Current Density Imaging During Transcranial Direct Current Stimulation Using DT-MRI and MREIT: Algorithm Development and Numerical Simulations
Objective: Transcranial direct current stimulation (tDCS) is a neuromodulatory technique for neuropsychiatric diseases and neurological disorders. In the tDCS treatment, dc current is injected into the head through a pair of electrodes attached on the scalp over a target region. A current density im...
Saved in:
Published in | IEEE transactions on biomedical engineering Vol. 63; no. 1; pp. 168 - 175 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.01.2016
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Objective: Transcranial direct current stimulation (tDCS) is a neuromodulatory technique for neuropsychiatric diseases and neurological disorders. In the tDCS treatment, dc current is injected into the head through a pair of electrodes attached on the scalp over a target region. A current density imaging method is needed to quantitatively visualize the internal current density distribution during the tDCS treatment. Methods: We developed a novel current density image reconstruction algorithm using 1) a subject specific segmented 3-D head model, 2) diffusion tensor data, and 3) magnetic flux density data induced by the tDCS current. We acquired T 1 weighted and diffusion tensor images of the head using the MRI scanner before the treatment. During the treatment, we can measure the induced magnetic flux density data using a magnetic resonance electrical impedance tomography (MREIT) pulse sequence. In this paper, the magnetic flux density data were numerically generated. Results: Numerical simulation results show that the proposed method successfully recovers the current density distribution including the effects of the anisotropic, as well as isotropic conductivity values of different tissues in the head. Conclusion: The proposed current density imaging method using DT-MRI and MREIT can reliably recover cross-sectional images of the current density distribution during the tDCS treatment. Significance: Success of the tDCS treatment depends on a precise determination of the induced current density distribution within different anatomical structures of the brain. Quantitative visualization of the current density distribution in the brain will play an important role in understanding the effects of the electrical stimulation. |
---|---|
AbstractList | Transcranial direct current stimulation (tDCS) is a neuromodulatory technique for neuropsychiatric diseases and neurological disorders. In the tDCS treatment, dc current is injected into the head through a pair of electrodes attached on the scalp over a target region. A current density imaging method is needed to quantitatively visualize the internal current density distribution during the tDCS treatment.
We developed a novel current density image reconstruction algorithm using 1) a subject specific segmented 3-D head model, 2) diffusion tensor data, and 3) magnetic flux density data induced by the tDCS current. We acquired T1 weighted and diffusion tensor images of the head using the MRI scanner before the treatment. During the treatment, we can measure the induced magnetic flux density data using a magnetic resonance electrical impedance tomography (MREIT) pulse sequence. In this paper, the magnetic flux density data were numerically generated.
Numerical simulation results show that the proposed method successfully recovers the current density distribution including the effects of the anisotropic, as well as isotropic conductivity values of different tissues in the head.
The proposed current density imaging method using DT-MRI and MREIT can reliably recover cross-sectional images of the current density distribution during the tDCS treatment.
