Highly Efficient Electrocatalysts for Oxygen Reduction Based on 2D Covalent Organic Polymers Complexed with Non-precious Metals
A class of 2D covalent organic polymers (COPs) incorporating a metal (such as Fe, Co, Mn) with precisely controlled locations of nitrogen heteroatoms and holes were synthesized from various N‐containing metal–organic complexes (for example, metal–porphyrin complexes) by a nickel‐catalyzed Yamamoto r...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 53; no. 9; pp. 2433 - 2437 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
WILEY-VCH Verlag
24.02.2014
WILEY‐VCH Verlag Wiley Wiley Subscription Services, Inc |
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A class of 2D covalent organic polymers (COPs) incorporating a metal (such as Fe, Co, Mn) with precisely controlled locations of nitrogen heteroatoms and holes were synthesized from various N‐containing metal–organic complexes (for example, metal–porphyrin complexes) by a nickel‐catalyzed Yamamoto reaction. Subsequent carbonization of the metal‐incorporated COPs led to the formation of COP‐derived graphene analogues, which acted as efficient electrocatalysts for oxygen reduction in both alkaline and acid media with a good stability and free from any methanol‐crossover/CO‐poisoning effects.
Metal‐containing (M=Fe, Co, Mn) 2D covalent organic polymers with precisely controlled locations of N heteroatoms and holes were synthesized from metal–porphyrin complexes by a nickel‐catalyzed Yamamoto reaction. Subsequent carbonization led to graphene analogues, which are efficient electrocatalysts for oxygen reduction in both alkaline and acid media and are free from methanol‐crossover/CO poisoning. |
---|---|
AbstractList | A class of 2D covalent organic polymers (COPs) incorporating a metal (such as Fe, Co, Mn) with precisely controlled locations of nitrogen heteroatoms and holes were synthesized from various N-containing metal-organic complexes (for example, metal-porphyrin complexes) by a nickel-catalyzed Yamamoto reaction. Subsequent carbonization of the metal-incorporated COPs led to the formation of COP-derived graphene analogues, which acted as efficient electrocatalysts for oxygen reduction in both alkaline and acid media with a good stability and free from any methanol-crossover/CO-poisoning effects. A class of 2D covalent organic polymers (COPs) incorporating a metal (such as Fe, Co, Mn) with precisely controlled locations of nitrogen heteroatoms and holes were synthesized from various N-containing metal-organic complexes (for example, metal-porphyrin complexes) by a nickel-catalyzed Yamamoto reaction. Subsequent carbonization of the metal-incorporated COPs led to the formation of COP-derived graphene analogues, which acted as efficient electrocatalysts for oxygen reduction in both alkaline and acid media with a good stability and free from any methanol-crossover/CO-poisoning effects. Metal-containing (M=Fe, Co, Mn) 2D covalent organic polymers with precisely controlled locations of Nheteroatoms and holes were synthesized from metal-porphyrin complexes by a nickel-catalyzed Yamamoto reaction. Subsequent carbonization led to graphene analogues, which are efficient electrocatalysts for oxygen reduction in both alkaline and acid media and are free from methanol-crossover/CO poisoning. A class of 2D covalent organic polymers (COPs) incorporating a metal (such as Fe, Co, Mn) with precisely controlled locations of nitrogen heteroatoms and holes were synthesized from various N‐containing metal–organic complexes (for example, metal–porphyrin complexes) by a nickel‐catalyzed Yamamoto reaction. Subsequent carbonization of the metal‐incorporated COPs led to the formation of COP‐derived graphene analogues, which acted as efficient electrocatalysts for oxygen reduction in both alkaline and acid media with a good stability and free from any methanol‐crossover/CO‐poisoning effects. Metal‐containing (M=Fe, Co, Mn) 2D covalent organic polymers with precisely controlled locations of N heteroatoms and holes were synthesized from metal–porphyrin complexes by a nickel‐catalyzed Yamamoto reaction. Subsequent carbonization led to graphene analogues, which are efficient electrocatalysts for oxygen reduction in both alkaline and acid media and are free from methanol‐crossover/CO poisoning. A class of 2D covalent organic polymers (COPs) incorporating a metal (such as Fe, Co, Mn) with precisely controlled locations of nitrogen heteroatoms and holes were synthesized from various N-containing metal-organic complexes (for example, metal-porphyrin complexes) by a nickel-catalyzed Yamamoto reaction. Subsequent carbonization of the metal-incorporated COPs led to the formation of COP-derived graphene analogues, which acted as efficient electrocatalysts for oxygen reduction in both alkaline and acid media with a good stability and free from any methanol-crossover/CO-poisoning effects. [PUBLICATION ABSTRACT] A class of 2D covalent organic polymers (COPs) incorporating a metal (such as Fe, Co, Mn) with precisely controlled locations of nitrogen heteroatoms and holes were synthesized from various N-containing metal-organic complexes (for example, metal-porphyrin complexes) by a nickel-catalyzed Yamamoto reaction. Subsequent carbonization of the metal-incorporated COPs led to the formation of COP-derived graphene analogues, which acted as efficient electrocatalysts for oxygen reduction in both alkaline and acid media with a good stability and free from any methanol-crossover/CO-poisoning effects.A class of 2D covalent organic polymers (COPs) incorporating a metal (such as Fe, Co, Mn) with precisely controlled locations of nitrogen heteroatoms and holes were synthesized from various N-containing metal-organic complexes (for example, metal-porphyrin complexes) by a nickel-catalyzed Yamamoto reaction. Subsequent carbonization of the metal-incorporated COPs led to the formation of COP-derived graphene analogues, which acted as efficient electrocatalysts for oxygen reduction in both alkaline and acid media with a good stability and free from any methanol-crossover/CO-poisoning effects. A class of 2D covalent organic polymers (COPs) incorporating a metal (such as Fe, Co, Mn) with precisely controlled locations of nitrogen heteroatoms and holes were synthesized from various N-containing metal-organic complexes (for example, metal-porphyrin complexes) by a nickel-catalyzed Yamamoto reaction. Subsequent carbonization of the metal-incorporated COPs led to the formation of COP-derived graphene analogues, which acted as efficient electro-catalysts for oxygen reduction in both alkaline and acid media with a good stability and free from any methanol-crossover/CO-poisoning effects. |
Author | Dai, Liming Xue, Yuhua Cao, Dapeng Xiang, Zhonghua Chen, Jian-Feng Huang, Ling |
