Approaching the quantum limit for nanoplasmonics
The character of optical excitations in nanoscale and atomic-scale materials is often strongly mixed, having contributions from both single-particle transitions and collective, plasmon-like response. This complicates the quantum description of these excitations, because there is no clear way to defi...
Saved in:
Published in | Journal of materials research Vol. 30; no. 16; pp. 2389 - 2399 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York, USA
Cambridge University Press
28.08.2015
Springer International Publishing Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The character of optical excitations in nanoscale and atomic-scale materials is often strongly mixed, having contributions from both single-particle transitions and collective, plasmon-like response. This complicates the quantum description of these excitations, because there is no clear way to define their quantization. To move toward a quantum theory for these optical excitations, they must first be characterized so that single-particle-like and collective, plasmon-like excitations can be identified. We show that time-dependent density functional theory can be used to make that characterization if both the charge densities induced by the excitation and the transitions that make up the excitation are analyzed. Density functional theory predicts that single-particle-like and collective excitations can coexist. Exact calculations for small nanosystems predict that single-particle excitations evolve into collective excitations as the electron–electron interaction is turned on with no indication that they coexist. These different predictions present a challenge that must be resolved to develop an understanding for quantum excitations in nanoplasmonic materials. |
---|---|
AbstractList | The character of optical excitations in nanoscale and atomic-scale materials is often strongly mixed, having contributions from both single-particle transitions and collective, plasmon-like response. This complicates the quantum description of these excitations, because there is no clear way to define their quantization. To move toward a quantum theory for these optical excitations, they must first be characterized so that single-particle-like and collective, plasmon-like excitations can be identified. We show that time-dependent density functional theory can be used to make that characterization if both the charge densities induced by the excitation and the transitions that make up the excitation are analyzed. Density functional theory predicts that single-particle-like and collective excitations can coexist. Exact calculations for small nanosystems predict that single-particle excitations evolve into collective excitations as the electron-electron interaction is turned on with no indication that they coexist. These different predictions present a challenge that must be resolved to develop an understanding for quantum excitations in nanoplasmonic materials. Abstract The character of optical excitations in nanoscale and atomic-scale materials is often strongly mixed, having contributions from both single-particle transitions and collective, plasmon-like response. This complicates the quantum description of these excitations, because there is no clear way to define their quantization. To move toward a quantum theory for these optical excitations, they must first be characterized so that single-particle-like and collective, plasmon-like excitations can be identified. We show that time-dependent density functional theory can be used to make that characterization if both the charge densities induced by the excitation and the transitions that make up the excitation are analyzed. Density functional theory predicts that single-particle-like and collective excitations can coexist. Exact calculations for small nanosystems predict that single-particle excitations evolve into collective excitations as the electron–electron interaction is turned on with no indication that they coexist. These different predictions present a challenge that must be resolved to develop an understanding for quantum excitations in nanoplasmonic materials. |
Author | Debrecht, Alex Townsend, Emily Bryant, Garnett W. |
Author_xml | – sequence: 1 givenname: Emily surname: Townsend fullname: Townsend, Emily organization: Quantum Measurement Division and Joint Quantum Institute, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-8423, USA; and University of Maryland, College Park, Maryland 20742, USA – sequence: 2 givenname: Alex surname: Debrecht fullname: Debrecht, Alex organization: †Quantum Measurement Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-8423, USA; and Department of Physics and Engineering Physics, Juniata College, Huntingdon, Pennsylvania 16652, USA – sequence: 3 givenname: Garnett W. surname: Bryant fullname: Bryant, Garnett W. email: garnett.bryant@nist.gov organization: ‡Quantum Measurement Division and Joint Quantum Institute, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-8423, USA; and University of Maryland, College Park, Maryland 20742, USA |
