Approaching the quantum limit for nanoplasmonics

The character of optical excitations in nanoscale and atomic-scale materials is often strongly mixed, having contributions from both single-particle transitions and collective, plasmon-like response. This complicates the quantum description of these excitations, because there is no clear way to defi...

Full description

Saved in:
Bibliographic Details
Published inJournal of materials research Vol. 30; no. 16; pp. 2389 - 2399
Main Authors Townsend, Emily, Debrecht, Alex, Bryant, Garnett W.
Format Journal Article
LanguageEnglish
Published New York, USA Cambridge University Press 28.08.2015
Springer International Publishing
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The character of optical excitations in nanoscale and atomic-scale materials is often strongly mixed, having contributions from both single-particle transitions and collective, plasmon-like response. This complicates the quantum description of these excitations, because there is no clear way to define their quantization. To move toward a quantum theory for these optical excitations, they must first be characterized so that single-particle-like and collective, plasmon-like excitations can be identified. We show that time-dependent density functional theory can be used to make that characterization if both the charge densities induced by the excitation and the transitions that make up the excitation are analyzed. Density functional theory predicts that single-particle-like and collective excitations can coexist. Exact calculations for small nanosystems predict that single-particle excitations evolve into collective excitations as the electron–electron interaction is turned on with no indication that they coexist. These different predictions present a challenge that must be resolved to develop an understanding for quantum excitations in nanoplasmonic materials.
AbstractList The character of optical excitations in nanoscale and atomic-scale materials is often strongly mixed, having contributions from both single-particle transitions and collective, plasmon-like response. This complicates the quantum description of these excitations, because there is no clear way to define their quantization. To move toward a quantum theory for these optical excitations, they must first be characterized so that single-particle-like and collective, plasmon-like excitations can be identified. We show that time-dependent density functional theory can be used to make that characterization if both the charge densities induced by the excitation and the transitions that make up the excitation are analyzed. Density functional theory predicts that single-particle-like and collective excitations can coexist. Exact calculations for small nanosystems predict that single-particle excitations evolve into collective excitations as the electron-electron interaction is turned on with no indication that they coexist. These different predictions present a challenge that must be resolved to develop an understanding for quantum excitations in nanoplasmonic materials.
Abstract The character of optical excitations in nanoscale and atomic-scale materials is often strongly mixed, having contributions from both single-particle transitions and collective, plasmon-like response. This complicates the quantum description of these excitations, because there is no clear way to define their quantization. To move toward a quantum theory for these optical excitations, they must first be characterized so that single-particle-like and collective, plasmon-like excitations can be identified. We show that time-dependent density functional theory can be used to make that characterization if both the charge densities induced by the excitation and the transitions that make up the excitation are analyzed. Density functional theory predicts that single-particle-like and collective excitations can coexist. Exact calculations for small nanosystems predict that single-particle excitations evolve into collective excitations as the electron–electron interaction is turned on with no indication that they coexist. These different predictions present a challenge that must be resolved to develop an understanding for quantum excitations in nanoplasmonic materials.
Author Debrecht, Alex
Townsend, Emily
Bryant, Garnett W.
Author_xml – sequence: 1
  givenname: Emily
  surname: Townsend
  fullname: Townsend, Emily
  organization: Quantum Measurement Division and Joint Quantum Institute, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-8423, USA; and University of Maryland, College Park, Maryland 20742, USA
– sequence: 2
  givenname: Alex
  surname: Debrecht
  fullname: Debrecht, Alex
  organization: †Quantum Measurement Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-8423, USA; and Department of Physics and Engineering Physics, Juniata College, Huntingdon, Pennsylvania 16652, USA
– sequence: 3
  givenname: Garnett W.
  surname: Bryant
  fullname: Bryant, Garnett W.
  email: garnett.bryant@nist.gov
  organization: ‡Quantum Measurement Division and Joint Quantum Institute, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-8423, USA; and University of Maryland, College Park, Maryland 20742, USA
BookMark eNqF0LtqwzAUBmBRUmiSdusDGLp0qF1dLXkMoTcIdGlnIctyomBLjmQPffsqJEMphU5n-c7POf8CzJx3BoBbBAvEGH_c96HAELECE3wB5hhSmjOCyxmYQyFojitEr8Aixj1MCnI6B3A1DMErvbNum407kx0m5capzzrb2zFrfciccn7oVOy9szpeg8tWddHcnOcSfD4_faxf8837y9t6tck1FWjMESxxrRvWQMZZ3ZiWI6yRIlRrxTFBnDAqlKqIaWrKiEEl5Yg0StTa1KYVZAnuT7npvMNk4ih7G7XpOuWMn6JEvEqfiQof6d0vuvdTcOm6pCAXokIlTOrhpHTwMQbTyiHYXoUviaA81idTffJYn0z1JZ6feEzMbU34Efq3L87xqq-Dbbbmn4VvW-mB8w
CODEN JMREEE
CitedBy_id crossref_primary_10_1103_PhysRevB_93_115439
crossref_primary_10_1021_acsnano_8b09826
crossref_primary_10_1021_acsphotonics_5b00688
crossref_primary_10_1063_5_0078230
crossref_primary_10_1021_acs_jpcc_0c07964
crossref_primary_10_1063_5_0038883
crossref_primary_10_1088_2040_8978_18_7_074001
crossref_primary_10_1021_acsnano_7b03421
crossref_primary_10_1021_acs_jpcc_0c10507
crossref_primary_10_1103_PhysRevB_104_235414
Cites_doi 10.1103/PhysRevLett.110.153605
10.1103/PhysRevLett.95.200801
10.1038/nphys2615
10.1103/PhysRevLett.96.113002
10.1103/PhysRevB.83.235406
10.1038/nphoton.2006.49
10.1103/PhysRevLett.89.236802
10.1103/PhysRevB.90.161407
10.1103/PhysRevB.82.195419
10.1103/PhysRevLett.106.020501
10.1021/nl2037613
10.1103/PhysRevLett.85.3966
10.1103/PhysRev.172.436
10.1021/nl304208s
10.1038/ncomms1806
10.1021/nl301917d
10.1002/pssb.200642067
10.1103/PhysRevB.79.233309
10.1103/PhysRevA.82.043845
10.1103/PhysRevB.77.115403
10.1103/PhysRevB.87.125423
10.1021/nl800921z
10.1103/PhysRevLett.94.110501
10.1088/1367-2630/16/1/013052
10.1063/1.4714688
10.1038/nature00869
10.1103/PhysRevLett.105.263601
10.1021/jp3113073
10.1103/PhysRev.82.625
10.1364/OPN.25.11.000050
10.1088/0957-4484/21/35/355501
10.1103/PhysRevLett.98.216602
10.1073/pnas.2232479100
10.1103/PhysRevB.77.165301
10.1038/nphoton.2014.40
10.1103/PhysRevLett.97.146804
10.1364/OE.16.021793
10.1103/PhysRevB.84.035314
10.1038/nnano.2013.150
10.1002/adma.200700678
10.1088/2040-8978/16/11/114022
10.1063/1.4766360
10.1103/PhysRevLett.102.246802
10.1021/nl803811g
10.1007/BFb0048317
10.1103/PhysRevB.84.081405
10.1103/PhysRevLett.59.2044
10.1021/nn4006297
10.1021/nn900422w
10.1016/S0009-2614(01)01104-6
10.1063/1.3633270
ContentType Journal Article
Copyright Copyright © Materials Research Society 2015
The Materials Research Society 2015
Copyright Cambridge University Press Aug 28, 2015
Copyright_xml – notice: Copyright © Materials Research Society 2015
– notice: The Materials Research Society 2015
– notice: Copyright Cambridge University Press Aug 28, 2015
DBID AAYXX
CITATION
0U~
1-H
3V.