Author_xml | – sequence: 1 givenname: Zhonghua surname: Xiang fullname: Xiang, Zhonghua organization: Centre of Advanced Science and Engineering for Carbon (Case4Carbon), Department of Macromolecular Science and Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106 (USA) – sequence: 2 givenname: Yuhua surname: Xue fullname: Xue, Yuhua organization: Centre of Advanced Science and Engineering for Carbon (Case4Carbon), Department of Macromolecular Science and Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106 (USA) – sequence: 3 givenname: Dapeng surname: Cao fullname: Cao, Dapeng email: caodp@mail.buct.edu.cn organization: State Key Lab of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029 (P.R. China) – sequence: 4 givenname: Ling surname: Huang fullname: Huang, Ling organization: State Key Lab of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029 (P.R. China) – sequence: 5 givenname: Jian-Feng surname: Chen fullname: Chen, Jian-Feng organization: State Key Lab of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029 (P.R. China) – sequence: 6 givenname: Liming surname: Dai fullname: Dai, Liming email: liming.dai@case.edu organization: Centre of Advanced Science and Engineering for Carbon (Case4Carbon), Department of Macromolecular Science and Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106 (USA) |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24477972$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkkuP0zAQgCO0iH3AlSOyxAUJpdixHcfHJXQfUrdFCAQ3y3UmXS9pXOyEbU78dRy1VGgltJxmpPk-z1gzp8lR61pIkpcETwjG2TvdWphkmFBcFDJ_kpwQnpGUCkGPYs4oTUXByXFyGsJd5IsC58-S44wxIaTITpJfV3Z12wxoWtfWWGg7NG3AdN4Z3elmCF1AtfNosR1W0KJPUPWms65F73WACsUk-4BK91M3o7rwqziPQR9dM6zBh1hZbxrYRvLedrdo7tp048FY1wd0A7FBeJ48rWOAF_t4lny5mH4ur9LZ4vK6PJ-lhhUkT0WV00rnbFnnXJoMGADjkhtWE6opxRU1oJeyEjoTMUDNMqIzWlS8NrGs6VnyZvfuxrsfPYROrW0w0DS6hTiNIgJjKbEk4nGUY8pZgQWN6OsH6J3rfRs_MlKYc8nYSL3aU_1yDZXaeLvWflB_thCBYgfcw9LVYdyDgQOGMaY0LyiLCSa8tJ0eV1C6vu2i-vb_1UhPdrTxLgQP9YEkWI33pMZ7Uod7igJ7IJh9-85r2_xbk_upbAPDI03U-fx6-reb7lwbOtgeXO2_q1xQwdXX-aWiN_ML9k1iNaO_AVS_7Is |
CODEN | ACIEAY |
CitedBy_id | crossref_primary_10_1021_acs_chemmater_7b00353 crossref_primary_10_1039_C5CC03946K crossref_primary_10_1002_smll_202403859 crossref_primary_10_3390_bios13020188 crossref_primary_10_1007_s11705_022_2195_6 crossref_primary_10_1039_C4RA10162F crossref_primary_10_1007_s12274_016_1343_z crossref_primary_10_1021_acsami_6b05560 crossref_primary_10_1016_j_cclet_2022_107788 crossref_primary_10_1039_C9DT03923F crossref_primary_10_1007_s12274_021_4043_2 crossref_primary_10_1021_acsami_9b07460 crossref_primary_10_1126_sciadv_aaw2322 crossref_primary_10_1039_C4TA03850A crossref_primary_10_1039_C9NJ04422A crossref_primary_10_1039_C6CC06972J crossref_primary_10_1007_s10008_015_3035_0 crossref_primary_10_1021_acs_jpclett_4c03361 crossref_primary_10_1039_C5NR05998D crossref_primary_10_1039_C5CP07739G crossref_primary_10_1016_j_seppur_2021_120366 crossref_primary_10_1016_j_nanoen_2017_02_042 crossref_primary_10_1002_smll_202307110 crossref_primary_10_1002_fuce_201500123 crossref_primary_10_1002_advs_201700515 crossref_primary_10_1016_j_jcat_2016_03_005 crossref_primary_10_1016_j_electacta_2021_138107 crossref_primary_10_1016_j_jcis_2017_02_061 crossref_primary_10_1021_acsami_5b07068 crossref_primary_10_1007_s11426_017_9078_7 crossref_primary_10_1002_adma_201703646 crossref_primary_10_1016_j_ijhydene_2016_12_068 crossref_primary_10_1016_j_microc_2024_110975 crossref_primary_10_1002_adma_201804799 crossref_primary_10_1002_anie_201502173 crossref_primary_10_1016_j_mtchem_2022_100932 crossref_primary_10_1002_adfm_202000857 crossref_primary_10_1016_j_cej_2023_141782 crossref_primary_10_1039_D1TC05840A crossref_primary_10_1021_acssuschemeng_2c01300 crossref_primary_10_1016_j_gee_2023_03_003 crossref_primary_10_1016_S1872_2067_16_62454_3 crossref_primary_10_1002_elan_201600258 crossref_primary_10_1021_acsami_7b12666 crossref_primary_10_1007_s40820_018_0231_3 crossref_primary_10_1007_s10847_022_01140_7 crossref_primary_10_1039_C8TA01458B crossref_primary_10_1016_j_microc_2022_108022 crossref_primary_10_1016_j_memsci_2023_121880 crossref_primary_10_1002_smll_202106635 crossref_primary_10_1039_C9PY00326F crossref_primary_10_1002_cssc_201700536 crossref_primary_10_1002_cctc_201601578 crossref_primary_10_1021_acsaem_8b01432 crossref_primary_10_1016_j_ces_2016_12_071 crossref_primary_10_1021_acsami_9b20102 crossref_primary_10_1149_2_1531706jes crossref_primary_10_1021_acsami_7b11229 crossref_primary_10_1021_acs_accounts_3c00730 crossref_primary_10_1073_pnas_1800771115 crossref_primary_10_1039_D3NJ04476A crossref_primary_10_1039_C4PY01383B crossref_primary_10_1016_j_cej_2022_135311 crossref_primary_10_1039_C6TA11168H crossref_primary_10_1039_C7DT02149F crossref_primary_10_1016_j_carbon_2018_12_066 crossref_primary_10_1016_j_nanoen_2021_106868 crossref_primary_10_1002_adma_201505788 crossref_primary_10_1039_C5TA10170K crossref_primary_10_1016_j_jallcom_2021_159441 crossref_primary_10_1039_C4TA05735J crossref_primary_10_1002_cssc_201700864 crossref_primary_10_1002_fuce_201500164 crossref_primary_10_1007_s10847_019_00924_8 crossref_primary_10_1039_C4TA05092D crossref_primary_10_1002_smtd_202100945 crossref_primary_10_1016_j_cej_2022_135320 crossref_primary_10_1007_s12274_015_0795_x crossref_primary_10_1021_acsami_6b15154 crossref_primary_10_1002_smll_201600256 crossref_primary_10_1002_anie_201600850 crossref_primary_10_1002_smll_202407804 crossref_primary_10_1039_D3TA03055E crossref_primary_10_1021_acsami_0c22148 crossref_primary_10_1021_acsami_8b05213 crossref_primary_10_1016_j_carbon_2016_08_078 crossref_primary_10_1002_smll_202201197 crossref_primary_10_1039_C8NR06109B crossref_primary_10_1002_asia_201800681 crossref_primary_10_1016_j_cej_2021_130950 crossref_primary_10_1021_acscatal_5b01089 crossref_primary_10_1002_anie_201905468 crossref_primary_10_1002_smtd_201800492 crossref_primary_10_1149_2_0651707jes crossref_primary_10_1002_ejic_202200776 crossref_primary_10_1016_j_micromeso_2020_110627 crossref_primary_10_1016_j_jechem_2017_09_004 crossref_primary_10_1007_s42114_017_0003_4 crossref_primary_10_1039_C8NR08330D crossref_primary_10_1002_ejic_201500822 crossref_primary_10_3390_catal8060243 crossref_primary_10_1039_C9TA00302A crossref_primary_10_1002_aesr_202000090 crossref_primary_10_1002_cssc_201800855 crossref_primary_10_1021_acsami_6b11608 crossref_primary_10_1002_celc_202200677 crossref_primary_10_1016_j_checat_2022_09_009 crossref_primary_10_1002_adma_201500727 crossref_primary_10_1016_j_elecom_2015_01_021 crossref_primary_10_1039_C7TA06515A crossref_primary_10_1021_acsaem_9b02141 crossref_primary_10_1016_j_cej_2021_133205 crossref_primary_10_1002_slct_201602076 crossref_primary_10_1039_C5NR05324B crossref_primary_10_1038_nnano_2015_48 crossref_primary_10_1007_s40820_019_0291_z crossref_primary_10_1016_j_electacta_2018_02_148 crossref_primary_10_1039_C6EE00104A crossref_primary_10_1039_C4NR06831A crossref_primary_10_1002_cnma_202200305 crossref_primary_10_1021_acs_iecr_0c00663 crossref_primary_10_1016_j_chemosphere_2018_08_122 crossref_primary_10_1021_jacs_5b00076 