Higher Mitochondrial Respiration and Uncoupling with Reduced Electron Transport Chain Content in Vivo in Muscle of Sedentary Versus Active Subjects
Objective:This study investigated the disparity between muscle metabolic rate and mitochondrial metabolism in human muscle of sedentary vs. active individuals.Research Design and Methods:Chronic activity level was characterized by a physical activity questionnaire and a triaxial accelerometer as wel...
Saved in:
Published in | The journal of clinical endocrinology and metabolism Vol. 98; no. 1; pp. 129 - 136 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Bethesda, MD
Oxford University Press
01.01.2013
Copyright by The Endocrine Society Endocrine Society |
Subjects | |
Online Access | Get full text |
ISSN | 0021-972X 1945-7197 1945-7197 |
DOI | 10.1210/jc.2012-2967 |
Cover
Loading…
Abstract | Objective:This study investigated the disparity between muscle metabolic rate and mitochondrial metabolism in human muscle of sedentary vs. active individuals.Research Design and Methods:Chronic activity level was characterized by a physical activity questionnaire and a triaxial accelerometer as well as a maximal oxygen uptake test. The ATP and O2 fluxes and mitochondrial coupling (ATP/O2 or P/O) in resting muscle as well as mitochondrial capacity (ATPmax) were determined in vivo in human vastus lateralis muscle using magnetic resonance and optical spectroscopy on 24 sedentary and seven active subjects. Muscle biopsies were analyzed for electron transport chain content (using complex III as a representative marker) and mitochondrial proteins associated with antioxidant protection.Results:Sedentary muscle had lower electron transport chain complex content (65% of the active group) in proportion to the reduction in ATPmax (0.69 ± 0.07 vs. 1.07 ± 0.06 mm sec−1) as compared with active subjects. This lower ATPmax paired with an unchanged O2 flux in resting muscle between groups resulted in a doubling of O2 flux per ATPmax (3.3 ± 0.3 vs. 1.7 ± 0.2 μm O2 per mm ATP) that reflected mitochondrial uncoupling (P/O = 1.41 ± 0.1 vs. 2.1 ± 0.3) and greater UCP3/complex III (6.0 ± 0.7 vs. 3.8 ± 0.3) in sedentary vs. active subjects.Conclusion:A smaller mitochondrial pool serving the same O2 flux resulted in elevated mitochondrial respiration in sedentary muscle. In addition, uncoupling contributed to this higher mitochondrial respiration. This finding resolves the paradox of stable muscle metabolism but greater mitochondrial respiration in muscle of inactive vs. active subjects. |
---|---|
AbstractList | OBJECTIVE:This study investigated the disparity between muscle metabolic rate and mitochondrial metabolism in human muscle of sedentary vs. active individuals.
RESEARCH DESIGN AND METHODS:Chronic activity level was characterized by a physical activity questionnaire and a triaxial accelerometer as well as a maximal oxygen uptake test. The ATP and O2 fluxes and mitochondrial coupling (ATP/O2 or P/O) in resting muscle as well as mitochondrial capacity (ATPmax) were determined in vivo in human vastus lateralis muscle using magnetic resonance and optical spectroscopy on 24 sedentary and seven active subjects. Muscle biopsies were analyzed for electron transport chain content (using complex III as a representative marker) and mitochondrial proteins associated with antioxidant protection.
RESULTS:Sedentary muscle had lower electron transport chain complex content (65% of the active group) in proportion to the reduction in ATPmax (0.69 ± 0.07 vs. 1.07 ± 0.06 mM sec) as compared with active subjects. This lower ATPmax paired with an unchanged O2 flux in resting muscle between groups resulted in a doubling of O2 flux per ATPmax (3.3 ± 0.3 vs. 1.7 ± 0.2 μM O2 per mM ATP) that reflected mitochondrial uncoupling (P/O = 1.41 ± 0.1 vs. 2.1 ± 0.3) and greater UCP3/complex III (6.0 ± 0.7 vs. 3.8 ± 0.3) in sedentary vs. active subjects.
