Zebrafish embryos as an alternative to animal experiments—A commentary on the definition of the onset of protected life stages in animal welfare regulations

Worldwide, the zebrafish has become a popular model for biomedical research and (eco)toxicology. Particularly the use of embryos is receiving increasing attention, since they are considered as replacement method for animal experiments. Zebrafish embryos allow the analysis of multiple endpoints rangi...

Full description

Saved in:
Bibliographic Details
Published inReproductive toxicology (Elmsford, N.Y.) Vol. 33; no. 2; pp. 128 - 132
Main Authors Strähle, Uwe, Scholz, Stefan, Geisler, Robert, Greiner, Petra, Hollert, Henner, Rastegar, Sepand, Schumacher, Axel, Selderslaghs, Ingrid, Weiss, Carsten, Witters, Hilda, Braunbeck, Thomas
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.04.2012
Subjects
Online AccessGet full text
ISSN0890-6238
1873-1708
1873-1708
DOI10.1016/j.reprotox.2011.06.121

Cover

Loading…
Abstract Worldwide, the zebrafish has become a popular model for biomedical research and (eco)toxicology. Particularly the use of embryos is receiving increasing attention, since they are considered as replacement method for animal experiments. Zebrafish embryos allow the analysis of multiple endpoints ranging from acute and developmental toxicity determination to complex functional genetic and physiological analysis. Particularly the more complex endpoints require the use of post-hatched eleutheroembryo stages. According to the new EU Directive 2010/63/EU on the protection of animals used for scientific purposes, the earliest life-stages of animals are not defined as protected and, therefore, do not fall into the regulatory frameworks dealing with animal experimentation. Independent feeding is considered as the stage from which free-living larvae are subject to regulations for animal experimentation. However, despite this seemingly clear definition, large variations exist in the interpretation of this criterion by national and regional authorities. Since some assays require the use of post-hatched stages up to 120h post fertilization, the literature and available data are reviewed in order to evaluate if this stage could still be considered as non-protected according to the regulatory criterion of independent feeding. Based on our analysis and by including criteria such as yolk consumption, feeding and swimming behavior, we conclude that zebrafish larvae can indeed be regarded as independently feeding from 120h after fertilization. Experiments with zebrafish should thus be subject to regulations for animal experiments from 120h after fertilization onwards.
AbstractList Worldwide, the zebrafish has become a popular model for biomedical research and (eco)toxicology. Particularly the use of embryos is receiving increasing attention, since they are considered as replacement method for animal experiments. Zebrafish embryos allow the analysis of multiple endpoints ranging from acute and developmental toxicity determination to complex functional genetic and physiological analysis. Particularly the more complex endpoints require the use of post-hatched eleutheroembryo stages. According to the new EU Directive 2010/63/EU on the protection of animals used for scientific purposes, the earliest life-stages of animals are not defined as protected and, therefore, do not fall into the regulatory frameworks dealing with animal experimentation. Independent feeding is considered as the stage from which free-living larvae are subject to regulations for animal experimentation. However, despite this seemingly clear definition, large variations exist in the interpretation of this criterion by national and regional authorities. Since some assays require the use of post-hatched stages up to 120 h post fertilization, the literature and available data are reviewed in order to evaluate if this stage could still be considered as non-protected according to the regulatory criterion of independent feeding. Based on our analysis and by including criteria such as yolk consumption, feeding and swimming behavior, we conclude that zebrafish larvae can indeed be regarded as independently feeding from 120 h after fertilization. Experiments with zebrafish should thus be subject to regulations for animal experiments from 120 h after fertilization onwards.
Worldwide, the zebrafish has become a popular model for biomedical research and (eco)toxicology. Particularly the use of embryos is receiving increasing attention, since they are considered as replacement method for animal experiments. Zebrafish embryos allow the analysis of multiple endpoints ranging from acute and developmental toxicity determination to complex functional genetic and physiological analysis. Particularly the more complex endpoints require the use of post-hatched eleutheroembryo stages. According to the new EU Directive 2010/63/EU on the protection of animals used for scientific purposes, the earliest life-stages of animals are not defined as protected and, therefore, do not fall into the regulatory frameworks dealing with animal experimentation. Independent feeding is considered as the stage from which free-living larvae are subject to regulations for animal experimentation. However, despite this seemingly clear definition, large variations exist in the interpretation of this criterion by national and regional authorities. Since some assays require the use of post-hatched stages up to 120h post fertilization, the literature and available data are reviewed in order to evaluate if this stage could still be considered as non-protected according to the regulatory criterion of independent feeding. Based on our analysis and by including criteria such as yolk consumption, feeding and swimming behavior, we conclude that zebrafish larvae can indeed be regarded as independently feeding from 120h after fertilization. Experiments with zebrafish should thus be subject to regulations for animal experiments from 120h after fertilization onwards.
Worldwide, the zebrafish has become a popular model for biomedical research and (eco)toxicology. Particularly the use of embryos is receiving increasing attention, since they are considered as replacement method for animal experiments. Zebrafish embryos allow the analysis of multiple endpoints ranging from acute and developmental toxicity determination to complex functional genetic and physiological analysis. Particularly the more complex endpoints require the use of post-hatched eleutheroembryo stages. According to the new EU Directive 2010/63/EU on the protection of animals used for scientific purposes, the earliest life-stages of animals are not defined as protected and, therefore, do not fall into the regulatory frameworks dealing with animal experimentation. Independent feeding is considered as the stage from which free-living larvae are subject to regulations for animal experimentation. However, despite this seemingly clear definition, large variations exist in the interpretation of this criterion by national and regional authorities. Since some assays require the use of post-hatched stages up to 120 h post fertilization, the literature and available data are reviewed in order to evaluate if this stage could still be considered as non-protected according to the regulatory criterion of independent feeding. Based on our analysis and by including criteria such as yolk consumption, feeding and swimming behavior, we conclude that zebrafish larvae can indeed be regarded as independently feeding from 120 h after fertilization. Experiments with zebrafish should thus be subject to regulations for animal experiments from 120 h after fertilization onwards.Worldwide, the zebrafish has become a popular model for biomedical research and (eco)toxicology. Particularly the use of embryos is receiving increasing attention, since they are considered as replacement method for animal experiments. Zebrafish embryos allow the analysis of multiple endpoints ranging from acute and developmental toxicity determination to complex functional genetic and physiological analysis. Particularly the more complex endpoints require the use of post-hatched eleutheroembryo stages. According to the new EU Directive 2010/63/EU on the protection of animals used for scientific purposes, the earliest life-stages of animals are not defined as protected and, therefore, do not fall into the regulatory frameworks dealing with animal experimentation. Independent feeding is considered as the stage from which free-living larvae are subject to regulations for animal experimentation. However, despite this seemingly clear definition, large variations exist in the interpretation of this criterion by national and regional authorities. Since some assays require the use of post-hatched stages up to 120 h post fertilization, the literature and available data are reviewed in order to evaluate if this stage could still be considered as non-protected according to the regulatory criterion of independent feeding. Based on our analysis and by including criteria such as yolk consumption, feeding and swimming behavior, we conclude that zebrafish larvae can indeed be regarded as independently feeding from 120 h after fertilization. Experiments with zebrafish should thus be subject to regulations for animal experiments from 120 h after fertilization onwards.