7SR
7WY
7WZ
7XB
87Z
8BQ
8FD
8FE
8FG
8FK
8FL
ABJCF
ABUWG
AFKRA
BENPR
BEZIV
BGLVJ
CCPQU
D1I
DWQXO
FRNLG
F~G
HCIFZ
JG9
K60
K6~
KB.
L.-
L.0
M0C
PDBOC
PQBIZ
PQBZA
PQEST
PQQKQ
PQUKI
PRINS
Q9U
S0W
DOI 10.1557/jmr.2015.232
DatabaseName CrossRef
Global News & ABI/Inform Professional
Trade PRO
ProQuest Central (Corporate)
Engineered Materials Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Global (Alumni Edition)
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni Edition)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
SciTech Premium Collection (Proquest) (PQ_SDU_P3)
Materials Research Database
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Materials Science Database
ABI/INFORM Professional Advanced
ABI/INFORM Professional Standard
ABI/INFORM Global
Materials Science Collection
One Business (ProQuest)
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DELNET Engineering & Technology Collection
DatabaseTitle CrossRef
Materials Research Database
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Technology Collection
Technology Research Database
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Trade PRO
ProQuest Central China
ABI/INFORM Complete
ProQuest Central
Global News & ABI/Inform Professional
ABI/INFORM Professional Advanced
Engineered Materials Abstracts
ABI/INFORM Professional Standard
ProQuest Central Korea
Materials Science Database
ABI/INFORM Complete (Alumni Edition)
ProQuest Materials Science Collection
Business Premium Collection
ABI/INFORM Global
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
METADEX
ProQuest One Academic UKI Edition
ProQuest DELNET Engineering and Technology Collection
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList Materials Research Database
CrossRef
Materials Research Database


Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
DocumentTitleAlternate E. Townsend et al.: Approaching the quantum limit for nanoplasmonics
EISSN 2044-5326
EndPage 2399
ExternalDocumentID 3791019581
10_1557_jmr_2015_232
Genre Feature
GroupedDBID -2P
-E.
-~X
.DC
.FH
0E1
0R~
2JN
3V.
4.4
406
5GY
5VS
74X
74Y
7WY
7~V
8FE
8FG
8FL
8UJ
8WZ
A6W
AAAZR
AABES
AABWE
AACJH
AAEED
AAFGU
AAGFV
AAHNG
AAIKC
AAKTX
AAMNW
AARAB
AASVR
AATID
AATNV
AAUKB
AAYFA
ABBXD
ABECU
ABEFU
ABGDZ
ABJCF
ABJNI
ABKAS
ABKKG
ABMQK
ABMWE
ABMYL
ABQTM
ABROB
ABTEG
ABTKH
ABTMW
ABUWG
ABZCX
ACAOD
ACBEA
ACBEK
ACBMC
ACCHT
ACGFO
ACGFS
ACHSB
ACIGE
ACIHN
ACIMK
ACIWK
ACQFJ
ACQPF
ACREK
ACTTH
ACUIJ
ACUYZ
ACVWB
ACWGA
ACWMK
ACXSD
ACZBM
ACZOJ
ACZUX
ADCGK
ADFEC
ADGEJ
ADOCW
ADOXG
AEAQA
AEBAK
AEFTE
AEHGV
AEMSY
AEMTW
AENEX
AENGE
AESKC
AESTI
AEYYC
AFBBN
AFFUJ
AFKQG
AFKRA
AFLOS
AFLVW
AFNRJ
AFUTZ
AGLWM
AGMZJ
AGOOT
AGQEE
AHQXX
AIGNW
AIHIV
AIOIP
AISIE
AJCYY
AJDOV
AJPFC
AJQAS
ALMA_UNASSIGNED_HOLDINGS
ALVPG
ALWZO
AMTXH
AMXSW
AMYLF
ARABE
ATUCA
AUXHV
AYIQA
BBLKV
BENPR
BEZIV
BGHMG
BGLVJ
BMAJL
BPHCQ
C0O
CBIIA
CCPQU
CFAFE
CS3
CZ9
D1I
DC4
DOHLZ
DPUIP
DU5
DWQXO
EBS
EJD
F5P
FIGPU
FRNLG
GROUPED_ABI_INFORM_COMPLETE
HCIFZ
HG-
HST
HZ~
I.6
I.7
I.9
IH6
IKXTQ
IOEEP
IOO
IS6
IWAJR
I~P
J36
J38
J3A
JHPGK
JKPOH
JQKCU
JZLTJ
K60
K6~
KB.
KC.
KCGVB
KFECR
L98
LHUNA
LLZTM
M-V
M0C
M7~
NIKVX
NPVJJ
NQJWS
O9-
P2P
PDBOC
PQBIZ
PQQKQ
PROAC
PYCCK
RAMDC
RCA
RNS
RR0
RSV
S0W
S6-
S6U
SAAAG
SJN
SNE
SNPRN
SOHCF
SOJ
SRMVM
SSLCW
T9M
TAE
TN5
TWZ
UPT
UT1
WH7
WQ3
WXU
WXY
YQT
ZMEZD
ZMTXR
ZYDXJ
~02
-2V
AAGCJ
ABZUI
ACETC
ADOVH
ADOVT
AEEQQ
AI.
AKZCZ
ARZZG
BCGOX
BESQT
BJBOZ
BQFHP
CCUQV
CFBFF
CGQII
CHEAL
G8K
KAFGG
M8.