Success of the tDCS treatment depends on a precise determination of the induced current density distribution within different anatomical structures of the brain. Quantitative visualization of the current density distribution in the brain will play an important role in understanding the effects of the electrical stimulation. Objective: Transcranial direct current stimulation (tDCS) is a neuromodulatory technique for neuropsychiatric diseases and neurological disorders. In the tDCS treatment, dc current is injected into the head through a pair of electrodes attached on the scalp over a target region. A current density imaging method is needed to quantitatively visualize the internal current density distribution during the tDCS treatment. Methods: We developed a novel current density image reconstruction algorithm using 1) a subject specific segmented 3-D head model, 2) diffusion tensor data, and 3) magnetic flux density data induced by the tDCS current. We acquired T 1 weighted and diffusion tensor images of the head using the MRI scanner before the treatment. During the treatment, we can measure the induced magnetic flux density data using a magnetic resonance electrical impedance tomography (MREIT) pulse sequence. In this paper, the magnetic flux density data were numerically generated. Results: Numerical simulation results show that the proposed method successfully recovers the current density distribution including the effects of the anisotropic, as well as isotropic conductivity values of different tissues in the head. Conclusion: The proposed current density imaging method using DT-MRI and MREIT can reliably recover cross-sectional images of the current density distribution during the tDCS treatment. Significance: Success of the tDCS treatment depends on a precise determination of the induced current density distribution within different anatomical structures of the brain. Quantitative visualization of the current density distribution in the brain will play an important role in understanding the effects of the electrical stimulation. Transcranial direct current stimulation (tDCS) is a neuromodulatory technique for neuropsychiatric diseases and neurological disorders. In the tDCS treatment, dc current is injected into the head through a pair of electrodes attached on the scalp over a target region. A current density imaging method is needed to quantitatively visualize the internal current density distribution during the tDCS treatment.OBJECTIVETranscranial direct current stimulation (tDCS) is a neuromodulatory technique for neuropsychiatric diseases and neurological disorders. In the tDCS treatment, dc current is injected into the head through a pair of electrodes attached on the scalp over a target region. A current density imaging method is needed to quantitatively visualize the internal current density distribution during the tDCS treatment.We developed a novel current density image reconstruction algorithm using 1) a subject specific segmented 3-D head model, 2) diffusion tensor data, and 3) magnetic flux density data induced by the tDCS current. We acquired T1 weighted and diffusion tensor images of the head using the MRI scanner before the treatment. During the treatment, we can measure the induced magnetic flux density data using a magnetic resonance electrical impedance tomography (MREIT) pulse sequence. In this paper, the magnetic flux density data were numerically generated.METHODSWe developed a novel current density image reconstruction algorithm using 1) a subject specific segmented 3-D head model, 2) diffusion tensor data, and 3) magnetic