Author Strähle, Uwe
Geisler, Robert
Schumacher, Axel
Selderslaghs, Ingrid
Rastegar, Sepand
Greiner, Petra
Braunbeck, Thomas
Scholz, Stefan
Hollert, Henner
Weiss, Carsten
Witters, Hilda
Author_xml – sequence: 1
  givenname: Uwe
  surname: Strähle
  fullname: Strähle, Uwe
  email: uwe.straehle@kit.edu
  organization: KIT – Karlsruhe Institute of Technology, Institute of Toxicology and Genetics, Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
– sequence: 2
  givenname: Stefan
  surname: Scholz
  fullname: Scholz, Stefan
  email: stefan.scholz@ufz.de
  organization: Department of Bioanalytical Ecotoxicology, UFZ – Helmholtz Centre for Environmental Research, Permoserstr. 15, D-04318 Leipzig, Germany
– sequence: 3
  givenname: Robert
  surname: Geisler
  fullname: Geisler, Robert
  email: robert.geisler@kit.edu
  organization: KIT – Karlsruhe Institute of Technology, Institute of Toxicology and Genetics, Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
– sequence: 4
  givenname: Petra
  surname: Greiner
  fullname: Greiner, Petra
  organization: Federal Environment Agency, Wörlitzer Platz 1, D-06844 Dessau, Germany
– sequence: 5
  givenname: Henner
  surname: Hollert
  fullname: Hollert, Henner
  organization: Department of Ecosystem Analysis, Institute for Environmental Research (Biology V), RWTH Aachen University, 52074 Aachen, Germany
– sequence: 6
  givenname: Sepand
  surname: Rastegar
  fullname: Rastegar, Sepand
  organization: KIT – Karlsruhe Institute of Technology, Institute of Toxicology and Genetics, Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
– sequence: 7
  givenname: Axel
  surname: Schumacher
  fullname: Schumacher, Axel
  organization: KIT – Karlsruhe Institute of Technology, Institute of Toxicology and Genetics, Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
– sequence: 8
  givenname: Ingrid
  surname: Selderslaghs
  fullname: Selderslaghs, Ingrid
  organization: VITO, Flemish Institute for Technological Research, Unit of Environmental Risk and Health, CARDAM, Centre of Advanced R&D on Alternative Methods, Boeretang 200, 2400 Mol, Belgium
– sequence: 9
  givenname: Carsten
  surname: Weiss
  fullname: Weiss, Carsten
  organization: KIT – Karlsruhe Institute of Technology, Institute of Toxicology and Genetics, Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
– sequence: 10
  givenname: Hilda
  surname: Witters
  fullname: Witters, Hilda
  organization: VITO, Flemish Institute for Technological Research, Unit of Environmental Risk and Health, CARDAM, Centre of Advanced R&D on Alternative Methods, Boeretang 200, 2400 Mol, Belgium
– sequence: 11
  givenname: Thomas
  surname: Braunbeck
  fullname: Braunbeck, Thomas
  email: braunbeck@uni-hd.de
  organization: Aquatic Ecology and Toxicology Group, COS – Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 230, D-69120 Heidelberg, Germany
BackLink https://www.ncbi.nlm.nih.gov/pubmed/21726626$$D View this record in MEDLINE/PubMed
BookMark eNqFUbtu3DAQJAIb8dnJLxjsUknhUhIlASliGHkBBtLYjRuCopY2DxJ5IXl-dPmI1Pm4fEkony9FGhMLELuYGezOHJMD5x0ScgqsBAbi_boMuAk--YeSM4CSiRI4vCIr6NqqgJZ1B2TFup4VglfdETmOcc0Yq9u-fU2OOLRcCC5W5Pc1DkEZG28pzkN49JGqXI6qKWFwKtk7pMnniZ3VRPFhg8HO6FL88_PXGdV-XhoVHql3NN0iHdFYZ5PNrTdPE-8ipqVZ9kWdcKSTNUhjUjcYqXV78XucjApIA95sJ7VIxDfk0Kgp4tvn_4Rcff50ef61uPj-5dv52UWh6w5SATBWrWp4p-t2wFZzEANw3bFGd5rpXjSsqbHRVZ3vrgCEGeraNEN-zdgqU52QdzvdvOOPLcYkZxs1TpNy6LdR9rwHzptGZOTpM3I7zDjKTbYjny_3lmaA2AF08DEGNP8gwOSSnVzLfXZyyU4yIXN2mfjhP6K26cmGFJSdXqZ_3NEx-3RnMcioLTqNow3ZdTl6-5LEXzuxvuI
CitedBy_id crossref_primary_10_1002_jbt_22843
crossref_primary_10_1186_s12989_019_0302_8
crossref_primary_10_1016_j_chemosphere_2015_05_041
crossref_primary_10_1016_j_aquatox_2016_01_013
crossref_primary_10_1007_s11356_014_3502_7
crossref_primary_10_1002_jat_3353
crossref_primary_10_3390_ijms19123976
crossref_primary_10_3762_bjoc_16_6
crossref_primary_10_1016_j_scitotenv_2020_143769
crossref_primary_10_15252_embr_201643153
crossref_primary_10_1039_D1EN00299F
crossref_primary_10_1016_j_scitotenv_2019_04_200
crossref_primary_10_3390_molecules26041170
crossref_primary_10_3389_fenvs_2019_00135
crossref_primary_10_1021_es504685c
crossref_primary_10_1016_j_envpol_2018_10_129
crossref_primary_10_1002_etc_2932
crossref_primary_10_1242_jeb_118224
crossref_primary_10_3390_ijms18040704
crossref_primary_10_1002_tox_24024
crossref_primary_10_1016_j_scitotenv_2016_01_066
crossref_primary_10_1016_j_scitotenv_2021_149125
crossref_primary_10_1371_journal_pone_0090619
crossref_primary_10_1007_s11356_022_24531_2
crossref_primary_10_1016_j_tiv_2021_105269
crossref_primary_10_1016_j_aquatox_2014_05_016
crossref_primary_10_1007_s00216_020_03131_4
crossref_primary_10_1007_s11356_015_5019_0
crossref_primary_10_1007_s11356_022_21793_8
crossref_primary_10_1016_j_nano_2014_09_004
crossref_primary_10_1016_j_reprotox_2013_06_067
crossref_primary_10_3390_molecules24010008
crossref_primary_10_1016_j_scitotenv_2017_09_257
crossref_primary_10_1016_j_ygcen_2018_05_001
crossref_primary_10_1016_j_reprotox_2012_05_093
crossref_primary_10_1186_s12302_024_00913_w
crossref_primary_10_1038_s41596_022_00754_y
crossref_primary_10_3390_app13031883
crossref_primary_10_1016_j_scitotenv_2024_172199
crossref_primary_10_1016_j_aquatox_2018_04_009
crossref_primary_10_1089_zeb_2012_0742
crossref_primary_10_1016_j_jhazmat_2021_125889
crossref_primary_10_1016_j_aquatox_2017_11_009
crossref_primary_10_1111_epi_16932
crossref_primary_10_1371_journal_pbio_3000585
crossref_primary_10_1016_j_reprotox_2011_09_001
crossref_primary_10_1021_acs_estlett_5b00123
crossref_primary_10_1371_journal_pone_0179636
crossref_primary_10_1007_s11356_023_29186_1
crossref_primary_10_1016_j_envint_2019_06_006
crossref_primary_10_1021_acs_est_1c06729
crossref_primary_10_1021_acsabm_9b00264
crossref_primary_10_1021_acs_chemrestox_1c00335
crossref_primary_10_3389_fmicb_2017_00036
crossref_primary_10_1007_s11356_020_11729_5
crossref_primary_10_1016_j_heliyon_2024_e24406
crossref_primary_10_3390_jdb6010006
crossref_primary_10_1002_etc_2718
crossref_primary_10_1016_j_aquatox_2020_105540
crossref_primary_10_12688_openreseurope_19088_1
crossref_primary_10_1016_j_jksus_2024_103241
crossref_primary_10_1038_s41597_025_04731_4
crossref_primary_10_1038_s41398_024_02806_1
crossref_primary_10_1007_s41742_019_00183_y
crossref_primary_10_1016_j_envres_2024_119180
crossref_primary_10_3390_ijms241612791
crossref_primary_10_1080_01480545_2016_1223095
crossref_primary_10_1080_02772248_2019_1587442
crossref_primary_10_1016_j_taap_2016_06_008
crossref_primary_10_1016_j_cbpc_2024_109980
crossref_primary_10_1016_j_jksus_2020_03_017
crossref_primary_10_1016_j_cbpc_2020_108771
crossref_primary_10_3346_jkms_2020_35_e51
crossref_primary_10_1149_2_0331905jes
crossref_primary_10_1007_s11356_014_3185_0
crossref_primary_10_1021_acs_chemrestox_9b00335
crossref_primary_10_48022_mbl_2010_10012
crossref_primary_10_3390_ph14060594
crossref_primary_10_1016_j_jhazmat_2021_127800
crossref_primary_10_1038_s41598_023_34593_y
crossref_primary_10_1080_15287394_2017_1371091
crossref_primary_10_1007_s00467_018_3921_7
crossref_primary_10_1371_journal_pone_0193889
crossref_primary_10_1021_acs_est_4c04156
crossref_primary_10_3390_cells11091457
crossref_primary_10_3390_ijms241813938
crossref_primary_10_1016_j_envpol_2021_117481
crossref_primary_10_3920_QAS2013_0382
crossref_primary_10_1002_1873_3468_14411
crossref_primary_10_1016_j_envpol_2019_113027
crossref_primary_10_3389_fpubh_2017_00074
crossref_primary_10_1016_j_scitotenv_2017_02_236
crossref_primary_10_1016_j_scitotenv_2021_151744
crossref_primary_10_1016_j_tiv_2019_104638
crossref_primary_10_1002_jat_4757
crossref_primary_10_3390_md20020123
crossref_primary_10_1007_s00210_019_01666_7
crossref_primary_10_3390_toxics9050104
crossref_primary_10_1039_C7NR03034G
crossref_primary_10_3390_ijms161024718
crossref_primary_10_1016_j_envint_2023_108227
crossref_primary_10_1007_s11356_024_34870_x
crossref_primary_10_3390_w14040511
crossref_primary_10_3390_ijms23094720
crossref_primary_10_1016_j_ntt_2022_107136
crossref_primary_10_1021_es301729q
crossref_primary_10_1021_cr4000013
crossref_primary_10_1364_BOE_488614
crossref_primary_10_1021_es403899t
crossref_primary_10_1016_j_scitotenv_2021_152621
crossref_primary_10_1039_D0MO00007H
crossref_primary_10_1016_j_ecoenv_2016_11_024
crossref_primary_10_1016_j_ecoenv_2023_115886
crossref_primary_10_1016_j_scitotenv_2021_148368
crossref_primary_10_1016_j_scitotenv_2023_169787
crossref_primary_10_1016_j_ddmod_2017_04_003
crossref_primary_10_1016_j_scitotenv_2023_162901
crossref_primary_10_1016_j_aquatox_2017_10_002
crossref_primary_10_1016_j_ecoenv_2020_111165
crossref_primary_10_1016_j_envpol_2018_09_043
crossref_primary_10_1021_acs_est_5b01910
crossref_primary_10_1007_s11356_016_7092_4
crossref_primary_10_1371_journal_pone_0315394
crossref_primary_10_22376_ijpbs_2018_9_3_p31_37
crossref_primary_10_1186_s12302_020_00421_7
crossref_primary_10_1016_j_scitotenv_2021_146075
crossref_primary_10_1039_D3EN00813D