SCG
SCLPG
VH1
VOH
Z7R
Z7S
Z7V
Z7W
Z7X
Z7Y
Z83
Z88
ZDLDU
ZE2
ZJOSE
~V1
AAJBT
AAYXX
AEFQL
CITATION
EBLON
PQBZA
ROL
SJYHP
0U~
1-H
7SR
7XB
8BQ
8FD
8FK
JG9
L.-
L.0
PQEST
PQUKI
PRINS
Q9U
AACDK
ID FETCH-LOGICAL-c481t-1062bcd5d0575bdef712c1a34cca723173548aa93edb453e164713da8bcebef83
IEDL.DBID 8FG
ISSN 0884-2914
IngestDate Fri Oct 25 11:45:42 EDT 2024
Thu Oct 10 18:40:11 EDT 2024
Thu Sep 26 18:15:32 EDT 2024
Sat Dec 16 12:10:08 EST 2023
Wed Mar 13 05:41:05 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 16
Keywords nanostructure
nanoscale
optical
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c481t-1062bcd5d0575bdef712c1a34cca723173548aa93edb453e164713da8bcebef83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://doi.org/10.1557/jmr.2015.232
PQID 1707889160
PQPubID 626330
PageCount 11
ParticipantIDs proquest_miscellaneous_1793268928
proquest_journals_1707889160
crossref_primary_10_1557_jmr_2015_232
springer_journals_10_1557_jmr_2015_232
cambridge_journals_10_1557_jmr_2015_232
PublicationCentury 2000
PublicationDate 2015-08-28
PublicationDateYYYYMMDD 2015-08-28
PublicationDate_xml – month: 08
  year: 2015
  text: 2015-08-28
  day: 28
PublicationDecade 2010
PublicationPlace New York, USA
PublicationPlace_xml – name: New York, USA
– name: Cham
– name: Warrendale
PublicationTitle Journal of materials research
PublicationTitleAbbrev Journal of Materials Research
PublicationTitleAlternate J. Mater. Res
PublicationYear 2015
Publisher Cambridge University Press
Springer International Publishing
Springer Nature B.V
Publisher_xml – name: Cambridge University Press
– name: Springer International Publishing
– name: Springer Nature B.V
References Thongrattanasiri, Silveiro, García de Abajo 2012; 100
Artuso, Bryant, García-Etxarri, Aizpurua 2011; 83
Coppens, Li, Walker, Valentine 2013; 13
Perez, Que 2006; 18
Cohen-Hoshen, Bryant, Pinkas, Sperling, Bar-Joseph 2012; 12
Fakonas, Lee, Kelaita, Atwater 2014; 8
Sadeghi 2011; 99
Sadeghi 2009; 79
Artuso, Bryant 2010; 82
Sadeghi, West 2011; 23
Zhang, Feist, Rubio, García-González, García-Vidal 2014; 90
Hong, Ou, Mandel 1987; 59
Trugler, Hohenester 2008; 77
Artuso, Bryant 2013; 87
Kalkbrenner, Håkanson, Schädle, Burger, Henkel, Sandoghdar 2005; 95
Altewischer, van Exter, Woerdman 2002; 418
Malyshev, Malyshev 2011; 84
Townsend, Bryant 2014; 16
Artuso, Bryant 2009; 8
Bryant, Waks, Krenn 2014; 25
Huck, Smolka, Lodahl, Sørensen, Boltasseva, Janousek, Andersen 2009; 102
Gonzalez-Tudela, Martin-Cano, Moreno, Martin-Moreno, Tejedor, García-Vidal 2011; 106
Pendry 2000; 85
Zuloaga, Prodan, Nordlander 2009; 9
Manjavacas, Marchesin, Thongrattanasiri, Koval, Nordlander, Sánchez-Portal, García de Abajo 2013; 7
Anger, Bharadwaj, Novotny 2006; 96
Zhang, Govorov, Bryant 2006; 97
Esteban, Aizpurua, Bryant 2014; 16
Castro, Appel, Oliveira, Rozzi, Andrade, Lorenzen, Marques, Gross, Rubio 2006; 243
Zhang, Govorov 2011; 84
Esteban, Borisov, Nordlander, Aizpurua 2012; 3
Dadosh, Sperling, Bryant, Breslow, Shegai, Dyshel, Haran, Bar-Joseph 2009; 3
Shalaev 2007; 1
Catchpole, Polman 2008; 16
Townsend, Bryant 2012; 12
Fasel, Robin, Moreno, Erni, Gisin, Zbinden 2005; 94
Wallis, Nilius, Ho 2002; 89
Hirsch, Stafford, Bankson, Sershen, Rivera, Price, Hazle, Halas, West 2003; 100
Ridolfo, Di Stefano, Fina, Saija, Savasta 2010; 105
Crowell, Ritchie 1968; 172
Bernadotte, Evers, Jacob 2013; 117
Tame, McEnery, Özdemir, Lee, Maier, Kim 2013; 9
Yan, Zhang, Duan, Zhao, Govorov 2008; 77
Murray, Barnes 2007; 19
Sadeghi 2010; 21
Yan, Yuan, Gao 2007; 98
Chen, Sandoghdar, Agio 2013; 110
Prodan, Nordlander 2001; 349
Waks, Sridharan 2010; 82
Gao, Ruud, Luo 2012; 137
Bohm, Pines 1951; 82
Heeres, Kouwenhoven, Zwiller 2013; 8
SadeghiSMOptical routing and switching of energy flow in nanostructure systemsAppl. Phys. Lett.201199113113
BernadotteSEversFJacobCRPlasmons in moleculesJ. Phys. Chem. C201311718631:CAS:528:DC%2BC3sXhtFWrtL8%3D
FakonasJSLeeHKelaitaYAAtwaterHATwo-plasmon quantum interferenceNat. Photonics201483171:CAS:528:DC%2BC2cXjtlyit7Y%3D
GaoBRuudKLuoYPlasmon resonances in linear noble-metal chainsJ. Chem. Phys.2012137194307
TownsendEBryantGWWhich resonances in small metallic nanoparticles are plasmonic?J. Opt.201416114022
PendryJBNegative refraction makes a perfect lensPhys. Rev. Lett.20008539661:CAS:528:DC%2BD3cXns1Sms7c%3D
ArtusoRDBryantGWOptical response of strongly coupled quantum dot-metal nanoparticle systems: Double peaked Fano structure and bistabilityNano Lett.200982106
AngerPBharadwajPNovotnyLEnhancement and quenching of single-molecule fluorescencePhys. Rev. Lett.200696113002
TownsendEBryantGWPlasmonic properties of metallic nanoparticles: The effects of size quantizationNano Lett.2012124291:CAS:528:DC%2BC3MXhs1Cjt77P
DadoshTSperlingJBryantGWBreslowRShegaiTDyshelMHaranGBar-JosephIPlasmonic control of the shape of the Raman spectrum of a single molecule in.a silver nanoparticle dimerACS Nano2009319881:CAS:528:DC%2BD1MXntlektbw%3D
WallisTMNiliusNHoWElectronic density oscillations in gold atomic chains assembled atom by atomPhys. Rev. Lett.2002892368021:STN:280:DC%2BD38jitlygtQ%3D%3D