crossref_primary_10_1016_j_jtice_2019_04_049 crossref_primary_10_1126_sciadv_1400035 crossref_primary_10_1002_adma_201905622 crossref_primary_10_1002_advs_202103477 crossref_primary_10_1039_C7SE00085E crossref_primary_10_1039_C6RA20593C crossref_primary_10_1002_anie_202415759 crossref_primary_10_1016_j_electacta_2020_137212 crossref_primary_10_1016_j_jssc_2019_07_004 crossref_primary_10_1039_C4TA02941K crossref_primary_10_1016_j_carbon_2018_01_005 crossref_primary_10_1002_smll_202007576 crossref_primary_10_1039_C8TA09490J crossref_primary_10_1021_acsami_6b04189 crossref_primary_10_1021_acs_jpcc_5b10358 crossref_primary_10_1002_anie_201600891 crossref_primary_10_1002_pola_28028 crossref_primary_10_1002_adma_201706758 crossref_primary_10_1016_j_gee_2021_11_005 crossref_primary_10_1039_C7PY00876G crossref_primary_10_1016_j_ijhydene_2022_02_109 crossref_primary_10_1016_j_apmt_2020_100692 crossref_primary_10_1039_C7CS00656J crossref_primary_10_1039_C4TA06231K crossref_primary_10_1021_acsaem_1c00746 crossref_primary_10_1039_C7RE00178A crossref_primary_10_1039_C8TA10554E crossref_primary_10_2139_ssrn_3985160 crossref_primary_10_1002_celc_201801274 crossref_primary_10_1021_acsami_9b17348 crossref_primary_10_1021_acs_chemrev_6b00299 crossref_primary_10_1007_s41918_018_0003_2 crossref_primary_10_1039_D0NJ01132K crossref_primary_10_1039_D4TA04577G crossref_primary_10_1021_acsami_2c10088 crossref_primary_10_1002_anie_201808226 crossref_primary_10_1021_nn505582e crossref_primary_10_1039_D0PY01368D crossref_primary_10_1039_C6TA00648E crossref_primary_10_1016_j_electacta_2015_08_143 crossref_primary_10_1016_j_cej_2017_04_093 crossref_primary_10_1016_j_jpowsour_2015_12_110 crossref_primary_10_1016_j_electacta_2018_12_080 crossref_primary_10_1016_j_carbon_2014_12_064 crossref_primary_10_1039_C6RA24314B crossref_primary_10_1039_D2CY00153E crossref_primary_10_1002_ange_201807854 crossref_primary_10_1016_j_apsusc_2023_156697 crossref_primary_10_1039_C7QI00038C crossref_primary_10_1016_j_catcom_2021_106348 crossref_primary_10_1021_acsaem_8b01381 crossref_primary_10_1002_chem_201805550 crossref_primary_10_1002_adma_202204570 crossref_primary_10_1002_ange_201910309 crossref_primary_10_1016_j_carbon_2017_02_046 crossref_primary_10_1039_C9CY00633H crossref_primary_10_1002_ange_201504830 crossref_primary_10_1016_j_seppur_2022_120522 crossref_primary_10_1016_j_esci_2022_10_009 crossref_primary_10_1016_j_matt_2023_12_018 crossref_primary_10_1016_j_apcatb_2018_10_038 crossref_primary_10_1016_j_carbon_2014_11_015 crossref_primary_10_1021_acscatal_9b00213 crossref_primary_10_1007_s12274_021_3598_2 crossref_primary_10_1016_j_ijhydene_2019_09_167 crossref_primary_10_1149_1945_7111_aba4df crossref_primary_10_1002_asia_202101011 crossref_primary_10_1039_C8NR04372H crossref_primary_10_1002_aenm_201501497 crossref_primary_10_1021_acsami_7b19450 crossref_primary_10_1039_C6CS00597G crossref_primary_10_1039_C5TB00413F crossref_primary_10_1002_adma_201802922 crossref_primary_10_1016_j_cattod_2023_114129 crossref_primary_10_1021_acscatal_8b02556 crossref_primary_10_1016_j_synthmet_2023_117306 crossref_primary_10_1039_C8CC04424D crossref_primary_10_1021_acssuschemeng_7b03371 crossref_primary_10_1007_s11164_022_04751_4 crossref_primary_10_1021_acscatal_2c06092 crossref_primary_10_1016_j_jcat_2018_03_021 crossref_primary_10_1007_s10853_017_1768_0 crossref_primary_10_1002_chem_201901400 crossref_primary_10_1016_j_jechem_2018_01_010 crossref_primary_10_1039_C5NR00302D crossref_primary_10_1021_acsami_8b18496 crossref_primary_10_1039_C7QI00756F crossref_primary_10_1016_j_snb_2015_11_108 crossref_primary_10_1021_acssuschemeng_9b06840 crossref_primary_10_1021_acs_energyfuels_0c01167 crossref_primary_10_1016_j_jpowsour_2019_03_097 crossref_primary_10_1007_s11581_020_03744_w crossref_primary_10_3390_ma16196458 crossref_primary_10_6023_A23040132 crossref_primary_10_1039_C9TA14023A crossref_primary_10_3390_batteries8100150 crossref_primary_10_1021_acsnano_7b03807 crossref_primary_10_1002_adma_201800528 crossref_primary_10_1016_j_mattod_2017_04_026 crossref_primary_10_1021_acs_chemrev_6b00558 crossref_primary_10_1039_C8TA02451K crossref_primary_10_1021_acs_iecr_0c03766 crossref_primary_10_1002_ange_202113657 crossref_primary_10_1002_cctc_201500148 crossref_primary_10_1016_j_fuel_2022_125828 crossref_primary_10_1039_C4RA16026F crossref_primary_10_1149_1945_7111_ac10f4 crossref_primary_10_1007_s10904_018_0841_8 crossref_primary_10_1016_j_jcis_2020_06_057 crossref_primary_10_1002_cnl2_133 crossref_primary_10_1021_acs_inorgchem_3c01479 crossref_primary_10_1002_celc_201701335 crossref_primary_10_1016_j_jhazmat_2020_124769 crossref_primary_10_1039_C8NJ06296J crossref_primary_10_1002_cctc_201700724 crossref_primary_10_1002_ange_201600891 crossref_primary_10_1039_C7TA06665A crossref_primary_10_1016_j_jechem_2019_09_002 crossref_primary_10_1016_j_snb_2019_03_110 crossref_primary_10_2139_ssrn_3983698 crossref_primary_10_1016_j_electacta_2019_04_096 crossref_primary_10_1039_C4CP01246A crossref_primary_10_1016_j_electacta_2016_04_037 crossref_primary_10_1016_j_carbon_2014_08_086 crossref_primary_10_1149_2_0571507jes crossref_primary_10_1007_s11244_018_0935_0 crossref_primary_10_1039_C8NJ01593G crossref_primary_10_1002_adma_201606635 crossref_primary_10_1002_anie_202113657 crossref_primary_10_1007_s12274_016_1400_7 crossref_primary_10_1039_C7TA02370G crossref_primary_10_1039_C9MH01819K crossref_primary_10_1002_macp_201900532 crossref_primary_10_1002_smll_201906634 crossref_primary_10_1021_acscatal_4c00419 crossref_primary_10_1002_adfm_201803973 crossref_primary_10_1016_j_ijhydene_2019_07_065 crossref_primary_10_1002_celc_201600850 crossref_primary_10_1039_C8CY00483H crossref_primary_10_1016_j_talanta_2025_127884 crossref_primary_10_1039_C6RA27662H crossref_primary_10_3390_jfb14010015 crossref_primary_10_1038_natrevmats_2017_75 crossref_primary_10_1039_D0CS01482F crossref_primary_10_1016_j_apsusc_2020_147481 crossref_primary_10_1039_C4CY00969J crossref_primary_10_1039_C4NR06749E crossref_primary_10_1021_acs_chemmater_6b03619 crossref_primary_10_1016_j_mtcata_2024_100044 crossref_primary_10_1039_C4CC09062D crossref_primary_10_1039_C8AY01885E crossref_primary_10_1002_pi_6120 crossref_primary_10_1021_acs_jpcc_7b11609 crossref_primary_10_1021_acsapm_3c02916 crossref_primary_10_1016_j_chempr_2021_01_002 crossref_primary_10_1002_cctc_201500195 crossref_primary_10_1039_C5CC06623A crossref_primary_10_1039_C4TA04938A crossref_primary_10_1016_j_gce_2020_09_004 crossref_primary_10_1021_acsmaterialslett_3c00767 crossref_primary_10_1021_acsami_8b13751 crossref_primary_10_1016_j_apcatb_2020_119863 crossref_primary_10_1002_anie_201700271 crossref_primary_10_1016_j_jcis_2021_07_071 crossref_primary_10_1007_s12274_018_2130_9 crossref_primary_10_1016_j_jcis_2018_01_020 crossref_primary_10_1016_j_jpowsour_2019_04_075 crossref_primary_10_1039_C5CP02853A crossref_primary_10_1039_C4FD00121D crossref_primary_10_1142_S1088424623500426 crossref_primary_10_1016_j_colsurfb_2019_03_008 