flux density data induced by the tDCS current. We acquired T1 weighted and diffusion tensor images of the head using the MRI scanner before the treatment. During the treatment, we can measure the induced magnetic flux density data using a magnetic resonance electrical impedance tomography (MREIT) pulse sequence. In this paper, the magnetic flux density data were numerically generated.Numerical simulation results show that the proposed method successfully recovers the current density distribution including the effects of the anisotropic, as well as isotropic conductivity values of different tissues in the head.RESULTSNumerical simulation results show that the proposed method successfully recovers the current density distribution including the effects of the anisotropic, as well as isotropic conductivity values of different tissues in the head.The proposed current density imaging method using DT-MRI and MREIT can reliably recover cross-sectional images of the current density distribution during the tDCS treatment.CONCLUSIONThe proposed current density imaging method using DT-MRI and MREIT can reliably recover cross-sectional images of the current density distribution during the tDCS treatment.Success of the tDCS treatment depends on a precise determination of the induced current density distribution within different anatomical structures of the brain. Quantitative visualization of the current density distribution in the brain will play an important role in understanding the effects of the electrical stimulation.SIGNIFICANCESuccess of the tDCS treatment depends on a precise determination of the induced current density distribution within different anatomical structures of the brain. Quantitative visualization of the current density distribution in the brain will play an important role in understanding the effects of the electrical stimulation. Objective: Transcranial direct current stimulation (tDCS) is a neuromodulatory technique for neuropsychiatric diseases and neurological disorders. In the tDCS treatment, dc current is injected into the head through a pair of electrodes attached on the scalp over a target region. A current density imaging method is needed to quantitatively visualize the internal current density distribution during the tDCS treatment. Methods: We developed a novel current density image reconstruction algorithm using 1) a subject specific segmented 3-D head model, 2) diffusion tensor data, and 3) magnetic flux density data induced by the tDCS current. We acquired [Formula Omitted] weighted and diffusion tensor images of the head using the MRI scanner before the treatment. During the treatment, we can measure the induced magnetic flux density data using a magnetic resonance electrical impedance tomography (MREIT) pulse sequence. In this paper, the magnetic flux density data were numerically generated. Results: Numerical simulation results show that the proposed method successfully recovers the current density distribution including the effects of the anisotropic, as well as isotropic conductivity values of different tissues in the head. Conclusion: The proposed current density imaging method using DT-MRI and MREIT can reliably recover cross-sectional images of the current density distribution during the tDCS treatment. Significance: Success of the tDCS treatment depends on a precise determination of the induced current density distribution within different anatomical structures of the brain. Quantitative visualization of the current density distribution in the brain will play an important role in understanding the effects of the electrical stimulation. |
