 36 start-page: 1613 year: 2003 end-page: 1620 ident: bib19 article-title: Neuroprotection by flavonoids publication-title: Braz. J. Med. Biol. Res. – volume: 202 start-page: 212 year: 2016 end-page: 220 ident: bib51 article-title: Phenolic contents and bioactive potential of peach fruit extracts publication-title: Food Chem. – volume: 8 start-page: 397 year: 2009 end-page: 409 ident: bib56 article-title: The multiple faces of quercetin in neuroprotection publication-title: Expet Opin. Drug Saf. – volume: 5 start-page: 87 year: 2016 end-page: 95 ident: bib11 article-title: Antioxidant activity of polyphenolic myricetin in vitro cell- free and cell-based systems publication-title: Mol. Biol. Res. Commun. – volume: 20 year: 2020 ident: bib12 article-title: Myricetin bioactive effects: moving from preclinical evidence to potential clinical applications publication-title: BMC Complement. Med. Ther. – volume: 26 start-page: 624 year: 2007 end-page: 626 ident: bib41 article-title: Effects of five flavonols on [Ca2+] i in cardiomyocytes of rats publication-title: Chin. J. Epidemiol. – volume: 474 start-page: 137 year: 2000 end-page: 140 ident: bib36 article-title: A novel fluorescent probe diphenyl-1-pyrenylphosphine to follow lipid peroxidation in cell membranes publication-title: FEBS Lett. – volume: 720 start-page: 251 year: 1998 end-page: 255 ident: bib40 article-title: Quantitative determination of domperidone in rat plasma by high-performance liquid chromatography with fluorescence detection publication-title: J. Chromatogr. B Biomed. Sci. Appl. – volume: 663 start-page: 55 year: 2018 end-page: 59 ident: bib61 article-title: Functional interplay between plasma membrane Ca2+-ATPase, amyloid β-peptide and tau publication-title: Neurosci. Lett. – volume: 81 start-page: 434 year: 2002 end-page: 440 ident: bib31 article-title: Nordihydroguaiaretic acid potently breaks down pre-formed Alzheimer's β-amyloid fibrils in vitro publication-title: J. Neurochem. – volume: 33 start-page: 9220 year: 2019 end-page: 9234 ident: bib8 article-title: High molecular weight amyloid β1‐42 oligomers induce neurotoxicity via plasma membrane damage publication-title: Faseb. J. – volume: 336 start-page: 444 year: 2005 end-page: 449 ident: bib33 article-title: Ferulic acid destabilizes preformed β-amyloid fibrils in vitro publication-title: Biochem. Biophys. Res. Commun. – volume: 8 start-page: 595 year: 2016 end-page: 608 ident: bib3 article-title: The amyloid hypothesis of Alzheimer's disease at 25 years publication-title: EMBO Mol. Med. – volume: 11 start-page: 4348 year: 2010 end-page: 4360 ident: bib25 article-title: Myricetin protects cells against oxidative stress-induced apoptosis via regulation of PI3K/Akt and MAPK signaling pathways publication-title: Int. J. Mol. Sci. – volume: 6 start-page: 27738 year: 2016 ident: bib65 article-title: Direct interaction of beta-amyloid with Na,K-ATPase as a putative regulator of the enzyme function publication-title: Sci. Rep. – volume: 134 start-page: 943 year: 2015 end-page: 955 ident: bib27 article-title: Phenolic compounds prevent the oligomerization of α-synuclein and reduce synaptic toxicity publication-title: J. Neurochem. – volume: 12 start-page: 231 year: 2003 end-page: 236 ident: bib18 article-title: The gene expression profile of human umbilical vein endothelial cells stimulated with lipopolysaccharide using cDNA microarray analysis publication-title: Int. J. Mol. Med. – volume: 47 start-page: 183 year: 2010 end-page: 189 ident: bib60 article-title: The dysregulation of intracellular calcium in Alzheimer disease publication-title: Cell Calcium – volume: 15 start-page: 321 year: 2019 end-page: 387 ident: bib1 article-title: Alzheimer's disease facts and figures publication-title: Alzheimers. Dement. – volume: 6 start-page: 76 year: 2013 end-page: 83 ident: bib57 article-title: Protective effect of myricetin on proteins and lipids of erythrocytes membranes publication-title: Asian J. Bio. Sci. – volume: 22 start-page: 19 year: 2002 end-page: 34 ident: bib9 article-title: Dietary flavonoids: bioavailability, metabolic effects, and safety publication-title: Annu. Rev. Nutr. – volume: 87 start-page: 172 year: 2003 end-page: 181 ident: bib29 article-title: Potent anti-amyloidogenic and fibril-destabilizing effects of polyphenols in vitro: implications for the prevention and therapeutics of Alzheimer's disease publication-title: J. Neurochem. – volume: 