ArtusoRDBryantGWGarcía-EtxarriAAizpuruaJUsing local fields to tailor hybrid quantum-dot/metal nanoparticle systemsPhys. Rev. B201183235406
ProdanENordlanderPExchange and correlation effects in small metallic nanoshellsChem. Phys. Lett.20013491531:CAS:528:DC%2BD3MXptlOlt70%3D
ZuloagaJProdanENordlanderPQuantum description of the plasmon resonances of a nanoparticle dimerNano Lett.200998871:CAS:528:DC%2BD1MXotlOhtA%3D%3D
ArtusoRDBryantGWQuantum dot–quantum dot interactions mediated by a metal nanoparticle: Towards a fully quantum modelPhys. Rev. B201387125423
EstebanRBorisovAGNordlanderPAizpuruaJBridging quantum and classical plasmonics with a quantum-corrected modelNat. Commun.20123825
CoppensZJLiWWalkerDGValentineJGProbing and controlling photothermal heat generation in plasmonic nanostructuresNano Lett.20131310231:CAS:528:DC%2BC3sXjtVClur0%3D
MalyshevAVMalyshevVAOptical bistability and hysteresis of a hybrid metal-semiconductor nanodimerPhys. Rev. B201184035314
ZhangWGovorovAOQuantum theory of the nonlinear Fano effect in hybrid metal-semiconductor nanostructures: The case of strong nonlinearityPhys. Rev. B201184081405
BohmDPinesDA collective description of electron interactions. I. Magnetic interactionsPhys. Rev.1951826251:CAS:528:DyaG3MXjsl2qsw%3D%3D
WaksESridharanDCavity QED treatment of interactions between a metal nanoparticle and a dipole emitterPhys. Rev. A201082043845
HirschLRStaffordRJBanksonJASershenSRiveraBPriceREHazleJDHalasNJWestJNanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidanceProc. Natl. Acad. Sci. USA2003100135491:CAS:528:DC%2BD3sXptFOit7k%3D
CastroAAppelHOliveiraMRozziCAAndradeXLorenzenFMarquesMGrossERubioAOctopus: A tool for the application of time-dependent density functional theoryPhys. Status Solidi B200624324651:CAS:528:DC%2BD28Xpsl2msLY%3D
HeeresRWKouwenhovenLPZwillerVQuantum interference in plasmonic circuitsNat. Nanotechnol.201387191:CAS:528:DC%2BC3sXht1Cgs73P
Gonzalez-TudelaAMartin-CanoDMorenoEMartin-MorenoLTejedorCGarcía-VidalFJEntanglement of two qubits mediated by one-dimensional plasmonic waveguidesPhys. Rev. Lett.20111060205011:STN:280:DC%2BC3M3mvFKkuw%3D%3D
TameMSMcEneryKRÖzdemirSKLeeJMaierSAKimMSQuantum plasmonicsNat. Phys.201393291:CAS:528:DC%2BC3sXosFOgs7g%3D
Cohen-HoshenEBryantGWPinkasISperlingJBar-JosephIExciton−plasmon interactions in quantum dot−gold nanoparticle structuresNano Lett.20121242601:CAS:528:DC%2BC38Xpt1Chtbo%3D
EstebanRAizpuruaJBryantGWStrong coupling of single emitters interacting with phononic infrared antennaeNew J. Phys.201416013052
ZhangPFeistJRubioAGarcía-GonzálezPGarcía-VidalFJAb initio nanoplasmonics: The impact of atomic structurePhys. Rev. B201490161407(R)
FaselSRobinFMorenoEErniDGisinNZbindenHEnergy–time entanglement preservation in plasmon-assisted light transmissionPhys. Rev. Lett.200594110501
CrowellJRitchieRHRadiative decay of Coulomb-stimulated plasmons in spheresPhys. Rev.1968172436
YanJ-YZhangWDuanSZhaoX-GGovorovAOOptical properties of coupled metal-semiconductor and metal-molecule nanocrystal complexes: Role of multipole effectsPhys. Rev. B200877165301
PeltonMBryantGIntroduction to Metal-Nanoparticle Plasmonics2013Hoboken, New JerseyWiley
MurrayWABarnesWLPlasmonic materialsAdv. Mater.20071937711:CAS:528:DC%2BD2sXhsVahtrjI
HongCKOuZYMandelLMeasurement of subpicosecond time intervals between two photons by interferencePhys. Rev. Lett.19875920441:CAS:528:DyaL1cXmt1Kisw%3D%3D
KalkbrennerTHåkansonUSchädleABurgerSHenkelCSandoghdarVOptical microscopy via spectral modifications of a nanoantennaPhys. Rev. Lett.2005952008011:STN:280:DC%2BD2Mnps1KksA%3D%3D
SadeghiSMWestRGCoherent control of Forster energy transfer in nanoparticle molecules: Energy nanogates and plasmonic heat pulsesJ. Phys: Condens. Matter2011234253021:STN:280:DC%2BC3Mfps1KmtQ%3D%3D
YanJYuanZGaoSEnd and central plasmon resonances in linear atomic chainsPhys. Rev. Lett.200798216602
HuckASmolkaSLodahlPSørensenASBoltassevaAJanousekJAndersenULDemonstration of quadrature-squeezed surface plasmons in a gold waveguidePhys. Rev. Lett.2009102246802
AltewischerEvan ExterMPWoerdmanJPPlasmon-assisted transmission of entangled photonsNature20024183041:CAS:528:DC%2BD38XltlGmsLw%3D
ChenX-WSandoghdarVAgioMCoherent interaction of light with a metallic structure coupled to a single quantum emitter: From superabsorption to cloakingPhys. Rev. Lett.2013110153605
ArtusoRDBryantGWStrongly coupled quantum dot metal nanoparticle systems: Exciton-induced transparency, discontinuous response, and suppression as driven quantum oscillator effectsPhys. Rev. B201082195419
BryantGWWaksEKrennJRPlasmonics: The rise of quantum effectsOpt. Photonics News20142550
RidolfoADi StefanoOFinaNSaijaRSavastaSQuantum plasmonics with quantum dot-metal nanoparticle molecules: Influence of the Fano effect on photon statisticsPhys. Rev. Lett.20101052636011:STN:280:DC%2BC3M7htl2hsQ%3D%3D
TruglerAHohenesterUStrong coupling between a metallic nanoparticle and a single moleculePhys. Rev. B200877115403
CatchpoleKRPolmanAPlasmonic solar cellsOpt. Express.200816217931:CAS:528:DC%2BD1MXislCmuw%3D%3D