CONCLUSION:A smaller mitochondrial pool serving the same O2 flux resulted in elevated mitochondrial respiration in sedentary muscle. In addition, uncoupling contributed to this higher mitochondrial respiration. This finding resolves the paradox of stable muscle metabolism but greater mitochondrial respiration in muscle of inactive vs. active subjects. Objective:This study investigated the disparity between muscle metabolic rate and mitochondrial metabolism in human muscle of sedentary vs. active individuals.Research Design and Methods:Chronic activity level was characterized by a physical activity questionnaire and a triaxial accelerometer as well as a maximal oxygen uptake test. The ATP and O2 fluxes and mitochondrial coupling (ATP/O2 or P/O) in resting muscle as well as mitochondrial capacity (ATPmax) were determined in vivo in human vastus lateralis muscle using magnetic resonance and optical spectroscopy on 24 sedentary and seven active subjects. Muscle biopsies were analyzed for electron transport chain content (using complex III as a representative marker) and mitochondrial proteins associated with antioxidant protection.Results:Sedentary muscle had lower electron transport chain complex content (65% of the active group) in proportion to the reduction in ATPmax (0.69 ± 0.07 vs. 1.07 ± 0.06 mm sec−1) as compared with active subjects. This lower ATPmax paired with an unchanged O2 flux in resting muscle between groups resulted in a doubling of O2 flux per ATPmax (3.3 ± 0.3 vs. 1.7 ± 0.2 μm O2 per mm ATP) that reflected mitochondrial uncoupling (P/O = 1.41 ± 0.1 vs. 2.1 ± 0.3) and greater UCP3/complex III (6.0 ± 0.7 vs. 3.8 ± 0.3) in sedentary vs. active subjects.Conclusion:A smaller mitochondrial pool serving the same O2 flux resulted in elevated mitochondrial respiration in sedentary muscle. In addition, uncoupling contributed to this higher mitochondrial respiration. This finding resolves the paradox of stable muscle metabolism but greater mitochondrial respiration in muscle of inactive vs. active subjects. This study investigated the disparity between muscle metabolic rate and mitochondrial metabolism in human muscle of sedentary vs. active individuals. Chronic activity level was characterized by a physical activity questionnaire and a triaxial accelerometer as well as a maximal oxygen uptake test. The ATP and O(2) fluxes and mitochondrial coupling (ATP/O(2) or P/O) in resting muscle as well as mitochondrial capacity (ATP(max)) were determined in vivo in human vastus lateralis muscle using magnetic resonance and optical spectroscopy on 24 sedentary and seven active subjects. Muscle biopsies were analyzed for electron transport chain content (using complex III as a representative marker) and mitochondrial proteins associated with antioxidant protection. Sedentary muscle had lower electron transport chain complex content (65% of the active group) in proportion to the reduction in ATP(max) (0.69 ± 0.07 vs. 1.07 ± 0.06 mM sec(-1)) as compared with active subjects. This lower ATP(max) paired with an unchanged O(2) flux in resting muscle between groups resulted in a doubling of O(2) flux per ATP(max) (3.3 ± 0.3 vs. 1.7 ± 0.2 μM O(2) per mM ATP) that reflected mitochondrial uncoupling (P/O = 1.41 ± 0.1 vs. 2.1 ± 0.3) and greater UCP3/complex III (6.0 ± 0.7 vs. 3.8 ± 0.3) in sedentary vs. active subjects. A smaller mitochondrial pool serving the same O(2) flux resulted in elevated mitochondrial respiration in sedentary muscle. In