Current Density Imaging During Transcranial Direct Current Stimulation Using DT-MRI and MREIT: Algorithm Development and Numerical Simulations

Objective: Transcranial direct current stimulation (tDCS) is a neuromodulatory technique for neuropsychiatric diseases and neurological disorders. In the tDCS treatment, dc current is injected into the head through a pair of electrodes attached on the scalp over a target region. A current density im...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on biomedical engineering Vol. 63; no. 1; pp. 168 - 175
Main Authors Kwon, Oh In, Sajib, Saurav Z. K., Sersa, Igor, Oh, Tong In, Jeong, Woo Chul, Kim, Hyung Joong, Woo, Eung Je
Format Journal Article
LanguageEnglish
Published United States IEEE 01.01.2016
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Objective: Transcranial direct current stimulation (tDCS) is a neuromodulatory technique for neuropsychiatric diseases and neurological disorders. In the tDCS treatment, dc current is injected into the head through a pair of electrodes attached on the scalp over a target region. A current density imaging method is needed to quantitatively visualize the internal current density distribution during the tDCS treatment. Methods: We developed a novel current density image reconstruction algorithm using 1) a subject specific segmented 3-D head model, 2) diffusion tensor data, and 3) magnetic flux density data induced by the tDCS current. We acquired T 1 weighted and diffusion tensor images of the head using the MRI scanner before the treatment. During the treatment, we can measure the induced magnetic flux density data using a magnetic resonance electrical impedance tomography (MREIT) pulse sequence. In this paper, the magnetic flux density data were numerically generated. Results: Numerical simulation results show that the proposed method successfully recovers the current density distribution including the effects of the anisotropic, as well as isotropic conductivity values of different tissues in the head. Conclusion: The proposed current density imaging method using DT-MRI and MREIT can reliably recover cross-sectional images of the current density distribution during the tDCS treatment. Significance: Success of the tDCS treatment depends on a precise determination of the induced current density distribution within different anatomical structures of the brain. Quantitative visualization of the current density distribution in the brain will play an important role in understanding the effects of the electrical stimulation.
AbstractList Transcranial direct current stimulation (tDCS) is a neuromodulatory technique for neuropsychiatric diseases and neurological disorders. In the tDCS treatment, dc current is injected into the head through a pair of electrodes attached on the scalp over a target region. A current density imaging method is needed to quantitatively visualize the internal current density distribution during the tDCS treatment. We developed a novel current density image reconstruction algorithm using 1) a subject specific segmented 3-D head model, 2) diffusion tensor data, and 3) magnetic flux density data induced by the tDCS current. We acquired T1 weighted and diffusion tensor images of the head using the MRI scanner before the treatment. During the treatment, we can measure the induced magnetic flux density data using a magnetic resonance electrical impedance tomography (MREIT) pulse sequence. In this paper, the magnetic flux density data were numerically generated. Numerical simulation results show that the proposed method successfully recovers the current density distribution including the effects of the anisotropic, as well as isotropic conductivity values of different tissues in the head. The proposed current density imaging method using DT-MRI and MREIT can reliably recover cross-sectional images of the current density distribution during the tDCS treatment. Success of the tDCS treatment depends on a precise determination of the induced current density distribution within different anatomical structures of the brain. Quantitative visualization of the current density distribution in the brain will play an important role in understanding the effects of the electrical stimulation.
Objective: Transcranial direct current stimulation (tDCS) is a neuromodulatory technique for neuropsychiatric diseases and neurological disorders. In the tDCS treatment, dc current is injected into the head through a pair of electrodes attached on the scalp over a target region. A current density imaging method is needed to quantitatively visualize the internal current density distribution during the tDCS treatment. Methods: We developed a novel current density image reconstruction algorithm using 1) a subject specific segmented 3-D head model, 2) diffusion tensor data, and 3) magnetic flux density data induced by the tDCS current. We acquired T 1 weighted and diffusion tensor images of the head using the MRI scanner before the treatment. During the treatment, we can measure the induced magnetic flux density data using a magnetic resonance electrical impedance tomography (MREIT) pulse sequence. In this paper, the magnetic flux density data were numerically generated. Results: Numerical simulation results show that the proposed method successfully recovers the current density distribution including the effects of the anisotropic, as well as isotropic conductivity values of different tissues in the head. Conclusion: The proposed current density imaging method using DT-MRI and MREIT can reliably recover cross-sectional images of the current density distribution during the tDCS treatment. Significance: Success of the tDCS treatment depends on a precise determination of the induced current density distribution within different anatomical structures of the brain. Quantitative visualization of the current density distribution in the brain will play an important role in understanding the effects of the electrical stimulation.