286 start-page: 3209 year: 2011 end-page: 3218 ident: bib42 article-title: Aromatic small molecules remodel toxic soluble oligomers of amyloid β through three independent pathways publication-title: J. Biol. Chem. – volume: 12 start-page: 4357 year: 2006 end-page: 4375 ident: bib34 article-title: The development of preventives and therapeutics for Alzheimer's disease that inhibit the formation of beta-amyloid fibrils (fAbeta), as well as destabilize preformed fAbeta publication-title: Curr. Pharmaceut. Des. – volume: 11 start-page: 2985 year: 2009 end-page: 3011 ident: bib46 article-title: Redox control of the cell cycle in health and disease publication-title: Antioxidants Redox Signal. – volume: 175 start-page: 2557 year: 2009 end-page: 2565 ident: bib44 article-title: Phenolic compounds prevent Alzheimer's pathology through different effects on the amyloid-β aggregation pathway publication-title: Am. J. Pathol. – volume: 18 start-page: 241 year: 2019 end-page: 272 ident: bib13 article-title: Comprehensive review of antimicrobial activities of plant flavonoids publication-title: Phytochemistry Rev. – volume: 140 start-page: 62 year: 2019 end-page: 72 ident: bib22 article-title: Myricetin ameliorated ischemia/reperfusion-induced brain endothelial permeability by improvement of eNOS uncoupling and activation eNOS/NO publication-title: J. Pharmacol. Sci. – start-page: 1 year: 2012 end-page: 10 ident: bib52 article-title: Flavonoid myricetin ModulatesGABAAReceptor activity through activation ofCa2+Channels and CaMK-II pathway, evid. Based complement publication-title: Alternat. Med. – volume: 529 start-page: 127 year: 2017 end-page: 143 ident: bib67 article-title: Glutathione in the human brain: review of its roles and measurement by magnetic resonance spectroscopy publication-title: Anal. Biochem. – volume: 37 start-page: 837 year: 1988 end-page: 841 ident: bib24 article-title: Flavonoids are scavengers of superoxide anions publication-title: Biochem. Pharmacol. – volume: 142 start-page: w13659 year: 2012 ident: bib47 article-title: Reactive oxygen species: from health to disease publication-title: Swiss Med. Wkly. – volume: 19 start-page: 8876 year: 1999 end-page: 8884 ident: bib6 article-title: Protofibrillar intermediates of amyloid β-protein induce acute electrophysiological changes and progressive neurotoxicity in cortical neurons publication-title: J. Neurosci. – volume: 21 start-page: 172 year: 2008 end-page: 188 ident: bib55 article-title: Oxidative stress and neurotoxicity publication-title: Chem. Res. Toxicol. – volume: 15 start-page: 409 year: 2016 end-page: 425 ident: bib2 article-title: Neurodegeneration and Alzheimer's disease (AD). What can proteomics tell us about the Alzheimer's brain? publication-title: Mol. Cell. Proteomics – volume: 80 start-page: 1520 year: 2016 end-page: 1530 ident: bib16 article-title: Anti-inflammatory activity of myricetin from Diospyros lotus through suppression of NF-κB and STAT1 activation and Nrf2-mediated HO-1 induction in lipopolysaccharide-stimulated RAW264.7 macrophages publication-title: Biosci. Biotechnol. Biochem. – volume: 14 year: 2020 ident: bib20 article-title: Myricetin ameliorates brain damage induces by cerebral ischemia-reperfusion injury in rats publication-title: Asian J. Pharm. – volume: 58 start-page: 321 year: 2011 end-page: 329 ident: bib54 article-title: Effects of fatty acid unsaturation numbers on membrane fluidity and α-secretase-dependent amyloid precursor protein processing publication-title: Neurochem. Int. – volume: 38 start-page: 2859 year: 1989 end-page: 2865 ident: bib53 article-title: Antioxidant and pro-oxidant actions of the plant phenolics quercetin, gossypol and myricetin: effects on lipid peroxidation, hydroxyl radical generation and bleomycin-dependent damage to DNA publication-title: Biochem. Pharmacol. – volume: 53 start-page: 4489 year: 2014 end-page: 4502 ident: bib59 article-title: Interaction of Alzheimer's β-amyloid peptides with cholesterol: mechanistic insights into amyloid pore formation publication-title: Biochemistry – volume: 55 start-page: 26 year: 2013 end-page: 36 ident: bib66 article-title: Mitochondria-associated ER membranes in Alzheimer disease publication-title: Mol. Cell. Neurosci. – volume: 67 start-page: 1656 year: 2019 end-page: 1665 ident: bib15 article-title: Discovery of myricetin as a potent inhibitor of human flap endonuclease 1, which