addition, uncoupling contributed to this higher mitochondrial respiration. This finding resolves the paradox of stable muscle metabolism but greater mitochondrial respiration in muscle of inactive vs. active subjects. This study investigated the disparity between muscle metabolic rate and mitochondrial metabolism in human muscle of sedentary vs. active individuals.OBJECTIVEThis study investigated the disparity between muscle metabolic rate and mitochondrial metabolism in human muscle of sedentary vs. active individuals.Chronic activity level was characterized by a physical activity questionnaire and a triaxial accelerometer as well as a maximal oxygen uptake test. The ATP and O(2) fluxes and mitochondrial coupling (ATP/O(2) or P/O) in resting muscle as well as mitochondrial capacity (ATP(max)) were determined in vivo in human vastus lateralis muscle using magnetic resonance and optical spectroscopy on 24 sedentary and seven active subjects. Muscle biopsies were analyzed for electron transport chain content (using complex III as a representative marker) and mitochondrial proteins associated with antioxidant protection.RESEARCH DESIGN AND METHODSChronic activity level was characterized by a physical activity questionnaire and a triaxial accelerometer as well as a maximal oxygen uptake test. The ATP and O(2) fluxes and mitochondrial coupling (ATP/O(2) or P/O) in resting muscle as well as mitochondrial capacity (ATP(max)) were determined in vivo in human vastus lateralis muscle using magnetic resonance and optical spectroscopy on 24 sedentary and seven active subjects. Muscle biopsies were analyzed for electron transport chain content (using complex III as a representative marker) and mitochondrial proteins associated with antioxidant protection.Sedentary muscle had lower electron transport chain complex content (65% of the active group) in proportion to the reduction in ATP(max) (0.69 ± 0.07 vs. 1.07 ± 0.06 mM sec(-1)) as compared with active subjects. This lower ATP(max) paired with an unchanged O(2) flux in resting muscle between groups resulted in a doubling of O(2) flux per ATP(max) (3.3 ± 0.3 vs. 1.7 ± 0.2 μM O(2) per mM ATP) that reflected mitochondrial uncoupling (P/O = 1.41 ± 0.1 vs. 2.1 ± 0.3) and greater UCP3/complex III (6.0 ± 0.7 vs. 3.8 ± 0.3) in sedentary vs. active subjects.RESULTSSedentary muscle had lower electron transport chain complex content (65% of the active group) in proportion to the reduction in ATP(max) (0.69 ± 0.07 vs. 1.07 ± 0.06 mM sec(-1)) as compared with active subjects. This lower ATP(max) paired with an unchanged O(2) flux in resting muscle between groups resulted in a doubling of O(2) flux per ATP(max) (3.3 ± 0.3 vs. 1.7 ± 0.2 μM O(2) per mM ATP) that reflected mitochondrial uncoupling (P/O = 1.41 ± 0.1 vs. 2.1 ± 0.3) and greater UCP3/complex III (6.0 ± 0.7 vs. 3.8 ± 0.3) in sedentary vs. active subjects.A smaller mitochondrial pool serving the same O(2) flux resulted in elevated mitochondrial respiration in sedentary muscle. In addition, uncoupling contributed to this higher mitochondrial respiration. This finding resolves the paradox of stable muscle metabolism but greater mitochondrial respiration in muscle of inactive vs. active subjects.CONCLUSIONA smaller mitochondrial pool serving the same O(2) flux resulted in elevated mitochondrial respiration in sedentary muscle. In addition, uncoupling contributed to this higher mitochondrial respiration. This finding resolves the paradox of stable muscle metabolism but greater mitochondrial respiration in muscle of inactive vs. active subjects. |