crossref_primary_10_1016_j_neuro_2024_03_005
crossref_primary_10_1016_j_chemosphere_2018_10_162
crossref_primary_10_1016_j_chemosphere_2016_01_050
crossref_primary_10_1016_j_reprotox_2023_108513
crossref_primary_10_1038_s41467_024_48926_6
crossref_primary_10_3390_ijms24043942
crossref_primary_10_1016_j_aquatox_2017_10_019
crossref_primary_10_1016_j_envpol_2021_118667
crossref_primary_10_1016_j_envint_2025_109349
crossref_primary_10_1089_zeb_2020_1898
crossref_primary_10_3390_genes12111738
crossref_primary_10_47853_FAS_2022_e11
crossref_primary_10_3109_10408444_2012_737762
crossref_primary_10_1016_j_aquatox_2019_105263
crossref_primary_10_1002_etc_5472
crossref_primary_10_1016_j_scitotenv_2019_02_435
crossref_primary_10_3109_19396368_2011_648302
crossref_primary_10_1016_j_aquatox_2022_106240
crossref_primary_10_3390_biomedicines12081921
crossref_primary_10_1016_j_pbb_2020_173066
crossref_primary_10_2139_ssrn_4187704
crossref_primary_10_1007_s11356_016_6704_3
crossref_primary_10_1016_j_reprotox_2014_05_015
crossref_primary_10_3390_cells14020109
crossref_primary_10_1002_jbm_a_36110
crossref_primary_10_1007_s11356_020_07902_5
crossref_primary_10_1007_s13273_021_00128_7
crossref_primary_10_1016_j_scitotenv_2020_143914
crossref_primary_10_1111_joa_13165
crossref_primary_10_3389_fphar_2017_00453
crossref_primary_10_3389_fmicb_2015_00038
crossref_primary_10_1016_j_ecoenv_2019_01_050
crossref_primary_10_3390_cells7090130
crossref_primary_10_1038_s41531_023_00615_9
crossref_primary_10_1080_10408444_2019_1617236
crossref_primary_10_1016_j_toxlet_2019_06_009
crossref_primary_10_1016_j_aquatox_2020_105607
crossref_primary_10_1016_j_cbpc_2020_108834
crossref_primary_10_1016_j_jpba_2024_116187
crossref_primary_10_1016_j_fct_2017_02_041
crossref_primary_10_1016_j_isci_2023_107342
crossref_primary_10_1016_j_jes_2024_07_031
crossref_primary_10_1177_2397847318820768
crossref_primary_10_1016_j_chemosphere_2016_08_032
crossref_primary_10_1002_smll_202004182
crossref_primary_10_1016_j_aquatox_2015_12_001
crossref_primary_10_3390_su14031732
crossref_primary_10_1016_j_chemosphere_2018_01_045
crossref_primary_10_1016_j_chemosphere_2018_01_046
crossref_primary_10_1111_jphp_13025
crossref_primary_10_1007_s00204_021_03071_7
crossref_primary_10_1002_cbic_202400143
crossref_primary_10_1016_j_envpol_2012_12_029
crossref_primary_10_1080_10408444_2025_2461076
crossref_primary_10_1093_g3journal_jkad298
crossref_primary_10_1021_acs_est_5b06158
crossref_primary_10_1007_s00204_024_03944_7
crossref_primary_10_1016_j_scitotenv_2024_174541
crossref_primary_10_3390_biom13121780
crossref_primary_10_1016_j_aquatox_2019_105232
crossref_primary_10_1186_s12302_024_01017_1
crossref_primary_10_1111_jfb_14405
crossref_primary_10_1126_sciadv_abm1140
crossref_primary_10_1007_s11356_012_1037_3
crossref_primary_10_3390_ani11010054
crossref_primary_10_1002_etc_4055
crossref_primary_10_1016_j_ecoenv_2020_110324
crossref_primary_10_2147_IJN_S400330
crossref_primary_10_1016_j_chemosphere_2019_125060
crossref_primary_10_3390_ijms222212362
crossref_primary_10_1017_cts_2021_803
crossref_primary_10_1016_j_heliyon_2024_e33865
crossref_primary_10_1002_smll_201801571
crossref_primary_10_1016_j_procbio_2019_07_013
crossref_primary_10_3390_biom13121797
crossref_primary_10_1016_j_scitotenv_2017_01_156
crossref_primary_10_3389_fphar_2021_714918
crossref_primary_10_3390_ijms21249403
crossref_primary_10_3390_ani11020299
crossref_primary_10_1002_tox_22038
crossref_primary_10_1039_D4NH00041B
crossref_primary_10_1007_s00216_012_5713_4
crossref_primary_10_1007_s10646_023_02695_y
crossref_primary_10_1016_j_ecoenv_2020_110330
crossref_primary_10_3389_fcell_2022_1085225
crossref_primary_10_1007_s12975_021_00907_3
crossref_primary_10_1089_zeb_2014_0989
crossref_primary_10_1021_acs_est_9b07204
crossref_primary_10_1016_j_jhazmat_2020_122881
crossref_primary_10_1016_j_scitotenv_2023_168741
crossref_primary_10_1007_s11356_013_2488_x
crossref_primary_10_1016_j_chemosphere_2020_127385
crossref_primary_10_1016_j_microc_2019_104035
crossref_primary_10_1186_s12302_015_0040_y
crossref_primary_10_3389_fnmol_2023_1114928
crossref_primary_10_3390_toxics12010059
crossref_primary_10_1016_j_sajb_2019_07_022
crossref_primary_10_1038_s41598_018_37636_x
crossref_primary_10_3390_molecules24142549
crossref_primary_10_1002_bdr2_2075
crossref_primary_10_3389_fcell_2021_721130
crossref_primary_10_1007_s11356_017_0732_5
crossref_primary_10_1080_17435390_2022_2105172
crossref_primary_10_1177_07482337241238475
crossref_primary_10_1016_j_taap_2013_02_015
crossref_primary_10_1016_j_scitotenv_2020_140753
crossref_primary_10_1002_etc_5578
crossref_primary_10_1016_j_scitotenv_2023_162197
crossref_primary_10_1016_j_jhazmat_2018_09_089
crossref_primary_10_1007_s40974_018_0086_y
crossref_primary_10_1016_j_taap_2020_115249
crossref_primary_10_3390_biology11040546
crossref_primary_10_1016_j_taap_2021_115424
crossref_primary_10_1021_acs_est_0c02068
crossref_primary_10_1007_s00204_013_1044_2
crossref_primary_10_1016_j_arabjc_2023_105361
crossref_primary_10_1016_j_scitotenv_2019_136174
crossref_primary_10_3389_fcell_2021_736960
crossref_primary_10_1016_j_watres_2018_11_039
crossref_primary_10_1289_EHP9931
crossref_primary_10_1016_j_scitotenv_2018_06_213
crossref_primary_10_1016_j_cbi_2015_05_022
crossref_primary_10_1016_j_reprotox_2015_06_050
crossref_primary_10_3389_fphar_2023_1245246
crossref_primary_10_1002_etc_5878
crossref_primary_10_1002_etc_3579
crossref_primary_10_1038_srep38485
crossref_primary_10_1186_1472_6750_13_53
crossref_primary_10_1007_s11356_021_16354_4
crossref_primary_10_3390_mps7030043
crossref_primary_10_1021_es202248h
crossref_primary_10_1007_s11368_016_1499_x
crossref_primary_10_1007_s00244_025_01113_0
crossref_primary_10_1016_j_toxrep_2025_101980
crossref_primary_10_3390_ijms25084517
crossref_primary_10_1007_s11356_014_2676_3
crossref_primary_10_1007_s00204_022_03253_x
crossref_primary_10_1016_j_chemosphere_2019_01_019
crossref_primary_10_1016_j_ntt_2013_01_003
crossref_primary_10_1016_j_yrtph_2021_105054
crossref_primary_10_1021_acs_chemrestox_5b00208
crossref_primary_10_3390_pr12040830
crossref_primary_10_1016_j_scitotenv_2013_06_060
crossref_primary_10_1007_s00401_022_02431_6
crossref_primary_10_1016_j_reprotox_2012_07_009
crossref_primary_10_1016_j_cbpc_2019_108636
crossref_primary_10_1093_toxres_tfab028
crossref_primary_10_1007_s11356_014_3466_7
crossref_primary_10_1371_journal_pone_0113158
crossref_primary_10_1038_s41598_019_38530_w
crossref_primary_10_1007_s00767_015_0311_y
crossref_primary_10_1016_j_toxrep_2020_12_004
crossref_primary_10_1016_j_envpol_2017_12_020
crossref_primary_10_1016_j_ecoenv_2020_110946
crossref_primary_10_1016_j_tiv_2017_11_007
crossref_primary_10_1128_AEM_04175_14
crossref_primary_10_1016_j_snb_2018_10_122
crossref_primary_10_1002_med_21463
crossref_primary_10_1016_j_ntt_2015_05_006
crossref_primary_10_15252_embj_201694448
crossref_primary_10_1002_etc_4212
crossref_primary_10_1016_j_reprotox_2024_108615
crossref_primary_10_1186_s12302_020_00398_3
crossref_primary_10_1371_journal_pone_0148114
crossref_primary_10_1007_s11356_015_4673_6
crossref_primary_10_1016_j_eehl_2024_12_002
crossref_primary_10_3390_pharmaceutics17010116
crossref_primary_10_3839_jabc_2024_059
crossref_primary_10_1016_j_chemosphere_2019_124948
crossref_primary_10_1016_j_ecoenv_2014_05_013
crossref_primary_10_1089_zeb_2018_1579
crossref_primary_10_1016_j_aquatox_2018_09_007
crossref_primary_10_1111_cts_12793
crossref_primary_10_1021_acs_est_0c04872
crossref_primary_10_1002_etc_4744
crossref_primary_10_1007_s11356_019_04488_5
crossref_primary_10_1002_smll_202408316
crossref_primary_10_3390_biology12050711
crossref_primary_10_1016_j_scitotenv_2020_143053
crossref_primary_10_1016_j_reprotox_2020_02_010
crossref_primary_10_1590_1678_4324_2024220968
crossref_primary_10_2139_ssrn_4059781
crossref_primary_10_1016_j_aquatox_2016_12_015
crossref_primary_10_1039_C7TB00011A
crossref_primary_10_1016_j_ymeth_2013_06_002
crossref_primary_10_1016_j_bioorg_2019_103397
crossref_primary_10_3390_antiox8040108
crossref_primary_10_1016_j_beproc_2023_104943
crossref_primary_10_1016_j_scitotenv_2019_04_082
crossref_primary_10_1016_j_reprotox_2016_06_004
crossref_primary_10_1007_s00204_022_03340_z
crossref_primary_10_1108_RPJ_10_2018_0268
crossref_primary_10_1016_j_aquatox_2016_12_006
crossref_primary_10_1371_journal_pone_0294048
crossref_primary_10_1016_j_cbpc_2018_05_012
crossref_primary_10_1021_acs_chemrestox_0c00095
crossref_primary_10_1371_journal_pone_0203087
crossref_primary_10_1128_aac_00829_24
crossref_primary_10_1016_j_reprotox_2011_12_010
crossref_primary_10_1111_bph_15247
crossref_primary_10_1016_j_chemosphere_2018_09_072
crossref_primary_10_1016_j_cbpc_2023_109816
crossref_primary_10_1093_bfgp_elt046
crossref_primary_10_3390_toxics12050349
crossref_primary_10_1016_j_scitotenv_2022_157922
crossref_primary_10_1016_j_cbi_2023_110565
crossref_primary_10_1007_s00401_024_02721_1
crossref_primary_10_3390_pharmaceutics13081222
crossref_primary_10_1016_j_taap_2016_05_019
crossref_primary_10_1038_s41598_017_02255_5
crossref_primary_10_1007_s11356_015_5362_1
crossref_primary_10_1016_j_jgr_2017_03_005
crossref_primary_10_1016_j_reprotox_2017_07_002