Author | Oh, Tong In Sajib, Saurav Z. K. Sersa, Igor Kwon, Oh In Kim, Hyung Joong Jeong, Woo Chul Woo, Eung Je |
Author_xml | – sequence: 1 givenname: Oh In surname: Kwon fullname: Kwon, Oh In organization: Konkuk University – sequence: 2 givenname: Saurav Z. K. surname: Sajib fullname: Sajib, Saurav Z. K. organization: Kyung Hee University – sequence: 3 givenname: Igor surname: Sersa fullname: Sersa, Igor organization: Jozef Stefan Institute – sequence: 4 givenname: Tong In surname: Oh fullname: Oh, Tong In organization: Kyung Hee University – sequence: 5 givenname: Woo Chul surname: Jeong fullname: Jeong, Woo Chul organization: Kyung Hee University – sequence: 6 givenname: Hyung Joong surname: Kim fullname: Kim, Hyung Joong organization: Kyung Hee University – sequence: 7 givenname: Eung Je surname: Woo fullname: Woo, Eung Je email: ejwoo@khu.ac.kr organization: Department of Biomedical Engineering, Kyung Hee University, Seoul, Korea |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26111387$$D View this record in MEDLINE/PubMed |
BookMark | eNqNks1u1DAYRS1URKeFB0BIKBKbbjL4i__ZlZkBRuqA1KbryM3Yg6vEGWwHqS_RZyaZny66QN3YsnTOtfz5nqET33mD0HvAUwCsPpdfV4tpgYFNC0olY-wVmgBjMi8YgRM0wRhkrgpFT9FZjPfDkUrK36DTggMAkWKCHmd9CManbG58dOkhW7Z64_wmm_dh3MqgfayHxekmm7tg6pQdlZvk2r7RyXU-u407qcxX18tM-3W2ul4syy_ZZbPpgku_2-GCv6bptu1ojsDPvjXB1UPszVNMfIteW91E8-6wn6Pbb4ty9iO_-vV9Obu8ymsqIeWgjQVLBMU1ZlZgaRmXllguQFosxDCMggwEY2C4lVRgodaWM13cSWWpIefoYp-7Dd2f3sRUtS7Wpmm0N10fKxCKFBQkhxegnCmpGOMvQBkoBYyzAf30DL3v-uCHN-8oggvFx8CPB6q_a8262gbX6vBQHf9vAMQeqEMXYzC2ql3ajTIF7ZoKcDU2pRqbUo1NqQ5NGUx4Zh7D_-d82DvOGPPECyBAGSb_ABTJxy8 |
CODEN | IEBEAX |
CitedBy_id | crossref_primary_10_1088_1361_6560_abbc4d crossref_primary_10_1088_1741_2552_ad7db2 crossref_primary_10_1016_j_jcp_2020_109408 crossref_primary_10_1186_s40779_022_00370_7 crossref_primary_10_1016_j_neuroimage_2021_118517 crossref_primary_10_1016_j_ejmp_2019_02_022 crossref_primary_10_1016_j_heliyon_2022_e12458 crossref_primary_10_1088_2057_1976_aab72e crossref_primary_10_1111_ner_13065 crossref_primary_10_1088_1361_6560_ab7308 crossref_primary_10_1088_1741_2552_aafbbd crossref_primary_10_1371_journal_pone_0254690 crossref_primary_10_1016_j_enganabound_2020_11_010 crossref_primary_10_1088_1361_6560_aaa8d2 crossref_primary_10_1016_j_heliyon_2023_e15195 crossref_primary_10_5213_inj_1734878_439 crossref_primary_10_1016_j_brs_2017_04_125 crossref_primary_10_1016_j_neuroimage_2017_12_075 crossref_primary_10_1007_s13534_018_0066_3 crossref_primary_10_1371_journal_pcbi_1011572 crossref_primary_10_1063_1_4973818 crossref_primary_10_1016_j_clinph_2017_06_001 crossref_primary_10_1109_TMI_2017_2783348 crossref_primary_10_1109_TMI_2020_2969682 crossref_primary_10_1016_j_cobme_2018_09_002 |
Cites_doi | 10.3233/RNN-2007-00375 10.3389/fpsyt.2012.00091 10.1006/jmra.1994.1230 10.1088/0031-9155/59/12/2955 10.1088/0967-3334/24/2/368 10.1109/10.979355 10.1088/0967-3334/29/10/R01 10.1109/42.97586 10.2340/16501977-0356 10.1016/j.neuroimage.2008.09.009 10.1103/PhysRevB.39.4504 10.1109/TBME.2014.2298859 10.1109/TMI.2002.800604 10.1016/j.neuroimage.2010.03.052 10.1007/s13534-011-0020-0 10.1111/j.1525-1403.2012.00481.x 10.1016/0022-2364(92)90310-4 10.1212/WNL.57.10.1899 10.1088/0031-9155/48/21/003 10.1137/080742932 10.1016/j.ymeth.2007.02.001 10.1016/j.nurt.2009.01.003 10.1002/mrm.1910370107 10.1016/0730-725X(89)90328-7 10.1088/0031-9155/52/11/005 10.1002/mrm.21707 10.1016/j.brs.2010.11.001 10.1016/j.pain.2006.02.023 10.2214/ajr.183.2.1830343 10.1002/(SICI)1522-2586(199904)9:4<531::AID-JMRI4>3.0.CO;2-L 10.1088/0031-9155/49/18/012 10.1111/j.1469-7793.2000.t01-1-00633.x 10.1088/0266-5611/18/4/310 10.1016/j.neuroimage.2012.12.034 10.1109/10.784146 10.1152/jn.1965.28.1.166 10.1109/10.554770 10.1073/pnas.171473898 10.1088/0031-9155/48/19/001 10.1016/0028-3932(66)90021-2 10.1016/j.brs.2008.06.004 10.1117/12.179269 10.1109/TBME.2000.880100 10.1088/0967-3334/30/9/007 10.1111/j.1749-6632.1999.tb07965.x 10.1016/j.neuroimage.2007.01.027 10.1109/TBME.2004.827925 10.1088/0031-9155/51/12/005 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016 |