ThongrattanasiriSSilveiroIde AbajoFJ GPlasmons in electrostatically doped grapheneAppl. Phys. Lett.2012100201105
ManjavacasAMarchesinFThongrattanasiriSKovalPNordlanderPSánchez-PortalDde AbajoFJ GTunable molecular plasmons in polycyclic aromatic hydrocarbonsACS Nano2013736351:CAS:528:DC%2BC3sXjvVKktrY%3D
SadeghiSMPlasmonic metaresonances: Molecular resonances in quantum dot-metallic nanoparticle conjugatesPhys. Rev. B200979233309
ZhangWGovorovAOBryantGWSemiconductor-metal nanoparticle molecules: Hybrid excitons and the nonlinear Fano effectPhys. Rev. Lett.200697146804
ShalaevVMOptical negative-index metamaterialsNat. Photonics20071411:CAS:528:DC%2BD2sXltVKhsLs%3D
PerezRQueWPlasmons in isolated single-walled carbon nanotubesJ. Phys.: Condens. Matter20061831971:CAS:528:DC%2BD28XjvVCru78%3D
RaetherHSurface Plasmons on Smooth and Rough Surfaces and on Gratings1988New YorkSpringer-Verlag
SadeghiSMTunable nanoswitches based on nanoparticle meta-moleculesNanotechnology2010213555011:STN:280:DC%2BC3cjjtFCrtg%3D%3D
S0884291415002320_ref19
S0884291415002320_ref20
S0884291415002320_ref21
S0884291415002320_ref9
S0884291415002320_ref8
S0884291415002320_ref26
S0884291415002320_ref27
S0884291415002320_ref28
S0884291415002320_ref29
S0884291415002320_ref22
S0884291415002320_ref23
S0884291415002320_ref24
S0884291415002320_ref25
Pelton (S0884291415002320_ref1) 2013
S0884291415002320_ref51
S0884291415002320_ref52
S0884291415002320_ref53
S0884291415002320_ref54
S0884291415002320_ref10
S0884291415002320_ref50
S0884291415002320_ref15
S0884291415002320_ref16
S0884291415002320_ref17
S0884291415002320_ref18
S0884291415002320_ref11
S0884291415002320_ref12
S0884291415002320_ref13
Perez (S0884291415002320_ref6) 2006; 18
S0884291415002320_ref14
S0884291415002320_ref40
S0884291415002320_ref41
S0884291415002320_ref42
Sadeghi (S0884291415002320_ref46) 2011; 23
S0884291415002320_ref43
S0884291415002320_ref48
S0884291415002320_ref49
S0884291415002320_ref44
S0884291415002320_ref45
S0884291415002320_ref47
S0884291415002320_ref7
S0884291415002320_ref5
S0884291415002320_ref4
S0884291415002320_ref3
S0884291415002320_ref2
S0884291415002320_ref30
S0884291415002320_ref31
S0884291415002320_ref32
S0884291415002320_ref37
S0884291415002320_ref38
S0884291415002320_ref39
S0884291415002320_ref33
S0884291415002320_ref34
S0884291415002320_ref35
S0884291415002320_ref36
References_xml – volume: 82
  start-page: 195419
  year: 2010
  article-title: Strongly coupled quantum dot metal nanoparticle systems: Exciton-induced transparency, discontinuous response, and suppression as driven quantum oscillator effects
  publication-title: Phys. Rev. B
  contributor:
    fullname: Bryant
– volume: 97
  start-page: 146804
  year: 2006
  article-title: Semiconductor-metal nanoparticle molecules: Hybrid excitons and the nonlinear Fano effect
  publication-title: Phys. Rev. Lett.
  contributor:
    fullname: Bryant
– volume: 82
  start-page: 043845
  year: 2010
  article-title: Cavity QED treatment of interactions between a metal nanoparticle and a dipole emitter
  publication-title: Phys. Rev. A
  contributor:
    fullname: Sridharan
– volume: 137
  start-page: 194307
  year: 2012
  article-title: Plasmon resonances in linear noble-metal chains
  publication-title: J. Chem. Phys.
  contributor:
    fullname: Luo
– volume: 100
  start-page: 13549
  year: 2003
  article-title: Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance
  publication-title: Proc. Natl. Acad. Sci. USA
  contributor:
    fullname: West
– volume: 98
  start-page: 216602
  year: 2007
  article-title: End and central plasmon resonances in linear atomic chains
  publication-title: Phys. Rev. Lett.
  contributor:
    fullname: Gao
– volume: 84
  start-page: 081405
  year: 2011
  article-title: Quantum theory of the nonlinear Fano effect in hybrid metal-semiconductor nanostructures: The case of strong nonlinearity
  publication-title: Phys. Rev. B
  contributor:
    fullname: Govorov
– volume: 90
  start-page: 161407(R)
  year: 2014
  article-title: Ab initio nanoplasmonics: The impact of atomic structure
  publication-title: Phys. Rev. B
  contributor:
    fullname: García-Vidal
– volume: 418
  start-page: 304
  year: 2002
  article-title: Plasmon-assisted transmission of entangled photons
  publication-title: Nature
  contributor:
    fullname: Woerdman
– volume: 21
  start-page: 355501
  year: 2010
  article-title: Tunable nanoswitches based on nanoparticle meta-molecules
  publication-title: Nanotechnology
  contributor:
    fullname: Sadeghi
– volume: 16
  start-page: 21793
  year: 2008
  article-title: Plasmonic solar cells
  publication-title: Opt. Express.
  contributor:
    fullname: Polman
– volume: 89
  start-page: 236802
  year: 2002
  article-title: Electronic density oscillations in gold atomic chains assembled atom by atom
  publication-title: Phys. Rev. Lett.
  contributor:
    fullname: Ho
– volume: 106
  start-page: 020501
  year: 2011
  article-title: Entanglement of two qubits mediated by one-dimensional plasmonic waveguides
  publication-title: Phys. Rev. Lett.