crossref_primary_10_1016_j_reprotox_2011_12_004
crossref_primary_10_1016_j_envint_2023_107910
crossref_primary_10_1002_tox_23515
crossref_primary_10_1007_s00216_018_1471_2
crossref_primary_10_1016_j_cbpc_2016_02_007
crossref_primary_10_1002_pbc_30053
crossref_primary_10_1021_acs_est_1c00837
crossref_primary_10_1016_j_chemosphere_2023_141107
crossref_primary_10_1016_j_reprotox_2015_04_012
crossref_primary_10_1016_j_cbi_2022_110252
crossref_primary_10_1016_j_etap_2024_104431
crossref_primary_10_1111_jfd_13294
crossref_primary_10_1016_j_taap_2013_05_037
crossref_primary_10_1099_jmm_0_001643
crossref_primary_10_1089_zeb_2013_0893
crossref_primary_10_1177_02611929211057889
crossref_primary_10_5155_eurjchem_12_4_488_492_2152
crossref_primary_10_1093_toxsci_kfx116
crossref_primary_10_1177_0023677219869037
crossref_primary_10_1016_j_jhazmat_2020_124698
crossref_primary_10_3390_biomedicines12071559
crossref_primary_10_1016_j_envres_2024_119684
crossref_primary_10_1016_j_chemosphere_2017_03_030
crossref_primary_10_1021_acs_est_4c08685
crossref_primary_10_1002_etc_2403
crossref_primary_10_1016_j_chemosphere_2024_143287
crossref_primary_10_3390_toxics10100563
crossref_primary_10_1021_acs_jafc_9b00449
crossref_primary_10_1016_j_yrtph_2014_06_004
crossref_primary_10_1371_journal_pone_0304827
crossref_primary_10_1016_j_fct_2024_114684
crossref_primary_10_1080_14756366_2020_1822829
crossref_primary_10_1155_2021_6689110
crossref_primary_10_1111_brv_13020
crossref_primary_10_1016_j_aanat_2016_02_001
crossref_primary_10_1016_j_dib_2024_110510
crossref_primary_10_1016_j_scitotenv_2019_135740
crossref_primary_10_1177_0192623320964748
crossref_primary_10_1093_toxsci_kfad078
crossref_primary_10_3390_biology12020156
crossref_primary_10_1021_acs_est_3c10543
crossref_primary_10_1182_blood_2011_10_382986
crossref_primary_10_1242_bio_046086
crossref_primary_10_1007_s00204_020_02928_7
crossref_primary_10_1016_j_scitotenv_2017_11_101
crossref_primary_10_3390_ijms19113516
crossref_primary_10_1016_j_reprotox_2018_07_086
crossref_primary_10_3390_ijms242015067
crossref_primary_10_2139_ssrn_4098428
crossref_primary_10_1007_s11356_016_6236_x
crossref_primary_10_1038_s42003_023_04595_7
crossref_primary_10_1128_aac_00561_24
crossref_primary_10_1002_bdr2_1982
crossref_primary_10_1242_jeb_147058
crossref_primary_10_1016_j_bioorg_2019_03_063
crossref_primary_10_1039_C5RA23516B
crossref_primary_10_1002_jez_b_22841
crossref_primary_10_1016_j_ecoenv_2022_113346
crossref_primary_10_1177_026119291804600605
crossref_primary_10_1016_j_chemosphere_2023_139769
crossref_primary_10_1016_j_aaf_2024_02_001
crossref_primary_10_1016_j_scitotenv_2016_02_019
crossref_primary_10_1093_femsre_fuae011
crossref_primary_10_1016_j_aquatox_2015_01_001
crossref_primary_10_1016_j_scitotenv_2023_169573
crossref_primary_10_1016_j_aquatox_2019_01_008
crossref_primary_10_1248_bpb_b15_00410
crossref_primary_10_1007_s11356_018_2449_5
crossref_primary_10_1016_j_tiv_2018_06_003
crossref_primary_10_1038_s41598_018_37780_4
crossref_primary_10_3390_ijms241311224
crossref_primary_10_4236_jasmi_2019_93006
crossref_primary_10_1002_etc_3641
crossref_primary_10_1186_s11671_021_03592_1
crossref_primary_10_1021_acs_chemrestox_6b00122
crossref_primary_10_3390_ijms18010217
crossref_primary_10_15252_embr_201643561
crossref_primary_10_3389_fphar_2022_718072
crossref_primary_10_1007_s11356_016_6490_y
crossref_primary_10_1038_s41598_024_57903_4
crossref_primary_10_1186_s12302_019_0186_0
crossref_primary_10_3390_ani14071031
crossref_primary_10_3389_fphar_2023_1225806
crossref_primary_10_3390_ijms222312696
crossref_primary_10_1371_journal_pone_0190779
crossref_primary_10_1007_s00216_021_03476_4
crossref_primary_10_7759_cureus_76223
crossref_primary_10_1016_j_ntt_2013_07_001
crossref_primary_10_1080_14756366_2021_1879803
crossref_primary_10_1016_j_aquatox_2011_12_016
crossref_primary_10_3390_molecules23020267
crossref_primary_10_1002_ieam_4581
crossref_primary_10_3390_plants10122688
crossref_primary_10_1016_j_isci_2022_104283
crossref_primary_10_1016_j_tiv_2023_105741
crossref_primary_10_1002_jat_2975
crossref_primary_10_3390_nano8070561
crossref_primary_10_1007_s11356_013_2193_9
crossref_primary_10_1007_s12045_021_1258_1
crossref_primary_10_1016_j_ecoenv_2016_07_033
crossref_primary_10_1080_03602532_2021_1922435
crossref_primary_10_3390_molecules29112414
crossref_primary_10_1016_j_talanta_2012_11_025
crossref_primary_10_1186_s12906_019_2599_0
crossref_primary_10_3390_ijms24043527
crossref_primary_10_3390_ijms16011677
crossref_primary_10_3390_ijms24065656
crossref_primary_10_1096_fj_202300385R
crossref_primary_10_1016_j_scitotenv_2016_05_055
crossref_primary_10_3390_ijms18030596
crossref_primary_10_1016_j_scitotenv_2023_168062
crossref_primary_10_1016_j_ecoenv_2020_110909
crossref_primary_10_1016_j_envpol_2014_04_020
crossref_primary_10_1186_s12951_016_0217_6
crossref_primary_10_1016_j_phytochem_2021_112952
crossref_primary_10_1021_acs_est_4c11757
crossref_primary_10_2174_1871520621666210402111634
crossref_primary_10_3390_ijms23126647
crossref_primary_10_1016_j_chemosphere_2017_04_017
crossref_primary_10_3390_cells9051107
crossref_primary_10_1021_acs_est_6b04325
crossref_primary_10_1109_TASE_2017_2705240
crossref_primary_10_1007_s11356_014_3894_4
crossref_primary_10_1007_s11356_015_5328_3
crossref_primary_10_1007_s00429_022_02550_6
crossref_primary_10_3390_toxics11090732
crossref_primary_10_1080_10408444_2017_1404965
crossref_primary_10_3390_ijms241813869
crossref_primary_10_1007_s11356_023_27662_2
crossref_primary_10_1016_j_toxlet_2014_01_037
crossref_primary_10_1080_10408444_2024_2342448
crossref_primary_10_1039_D4AN00742E
crossref_primary_10_1016_j_scitotenv_2017_11_122
crossref_primary_10_1080_03601234_2022_2115780
crossref_primary_10_3390_ph15101230
Cites_doi 10.1146/annurev.genom.3.031402.131506
10.1038/nbt963
10.1023/A:1007502209082
10.1089/zeb.2010.9996
10.1016/j.cbpc.2008.11.006
10.1002/aja.1002030302
10.1016/j.aquatox.2009.11.020
10.1016/j.tox.2011.01.004
10.1126/science.1183090
10.1139/f75-196
10.1007/s11356-008-0018-z
10.1016/j.toxlet.2009.06.808
10.1002/bdrb.20223
10.1038/nrg2091
10.1016/j.reprotox.2009.05.004
10.1038/nrd1606
10.1093/toxsci/kfq237
10.1186/gb-2007-8-10-r227
10.1002/dvg.20459
10.1007/s12265-010-9212-8
10.1155/2010/630134
10.1016/j.cbpc.2010.09.003
10.1002/jmor.10558
10.1016/j.tiv.2009.05.014
10.1897/05-460R.1
10.1517/17425255.2011.562197
10.1016/j.aquatox.2010.07.006
10.1186/1478-811X-8-11
10.1016/S0012-1606(02)00017-9
10.1016/j.ntt.2010.03.002
10.1016/j.toxlet.2008.06.398
10.1002/dvdy.22113
10.1002/dvdy.21484
10.1089/zeb.2010.0651
10.1371/journal.pgen.1000121
10.1038/nature05883
10.1387/ijdb.8735932
10.1016/j.ydbio.2005.07.013
10.1016/S0012-1606(03)00308-7
10.1126/science.1177319
10.1016/j.reprotox.2009.04.013
10.1016/j.tox.2010.05.012
10.1065/jss2003.09.085
10.1161/01.CIR.0000061912.88753.87
10.1007/s11368-010-0317-0
ContentType Journal Article
Copyright 2011 Elsevier Inc.
Copyright © 2011 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2011 Elsevier Inc.
– notice: Copyright © 2011 Elsevier Inc. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.reprotox.2011.06.121
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
Public Health
EISSN 1873-1708
EndPage 132
ExternalDocumentID 21726626
10_1016_j_reprotox_2011_06_121
S0890623811002942
Genre Research Support, Non-U.S. Gov't
Journal Article
Review
GroupedDBID ---
--K
--M
.~1
0R~
123
1B1
1RT
1~.
1~5
29P
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JM
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATCM
AAXUO
ABFNM
ABFRF
ABFYP
ABJNI
ABLST
ABMAC
ABXDB
ABYKQ
ABZDS
ACDAQ
ACGFO
ACGFS
ACIUM
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
ALCLG
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMT
HVGLF
HZ~
IHE
J1W
KCYFY
KOM
M34
M41
MO0
N9A
O-L
O9-
OAUVE
OGGZJ
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPCBC
SPT
SSJ
SSP
SSZ
T5K
UHS
UNMZH
WUQ
XPP
~G-
AATTM
AAXKI
AAYWO
AAYXX
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c481t-11d37a528c47be7c216b12c805c8c0c965054e5c347263116fb44f5bbbb5d7af3
IEDL.DBID .~1
ISSN 0890-6238
1873-1708
IngestDate Fri Jul 11 11:21:02 EDT 2025
Thu Apr 03 07:07:36 EDT 2025
Thu Apr 24 23:11:02 EDT 2025
Tue Jul 01 05:20:42 EDT 2025
Fri Feb 23 02:22:26 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords External feeding
Zebrafish
Alternative method
(Eleuthero)embryo
Protection
Language English
License Copyright © 2011 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c481t-11d37a528c47be7c216b12c805c8c0c965054e5c347263116fb44f5bbbb5d7af3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
OpenAccessLink https://zenodo.org/record/3422125
PMID 21726626
PQID 929122556
PQPubID 23479
PageCount 5
ParticipantIDs proquest_miscellaneous_929122556
pubmed_primary_21726626
crossref_primary_10_1016_j_reprotox_2011_06_121
crossref_citationtrail_10_1016_j_reprotox_2011_06_121
elsevier_sciencedirect_doi_10_1016_j_reprotox_2011_06_121
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 2012
2012-04-00
2012-Apr
20120401
PublicationDateYYYYMMDD 2012-04-01
PublicationDate_xml – month: 04
  year: 2012
  text: April 2012
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Reproductive toxicology (Elmsford, N.Y.)