Transcranial direct current stimulation (tDCS) is a neuromodulatory technique for neuropsychiatric diseases and neurological disorders. In the tDCS treatment, dc current is injected into the head through a pair of electrodes attached on the scalp over a target region. A current density imaging method is needed to quantitatively visualize the internal current density distribution during the tDCS treatment.OBJECTIVETranscranial direct current stimulation (tDCS) is a neuromodulatory technique for neuropsychiatric diseases and neurological disorders. In the tDCS treatment, dc current is injected into the head through a pair of electrodes attached on the scalp over a target region. A current density imaging method is needed to quantitatively visualize the internal current density distribution during the tDCS treatment.We developed a novel current density image reconstruction algorithm using 1) a subject specific segmented 3-D head model, 2) diffusion tensor data, and 3) magnetic flux density data induced by the tDCS current. We acquired T1 weighted and diffusion tensor images of the head using the MRI scanner before the treatment. During the treatment, we can measure the induced magnetic flux density data using a magnetic resonance electrical impedance tomography (MREIT) pulse sequence. In this paper, the magnetic flux density data were numerically generated.METHODSWe developed a novel current density image reconstruction algorithm using 1) a subject specific segmented 3-D head model, 2) diffusion tensor data, and 3) magnetic flux density data induced by the tDCS current. We acquired T1 weighted and diffusion tensor images of the head using the MRI scanner before the treatment. During the treatment, we can measure the induced magnetic flux density data using a magnetic resonance electrical impedance tomography (MREIT) pulse sequence. In this paper, the magnetic flux density data were numerically generated.Numerical simulation results show that the proposed method successfully recovers the current density distribution including the effects of the anisotropic, as well as isotropic conductivity values of different tissues in the head.RESULTSNumerical simulation results show that the proposed method successfully recovers the current density distribution including the effects of the anisotropic, as well as isotropic conductivity values of different tissues in the head.The proposed current density imaging method using DT-MRI and MREIT can reliably recover cross-sectional images of the current density distribution during the tDCS treatment.CONCLUSIONThe proposed current density imaging method using DT-MRI and MREIT can reliably recover cross-sectional images of the current density distribution during the tDCS treatment.Success of the tDCS treatment depends on a precise determination of the induced current density distribution within different anatomical structures of the brain. Quantitative visualization of the current density distribution in the brain will play an important role in understanding the effects of the electrical stimulation.SIGNIFICANCESuccess of the tDCS treatment depends on a precise determination of the induced current density distribution within different anatomical structures of the brain. Quantitative visualization of the current density distribution in the brain will play an important role in understanding the effects of the electrical stimulation.
Objective: Transcranial direct current stimulation (tDCS) is a neuromodulatory technique for neuropsychiatric diseases and neurological disorders. In the tDCS treatment, dc current is injected into the head through a pair of electrodes attached on the scalp over a target region. A current density imaging method is needed to quantitatively visualize the internal current density distribution during the tDCS treatment. Methods: We developed a novel current density image reconstruction algorithm using 1) a subject specific segmented 3-D head model, 2) diffusion tensor data, and 3) magnetic flux density data induced by the tDCS current. We acquired [Formula Omitted] weighted and diffusion tensor images of the head using the MRI scanner before the treatment. During the treatment, we can measure the induced magnetic flux density data using a magnetic resonance electrical impedance tomography (MREIT) pulse sequence. In this paper, the magnetic flux density data were numerically generated. Results: Numerical simulation results show that the proposed method successfully recovers the current density distribution including the effects of the anisotropic, as well as isotropic conductivity values of different tissues in the head. Conclusion: The proposed current density imaging method using DT-MRI and MREIT can reliably recover cross-sectional images of the current density distribution during the tDCS treatment. Significance: Success of the tDCS treatment depends on a precise determination of the induced current density distribution within different anatomical structures of the brain. Quantitative visualization of the current density distribution in the brain will play an important role in understanding the effects of the electrical stimulation.