crossref_primary_10_1016_j_apcatb_2020_119750 crossref_primary_10_1016_j_jcis_2017_04_012 crossref_primary_10_1016_j_ces_2018_10_026 crossref_primary_10_1039_C7CP06187K crossref_primary_10_1002_ange_201600850 crossref_primary_10_1016_j_ijhydene_2025_01_212 crossref_primary_10_1002_ange_201700271 crossref_primary_10_1002_chem_201603212 crossref_primary_10_1039_D1CC00431J crossref_primary_10_1002_asia_202100735 crossref_primary_10_1038_srep08307 crossref_primary_10_1002_anie_201504830 crossref_primary_10_1016_j_mtchem_2018_12_002 crossref_primary_10_1002_smsc_202100046 crossref_primary_10_3390_ma11020205 crossref_primary_10_1016_j_jpowsour_2019_226738 crossref_primary_10_1021_acsomega_9b03851 crossref_primary_10_1039_C9CC06479F crossref_primary_10_1002_ange_201905468 crossref_primary_10_1002_smll_202203326 crossref_primary_10_1002_cctc_201600298 crossref_primary_10_1002_ppsc_201600219 crossref_primary_10_1002_advs_201700019 crossref_primary_10_1021_acsami_8b10022 crossref_primary_10_1007_s40242_020_8008_x crossref_primary_10_1016_j_nanoen_2017_03_023 crossref_primary_10_1039_D1TA05991B crossref_primary_10_1016_j_electacta_2020_135855 crossref_primary_10_1149_2162_8777_ac8dbe crossref_primary_10_1002_aic_17864 crossref_primary_10_1002_anie_201807854 crossref_primary_10_1016_j_ensm_2018_02_011 crossref_primary_10_1016_j_cej_2020_127395 crossref_primary_10_1002_ange_201502173 crossref_primary_10_1016_j_jpowsour_2016_05_116 crossref_primary_10_1016_j_apcata_2018_04_028 crossref_primary_10_1126_sciadv_1500564 crossref_primary_10_1002_celc_201600241 crossref_primary_10_1021_acsami_5b06708 crossref_primary_10_1002_chem_201404454 crossref_primary_10_1021_acs_nanolett_6b04433 crossref_primary_10_1016_S1872_2067_17_62982_6 crossref_primary_10_1016_j_jpowsour_2023_232922 crossref_primary_10_1016_j_seppur_2022_121589 crossref_primary_10_1021_acs_chemrev_7b00689 crossref_primary_10_1002_ange_201808226 crossref_primary_10_1021_acscatal_6b03043 crossref_primary_10_1002_chem_201802631 crossref_primary_10_1021_acsami_5b02467 crossref_primary_10_1002_smll_201600336 crossref_primary_10_1039_D1SE01257F crossref_primary_10_1021_acs_chemmater_0c02913 crossref_primary_10_1021_jacs_5b06266 crossref_primary_10_1002_asia_201800747 crossref_primary_10_1021_acssuschemeng_7b01367 crossref_primary_10_1039_C9CC06337D crossref_primary_10_1002_adfm_201602158 crossref_primary_10_1016_j_jechem_2017_10_026 crossref_primary_10_1021_acsami_7b16936 crossref_primary_10_1016_j_nanoen_2020_104689 crossref_primary_10_1007_s12274_015_0844_5 crossref_primary_10_1039_C8NR02337A crossref_primary_10_1016_j_apsusc_2018_11_052 crossref_primary_10_1039_C6TA02673G crossref_primary_10_1016_j_mtchem_2021_100632 crossref_primary_10_1073_pnas_2311326121 crossref_primary_10_1021_acsaem_9b01931 crossref_primary_10_1002_smll_201704319 crossref_primary_10_1007_s40843_017_9191_5 crossref_primary_10_1021_acssuschemeng_8b04919 crossref_primary_10_1002_anie_201910309 crossref_primary_10_1021_jacs_6b00757 crossref_primary_10_1002_ange_202415759 crossref_primary_10_1002_chem_202100996 crossref_primary_10_1021_acsami_8b09074 crossref_primary_10_1002_smtd_201800438 crossref_primary_10_1021_acsnano_7b06061 crossref_primary_10_3390_catal5031167 crossref_primary_10_1016_j_nanoen_2016_09_016 crossref_primary_10_1002_asia_202000083 crossref_primary_10_3390_polym15061450 crossref_primary_10_1021_acsami_8b01592 crossref_primary_10_1021_acsami_7b03305 crossref_primary_10_1016_j_apsusc_2018_04_123 crossref_primary_10_1021_acsami_4c18032 crossref_primary_10_1002_aenm_201602543 crossref_primary_10_1039_D0TA12105C crossref_primary_10_1016_j_molliq_2019_112010 crossref_primary_10_1021_acsami_8b02423 crossref_primary_10_1021_acsenergylett_7b00267 crossref_primary_10_1038_ncomms8221 crossref_primary_10_1039_D0SE00271B crossref_primary_10_1039_C5TA06309D crossref_primary_10_1055_a_2222_7218 crossref_primary_10_1002_cjoc_202400386 crossref_primary_10_1002_smll_202106129 crossref_primary_10_1039_C8TA06588H crossref_primary_10_1002_adma_201401848 crossref_primary_10_1149_1945_7111_ac766e crossref_primary_10_1007_s40242_024_4133_2 crossref_primary_10_1038_srep09817 crossref_primary_10_1016_j_nantod_2018_12_004 crossref_primary_10_1007_s12274_021_3756_6 crossref_primary_10_1016_j_electacta_2016_12_052 crossref_primary_10_1016_j_physleta_2020_126717 crossref_primary_10_1016_j_fuel_2023_130736 crossref_primary_10_1038_s41467_021_27735_1 crossref_primary_10_1021_cr5003563 crossref_primary_10_1016_j_bios_2020_112014 crossref_primary_10_1016_j_ijhydene_2021_05_202 crossref_primary_10_1002_celc_201801859 crossref_primary_10_1039_C7TA08467F crossref_primary_10_1039_C7RA01151B crossref_primary_10_1039_C6EE02169G crossref_primary_10_1039_C6RA14339C crossref_primary_10_1039_C7TA11140A crossref_primary_10_1016_j_chemosphere_2018_12_024 crossref_primary_10_1016_j_colsurfa_2020_126007 crossref_primary_10_1016_j_nanoen_2020_104525 crossref_primary_10_1016_j_cclet_2019_10_028 crossref_primary_10_1016_j_inoche_2024_113136 crossref_primary_10_1002_smll_201601617 crossref_primary_10_1016_j_pmatsci_2018_06_001 crossref_primary_10_1021_acs_chemmater_0c02843 |
Cites_doi | 10.1016/0021-9517(73)90173-5 10.1002/anie.200907289 10.1021/ja1112904 10.1039/c1ee01153g 10.1002/ange.200700894 10.1021/la991080r 10.1021/nn200879h 10.1021/ja209206c 10.1021/ar300122m 10.1038/2011212a0 10.1016/j.apcatb.2004.06.021 10.1039/C2TA00063F 10.1126/science.1159503 10.1039/c0ee00558d 10.1002/anie.200700894 10.1039/c2ee03479d 10.1002/ange.201101287 10.1002/marc.201100865 10.1126/science.1168049 10.1002/smll.201101594 10.1039/c2jm35446b 10.1021/ar400011z 10.1039/c1jm12545a 10.1126/science.1170051 10.1021/jz100533t 10.1002/anie.201101287 10.1021/cm100139d 10.1021/ja203776f 10.1021/jp405775x 10.1021/jp300137e 10.1021/nn901850u 10.1038/nmat3087 10.1002/ange.200907289 10.1039/c2ta00063f 10.1038/NMAT3087 |
ContentType | Journal Article |
Copyright | Copyright © 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: Copyright © 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. – notice: Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | BSCLL AAYXX CITATION 17B 1KM BLEPL DTL EGQ GNMZZ NPM 7TM K9. 7X8 7SR 8BQ 8FD JG9 |
DOI | 10.1002/anie.201308896 |
DatabaseName | Istex CrossRef Web of Knowledge Index Chemicus Web of Science Core Collection Science Citation Index Expanded Web of Science Primary (SCIE, SSCI & AHCI) Web of Science - Science Citation Index Expanded - 2014 PubMed Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database |
DatabaseTitle | CrossRef Web of Science PubMed ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX |
DatabaseTitleList | PubMed Materials Research Database ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic Web of Science CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 1KM name: Index Chemicus url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/woscc/search-with-editions?editions=WOS.IC sourceTypes: Enrichment Source Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | 2437 |