  contributor:
    fullname: García-Vidal
– volume: 243
  start-page: 2465
  year: 2006
  article-title: Octopus: A tool for the application of time-dependent density functional theory
  publication-title: Phys. Status Solidi B
  contributor:
    fullname: Rubio
– volume: 84
  start-page: 035314
  year: 2011
  article-title: Optical bistability and hysteresis of a hybrid metal-semiconductor nanodimer
  publication-title: Phys. Rev. B
  contributor:
    fullname: Malyshev
– volume: 110
  start-page: 153605
  year: 2013
  article-title: Coherent interaction of light with a metallic structure coupled to a single quantum emitter: From superabsorption to cloaking
  publication-title: Phys. Rev. Lett.
  contributor:
    fullname: Agio
– volume: 12
  start-page: 429
  year: 2012
  article-title: Plasmonic properties of metallic nanoparticles: The effects of size quantization
  publication-title: Nano Lett.
  contributor:
    fullname: Bryant
– volume: 9
  start-page: 887
  year: 2009
  article-title: Quantum description of the plasmon resonances of a nanoparticle dimer
  publication-title: Nano Lett.
  contributor:
    fullname: Nordlander
– volume: 18
  start-page: 3197
  year: 2006
  article-title: Plasmons in isolated single-walled carbon nanotubes
  publication-title: J. Phys.: Condens. Matter
  contributor:
    fullname: Que
– volume: 59
  start-page: 2044
  year: 1987
  article-title: Measurement of subpicosecond time intervals between two photons by interference
  publication-title: Phys. Rev. Lett.
  contributor:
    fullname: Mandel
– volume: 77
  start-page: 165301
  year: 2008
  article-title: Optical properties of coupled metal-semiconductor and metal-molecule nanocrystal complexes: Role of multipole effects
  publication-title: Phys. Rev. B
  contributor:
    fullname: Govorov
– volume: 13
  start-page: 1023
  year: 2013
  article-title: Probing and controlling photothermal heat generation in plasmonic nanostructures
  publication-title: Nano Lett.
  contributor:
    fullname: Valentine
– volume: 3
  start-page: 1988
  year: 2009
  article-title: Plasmonic control of the shape of the Raman spectrum of a single molecule in.a silver nanoparticle dimer
  publication-title: ACS Nano
  contributor:
    fullname: Bar-Joseph
– volume: 349
  start-page: 153
  year: 2001
  article-title: Exchange and correlation effects in small metallic nanoshells
  publication-title: Chem. Phys. Lett.
  contributor:
    fullname: Nordlander
– volume: 3
  start-page: 825
  year: 2012
  article-title: Bridging quantum and classical plasmonics with a quantum-corrected model
  publication-title: Nat. Commun.
  contributor:
    fullname: Aizpurua
– volume: 95
  start-page: 200801
  year: 2005
  article-title: Optical microscopy via spectral modifications of a nanoantenna
  publication-title: Phys. Rev. Lett.
  contributor:
    fullname: Sandoghdar
– volume: 82
  start-page: 625
  year: 1951
  article-title: A collective description of electron interactions. I. Magnetic interactions
  publication-title: Phys. Rev.
  contributor:
    fullname: Pines
– volume: 16
  start-page: 013052
  year: 2014
  article-title: Strong coupling of single emitters interacting with phononic infrared antennae
  publication-title: New J. Phys.
  contributor:
    fullname: Bryant
– volume: 94
  start-page: 110501
  year: 2005
  article-title: Energy–time entanglement preservation in plasmon-assisted light transmission
  publication-title: Phys. Rev. Lett.
  contributor:
    fullname: Zbinden
– volume: 87
  start-page: 125423
  year: 2013
  article-title: Quantum dot–quantum dot interactions mediated by a metal nanoparticle: Towards a fully quantum model
  publication-title: Phys. Rev. B
  contributor:
    fullname: Bryant
– volume: 12
  start-page: 4260
  year: 2012
  article-title: Exciton−plasmon interactions in quantum dot−gold nanoparticle structures
  publication-title: Nano Lett.
  contributor:
    fullname: Bar-Joseph
– volume: 9
  start-page: 329
  year: 2013
  article-title: Quantum plasmonics
  publication-title: Nat. Phys.
  contributor:
    fullname: Kim
– volume: 77
  start-page: 115403
  year: 2008
  article-title: Strong coupling between a metallic nanoparticle and a single molecule
  publication-title: Phys. Rev. B
  contributor:
    fullname: Hohenester
– volume: 172
  start-page: 436
  year: 1968
  article-title: Radiative decay of Coulomb-stimulated plasmons in spheres
  publication-title: Phys. Rev.
  contributor:
    fullname: Ritchie
– volume: 100
  start-page: 201105
  year: 2012
  article-title: Plasmons in electrostatically doped graphene
  publication-title: Appl. Phys. Lett.
  contributor:
    fullname: García de Abajo
– volume: 23
  start-page: 425302
  year: 2011
  article-title: Coherent control of Forster energy transfer in nanoparticle molecules: Energy nanogates and plasmonic heat pulses
  publication-title: J. Phys: Condens. Matter
  contributor:
    fullname: West
– volume: 96
  start-page: 113002
  year: 2006
  article-title: Enhancement and quenching of single-molecule fluorescence
  publication-title: Phys. Rev. Lett.
  contributor:
    fullname: Novotny
– volume: 16
  start-page: 114022
  year: 2014
  article-title: Which resonances in small metallic nanoparticles are plasmonic?
  publication-title: J. Opt.
  contributor:
    fullname: Bryant
– volume: 8
  start-page: 317
  year: 2014
  article-title: Two-plasmon quantum interference
  publication-title: Nat. Photonics
  contributor:
    fullname: Atwater
– volume: 85
  start-page: 3966
  year: 2000
  article-title: Negative refraction makes a perfect lens
  publication-title: Phys. Rev. Lett.
  contributor:
    fullname: Pendry
– volume: 25
  start-page: 50
  year: 2014
  article-title: Plasmonics: The rise of quantum effects
  publication-title: Opt. Photonics News
  contributor:
    fullname: Krenn
– volume: 1
  start-page: 41
  year: 2007
  article-title: Optical negative-index metamaterials
  publication-title: Nat. Photonics
  contributor:
    fullname: Shalaev
– volume: 99
  start-page: 113113
  year: 2011
  article-title: Optical routing and switching of energy flow in nanostructure systems
  publication-title: Appl. Phys. Lett.
  contributor:
    fullname: Sadeghi
– volume: 117
  start-page: 1863
  year: 2013
  article-title: Plasmons in molecules
  publication-title: J. Phys. Chem. C
  contributor:
    fullname: Jacob
– volume: 102
  start-page: 246802
  year: 2009
  article-title: Demonstration of quadrature-squeezed surface plasmons in a gold waveguide
  publication-title: Phys. Rev. Lett.