Author Oh, Tong In
Sajib, Saurav Z. K.
Sersa, Igor
Kwon, Oh In
Kim, Hyung Joong
Jeong, Woo Chul
Woo, Eung Je
Author_xml – sequence: 1
  givenname: Oh In
  surname: Kwon
  fullname: Kwon, Oh In
  organization: Konkuk University
– sequence: 2
  givenname: Saurav Z. K.
  surname: Sajib
  fullname: Sajib, Saurav Z. K.
  organization: Kyung Hee University
– sequence: 3
  givenname: Igor
  surname: Sersa
  fullname: Sersa, Igor
  organization: Jozef Stefan Institute
– sequence: 4
  givenname: Tong In
  surname: Oh
  fullname: Oh, Tong In
  organization: Kyung Hee University
– sequence: 5
  givenname: Woo Chul
  surname: Jeong
  fullname: Jeong, Woo Chul
  organization: Kyung Hee University
– sequence: 6
  givenname: Hyung Joong
  surname: Kim
  fullname: Kim, Hyung Joong
  organization: Kyung Hee University
– sequence: 7
  givenname: Eung Je
  surname: Woo
  fullname: Woo, Eung Je
  email: ejwoo@khu.ac.kr
  organization: Department of Biomedical Engineering, Kyung Hee University, Seoul, Korea
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26111387$$D View this record in MEDLINE/PubMed
BookMark eNqNks1u1DAYRS1URKeFB0BIKBKbbjL4i__ZlZkBRuqA1KbryM3Yg6vEGWwHqS_RZyaZny66QN3YsnTOtfz5nqET33mD0HvAUwCsPpdfV4tpgYFNC0olY-wVmgBjMi8YgRM0wRhkrgpFT9FZjPfDkUrK36DTggMAkWKCHmd9CManbG58dOkhW7Z64_wmm_dh3MqgfayHxekmm7tg6pQdlZvk2r7RyXU-u407qcxX18tM-3W2ul4syy_ZZbPpgku_2-GCv6bptu1ojsDPvjXB1UPszVNMfIteW91E8-6wn6Pbb4ty9iO_-vV9Obu8ymsqIeWgjQVLBMU1ZlZgaRmXllguQFosxDCMggwEY2C4lVRgodaWM13cSWWpIefoYp-7Dd2f3sRUtS7Wpmm0N10fKxCKFBQkhxegnCmpGOMvQBkoBYyzAf30DL3v-uCHN-8oggvFx8CPB6q_a8262gbX6vBQHf9vAMQeqEMXYzC2ql3ajTIF7ZoKcDU2pRqbUo1NqQ5NGUx4Zh7D_-d82DvOGPPECyBAGSb_ABTJxy8
CODEN IEBEAX
CitedBy_id crossref_primary_10_1088_1361_6560_abbc4d
crossref_primary_10_1088_1741_2552_ad7db2
crossref_primary_10_1016_j_jcp_2020_109408
crossref_primary_10_1186_s40779_022_00370_7
crossref_primary_10_1016_j_neuroimage_2021_118517
crossref_primary_10_1016_j_ejmp_2019_02_022
crossref_primary_10_1016_j_heliyon_2022_e12458
crossref_primary_10_1088_2057_1976_aab72e
crossref_primary_10_1111_ner_13065
crossref_primary_10_1088_1361_6560_ab7308
crossref_primary_10_1088_1741_2552_aafbbd
crossref_primary_10_1371_journal_pone_0254690
crossref_primary_10_1016_j_enganabound_2020_11_010
crossref_primary_10_1088_1361_6560_aaa8d2
crossref_primary_10_1016_j_heliyon_2023_e15195
crossref_primary_10_5213_inj_1734878_439
crossref_primary_10_1016_j_brs_2017_04_125
crossref_primary_10_1016_j_neuroimage_2017_12_075
crossref_primary_10_1007_s13534_018_0066_3
crossref_primary_10_1371_journal_pcbi_1011572
crossref_primary_10_1063_1_4973818
crossref_primary_10_1016_j_clinph_2017_06_001
crossref_primary_10_1109_TMI_2017_2783348
crossref_primary_10_1109_TMI_2020_2969682
crossref_primary_10_1016_j_cobme_2018_09_002
Cites_doi 10.3233/RNN-2007-00375
10.3389/fpsyt.2012.00091
10.1006/jmra.1994.1230
10.1088/0031-9155/59/12/2955
10.1088/0967-3334/24/2/368
10.1109/10.979355
10.1088/0967-3334/29/10/R01
10.1109/42.97586
10.2340/16501977-0356
10.1016/j.neuroimage.2008.09.009
10.1103/PhysRevB.39.4504
10.1109/TBME.2014.2298859
10.1109/TMI.2002.800604
10.1016/j.neuroimage.2010.03.052