potentially can Be used as sensitizing agent against HT-29 human colon cancer cells publication-title: J. Agric. Food Chem. – volume: 15 start-page: 1305 year: 2011 end-page: 1323 ident: bib70 article-title: Oxidative stress and blood–brain barrier dysfunction under particular consideration of matrix metalloproteinases publication-title: Antioxidants Redox Signal. – volume: 2016 start-page: 7432797 year: 2016 ident: bib48 article-title: Oxidative stress and inflammation: what polyphenols can do for us? publication-title: Oxid. Med. Cell. Longev. – volume: 15 start-page: 506 year: 2004 end-page: 516 ident: bib7 article-title: Neurological mechanisms of green tea polyphenols in Alzheimer's and Parkinson's diseases publication-title: J. Nutr. Biochem. – volume: 119 start-page: 57 year: 2018 end-page: 70 ident: bib4 article-title: Alzheimer's disease as oligomeropathy publication-title: Neurochem. Int. – volume: 12 year: 2017 ident: bib35 article-title: In situ fibrillizing amyloid-beta 1-42 induces neurite degeneration and apoptosis of differentiated SH-SY5Y cells publication-title: PloS One – volume: 2017 start-page: 8416763 year: 2017 ident: bib45 article-title: Oxidative stress: harms and benefits for human health publication-title: Oxid. Med. Cell. Longev. – volume: 29 start-page: 12 year: 2010 end-page: 18 ident: bib23 article-title: Myricetin suppresses oxidative stress-induced cell damage via both direct and indirect antioxidant action publication-title: Environ. Toxicol. Pharmacol. – volume: 38 start-page: 1130 year: 2017 end-page: 1137 ident: bib68 article-title: Relationships among cortical glutathione levels, brain amyloidosis, and memory in healthy older adults investigated in vivo with1H-MRS and pittsburgh compound-B PET publication-title: Am. J. Neuroradiol. – volume: 2012 start-page: 1 year: 2012 end-page: 12 ident: bib69 article-title: Antioxidant effects of quercetin and catechin encapsulated into PLGA nanoparticles publication-title: J. Nanomater. – volume: 8 start-page: 90 year: 2016 ident: bib26 article-title: Myricetin: a dietary molecule with diverse biological activities publication-title: Nutrients – volume: 9 start-page: 430 year: 2020 ident: bib58 article-title: The structural integrity of the model lipid membrane during induced lipid peroxidation: the role of flavonols in the inhibition of lipid peroxidation publication-title: Antioxidants – volume: 120 start-page: 109506 year: 2019 ident: bib14 article-title: Anti-tumor effects and associated molecular mechanisms of myricetin publication-title: Biomed. Pharmacother. – volume: 54 start-page: 253 year: 2009 end-page: 263 ident: bib37 article-title: A new blood–brain barrier model using primary rat brain endothelial cells, pericytes and astrocytes publication-title: Neurochem. Int. – volume: 90 start-page: 45 year: 2017 end-page: 61 ident: bib63 article-title: Alzheimer's toxic amyloid beta oligomers: unwelcome visitors to the Na/K ATPase alpha3 docking station publication-title: Yale J. Biol. Med. – volume: 35 start-page: 269 year: 2005 end-page: 281 ident: bib10 article-title: The red wine phenolics piceatannol and myricetin act as agonists for estrogen receptor α in human breast cancer cells publication-title: J. Mol. Endocrinol. – volume: 27 start-page: 687 year: 2007 end-page: 694 ident: bib38 article-title: Pericytes from brain microvessels strengthen the barrier integrity in primary cultures of rat brain endothelial cells, Cell publication-title: Mol. Neurobiol. – volume: 7 start-page: 2624 year: 2016 end-page: 2634 ident: bib21 article-title: Myricetin ameliorates brain injury and neurological deficits via Nrf2 activation after experimental stroke in middle-aged rats publication-title: Food Funct – volume: 75 start-page: 742 year: 2004 end-page: 750 ident: bib32 article-title: Curcumin has potent anti-amyloidogenic effects for Alzheimer's beta-amyloid fibrils in vitro publication-title: J. Neurosci. Res. – volume: 287 start-page: 14631 year: 2012 end-page: 14643 ident: bib30 article-title: Phenolic compounds prevent amyloid β-protein oligomerization and synaptic dysfunction by site-specific binding publication-title: J. Biol. Chem. – volume: 26 start-page: 507 year: 2011 end-page: 521 ident: bib49 article-title: Green tea epigallocatechin-3-gallate (EGCG) and other flavonoids reduce Alzheimer's amyloid-induced mitochondrial dysfunction publication-title: J. Alzheimers Dis. – volume: 21 