  contributor:
    fullname: Andersen
– volume: 7
  start-page: 3635
  year: 2013
  article-title: Tunable molecular plasmons in polycyclic aromatic hydrocarbons
  publication-title: ACS Nano
  contributor:
    fullname: García de Abajo
– volume: 8
  start-page: 2106
  year: 2009
  article-title: Optical response of strongly coupled quantum dot-metal nanoparticle systems: Double peaked Fano structure and bistability
  publication-title: Nano Lett.
  contributor:
    fullname: Bryant
– volume: 83
  start-page: 235406
  year: 2011
  article-title: Using local fields to tailor hybrid quantum-dot/metal nanoparticle systems
  publication-title: Phys. Rev. B
  contributor:
    fullname: Aizpurua
– volume: 79
  start-page: 233309
  year: 2009
  article-title: Plasmonic metaresonances: Molecular resonances in quantum dot-metallic nanoparticle conjugates
  publication-title: Phys. Rev. B
  contributor:
    fullname: Sadeghi
– volume: 105
  start-page: 263601
  year: 2010
  article-title: Quantum plasmonics with quantum dot-metal nanoparticle molecules: Influence of the Fano effect on photon statistics
  publication-title: Phys. Rev. Lett.
  contributor:
    fullname: Savasta
– volume: 19
  start-page: 3771
  year: 2007
  article-title: Plasmonic materials
  publication-title: Adv. Mater.
  contributor:
    fullname: Barnes
– volume: 8
  start-page: 719
  year: 2013
  article-title: Quantum interference in plasmonic circuits
  publication-title: Nat. Nanotechnol.
  contributor:
    fullname: Zwiller
– volume-title: Introduction to Metal-Nanoparticle Plasmonics
  year: 2013
  ident: S0884291415002320_ref1
  contributor:
    fullname: Pelton
– ident: S0884291415002320_ref45
  doi: 10.1103/PhysRevLett.110.153605
– ident: S0884291415002320_ref10
  doi: 10.1103/PhysRevLett.95.200801
– ident: S0884291415002320_ref18
  doi: 10.1038/nphys2615
– volume: 23
  start-page: 425302
  year: 2011
  ident: S0884291415002320_ref46
  article-title: Coherent control of Forster energy transfer in nanoparticle molecules: Energy nanogates and plasmonic heat pulses
  publication-title: J. Phys: Condens. Matter
  contributor:
    fullname: Sadeghi
– ident: S0884291415002320_ref11
  doi: 10.1103/PhysRevLett.96.113002
– ident: S0884291415002320_ref35
  doi: 10.1103/PhysRevB.83.235406
– ident: S0884291415002320_ref13
  doi: 10.1038/nphoton.2006.49
– ident: S0884291415002320_ref4
  doi: 10.1103/PhysRevLett.89.236802
– ident: S0884291415002320_ref54
  doi: 10.1103/PhysRevB.90.161407
– ident: S0884291415002320_ref34
  doi: 10.1103/PhysRevB.82.195419
– ident: S0884291415002320_ref44
  doi: 10.1103/PhysRevLett.106.020501
– ident: S0884291415002320_ref21
  doi: 10.1021/nl2037613
– ident: S0884291415002320_ref12
  doi: 10.1103/PhysRevLett.85.3966
– volume: 18
  start-page: 3197
  year: 2006
  ident: S0884291415002320_ref6
  article-title: Plasmons in isolated single-walled carbon nanotubes
  publication-title: J. Phys.: Condens. Matter
  contributor:
    fullname: Perez
– ident: S0884291415002320_ref50
  doi: 10.1103/PhysRev.172.436
– ident: S0884291415002320_ref16
  doi: 10.1021/nl304208s
– ident: S0884291415002320_ref20
  doi: 10.1038/ncomms1806
– ident: S0884291415002320_ref30
  doi: 10.1021/nl301917d
– ident: S0884291415002320_ref51
  doi: 10.1002/pssb.200642067
– ident: S0884291415002320_ref37
  doi: 10.1103/PhysRevB.79.233309
– ident: S0884291415002320_ref39
  doi: 10.1103/PhysRevA.82.043845
– ident: S0884291415002320_ref42
  doi: 10.1103/PhysRevB.77.115403
– ident: S0884291415002320_ref36
  doi: 10.1103/PhysRevB.87.125423
– ident: S0884291415002320_ref33
  doi: 10.1021/nl800921z
– ident: S0884291415002320_ref24
  doi: 10.1103/PhysRevLett.94.110501
– ident: S0884291415002320_ref41
  doi: 10.1088/1367-2630/16/1/013052
– ident: S0884291415002320_ref7
  doi: 10.1063/1.4714688
– ident: S0884291415002320_ref23
  doi: 10.1038/nature00869
– ident: S0884291415002320_ref40
  doi: 10.1103/PhysRevLett.105.263601
– ident: S0884291415002320_ref2
  doi: 10.1021/jp3113073
– ident: S0884291415002320_ref49
  doi: 10.1103/PhysRev.82.625
– ident: S0884291415002320_ref19
  doi: 10.1364/OPN.25.11.000050
– ident: S0884291415002320_ref47
  doi: 10.1088/0957-4484/21/35/355501
– ident: S0884291415002320_ref5
  doi: 10.1103/PhysRevLett.98.216602
– ident: S0884291415002320_ref17
  doi: 10.1073/pnas.2232479100
– ident: S0884291415002320_ref32
  doi: 10.1103/PhysRevB.77.165301
– ident: S0884291415002320_ref28
  doi: 10.1038/nphoton.2014.40
– ident: S0884291415002320_ref31
  doi: 10.1103/PhysRevLett.97.146804
– ident: S0884291415002320_ref15
  doi: 10.1364/OE.16.021793
– ident: S0884291415002320_ref38
  doi: 10.1103/PhysRevB.84.035314
– ident: S0884291415002320_ref27
  doi: 10.1038/nnano.2013.150
– ident: S0884291415002320_ref14
  doi: 10.1002/adma.200700678
– ident: S0884291415002320_ref22
  doi: 10.1088/2040-8978/16/11/114022
– ident: S0884291415002320_ref3
  doi: 10.1063/1.4766360
– ident: S0884291415002320_ref25
  doi: 10.1103/PhysRevLett.102.246802
– ident: S0884291415002320_ref53
  doi: 10.1021/nl803811g
– ident: S0884291415002320_ref9
  doi: 10.1007/BFb0048317
– ident: S0884291415002320_ref43
  doi: 10.1103/PhysRevB.84.081405
– ident: S0884291415002320_ref26
  doi: 10.1103/PhysRevLett.59.2044
– ident: S0884291415002320_ref8
  doi: 10.1021/nn4006297
– ident: S0884291415002320_ref29
  doi: 10.1021/nn900422w
– ident: S0884291415002320_ref52
  doi: 10.1016/S0009-2614(01)01104-6
– ident: S0884291415002320_ref48
  doi: 10.1063/1.3633270
SSID ssj0015074
Score 2.2630415
Snippet The character of optical excitations in nanoscale and atomic-scale materials is often strongly mixed, having contributions from both single-particle...