10.1007/s13534-011-0020-0
10.1111/j.1525-1403.2012.00481.x
10.1016/0022-2364(92)90310-4
10.1212/WNL.57.10.1899
10.1088/0031-9155/48/21/003
10.1137/080742932
10.1016/j.ymeth.2007.02.001
10.1016/j.nurt.2009.01.003
10.1002/mrm.1910370107
10.1016/0730-725X(89)90328-7
10.1088/0031-9155/52/11/005
10.1002/mrm.21707
10.1016/j.brs.2010.11.001
10.1016/j.pain.2006.02.023
10.2214/ajr.183.2.1830343
10.1002/(SICI)1522-2586(199904)9:4<531::AID-JMRI4>3.0.CO;2-L
10.1088/0031-9155/49/18/012
10.1111/j.1469-7793.2000.t01-1-00633.x
10.1088/0266-5611/18/4/310
10.1016/j.neuroimage.2012.12.034
10.1109/10.784146
10.1152/jn.1965.28.1.166
10.1109/10.554770
10.1073/pnas.171473898
10.1088/0031-9155/48/19/001
10.1016/0028-3932(66)90021-2
10.1016/j.brs.2008.06.004
10.1117/12.179269
10.1109/TBME.2000.880100
10.1088/0967-3334/30/9/007
10.1111/j.1749-6632.1999.tb07965.x
10.1016/j.neuroimage.2007.01.027
10.1109/TBME.2004.827925
10.1088/0031-9155/51/12/005
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1109/TBME.2015.2448555
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList MEDLINE

Engineering Research Database
Technology Research Database
MEDLINE - Academic
Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1558-2531
EndPage 175
ExternalDocumentID 3903442461
26111387
10_1109_TBME_2015_2448555
7131450
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: National Research Foundation of Korea
  grantid: 2013R1A2A2A04016066; 2014R1A2A1A09006320
  funderid: 10.13039/501100003725
GroupedDBID ---
-~X
.55
.DC
.GJ
0R~
29I
4.4
53G
5GY
5RE
5VS
6IF
6IK
6IL
6IN
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
AAYJJ
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACKIV
ACNCT
ACPRK
ADZIZ
AENEX
AETIX
AFFNX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CHZPO
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IEGSK
IFIPE
IFJZH
IPLJI
JAVBF
LAI
MS~
O9-
OCL
P2P
RIA
RIE
RIL
RNS
TAE
TN5
VH1
VJK
X7M
ZGI
ZXP
AAYXX
CITATION
RIG
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c481t-1aef1f3740c05f708f568f3f6718f07748523f1f551e6f847079df65a2b89f4e3
IEDL.DBID RIE
ISSN 0018-9294
1558-2531
IngestDate Sun Aug 24 03:03:26 EDT 2025
Fri Jul 11 01:40:47 EDT 2025
Fri Jul 11 16:02:23 EDT 2025
Mon Jun 30 08:28:02 EDT 2025
Thu Apr 03 07:08:25 EDT 2025
Thu Jul 03 08:41:17 EDT 2025
Thu Apr 24 23:01:40 EDT 2025
Wed Aug 27 02:52:56 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords magnetic resonance electrical impedance tomography (MREIT)
magnetic flux density
Conductivity tensor
diffusion tensor
transcranial direct current stimulation (tDCS)
current density
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c481t-1aef1f3740c05f708f568f3f6718f07748523f1f551e6f847079df65a2b89f4e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 26111387
PQID 1751302966
PQPubID 85474
PageCount 8
ParticipantIDs proquest_miscellaneous_1793241861
proquest_journals_1751302966
pubmed_primary_26111387
proquest_miscellaneous_1751991565
ieee_primary_7131450
proquest_miscellaneous_1765989556
crossref_citationtrail_10_1109_TBME_2015_2448555
crossref_primary_10_1109_TBME_2015_2448555
PublicationCentury 2000
PublicationDate 2016-Jan.