ExternalDocumentID | 3224245211 24477972 000336834000015 10_1002_anie_201308896 ANIE201308896 ark_67375_WNG_3MNF4X90_L |
Genre | shortCommunication Journal Article |
GrantInformation_xml | – fundername: AFOSR funderid: FA9550‐12‐1‐0037 – fundername: NSF funderid: IIP‐134270 – fundername: NSF; National Science Foundation (NSF) grantid: IIP-134270 – fundername: AFOSR; United States Department of Defense; Air Force Office of Scientific Research (AFOSR) grantid: FA9550-12-1-0037 – fundername: State Key Lab of Organic-Inorganic Composites at BUCT |
GroupedDBID | --- -DZ -~X .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABEML ABIJN ABJNI ABLJU ABPPZ ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AETEA AEUYR AFBPY AFFNX AFFPM AFGKR AFRAH AFWVQ AFZJQ AGQPQ AGYGG AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT AEUQT AFPWT RWI VQA WRC AAYXX AEYWJ CITATION 17B 1KM BLEPL DTL GROUPED_WOS_SCIENCE_CITATION_INDEX_EXPANDED GROUPED_WOS_WEB_OF_SCIENCE NPM 7TM K9. 7X8 7SR 8BQ 8FD JG9 |
ID | FETCH-LOGICAL-c4816-7d63da64bf659c2e4ee4595c4f13a330d3ceab9d7a27b9def421a238d5fc330a3 |
IEDL.DBID | DR2 |
ISICitedReferencesCount | 419 |
ISICitedReferencesURI | https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestApp=WOS&DestLinkType=CitingArticles&UT=000336834000015 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Fri Jul 11 03:48:54 EDT 2025 Fri Jul 11 02:39:59 EDT 2025 Sun Jul 13 03:53:31 EDT 2025 Mon Jul 21 06:05:32 EDT 2025 Wed Jul 09 15:19:18 EDT 2025 Fri Aug 29 16:14:32 EDT 2025 Tue Jul 01 02:53:25 EDT 2025 Thu Apr 24 22:58:02 EDT 2025 Wed Jan 22 16:42:24 EST 2025 Thu Apr 24 03:19:16 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Keywords | ENERGY-CONVERSION graphene analogues covalent organic polymers GRAPHENE NANOMATERIALS electrocatalysts oxygen reduction reaction CARBON NANOTUBE ARRAYS CATALYSTS metal-organic frameworks |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
LogoURL | https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg |
MergedId | FETCHMERGED-LOGICAL-c4816-7d63da64bf659c2e4ee4595c4f13a330d3ceab9d7a27b9def421a238d5fc330a3 |
Notes | NSF - No. IIP-134270 istex:BAD97FFDAD0BB1248B652160AF106826C15493DA ark:/67375/WNG-3MNF4X90-L This work was supported financially by State Key Lab of Organic-Inorganic Composites at BUCT, AFOSR (FA9550-12-1-0037), and NSF (IIP-134270). AFOSR - No. FA9550-12-1-0037 ArticleID:ANIE201308896 This work was supported financially by State Key Lab of Organic‐Inorganic Composites at BUCT, AFOSR (FA9550‐12‐1‐0037), and NSF (IIP‐134270). ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-6981-7794 0000-0001-7536-160X 0000-0002-6117-1132 |
PMID | 24477972 |
PQID | 1500559443 |
PQPubID | 946352 |
PageCount | 5 |
ParticipantIDs | pubmed_primary_24477972 crossref_primary_10_1002_anie_201308896 proquest_miscellaneous_1700990917 proquest_journals_1500559443 istex_primary_ark_67375_WNG_3MNF4X90_L proquest_miscellaneous_1503548073 webofscience_primary_000336834000015CitationCount webofscience_primary_000336834000015 crossref_citationtrail_10_1002_anie_201308896 wiley_primary_10_1002_anie_201308896_ANIE201308896 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 24, 2014 |
PublicationDateYYYYMMDD | 2014-02-24 |
PublicationDate_xml | – month: 02 year: 2014 text: February 24, 2014 day: 24 |
PublicationDecade | 2010 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim – name: WEINHEIM – name: Germany |
PublicationTitle | Angewandte Chemie International Edition |
PublicationTitleAbbrev | ANGEW CHEM INT EDIT |
PublicationTitleAlternate | Angew. Chem. Int. Ed |
PublicationYear | 2014 |
Publisher | WILEY-VCH Verlag WILEY‐VCH Verlag Wiley Wiley Subscription Services, Inc |
Publisher_xml | – name: WILEY-VCH Verlag – name: WILEY‐VCH Verlag – name: Wiley – name: Wiley Subscription Services, Inc |
References | Z. H. Xiang, D. P. Cao, Macromol. Rapid Commun. 2012, 33, 1184-1190 L. Dai, Acc. Chem. Res. 2013, 46, 31-42. Angew. Chem. Int. Ed. 2010, 49, 2565-2569. Z. Chen, M. Waje, W. Li, Y. Yan, Angew. Chem. 2007, 119, 4138-4141 K. P. Gong, F. Du, Z. H. Xia, M. Durstock, L. M. Dai, Science 2009, 323, 760-764. J. Tang, T. Wang, X. Pan, X. Sun, X. Fan, Y. Guo, H. Xue, J. He, J. Phys. Chem. C 2013, 117, 16896-16906 L. Qu, Y. Liu, J.-B. Baek, L. Dai, ACS Nano 2010, 4, 1321-1326 X. Wang, J. S. Lee, Q. Zhu, J. Liu, Y. Wang, S. Dai, Chem. Mater. 2010, 22, 2178-2180 L. Yang, S. Jiang, Y. Zhao, L. Zhu, S. Chen, X. Wang, W. Qiang, J. Ma, Y. Ma, Z. Hu, Angew. Chem. 2011, 123, 7270-7273 Angew. Chem. Int. Ed. 2007, 46, 4060-4063 R. Jasinski, Nature 1964, 201, 1212-1213. R. Liu, D. Wu, X. Feng, K. Müllen, Angew. Chem. 2010, 122, 2619-2623 L. Dai, D. W. Chang, J.-B. Baek, W. Lu, Small 2012, 8, 1130-1166 Y. Zheng, Y. Jiao, J. Chen, J. Liu, J. Liang, A. Du, W. M. Zhang, Z. H. Zhu, S. C. Smith, M. Jaroniec, G. Q. Lu, S. Z. Qiao, J. Am. Chem. Soc. 2011, 133, 20116-20119 G. Wu, P. Zelenay, Acc. Chem. Res. 2013, 46, 1878-1889. H. A. Gasteiger, S. S. Kocha, B. Sompalli, F. T. Wagner, Appl. Catal. B 2005, 56, 9-35. S. Y. Wang, D. S. Yu, L. M. Dai, D. W. Chang, J. B. Baek, ACS Nano 2011, 5, 6202-6209 L. Qu, L. Dai, M. Stone, Z. Xia, Z. L. Wang, Science 2008, 322, 238-242 T. Ben, K. Shi, Y. Cui, C. Pei, Y. Zuo, H. Guo, D. Zhang, J. Xu, F. Deng, Z. Tian, S. Qiu, J. Mater. Chem. 2011, 21, 18208-18214. H. Alt, H. Binder, G. Sandstede, J. Catal. 1973, 28, 8-19. S. Y. Wang, D. S. Yu, L. M. Dai, J. Am. Chem. Soc. 2011, 133, 5182-5185 Angew. Chem. Int. Ed. 2011, 50, 7132-7135 F. J. Maldonado-Hódar, C. Moreno-Castilla, J. Rivera-Utrilla, Y. Hanzawa, Y. Yamada, Langmuir 2000, 16, 4367-4373 L. Y. Feng, Y. Y. Yan, Y. G. Chen, L. J. Wang, Energy Environ. Sci. 2011, 4, 1892-1899 R. Liu, C. von Malotki, L. Arnold, N. Koshino, H. Higashimura, M. Baumgarten, K. Mullen, J. Am. Chem. Soc. 2011, 133, 10372-10375 D. Yu, E. Nagelli, F. Du, L. Dai, J. Phys. Chem. Lett. 2010, 1, 2165-2173 Y. Zheng, J. Liu, J, Liang, M. Jaronic, S. Z. Qiao, Energy Environ. Sci. 2012, 5, 6717-6731 Z. H. Xiang, D. P. Cao, J. Mater. Chem. A 2013, 1, 2691-2718 Z. Chen, D. Higgins, A. Yu, L. Zhang, J. Zhang, Energy Environ. Sci. 2011, 4, 3167-3192 Z. H. Xiang, D. P. Cao, W. C. Wang, W. T. Yang, B. Y. Han, J. M. Lu, J. Phys. Chem. C 2012, 116, 5974-5980 Z. H. Xiang, X. Zhou, C. H. Zhou, S. Zhong, X. He, C. P. Qin, D. P. Cao, J. Mater. Chem. 2012, 22, 22663-22669. Y. Liang, Y. Li, H. Wang, J. Zhou, J. Wang, T. Regier, H. Dai, Nat. Mater. 2011, 10, 780-786 M. Lefèvre, E. Proietti, F. Jaouen, J.