PublicationTitleAlternate Reprod Toxicol
PublicationYear 2012
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Weigt, Huebler, Strecker, Braunbeck, Broschard (bib0120) 2011; 281
Westerfield (bib0240) 2007
Otte, Schmidt, Hollert, Braunbeck (bib0105) 2010; 100
Robertson, McGee, Dumbarton, Croll, Smith (bib0265) 2007; 268
Jobling (bib0275) 2002
Haffter, Nusslein-Volhard (bib0015) 1996; 40
Grabher, Patton, Strahle (bib0130) 2010; 7
Kimmel, Ballard, Kimmel, Ullmann, Schilling (bib0245) 1995; 203
North, Goessling, Walkley, Lengerke, Kopani, Lord (bib0045) 2007; 447
Balon (bib0190) 1975; 32
Sukardi, Chng, Chan, Gong, Lam (bib0135) 2011; 7
Henn, Braunbeck (bib0215) 2011; 153
Weigt, Busquet, von Landenberg, Braunbeck, Huebler, Broschard (bib0080) 2008; 180
Brannen, Panzica-Kelly, Danberry, Augustine-Rauch (bib0125) 2010; 89
Kosmehl, Hallare, Reifferscheid, Manz, Braunbeck, Hollert (bib0100) 2006; 25
Yang, Kemadjou, Zinsmeister, Bauer, Legradi, Muller (bib0175) 2007; 8
Zielke, Seiler, Niebergall, Leist, Brinkmann, Spira (bib0095) 2011; 11
Hollert, Keiter, König, Rudolf, Ulrich, Braunbeck (bib0090) 2003; 3
Belanger, Balon, Rawlings (bib0270) 2010; 97
Yang, Ho, Alshut, Legradi, Weiss, Reischl (bib0185) 2009; 28
Scholz, Fischer, Gundel, Kuster, Luckenbach, Voelker (bib0060) 2008; 15
Lam, Mathavan, Tong, Li, Karuturi, Wu (bib0170) 2008; 4
Ng, de Jong-Curtain, Mawdsley, White, Shin, Appel (bib0260) 2005; 286
Nüsslein Volhard, Dahm (bib0030) 2002
EU (bib0210) 2010; L 276
Weigt, Huebler, Braunbeck, von Landenberg, Broschard (bib0200) 2010; 275
Hirth, Maisack, Moritz (bib0205) 2003
Rihel, Prober, Arvanites, Lam, Zimmerman, Jang (bib0055) 2010; 327
Shin, Fishman (bib0035) 2002; 3
Tong, Mouriec, Kuo, Pellegrini, Gueguen, Brion (bib0225) 2009; 47
Hanisch, Küster, Altenburger, Gündel (bib0230) 2010
ISO 15088:2007; 2007.
Field, Ober, Roeser, Stainier (bib0255) 2003; 253
Ito, Ando, Suzuki, Ogura, Hotta, Imamura (bib0165) 2010; 327
DIN. German standard methods for the examination of water, waste water and sludge – subanimal testing (group T) – Part 6: toxicity to fish. Determination of the non-acute-poisonous effect of waste water to fish eggs by dilution limits (T 6). DIN 38415-6, German Standardization Organization; 2001.
Peal, Peterson, Milan (bib0150) 2010; 3
Peterson, Shaw, Peterson, Milan, Zhong, Schreiber (bib0050) 2004; 22
Selderslaghs, Hooyberghs, De Coen, Witters (bib0140) 2010; 32
Lammer, Carr, Wendler, Rawlings, Belanger, Braunbeck (bib0115) 2009; 149
Russell, Burch (bib0005) 1959
Field, Dong, Beis, Stainier (bib0250) 2003; 261
Weigt, Hübler, von Landenberg, Braunbeck, Broschard (bib0110) 2009; 189
Braunbeck, Boettcher, Hollert, Kosmehl, Lammer, Leist (bib0085) 2005; 22
Balon (bib0195) 1999; 56
EFSA (bib0010) 2005; 292
Zon, Peterson (bib0065) 2010; 7
Selderslaghs, Van Rompay, De Coen, Witters (bib0160) 2009; 28
Zon, Peterson (bib0040) 2005; 4
Parichy, Elizondo, Mills, Gordon, Engeszer (bib0235) 2009; 238
Lieschke, Currie (bib0020) 2007; 8
Skromne, Prince (bib0025) 2008; 237
ISO. Water quality – Determination of the acute toxicity of waste water to zebrafish eggs
Taylor, Grant, Temperley, Patton (bib0155) 2010; 8
Sawle, Wit, Whale, Cossins (bib0180) 2010; 118
Milan, Peterson, Ruskin, Peterson, MacRae (bib0145) 2003; 107
Lammer, Kamp, Hisgen, Koch, Reinhard, Salinas (bib0220) 2009; 23
Robertson (10.1016/j.reprotox.2011.06.121_bib0265) 2007; 268
EU (10.1016/j.reprotox.2011.06.121_bib0210) 2010; L 276
EFSA (10.1016/j.reprotox.2011.06.121_bib0010) 2005; 292
Taylor (10.1016/j.reprotox.2011.06.121_bib0155) 2010; 8
Braunbeck (10.1016/j.reprotox.2011.06.121_bib0085) 2005; 22
Kosmehl (10.1016/j.reprotox.2011.06.121_bib0100) 2006; 25
Milan (10.1016/j.reprotox.2011.06.121_bib0145) 2003; 107
Selderslaghs (10.1016/j.reprotox.2011.06.121_bib0140) 2010; 32
Lammer (10.1016/j.reprotox.2011.06.121_bib0115) 2009; 149
Zon (10.1016/j.reprotox.2011.06.121_bib0040) 2005; 4
Field (10.1016/j.reprotox.2011.06.121_bib0255) 2003; 253
Westerfield (10.1016/j.reprotox.2011.06.121_bib0240) 2007
Hollert (10.1016/j.reprotox.2011.06.121_bib0090) 2003; 3
Haffter (10.1016/j.reprotox.2011.06.121_bib0015) 1996; 40
North (10.1016/j.reprotox.2011.06.121_bib0045) 2007; 447
Lieschke (10.1016/j.reprotox.2011.06.121_bib0020) 2007; 8
Zon (10.1016/j.reprotox.2011.06.121_bib0065) 2010; 7
Belanger (10.1016/j.reprotox.2011.06.121_bib0270) 2010; 97
Selderslaghs (10.1016/j.reprotox.2011.06.121_bib0160) 2009; 28
Lam (10.1016/j.reprotox.2011.06.121_bib0170) 2008; 4
Shin (10.1016/j.reprotox.2011.06.121_bib0035) 2002; 3
10.1016/j.reprotox.2011.06.121_bib0070
Weigt (10.1016/j.reprotox.2011.06.121_bib0110) 2009; 189
Zielke (10.1016/j.reprotox.2011.06.121_bib0095) 2011; 11
Ito (10.1016/j.reprotox.2011.06.121_bib0165) 2010; 327
Kimmel (10.1016/j.reprotox.2011.06.121_bib0245) 1995; 203
Nüsslein Volhard (10.1016/j.reprotox.2011.06.121_bib0030) 2002
10.1016/j.reprotox.2011.06.121_bib0075
Balon (10.1016/j.reprotox.2011.06.121_bib0190) 1975; 32
Yang (10.1016/j.reprotox.2011.06.121_bib0185) 2009; 28
Ng (10.1016/j.reprotox.2011.06.121_bib0260) 2005; 286
Peal (10.1016/j.reprotox.2011.06.121_bib0150) 2010; 3
Lammer (10.1016/j.reprotox.2011.06.121_bib0220) 2009; 23
Sawle (10.1016/j.reprotox.2011.06.121_bib0180) 2010; 118
Hirth (10.1016/j.reprotox.2011.06.121_bib0205) 2003
Scholz (10.1016/j.reprotox.2011.06.121_bib0060) 2008; 15
Russell (10.1016/j.reprotox.2011.06.121_bib0005) 1959
Tong (10.1016/j.reprotox.2011.06.121_bib0225) 2009; 47
Otte (10.1016/j.reprotox.2011.06.121_bib0105) 2010; 100
Rihel (10.1016/j.reprotox.2011.06.121_bib0055) 2010; 327
Hanisch (10.1016/j.reprotox.2011.06.121_bib0230) 2010
Henn (10.1016/j.reprotox.2011.06.121_bib0215) 2011; 153
Balon (10.1016/j.reprotox.2011.06.121_bib0195) 1999; 56
Weigt (10.1016/j.reprotox.2011.06.121_bib0080) 2008; 180
Parichy (10.1016/j.reprotox.2011.06.121_bib0235) 2009; 238
Skromne (10.1016/j.reprotox.2011.06.121_bib0025) 2008; 237
Grabher (10.1016/j.reprotox.2011.06.121_bib0130) 2010; 7
Brannen (10.1016/j.reprotox.2011.06.121_bib0125) 2010; 89
Field (10.1016/j.reprotox.2011.06.121_bib0250) 2003; 261
Weigt (10.1016/j.reprotox.2011.06.121_bib0200) 2010; 275
Peterson (10.1016/j.reprotox.2011.06.121_bib0050) 2004; 22
Weigt (10.1016/j.reprotox.2011.06.121_bib0120) 2011; 281
Yang (10.1016/j.reprotox.2011.06.121_bib0175) 2007; 8
Jobling (10.1016/j.reprotox.2011.06.121_bib0275) 2002
Sukardi (10.1016/j.reprotox.2011.06.121_bib0135) 2011; 7
References_xml – volume: 118
  start-page: 128
  year: 2010
  end-page: 139
  ident: bib0180
  article-title: An information-rich, alternative, chemicals testing strategy using a high definition toxicogenomics and zebrafish (
  publication-title: Toxicol Sci
– year: 2003
  ident: bib0205
  article-title: Tierschutzgesetz – Kommentar
– volume: L 276
  start-page: 33
  year: 2010
  end-page: 79
  ident: bib0210
  article-title: Directive 2010/63/EU of the European parliament and of the council of 22 September 2010 on the protection of animals used for scientific purposes
  publication-title: Off J EU
– volume: 153
  start-page: 91
  year: 2011
  end-page: 98
  ident: bib0215
  article-title: Dechorionation as a tool to improve the fish embryo toxicity test (FET) with the zebrafish (
  publication-title: Comp Biochem Physiol C Toxicol Pharmacol
– volume: 97
  start-page: 88
  year: 2010
  end-page: 95
  ident: bib0270
  article-title: Saltatory ontogeny of fishes and sensitive early life stages for ecotoxicology tests
  publication-title: Aquat Toxicol
– volume: 107
  start-page: 1355
  year: 2003
  end-page: 1358
  ident: bib0145
  article-title: Drugs that induce repolarization abnormalities cause bradycardia in zebrafish
  publication-title: Circulation
– volume: 3
  start-page: 454
  year: 2010
  end-page: 460
  ident: bib0150
  article-title: Small molecule screening in zebrafish
  publication-title: J Cardiovasc Transl Res
– volume: 25
  start-page: 2097