2016-1-00
2016-Jan
20160101
PublicationDateYYYYMMDD 2016-01-01
PublicationDate_xml – month: 01
  year: 2016
  text: 2016-Jan.
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on biomedical engineering
PublicationTitleAbbrev TBME
PublicationTitleAlternate IEEE Trans Biomed Eng
PublicationYear 2016
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref52
ref11
ref17
ref16
ref19
ref18
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
seo (ref28) 2003; 50
eyuboglu (ref20) 1998; 6
ref7
boggio (ref8) 2007; 25
grimnes (ref33) 2008
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref32
purpura (ref10) 1965; 28
ref2
ref1
ref39
ref38
whittall (ref49) 1997; 37
muftuler (ref27) 2006; 5
ref24
ref23
ref26
ref25
ref22
ref21
ref29
References_xml – volume: 25
  start-page: 123
  year: 2007
  ident: ref8
  article-title: Repeated sessions of noninvasive brain DC stimulation is associated with motor function improvement in stroke patients
  publication-title: Restorative Neurol Neurosci
  doi: 10.3233/RNN-2007-00375
– ident: ref51
  doi: 10.3389/fpsyt.2012.00091
– ident: ref18
  doi: 10.1006/jmra.1994.1230
– ident: ref35
  doi: 10.1088/0031-9155/59/12/2955
– ident: ref21
  doi: 10.1088/0967-3334/24/2/368
– ident: ref23
  doi: 10.1109/10.979355
– ident: ref30
  doi: 10.1088/0967-3334/29/10/R01
– ident: ref16
  doi: 10.1109/42.97586
– ident: ref9
  doi: 10.2340/16501977-0356
– volume: 50
  start-page: 1121
  year: 2003
  ident: ref28
  article-title: Reconstruction of conductivity and current density images using only one component of magnetic field measurements
  publication-title: IEEE Trans Med Imag
– ident: ref41
  doi: 10.1016/j.neuroimage.2008.09.009
– ident: ref38
  doi: 10.1103/PhysRevB.39.4504
– ident: ref32
  doi: 10.1109/TBME.2014.2298859
– ident: ref24
  doi: 10.1109/TMI.2002.800604
– ident: ref4
  doi: 10.1016/j.neuroimage.2010.03.052
– ident: ref45
  doi: 10.1007/s13534-011-0020-0
– ident: ref52
  doi: 10.1111/j.1525-1403.2012.00481.x
– ident: ref17
  doi: 10.1016/0022-2364(92)90310-4
– ident: ref2
  doi: 10.1212/WNL.57.10.1899
– ident: ref25
  doi: 10.1088/0031-9155/48/21/003
– ident: ref31
  doi: 10.1137/080742932
– ident: ref12
  doi: 10.1016/j.ymeth.2007.02.001
– ident: ref6
  doi: 10.1016/j.nurt.2009.01.003
– volume: 37
  start-page: 34
  year: 1997
  ident: ref49
  article-title: In-vivo measurement of $T_2$ distributions and water contents in normal human brain
  publication-title: Magn Reson Imag
  doi: 10.1002/mrm.1910370107
– ident: ref14
  doi: 10.1016/0730-725X(89)90328-7
– ident: ref36
  doi: 10.1088/0031-9155/52/11/005
– ident: ref47
  doi: 10.1002/mrm.21707
– ident: ref50
  doi: 10.1016/j.brs.2010.11.001