BookMark | eNqF0LtqwzAUBmBRUmiSdusDGLp0qF1dLXkMoTcIdGlnIctyomBLjmQPffsqJEMphU5n-c7POf8CzJx3BoBbBAvEGH_c96HAELECE3wB5hhSmjOCyxmYQyFojitEr8Aixj1MCnI6B3A1DMErvbNum407kx0m5capzzrb2zFrfciccn7oVOy9szpeg8tWddHcnOcSfD4_faxf8837y9t6tck1FWjMESxxrRvWQMZZ3ZiWI6yRIlRrxTFBnDAqlKqIaWrKiEEl5Yg0StTa1KYVZAnuT7npvMNk4ih7G7XpOuWMn6JEvEqfiQof6d0vuvdTcOm6pCAXokIlTOrhpHTwMQbTyiHYXoUviaA81idTffJYn0z1JZ6feEzMbU34Efq3L87xqq-Dbbbmn4VvW-mB8w |
CODEN | JMREEE |
CitedBy_id | crossref_primary_10_1103_PhysRevB_93_115439 crossref_primary_10_1021_acsnano_8b09826 crossref_primary_10_1021_acsphotonics_5b00688 crossref_primary_10_1063_5_0078230 crossref_primary_10_1021_acs_jpcc_0c07964 crossref_primary_10_1063_5_0038883 crossref_primary_10_1088_2040_8978_18_7_074001 crossref_primary_10_1021_acsnano_7b03421 crossref_primary_10_1021_acs_jpcc_0c10507 crossref_primary_10_1103_PhysRevB_104_235414 |
Cites_doi | 10.1103/PhysRevLett.110.153605 10.1103/PhysRevLett.95.200801 10.1038/nphys2615 10.1103/PhysRevLett.96.113002 10.1103/PhysRevB.83.235406 10.1038/nphoton.2006.49 10.1103/PhysRevLett.89.236802 10.1103/PhysRevB.90.161407 10.1103/PhysRevB.82.195419 10.1103/PhysRevLett.106.020501 10.1021/nl2037613 10.1103/PhysRevLett.85.3966 10.1103/PhysRev.172.436 10.1021/nl304208s 10.1038/ncomms1806 10.1021/nl301917d 10.1002/pssb.200642067 10.1103/PhysRevB.79.233309 10.1103/PhysRevA.82.043845 10.1103/PhysRevB.77.115403 10.1103/PhysRevB.87.125423 10.1021/nl800921z 10.1103/PhysRevLett.94.110501 10.1088/1367-2630/16/1/013052 10.1063/1.4714688 10.1038/nature00869 10.1103/PhysRevLett.105.263601 10.1021/jp3113073 10.1103/PhysRev.82.625 10.1364/OPN.25.11.000050 10.1088/0957-4484/21/35/355501 10.1103/PhysRevLett.98.216602 10.1073/pnas.2232479100 10.1103/PhysRevB.77.165301 10.1038/nphoton.2014.40 10.1103/PhysRevLett.97.146804 10.1364/OE.16.021793 10.1103/PhysRevB.84.035314 10.1038/nnano.2013.150 10.1002/adma.200700678 10.1088/2040-8978/16/11/114022 10.1063/1.4766360 10.1103/PhysRevLett.102.246802 10.1021/nl803811g 10.1007/BFb0048317 10.1103/PhysRevB.84.081405 10.1103/PhysRevLett.59.2044 10.1021/nn4006297 10.1021/nn900422w 10.1016/S0009-2614(01)01104-6 10.1063/1.3633270 |
ContentType | Journal Article |
Copyright | Copyright © Materials Research Society 2015 The Materials Research Society 2015 Copyright Cambridge University Press Aug 28, 2015 |
Copyright_xml | – notice: Copyright © Materials Research Society 2015 – notice: The Materials Research Society 2015 – notice: Copyright Cambridge University Press Aug 28, 2015 |
DBID | AAYXX CITATION 0U~ 1-H 3V. 7SR 7WY 7WZ 7XB 87Z 8BQ 8FD 8FE 8FG 8FK 8FL ABJCF ABUWG AFKRA BENPR BEZIV BGLVJ CCPQU D1I DWQXO FRNLG F~G HCIFZ JG9 K60 K6~ KB. L.- L.0 M0C PDBOC PQBIZ PQBZA PQEST PQQKQ PQUKI PRINS Q9U S0W |
DOI | 10.1557/jmr.2015.232 |
DatabaseName | CrossRef Global News & ABI/Inform Professional Trade PRO ProQuest Central (Corporate) Engineered Materials Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Global (Alumni Edition) METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni Edition) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Business Premium Collection Technology Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) SciTech Premium Collection (Proquest) (PQ_SDU_P3) Materials Research Database ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Materials Science Database ABI/INFORM Professional Advanced ABI/INFORM Professional Standard ABI/INFORM Global Materials Science Collection One Business (ProQuest) ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic DELNET Engineering & Technology Collection |
DatabaseTitle | CrossRef Materials Research Database ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business Technology Collection Technology Research Database Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Trade PRO ProQuest Central China ABI/INFORM Complete ProQuest Central Global News & ABI/Inform Professional ABI/INFORM Professional Advanced Engineered Materials Abstracts ABI/INFORM Professional Standard ProQuest Central Korea Materials Science Database ABI/INFORM Complete (Alumni Edition) ProQuest Materials Science Collection Business Premium Collection ABI/INFORM Global ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection METADEX ProQuest One Academic UKI Edition ProQuest DELNET Engineering and Technology Collection Materials Science & Engineering Collection ProQuest One Business (Alumni) ProQuest One Academic ProQuest Central (Alumni) Business Premium Collection (Alumni) |
DatabaseTitleList | Materials Research Database CrossRef Materials Research Database |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
DocumentTitleAlternate | E. Townsend et al.: Approaching the quantum limit for nanoplasmonics |
EISSN | 2044-5326 |
EndPage | 2399 |
ExternalDocumentID | 3791019581 10_1557_jmr_2015_232 |
Genre | Feature |