start-page: 172 issue: 1 year: 2008 ident: 10.1016/j.freeradbiomed.2021.05.019_bib55 article-title: Oxidative stress and neurotoxicity publication-title: Chem. Res. Toxicol. doi: 10.1021/tx700210j – start-page: 1 year: 2012 ident: 10.1016/j.freeradbiomed.2021.05.019_bib52 article-title: Flavonoid myricetin ModulatesGABAAReceptor activity through activation ofCa2+Channels and CaMK-II pathway, evid. Based complement publication-title: Alternat. Med. – volume: 38 start-page: 1130 issue: 6 year: 2017 ident: 10.1016/j.freeradbiomed.2021.05.019_bib68 article-title: Relationships among cortical glutathione levels, brain amyloidosis, and memory in healthy older adults investigated in vivo with1H-MRS and pittsburgh compound-B PET publication-title: Am. J. Neuroradiol. doi: 10.3174/ajnr.A5143 – volume: 11 start-page: 2985 issue: 12 year: 2009 ident: 10.1016/j.freeradbiomed.2021.05.019_bib46 article-title: Redox control of the cell cycle in health and disease publication-title: Antioxidants Redox Signal. doi: 10.1089/ars.2009.2513 – volume: 286 start-page: 3209 issue: 5 year: 2011 ident: 10.1016/j.freeradbiomed.2021.05.019_bib42 article-title: Aromatic small molecules remodel toxic soluble oligomers of amyloid β through three independent pathways publication-title: J. Biol. Chem. doi: 10.1074/jbc.M110.173856 – volume: 12 start-page: 4357 issue: 33 year: 2006 ident: 10.1016/j.freeradbiomed.2021.05.019_bib34 article-title: The development of preventives and therapeutics for Alzheimer's disease that inhibit the formation of beta-amyloid fibrils (fAbeta), as well as destabilize preformed fAbeta publication-title: Curr. Pharmaceut. Des. doi: 10.2174/138161206778793010 – volume: 12 start-page: 231 issue: 2 year: 2003 ident: 10.1016/j.freeradbiomed.2021.05.019_bib18 article-title: The gene expression profile of human umbilical vein endothelial cells stimulated with lipopolysaccharide using cDNA microarray analysis publication-title: Int. J. Mol. Med. – volume: 35 start-page: 269 issue: 2 year: 2005 ident: 10.1016/j.freeradbiomed.2021.05.019_bib10 article-title: The red wine phenolics piceatannol and myricetin act as agonists for estrogen receptor α in human breast cancer cells publication-title: J. Mol. Endocrinol. doi: 10.1677/jme.1.01783 – volume: 12 issue: 10 year: 2017 ident: 10.1016/j.freeradbiomed.2021.05.019_bib35 article-title: In situ fibrillizing amyloid-beta 1-42 induces neurite degeneration and apoptosis of differentiated SH-SY5Y cells publication-title: PloS One doi: 10.1371/journal.pone.0186636 – volume: 720 start-page: 251 issue: 1–2 year: 1998 ident: 10.1016/j.freeradbiomed.2021.05.019_bib40 article-title: Quantitative determination of domperidone in rat plasma by high-performance liquid chromatography with fluorescence detection publication-title: J. Chromatogr. B Biomed. Sci. Appl. doi: 10.1016/S0378-4347(98)00339-9 – volume: 28 start-page: 6388 issue: 25 year: 2008 ident: 10.1016/j.freeradbiomed.2021.05.019_bib43 article-title: Grape-derived polyphenolics prevent A oligomerization and attenuate cognitive deterioration in a mouse model of Alzheimer's disease publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.0364-08.2008 – volume: 663 start-page: 55 year: 2018 ident: 10.1016/j.freeradbiomed.2021.05.019_bib61 article-title: Functional interplay between plasma membrane Ca2+-ATPase, amyloid β-peptide and tau publication-title: Neurosci. Lett. doi: 10.1016/j.neulet.2017.08.004 – volume: 33 start-page: 9220 issue: 8 year: 2019 ident: 10.1016/j.freeradbiomed.2021.05.019_bib8 article-title: High molecular weight amyloid β1‐42 oligomers induce neurotoxicity via plasma membrane damage publication-title: Faseb. J. doi: 10.1096/fj.201900604R – volume: 97 start-page: 105 issue: 1 year: 2006 ident: 10.1016/j.freeradbiomed.2021.05.019_bib28 article-title: Antioxidant compounds have potent anti-fibrillogenic and fibril-destabilizing effects for alpha-synuclein fibrils in vitro publication-title: J. Neurochem. doi: 10.1111/j.1471-4159.2006.03707.x – volume: 55 start-page: 26 year: 2013 ident: 10.1016/j.freeradbiomed.2021.05.019_bib66 article-title: Mitochondria-associated ER membranes in Alzheimer disease publication-title: Mol. Cell. Neurosci. doi: 10.1016/j.mcn.2012.07.011 – volume: 287 start-page: 14631 issue: 18 year: 2012 ident: 10.1016/j.freeradbiomed.2021.05.019_bib30 article-title: Phenolic compounds prevent amyloid β-protein oligomerization and synaptic dysfunction