Author | Arakaki, Lori Amara, Catherine E. Bajpeyi, Sudip Conley, Kevin E. Costford, Sheila R. Jubrias, Sharon A. Smith, Steven R. Murray, Kori Marcinek, David J. |
AuthorAffiliation | Department of Molecular Endocrinology (S.B., S.R.C., K.M., S.R.S.), Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana 70808; and Departments of Radiology (K.E.C., C.E.A., S.A.J., D.J.M.), Physiology and Biophysics (K.E.C.), Bioengineering (K.E.C., D.J.M.), and Pediatrics (L.A.), University of Washington Medical Center, Seattle, Washington 98195 |
AuthorAffiliation_xml | – name: Department of Molecular Endocrinology (S.B., S.R.C., K.M., S.R.S.), Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana 70808; and Departments of Radiology (K.E.C., C.E.A., S.A.J., D.J.M.), Physiology and Biophysics (K.E.C.), Bioengineering (K.E.C., D.J.M.), and Pediatrics (L.A.), University of Washington Medical Center, Seattle, Washington 98195 |
Author_xml | – sequence: 1 givenname: Kevin E. surname: Conley fullname: Conley, Kevin E. email: kconley@uw.edu organization: 2 Departments of Radiology (K.E.C., C.E.A., S.A.J., D.J.M.), Seattle, Washington 98195 – sequence: 2 givenname: Catherine E. surname: Amara fullname: Amara, Catherine E. organization: 2 Departments of Radiology (K.E.C., C.E.A., S.A.J., D.J.M.), Seattle, Washington 98195 – sequence: 3 givenname: Sudip surname: Bajpeyi fullname: Bajpeyi, Sudip organization: 1Department of Molecular Endocrinology (S.B., S.R.C., K.M., S.R.S.), Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana 70808 – sequence: 4 givenname: Sheila R. surname: Costford fullname: Costford, Sheila R. organization: 1Department of Molecular Endocrinology (S.B., S.R.C., K.M., S.R.S.), Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana 70808 – sequence: 5 givenname: Kori surname: Murray fullname: Murray, Kori organization: 1Department of Molecular Endocrinology (S.B., S.R.C., K.M., S.R.S.), Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana 70808 – sequence: 6 givenname: Sharon A. surname: Jubrias fullname: Jubrias, Sharon A. organization: 2 Departments of Radiology (K.E.C., C.E.A., S.A.J., D.J.M.), Seattle, Washington 98195 – sequence: 7 givenname: Lori surname: Arakaki fullname: Arakaki, Lori organization: 5Pediatrics (L.A.), University of Washington Medical Center, Seattle, Washington 98195 – sequence: 8 givenname: David J. surname: Marcinek fullname: Marcinek, David J. organization: 2 Departments of Radiology (K.E.C., C.E.A., S.A.J., D.J.M.), Seattle, Washington 98195 – sequence: 9 givenname: Steven R. surname: Smith fullname: Smith, Steven R. organization: 1Department of Molecular Endocrinology (S.B., S.R.C., K.M., S.R.S.), Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana 70808 |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27073484$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/23150693$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kl1rFDEUhgep2G31zmsJiOiFU_M1k8yNUJZqhRbBfuBdyGQyO1mzyTbJdPF3-IfNdLd-FBoISTjPeXOS8x4Ue847XRQvETxCGMEPS3WEIcIlbmr2pJihhlYlQw3bK2YQYlQ2DH_fLw5iXEKIKK3Is2IfE1TBuiGz4tepWQw6gHOTvBq864KRFnzTcW2CTMY7IF0Hrpzy49oatwAbk4Yc70alO3BitUohQ5dBurj2IYH5II0Dc--Sdgnk7bW59dN6PkZlNfA9uNBdjsnwE1zrEMcIjlUytxpcjO0y68XnxdNe2qhf7NbD4urTyeX8tDz7-vnL_PisVJQjXvYaStXzSvctq5HuKVNKtpI0dZWnxrzvmg5xVvcUVhwj1CDUtpJ1FWslx4QcFh-3uuuxXelO5aKCtGIdzCoXJ7w04v-IM4NY-FtBKsIgr7LAu51A8DejjkmsTFTaWum0H6NAmBFcUQR5Rl8_QJd-DC4_TxBUU1pzQmmmXv1b0Z9S7vuVgTc7QEYlbZ-_XZn4l2OQEconIbzlVPAxBt0LZdJdP_NDjBUIisk8YqnEZB4xmScnvX-QdK_7CE63-MbblBv5w44bHcSgpU2DgHnQmvEyJxCI8qnME00_8Xablh312AV3Zia_AQY64wg |
CODEN | JCEMAZ |
CitedBy_id | crossref_primary_10_1016_j_bbadis_2015_12_019 crossref_primary_10_1161_CIRCRESAHA_118_312669 crossref_primary_10_1210_jc_2013_3983 crossref_primary_10_1053_j_ajkd_2016_05_011 crossref_primary_10_1016_j_metabol_2016_11_016 crossref_primary_10_1111_febs_12399 crossref_primary_10_1016_j_arr_2016_12_002 crossref_primary_10_14814_phy2_12418 crossref_primary_10_1007_s11357_013_9540_0 crossref_primary_10_1016_j_jacbts_2019_07_009 crossref_primary_10_1242_jeb_126623 crossref_primary_10_1002_nbm_4402 crossref_primary_10_1152_japplphysiol_01064_2013 crossref_primary_10_1590_1807_55092014000400683 crossref_primary_10_1172_jci_insight_133289 crossref_primary_10_1002_oby_23095 crossref_primary_10_3389_fcvm_2021_680371 crossref_primary_10_1016_j_bbr_2023_114335 crossref_primary_10_1249_MSS_0000000000001386 crossref_primary_10_1113_JP271725 crossref_primary_10_1038_s43587_024_00716_x crossref_primary_10_1016_j_mam_2016_06_001 crossref_primary_10_1093_ajcn_nqz108 crossref_primary_10_1249_MSS_0000000000000858 crossref_primary_10_1007_s10741_016_9586_z |
ContentType | Journal Article |
Copyright | Copyright © 2013 by The Endocrine Society 2013 Copyright © 2013 by The Endocrine Society 2014 INIST-CNRS |
Copyright_xml | – notice: Copyright © 2013 by The Endocrine Society 2013 – notice: Copyright © 2013 by The Endocrine Society – notice: 2014 INIST-CNRS |
DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7QP 7T5 7TM H94 K9. 7X8 5PM |
DOI | 10.1210/jc.2012-2967 |
DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Calcium & Calcified Tissue Abstracts Immunology Abstracts Nucleic Acids Abstracts AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Immunology Abstracts Calcium & Calcified Tissue Abstracts Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE AIDS and Cancer Research Abstracts MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1945-7197 |
EndPage | 136 |
ExternalDocumentID | PMC3537085 23150693 27073484 10_1210_jc_2012_2967 00004678-201301000-00018 10.1210/jc.2012-2967 |
Genre | Controlled Clinical Trial Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIDDK NIH HHS grantid: P30 DK072476 – fundername: NIA NIH HHS grantid: R01-AG030226 – fundername: NIAMS NIH HHS grantid: R01 AR041928 – fundername: NCRR NIH HHS grantid: P20 RR021945 – fundername: NIAMS NIH HHS grantid: R01-AR41928 – fundername: NIDDK NIH HHS grantid: P30-DK072476 – fundername: NIDDK NIH HHS grantid: K01 DK062018 – fundername: NIA NIH HHS grantid: R01 AG030226 – fundername: NIA NIH HHS grantid: RC2 AG036606 – fundername: NCRR NIH HHS grantid: P20-RR021945 |
GroupedDBID | --- -~X .55 .XZ 08P 0R~ 18M 1TH 29K 2WC 34G 354 39C 4.4 48X 53G 5GY 5RS 5YH 8F7 AABZA AACZT AAIMJ AAPQZ AAPXW AARHZ AAUAY AAVAP AAWTL ABBLC ABDFA ABEJV ABGNP ABJNI ABLJU ABMNT ABNHQ ABOCM ABPMR ABPPZ ABPQP ABPTD ABQNK ABVGC ABWST ABXVV ACGFO ACGFS ACPRK ACUTJ ACYHN ADBBV ADGKP ADGZP ADHKW ADQBN ADRTK ADVEK AELWJ AEMDU AENEX AENZO AETBJ AEWNT AFCHL AFFZL AFGWE AFOFC AFRAH AFXAL AGINJ AGKRT AGQXC AGUTN AHMBA AHMMS AJEEA ALMA_UNASSIGNED_HOLDINGS APIBT ARIXL ASPBG ATGXG AVWKF AZFZN BAWUL BAYMD BCRHZ BEYMZ BSWAC BTRTY C45 CDBKE CS3 D-I DAKXR DIK E3Z EBS EJD EMOBN ENERS F5P FECEO FHSFR FLUFQ FOEOM FOTVD FQBLK GAUVT GJXCC GX1 H13 HZ~ H~9 KBUDW KOP KQ8 KSI KSN L7B M5~ MHKGH MJL N9A NLBLG NOMLY NOYVH NVLIB O9- OAUYM OBH OCB ODMLO OFXIZ OGEVE OHH OJZSN OK1 OPAEJ OVD OVIDX P2P P6G REU ROX ROZ TEORI TJX TLC TR2 TWZ VVN W8F WOQ X7M YBU YFH YHG YOC YSK ZY1 ~02 ~H1 .GJ 3O- 7X7 88E 8FI 8FJ AAJQQ AAKAS AAPGJ AAQQT AAUQX AAWDT AAYJJ ABDPE ABUWG ABXZS ACFRR ACVCV ACZBC ADMTO ADNBA ADZCM AEMQT AEOTA AERZD AFFNX AFFQV AFKRA AFYAG AGMDO AGORE AHGBF AI. AJBYB AJDVS ALXQX APJGH AQDSO AQKUS AVNTJ BENPR BPHCQ BVXVI CCPQU EIHJH FEDTE FYUFA HMCUK HVGLF IAO IHR INH ITC J5H M1P MBLQV N4W NU- OBFPC PHGZM PHGZT PQQKQ PROAC PSQYO TMA UKHRP VH1 WHG X52 ZGI ZXP AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7QP 7T5 7TM H94 K9. 7X8 5PM |
ID | FETCH-LOGICAL-c4818-fe0acf85efb761ef47ccaba3965396e28fd9d1876f4058211911bba7d57ba8233 |
ISSN | 0021-972X 1945-7197 |
IngestDate | Thu Aug 21 14:31:24 EDT 2025 Thu Sep 04 23:30:09 EDT 2025 Mon Jun 30 12:42:23 EDT 2025 Thu Apr 03 06:53:53 EDT 2025 Wed Apr 02 07:49:44 EDT 2025 Tue Jul 01 00:49:59 EDT 2025 Thu Apr 24 23:03:39 EDT 2025 Fri May 16 04:03:21 EDT 2025 Fri Feb 07 10:35:40 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Human Obesity Nutrition Nutrition disorder Metabolic diseases In vivo Mitochondria Reduction Content Muscle Respiration Sedentary Transport Endocrinology Nutritional status Comparative study |
Language | English |
License | CC BY 4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c4818-fe0acf85efb761ef47ccaba3965396e28fd9d1876f4058211911bba7d57ba8233 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 |
PMID | 23150693 |
PQID | 3164468344 |
PQPubID | 2046206 |
PageCount | 8 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3537085 proquest_miscellaneous_1273254108 proquest_journals_3164468344 pubmed_primary_23150693 pascalfrancis_primary_27073484 crossref_citationtrail_10_1210_jc_2012_2967 crossref_primary_10_1210_jc_2012_2967 wolterskluwer_health_00004678-201301000-00018 oup_primary_10_1210_jc_2012-2967 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-January |
PublicationDateYYYYMMDD | 2013-01-01 |
PublicationDate_xml | – month: 01 year: 2013 text: 2013-January |
PublicationDecade | 2010 |
PublicationPlace | Bethesda, MD |
PublicationPlace_xml | – name: Bethesda, MD – name: United States – name: Washington – name: Chevy Chase, MD |
PublicationTitle | The journal of clinical endocrinology and metabolism |
PublicationTitleAlternate | J Clin Endocrinol Metab |
PublicationYear | 2013 |
Publisher | Oxford University Press Copyright by The Endocrine Society Endocrine Society |
Publisher_xml | – name: Oxford University Press – name: Copyright by The Endocrine Society – name: Endocrine Society |
References | 6679873 - Mol Biol Med. 1983 Jul;1(1):77-94 8024651 - J Physiol. 1993 Jun;465:203-22 16254011 - J Physiol. 2005 Dec 1;569(Pt 2):467-73 18930151 - Methods. 2008 Dec;46(4):312-8 21307136 - J Clin Endocrinol Metab. 2011 Apr;96(4):1160-8 12775561 - Am J Physiol Heart Circ Physiol. 2003 Nov;285(5):H1900-8 1573181 - J Gerontol. 1992 May;47(3):B71-6 12871725 - Anal Biochem. 2003 Aug 15;319(2):296-303 2325549 - Magn Reson Med. 1990 Mar;13(3):490-7 16423857 - J Physiol. 2006 Mar 15;571(Pt 3):669-81 9124293 - Am J Physiol. 1997 Feb;272(2 Pt 1):C501-10 11120879 - Proc Natl Acad Sci U S A. 2001 Jan 16;98(2):723-8 15743387 - Acta Physiol Scand. 2005 Mar;183(3):273-80 10878112 - J Physiol. 2000 Jul 1;526 Pt 1:203-10 21224506 - J Physiol Pharmacol. 2010 Dec;61(6):743-51 14692599 - Proc Nutr Soc. 2003 Aug;62(3):635-43 12588886 - J Clin Invest. 2003 Feb;111(4):479-86 14634202 - J Physiol. 2004 Feb 1;554(Pt 3):755-63 16246006 - Biochem Soc Trans. 2005 Nov;33(Pt 5):897-904 14522819 - Am J Physiol Cell Physiol. 2004 Feb;286(2):C457-63 20533900 - Essays Biochem. 2010;47:53-67 8226486 - J Appl Physiol (1985). 1993 Aug;75(2):813-9 10653469 - J Bioenerg Biomembr. 1999 Oct;31(5):399-406 14514869 - J Physiol. 2003 Dec 1;553(Pt 2):589-99 1550061 - Am J Clin Nutr. 1992 Apr;55(4):795-801 10490803 - Int J Obes Relat Metab Disord. 1999 Sep;23(9):966-72 21284982 - Cell Metab. 2011 Feb 2;13(2):149-59 7665396 - J Appl Physiol (1985). 1995 Jun;78(6):2033-8 12181291 - J Physiol. 2002 Aug 15;543(Pt 1):191-200 17206437 - Eur J Appl Physiol. 2007 Apr;99(6):593-604 2922400 - Proc Natl Acad Sci U S A. 1989 Mar;86(5):1583-7 17215370 - Proc Natl Acad Sci U S A. 2007 Jan 16;104(3):1057-62 22132085 - PLoS One. 2011;6(11):e26963 9252469 - Am J Physiol. 1997 Jul;273(1 Pt 1):C306-15 |
References_xml | – reference: 16246006 - Biochem Soc Trans. 2005 Nov;33(Pt 5):897-904 – reference: 9252469 - Am J Physiol. 1997 Jul;273(1 Pt 1):C306-15 – reference: 17215370 - Proc Natl Acad Sci U S A. 2007 Jan 16;104(3):1057-62 – reference: 14692599 - Proc Nutr Soc. 2003 Aug;62(3):635-43 – reference: 10653469 - J Bioenerg Biomembr. 1999 Oct;31(5):399-406 – reference: 17206437 - Eur J Appl Physiol. 2007 Apr;99(6):593-604 – reference: 1550061 - Am J Clin Nutr. 1992 Apr;55(4):795-801 – reference: 9124293 - Am J Physiol. 1997 Feb;272(2 Pt 1):C501-10 – reference: 8024651 - J Physiol. 1993 Jun;465:203-22 – reference: 14514869 - J Physiol. 2003 Dec 1;553(Pt 2):589-99 – reference: 16423857 - J Physiol. 2006 Mar 15;571(Pt 3):669-81 – reference: 10878112 - J Physiol. 2000 Jul 1;526 Pt 1:203-10 – reference: 2325549 - Magn Reson Med. 1990 Mar;13(3):490-7 – reference: 2922400 - Proc Natl Acad Sci U S A. 1989 Mar;86(5):1583-7 – reference: 11120879 - Proc Natl Acad Sci U S A. 2001 Jan 16;98(2):723-8 – reference: 12181291 - J Physiol. 2002 Aug 15;543(Pt 1):191-200 – reference: 21284982 - Cell Metab. 2011 Feb 2;13(2):149-59 – reference: 6679873 - Mol Biol Med. 1983 Jul;1(1):77-94 – reference: 21307136 - J Clin Endocrinol Metab. 2011 Apr;96(4):1160-8 – reference: 22132085 - PLoS One. 2011;6(11):e26963 – reference: 20533900 - Essays Biochem. 2010;47:53-67 – reference: 21224506 - J Physiol Pharmacol. 2010 Dec;61(6):743-51 – reference: 16254011 - J Physiol. 2005 Dec 1;569(Pt 2):467-73 – reference: 14634202 - J Physiol. 2004 Feb 1;554(Pt 3):755-63 – reference: 12871725 - Anal Biochem. 2003 Aug 15;319(2):296-303 – reference: 1573181 - J Gerontol. 1992 May;47(3):B71-6 – reference: 18930151 - Methods. 2008 Dec;46(4):312-8 – reference: 10490803 - Int J Obes Relat Metab Disord. 1999 Sep;23(9):966-72 – reference: 8226486 - J Appl Physiol (1985). 1993 Aug;75(2):813-9 – reference: 15743387 - Acta Physiol Scand. 2005 Mar;183(3):273-80 – reference: 12588886 - J Clin Invest. 2003 Feb;111(4):479-86 – reference: 7665396 - J Appl Physiol (1985). 1995 Jun;78(6):2033-8 – reference: 12775561 - Am J Physiol Heart Circ Physiol. 2003 Nov;285(5):H1900-8 – reference: 14522819 - Am J Physiol Cell Physiol. 2004 Feb;286(2):C457-63 |
SSID | ssj0014453 |
Score | 2.2310152 |
Snippet | Objective:This study investigated the disparity between muscle metabolic rate and mitochondrial metabolism in human muscle of sedentary vs. active... OBJECTIVE:This study investigated the disparity between muscle metabolic rate and mitochondrial metabolism in human muscle of sedentary vs. active individuals.... This study investigated the disparity between muscle metabolic rate and mitochondrial metabolism in human muscle of sedentary vs. active individuals. Chronic... This study investigated the disparity between muscle metabolic rate and mitochondrial metabolism in human muscle of sedentary vs. active... |
SourceID | pubmedcentral proquest pubmed pascalfrancis crossref wolterskluwer oup |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 129 |
SubjectTerms | Accelerometry - methods Adult Biological and medical sciences Biopsy Cell Respiration Electron Transport - physiology Electron transport chain Electron Transport Chain Complex Proteins - metabolism Electron Transport Chain Complex Proteins - physiology Endocrine Care Endocrinopathies Energy Metabolism - physiology Feeding. Feeding behavior Fundamental and applied biological sciences. Psychology Humans Male Medical sciences Metabolic rate Metabolism Mitochondria Mitochondria, Muscle - metabolism Motor Activity - physiology Muscle, Skeletal - metabolism Oxygen Consumption - physiology Physical activity Protein transport Respiration Rest Sedentary Lifestyle Spectroscopy Surveys and Questionnaires Up-Regulation Vertebrates: anatomy and physiology, studies on body, several organs or systems Vertebrates: endocrinology Young Adult |
Title | Higher Mitochondrial Respiration and Uncoupling with Reduced Electron Transport Chain Content in Vivo in Muscle of Sedentary Versus Active Subjects |
URI | https://ovidsp.ovid.com/ovidweb.cgi?T=JS&NEWS=n&CSC=Y&PAGE=fulltext&D=ovft&AN=00004678-201301000-00018 https://www.ncbi.nlm.nih.gov/pubmed/23150693 https://www.proquest.com/docview/3164468344 https://www.proquest.com/docview/1273254108 https://pubmed.ncbi.nlm.nih.gov/PMC3537085 |
Volume | 98 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bi9QwFA7jCiIs4t3qukTQp6XStE0vj4soi7K-uAvzVtI0ZWedaYfpdET_hj_HP-c5SXoZZwfUl7a0mbbM-ZKck37nO4S8DpmIClVytxAhBCi5FDAOetIVvvBUFMkg0rUBzz9HZ5fhxymfTia_Rqyldp2_lT9uzCv5H6vCObArZsn-g2X7m8IJOAb7whYsDNu_srElaSygV8IoVhW6AsfKfjzveMYwcdXtct4vuq5QrBXczK4ADlaJMPrmmAWsaelIa9elAzazTY37RdtIw0JsFGb2ItUO-Rxto8U4NuqkaXNc0WnGzi5CcKRM0SdhqqqoYbCqBvmnhVoDGOednKFOG6nsavonmLqrIWHidCF0aaQhd_FkJBZ6vVTfZ4ZtVBh2trlZs-5I_F-u1GwuLE_SLndg6Yl-uUOZIToNuRszw-rtxvA02cGqGZCZWU_ZmSgg0sWJAkUsme_6qakJMsLMcqFBA-4v9yJTxPEPYe7u0i1y24cYRdcNmfb8IghUeWAzLTBNavwoVKC2P95yh0yK5eFSNGCM0hRWuSny2SXwHn6rkVzRfNW5FSMP6eI-uWdDG3pqcPqATFT1kNw5t-SNR-SngSvdgisdwZUCFOgAV4pwpRautIMr7eFKNVyphSuFQ4Qr7g1caV3SHq7UwJUauNIOro_J5Yf3F-_OXFsTxJUh-JZuqTwhy4SrMo8jpsowhiEoF0GKEsuR8pOySAsGU3wJkUii5QtZnou44HEuEj8InpCDqq7UM0JDPw65SAsVRzIMPJUKmTCukijnspChcshJZ5pMWsF8rNsyzzBwBptm1zJDm2ZoU4e86VsvjVDMnnYU_sV9TVzT5HgLAn1jP_ZQjCp0yFGHicx24yYLGIQ2EZbNccir_jJMFvgFUFSqbht4VBz4PGRe4pCnBkLDzS0iHRJvgatvgEL021eq2ZUWpA94EEPo5hB3C4aZSeXO9DoEOMUu9mePWS0Lljzf-w4vyN2h7x-Rg_WqVS_B-V_nx7qT_QZUZQ1j |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Higher+mitochondrial+respiration+and+uncoupling+with+reduced+electron+transport+chain+content+in+vivo+in+muscle+of+sedentary+versus+active+subjects&rft.jtitle=The+journal+of+clinical+endocrinology+and+metabolism&rft.au=Conley%2C+Kevin+E&rft.au=Amara%2C+Catherine+E&rft.au=Bajpeyi%2C+Sudip&rft.au=Costford%2C+Sheila+R&rft.date=2013-01-01&rft.eissn=1945-7197&rft.volume=98&rft.issue=1&rft.spage=129&rft_id=info:doi/10.1210%2Fjc.2012-2967&rft_id=info%3Apmid%2F23150693&rft.externalDocID=23150693 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-972X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-972X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-972X&client=summon |