GroupedDBID | -2P -E. -~X .DC .FH 0E1 0R~ 2JN 3V. 4.4 406 5GY 5VS 74X 74Y 7WY 7~V 8FE 8FG 8FL 8UJ 8WZ A6W AAAZR AABES AABWE AACJH AAEED AAFGU AAGFV AAHNG AAIKC AAKTX AAMNW AARAB AASVR AATID AATNV AAUKB AAYFA ABBXD ABECU ABEFU ABGDZ ABJCF ABJNI ABKAS ABKKG ABMQK ABMWE ABMYL ABQTM ABROB ABTEG ABTKH ABTMW ABUWG ABZCX ACAOD ACBEA ACBEK ACBMC ACCHT ACGFO ACGFS ACHSB ACIGE ACIHN ACIMK ACIWK ACQFJ ACQPF ACREK ACTTH ACUIJ ACUYZ ACVWB ACWGA ACWMK ACXSD ACZBM ACZOJ ACZUX ADCGK ADFEC ADGEJ ADOCW ADOXG AEAQA AEBAK AEFTE AEHGV AEMSY AEMTW AENEX AENGE AESKC AESTI AEYYC AFBBN AFFUJ AFKQG AFKRA AFLOS AFLVW AFNRJ AFUTZ AGLWM AGMZJ AGOOT AGQEE AHQXX AIGNW AIHIV AIOIP AISIE AJCYY AJDOV AJPFC AJQAS ALMA_UNASSIGNED_HOLDINGS ALVPG ALWZO AMTXH AMXSW AMYLF ARABE ATUCA AUXHV AYIQA BBLKV BENPR BEZIV BGHMG BGLVJ BMAJL BPHCQ C0O CBIIA CCPQU CFAFE CS3 CZ9 D1I DC4 DOHLZ DPUIP DU5 DWQXO EBS EJD F5P FIGPU FRNLG GROUPED_ABI_INFORM_COMPLETE HCIFZ HG- HST HZ~ I.6 I.7 I.9 IH6 IKXTQ IOEEP IOO IS6 IWAJR I~P J36 J38 J3A JHPGK JKPOH JQKCU JZLTJ K60 K6~ KB. KC. KCGVB KFECR L98 LHUNA LLZTM M-V M0C M7~ NIKVX NPVJJ NQJWS O9- P2P PDBOC PQBIZ PQQKQ PROAC PYCCK RAMDC RCA RNS RR0 RSV S0W S6- S6U SAAAG SJN SNE SNPRN SOHCF SOJ SRMVM SSLCW T9M TAE TN5 TWZ UPT UT1 WH7 WQ3 WXU WXY YQT ZMEZD ZMTXR ZYDXJ ~02 -2V AAGCJ ABZUI ACETC ADOVH ADOVT AEEQQ AI. AKZCZ ARZZG BCGOX BESQT BJBOZ BQFHP CCUQV CFBFF CGQII CHEAL G8K KAFGG M8. SCG SCLPG VH1 VOH Z7R Z7S Z7V Z7W Z7X Z7Y Z83 Z88 ZDLDU ZE2 ZJOSE ~V1 AAJBT AAYXX AEFQL CITATION EBLON PQBZA ROL SJYHP 0U~ 1-H 7SR 7XB 8BQ 8FD 8FK JG9 L.- L.0 PQEST PQUKI PRINS Q9U AACDK |
ID | FETCH-LOGICAL-c481t-1062bcd5d0575bdef712c1a34cca723173548aa93edb453e164713da8bcebef83 |
IEDL.DBID | 8FG |
ISSN | 0884-2914 |
IngestDate | Fri Oct 25 11:45:42 EDT 2024 Thu Oct 10 18:40:11 EDT 2024 Thu Sep 26 18:15:32 EDT 2024 Sat Dec 16 12:10:08 EST 2023 Wed Mar 13 05:41:05 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 16 |
Keywords | nanostructure nanoscale optical |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c481t-1062bcd5d0575bdef712c1a34cca723173548aa93edb453e164713da8bcebef83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://doi.org/10.1557/jmr.2015.232 |
PQID | 1707889160 |
PQPubID | 626330 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_1793268928 proquest_journals_1707889160 crossref_primary_10_1557_jmr_2015_232 springer_journals_10_1557_jmr_2015_232 cambridge_journals_10_1557_jmr_2015_232 |
PublicationCentury | 2000 |
PublicationDate | 2015-08-28 |
PublicationDateYYYYMMDD | 2015-08-28 |
PublicationDate_xml | – month: 08 year: 2015 text: 2015-08-28 day: 28 |
PublicationDecade | 2010 |
PublicationPlace | New York, USA |
PublicationPlace_xml | – name: New York, USA – name: Cham – name: Warrendale |
PublicationTitle | Journal of materials research |
PublicationTitleAbbrev | Journal of Materials Research |
PublicationTitleAlternate | J. Mater. Res |
PublicationYear | 2015 |
Publisher | Cambridge University Press Springer International Publishing Springer Nature B.V |
Publisher_xml | – name: Cambridge University Press – name: Springer International Publishing – name: Springer Nature B.V |
References | Thongrattanasiri, Silveiro, García de Abajo 2012; 100 Artuso, Bryant, García-Etxarri, Aizpurua 2011; 83 Coppens, Li, Walker, Valentine 2013; 13 Perez, Que 2006; 18 Cohen-Hoshen, Bryant, Pinkas, Sperling, Bar-Joseph 2012; 12 Fakonas, Lee, Kelaita, Atwater 2014; 8 Sadeghi 2011; 99 Sadeghi 2009; 79 Artuso, Bryant 2010; 82 Sadeghi, West 2011; 23 Zhang, Feist, Rubio, García-González, García-Vidal 2014; 90 Hong, Ou, Mandel 1987; 59 Trugler, Hohenester 2008; 77 Artuso, Bryant 2013; 87 Kalkbrenner, Håkanson, Schädle, Burger, Henkel, Sandoghdar 2005; 95 Altewischer, van Exter, Woerdman 2002; 418 Malyshev, Malyshev 2011; 84 Townsend, Bryant 2014; 16 Artuso, Bryant 2009; 8 Bryant, Waks, Krenn 2014; 25 Huck, Smolka, Lodahl, Sørensen, Boltasseva, Janousek, Andersen 2009; 102 Gonzalez-Tudela, Martin-Cano, Moreno, Martin-Moreno, Tejedor, García-Vidal 2011; 106 Pendry 2000; 85 Zuloaga, Prodan, Nordlander 2009; 9 Manjavacas, Marchesin, Thongrattanasiri, Koval, Nordlander, Sánchez-Portal, García de Abajo 2013; 7 Anger, Bharadwaj, Novotny 2006; 96 Zhang, Govorov, Bryant 2006; 97 Esteban, Aizpurua, Bryant 2014; 16 Castro, Appel, Oliveira, Rozzi, Andrade, Lorenzen, Marques, Gross, Rubio 2006; 243 Zhang, Govorov 2011; 84 Esteban, Borisov, Nordlander, Aizpurua 2012; 3 Dadosh, Sperling, Bryant, Breslow, Shegai, Dyshel, Haran, Bar-Joseph 2009; 3 Shalaev 2007; 1 Catchpole, Polman 2008; 16 Townsend, Bryant 2012; 12 Fasel, Robin, Moreno, Erni, Gisin, Zbinden 2005; 94 Wallis, Nilius, Ho 2002; 89 Hirsch, Stafford, Bankson, Sershen, Rivera, Price, Hazle, Halas, West 2003; 100 Ridolfo, Di Stefano, Fina, Saija, Savasta 2010; 105 Crowell, Ritchie 1968; 172 Bernadotte, Evers, Jacob 2013; 117 Tame, McEnery, Özdemir, Lee, Maier, Kim 2013; 9 Yan, Zhang, Duan, Zhao, Govorov 2008; 77 Murray, Barnes 2007; 19 Sadeghi 2010; 21 Yan, Yuan, Gao 2007; 98 Chen, Sandoghdar, Agio 2013; 110 Prodan, Nordlander 2001; 349 Waks, Sridharan 2010; 82 Gao, Ruud, Luo 2012; 137 Bohm, Pines 1951; 82 Heeres, Kouwenhoven, Zwiller 2013; 8 SadeghiSMOptical routing and switching of energy flow in nanostructure systemsAppl. Phys. Lett.201199113113 BernadotteSEversFJacobCRPlasmons in moleculesJ. Phys. Chem. C201311718631:CAS:528:DC%2BC3sXhtFWrtL8%3D FakonasJSLeeHKelaitaYAAtwaterHATwo-plasmon quantum interferenceNat. Photonics201483171:CAS:528:DC%2BC2cXjtlyit7Y%3D GaoBRuudKLuoYPlasmon resonances in linear noble-metal chainsJ. Chem. Phys.2012137194307 TownsendEBryantGWWhich resonances in small metallic nanoparticles are plasmonic?J. Opt.201416114022 PendryJBNegative