  year: 2006
  end-page: 2106
  ident: bib0100
  article-title: A novel contact assay for testing genotoxicity of chemicals and whole sediments in zebrafish embryos
  publication-title: Environ Toxicol Chem
– volume: 180
  start-page: S96
  year: 2008
  end-page: S97
  ident: bib0080
  article-title: Application of human and rat liver microsomes in teratogenicity testing using zebrafish
  publication-title: Toxicol Lett
– volume: 286
  start-page: 114
  year: 2005
  end-page: 135
  ident: bib0260
  article-title: Formation of the digestive system in zebrafish: III. Intestinal epithelium morphogenesis
  publication-title: Dev Biol
– volume: 275
  start-page: 36
  year: 2010
  end-page: 49
  ident: bib0200
  article-title: Zebrafish teratogenicity test with metabolic activation (mDarT): effects of phase I activation of acetaminophen on zebrafish
  publication-title: Toxicology
– volume: 7
  start-page: 83
  year: 2010
  ident: bib0130
  article-title: Sharing chemical libraries within the European zebrafish community
  publication-title: Zebrafish
– year: 1959
  ident: bib0005
  article-title: The principles of humane experimental techniques
– volume: 268
  start-page: 967
  year: 2007
  end-page: 985
  ident: bib0265
  article-title: Development of the swimbladder and its innervation in the zebrafish
  publication-title: J Morphol
– volume: 189
  start-page: S143
  year: 2009
  ident: bib0110
  article-title: Teratogenic effects of metabolically activated trimethadione in zebrafish (
  publication-title: Toxicol Lett
– volume: 7
  start-page: 1
  year: 2010
  ident: bib0065
  article-title: The new age of chemical screening in zebrafish
  publication-title: Zebrafish
– year: 2007
  ident: bib0240
  article-title: The zebrafish book. A guide for the laboratory use of zebrafish (
– volume: 8
  start-page: 353
  year: 2007
  end-page: 367
  ident: bib0020
  article-title: Animal models of human disease: zebrafish swim into view
  publication-title: Nat Rev Genet
– volume: 22
  start-page: 87
  year: 2005
  end-page: 102
  ident: bib0085
  article-title: Towards an alternative for the acute fish LC(50) test in chemical assessment: the fish embryo toxicity test goes multi-species – an update
  publication-title: ALTEX
– volume: 89
  start-page: 66
  year: 2010
  end-page: 77
  ident: bib0125
  article-title: Development of a zebrafish embryo teratogenicity assay and quantitative prediction model
  publication-title: Birth Defects Res B Dev Reprod Toxicol
– volume: 327
  start-page: 1345
  year: 2010
  end-page: 1350
  ident: bib0165
  article-title: Identification of a primary target of thalidomide teratogenicity
  publication-title: Science
– volume: 100
  start-page: 38
  year: 2010
  end-page: 50
  ident: bib0105
  article-title: Spatio-temporal development of CYP1 activity in early life-stages of zebrafish (
  publication-title: Aquat Toxicol
– volume: 8
  start-page: R227
  year: 2007
  ident: bib0175
  article-title: Transcriptional profiling reveals barcode-like toxicogenomic responses in the zebrafish embryo
  publication-title: Genome Biol
– volume: 47
  start-page: 67
  year: 2009
  end-page: 73
  ident: bib0225
  article-title: Acyp19a1b-gfp (aromatase B) transgenic zebrafish line that expresses GFP in radial glial cells
  publication-title: Genesis
– volume: 149
  start-page: 196
  year: 2009
  end-page: 209
  ident: bib0115
  article-title: Is the fish embryo toxicity test (FET) with the zebrafish (
  publication-title: Comp Biochem Physiol C Toxicol Pharmacol
– volume: 203
  start-page: 253
  year: 1995
  end-page: 310
  ident: bib0245
  article-title: Stages of embryonic development of the zebrafish
  publication-title: Dev Dynam
– year: 2002
  ident: bib0275
  publication-title: Environmental factors and rates of development and growth
– volume: 56
  start-page: 17
  year: 1999
  end-page: 38
  ident: bib0195
  article-title: Alternative ways to become a juvenile or a definitive phenotype (and on some persisting linguistic offenses)
  publication-title: Environ Biol Fishes
– reference: DIN. German standard methods for the examination of water, waste water and sludge – subanimal testing (group T) – Part 6: toxicity to fish. Determination of the non-acute-poisonous effect of waste water to fish eggs by dilution limits (T 6). DIN 38415-6, German Standardization Organization; 2001.
– volume: 4
  start-page: 35
  year: 2005
  end-page: 44
  ident: bib0040
  article-title: In vivo drug discovery in the zebrafish
  publication-title: Nat Rev Drug Discov
– volume: 281
  start-page: 25
  year: 2011
  end-page: 36
  ident: bib0120
  article-title: Zebrafish (
  publication-title: Toxicology
– volume: 238
  start-page: 2975
  year: 2009
  end-page: 3015
  ident: bib0235
  article-title: Normal table of postembryonic zebrafish development: staging by externally visible anatomy of the living fish
  publication-title: Dev Dynam
– volume: 253
  start-page: 279
  year: 2003
  end-page: 290
  ident: bib0255
  article-title: Formation of the digestive system in zebrafish: I. Liver morphogenesis
  publication-title: Dev Biol
– year: 2002
  ident: bib0030
  article-title: Zebrafish: a practical approach
– start-page: 1
  year: 2010
  end-page: 13
  ident: bib0230
  article-title: Proteomic signatures of the zebrafish (
  publication-title: Int J Proteomics
– volume: 292
  start-page: 1
  year: 2005
  end-page: 46
  ident: bib0010
  article-title: Opinion of the Scientific Panel on Animal Health and Welfare on a request from the Commission related to the aspects of the biology and welfare of animals used for experimental and other scientific purposes (EFSA-Q-2004-105)
  publication-title: EFSA J
– volume: 32
  start-page: 1663
  year: 1975
  end-page: 1670
  ident: bib0190
  article-title: Terminology of intervals in fish development
  publication-title: J Fish Res Board Can
– volume: 3
  start-page: 197
  year: 2003
  end-page: 207
  ident: bib0090
  article-title: A new sediment contact assay to assess particle-bound pollutants using zebrafish (
  publication-title: J Soils Sediment
– volume: 8
  start-page: 11
  year: 2010
  ident: bib0155
  article-title: Small molecule screening in zebrafish: an in vivo approach to identifying new chemical tools and drug leads
  publication-title: Cell Commun Signal
– volume: 28
  start-page: 308
  year: 2009
  end-page: 320
  ident: bib0160
  article-title: Development of a screening assay to identify teratogenic and embryotoxic chemicals using the zebrafish embryo
  publication-title: Reprod Toxicol
– volume: 327
  start-page: 348
  year: 2010
  end-page: 351
  ident: bib0055
  article-title: Zebrafish behavioral profiling links drugs to biological targets and rest/wake regulation
  publication-title: Science
– volume: 3
  start-page: 311
  year: 2002
  end-page: 340
  ident: bib0035
  article-title: From zebrafish to human: modular medical models
  publication-title: Annu Rev Genomics Hum Genet
– volume: 32
  start-page: 460
  year: 2010
  end-page: 471
  ident: bib0140
  article-title: Locomotor activity in zebrafish embryos: a new method to assess developmental neurotoxicity
  publication-title: Neurotoxicol Teratol
– volume: 4
  start-page: e1000121
  year: 2008
  ident: bib0170
  article-title: Zebrafish whole-adult-organism chemogenomics for large-scale predictive and discovery chemical biology
  publication-title: PLoS Genet
– volume: 11
  start-page: 352
  year: 2011
  end-page: 363
  ident: bib0095
  article-title: The impact of extraction methodologies on the toxicity of sediments in the zebrafish (
  publication-title: J Soils Sediment
– volume: 15
  start-page: 394
  year: 2008
  end-page: 404
  ident: bib0060
  article-title: The zebrafish embryo model in environmental risk assessment – applications beyond acute toxicity testing
  publication-title: Environ Sci Pollut Res Int
– reference: ). ISO 15088:2007; 2007.