by site-specific binding publication-title: J. Biol. Chem. doi: 10.1074/jbc.M111.325456 – volume: 26 start-page: 624 year: 2007 ident: 10.1016/j.freeradbiomed.2021.05.019_bib41 article-title: Effects of five flavonols on [Ca2+] i in cardiomyocytes of rats publication-title: Chin. J. Epidemiol. – volume: 22 start-page: 19 issue: 1 year: 2002 ident: 10.1016/j.freeradbiomed.2021.05.019_bib9 article-title: Dietary flavonoids: bioavailability, metabolic effects, and safety publication-title: Annu. Rev. Nutr. doi: 10.1146/annurev.nutr.22.111401.144957 – volume: 75 start-page: 742 issue: 6 year: 2004 ident: 10.1016/j.freeradbiomed.2021.05.019_bib32 article-title: Curcumin has potent anti-amyloidogenic effects for Alzheimer's beta-amyloid fibrils in vitro publication-title: J. Neurosci. Res. doi: 10.1002/jnr.20025 – volume: 90 start-page: 45 issue: 1 year: 2017 ident: 10.1016/j.freeradbiomed.2021.05.019_bib63 article-title: Alzheimer's toxic amyloid beta oligomers: unwelcome visitors to the Na/K ATPase alpha3 docking station publication-title: Yale J. Biol. Med. – volume: 120 start-page: 109506 year: 2019 ident: 10.1016/j.freeradbiomed.2021.05.019_bib14 article-title: Anti-tumor effects and associated molecular mechanisms of myricetin publication-title: Biomed. Pharmacother. doi: 10.1016/j.biopha.2019.109506 – volume: 336 start-page: 444 issue: 2 year: 2005 ident: 10.1016/j.freeradbiomed.2021.05.019_bib33 article-title: Ferulic acid destabilizes preformed β-amyloid fibrils in vitro publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2005.08.148 – volume: 53 start-page: 4489 issue: 28 year: 2014 ident: 10.1016/j.freeradbiomed.2021.05.019_bib59 article-title: Interaction of Alzheimer's β-amyloid peptides with cholesterol: mechanistic insights into amyloid pore formation publication-title: Biochemistry doi: 10.1021/bi500373k – volume: 42 start-page: 174 issue: 3 year: 2001 ident: 10.1016/j.freeradbiomed.2021.05.019_bib39 article-title: Comparison of photometric, electrochemical and post-column fluorescence detection for the determination of flavonoids by HPLC publication-title: Shokuhin Eiseigaku Zasshi doi: 10.3358/shokueishi.42.174 – volume: 58 start-page: 321 issue: 3 year: 2011 ident: 10.1016/j.freeradbiomed.2021.05.019_bib54 article-title: Effects of fatty acid unsaturation numbers on membrane fluidity and α-secretase-dependent amyloid precursor protein processing publication-title: Neurochem. Int. doi: 10.1016/j.neuint.2010.12.004 – volume: 134 start-page: 943 issue: 5 year: 2015 ident: 10.1016/j.freeradbiomed.2021.05.019_bib27 article-title: Phenolic compounds prevent the oligomerization of α-synuclein and reduce synaptic toxicity publication-title: J. Neurochem. doi: 10.1111/jnc.13180 – volume: 119 start-page: 57 year: 2018 ident: 10.1016/j.freeradbiomed.2021.05.019_bib4 article-title: Alzheimer's disease as oligomeropathy publication-title: Neurochem. Int. doi: 10.1016/j.neuint.2017.08.010 – volume: 5 start-page: 87 issue: 2 year: 2016 ident: 10.1016/j.freeradbiomed.2021.05.019_bib11 article-title: Antioxidant activity of polyphenolic myricetin in vitro cell- free and cell-based systems publication-title: Mol. Biol. Res. Commun. – volume: 140 start-page: 62 issue: 1 year: 2019 ident: 10.1016/j.freeradbiomed.2021.05.019_bib22 article-title: Myricetin ameliorated ischemia/reperfusion-induced brain endothelial permeability by improvement of eNOS uncoupling and activation eNOS/NO publication-title: J. Pharmacol. Sci. doi: 10.1016/j.jphs.2019.04.009 – volume: 67 start-page: 1656 issue: 6 year: 2019 ident: 10.1016/j.freeradbiomed.2021.05.019_bib15 article-title: Discovery of myricetin as a potent inhibitor of human flap endonuclease 1, which potentially can Be used as sensitizing agent against HT-29 human colon cancer cells publication-title: J. Agric. Food Chem. doi: 10.1021/acs.jafc.8b05447 – volume: 6 start-page: 76 issue: 1 year: 2013 ident: 10.1016/j.freeradbiomed.2021.05.019_bib57 article-title: Protective effect of myricetin on proteins and lipids of erythrocytes membranes publication-title: Asian J. Bio. Sci. doi: 10.3923/ajbs.2013.76.83 – volume: 15 start-page: 321 issue: 3 year: 2019 ident: 10.1016/j.freeradbiomed.2021.05.019_bib1 article-title: Alzheimer's disease facts and figures publication-title: Alzheimers. Dement. doi: 10.1016/j.jalz.2019.01.010 – volume: 2016 start-page: 7432797 year: 2016 ident: 10.1016/j.freeradbiomed.2021.05.019_bib48 article-title: Oxidative stress and inflammation: what polyphenols can do for us? publication-title: Oxid. Med. Cell. Longev. doi: 10.1155/2016/7432797 – volume: 26 start-page: 507 issue: 3 year: 2011 ident: 10.1016/j.freeradbiomed.2021.05.019_bib49 article-title: Green tea epigallocatechin-3-gallate (EGCG) and other flavonoids reduce Alzheimer's amyloid-induced mitochondrial dysfunction publication-title: J. Alzheimers Dis. doi: 10.3233/JAD-2011-101629 – volume: 2017 start-page: 8416763 year: 2017 ident: 10.1016/j.freeradbiomed.2021.05.019_bib45 article-title: Oxidative stress: harms and benefits for human health publication-title: Oxid. Med. Cell. Longev. doi: 10.1155/2017/8416763 – volume: 19 start-page: 8876 issue: 20 year: 1999 ident: 10.1016/j.freeradbiomed.2021.05.019_bib6 article-title: Protofibrillar intermediates of amyloid β-protein induce acute electrophysiological changes and progressive neurotoxicity in cortical neurons publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.19-20-08876.1999 – volume: 9 start-page: 430 issue: 5 year: 2020 ident: 10.1016/j.freeradbiomed.2021.05.019_bib58 article-title: The structural integrity of the model lipid membrane during induced lipid peroxidation: the role of flavonols in the inhibition of lipid peroxidation publication-title: Antioxidants doi: 10.3390/antiox9050430 – volume: 80 start-page: 1520 issue: 8 year: 2016 ident: 10.1016/j.freeradbiomed.2021.05.019_bib16 article-title: Anti-inflammatory activity of myricetin from Diospyros lotus through suppression of NF-κB and STAT1 activation and Nrf2-mediated HO-1 induction in lipopolysaccharide-stimulated RAW264.7 macrophages publication-title: Biosci. Biotechnol. Biochem. doi: 10.1080/09168451.2016.1171697 – volume: 87 start-page: 172 issue: 1 year: 2003 ident: 10.1016/j.freeradbiomed.2021.05.019_bib29 article-title: Potent anti-amyloidogenic and fibril-destabilizing effects of polyphenols in vitro: implications for the prevention and therapeutics of Alzheimer's disease publication-title: J. Neurochem. doi: 10.1046/j.1471-4159.2003.01976.x – volume: 272 start-page: 22364 issue: 35 year: 1997 ident: 10.1016/j.freeradbiomed.2021.05.019_bib5 article-title: Amyloid β-protein fibrillogenesis publication-title: J. Biol. Chem. doi: 10.1074/jbc.272.35.22364 – volume: 7 start-page: 2624 issue: 6 year: 2016 ident: 10.1016/j.freeradbiomed.2021.05.019_bib21 article-title: Myricetin ameliorates brain injury and neurological deficits via Nrf2 activation after experimental stroke in middle-aged rats publication-title: Food Funct doi: 10.1039/C6FO00419A – volume: 15 start-page: 409 issue: 2 year: 2016 ident: 10.1016/j.freeradbiomed.2021.05.019_bib2 article-title: Neurodegeneration and Alzheimer's disease (AD). What can proteomics tell us about the Alzheimer's brain? publication-title: Mol. Cell. Proteomics doi: 10.1074/mcp.R115.053330 – volume: 66 start-page: 12967 issue: 49 year: 2018 ident: 10.1016/j.freeradbiomed.2021.05.019_bib50 article-title: Anthocyanins extracted from aronia melanocarpa protect SH-SY5Y cells against amyloid-beta (1-42)-induced apoptosis by regulating Ca(2+) homeostasis and inhibiting mitochondrial dysfunction publication-title: J. Agric. Food Chem. doi: 10.1021/acs.jafc.8b05404 – volume: 2012 start-page: 1 year: 2012 ident: 10.1016/j.freeradbiomed.2021.05.019_bib69 article-title: Antioxidant effects of quercetin and catechin encapsulated into PLGA nanoparticles publication-title: J. Nanomater. doi: 10.1155/2012/145380 – volume: 15 start-page: 1305 issue: 5 year: 2011 ident: 10.1016/j.freeradbiomed.2021.05.019_bib70 article-title: Oxidative stress and blood–brain barrier dysfunction under particular consideration of matrix metalloproteinases publication-title: Antioxidants Redox Signal. doi: 10.1089/ars.2011.3923 – volume: 22 start-page: 325 year: 2016 ident: 10.1016/j.freeradbiomed.2021.05.019_bib17 article-title: Potential antihyperglycaemic effect of myricetin derivatives from Syzygium malaccense publication-title: J. Funct. Foods doi: 10.1016/j.jff.2016.01.038 – volume: 54 start-page: 253 issue: 3–4 year: 2009 ident: 10.1016/j.freeradbiomed.2021.05.019_bib37 article-title: A new blood–brain barrier model using primary rat brain endothelial cells, pericytes and astrocytes publication-title: Neurochem. Int. doi: 10.1016/j.neuint.2008.12.002 – volume: 142 start-page: w13659 year: 2012 ident: 10.1016/j.freeradbiomed.2021.05.019_bib47 article-title: Reactive