refraction makes a perfect lensPhys. Rev. Lett.20008539661:CAS:528:DC%2BD3cXns1Sms7c%3D ArtusoRDBryantGWOptical response of strongly coupled quantum dot-metal nanoparticle systems: Double peaked Fano structure and bistabilityNano Lett.200982106 AngerPBharadwajPNovotnyLEnhancement and quenching of single-molecule fluorescencePhys. Rev. Lett.200696113002 TownsendEBryantGWPlasmonic properties of metallic nanoparticles: The effects of size quantizationNano Lett.2012124291:CAS:528:DC%2BC3MXhs1Cjt77P DadoshTSperlingJBryantGWBreslowRShegaiTDyshelMHaranGBar-JosephIPlasmonic control of the shape of the Raman spectrum of a single molecule in.a silver nanoparticle dimerACS Nano2009319881:CAS:528:DC%2BD1MXntlektbw%3D WallisTMNiliusNHoWElectronic density oscillations in gold atomic chains assembled atom by atomPhys. Rev. Lett.2002892368021:STN:280:DC%2BD38jitlygtQ%3D%3D ArtusoRDBryantGWGarcía-EtxarriAAizpuruaJUsing local fields to tailor hybrid quantum-dot/metal nanoparticle systemsPhys. Rev. B201183235406 ProdanENordlanderPExchange and correlation effects in small metallic nanoshellsChem. Phys. Lett.20013491531:CAS:528:DC%2BD3MXptlOlt70%3D ZuloagaJProdanENordlanderPQuantum description of the plasmon resonances of a nanoparticle dimerNano Lett.200998871:CAS:528:DC%2BD1MXotlOhtA%3D%3D ArtusoRDBryantGWQuantum dot–quantum dot interactions mediated by a metal nanoparticle: Towards a fully quantum modelPhys. Rev. B201387125423 EstebanRBorisovAGNordlanderPAizpuruaJBridging quantum and classical plasmonics with a quantum-corrected modelNat. Commun.20123825 CoppensZJLiWWalkerDGValentineJGProbing and controlling photothermal heat generation in plasmonic nanostructuresNano Lett.20131310231:CAS:528:DC%2BC3sXjtVClur0%3D MalyshevAVMalyshevVAOptical bistability and hysteresis of a hybrid metal-semiconductor nanodimerPhys. Rev. B201184035314 ZhangWGovorovAOQuantum theory of the nonlinear Fano effect in hybrid metal-semiconductor nanostructures: The case of strong nonlinearityPhys. Rev. B201184081405 BohmDPinesDA collective description of electron interactions. I. Magnetic interactionsPhys. Rev.1951826251:CAS:528:DyaG3MXjsl2qsw%3D%3D WaksESridharanDCavity QED treatment of interactions between a metal nanoparticle and a dipole emitterPhys. Rev. A201082043845 HirschLRStaffordRJBanksonJASershenSRiveraBPriceREHazleJDHalasNJWestJNanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidanceProc. Natl. Acad. Sci. USA2003100135491:CAS:528:DC%2BD3sXptFOit7k%3D CastroAAppelHOliveiraMRozziCAAndradeXLorenzenFMarquesMGrossERubioAOctopus: A tool for the application of time-dependent density functional theoryPhys. Status Solidi B200624324651:CAS:528:DC%2BD28Xpsl2msLY%3D HeeresRWKouwenhovenLPZwillerVQuantum interference in plasmonic circuitsNat. Nanotechnol.201387191:CAS:528:DC%2BC3sXht1Cgs73P Gonzalez-TudelaAMartin-CanoDMorenoEMartin-MorenoLTejedorCGarcía-VidalFJEntanglement of two qubits mediated by one-dimensional plasmonic waveguidesPhys. Rev. Lett.20111060205011:STN:280:DC%2BC3M3mvFKkuw%3D%3D TameMSMcEneryKRÖzdemirSKLeeJMaierSAKimMSQuantum plasmonicsNat. Phys.201393291:CAS:528:DC%2BC3sXosFOgs7g%3D Cohen-HoshenEBryantGWPinkasISperlingJBar-JosephIExciton−plasmon interactions in quantum dot−gold nanoparticle structuresNano Lett.20121242601:CAS:528:DC%2BC38Xpt1Chtbo%3D EstebanRAizpuruaJBryantGWStrong coupling of single emitters interacting with phononic infrared antennaeNew J. Phys.201416013052 ZhangPFeistJRubioAGarcía-GonzálezPGarcía-VidalFJAb initio nanoplasmonics: The impact of atomic structurePhys. Rev. B201490161407(R) FaselSRobinFMorenoEErniDGisinNZbindenHEnergy–time entanglement preservation in plasmon-assisted light transmissionPhys. Rev. Lett.200594110501 CrowellJRitchieRHRadiative decay of Coulomb-stimulated plasmons in spheresPhys. Rev.1968172436 YanJ-YZhangWDuanSZhaoX-GGovorovAOOptical properties of coupled metal-semiconductor and metal-molecule nanocrystal complexes: Role of multipole effectsPhys. Rev. B200877165301 PeltonMBryantGIntroduction to Metal-Nanoparticle Plasmonics2013Hoboken, New JerseyWiley MurrayWABarnesWLPlasmonic materialsAdv. Mater.20071937711:CAS:528:DC%2BD2sXhsVahtrjI HongCKOuZYMandelLMeasurement of subpicosecond time intervals between two photons by interferencePhys. Rev. Lett.19875920441:CAS:528:DyaL1cXmt1Kisw%3D%3D KalkbrennerTHåkansonUSchädleABurgerSHenkelCSandoghdarVOptical microscopy via spectral modifications of a nanoantennaPhys. Rev. Lett.2005952008011:STN:280:DC%2BD2Mnps1KksA%3D%3D SadeghiSMWestRGCoherent control of Forster energy transfer in nanoparticle molecules: Energy nanogates and plasmonic heat pulsesJ. Phys: Condens. Matter2011234253021:STN:280:DC%2BC3Mfps1KmtQ%3D%3D YanJYuanZGaoSEnd and central plasmon resonances in linear atomic chainsPhys. Rev. Lett.200798216602 HuckASmolkaSLodahlPSørensenASBoltassevaAJanousekJAndersenULDemonstration of quadrature-squeezed surface plasmons in a gold waveguidePhys. Rev. Lett.2009102246802 AltewischerEvan ExterMPWoerdmanJPPlasmon-assisted transmission of entangled photonsNature20024183041:CAS:528:DC%2BD38XltlGmsLw%3D ChenX-WSandoghdarVAgioMCoherent interaction of light with a metallic structure coupled to a single quantum emitter: From superabsorption to