– volume: 237
  start-page: 861
  year: 2008
  end-page: 882
  ident: bib0025
  article-title: Current perspectives in zebrafish reverse genetics: moving forward
  publication-title: Dev Dynam
– reference: ISO. Water quality – Determination of the acute toxicity of waste water to zebrafish eggs (
– volume: 40
  start-page: 221
  year: 1996
  end-page: 227
  ident: bib0015
  article-title: Large scale genetics in a small vertebrate, the zebrafish
  publication-title: Int J Dev Biol
– volume: 7
  start-page: 579
  year: 2011
  end-page: 589
  ident: bib0135
  article-title: Zebrafish for drug toxicity screening: bridging the in vitro cell-based models and in vivo mammalian models
  publication-title: Expert Opin Drug Metab Toxicol
– volume: 28
  start-page: 245
  year: 2009
  end-page: 253
  ident: bib0185
  article-title: Zebrafish embryos as models for embryotoxic and teratological effects of chemicals
  publication-title: Reprod Toxicol
– volume: 22
  start-page: 595
  year: 2004
  end-page: 599
  ident: bib0050
  article-title: Chemical suppression of a genetic mutation in a zebrafish model of aortic coarctation
  publication-title: Nat Biotechnol
– volume: 447
  start-page: 1007
  year: 2007
  end-page: 1011
  ident: bib0045
  article-title: Prostaglandin E2 regulates vertebrate haematopoietic stem cell homeostasis
  publication-title: Nature
– volume: 261
  start-page: 197
  year: 2003
  end-page: 208
  ident: bib0250
  article-title: Formation of the digestive system in zebrafish: II. Pancreas morphogenesis
  publication-title: Dev Biol
– volume: 23
  start-page: 1436
  year: 2009
  end-page: 1442
  ident: bib0220
  article-title: Development of a flow-through system for the fish embryo toxicity test (FET) with the zebrafish (
  publication-title: Toxicol In Vitro
– volume: 3
  start-page: 311
  year: 2002
  ident: 10.1016/j.reprotox.2011.06.121_bib0035
  article-title: From zebrafish to human: modular medical models
  publication-title: Annu Rev Genomics Hum Genet
  doi: 10.1146/annurev.genom.3.031402.131506
– volume: 22
  start-page: 595
  year: 2004
  ident: 10.1016/j.reprotox.2011.06.121_bib0050
  article-title: Chemical suppression of a genetic mutation in a zebrafish model of aortic coarctation
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt963
– volume: 56
  start-page: 17
  year: 1999
  ident: 10.1016/j.reprotox.2011.06.121_bib0195
  article-title: Alternative ways to become a juvenile or a definitive phenotype (and on some persisting linguistic offenses)
  publication-title: Environ Biol Fishes
  doi: 10.1023/A:1007502209082
– volume: 7
  start-page: 1
  year: 2010
  ident: 10.1016/j.reprotox.2011.06.121_bib0065
  article-title: The new age of chemical screening in zebrafish
  publication-title: Zebrafish
  doi: 10.1089/zeb.2010.9996
– year: 2002
  ident: 10.1016/j.reprotox.2011.06.121_bib0030
– volume: 149
  start-page: 196
  year: 2009
  ident: 10.1016/j.reprotox.2011.06.121_bib0115
  article-title: Is the fish embryo toxicity test (FET) with the zebrafish (Danio rerio) a potential alternative for the fish acute toxicity test?
  publication-title: Comp Biochem Physiol C Toxicol Pharmacol
  doi: 10.1016/j.cbpc.2008.11.006
– volume: 203
  start-page: 253
  year: 1995
  ident: 10.1016/j.reprotox.2011.06.121_bib0245
  article-title: Stages of embryonic development of the zebrafish
  publication-title: Dev Dynam
  doi: 10.1002/aja.1002030302
– volume: 22
  start-page: 87
  year: 2005
  ident: 10.1016/j.reprotox.2011.06.121_bib0085
  article-title: Towards an alternative for the acute fish LC(50) test in chemical assessment: the fish embryo toxicity test goes multi-species – an update
  publication-title: ALTEX
– volume: 97
  start-page: 88
  year: 2010
  ident: 10.1016/j.reprotox.2011.06.121_bib0270
  article-title: Saltatory ontogeny of fishes and sensitive early life stages for ecotoxicology tests
  publication-title: Aquat Toxicol
  doi: 10.1016/j.aquatox.2009.11.020
– volume: 281
  start-page: 25
  year: 2011
  ident: 10.1016/j.reprotox.2011.06.121_bib0120
  article-title: Zebrafish (Danio rerio) embryos as a model for testing proteratogens
  publication-title: Toxicology
  doi: 10.1016/j.tox.2011.01.004
– volume: L 276
  start-page: 33
  year: 2010
  ident: 10.1016/j.reprotox.2011.06.121_bib0210
  article-title: Directive 2010/63/EU of the European parliament and of the council of 22 September 2010 on the protection of animals used for scientific purposes
  publication-title: Off J EU
– ident: 10.1016/j.reprotox.2011.06.121_bib0075
– volume: 327
  start-page: 348
  year: 2010
  ident: 10.1016/j.reprotox.2011.06.121_bib0055
  article-title: Zebrafish behavioral profiling links drugs to biological targets and rest/wake regulation
  publication-title: Science
  doi: 10.1126/science.1183090
– volume: 32
  start-page: 1663
  year: 1975
  ident: 10.1016/j.reprotox.2011.06.121_bib0190
  article-title: Terminology of intervals in fish development
  publication-title: J Fish Res Board Can
  doi: 10.1139/f75-196
– year: 2007
  ident: 10.1016/j.reprotox.2011.06.121_bib0240
– volume: 15
  start-page: 394
  year: 2008
  ident: 10.1016/j.reprotox.2011.06.121_bib0060
  article-title: The zebrafish embryo model in environmental risk assessment – applications beyond acute toxicity testing
  publication-title: Environ Sci Pollut Res Int
  doi: 10.1007/s11356-008-0018-z
– volume: 189
  start-page: S143
  year: 2009
  ident: 10.1016/j.reprotox.2011.06.121_bib0110
  article-title: Teratogenic effects of metabolically activated trimethadione in zebrafish (Danio rerio)
  publication-title: Toxicol Lett
  doi: 10.1016/j.toxlet.2009.06.808
– volume: 89
  start-page: 66
  year: 2010
  ident: 10.1016/j.reprotox.2011.06.121_bib0125
  article-title: Development of a zebrafish embryo teratogenicity assay and quantitative prediction model
  publication-title: Birth Defects Res B Dev Reprod Toxicol
  doi: 10.1002/bdrb.20223
– volume: 8
  start-page: 353
  year: 2007
  ident: 10.1016/j.reprotox.2011.06.121_bib0020
  article-title: Animal models of human disease: zebrafish swim into view
  publication-title: Nat Rev Genet
  doi: 10.1038/nrg2091
– volume: 28
  start-page: 308
  year: 2009
  ident: 10.1016/j.reprotox.2011.06.121_bib0160
  article-title: Development of a screening assay to identify teratogenic and embryotoxic chemicals using the zebrafish embryo
  publication-title: Reprod Toxicol
  doi: 10.1016/j.reprotox.2009.05.004
– volume: 292
  start-page: 1
  year: 2005
  ident: 10.1016/j.reprotox.2011.06.121_bib0010
  article-title: Opinion of the Scientific Panel on Animal Health and Welfare on a request from the Commission related to the aspects of the biology and welfare of animals used for experimental and other scientific purposes (EFSA-Q-2004-105)
  publication-title: EFSA J
– volume: 4
  start-page: 35
  year: 2005
  ident: 10.1016/j.reprotox.2011.06.121_bib0040
  article-title: In vivo drug discovery in the zebrafish
  publication-title: Nat Rev Drug Discov
  doi: 10.1038/nrd1606
– volume: 118
  start-page: 128
  year: 2010
  ident: 10.1016/j.reprotox.2011.06.121_bib0180
  article-title: An information-rich, alternative, chemicals testing strategy using a high definition toxicogenomics and zebrafish (Danio rerio) embryos
  publication-title: Toxicol Sci
  doi: 10.1093/toxsci/kfq237
– volume: 8
  start-page: R227
  year: 2007
  ident: 10.1016/j.reprotox.2011.06.121_bib0175
  article-title: Transcriptional profiling reveals barcode-like toxicogenomic responses in the zebrafish embryo
  publication-title: Genome Biol
  doi: 10.1186/gb-2007-8-10-r227
– volume: 47
  start-page: 67
  year: 2009
  ident: 10.1016/j.reprotox.2011.06.121_bib0225
  article-title: Acyp19a1b-gfp (aromatase B) transgenic zebrafish line that expresses GFP in radial glial cells
  publication-title: Genesis
  doi: 10.1002/dvg.20459
– year: 1959
  ident: 10.1016/j.reprotox.2011.06.121_bib0005
– volume: 3
  start-page: 454
  year: 2010
  ident: 10.1016/j.reprotox.2011.06.121_bib0150
  article-title: Small molecule screening in zebrafish
  publication-title: J Cardiovasc Transl Res
  doi: 10.1007/s12265-010-9212-8
– start-page: 1
  year: 2010
  ident: 10.1016/j.reprotox.2011.06.121_bib0230
  article-title: Proteomic signatures of the zebrafish (Danio rerio) embryo: sensitivity and specificity in toxicity assessment of chemicals
  publication-title: Int J Proteomics
  doi: 10.1155/2010/630134
– volume: 153
  start-page: 91
  year: 2011
  ident: 10.1016/j.reprotox.2011.06.121_bib0215
  article-title: Dechorionation as a tool to improve the fish embryo toxicity test (FET) with the zebrafish (Danio rerio)
  publication-title: Comp Biochem Physiol C Toxicol Pharmacol
  doi: 10.1016/j.cbpc.2010.09.003
– volume: 268
  start-page: 967
  year: 2007
  ident: 10.1016/j.reprotox.2011.06.121_bib0265
  article-title: Development of the swimbladder and its innervation in the zebrafish Danio rerio
  publication-title: J Morphol
  doi: 10.1002/jmor.10558
– volume: 23
  start-page: 1436
  year: 2009
  ident: 10.1016/j.reprotox.2011.06.121_bib0220