oxygen species: from health to disease publication-title: Swiss Med. Wkly. – volume: 6 start-page: 27738 issue: 1 year: 2016 ident: 10.1016/j.freeradbiomed.2021.05.019_bib65 article-title: Direct interaction of beta-amyloid with Na,K-ATPase as a putative regulator of the enzyme function publication-title: Sci. Rep. doi: 10.1038/srep27738 – volume: 36 start-page: 1613 issue: 12 year: 2003 ident: 10.1016/j.freeradbiomed.2021.05.019_bib19 article-title: Neuroprotection by flavonoids publication-title: Braz. J. Med. Biol. Res. doi: 10.1590/S0100-879X2003001200002 – volume: 175 start-page: 2557 issue: 6 year: 2009 ident: 10.1016/j.freeradbiomed.2021.05.019_bib44 article-title: Phenolic compounds prevent Alzheimer's pathology through different effects on the amyloid-β aggregation pathway publication-title: Am. J. Pathol. doi: 10.2353/ajpath.2009.090417 – volume: 27 start-page: 687 issue: 6 year: 2007 ident: 10.1016/j.freeradbiomed.2021.05.019_bib38 article-title: Pericytes from brain microvessels strengthen the barrier integrity in primary cultures of rat brain endothelial cells, Cell publication-title: Mol. Neurobiol. doi: 10.1007/s10571-007-9195-4 – volume: 37 start-page: 837 issue: 5 year: 1988 ident: 10.1016/j.freeradbiomed.2021.05.019_bib24 article-title: Flavonoids are scavengers of superoxide anions publication-title: Biochem. Pharmacol. doi: 10.1016/0006-2952(88)90169-4 – volume: 8 start-page: 90 issue: 2 year: 2016 ident: 10.1016/j.freeradbiomed.2021.05.019_bib26 article-title: Myricetin: a dietary molecule with diverse biological activities publication-title: Nutrients doi: 10.3390/nu8020090 – volume: 81 start-page: 434 issue: 3 year: 2002 ident: 10.1016/j.freeradbiomed.2021.05.019_bib31 article-title: Nordihydroguaiaretic acid potently breaks down pre-formed Alzheimer's β-amyloid fibrils in vitro publication-title: J. Neurochem. doi: 10.1046/j.1471-4159.2002.00904.x – volume: 47 start-page: 183 issue: 2 year: 2010 ident: 10.1016/j.freeradbiomed.2021.05.019_bib60 article-title: The dysregulation of intracellular calcium in Alzheimer disease publication-title: Cell Calcium doi: 10.1016/j.ceca.2009.12.014 – volume: 112 start-page: E4465 issue: 32 year: 2015 ident: 10.1016/j.freeradbiomed.2021.05.019_bib64 article-title: Na, K-ATPase α3 is a death target of Alzheimer patient amyloid-β assembly publication-title: Proc. Natl. Acad. Sci. Unit. States Am. doi: 10.1073/pnas.1421182112 – volume: 18 start-page: 241 issue: 1 year: 2019 ident: 10.1016/j.freeradbiomed.2021.05.019_bib13 article-title: Comprehensive review of antimicrobial activities of plant flavonoids publication-title: Phytochemistry Rev. doi: 10.1007/s11101-018-9591-z – volume: 11 start-page: 4348 issue: 11 year: 2010 ident: 10.1016/j.freeradbiomed.2021.05.019_bib25 article-title: Myricetin protects cells against oxidative stress-induced apoptosis via regulation of PI3K/Akt and MAPK signaling pathways publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms11114348 – volume: 20 issue: 1 year: 2020 ident: 10.1016/j.freeradbiomed.2021.05.019_bib12 article-title: Myricetin bioactive effects: moving from preclinical evidence to potential clinical applications publication-title: BMC Complement. Med. Ther. doi: 10.1186/s12906-020-03033-z – volume: 14 issue: 1 year: 2020 ident: 10.1016/j.freeradbiomed.2021.05.019_bib20 article-title: Myricetin ameliorates brain damage induces by cerebral ischemia-reperfusion injury in rats publication-title: Asian J. Pharm. – volume: 474 start-page: 137 issue: 2–3 year: 2000 ident: 10.1016/j.freeradbiomed.2021.05.019_bib36 article-title: A novel fluorescent probe diphenyl-1-pyrenylphosphine to follow lipid peroxidation in cell membranes publication-title: FEBS Lett. doi: 10.1016/S0014-5793(00)01587-8 – volume: 529 start-page: 127 year: 2017 ident: 10.1016/j.freeradbiomed.2021.05.019_bib67 article-title: Glutathione in the human brain: review of its roles and measurement by magnetic resonance spectroscopy publication-title: Anal. Biochem. doi: 10.1016/j.ab.2016.12.022 – volume: 15 start-page: 506 issue: 9 year: 2004 ident: 10.1016/j.freeradbiomed.2021.05.019_bib7 article-title: Neurological mechanisms of green tea polyphenols in Alzheimer's and Parkinson's diseases publication-title: J. Nutr. Biochem. doi: 10.1016/j.jnutbio.2004.05.002 – volume: 29 start-page: 12 issue: 1 year: 2010 ident: 10.1016/j.freeradbiomed.2021.05.019_bib23 article-title: Myricetin suppresses oxidative stress-induced cell damage via both direct and indirect antioxidant action publication-title: Environ. Toxicol. Pharmacol. doi: 10.1016/j.etap.2009.08.007 – volume: 38 start-page: 2859 issue: 17 year: 1989 ident: 10.1016/j.freeradbiomed.2021.05.019_bib53 article-title: Antioxidant and pro-oxidant actions of the plant phenolics quercetin, gossypol and myricetin: effects on lipid peroxidation, hydroxyl radical generation and bleomycin-dependent damage to DNA publication-title: Biochem. Pharmacol. doi: 10.1016/0006-2952(89)90442-5 – volume: 8 start-page: 595 issue: 6 year: 2016 ident: 10.1016/j.freeradbiomed.2021.05.019_bib3 article-title: The amyloid hypothesis of Alzheimer's disease at 25 years publication-title: EMBO Mol. Med. doi: 10.15252/emmm.201606210 – volume: 202 start-page: 212 year: 2016 ident: 10.1016/j.freeradbiomed.2021.05.019_bib51 article-title: Phenolic contents and bioactive potential of peach fruit extracts publication-title: Food Chem. doi: 10.1016/j.foodchem.2015.12.026 – volume: 8 start-page: 397 year: 2009 ident: 10.1016/j.freeradbiomed.2021.05.019_bib56 article-title: The multiple faces of quercetin in neuroprotection publication-title: Expet Opin. Drug Saf. doi: 10.1517/14740330903026944 – volume: 80 start-page: 675 issue: 3 year: 1997 ident: 10.1016/j.freeradbiomed.2021.05.019_bib62 article-title: Alzheimer's amyloid-beta peptide inhibits sodium/calcium exchange measured in rat and human brain plasma membrane vesicles publication-title: Neuroscience doi: 10.1016/S0306-4522(97)00053-5 |
SSID | ssj0004538 |
Score | 2.5230572 |
Snippet | Excessive accumulation of amyloid β-protein (Aβ) is one of the primary mechanisms that leads to neuronal death with phosphorylated tau in the pathogenesis of... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 232 |
SubjectTerms | Alzheimer's disease amyloid β-protein HMW-Aβ oligomers Myricetin Neurotoxicity Oxidative stress |
Title | Myricetin prevents high molecular weight Aβ1-42 oligomer-induced neurotoxicity through antioxidant effects in cell membranes and mitochondria |
URI | https://dx.doi.org/10.1016/j.freeradbiomed.2021.05.019 https://www.proquest.com/docview/2531213150 |
Volume | 171 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Ra9RAEB5KRfFFtFWs1bKi-BYvm2wuiQ_CUSyn0r5ooW9LNruRlCZ3XFPae_En-GP8If4mv9kkagWh4NOSsJtdZiYz8-3OzhC9zK0ss8oAmyRGBaqYmiCvpA2iIi35oM9GhoHi4dF0fqw-nCQnG7Q_3oXhsMpB9_c63Wvr4c1koOZkWdeTT2GWS5jPHKCFJZUvmiuVspS__ir_yBjuq1lz54B736EXv2O8qpVzfGTtb7oDLEayT-OZ_8tK_aWvvRE6uE_3Bu9RzPoFPqAN127R9qwFcm7W4pXw8Zx-o3yLbvdlJtfb9O1wzamDuroVyz5j07ngNMWiGWvjiku_QypmP76DnpFYnNVfsNhVAMQO3lvh0152i6u6hNcuhuI-ouBQyavaohVDYIjAJHwYIBrXAIhDkaKXFQ0UBxRtayHvD-n44N3n_Xkw1GEISpXJLpCmULlUDsbfhHEVW7755CKQHA3cQ5e4IsxtrFLrTOKAYCy8vDSFt1OGRTaNH9Fmu2jdYxIWSNxVGJMaC2ZF8PdMlYW2MFZmZZjt0JuR7rockpRzrYwzPUajneprTNPMNB0mGkzbIfVr8LLP1XGzYW9HButroqdhVW72geejWGj8nExkkHdxca4jaLhIxnC6n_zvJLt0l5_62MOntNmtLtwz-EOd2fMCv0e3Zu8_zo9-AnbrD_s |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTtwwEB5Rqv5cqgJFpaWtUVFv6caJs0k4VFqhom1huQASNyuOHZSKZFdLUNlLH6EP0wfhmfjsJKVUqoTUk6XETqyZ8cx89niGaDvVPE8KBWwSKeGJbKi8tODaC7I4twd9OlAWKE4Oh-MT8fU0Ol2i3f4ujA2r7HR_q9Odtu6eDDpqDmZlOTjyk5TDfKYALVZSowf0UGD52jIGH3_wP1KGu3LWtrdnuz-m97dBXsXcGHtm7a66Ay0GvM3jmf7LTP2lsJ0V2ntOzzr3kY3aGa7QkqlXaW1UAzpXC_aBuYBOt1O-So_aOpOLNfo5WdjcQU1Zs1mbsumC2TzFrOqL47LvbouUja5_gaABm56XZ5js3ANkB_M1c3kvm-lVmcNtZ111H5bZWMmrUqNlXWQIw0_saQCrTAUkDk2KXppV0BzQtLWGwL-gk73Px7tjryvE4OUi4Y3HVSZSLgysv_LDItT26pMJQHM08A9NZDI_1aGItVGRAYTRcPPiGO5O7mfJMFyn5Xpam5fENKC4KTAmVlqIOIDDp4rE15nSPMn9ZIN2errLvMtSbotlnMs-HO2bvMM0aZkm_UiCaRskfg-etck67jfsU89geUf2JMzK_T6w1YuFxOq0RAZ5p5cXMoCKC3gIr_vV__7kHT0ZH08O5MGXw_3X9NS-aQMRN2m5mV-aN3COGvXWCf8Nh0gRiQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Myricetin+prevents+high+molecular+weight+A%CE%B21-42+oligomer-induced+neurotoxicity+through+antioxidant+effects+in+cell+membranes+and+mitochondria&rft.jtitle=Free+radical+biology+%26+medicine&rft.au=Kimura%2C+Atsushi+Michael&rft.au=Tsuji%2C+Mayumi&rft.au=Yasumoto%2C+Taro&rft.au=Mori%2C+Yukiko&rft.date=2021-08-01&rft.pub=Elsevier+Inc&rft.issn=0891-5849&rft.eissn=1873-4596&rft.volume=171&rft.spage=232&rft.epage=244&rft_id=info:doi/10.1016%2Fj.freeradbiomed.2021.05.019&rft.externalDocID=S0891584921003075 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0891-5849&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0891-5849&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0891-5849&client=summon |