cloakingPhys. Rev. Lett.2013110153605 ArtusoRDBryantGWStrongly coupled quantum dot metal nanoparticle systems: Exciton-induced transparency, discontinuous response, and suppression as driven quantum oscillator effectsPhys. Rev. B201082195419 BryantGWWaksEKrennJRPlasmonics: The rise of quantum effectsOpt. Photonics News20142550 RidolfoADi StefanoOFinaNSaijaRSavastaSQuantum plasmonics with quantum dot-metal nanoparticle molecules: Influence of the Fano effect on photon statisticsPhys. Rev. Lett.20101052636011:STN:280:DC%2BC3M7htl2hsQ%3D%3D TruglerAHohenesterUStrong coupling between a metallic nanoparticle and a single moleculePhys. Rev. B200877115403 CatchpoleKRPolmanAPlasmonic solar cellsOpt. Express.200816217931:CAS:528:DC%2BD1MXislCmuw%3D%3D ThongrattanasiriSSilveiroIde AbajoFJ GPlasmons in electrostatically doped grapheneAppl. Phys. Lett.2012100201105 ManjavacasAMarchesinFThongrattanasiriSKovalPNordlanderPSánchez-PortalDde AbajoFJ GTunable molecular plasmons in polycyclic aromatic hydrocarbonsACS Nano2013736351:CAS:528:DC%2BC3sXjvVKktrY%3D SadeghiSMPlasmonic metaresonances: Molecular resonances in quantum dot-metallic nanoparticle conjugatesPhys. Rev. B200979233309 ZhangWGovorovAOBryantGWSemiconductor-metal nanoparticle molecules: Hybrid excitons and the nonlinear Fano effectPhys. Rev. Lett.200697146804 ShalaevVMOptical negative-index metamaterialsNat. Photonics20071411:CAS:528:DC%2BD2sXltVKhsLs%3D PerezRQueWPlasmons in isolated single-walled carbon nanotubesJ. Phys.: Condens. Matter20061831971:CAS:528:DC%2BD28XjvVCru78%3D RaetherHSurface Plasmons on Smooth and Rough Surfaces and on Gratings1988New YorkSpringer-Verlag SadeghiSMTunable nanoswitches based on nanoparticle meta-moleculesNanotechnology2010213555011:STN:280:DC%2BC3cjjtFCrtg%3D%3D S0884291415002320_ref19 S0884291415002320_ref20 S0884291415002320_ref21 S0884291415002320_ref9 S0884291415002320_ref8 S0884291415002320_ref26 S0884291415002320_ref27 S0884291415002320_ref28 S0884291415002320_ref29 S0884291415002320_ref22 S0884291415002320_ref23 S0884291415002320_ref24 S0884291415002320_ref25 Pelton (S0884291415002320_ref1) 2013 S0884291415002320_ref51 S0884291415002320_ref52 S0884291415002320_ref53 S0884291415002320_ref54 S0884291415002320_ref10 S0884291415002320_ref50 S0884291415002320_ref15 S0884291415002320_ref16 S0884291415002320_ref17 S0884291415002320_ref18 S0884291415002320_ref11 S0884291415002320_ref12 S0884291415002320_ref13 Perez (S0884291415002320_ref6) 2006; 18 S0884291415002320_ref14 S0884291415002320_ref40 S0884291415002320_ref41 S0884291415002320_ref42 Sadeghi (S0884291415002320_ref46) 2011; 23 S0884291415002320_ref43 S0884291415002320_ref48 S0884291415002320_ref49 S0884291415002320_ref44 S0884291415002320_ref45 S0884291415002320_ref47 S0884291415002320_ref7 S0884291415002320_ref5 S0884291415002320_ref4 S0884291415002320_ref3 S0884291415002320_ref2 S0884291415002320_ref30 S0884291415002320_ref31 S0884291415002320_ref32 S0884291415002320_ref37 S0884291415002320_ref38 S0884291415002320_ref39 S0884291415002320_ref33 S0884291415002320_ref34 S0884291415002320_ref35 S0884291415002320_ref36 |
References_xml | – volume: 82 start-page: 195419 year: 2010 article-title: Strongly coupled quantum dot metal nanoparticle systems: Exciton-induced transparency, discontinuous response, and suppression as driven quantum oscillator effects publication-title: Phys. Rev. B contributor: fullname: Bryant – volume: 97 start-page: 146804 year: 2006 article-title: Semiconductor-metal nanoparticle molecules: Hybrid excitons and the nonlinear Fano effect publication-title: Phys. Rev. Lett. contributor: fullname: Bryant – volume: 82 start-page: 043845 year: 2010 article-title: Cavity QED treatment of interactions between a metal nanoparticle and a dipole emitter publication-title: Phys. Rev. A contributor: fullname: Sridharan – volume: 137 start-page: 194307 year: 2012 article-title: Plasmon resonances in linear noble-metal chains publication-title: J. Chem. Phys. contributor: fullname: Luo – volume: 100 start-page: 13549 year: 2003 article-title: Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance publication-title: Proc. Natl. Acad. Sci. USA contributor: fullname: West – volume: 98 start-page: 216602 year: 2007 article-title: End and central plasmon resonances in linear atomic chains publication-title: Phys. Rev. Lett. contributor: fullname: Gao – volume: 84 start-page: 081405 year: 2011 article-title: Quantum theory of the nonlinear Fano effect in hybrid metal-semiconductor nanostructures: The case of strong nonlinearity publication-title: Phys. Rev. B contributor: fullname: Govorov – volume: 90 start-page: 161407(R) year: 2014 article-title: Ab initio nanoplasmonics: The impact of atomic structure publication-title: Phys. Rev. B contributor: fullname: García-Vidal – volume: 418 start-page: 304 year: 2002 article-title: Plasmon-assisted transmission of entangled photons publication-title: Nature contributor: fullname: Woerdman – volume: 21 start-page: 355501 year: 2010 article-title: Tunable nanoswitches based on nanoparticle meta-molecules publication-title: Nanotechnology contributor: fullname: Sadeghi – volume: 16 start-page: 21793 year: 2008 article-title: Plasmonic solar cells publication-title: Opt. Express. contributor: fullname: Polman – volume: 89 start-page: 236802 year: 2002 article-title: Electronic density oscillations in gold atomic chains assembled atom by atom publication-title: Phys. Rev. Lett. contributor: fullname: Ho – volume: 106 start-page: 020501 year: 2011 article-title: Entanglement of two qubits mediated by one-dimensional plasmonic waveguides publication-title: Phys. Rev. Lett. contributor: fullname: García-Vidal – volume: 243 start-page: 2465 year: 2006 article-title: Octopus: A tool for the application of time-dependent density functional theory publication-title: Phys. Status Solidi B contributor: fullname: Rubio – volume: 84 start-page: 035314 year: 2011 article-title: Optical bistability and hysteresis of a hybrid metal-semiconductor nanodimer publication-title: Phys. Rev. B contributor: fullname: Malyshev – volume: 110 start-page: 153605 year: 2013 article-title: Coherent interaction of light with a metallic structure coupled to a single quantum emitter: From superabsorption to cloaking publication-title: Phys. Rev. Lett. contributor: fullname: Agio – volume: 12 start-page: 429 year: 2012 article-title: Plasmonic properties of metallic nanoparticles: The effects of size quantization publication-title: Nano Lett. contributor: fullname: Bryant – volume: 9 start-page: 887 year: 2009 article-title: Quantum description of the plasmon resonances of a nanoparticle dimer publication-title: Nano Lett. contributor: fullname: Nordlander – volume: 18 start-page: 3197 year: 2006 article-title: Plasmons in isolated single-walled carbon nanotubes publication-title: J. Phys.: Condens. Matter contributor: fullname: Que – volume: 59 start-page: 2044 year: 1987 article-title: Measurement of subpicosecond time intervals between two photons by interference publication-title: Phys. Rev. Lett. contributor: fullname: Mandel – volume: 77 start-page: 165301 year: 2008 article-title: Optical properties of coupled metal-semiconductor and metal-molecule nanocrystal complexes: Role of multipole effects publication-title: Phys. Rev. B contributor: fullname: Govorov – volume: 13 start-page: 1023 year: 2013 article-title: Probing and controlling photothermal heat generation in plasmonic nanostructures publication-title: Nano Lett. contributor: fullname: Valentine – volume: 3 start-page: 1988 year: 2009 article-title: Plasmonic control of the shape of the Raman spectrum of a single molecule in.a silver nanoparticle dimer publication-title: ACS Nano contributor: fullname: Bar-Joseph – volume: 349 start-page: 153 year: 2001 article-title: Exchange and correlation effects in small metallic nanoshells publication-title: Chem. Phys. Lett. contributor: fullname: Nordlander – volume: 3 start-page: 825 year: 2012 article-title: Bridging quantum and classical plasmonics with a quantum-corrected model publication-title: Nat. Commun. contributor: fullname: Aizpurua – volume: 95 start-page: 200801 year: 2005 article-title: Optical microscopy via spectral modifications of a nanoantenna publication-title: Phys. Rev. Lett. contributor: fullname: Sandoghdar – volume: 82 start-page: 625 year: 1951 article-title: A collective description of electron interactions. I. Magnetic interactions publication-title: Phys. Rev. contributor: fullname: Pines – volume: 16 start-page: 013052 year: 2014 article-title: Strong coupling of single emitters interacting with phononic infrared antennae publication-title: New J. Phys. contributor: fullname: Bryant – volume: 94 start-page: 110501 year: 2005 article-title: Energy–time entanglement preservation in plasmon-assisted light transmission publication-title: Phys. Rev. Lett. contributor: fullname: Zbinden – volume: 87 start-page: 125423 year: 2013 article-title: Quantum dot–quantum dot interactions mediated by a metal nanoparticle: Towards a fully quantum model publication-title: Phys. Rev. B contributor: fullname: Bryant – volume: 12 start-page: 4260 year: 2012 article-title: Exciton−plasmon interactions in quantum dot−gold nanoparticle structures publication-title: Nano Lett. contributor: fullname: Bar-Joseph – volume: 9 start-page: 329 year: 2013 article-title: Quantum plasmonics publication-title: Nat. Phys. contributor: fullname: Kim – volume: 77 start-page: 115403 year: 2008 article-title: Strong coupling between a metallic nanoparticle and a single molecule publication-title: Phys. Rev. B contributor: fullname: Hohenester – volume: 172 start-page: 436 year: 1968 article-title: Radiative decay of Coulomb-stimulated plasmons in spheres publication-title: Phys. Rev. contributor: fullname: Ritchie – volume: 100 start-page: 201105 year: 2012 article-title: Plasmons in electrostatically doped graphene publication-title: Appl. Phys. Lett. contributor: fullname: García de Abajo – volume: 23 start-page: 425302 year: 2011 article-title: Coherent control of Forster energy transfer in nanoparticle molecules: Energy nanogates and plasmonic heat pulses publication-title: J. Phys: Condens. Matter contributor: fullname: West – volume: 96 start-page: 113002 year: 2006 article-title: Enhancement and quenching of single-molecule fluorescence publication-title: Phys. Rev. Lett. contributor: fullname: Novotny – volume: 16 start-page: 114022 year: 2014 article-title: Which resonances in small metallic nanoparticles are plasmonic? publication-title: J. Opt. contributor: fullname: Bryant – volume: 8 start-page: 317 year: 2014 article-title: Two-plasmon quantum interference publication-title: Nat. Photonics contributor: fullname: Atwater – volume: 85 start-page: 3966 year: 2000 article-title: Negative refraction makes a perfect lens publication-title: Phys. Rev. Lett. contributor: fullname: Pendry – volume: 25 start-page: 50 year: 2014 article-title: Plasmonics: The rise of quantum effects publication-title: Opt. Photonics News contributor: fullname: Krenn – volume: 1 start-page: 41 year: 2007 article-title: Optical negative-index metamaterials publication-title: Nat. Photonics contributor: fullname: Shalaev – volume: 99 start-page: 113113 year: 2011 article-title: Optical routing and switching of energy flow in nanostructure systems publication-title: Appl. Phys. Lett. contributor: fullname: Sadeghi – volume: 117 start-page: 1863 year: 2013 article-title: Plasmons in molecules publication-title: J. Phys. Chem. C contributor: fullname: Jacob – volume: 102 start-page: 246802 year: 2009 article-title: Demonstration of quadrature-squeezed surface plasmons in a gold waveguide publication-title: Phys. Rev. Lett. contributor: fullname: Andersen – volume: 7 start-page: 3635 year: 2013 article-title: Tunable molecular plasmons in polycyclic aromatic hydrocarbons publication-title: ACS Nano contributor: fullname: García de Abajo – volume: 8 start-page: 2106 year: 2009 article-title: Optical response of strongly coupled quantum dot-metal nanoparticle systems: Double peaked Fano structure and bistability publication-title: Nano Lett. contributor: fullname: Bryant – volume: 83 start-page: 235406 year: 2011 article-title: Using local fields to tailor hybrid quantum-dot/metal nanoparticle systems publication-title: Phys. Rev. B contributor: fullname: Aizpurua – volume: 79 start-page: 233309 year: 2009 article-title: Plasmonic metaresonances: Molecular resonances in quantum dot-metallic nanoparticle conjugates publication-title: Phys. Rev. B contributor: fullname: Sadeghi – volume: 105 start-page: 263601 year: 2010 article-title: Quantum plasmonics with quantum dot-metal nanoparticle molecules: Influence of the Fano effect on photon statistics publication-title: Phys. Rev. Lett. contributor: fullname: Savasta – volume: 19 start-page: 3771 year: 2007 article-title: Plasmonic materials publication-title: Adv. Mater. contributor: fullname: Barnes – volume: 8 start-page: 719 year: 2013 article-title: Quantum interference in plasmonic circuits publication-title: Nat. Nanotechnol. contributor: fullname: Zwiller – volume-title: Introduction to Metal-Nanoparticle Plasmonics year: 2013 ident: S0884291415002320_ref1 contributor: fullname: Pelton – ident: S0884291415002320_ref45 doi: 10.1103/PhysRevLett.110.153605 – ident: S0884291415002320_ref10 doi: 10.1103/PhysRevLett.95.200801 – ident: S0884291415002320_ref18 doi: 10.1038/nphys2615 – volume: 23 start-page: 425302 year: 2011 ident: S0884291415002320_ref46 article-title: Coherent control of Forster energy transfer in nanoparticle molecules: Energy nanogates and plasmonic heat pulses publication-title: J. Phys: Condens. Matter contributor: fullname: Sadeghi – ident: S0884291415002320_ref11 doi: 10.1103/PhysRevLett.96.113002 – ident: S0884291415002320_ref35 doi: 10.1103/PhysRevB.83.235406 – ident: S0884291415002320_ref13 doi: 10.1038/nphoton.2006.49 – ident: S0884291415002320_ref4 doi: 10.1103/PhysRevLett.89.236802 – ident: S0884291415002320_ref54 doi: 10.1103/PhysRevB.90.161407 – ident: S0884291415002320_ref34 doi: 10.1103/PhysRevB.82.195419 – ident: S0884291415002320_ref44 doi: 10.1103/PhysRevLett.106.020501 – ident: S0884291415002320_ref21 doi: 10.1021/nl2037613 – ident: S0884291415002320_ref12 doi: 10.1103/PhysRevLett.85.3966 – volume: 18 start-page: 3197 year: 2006 ident: S0884291415002320_ref6 article-title: Plasmons in isolated single-walled carbon nanotubes publication-title: J. Phys.: Condens. Matter contributor: fullname: Perez – ident: S0884291415002320_ref50 doi: 10.1103/PhysRev.172.436 – ident: S0884291415002320_ref16 doi: 10.1021/nl304208s – ident: S0884291415002320_ref20 doi: 10.1038/ncomms1806 – ident: S0884291415002320_ref30 doi: 10.1021/nl301917d – ident: S0884291415002320_ref51 doi: 10.1002/pssb.200642067 – ident: S0884291415002320_ref37 doi: 10.1103/PhysRevB.79.233309 – ident: S0884291415002320_ref39 doi: 10.1103/PhysRevA.82.043845 – ident: S0884291415002320_ref42 doi: 10.1103/PhysRevB.77.115403 – ident: S0884291415002320_ref36 doi: 10.1103/PhysRevB.87.125423 – ident: S0884291415002320_ref33 doi: 10.1021/nl800921z – ident: S0884291415002320_ref24 doi: 10.1103/PhysRevLett.94.110501 – ident: S0884291415002320_ref41 doi: 10.1088/1367-2630/16/1/013052 – ident: S0884291415002320_ref7 doi: 10.1063/1.4714688 – ident: S0884291415002320_ref23 doi: 10.1038/nature00869 – ident: S0884291415002320_ref40 doi: 10.1103/PhysRevLett.105.263601 – ident: S0884291415002320_ref2 doi: 10.1021/jp3113073 – ident: S0884291415002320_ref49 doi: 10.1103/PhysRev.82.625 – ident: S0884291415002320_ref19 doi: 10.1364/OPN.25.11.000050 – ident: S0884291415002320_ref47 doi: 10.1088/0957-4484/21/35/355501 – ident: S0884291415002320_ref5 doi: 10.1103/PhysRevLett.98.216602 – ident: S0884291415002320_ref17 doi: 10.1073/pnas.2232479100 – ident: S0884291415002320_ref32 doi: 10.1103/PhysRevB.77.165301 – ident: S0884291415002320_ref28 doi: 10.1038/nphoton.2014.40 – ident: S0884291415002320_ref31 doi: 10.1103/PhysRevLett.97.146804 – ident: S0884291415002320_ref15 doi: 10.1364/OE.16.021793 – ident: S0884291415002320_ref38 doi: 10.1103/PhysRevB.84.035314 – ident: S0884291415002320_ref27 doi: 10.1038/nnano.2013.150 – ident: S0884291415002320_ref14 doi: 10.1002/adma.200700678 – ident: S0884291415002320_ref22 doi: 10.1088/2040-8978/16/11/114022 – ident: S0884291415002320_ref3 doi: 10.1063/1.4766360 – ident: S0884291415002320_ref25 doi: 10.1103/PhysRevLett.102.246802 – ident: S0884291415002320_ref53 doi: 10.1021/nl803811g – ident: S0884291415002320_ref9 doi: 10.1007/BFb0048317 – ident: S0884291415002320_ref43 doi: 10.1103/PhysRevB.84.081405 – ident: S0884291415002320_ref26 doi: 10.1103/PhysRevLett.59.2044 – ident: S0884291415002320_ref8 doi: 10.1021/nn4006297 – ident: S0884291415002320_ref29 doi: 10.1021/nn900422w – ident: S0884291415002320_ref52 doi: 10.1016/S0009-2614(01)01104-6 – ident: S0884291415002320_ref48 doi: 10.1063/1.3633270 |
SSID | ssj0015074 |
Score | 2.2630415 |
Snippet | The character of optical excitations in nanoscale and atomic-scale materials is often strongly mixed, having contributions from both single-particle... Abstract The character of optical excitations in nanoscale and atomic-scale materials is often strongly mixed, having contributions from both single-particle... |
SourceID | proquest crossref springer cambridge |
SourceType | Aggregation Database Publisher |
StartPage | 2389 |
SubjectTerms | Analysis Applied and Technical Physics Biomaterials Charge density Density functional theory Electrons Evolution Excitation Experiments Indication Inorganic Chemistry Invited Feature Paper Light Materials Engineering Materials research Materials Science Mathematical analysis Nanomaterials Nanoparticles Nanostructure Nanotechnology Optics Quantum dots Quantum theory Studies |
Title | Approaching the quantum limit for nanoplasmonics |
URI | https://www.cambridge.org/core/product/identifier/S0884291415002320/type/journal_article https://link.springer.com/article/10.1557/jmr.2015.232 https://www.proquest.com/docview/1707889160 https://search.proquest.com/docview/1793268928 |
Volume | 30 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NS8NAEB20RdCDaFWs1hLBj1Ns9iPJ5iRVWougiCh4C7vJ5iA2bU37_51J01YFvSbDJrxZdt7uzL4BOPOkjUTgC1fg3sGViUpdYwPP9bQnfInxJigzpg-PweBV3r_5b9WBW1GVVS7WxHKhTkcJnZF3GMnSKCQz3vV44lLXKMquVi001qHOeBjS5kv175ZZBOQ6cs4ipcsjJqvCd98PO-9DEgNl_hWnxiMrWYWf4WnFOX-lScvo09-B7Yo2Ot25n3dhzeYN2PomJtiAjbKYMyn2wOtWQuH43EGC50xmiN9s6HzQbSYHaaqT63w0RuI8JGXcYh9e-72X24FbdUZwE6nYFNfOgJsk9VNiWya1Wch4wrSQ6I8QGVuIOCutI2FTI31hSTSMiVQrk6DTMiUOoJaPcnsIDtp6hmXISzCYpzSIzgzPMm4Y11HmNeFyCU5cze8ipq0DwhgjjDHBGCOMTThfQBeP51IZf9i1Frh-G3Dp3iacLl_jVKf8hc7taEY2RDZVxFUTLhb--P-fjv7_1jFskiWdEXPVgtr0c2ZPkGRMTbucSW2o3_Qen56_AIgQzyc |
link.rule.ids | 315,783,787,12777,21400,27936,27937,33385,33386,33756,33757,43612,43817,74369,74636 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8JAEJ4oxqgH4zOiqDXxcap0Hy3bkyFGREVOkHBrdtvtwUgBgf_vTCkPTfTa7m6bbzY73-7MfgNw7UkbisAXrsC9gytjlbjGBp7raU_4Ev1NkEdM39tBsytfe36vOHAbF2mV8zUxX6iTQUxn5FVGsjQKyYz3MBy5VDWKoqtFCY112JACfTXdFG88L6IIyHXkjEVKl4dMFonvvl-rfvRJDJT595wKjyxlFX66pyXn_BUmzb1PYw92C9ro1Gd23oc1mx3AzoqY4AFs5smc8fgQvHohFI7PHSR4zmiK-E37zifdZnKQpjqZzgZDJM59UsYdH0G38dR5bLpFZQQ3lopNcO0MuIkTPyG2ZRKb1hiPmRYS7VFDxlZDnJXWobCJkb6wJBrGRKKVidFoqRLHUMoGmT0BB9t6hqXIS9CZJzSITg1PU24Y12HqleFuAU5UzO9xRFsHhDFCGCOCMUIYy3Azhy4azqQy_mhXmeO6MuDCvGW4WrzGqU7xC53ZwZTaENlUIVdluJ3b4_9_Ov3_W5ew1ey8t6LWS_vtDLapF50Xc1WB0uRras-RcEzMRT6rvgHHttBv |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3JTsMwEB2xCAQHxCoKBYLEcgqNl6TOCVVAKVvFAaTeIjtxDoimhbb_z0zqlkWi18Rxojcjz7Nn8gbgJJA2FlEofIF7B1-mKvONjQI_0IEIJcabqMyYPrWj1qu874QdV_80cGWVkzWxXKizXkpn5DVGsjQKyUxQy11ZxPN187L_4VMHKcq0unYa87CIUTEiD1fN22lGAXmPHDNK6fOYSVcEH4b12luXhEFZeMGpCcm3xMLvUPXNP_-kTMtI1FyHNUchvcbY5hswZ4tNWP0hLLgJS2VhZzrYgqDhRMPxuodkz_sYIZajrvdOfzZ5SFm9Qhe9PpLoLqnkDrbhtXnzctXyXZcEP5WKDXEdjbhJszAj5mUym9cZT5kWEm1TR_ZWR8yV1rGwmZGhsCQgxkSmlUnRgLkSO7BQ9Aq7Cx6ODQzLkaNgYM9oEp0bnufcMK7jPKjA-RScxPn6IKFtBMKYIIwJwZggjBU4nUCX9MeyGf-Mq05w_THh1NQVOJ7eRrenXIYubG9EY4h4qpirCpxN7DH7m_Zmv-sIltGhkse79sM-rNBDdHTMVRUWhp8je4DcY2gOS6f6Ap8v1K0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Approaching+the+quantum+limit+for+nanoplasmonics&rft.jtitle=Journal+of+materials+research&rft.au=Townsend%2C+Emily&rft.au=Debrecht%2C+Alex&rft.au=Bryant%2C+Garnett+W.&rft.date=2015-08-28&rft.pub=Springer+International+Publishing&rft.issn=0884-2914&rft.eissn=2044-5326&rft.volume=30&rft.issue=16&rft.spage=2389&rft.epage=2399&rft_id=info:doi/10.1557%2Fjmr.2015.232&rft.externalDocID=10_1557_jmr_2015_232 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0884-2914&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0884-2914&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0884-2914&client=summon |