-P. Dodelet, Science 2009, 324, 71-74 2013; 1 2013; 46 2010 2010; 122 49 2011; 10 2011 2011; 123 50 2008; 322 2011; 4 2011; 5 2012; 33 2011; 133 2010; 22 2010; 1 2000; 16 1973; 28 2013; 117 2011; 21 2007 2007; 119 46 2012; 116 2010; 4 2012; 5 2012; 22 2009; 323 2005; 56 2009; 324 2012; 8 1964; 201 e_1_2_2_2_3 e_1_2_2_3_2 e_1_2_2_24_2 e_1_2_2_4_2 e_1_2_2_23_2 e_1_2_2_5_2 e_1_2_2_22_2 e_1_2_2_6_2 e_1_2_2_21_2 e_1_2_2_20_2 e_1_2_2_1_2 e_1_2_2_2_2 e_1_2_2_29_2 e_1_2_2_7_2 e_1_2_2_8_2 e_1_2_2_28_2 e_1_2_2_27_2 e_1_2_2_25_3 e_1_2_2_26_2 e_1_2_2_9_2 e_1_2_2_25_2 e_1_2_2_13_2 e_1_2_2_12_2 e_1_2_2_11_2 e_1_2_2_10_2 e_1_2_2_19_3 e_1_2_2_19_2 e_1_2_2_30_2 e_1_2_2_18_2 e_1_2_2_31_2 e_1_2_2_17_2 e_1_2_2_32_2 e_1_2_2_16_2 e_1_2_2_33_2 e_1_2_2_15_2 e_1_2_2_34_2 e_1_2_2_14_2 e_1_2_2_35_2 Lefevre, M (WOS:000264802100033) 2009; 324 Xiang, ZH (WOS:000306403900004) 2012; 33 ALT, H (WOS:A1973O411700002) 1973; 28 Wu, G (WOS:000323472200022) 2013; 46 Wang, SY (WOS:000294085400017) 2011; 5 Qu, LT (WOS:000259902300042) 2008; 322 Yang, LJ (WOS:000293767000035) 2011; 50 Qu, LT (WOS:000275858200010) 2010; 4 Zheng, Y (WOS:000303251500008) 2012; 5 Xiang, ZH (WOS:000310721300047) 2012; 22 Gasteiger, HA (WOS:000227324800003) 2005; 56 Chen, ZW (WOS:000246981900007) 2007; 46 Gong, KP (WOS:000263066800040) 2009; 323 JASINSKI, R (WOS:A19648817B00267) 1964; 201 Dai, LM (WOS:000313667600005) 2013; 46 Wang, XQ (WOS:000276394800002) 2010; 22 Liang, YY (WOS:000295155200015) 2011; 10 Chen, ZW (WOS:000294306900007) 2011; 4 Maldonado-Hodar, FJ (WOS:000086909500049) 2000; 16 Tang, J (WOS:000323593100018) 2013; 117 Zheng, Y (WOS:000298713600024) 2011; 133 Yu, DS (WOS:000280021000022) 2010; 1 Feng, LY (WOS:000289989800042) 2011; 4 Liu, RL (WOS:000293149800013) 2011; 133 Wang, SY (WOS:000289829100006) 2011; 133 Liu, RL (WOS:000276737300016) 2010; 49 Dai, LM (WOS:000302800000003) 2012; 8 Ben, T (WOS:000296735900012) 2011; 21 Xiang, ZH (WOS:000301315700084) 2012; 116 Liu, R. L. (000336834000015.16) 2010; 122 Chen, Z. (000336834000015.5) 2007; 119 Xiang, ZH (WOS:000314646800001) 2013; 1 |
References_xml | – reference: Angew. Chem. Int. Ed. 2007, 46, 4060-4063; – reference: Y. Liang, Y. Li, H. Wang, J. Zhou, J. Wang, T. Regier, H. Dai, Nat. Mater. 2011, 10, 780-786; – reference: L. Dai, D. W. Chang, J.-B. Baek, W. Lu, Small 2012, 8, 1130-1166; – reference: R. Jasinski, Nature 1964, 201, 1212-1213. – reference: H. A. Gasteiger, S. S. Kocha, B. Sompalli, F. T. Wagner, Appl. Catal. B 2005, 56, 9-35. – reference: J. Tang, T. Wang, X. Pan, X. Sun, X. Fan, Y. Guo, H. Xue, J. He, J. Phys. Chem. C 2013, 117, 16896-16906; – reference: S. Y. Wang, D. S. Yu, L. M. Dai, J. Am. Chem. Soc. 2011, 133, 5182-5185; – reference: F. J. Maldonado-Hódar, C. Moreno-Castilla, J. Rivera-Utrilla, Y. Hanzawa, Y. Yamada, Langmuir 2000, 16, 4367-4373; – reference: G. Wu, P. Zelenay, Acc. Chem. Res. 2013, 46, 1878-1889. – reference: L. Yang, S. Jiang, Y. Zhao, L. Zhu, S. Chen, X. Wang, W. Qiang, J. Ma, Y. Ma, Z. Hu, Angew. Chem. 2011, 123, 7270-7273; – reference: Z. H. Xiang, X. Zhou, C. H. Zhou, S. Zhong, X. He, C. P. Qin, D. P. Cao, J. Mater. Chem. 2012, 22, 22663-22669. – reference: X. Wang, J. S. Lee, Q. Zhu, J. Liu, Y. Wang, S. Dai, Chem. Mater. 2010, 22, 2178-2180; – reference: Z. H. Xiang, D. P. Cao, W. C. Wang, W. T. Yang, B. Y. Han, J. M. Lu, J. Phys. Chem. C 2012, 116, 5974-5980; – reference: S. Y. Wang, D. S. Yu, L. M. Dai, D. W. Chang, J. B. Baek, ACS Nano 2011, 5, 6202-6209; – reference: Z. Chen, M. Waje, W. Li, Y. Yan, Angew. Chem. 2007, 119, 4138-4141; – reference: L. Qu, L. Dai, M. Stone, Z. Xia, Z. L. Wang, Science 2008, 322, 238-242; – reference: R. Liu, C. von Malotki, L. Arnold, N. Koshino, H. Higashimura, M. Baumgarten, K. Mullen, J. Am. Chem. Soc. 2011, 133, 10372-10375; – reference: K. P. Gong, F. Du, Z. H. Xia, M. Durstock, L. M. Dai, Science 2009, 323, 760-764. – reference: T. Ben, K. Shi, Y. Cui, C. Pei, Y. Zuo, H. Guo, D. Zhang, J. Xu, F. Deng, Z. Tian, S. Qiu, J. Mater. Chem. 2011, 21, 18208-18214. – reference: H. Alt, H. Binder, G. Sandstede, J. Catal. 1973, 28, 8-19. – reference: L. Dai, Acc. Chem. Res. 2013, 46, 31-42. – reference: Y. Zheng, J. Liu, J, Liang, M. Jaronic, S. Z. Qiao, Energy Environ. Sci. 2012, 5, 6717-6731; – reference: Z. Chen, D. Higgins, A. Yu, L. Zhang, J. Zhang, Energy Environ. Sci. 2011, 4, 3167-3192; – reference: L. Qu, Y. Liu, J.-B. Baek, L. Dai, ACS Nano 2010, 4, 1321-1326; – reference: D. Yu, E. Nagelli, F. Du, L. Dai, J. Phys. Chem. Lett. 2010, 1, 2165-2173; – reference: Angew. Chem. Int. Ed. 2010, 49, 2565-2569. – reference: Angew. Chem. Int. Ed. 2011, 50, 7132-7135; – reference: R. Liu, D. Wu, X. Feng, K. Müllen, Angew. Chem. 2010, 122, 2619-2623; – reference: Y. Zheng, Y. Jiao, J. Chen, J. Liu, J. Liang, A. Du, W. M. Zhang, Z. H. Zhu, S. C. Smith, M. Jaroniec, G. Q. Lu, S. Z. Qiao, J. Am. Chem. Soc. 2011, 133, 20116-20119; – reference: M. Lefèvre, E. Proietti, F. Jaouen, J.-P. Dodelet, Science 2009, 324, 71-74; – reference: Z. H. Xiang, D. P. Cao, Macromol. Rapid Commun. 2012, 33, 1184-1190; – reference: Z. H. Xiang, D. P. Cao, J. Mater. Chem. A 2013, 1, 2691-2718; – reference: L. Y. Feng, Y. Y. Yan, Y. G. Chen, L. J. Wang, Energy Environ. Sci. 2011, 4, 1892-1899; – volume: 8 start-page: 1130 year: 2012 end-page: 1166 publication-title: Small – volume: 5 start-page: 6202 year: 2011 end-page: 6209 publication-title: ACS Nano – volume: 123 50 start-page: 7270 7132 year: 2011 2011 end-page: 7273 7135 publication-title: Angew. Chem. Angew. Chem. Int. Ed. – volume: 4 start-page: 1892 year: 2011 end-page: 1899 publication-title: Energy Environ. Sci. – volume: 324 start-page: 71 year: 2009 end-page: 74 publication-title: Science – volume: 10 start-page: 780 year: 2011 end-page: 786 publication-title: Nat. Mater. – volume: 56 start-page: 9 year: 2005 end-page: 35 publication-title: Appl. Catal. B – volume: 22 start-page: 2178 year: 2010 end-page: 2180 publication-title: Chem. Mater. – volume: 1 start-page: 2691 year: 2013 end-page: 2718 publication-title: J. Mater. Chem. A – volume: 22 start-page: 22663 year: 2012 end-page: 22669 publication-title: J. Mater. Chem. – volume: 133 start-page: 5182 year: 2011 end-page: 5185 publication-title: J. Am. Chem. Soc. – volume: 119 46 start-page: 4138 4060 year: 2007 2007 end-page: 4141 4063 publication-title: Angew. Chem. Angew. Chem. Int. Ed. – volume: 323 start-page: 760 year: 2009 end-page: 764 publication-title: Science – volume: 46 start-page: 31 year: 2013 end-page: 42 publication-title: Acc. Chem. Res. – volume: 322 start-page: 238 year: 2008 end-page: 242 publication-title: Science – volume: 133 start-page: 20116 year: 2011 end-page: 20119 publication-title: J. Am. Chem. Soc. – volume: 1 start-page: 2165 year: 2010 end-page: 2173 publication-title: J. Phys. Chem. Lett. – volume: 46 start-page: 1878 year: 2013 end-page: 1889 publication-title: Acc. Chem. Res. – volume: 21 start-page: 18208 year: 2011 end-page: 18214 publication-title: J. Mater. Chem. – volume: 117 start-page: 16896 year: 2013 end-page: 16906 publication-title: J. Phys. Chem. C – volume: 5 start-page: 6717 year: 2012 end-page: 6731 publication-title: Energy Environ. Sci. – volume: 122 49 start-page: 2619 2565 year: 2010 2010 end-page: 2623 2569 publication-title: Angew. Chem. Angew. Chem. Int. Ed. – volume: 4 start-page: 3167 year: 2011 end-page: 3192 publication-title: Energy Environ. Sci. – volume: 16 start-page: 4367 year: 2000 end-page: 4373 