Abstract The character of optical excitations in nanoscale and atomic-scale materials is often strongly mixed, having contributions from both single-particle...
SourceID proquest
crossref
springer
cambridge
SourceType Aggregation Database
Publisher
StartPage 2389
SubjectTerms Analysis
Applied and Technical Physics
Biomaterials
Charge density
Density functional theory
Electrons
Evolution
Excitation
Experiments
Indication
Inorganic Chemistry
Invited Feature Paper
Light
Materials Engineering
Materials research
Materials Science
Mathematical analysis
Nanomaterials
Nanoparticles
Nanostructure
Nanotechnology
Optics
Quantum dots
Quantum theory
Studies
Title Approaching the quantum limit for nanoplasmonics
URI https://www.cambridge.org/core/product/identifier/S0884291415002320/type/journal_article
https://link.springer.com/article/10.1557/jmr.2015.232
https://www.proquest.com/docview/1707889160
https://search.proquest.com/docview/1793268928
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NS8NAEB20RdCDaFWs1hLBj1Ns9iPJ5iRVWougiCh4C7vJ5iA2bU37_51J01YFvSbDJrxZdt7uzL4BOPOkjUTgC1fg3sGViUpdYwPP9bQnfInxJigzpg-PweBV3r_5b9WBW1GVVS7WxHKhTkcJnZF3GMnSKCQz3vV44lLXKMquVi001qHOeBjS5kv175ZZBOQ6cs4ipcsjJqvCd98PO-9DEgNl_hWnxiMrWYWf4WnFOX-lScvo09-B7Yo2Ot25n3dhzeYN2PomJtiAjbKYMyn2wOtWQuH43EGC50xmiN9s6HzQbSYHaaqT63w0RuI8JGXcYh9e-72X24FbdUZwE6nYFNfOgJsk9VNiWya1Wch4wrSQ6I8QGVuIOCutI2FTI31hSTSMiVQrk6DTMiUOoJaPcnsIDtp6hmXISzCYpzSIzgzPMm4Y11HmNeFyCU5cze8ipq0DwhgjjDHBGCOMTThfQBeP51IZf9i1Frh-G3Dp3iacLl_jVKf8hc7taEY2RDZVxFUTLhb--P-fjv7_1jFskiWdEXPVgtr0c2ZPkGRMTbucSW2o3_Qen56_AIgQzyc
link.rule.ids 315,783,787,12777,21400,27936,27937,33385,33386,33756,33757,43612,43817,74369,74636
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8JAEJ4oxqgH4zOiqDXxcap0Hy3bkyFGREVOkHBrdtvtwUgBgf_vTCkPTfTa7m6bbzY73-7MfgNw7UkbisAXrsC9gytjlbjGBp7raU_4Ev1NkEdM39tBsytfe36vOHAbF2mV8zUxX6iTQUxn5FVGsjQKyYz3MBy5VDWKoqtFCY112JACfTXdFG88L6IIyHXkjEVKl4dMFonvvl-rfvRJDJT595wKjyxlFX66pyXn_BUmzb1PYw92C9ro1Gd23oc1mx3AzoqY4AFs5smc8fgQvHohFI7PHSR4zmiK-E37zifdZnKQpjqZzgZDJM59UsYdH0G38dR5bLpFZQQ3lopNcO0MuIkTPyG2ZRKb1hiPmRYS7VFDxlZDnJXWobCJkb6wJBrGRKKVidFoqRLHUMoGmT0BB9t6hqXIS9CZJzSITg1PU24Y12HqleFuAU5UzO9xRFsHhDFCGCOCMUIYy3Azhy4azqQy_mhXmeO6MuDCvGW4WrzGqU7xC53ZwZTaENlUIVdluJ3b4_9_Ov3_W5ew1ey8t6LWS_vtDLapF50Xc1WB0uRras-RcEzMRT6rvgHHttBv
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3JTsMwEB2xCAQHxCoKBYLEcgqNl6TOCVVAKVvFAaTeIjtxDoimhbb_z0zqlkWi18Rxojcjz7Nn8gbgJJA2FlEofIF7B1-mKvONjQI_0IEIJcabqMyYPrWj1qu874QdV_80cGWVkzWxXKizXkpn5DVGsjQKyUxQy11ZxPN187L_4VMHKcq0unYa87CIUTEiD1fN22lGAXmPHDNK6fOYSVcEH4b12luXhEFZeMGpCcm3xMLvUPXNP_-kTMtI1FyHNUchvcbY5hswZ4tNWP0hLLgJS2VhZzrYgqDhRMPxuodkz_sYIZajrvdOfzZ5SFm9Qhe9PpLoLqnkDrbhtXnzctXyXZcEP5WKDXEdjbhJszAj5mUym9cZT5kWEm1TR_ZWR8yV1rGwmZGhsCQgxkSmlUnRgLkSO7BQ9Aq7Cx6ODQzLkaNgYM9oEp0bnufcMK7jPKjA-RScxPn6IKFtBMKYIIwJwZggjBU4nUCX9MeyGf-Mq05w_THh1NQVOJ7eRrenXIYubG9EY4h4qpirCpxN7DH7m_Zmv-sIltGhkse79sM-rNBDdHTMVRUWhp8je4DcY2gOS6f6Ap8v1K0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Approaching+the+quantum+limit+for+nanoplasmonics&rft.jtitle=Journal+of+materials+research&rft.au=Townsend%2C+Emily&rft.au=Debrecht%2C+Alex&rft.au=Bryant%2C+Garnett+W.&rft.date=2015-08-28&rft.pub=Springer+International+Publishing&rft.issn=0884-2914&rft.eissn=2044-5326&rft.volume=30&rft.issue=16&rft.spage=2389&rft.epage=2399&rft_id=info:doi/10.1557%2Fjmr.2015.232&rft.externalDocID=10_1557_jmr_2015_232
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0884-2914&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0884-2914&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0884-2914&client=summon