DBID | 97E RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
DOI | 10.1109/TBME.2015.2448555 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Ceramic Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
DatabaseTitleList | MEDLINE Engineering Research Database Technology Research Database MEDLINE - Academic Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering |
EISSN | 1558-2531 |
EndPage | 175 |
ExternalDocumentID | 3903442461 26111387 10_1109_TBME_2015_2448555 7131450 |
Genre | orig-research Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: National Research Foundation of Korea grantid: 2013R1A2A2A04016066; 2014R1A2A1A09006320 funderid: 10.13039/501100003725 |
GroupedDBID | --- -~X .55 .DC .GJ 0R~ 29I 4.4 53G 5GY 5RE 5VS 6IF 6IK 6IL 6IN 85S 97E AAJGR AARMG AASAJ AAWTH AAYJJ ABAZT ABJNI ABQJQ ABVLG ACGFO ACGFS ACIWK ACKIV ACNCT ACPRK ADZIZ AENEX AETIX AFFNX AFRAH AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CHZPO CS3 DU5 EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IEGSK IFIPE IFJZH IPLJI JAVBF LAI MS~ O9- OCL P2P RIA RIE RIL RNS TAE TN5 VH1 VJK X7M ZGI ZXP AAYXX CITATION RIG CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
ID | FETCH-LOGICAL-c481t-1aef1f3740c05f708f568f3f6718f07748523f1f551e6f847079df65a2b89f4e3 |
IEDL.DBID | RIE |
ISSN | 0018-9294 1558-2531 |
IngestDate | Sun Aug 24 03:03:26 EDT 2025 Fri Jul 11 01:40:47 EDT 2025 Fri Jul 11 16:02:23 EDT 2025 Mon Jun 30 08:28:02 EDT 2025 Thu Apr 03 07:08:25 EDT 2025 Thu Jul 03 08:41:17 EDT 2025 Thu Apr 24 23:01:40 EDT 2025 Wed Aug 27 02:52:56 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | magnetic resonance electrical impedance tomography (MREIT) magnetic flux density Conductivity tensor diffusion tensor transcranial direct current stimulation (tDCS) current density |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c481t-1aef1f3740c05f708f568f3f6718f07748523f1f551e6f847079df65a2b89f4e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 26111387 |
PQID | 1751302966 |
PQPubID | 85474 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_1793241861 proquest_journals_1751302966 pubmed_primary_26111387 proquest_miscellaneous_1751991565 ieee_primary_7131450 proquest_miscellaneous_1765989556 crossref_citationtrail_10_1109_TBME_2015_2448555 crossref_primary_10_1109_TBME_2015_2448555 |
PublicationCentury | 2000 |
PublicationDate | 2016-Jan. 2016-1-00 2016-Jan 20160101 |
PublicationDateYYYYMMDD | 2016-01-01 |
PublicationDate_xml | – month: 01 year: 2016 text: 2016-Jan. |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | IEEE transactions on biomedical engineering |
PublicationTitleAbbrev | TBME |
PublicationTitleAlternate | IEEE Trans Biomed Eng |
PublicationYear | 2016 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref15 ref14 ref52 ref11 ref17 ref16 ref19 ref18 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 seo (ref28) 2003; 50 eyuboglu (ref20) 1998; 6 ref7 boggio (ref8) 2007; 25 grimnes (ref33) 2008 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref32 purpura (ref10) 1965; 28 ref2 ref1 ref39 ref38 whittall (ref49) 1997; 37 muftuler (ref27) 2006; 5 ref24 ref23 ref26 ref25 ref22 ref21 ref29 |
References_xml | – volume: 25 start-page: 123 year: 2007 ident: ref8 article-title: Repeated sessions of noninvasive brain DC stimulation is associated with motor function improvement in stroke patients publication-title: Restorative Neurol Neurosci doi: 10.3233/RNN-2007-00375 – ident: ref51 doi: 10.3389/fpsyt.2012.00091 – ident: ref18 doi: 10.1006/jmra.1994.1230 – ident: ref35 doi: 10.1088/0031-9155/59/12/2955 – ident: ref21 doi: 10.1088/0967-3334/24/2/368 – ident: ref23 doi: 10.1109/10.979355 – ident: ref30 doi: 10.1088/0967-3334/29/10/R01 – ident: ref16 doi: 10.1109/42.97586 – ident: ref9 doi: 10.2340/16501977-0356 – volume: 50 start-page: 1121 year: 2003 ident: ref28 article-title: Reconstruction of conductivity and current density images using only one component of magnetic field measurements publication-title: IEEE Trans Med Imag – ident: ref41 doi: 10.1016/j.neuroimage.2008.09.009 – ident: ref38 doi: 10.1103/PhysRevB.39.4504 – ident: ref32 doi: 10.1109/TBME.2014.2298859 – ident: ref24 doi: 10.1109/TMI.2002.800604 – ident: ref4 doi: 10.1016/j.neuroimage.2010.03.052 – ident: ref45 doi: 10.1007/s13534-011-0020-0 – ident: ref52 doi: 10.1111/j.1525-1403.2012.00481.x – ident: ref17 doi: 10.1016/0022-2364(92)90310-4 – ident: ref2 doi: 10.1212/WNL.57.10.1899 – ident: ref25 doi: 10.1088/0031-9155/48/21/003 – ident: ref31 doi: 10.1137/080742932 – ident: ref12 doi: 10.1016/j.ymeth.2007.02.001 – ident: ref6 doi: 10.1016/j.nurt.2009.01.003 – volume: 37 start-page: 34 year: 1997 ident: ref49 article-title: In-vivo measurement of $T_2$ distributions and water contents in normal human brain publication-title: Magn Reson Imag doi: 10.1002/mrm.1910370107 – ident: ref14 doi: 10.1016/0730-725X(89)90328-7 – ident: ref36 doi: 10.1088/0031-9155/52/11/005 – ident: ref47 doi: 10.1002/mrm.21707 – ident: ref50 doi: 10.1016/j.brs.2010.11.001 – ident: ref7 doi: 10.1016/j.pain.2006.02.023 – ident: ref46 doi: 10.2214/ajr.183.2.1830343 – ident: ref48 doi: 10.1002/(SICI)1522-2586(199904)9:4<531::AID-JMRI4>3.0.CO;2-L – ident: ref34 doi: 10.1088/0031-9155/49/18/012 – volume: 6 start-page: 201 year: 1998 ident: ref20 article-title: Imaging electrical current density using nuclear magnetic resonance publication-title: Elektrik – ident: ref1 doi: 10.1111/j.1469-7793.2000.t01-1-00633.x – ident: ref22 doi: 10.1088/0266-5611/18/4/310 – ident: ref5 doi: 10.1016/j.neuroimage.2012.12.034 – ident: ref15 doi: 10.1109/10.784146 – volume: 28 start-page: 166 year: 1965 ident: ref10 article-title: Intracellular activities and evoked potential changes during polarization of motor cortex publication-title: J Neurophysiol doi: 10.1152/jn.1965.28.1.166 – ident: ref43 doi: 10.1109/10.554770 – ident: ref39 doi: 10.1073/pnas.171473898 – ident: ref29 doi: 10.1088/0031-9155/48/19/001 – ident: ref11 doi: 10.1016/0028-3932(66)90021-2 – volume: 5 start-page: 381 year: 2006 ident: ref27 article-title: In vivo MRI electrical impedance tomography (MREIT) of tumors publication-title: Technol Cancer Res Treat – start-page: 94 year: 2008 ident: ref33 publication-title: Bioimpedance and Bioelectricity Basics – ident: ref37 doi: 10.1016/j.brs.2008.06.004 – ident: ref19 doi: 10.1117/12.179269 – ident: ref42 doi: 10.1109/TBME.2000.880100 – ident: ref44 doi: 10.1088/0967-3334/30/9/007 – ident: ref40 doi: 10.1111/j.1749-6632.1999.tb07965.x – ident: ref13 doi: 10.1016/j.neuroimage.2007.01.027 – ident: ref3 doi: 10.1109/TBME.2004.827925 – ident: ref26 doi: 10.1088/0031-9155/51/12/005 |
SSID | ssj0014846 |
Score | 2.3496897 |
Snippet | Objective: Transcranial direct current stimulation (tDCS) is a neuromodulatory technique for neuropsychiatric diseases and neurological disorders. In the tDCS... Transcranial direct current stimulation (tDCS) is a neuromodulatory technique for neuropsychiatric diseases and neurological disorders. In the tDCS treatment,... |
SourceID | proquest pubmed crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 168 |
SubjectTerms | Adult Algorithms Computer Simulation Conductivity conductivity tensor Current density Density diffusion tensor Direct current Electric Impedance Electrodes Female Finite element analysis Fluctuations Head Head - physiology Humans Image reconstruction Imaging Imaging, Three-Dimensional - methods Magnetic flux magnetic flux density Magnetic resonance imaging Magnetic Resonance Imaging - methods Magnetism Mathematical models MREIT Stimulation tDCS Tensile stress Transcranial Direct Current Stimulation - methods |
Title | Current Density Imaging During Transcranial Direct Current Stimulation Using DT-MRI and MREIT: Algorithm Development and Numerical Simulations |
URI | https://ieeexplore.ieee.org/document/7131450 https://www.ncbi.nlm.nih.gov/pubmed/26111387 https://www.proquest.com/docview/1751302966 https://www.proquest.com/docview/1751991565 https://www.proquest.com/docview/1765989556 https://www.proquest.com/docview/1793241861 |
Volume | 63 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Nb9MwFLfGDggOMDY-AgMZiRMind3YjrPbtnZakbLD1km7RY5jw0SbTltyGH8EfzPPjhNVCCouUaU8R478Xt_vl_eF0CfLklKUaRWPhbIx8A0FJsWr2JTgTjXTaVm5euf8XJxdsa_X_HoLfRlqYYwxPvnMjNxPH8uvVrp1n8oOgFBR5gj6IyBuXa3WEDFgsivKIRQMeJyxEMGkJDuYH-dTl8TFR-DLJOduWg0QB0oTl0i35o78fJV_Q03vck6fo7zfbJdp8mPUNuVI__yjj-P_vs0OehawJz7qlOUF2jL1Lnq61pFwFz3OQ6x9D_0KrZvwxOW4Nw94tvQTjfDEVzZi7-U0XECDcffPifsll83NMswFwz4pAU_mcX4xw6qucH4xnc0P8dHi2-rupvm-xGuJS17gvO3CSAt8OTzm_iW6Op3OT87iML0h1kzSJqbKWGqTlBFNuE2JtFxIm1gB3tASQJ0SODBIAGQzwoKTJGlWWcHVuJSZZSZ5hbbrVW3eIFwakY61rAwDtgjrVcmrRGeJVFYpwkyESH-IhQ6tzd2EjUXhKQ7JCqcChVOBIqhAhD4PS267vh6bhPfc8Q2C4eQitN9rShEs_74AOOZiwcAiI_RxuA026wIxqjartpMBXA5YepOM4JnMON_4HEDfjEpBI_S609Rhj72Cv_373t-hJ_CG4WPSPtpu7lrzHuBVU37wdvUbH6EemA |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELaqIvE48GgpBAoYiRMiW3tjJw63wm61C80e2lTqLXIcGyp2s6hNDvAj-M2MHSdaIVhxiSJlbNnyTOYbzwuhN4ZFZVwmVTiOpQnB3pAgUrwKdQnqVDGVlJXNd84W8eyCfbrklzvo3ZALo7V2wWd6ZF-dL79aq9ZelR2BQUWZNdBvgd7ntMvWGnwGTHRpOYSCCI9T5n2YlKRH-YdsasO4-Ai0meDc9qsB04HSyIbSbSgk12Hl32DTKZ2TByjrl9vFmnwbtU05Uj__qOT4v_t5iO579ImPO3Z5hHZ0vYfubdQk3EO3M-9t30e_fPEmPLFR7s0PPF-5nkZ44nIbsdNzCh7Aw7j7d-J-yHlztfKdwbALS8CTPMzO5ljWFc7OpvP8PT5efllfXzVfV3gjdMkRLNrOkbTE58M0N4_Rxck0_zgLff-GUDFBm5BKbaiJEkYU4SYhwvBYmMjEoA8NAdwpwAoGCjhKHRtQkyRJKxNzOS5FapiODtBuva71U4RLHSdjJSrNwF6E8bLkVaTSSEgjJWE6QKQ_xEL54ua2x8aycEYOSQvLAoVlgcKzQIDeDkO-d5U9thHv2-MbCP3JBeiw55TCy_5NAYDMeoPBjgzQ6-EzSK11xchar9uOBpA5oOltNDFPRcr51nkAfzMqYhqgJx2nDmvsGfzZ39f-Ct2Z5dlpcTpffH6O7sJu_dXSIdptrlv9AsBWU750MvYbLxgh4Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Current+Density+Imaging+During+Transcranial+Direct+Current+Stimulation+Using+DT-MRI+and+MREIT%3A+Algorithm+Development+and+Numerical+Simulations&rft.jtitle=IEEE+transactions+on+biomedical+engineering&rft.au=Kwon%2C+Oh+In&rft.au=Sajib%2C+Saurav+Z.+K.&rft.au=Sersa%2C+Igor&rft.au=Oh%2C+Tong+In&rft.date=2016-01-01&rft.pub=IEEE&rft.issn=0018-9294&rft.volume=63&rft.issue=1&rft.spage=168&rft.epage=175&rft_id=info:doi/10.1109%2FTBME.2015.2448555&rft_id=info%3Apmid%2F26111387&rft.externalDocID=7131450 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9294&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9294&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9294&client=summon |