– ident: ref7
  doi: 10.1016/j.pain.2006.02.023
– ident: ref46
  doi: 10.2214/ajr.183.2.1830343
– ident: ref48
  doi: 10.1002/(SICI)1522-2586(199904)9:4<531::AID-JMRI4>3.0.CO;2-L
– ident: ref34
  doi: 10.1088/0031-9155/49/18/012
– volume: 6
  start-page: 201
  year: 1998
  ident: ref20
  article-title: Imaging electrical current density using nuclear magnetic resonance
  publication-title: Elektrik
– ident: ref1
  doi: 10.1111/j.1469-7793.2000.t01-1-00633.x
– ident: ref22
  doi: 10.1088/0266-5611/18/4/310
– ident: ref5
  doi: 10.1016/j.neuroimage.2012.12.034
– ident: ref15
  doi: 10.1109/10.784146
– volume: 28
  start-page: 166
  year: 1965
  ident: ref10
  article-title: Intracellular activities and evoked potential changes during polarization of motor cortex
  publication-title: J Neurophysiol
  doi: 10.1152/jn.1965.28.1.166
– ident: ref43
  doi: 10.1109/10.554770
– ident: ref39
  doi: 10.1073/pnas.171473898
– ident: ref29
  doi: 10.1088/0031-9155/48/19/001
– ident: ref11
  doi: 10.1016/0028-3932(66)90021-2
– volume: 5
  start-page: 381
  year: 2006
  ident: ref27
  article-title: In vivo MRI electrical impedance tomography (MREIT) of tumors
  publication-title: Technol Cancer Res Treat
– start-page: 94
  year: 2008
  ident: ref33
  publication-title: Bioimpedance and Bioelectricity Basics
– ident: ref37
  doi: 10.1016/j.brs.2008.06.004
– ident: ref19
  doi: 10.1117/12.179269
– ident: ref42
  doi: 10.1109/TBME.2000.880100
– ident: ref44
  doi: 10.1088/0967-3334/30/9/007
– ident: ref40
  doi: 10.1111/j.1749-6632.1999.tb07965.x
– ident: ref13
  doi: 10.1016/j.neuroimage.2007.01.027
– ident: ref3
  doi: 10.1109/TBME.2004.827925
– ident: ref26
  doi: 10.1088/0031-9155/51/12/005
SSID ssj0014846
Score 2.3496897
Snippet Objective: Transcranial direct current stimulation (tDCS) is a neuromodulatory technique for neuropsychiatric diseases and neurological disorders. In the tDCS...
Transcranial direct current stimulation (tDCS) is a neuromodulatory technique for neuropsychiatric diseases and neurological disorders. In the tDCS treatment,...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 168
SubjectTerms Adult
Algorithms
Computer Simulation
Conductivity
conductivity tensor
Current density
Density
diffusion tensor
Direct current
Electric Impedance
Electrodes
Female
Finite element analysis
Fluctuations
Head
Head - physiology
Humans
Image reconstruction
Imaging
Imaging, Three-Dimensional - methods
Magnetic flux
magnetic flux density
Magnetic resonance imaging
Magnetic Resonance Imaging - methods
Magnetism
Mathematical models
MREIT
Stimulation
tDCS
Tensile stress
Transcranial Direct Current Stimulation - methods