  article-title: Development of a flow-through system for the fish embryo toxicity test (FET) with the zebrafish (Danio rerio)
  publication-title: Toxicol In Vitro
  doi: 10.1016/j.tiv.2009.05.014
– volume: 25
  start-page: 2097
  year: 2006
  ident: 10.1016/j.reprotox.2011.06.121_bib0100
  article-title: A novel contact assay for testing genotoxicity of chemicals and whole sediments in zebrafish embryos
  publication-title: Environ Toxicol Chem
  doi: 10.1897/05-460R.1
– volume: 7
  start-page: 579
  year: 2011
  ident: 10.1016/j.reprotox.2011.06.121_bib0135
  article-title: Zebrafish for drug toxicity screening: bridging the in vitro cell-based models and in vivo mammalian models
  publication-title: Expert Opin Drug Metab Toxicol
  doi: 10.1517/17425255.2011.562197
– volume: 100
  start-page: 38
  year: 2010
  ident: 10.1016/j.reprotox.2011.06.121_bib0105
  article-title: Spatio-temporal development of CYP1 activity in early life-stages of zebrafish (Danio rerio)
  publication-title: Aquat Toxicol
  doi: 10.1016/j.aquatox.2010.07.006
– volume: 8
  start-page: 11
  year: 2010
  ident: 10.1016/j.reprotox.2011.06.121_bib0155
  article-title: Small molecule screening in zebrafish: an in vivo approach to identifying new chemical tools and drug leads
  publication-title: Cell Commun Signal
  doi: 10.1186/1478-811X-8-11
– volume: 253
  start-page: 279
  year: 2003
  ident: 10.1016/j.reprotox.2011.06.121_bib0255
  article-title: Formation of the digestive system in zebrafish: I. Liver morphogenesis
  publication-title: Dev Biol
  doi: 10.1016/S0012-1606(02)00017-9
– volume: 32
  start-page: 460
  year: 2010
  ident: 10.1016/j.reprotox.2011.06.121_bib0140
  article-title: Locomotor activity in zebrafish embryos: a new method to assess developmental neurotoxicity
  publication-title: Neurotoxicol Teratol
  doi: 10.1016/j.ntt.2010.03.002
– volume: 180
  start-page: S96
  year: 2008
  ident: 10.1016/j.reprotox.2011.06.121_bib0080
  article-title: Application of human and rat liver microsomes in teratogenicity testing using zebrafish Danio rerio embryos (mDarT)
  publication-title: Toxicol Lett
  doi: 10.1016/j.toxlet.2008.06.398
– year: 2003
  ident: 10.1016/j.reprotox.2011.06.121_bib0205
– volume: 238
  start-page: 2975
  year: 2009
  ident: 10.1016/j.reprotox.2011.06.121_bib0235
  article-title: Normal table of postembryonic zebrafish development: staging by externally visible anatomy of the living fish
  publication-title: Dev Dynam
  doi: 10.1002/dvdy.22113
– volume: 237
  start-page: 861
  year: 2008
  ident: 10.1016/j.reprotox.2011.06.121_bib0025
  article-title: Current perspectives in zebrafish reverse genetics: moving forward
  publication-title: Dev Dynam
  doi: 10.1002/dvdy.21484
– volume: 7
  start-page: 83
  year: 2010
  ident: 10.1016/j.reprotox.2011.06.121_bib0130
  article-title: Sharing chemical libraries within the European zebrafish community
  publication-title: Zebrafish
  doi: 10.1089/zeb.2010.0651
– volume: 4
  start-page: e1000121
  year: 2008
  ident: 10.1016/j.reprotox.2011.06.121_bib0170
  article-title: Zebrafish whole-adult-organism chemogenomics for large-scale predictive and discovery chemical biology
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.1000121
– ident: 10.1016/j.reprotox.2011.06.121_bib0070
– volume: 447
  start-page: 1007
  year: 2007
  ident: 10.1016/j.reprotox.2011.06.121_bib0045
  article-title: Prostaglandin E2 regulates vertebrate haematopoietic stem cell homeostasis
  publication-title: Nature
  doi: 10.1038/nature05883
– volume: 40
  start-page: 221
  year: 1996
  ident: 10.1016/j.reprotox.2011.06.121_bib0015
  article-title: Large scale genetics in a small vertebrate, the zebrafish
  publication-title: Int J Dev Biol
  doi: 10.1387/ijdb.8735932
– volume: 286
  start-page: 114
  year: 2005
  ident: 10.1016/j.reprotox.2011.06.121_bib0260
  article-title: Formation of the digestive system in zebrafish: III. Intestinal epithelium morphogenesis
  publication-title: Dev Biol
  doi: 10.1016/j.ydbio.2005.07.013
– volume: 261
  start-page: 197
  year: 2003
  ident: 10.1016/j.reprotox.2011.06.121_bib0250
  article-title: Formation of the digestive system in zebrafish: II. Pancreas morphogenesis
  publication-title: Dev Biol
  doi: 10.1016/S0012-1606(03)00308-7
– volume: 327
  start-page: 1345
  year: 2010
  ident: 10.1016/j.reprotox.2011.06.121_bib0165
  article-title: Identification of a primary target of thalidomide teratogenicity
  publication-title: Science
  doi: 10.1126/science.1177319
– volume: 28
  start-page: 245
  year: 2009
  ident: 10.1016/j.reprotox.2011.06.121_bib0185
  article-title: Zebrafish embryos as models for embryotoxic and teratological effects of chemicals
  publication-title: Reprod Toxicol
  doi: 10.1016/j.reprotox.2009.04.013
– volume: 275
  start-page: 36
  year: 2010
  ident: 10.1016/j.reprotox.2011.06.121_bib0200
  article-title: Zebrafish teratogenicity test with metabolic activation (mDarT): effects of phase I activation of acetaminophen on zebrafish Danio rerio embryos
  publication-title: Toxicology
  doi: 10.1016/j.tox.2010.05.012
– year: 2002
  ident: 10.1016/j.reprotox.2011.06.121_bib0275
– volume: 3
  start-page: 197
  year: 2003
  ident: 10.1016/j.reprotox.2011.06.121_bib0090
  article-title: A new sediment contact assay to assess particle-bound pollutants using zebrafish (Danio rerio) embryos
  publication-title: J Soils Sediment
  doi: 10.1065/jss2003.09.085
– volume: 107
  start-page: 1355
  year: 2003
  ident: 10.1016/j.reprotox.2011.06.121_bib0145
  article-title: Drugs that induce repolarization abnormalities cause bradycardia in zebrafish
  publication-title: Circulation
  doi: 10.1161/01.CIR.0000061912.88753.87
– volume: 11
  start-page: 352
  year: 2011
  ident: 10.1016/j.reprotox.2011.06.121_bib0095
  article-title: The impact of extraction methodologies on the toxicity of sediments in the zebrafish (Danio rerio) embryo test
  publication-title: J Soils Sediment
  doi: 10.1007/s11368-010-0317-0
SSID ssj0004797
Score 2.5367734
SecondaryResourceType review_article
Snippet Worldwide, the zebrafish has become a popular model for biomedical research and (eco)toxicology. Particularly the use of embryos is receiving increasing...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 128
SubjectTerms (Eleuthero)embryo
Alternative method
Animal Use Alternatives
Animal Welfare - legislation & jurisprudence
Animals
Embryo, Nonmammalian
External feeding
Feeding Behavior
Life Cycle Stages
Protection
Social Control, Formal
Zebrafish
Zebrafish - physiology
Title Zebrafish embryos as an alternative to animal experiments—A commentary on the definition of the onset of protected life stages in animal welfare regulations
URI https://dx.doi.org/10.1016/j.reprotox.2011.06.121
https://www.ncbi.nlm.nih.gov/pubmed/21726626
https://www.proquest.com/docview/929122556
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaqcgAJIdgCXWirOSBu6eZh53FcraiWInqBShUXK3bskmrXqZJUsBfEj-DMj-OXMHacthyqHohysRU_5JmMZ-yZbwh5U-ZUFZVkgdYyCWglRZDLhAWxTsMiDDVyiY0d_niSLk_p8Rk72yKLMRbGulV62T_IdCetfc3Mr-bssq5nn8LcYuzijmNRRAtq5TClmeXywx83bh40Kwa0zwLNJPz6VpTwxaEFjmz65ruH8kwt1sJdG9RdCqjbiI6ekideg4T5MMlnZEuZCdmZG7Se1xt4C86n0x2WT8jDxZjPbUIeDyd0MAQe7ZDfX-ydsa67r6DWot00HZT4GnAX6MYBgkPfYE29xvFuUgF0f37-mgMumPM7bzfQGEA1Eiqla-M8wKDRrsZ6ave24NEgVAWrWitAjfRcdVCbsfNvaqXLVkGrzn06se45OT1693mxDHy2hkDSPOqDKKqSrGRxLmkmVCbjKBVRLPOQyVyGskBVkFHFZEKzOE2iKNWCUs0EPqzKSp28INumMWqXgKKo1smcsUQrKipWYpdZWtFMJRotajElbCQRlx7K3GbUWPHRZ-2Cj6TllrQ8TDmSdkpm1-0uBzCPe1sUIwfwf9iS445zb1sYWYYjqe1FTGlUc9VxVEmj2GK_TcnLgZWup2PzhaVoZL76j4Ffk0dYigf_oj2y3bdXah9Vp14cuH_jgDyYv_-wPPkLX0keMw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB6h5UClqmqXPrZPH6re0s3DzuO4WhUtBfZSkFAvVuzYELTroCSo7I0f0XN_XH9Jx4kD7QFxaJRLHE1seSbjGXvmG4CPeUpVVkjmaS0jjxZSeKmMmBfq2M98X6OU2Nzho2W8OKFfT9npFsyHXBgbVul0f6_TO23tWqZuNqeXZTn95qcWYxdXHIsimlHUw9sWnYqNYHu2f7BY3qVHJlkP-Jmhp4QEfyUKX3y22JFVW107NM_Ywi3ct0bdZ4N2a9HeU3jijEgy68f5DLaUGcPuzKADvd6QT6QL6-z2y8ewMx9Kuo3hcb9JR_rco1349d0eG-uyOSdqLepN1ZAcb0O6M3TTYYKTtsKWco393VUDaH7f_JwRnLMu9LzekMoQtCRJoXRpuiAwUumuxQZrt_bBAUKogqxKrQgapWeqIaUZPv5DrXReK1KrM1dRrHkOJ3tfjucLzxVs8CRNg9YLgiJKchamkiZCJTIMYhGEMvWZTKUvM7QGGVVMRjQJ4ygIYi0o1UzgxYok19ELGJnKqFdAFEXLTqaMRVpRUbAcP5nEBU1UpNGpFhNgA4u4dGjmtqjGig9haxd8YC23rOV-zJG1E5je0l32eB4PUmSDBPB_JJPjovMgLRlEhiOr7VlMblR11XC0SoPQwr9N4GUvSrfDsSXDYvQzX_9Hxx9gZ3F8dMgP95cHb-ARvgn7cKO3MGrrK_UOLalWvHd_yh8OsiDk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Zebrafish+embryos+as+an+alternative+to+animal+experiments--a+commentary+on+the+definition+of+the+onset+of+protected+life+stages+in+animal+welfare+regulations&rft.jtitle=Reproductive+toxicology+%28Elmsford%2C+N.Y.%29&rft.au=Str%C3%A4hle%2C+Uwe&rft.au=Scholz%2C+Stefan&rft.au=Geisler%2C+Robert&rft.au=Greiner%2C+Petra&rft.date=2012-04-01&rft.eissn=1873-1708&rft.volume=33&rft.issue=2&rft.spage=128&rft_id=info:doi/10.1016%2Fj.reprotox.2011.06.121&rft_id=info%3Apmid%2F21726626&rft.externalDocID=21726626
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0890-6238&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0890-6238&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0890-6238&client=summon