publication-title: Langmuir – volume: 133 start-page: 10372 year: 2011 end-page: 10375 publication-title: J. Am. Chem. Soc. – volume: 4 start-page: 1321 year: 2010 end-page: 1326 publication-title: ACS Nano – volume: 201 start-page: 1212 year: 1964 end-page: 1213 publication-title: Nature – volume: 116 start-page: 5974 year: 2012 end-page: 5980 publication-title: J. Phys. Chem. C – volume: 28 start-page: 8 year: 1973 end-page: 19 publication-title: J. Catal. – volume: 33 start-page: 1184 year: 2012 end-page: 1190 publication-title: Macromol. Rapid Commun. – ident: e_1_2_2_10_2 doi: 10.1016/0021-9517(73)90173-5 – ident: e_1_2_2_25_3 doi: 10.1002/anie.200907289 – ident: e_1_2_2_11_2 – ident: e_1_2_2_16_2 doi: 10.1021/ja1112904 – ident: e_1_2_2_15_2 doi: 10.1039/c1ee01153g – ident: e_1_2_2_2_2 doi: 10.1002/ange.200700894 – ident: e_1_2_2_34_2 doi: 10.1021/la991080r – ident: e_1_2_2_17_2 doi: 10.1021/nn200879h – ident: e_1_2_2_18_2 doi: 10.1021/ja209206c – ident: e_1_2_2_23_2 doi: 10.1021/ar300122m – ident: e_1_2_2_9_2 doi: 10.1038/2011212a0 – ident: e_1_2_2_3_2 doi: 10.1016/j.apcatb.2004.06.021 – ident: e_1_2_2_27_2 doi: 10.1039/C2TA00063F – ident: e_1_2_2_14_2 doi: 10.1126/science.1159503 – ident: e_1_2_2_5_2 doi: 10.1039/c0ee00558d – ident: e_1_2_2_2_3 doi: 10.1002/anie.200700894 – ident: e_1_2_2_20_2 doi: 10.1039/c2ee03479d – ident: e_1_2_2_1_2 – ident: e_1_2_2_19_2 doi: 10.1002/ange.201101287 – ident: e_1_2_2_28_2 doi: 10.1002/marc.201100865 – ident: e_1_2_2_24_2 doi: 10.1126/science.1168049 – ident: e_1_2_2_32_2 – ident: e_1_2_2_13_2 doi: 10.1002/smll.201101594 – ident: e_1_2_2_30_2 doi: 10.1039/c2jm35446b – ident: e_1_2_2_35_2 doi: 10.1021/ar400011z – ident: e_1_2_2_31_2 doi: 10.1039/c1jm12545a – ident: e_1_2_2_6_2 doi: 10.1126/science.1170051 – ident: e_1_2_2_22_2 doi: 10.1021/jz100533t – ident: e_1_2_2_19_3 doi: 10.1002/anie.201101287 – ident: e_1_2_2_21_2 doi: 10.1021/cm100139d – ident: e_1_2_2_7_2 doi: 10.1021/ja203776f – ident: e_1_2_2_33_2 doi: 10.1021/jp405775x – ident: e_1_2_2_29_2 doi: 10.1021/jp300137e – ident: e_1_2_2_12_2 doi: 10.1021/nn901850u – ident: e_1_2_2_8_2 doi: 10.1038/nmat3087 – ident: e_1_2_2_25_2 doi: 10.1002/ange.200907289 – ident: e_1_2_2_26_2 – ident: e_1_2_2_4_2 – volume: 4 start-page: 1892 year: 2011 ident: WOS:000289989800042 article-title: Nitrogen-doped carbon nanotubes as efficient and durable metal-free cathodic catalysts for oxygen reduction in microbial fuel cells publication-title: ENERGY & ENVIRONMENTAL SCIENCE doi: 10.1039/c1ee01153g – volume: 8 start-page: 1130 year: 2012 ident: WOS:000302800000003 article-title: Carbon Nanomaterials for Advanced Energy Conversion and Storage publication-title: SMALL doi: 10.1002/smll.201101594 – volume: 21 start-page: 18208 year: 2011 ident: WOS:000296735900012 article-title: Targeted synthesis of an electroactive organic framework publication-title: JOURNAL OF MATERIALS CHEMISTRY doi: 10.1039/c1jm12545a – volume: 5 start-page: 6717 year: 2012 ident: WOS:000303251500008 article-title: Graphitic carbon nitride materials: controllable synthesis and applications in fuel cells and photocatalysis publication-title: ENERGY & ENVIRONMENTAL SCIENCE doi: 10.1039/c2ee03479d – volume: 5 start-page: 6202 year: 2011 ident: WOS:000294085400017 article-title: Polyelectrolyte-Functionalized Graphene as Metal-Free Electrocatalysts for Oxygen Reduction publication-title: ACS NANO doi: 10.1021/nn200879h – volume: 201 start-page: 1212 year: 1964 ident: WOS:A19648817B00267 article-title: NEW FUEL CELL CATHODE CATALYST publication-title: NATURE – volume: 322 start-page: 238 year: 2008 ident: WOS:000259902300042 article-title: Carbon nanotube arrays with strong shear binding-on and easy normal lifting-off publication-title: SCIENCE doi: 10.1126/science.1159503 – volume: 56 start-page: 9 year: 2005 ident: WOS:000227324800003 article-title: Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs publication-title: APPLIED CATALYSIS B-ENVIRONMENTAL doi: 10.1016/j.apcatb.2004.06.021 – volume: 1 start-page: 2691 year: 2013 ident: WOS:000314646800001 article-title: Porous covalent-organic materials: synthesis, clean energy application and design publication-title: JOURNAL OF MATERIALS CHEMISTRY A doi: 10.1039/c2ta00063f – volume: 117 start-page: 16896 year: 2013 ident: WOS:000323593100018 article-title: Synthesis and Electrochemical Characterization of N-Doped Partially Graphitized Ordered Mesoporous Carbon-Co Composite publication-title: JOURNAL OF PHYSICAL CHEMISTRY C doi: 10.1021/jp405775x – volume: 50 start-page: 7132 year: 2011 ident: WOS:000293767000035 article-title: Boron-Doped Carbon Nanotubes as Metal-Free Electrocatalysts for the Oxygen Reduction Reaction publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201101287 – volume: 46 start-page: 4060 year: 2007 ident: WOS:000246981900007 article-title: Supportless Pt and PtPd nanotubes as electrocatalysts for oxygen-reduction reactions publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.200700894 – volume: 116 start-page: 5974 year: 2012 ident: WOS:000301315700084 article-title: Postsynthetic Lithium Modification of Covalent-Organic Polymers for Enhancing Hydrogen and Carbon Dioxide Storage publication-title: JOURNAL OF PHYSICAL CHEMISTRY C doi: 10.1021/jp300137e – volume: 323 start-page: 760 year: 2009 ident: WOS:000263066800040 article-title: Nitrogen-Doped Carbon Nanotube Arrays with High Electrocatalytic Activity for Oxygen Reduction publication-title: SCIENCE doi: 10.1126/science.1168049 – volume: 133 start-page: 20116 year: 2011 ident: WOS:000298713600024 article-title: Nanoporous Graphitic-C3N4@Carbon Metal-Free Electrocatalysts for Highly Efficient Oxygen Reduction publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/ja209206c – volume: 49 start-page: 2565 year: 2010 ident: WOS:000276737300016 article-title: Nitrogen-Doped Ordered Mesoporous Graphitic Arrays with High Electrocatalytic Activity for Oxygen Reduction publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.200907289 – volume: 133 start-page: 10372 year: 2011 ident: WOS:000293149800013 article-title: Triangular Trinuclear Metal-N-4 Complexes with High Electrocatalytic Activity for Oxygen Reduction publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/ja203776f – volume: 133 start-page: 5182 year: 2011 ident: WOS:000289829100006 article-title: Polyelectrolyte Functionalized Carbon Nanotubes as Efficient Metal-free Electrocatalysts for Oxygen Reduction publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/ja1112904 – volume: 4 start-page: 1321 year: 2010 ident: WOS:000275858200010 article-title: Nitrogen-Doped Graphene as Efficient Metal-Free Electrocatalyst for Oxygen Reduction in Fuel Cells publication-title: ACS NANO doi: 10.1021/nn901850u – volume: 1 start-page: 2165 year: 2010 ident: WOS:000280021000022 article-title: Metal-Free Carbon Nanomaterials Become More Active than Metal Catalysts and Last Longer publication-title: JOURNAL OF PHYSICAL CHEMISTRY LETTERS doi: 