Title Current Density Imaging During Transcranial Direct Current Stimulation Using DT-MRI and MREIT: Algorithm Development and Numerical Simulations
URI https://ieeexplore.ieee.org/document/7131450
https://www.ncbi.nlm.nih.gov/pubmed/26111387
https://www.proquest.com/docview/1751302966
https://www.proquest.com/docview/1751991565
https://www.proquest.com/docview/1765989556
https://www.proquest.com/docview/1793241861
Volume 63
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Nb9MwFLfGDggOMDY-AgMZiRMind3YjrPbtnZakbLD1km7RY5jw0SbTltyGH8EfzPPjhNVCCouUaU8R478Xt_vl_eF0CfLklKUaRWPhbIx8A0FJsWr2JTgTjXTaVm5euf8XJxdsa_X_HoLfRlqYYwxPvnMjNxPH8uvVrp1n8oOgFBR5gj6IyBuXa3WEDFgsivKIRQMeJyxEMGkJDuYH-dTl8TFR-DLJOduWg0QB0oTl0i35o78fJV_Q03vck6fo7zfbJdp8mPUNuVI__yjj-P_vs0OehawJz7qlOUF2jL1Lnq61pFwFz3OQ6x9D_0KrZvwxOW4Nw94tvQTjfDEVzZi7-U0XECDcffPifsll83NMswFwz4pAU_mcX4xw6qucH4xnc0P8dHi2-rupvm-xGuJS17gvO3CSAt8OTzm_iW6Op3OT87iML0h1kzSJqbKWGqTlBFNuE2JtFxIm1gB3tASQJ0SODBIAGQzwoKTJGlWWcHVuJSZZSZ5hbbrVW3eIFwakY61rAwDtgjrVcmrRGeJVFYpwkyESH-IhQ6tzd2EjUXhKQ7JCqcChVOBIqhAhD4PS267vh6bhPfc8Q2C4eQitN9rShEs_74AOOZiwcAiI_RxuA026wIxqjartpMBXA5YepOM4JnMON_4HEDfjEpBI_S609Rhj72Cv_373t-hJ_CG4WPSPtpu7lrzHuBVU37wdvUbH6EemA
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELaqIvE48GgpBAoYiRMiW3tjJw63wm61C80e2lTqLXIcGyp2s6hNDvAj-M2MHSdaIVhxiSJlbNnyTOYbzwuhN4ZFZVwmVTiOpQnB3pAgUrwKdQnqVDGVlJXNd84W8eyCfbrklzvo3ZALo7V2wWd6ZF-dL79aq9ZelR2BQUWZNdBvgd7ntMvWGnwGTHRpOYSCCI9T5n2YlKRH-YdsasO4-Ai0meDc9qsB04HSyIbSbSgk12Hl32DTKZ2TByjrl9vFmnwbtU05Uj__qOT4v_t5iO579ImPO3Z5hHZ0vYfubdQk3EO3M-9t30e_fPEmPLFR7s0PPF-5nkZ44nIbsdNzCh7Aw7j7d-J-yHlztfKdwbALS8CTPMzO5ljWFc7OpvP8PT5efllfXzVfV3gjdMkRLNrOkbTE58M0N4_Rxck0_zgLff-GUDFBm5BKbaiJEkYU4SYhwvBYmMjEoA8NAdwpwAoGCjhKHRtQkyRJKxNzOS5FapiODtBuva71U4RLHSdjJSrNwF6E8bLkVaTSSEgjJWE6QKQ_xEL54ua2x8aycEYOSQvLAoVlgcKzQIDeDkO-d5U9thHv2-MbCP3JBeiw55TCy_5NAYDMeoPBjgzQ6-EzSK11xchar9uOBpA5oOltNDFPRcr51nkAfzMqYhqgJx2nDmvsGfzZ39f-Ct2Z5dlpcTpffH6O7sJu_dXSIdptrlv9AsBWU750MvYbLxgh4Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Current+Density+Imaging+During+Transcranial+Direct+Current+Stimulation+Using+DT-MRI+and+MREIT%3A+Algorithm+Development+and+Numerical+Simulations&rft.jtitle=IEEE+transactions+on+biomedical+engineering&rft.au=Kwon%2C+Oh+In&rft.au=Sajib%2C+Saurav+Z.+K.&rft.au=Sersa%2C+Igor&rft.au=Oh%2C+Tong+In&rft.date=2016-01-01&rft.pub=IEEE&rft.issn=0018-9294&rft.volume=63&rft.issue=1&rft.spage=168&rft.epage=175&rft_id=info:doi/10.1109%2FTBME.2015.2448555&rft_id=info%3Apmid%2F26111387&rft.externalDocID=7131450
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9294&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9294&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9294&client=summon