10.1021/jz100533t – volume: 28 start-page: 8 year: 1973 ident: WOS:A1973O411700002 article-title: MECHANISM OF ELECTROCATALYTIC REDUCTION OF OXYGEN ON METAL-CHELATES publication-title: JOURNAL OF CATALYSIS – volume: 33 start-page: 1184 year: 2012 ident: WOS:000306403900004 article-title: Synthesis of Luminescent Covalent-Organic Polymers for Detecting Nitroaromatic Explosives and Small Organic Molecules publication-title: MACROMOLECULAR RAPID COMMUNICATIONS doi: 10.1002/marc.201100865 – volume: 122 start-page: 2619 year: 2010 ident: 000336834000015.16 article-title: Nitrogen-doped ordered mesoporous graphitic arrays with high electrocatalytic activity for oxygen reduction publication-title: Angew. Chem. Int. Ed. – volume: 46 start-page: 1878 year: 2013 ident: WOS:000323472200022 article-title: Nanostructured Nonprecious Metal Catalysts for Oxygen Reduction Reaction publication-title: ACCOUNTS OF CHEMICAL RESEARCH doi: 10.1021/ar400011z – volume: 10 start-page: 780 year: 2011 ident: WOS:000295155200015 article-title: Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction publication-title: NATURE MATERIALS doi: 10.1038/NMAT3087 – volume: 16 start-page: 4367 year: 2000 ident: WOS:000086909500049 article-title: Catalytic graphitization of carbon aerogels by transition metals publication-title: LANGMUIR – volume: 119 start-page: 4138 year: 2007 ident: 000336834000015.5 article-title: Supportless Pt and PtPd nanotubes as electrocatalysts for oxygen-reduction reactions publication-title: Angew. Chem, Int. Ed – volume: 22 start-page: 2178 year: 2010 ident: WOS:000276394800002 article-title: Ammonia-Treated Ordered Mesoporous Carbons as Catalytic Materials for Oxygen Reduction Reaction publication-title: CHEMISTRY OF MATERIALS doi: 10.1021/cm100139d – volume: 4 start-page: 3167 year: 2011 ident: WOS:000294306900007 article-title: A review on non-precious metal electrocatalysts for PEM fuel cells publication-title: ENERGY & ENVIRONMENTAL SCIENCE doi: 10.1039/c0ee00558d – volume: 324 start-page: 71 year: 2009 ident: WOS:000264802100033 article-title: Iron-Based Catalysts with Improved Oxygen Reduction Activity in Polymer Electrolyte Fuel Cells publication-title: SCIENCE doi: 10.1126/science.1170051 – volume: 46 start-page: 31 year: 2013 ident: WOS:000313667600005 article-title: Functionalization of Graphene for Efficient Energy Conversion and Storage publication-title: ACCOUNTS OF CHEMICAL RESEARCH doi: 10.1021/ar300122m – volume: 22 start-page: 22663 year: 2012 ident: WOS:000310721300047 article-title: Covalent-organic polymers for carbon dioxide capture publication-title: JOURNAL OF MATERIALS CHEMISTRY doi: 10.1039/c2jm35446b |
SSID | ssj0028806 |
Score | 2.5982988 |
Snippet | A class of 2D covalent organic polymers (COPs) incorporating a metal (such as Fe, Co, Mn) with precisely controlled locations of nitrogen heteroatoms and holes... |
Source | Web of Science |
SourceID | proquest pubmed webofscience crossref wiley istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2433 |
SubjectTerms | Carbonization Chemistry Chemistry, Multidisciplinary Covalence covalent organic polymers Electrocatalysts Graphene graphene analogues metal-organic frameworks Metals Nickel Oxygen oxygen reduction reaction Physical Sciences Polymers Reduction Science & Technology Two dimensional |
Title | Highly Efficient Electrocatalysts for Oxygen Reduction Based on 2D Covalent Organic Polymers Complexed with Non-precious Metals |
URI | https://api.istex.fr/ark:/67375/WNG-3MNF4X90-L/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.201308896 http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestApp=WOS&DestLinkType=FullRecord&UT=000336834000015 https://www.ncbi.nlm.nih.gov/pubmed/24477972 https://www.proquest.com/docview/1500559443 https://www.proquest.com/docview/1503548073 https://www.proquest.com/docview/1700990917 |
Volume | 53 |
WOS | 000336834000015 |
WOSCitedRecordID | wos000336834000015 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB6hcoALb6hpQYtUwcltsrv22scSEgoiBlVU5LZarzeXRnZVO1LSE_wDfiO_hBm_aCpeglMc7awSj7_d_WY9-w3AnjRUBElmfmzCCAOU0OKYizBKcRL5MQ-VEnQaeZqERyfy7SyYXTrF3-hD9BtuNDLq-ZoGuEnLgx-ioXQCm1KzBCXqkOY2JWwRKzru9aM4grM5XiSET1XoO9XGAT_Y7L6xKl0nB69-RjmvrE6bhLZekSa3wXT30iSinO4vq3TfXlyRefyfm70Dt1q6yg4bfN2Fay6_BzdGXZW4-_CFEkUWazaupShwBWPjprBOvS-0LquSIS1m71drRCo7JqFYggJ7iatnxvCCv2KjAuFOXZuDoZZ9KBZr2k9nNFst3Aotab-YJUX-7fPXMxLkKJYlmzr8ifIBnEzGH0dHflvWwbcyGoa-ykKRmVCm8zCILXfSIS7iwMr5UBghBpmwzqRxpgxX-OHmkg8NMossmFtsNuIhbOVF7raBSYyWgpi7OI1iaTGaR_opLIaVmUpDwyMP_O6xattqnlPpjYVu1Jq5Jsfq3rEevOjtzxq1j19aPq9R0puZ81PKkVOB_pS81mKaTOQsHuh3Hux2MNLt9FBqZOEDDOWkFB4865vxydHbGpM79CHZCBLjU7-zUcTwkfIpDx41EO3_EPI2pWLFPdi7jNm-naJhEUZC1i94Ag-Gf2M2ar1IigmVB7wG7R98pQ-TN-P-2-N_6bQDN_Fa1loCche2qvOle4JssEqf1iP-O7m6VH8 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lc9MwEN6B9lAuvCmGAmKmAye3iSRL9rGkCSkkhum0Q28aWVYuzTidJplJOME_4DfyS9i1Y0M6vAZOeWg1idefpG_l1bcAu9JSESSZh4lVMQYoyuGYizFK8RL5MVdaCzqNPExV_1S-OYvqbEI6C1PpQzQbbjQyyvmaBjhtSO9_Vw2lI9iUmyUoU0ddh00q603y-YfHjYIUR3hWB4yECKkOfa3b2OL76_3X1qVNcvHiZ6Tzyvq0TmnLNal3C7L6aqpUlPO9-Szbcx-vCD3-1-XehpsrxsoOKojdgWu-uAtbnbpQ3D34TLki4yXrlmoUuIixblVbp9waWk5nU4bMmL1bLBGs7Ji0YgkN7BUuoDnDN_yQdSaIeOpanQ117P1kvKQtdUYT1tgv0JK2jFk6Kb5--nJBmhyT-ZQNPf7E9D6c9ronnX64quwQOhm3VahzJXKrZDZSUeK4lx6hkUROjtrCCtHKhfM2S3JtucYXP5K8bZFc5NHIYbMVD2CjmBT-ITCJAVOUcJ9kcSIdBvTIQIXDyDLXmbI8DiCs76txK9lzqr4xNpVgMzfkWNM4NoCXjf1FJfjxS8sXJUwaM3t5TmlyOjIf0tdGDNOePEtaZhDATo0js5ohpgaJeAujOSlFAM-bZrxz9MDGFh59SDaC9Pj072w0kXxkfTqA7QqjzR9C6qZ1onkAuz-CtmmngFioWMjyGU8UQPtvzDorL5JowiwAXqL2D74yB-lRt_n06F86PYOt_slwYAZH6dvHcAO_l6W0gNyBjdnl3D9BcjjLnpbD_xvj1lib |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxEB5BKwGX8oaFAkaq4LRtYnvt3WPJgxaapaqoyM3yep1LoyTqJlLSE_wDfiO_hJndZGkqXoJTHh4r2dnPnm-89jcAO9JSESSZh4lVMSYoyuGYizFL8RL5MVdaCzqN3EvVwal814_6l07xV_oQ9YIbjYxyvqYBPskHez9EQ-kENm3NErRRR12HTakaCRVvaJ_UAlIc0VmdLxIipDL0K9nGBt9b778WljbJw_Ofcc4r4Wmd0ZYhqXsb7Opiqp0oZ7uzabbrLq7oPP7P1d6BrSVfZfsVwO7CNT-6BzdbqzJx9-EL7RQZLlin1KLAEMY6VWWdcmFoUUwLhryYfZgvEKrshJRiCQvsDYbPnOEb3matMeKdulYnQx07Hg8XtKDOaLoa-jla0oIxS8ejb5-_TkiRYzwrWM_jTxQP4LTb-dg6CJd1HUIn46YKda5EbpXMBipKHPfSIzCSyMlBU1ghGrlw3mZJri3X-OIHkjctUos8GjhstuIhbIzGI_8YmMR0KUq4T7I4kQ7TeeSfwmFemetMWR4HEK5uq3FL0XOqvTE0lVwzN-RYUzs2gNe1_aSS-_il5asSJbWZPT-jTXI6Mp_St0b00q7sJw1zFMD2CkZmOT8UBml4A3M5KUUAL-tmvHP0uMaOPPqQbASp8enf2Wii-Mj5dACPKojWfwiJm9aJ5gHsXMZs3U7psFCxkOUTniiA5t-YtZZeJMmEaQC8BO0ffGX208NO_enJv3R6ATeO211zdJi-fwq38GtZ6grIbdiYns_8M2SG0-x5Ofi_A4iBV0o |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Highly+Efficient+Electrocatalysts+for+Oxygen+Reduction+Based+on+2D+Covalent+Organic+Polymers+Complexed+with+Non-precious+Metals&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Xiang%2C+Zhonghua&rft.au=Xue%2C+Yuhua&rft.au=Cao%2C+Dapeng&rft.au=Huang%2C+Ling&rft.date=2014-02-24&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=53&rft.issue=9&rft.spage=2433&rft.epage=2437&rft_id=info:doi/10.1002%2Fanie.201308896&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |