A phage protein that binds φC31 integrase to switch its directionality
Summary The serine integrase, Int, from the Streptomyces phage φC31 mediates the integration and excision of the phage genome into and out of the host chromosome. Integrases usually require a recombination directionality factor (RDF) or Xis to control integration and excision and, as φC31 Int only m...
Saved in:
Published in | Molecular microbiology Vol. 80; no. 6; pp. 1450 - 1463 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Oxford, UK
Blackwell Publishing Ltd
01.06.2011
Blackwell |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Summary
The serine integrase, Int, from the Streptomyces phage φC31 mediates the integration and excision of the phage genome into and out of the host chromosome. Integrases usually require a recombination directionality factor (RDF) or Xis to control integration and excision and, as φC31 Int only mediates integration in the absence of other phage proteins, we sought to identify a φC31 RDF. Here we report that the φC31 early protein, gp3 activated attL x attR recombination and inhibited attP x attB recombination. Gp3 binds to Int in solution and when Int is bound to the attachment sites. Kinetic analysis of the excision reaction suggested that gp3 modifies the interactions between Int and the substrates to form an active recombinase. In the presence of gp3, Int assembles an excision synaptic complex and the accumulation of the integration complex is inhibited. The structure of the excision synaptic complex, like that of the hyperactive mutant of Int, IntE449K, appeared to be biased towards one that favours the production of correctly joined products. The functional properties of φC31 gp3 resemble those of the evolutionarily unrelated RDF from phage Bxb1, suggesting that these two RDFs have arisen through convergent evolution. |
---|---|
AbstractList | The serine integrase, Int, from the
Streptomyces
phage φC31 mediates the integration and excision of the phage genome into and out of the host chromosome. Integrases usually require a recombination directionality factor (RDF) or Xis to control integration and excision and, as φC31 Int only mediates integration in the absence of other phage proteins, we sought to identify a φC31 RDF. Here we report that the φC31 early protein, gp3 activated
attL x attR
recombination and inhibited
attP x attB
recombination. Gp3 binds to Int in solution and when Int is bound to the attachment sites. Kinetic analysis of the excision reaction suggested that gp3 modifies the interactions between Int and the substrates to form an active recombinase. In the presence of gp3, Int assembles an excision synaptic complex and the accumulation of the integration complex is inhibited. The structure of the excision synaptic complex, like that of the hyperactive mutant of Int, IntE449K, appeared to be biased towards one that favours the production of correctly joined products. The functional properties of φC31 gp3 resemble those of the evolutionarily unrelated RDF from phage Bxb1, suggesting that these two RDFs have arisen through convergent evolution. Summary The serine integrase, Int, from the Streptomyces phage φC31 mediates the integration and excision of the phage genome into and out of the host chromosome. Integrases usually require a recombination directionality factor (RDF) or Xis to control integration and excision and, as φC31 Int only mediates integration in the absence of other phage proteins, we sought to identify a φC31 RDF. Here we report that the φC31 early protein, gp3 activated attL x attR recombination and inhibited attP x attB recombination. Gp3 binds to Int in solution and when Int is bound to the attachment sites. Kinetic analysis of the excision reaction suggested that gp3 modifies the interactions between Int and the substrates to form an active recombinase. In the presence of gp3, Int assembles an excision synaptic complex and the accumulation of the integration complex is inhibited. The structure of the excision synaptic complex, like that of the hyperactive mutant of Int, IntE449K, appeared to be biased towards one that favours the production of correctly joined products. The functional properties of φC31 gp3 resemble those of the evolutionarily unrelated RDF from phage Bxb1, suggesting that these two RDFs have arisen through convergent evolution. The serine integrase, Int, from the Streptomyces phage phi C31 mediates the integration and excision of the phage genome into and out of the host chromosome. Integrases usually require a recombination directionality factor (RDF) or Xis to control integration and excision and, as phi C31 Int only mediates integration in the absence of other phage proteins, we sought to identify a phi C31 RDF. Here we report that the phi C31 early protein, gp3 activated attL x attR recombination and inhibited attP x attB recombination. Gp3 binds to Int in solution and when Int is bound to the attachment sites. Kinetic analysis of the excision reaction suggested that gp3 modifies the interactions between Int and the substrates to form an active recombinase. In the presence of gp3, Int assembles an excision synaptic complex and the accumulation of the integration complex is inhibited. The structure of the excision synaptic complex, like that of the hyperactive mutant of Int, IntE449K, appeared to be biased towards one that favours the production of correctly joined products. The functional properties of phi C31 gp3 resemble those of the evolutionarily unrelated RDF from phage Bxb1, suggesting that these two RDFs have arisen through convergent evolution. The serine integrase, Int, from the Streptomyces phage φC31 mediates the integration and excision of the phage genome into and out of the host chromosome. Integrases usually require a recombination directionality factor (RDF) or Xis to control integration and excision and, as φC31 Int only mediates integration in the absence of other phage proteins, we sought to identify a φC31 RDF. Here we report that the φC31 early protein, gp3 activated attL x attR recombination and inhibited attP x attB recombination. Gp3 binds to Int in solution and when Int is bound to the attachment sites. Kinetic analysis of the excision reaction suggested that gp3 modifies the interactions between Int and the substrates to form an active recombinase. In the presence of gp3, Int assembles an excision synaptic complex and the accumulation of the integration complex is inhibited. The structure of the excision synaptic complex, like that of the hyperactive mutant of Int, IntE449K, appeared to be biased towards one that favours the production of correctly joined products. The functional properties of φC31 gp3 resemble those of the evolutionarily unrelated RDF from phage Bxb1, suggesting that these two RDFs have arisen through convergent evolution. |
Author | Younger, Ellen Khaleel, Thanafez McEwan, Andrew R. Varghese, Anpu S. Smith, Margaret C. M. |
Author_xml | – sequence: 1 givenname: Thanafez surname: Khaleel fullname: Khaleel, Thanafez – sequence: 2 givenname: Ellen surname: Younger fullname: Younger, Ellen – sequence: 3 givenname: Andrew R. surname: McEwan fullname: McEwan, Andrew R. – sequence: 4 givenname: Anpu S. surname: Varghese fullname: Varghese, Anpu S. – sequence: 5 givenname: Margaret C. M. surname: Smith fullname: Smith, Margaret C. M. |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24276779$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/21564337$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkE1u2zAQRokiReOkvULBTZFurPJPFLnowjDSxICNbFKgO4KiRjENWXJFGrYv0Ov1SqFiJ9kFmQ0H4JuZD-8CnbVdCwhhSjKa6scqo1zmY6ZzlTFCaUYKqWW2_4BGLx9naER0TsZcsT_n6CKEFSGUE8k_oXNGcyk4L0boZoI3S_sAeNN3EXyL49JGXPq2Cvj_vymn2LcRHnobAMcOh52Pbol9DLjyPbjou9Y2Ph4-o4-1bQJ8Ob2X6Pev6_vp7Xh-dzObTuZjJxSVKUwFklgKzBIpqSiFtjkDXXLtXK2c4rYuQXDClSgrTaxgvGC0cpUomahrfomujntT3r9bCNGsfXDQNLaFbhuMKqiWeSFEIr-_SVLCiErLc5JQdURd34XQQ202vV_b_pAgMwg3KzN4NYNXMwg3T8LNPo1-PV3ZlmuoXgafDSfg2wmwwdmm7m3rfHjlBCtkUejE_TxyO9_A4d0BzGIxGzr-CNILnP4 |
CitedBy_id | crossref_primary_10_1007_s00253_019_09901_0 crossref_primary_10_1093_nar_gkaa401 crossref_primary_10_3389_fbioe_2021_804295 crossref_primary_10_1096_fj_11_186940 crossref_primary_10_15252_msb_20156663 crossref_primary_10_1371_journal_pcbi_1007849 crossref_primary_10_1128_JB_00618_13 crossref_primary_10_1016_j_jmb_2014_05_014 crossref_primary_10_1093_nar_gkw861 crossref_primary_10_1093_nar_gky005 crossref_primary_10_3109_10409238_2013_831807 crossref_primary_10_1093_nar_gkx474 crossref_primary_10_1093_nar_gkx1233 crossref_primary_10_4161_bact_24186 crossref_primary_10_1128_microbiolspec_MDNA3_0046_2014 crossref_primary_10_1002_biot_201200283 crossref_primary_10_1016_j_gene_2011_12_003 crossref_primary_10_1016_j_mib_2017_04_006 crossref_primary_10_1007_s00253_014_5523_z crossref_primary_10_1049_enb_2019_0020 crossref_primary_10_1007_s13213_018_1397_0 crossref_primary_10_1049_enb_2017_0006 crossref_primary_10_1186_1472_6750_14_51 crossref_primary_10_1016_j_isci_2019_100805 crossref_primary_10_1093_nar_gkx567 crossref_primary_10_1186_1472_6750_13_87 crossref_primary_10_3390_synbio1020012 crossref_primary_10_1111_mmi_14654 crossref_primary_10_1007_s10295_011_1069_6 crossref_primary_10_1038_s41587_022_01494_w crossref_primary_10_1128_AEM_02767_16 crossref_primary_10_1016_j_plasmid_2012_05_004 crossref_primary_10_1016_j_ymben_2020_08_007 crossref_primary_10_1016_j_jmb_2013_10_013 crossref_primary_10_1093_nar_gkaa104 crossref_primary_10_3390_cimb45020076 crossref_primary_10_1016_j_jmb_2018_09_007 crossref_primary_10_1126_sciadv_ade1285 crossref_primary_10_1016_j_ab_2013_07_024 crossref_primary_10_1111_febs_16037 crossref_primary_10_1038_ja_2017_130 crossref_primary_10_1038_s41467_018_04786_5 crossref_primary_10_1002_1873_3468_13023 crossref_primary_10_1016_j_bpj_2023_11_009 crossref_primary_10_1021_acssynbio_7b00308 crossref_primary_10_1128_MRA_00793_23 crossref_primary_10_1002_jccs_202300051 crossref_primary_10_1073_pnas_1210964109 crossref_primary_10_1128_AEM_02403_15 crossref_primary_10_1371_journal_pone_0080434 crossref_primary_10_1186_s12896_017_0382_1 crossref_primary_10_1016_j_sbi_2014_01_003 crossref_primary_10_1111_1574_6976_12058 crossref_primary_10_1534_genetics_114_173187 crossref_primary_10_1093_nar_gkw616 crossref_primary_10_1128_JVI_03363_13 crossref_primary_10_1098_rsif_2016_0618 crossref_primary_10_1111_j_1365_2958_2012_08018_x crossref_primary_10_1093_abbs_gmw115 crossref_primary_10_1093_nar_gkw1326 crossref_primary_10_1093_nar_gkt580 crossref_primary_10_1093_nar_gkx466 crossref_primary_10_1128_microbiolspec_MDNA3_0059_2014 crossref_primary_10_1371_journal_pgen_1003490 crossref_primary_10_1093_nar_gkz245 crossref_primary_10_1111_j_1365_2958_2011_07699_x crossref_primary_10_1111_mmi_12253 crossref_primary_10_1016_j_gene_2012_11_016 crossref_primary_10_1093_nar_gkt1101 crossref_primary_10_1128_JB_00019_17 crossref_primary_10_1016_j_tibtech_2013_02_002 crossref_primary_10_1109_TBCAS_2016_2526668 crossref_primary_10_1186_1759_8753_4_2 |
Cites_doi | 10.1128/JB.00986-09 10.1093/nar/29.11.2205 10.1016/j.virol.2010.03.044 10.1016/j.virol.2004.11.015 10.1016/S1097-2765(03)00444-1 10.1042/BST0380388 10.1111/j.1365-2958.1994.tb00462.x 10.1046/j.1365-2958.2000.02142.x 10.1099/00221287-144-12-3351 10.1016/j.pep.2008.09.008 10.1046/j.1365-2958.2003.03723.x 10.1016/j.virol.2004.10.028 10.1016/j.str.2008.04.018 10.1093/nar/gni192 10.1093/nar/gni086 10.1128/JB.181.23.7291-7297.1999 10.1073/pnas.95.10.5505 10.1111/j.1365-2958.2005.04517.x 10.1093/nar/27.10.2145 10.1128/JB.182.23.6577-6583.2000 10.1126/science.1134426 10.1093/nar/gkh538 10.1128/9781555817954.ch7 10.2174/156652306779010642 10.1128/JB.185.17.5320-5323.2003 10.1128/jb.175.24.7848-7855.1993 10.1146/annurev.biochem.73.011303.073908 10.1073/pnas.0711649105 10.1093/nar/gkn269 10.1371/journal.pbio.0040186 10.1046/j.1365-2958.2002.02891.x 10.1073/pnas.1033041100 10.1111/j.1365-2958.2003.03942.x 10.1093/nar/gki922 10.1093/nar/gkp485 10.1016/0003-2697(76)90527-3 10.1111/j.1365-2958.2003.03950.x 10.1016/j.jmb.2005.03.043 10.1073/pnas.95.10.5752 |
ContentType | Journal Article |
Copyright | 2011 Blackwell Publishing Ltd 2015 INIST-CNRS 2011 Blackwell Publishing Ltd. |
Copyright_xml | – notice: 2011 Blackwell Publishing Ltd – notice: 2015 INIST-CNRS – notice: 2011 Blackwell Publishing Ltd. |
DBID | IQODW CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QL C1K 7X8 |
DOI | 10.1111/j.1365-2958.2011.07696.x |
DatabaseName | Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Bacteriology Abstracts (Microbiology B) Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Bacteriology Abstracts (Microbiology B) Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | CrossRef Bacteriology Abstracts (Microbiology B) MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1365-2958 |
EndPage | 1463 |
ExternalDocumentID | 10_1111_j_1365_2958_2011_07696_x 21564337 24276779 MMI7696 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Biotechnology and Biological Sciences Research Council grantid: BB/H001212 – fundername: Biotechnology and Biological Sciences Research Council grantid: BB/H001212/1 |
GroupedDBID | --- -DZ .3N .55 .GA .GJ .HR .Y3 05W 0R~ 10A 123 1OB 1OC 24P 29M 2WC 31~ 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5HH 5LA 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAKAS AAMNL AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEML ABJNI ABPVW ABTAH ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFO ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZCM ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AHEFC AIAGR AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BAWUL BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 C45 CAG COF D-E D-F DC6 DCZOG DIK DPXWK DR2 DRFUL DRSTM E3Z EBS EJD EMOBN ESX EX3 F00 F01 F04 F5P FEDTE FIJ FSRTE FZ0 G-S G.N GODZA GX1 H.T H.X HF~ HGLYW HH5 HVGLF HZI HZ~ IH2 IHE IPNFZ IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OBC OBS OEB OIG OK1 OVD P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ TEORI TR2 UB1 V8K W8V W99 WBKPD WH7 WIH WIK WIN WNSPC WOHZO WOW WQJ WRC WUP WXSBR WYISQ X7M XG1 Y6R YFH YUY ZGI ZXP ZY4 ZZTAW ~IA ~KM ~WT AAJUZ AAPBV AAUGY ABCVL ABHUG ABPTK ABWRO ACSMX ACXME ADAWD ADDAD AFVGU AGJLS AKALU IQODW XFK CGR CUY CVF ECM EIF NPM AAYXX ACRPL ACYXJ CITATION 7QL C1K 7X8 |
ID | FETCH-LOGICAL-c4816-38de60a1e2a06614b49a52e9b39ccf8c83afbe430384bd90a423721dcd4b24ff3 |
IEDL.DBID | DR2 |
ISSN | 0950-382X |
IngestDate | Wed Dec 04 03:57:19 EST 2024 Wed Dec 04 08:45:50 EST 2024 Fri Dec 06 04:41:57 EST 2024 Sat Sep 28 07:47:51 EDT 2024 Sun Oct 22 16:05:55 EDT 2023 Mon Nov 18 03:21:25 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | Virus Protein Phage |
Language | English |
License | CC BY 4.0 2011 Blackwell Publishing Ltd. http://onlinelibrary.wiley.com/termsAndConditions#vor |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4816-38de60a1e2a06614b49a52e9b39ccf8c83afbe430384bd90a423721dcd4b24ff3 |
Notes | Joint first authors. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/j.1365-2958.2011.07696.x |
PMID | 21564337 |
PQID | 1020837250 |
PQPubID | 23462 |
PageCount | 14 |
ParticipantIDs | proquest_miscellaneous_871965744 proquest_miscellaneous_1020837250 crossref_primary_10_1111_j_1365_2958_2011_07696_x pubmed_primary_21564337 pascalfrancis_primary_24276779 wiley_primary_10_1111_j_1365_2958_2011_07696_x_MMI7696 |
PublicationCentury | 2000 |
PublicationDate | June 2011 |
PublicationDateYYYYMMDD | 2011-06-01 |
PublicationDate_xml | – month: 06 year: 2011 text: June 2011 |
PublicationDecade | 2010 |
PublicationPlace | Oxford, UK |
PublicationPlace_xml | – name: Oxford, UK – name: Oxford – name: England |
PublicationTitle | Molecular microbiology |
PublicationTitleAlternate | Mol Microbiol |
PublicationYear | 2011 |
Publisher | Blackwell Publishing Ltd Blackwell |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Blackwell |
References | 2009; 63 2010; 38 2006; 75 2005; 331 2005; 332 2010; 403 1999; 27 2008; 16 2008; 36 2006; 6 2006 2008; 105 2006; 4 2002 2001; 29 2006; 314 2003; 50 2003; 12 2004; 51 2000; 38 2001 2009; 192 1976; 72 2004a; 32 1999; 181 2002; 44 2005; 349 2000; 182 1994; 13 1998; 144 1998; 95 2005; 55 2005; 33 2004b; 51 2003; 100 2009; 37 1993; 175 2003; 185 21564340 - Mol Microbiol. 2011 Jun;80(6):1417-9 e_1_2_6_32_1 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_30_1 Campbell A. (e_1_2_6_7_1) 2006 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_17_1 e_1_2_6_18_1 e_1_2_6_39_1 Breuner A. (e_1_2_6_5_1) 1999; 181 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_16_1 e_1_2_6_37_1 e_1_2_6_42_1 e_1_2_6_21_1 e_1_2_6_20_1 e_1_2_6_41_1 e_1_2_6_40_1 e_1_2_6_9_1 e_1_2_6_8_1 e_1_2_6_4_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_24_1 Sambrook J. (e_1_2_6_27_1) 2001 e_1_2_6_3_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_22_1 e_1_2_6_29_1 e_1_2_6_28_1 e_1_2_6_26_1 |
References_xml | – volume: 175 start-page: 7848 year: 1993 end-page: 7855 article-title: The Cox protein is a modulator of directionality in bacteriophage P2 site‐specific recombination publication-title: J Bacteriol – volume: 95 start-page: 5505 year: 1998 end-page: 5510 article-title: In vitro site‐specific integration of bacteriophage DNA catalyzed by a recombinase of the resolvase/invertase family publication-title: Proc Natl Acad Sci USA – volume: 349 start-page: 331 year: 2005 end-page: 348 article-title: Synapsis in phage Bxb1 integration: selection mechanism for the correct pair of recombination sites publication-title: J Mol Biol – volume: 51 start-page: 1787 year: 2004 end-page: 1800 article-title: The large resolvase TnpX is the only transposon‐encoded protein required for transposition of the Tn family of integrative mobilizable elements publication-title: Mol Microbiol – volume: 75 start-page: 567 year: 2006 end-page: 605 article-title: Mechanisms of site‐specific recombination publication-title: Annu Rev Biochem – volume: 33 start-page: e87 year: 2005 article-title: Natural and synthetic tetracycline‐inducible promoters for use in the antibiotic‐producing bacteria Streptomyces publication-title: Nucleic Acids Res – volume: 192 start-page: 624 year: 2009 end-page: 635 article-title: Control of directionality in bacteriophage mv4 site‐specific recombination: functional analysis of the Xis factor publication-title: J Bacteriol – volume: 144 start-page: 3351 issue: Part 12 year: 1998 end-page: 3358 article-title: Site‐specific integration of bacteriophage VWB genome into and construction of a VWB‐based integrative vector publication-title: Microbiology – volume: 55 start-page: 1896 year: 2005 end-page: 1910 article-title: Integration and excision by the large serine recombinase φRv1 integrase publication-title: Mol Microbiol – volume: 36 start-page: 3879 year: 2008 end-page: 3891 article-title: A motif in the C‐terminal domain of φC31 integrase controls the directionality of recombination publication-title: Nucleic Acids Res – start-page: 66 year: 2006 end-page: 73 – volume: 185 start-page: 5320 year: 2003 end-page: 5323 article-title: Integration site for phage φBT1 and the development of novel site‐specific integrating vectors publication-title: J Bacteriol – year: 2001 – volume: 314 start-page: 1747 year: 2006 end-page: 1751 article-title: P[acman]: a BAC transgenic platform for targeted insertion of large DNA fragments in publication-title: Science – volume: 63 start-page: 102 year: 2009 end-page: 111 article-title: A simple and efficient expression and purification system using two newly constructed vectors publication-title: Protein Expr Purif – volume: 182 start-page: 6577 year: 2000 end-page: 6583 article-title: The large resolvase TndX is required and sufficient for integration and excision of derivatives of the novel conjugative transposon Tn publication-title: J Bacteriol – volume: 12 start-page: 1101 year: 2003 end-page: 1111 article-title: The orientation of mycobacteriophage Bxb1 integration is solely dependent on the central dinucleotide of and publication-title: Mol Cell – volume: 50 start-page: 463 year: 2003 end-page: 473 article-title: Mycobacteriophage Bxb1 integrates into the gene publication-title: Mol Microbiol – start-page: 118 year: 2002 end-page: 148 – volume: 29 start-page: 2205 year: 2001 end-page: 2216 article-title: Control of directionality in integrase‐mediated recombination: examination of recombination directionality factors (RDFs) including Xis and Cox proteins publication-title: Nucleic Acids Res – volume: 44 start-page: 299 year: 2002 end-page: 307 article-title: Diversity in the serine recombinases publication-title: Mol Microbiol – volume: 33 start-page: e189 year: 2005 article-title: Iterative in vivo assembly of large and complex transgenes by combining the activities of φC31 integrase and Cre recombinase publication-title: Nucleic Acids Res – volume: 27 start-page: 2145 year: 1999 end-page: 2155 article-title: The complete genome sequence of the temperate phage φC31: evolutionary relationships to other viruses publication-title: Nucleic Acids Res – volume: 51 start-page: 1719 year: 2004b end-page: 1728 article-title: Switching the polarity of a bacteriophage integration system publication-title: Mol Microbiol – volume: 38 start-page: 232 year: 2000 end-page: 241 article-title: Control of directionality in the site‐specific recombination system of the phage φC31 publication-title: Mol Microbiol – volume: 16 start-page: 1275 year: 2008 end-page: 1286 article-title: Tetrameric structure of a serine integrase catalytic domain publication-title: Structure – volume: 181 start-page: 7291 year: 1999 end-page: 7297 article-title: Novel organisation of genes involved in prophage excision identified in the temperate lactococcal bacteriophage TP901‐1 publication-title: J Bacteriol – volume: 332 start-page: 284 year: 2005 end-page: 294 article-title: Cooperative interactions between bacteriophage P2 integrase and its accessory factors IHF and Cox publication-title: Virology – volume: 4 start-page: e186 year: 2006 article-title: Control of phage Bxb1 excision by a novel recombination directionality factor publication-title: PLoS Biol – volume: 6 start-page: 633 year: 2006 end-page: 645 article-title: The φC31 integrase system for gene therapy publication-title: Curr Gene Ther – volume: 105 start-page: 3238 year: 2008 end-page: 3243 article-title: Two‐step site selection for serine‐integrase‐mediated excision: DNA‐directed integrase conformation and central dinucleotide proofreading publication-title: Proc Natl Acad Sci USA – volume: 33 start-page: 6101 year: 2005 end-page: 6113 article-title: Rearranging the centromere of the human Y chromosome with φC31 integrase publication-title: Nucleic Acids Res – volume: 403 start-page: 78 year: 2010 end-page: 84 article-title: Complete genomic sequence analysis of the temperate bacteriophage φSASD1 of S publication-title: Virology – volume: 13 start-page: 685 year: 1994 end-page: 695 article-title: Identification of an HP1 phage protein required for site‐specific excision publication-title: Mol Microbiol – volume: 38 start-page: 388 year: 2010 end-page: 394 article-title: Site‐specific recombination by φC31 integrase and other large serine recombinases publication-title: Biochem Soc Trans – volume: 331 start-page: 325 year: 2005 end-page: 337 article-title: Complete genomic nucleotide sequence and analysis of the temperate bacteriophage VWB publication-title: Virology – volume: 72 start-page: 248 year: 1976 end-page: 254 article-title: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein‐dye binding publication-title: Anal Biochem – volume: 100 start-page: 8176 year: 2003 end-page: 8181 article-title: Identification of the lambda integrase surface that interacts with Xis reveals a residue that is also critical for Int dimer formation publication-title: Proc Natl Acad Sci USA – volume: 32 start-page: 2607 year: 2004a end-page: 2617 article-title: Synapsis and DNA cleavage in φC31 integrase‐mediated site‐specific recombination publication-title: Nucleic Acids Res – volume: 37 start-page: 4764 year: 2009 end-page: 4773 article-title: DNA binding and synapsis by the large C‐terminal domain of φC31 integrase publication-title: Nucleic Acids Res – volume: 95 start-page: 5752 year: 1998 end-page: 5756 article-title: A bacterial two‐hybrid system based on a reconstituted signal transduction pathway publication-title: Proc Natl Acad Sci USA – ident: e_1_2_6_8_1 doi: 10.1128/JB.00986-09 – ident: e_1_2_6_20_1 doi: 10.1093/nar/29.11.2205 – ident: e_1_2_6_39_1 doi: 10.1016/j.virol.2010.03.044 – ident: e_1_2_6_11_1 doi: 10.1016/j.virol.2004.11.015 – ident: e_1_2_6_12_1 doi: 10.1016/S1097-2765(03)00444-1 – ident: e_1_2_6_32_1 doi: 10.1042/BST0380388 – ident: e_1_2_6_10_1 doi: 10.1111/j.1365-2958.1994.tb00462.x – ident: e_1_2_6_34_1 doi: 10.1046/j.1365-2958.2000.02142.x – ident: e_1_2_6_36_1 doi: 10.1099/00221287-144-12-3351 – ident: e_1_2_6_21_1 doi: 10.1016/j.pep.2008.09.008 – ident: e_1_2_6_19_1 doi: 10.1046/j.1365-2958.2003.03723.x – ident: e_1_2_6_35_1 doi: 10.1016/j.virol.2004.10.028 – ident: e_1_2_6_42_1 doi: 10.1016/j.str.2008.04.018 – ident: e_1_2_6_9_1 doi: 10.1093/nar/gni192 – ident: e_1_2_6_25_1 doi: 10.1093/nar/gni086 – volume-title: Molecular Cloning: A Laboratory Manual year: 2001 ident: e_1_2_6_27_1 contributor: fullname: Sambrook J. – volume: 181 start-page: 7291 year: 1999 ident: e_1_2_6_5_1 article-title: Novel organisation of genes involved in prophage excision identified in the temperate lactococcal bacteriophage TP901‐1 publication-title: J Bacteriol doi: 10.1128/JB.181.23.7291-7297.1999 contributor: fullname: Breuner A. – ident: e_1_2_6_33_1 doi: 10.1073/pnas.95.10.5505 – ident: e_1_2_6_3_1 doi: 10.1111/j.1365-2958.2005.04517.x – ident: e_1_2_6_29_1 doi: 10.1093/nar/27.10.2145 – ident: e_1_2_6_38_1 doi: 10.1128/JB.182.23.6577-6583.2000 – ident: e_1_2_6_37_1 doi: 10.1126/science.1134426 – ident: e_1_2_6_30_1 doi: 10.1093/nar/gkh538 – ident: e_1_2_6_2_1 doi: 10.1128/9781555817954.ch7 – ident: e_1_2_6_6_1 doi: 10.2174/156652306779010642 – ident: e_1_2_6_16_1 doi: 10.1128/JB.185.17.5320-5323.2003 – ident: e_1_2_6_41_1 doi: 10.1128/jb.175.24.7848-7855.1993 – start-page: 66 volume-title: The Bacteriophages year: 2006 ident: e_1_2_6_7_1 contributor: fullname: Campbell A. – ident: e_1_2_6_17_1 doi: 10.1146/annurev.biochem.73.011303.073908 – ident: e_1_2_6_15_1 doi: 10.1073/pnas.0711649105 – ident: e_1_2_6_26_1 doi: 10.1093/nar/gkn269 – ident: e_1_2_6_14_1 doi: 10.1371/journal.pbio.0040186 – ident: e_1_2_6_28_1 doi: 10.1046/j.1365-2958.2002.02891.x – ident: e_1_2_6_40_1 doi: 10.1073/pnas.1033041100 – ident: e_1_2_6_31_1 doi: 10.1111/j.1365-2958.2003.03942.x – ident: e_1_2_6_24_1 doi: 10.1093/nar/gki922 – ident: e_1_2_6_23_1 doi: 10.1093/nar/gkp485 – ident: e_1_2_6_4_1 doi: 10.1016/0003-2697(76)90527-3 – ident: e_1_2_6_22_1 doi: 10.1111/j.1365-2958.2003.03950.x – ident: e_1_2_6_13_1 doi: 10.1016/j.jmb.2005.03.043 – ident: e_1_2_6_18_1 doi: 10.1073/pnas.95.10.5752 |
SSID | ssj0013063 |
Score | 2.370711 |
Snippet | Summary
The serine integrase, Int, from the Streptomyces phage φC31 mediates the integration and excision of the phage genome into and out of the host... The serine integrase, Int, from the Streptomyces phage φC31 mediates the integration and excision of the phage genome into and out of the host chromosome.... The serine integrase, Int, from the Streptomyces phage φC31 mediates the integration and excision of the phage genome into and out of the host chromosome.... The serine integrase, Int, from the Streptomyces phage phi C31 mediates the integration and excision of the phage genome into and out of the host chromosome.... |
SourceID | proquest crossref pubmed pascalfrancis wiley |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 1450 |
SubjectTerms | Attachment Sites, Microbiological Biological and medical sciences Escherichia coli - virology Fundamental and applied biological sciences. Psychology Integrases - genetics Integrases - metabolism Microbiology Miscellaneous Molecular Sequence Data Phage Bxb1 Protein Binding Recombination, Genetic Streptococcus Phages - enzymology Streptococcus Phages - genetics Streptococcus Phages - metabolism Streptomyces Viral Proteins - genetics Viral Proteins - metabolism Virology Virus Integration |
Title | A phage protein that binds φC31 integrase to switch its directionality |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1365-2958.2011.07696.x https://www.ncbi.nlm.nih.gov/pubmed/21564337 https://search.proquest.com/docview/1020837250 https://search.proquest.com/docview/871965744 |
Volume | 80 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NatwwEB5CIBAobZO0jdMkqJCrF1uWJesY8tvA5hAa2JuRbIksAe8Se0nbB-jr9ZUykrxJHFIopRfjgyVbMxrNN9L4G4ADViWJRuAaS6EKDFBSGReFobFj-kD0bbjwVErjS35-zS4m-aTPf3L_wgR-iMcNN2cZfr12Bq50OzRyn6El86Jn4hRc8pHDk2kmXHbf8RV9OlDoi6rJ3NHJ0skwqefVjgae6s1ctSg0G6pdvAZHh-jWu6fTd3C7HFjISrkdLTo9qn6-4Hz8PyN_D297FEsOw7TbgBXTbMJaqGv5YwvODsn8Bhcq4lkgpg3pblRHMAavW_L711GWkp6lojWkm5H2fopzh0y7lgQPO-3Dgw9wfXry7eg87is2xBUrUo6SrQ1PVGqoSpzj10yqnBqpM1lVtqiKTFltGLrNgulaJsol5dC0rmqmKbM2-wirzawx20CoNcIKYzPuK7TnSlhcjwzLNS5BIqcRpEvtlPNAzFE-C2hQQKUTUOkEVHoBld8j2B-o8bEh4hTBhZARfFnqtUQzc2cnqjGzRYtdUwSrAgFjBOQPz2DsKXkuGIvgU5gTTy9wnDxZJiLgXrN__cnlePzV3e38a8PPsB62wd3G0S6sdncLs4c4qtP73kLwejZJHwD0Rw0B |
link.rule.ids | 314,780,784,1375,27924,27925,46294,46718 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6hIgQS4g0Nj2IkrlkljmPHx6pQttDtAbXS3iw7sdVVUXbVZMXjB_D3-EuM7WxLUJEQ4pZD7CQzHs8348k3AK9ZnWUGgWsqha4wQMllWlWWpp7pA9G35SJQKc2O-PSEvZ-X86EdkP8XJvJDXCTcvGWE_dobuE9Ij608lGjJshqoOAWXfIKA8jpaf-7ru958pJdHCkNbNVl6Qlk6H5f1XDnTyFfdXukOxeZiv4urAOkY3wYHtX8XPm0-LdalnE3WvZnU335jffxP334P7gxAluzGlXcfrtn2AdyIrS2_PoR3u2R1insVCUQQi5b0p7onGIY3Hfnxfa_IyUBU0VnSL0n3eYHLhyz6jkQnuxgihEdwsv_2eG-aDk0b0ppVOUfRNpZnOrdUZ973GyZ1Sa00haxrV9VVoZ2xDD1nxUwjM-3rcmje1A0zlDlXPIatdtnabSDUWeGEdQUPTdpLLRxuSZaVBnchUdIE8o161Cpyc6hfYhoUkPICUl5AKghIfUlgZ6THi4EIVQQXQibwaqNYhZbmj090a5frDqemiFcFYsYEyB_uwfBT8lIwlsCTuCguH-BpeYpCJMCDav_6ldVsduCvnv7rwJdwc3o8O1SHB0cfnsGtmBX3eaTnsNWfr-0LhFW92Qnm8hOLuhAx |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwEB6hIhAS4r8QfoqRuGaVOI4dH6uWpQW2QohKe7PsxFZXlbIrklULD8Dr8UqM7WxLUJEQ4pZD7CQznplv7Mk3AK9ZnWUGgWsqha4wQcllWlWWpp7pA9G35SJQKc2O-MExezcv50P9k_8XJvJDXGy4ecsI_tob-KpxYyMPFVqyrAYmTsElnyCevM44lZ5Hf_8TvTxRGLqqydLzydL5uKrnyplGoer2SncoNRfbXVyFR8fwNsSn6V043XxZLEs5nax7M6m__Ub6-H8-_R7cGWAs2Y3r7j5cs-0DuBEbW359CG93yeoEPRUJNBCLlvQnuieYhDcd-fF9r8jJQFPRWdIvSXe2wMVDFn1HYohdDPnBIzievvm8d5AOLRvSmlU5R8k2lmc6t1RnPvIbJnVJrTSFrGtX1VWhnbEM42bFTCMz7atyaN7UDTOUOVdsw1a7bO0TINRZ4YR1BQ8t2kstHDoky0qDPkiUNIF8ox21iswc6peMBgWkvICUF5AKAlLnCeyM1HgxEIGK4ELIBF5t9KrQzvzhiW7tct3h1BTRqkDEmAD5wz2YfEpeCsYSeBzXxOUDPClPUYgEeNDsX7-yms0O_dXTfx34Em5-3J-qD4dH75_Brbgl7jeRnsNW_2VtXyCm6s1OMJafO2kO4A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+phage+protein+that+binds+%CF%86C31+integrase+to+switch+its+directionality&rft.jtitle=Molecular+microbiology&rft.au=KHALEEL%2C+Thanafez&rft.au=YOUNGER%2C+Ellen&rft.au=MCEWAN%2C+Andrew+R&rft.au=VARGHESE%2C+Anpu+S&rft.date=2011-06-01&rft.pub=Blackwell&rft.issn=0950-382X&rft.eissn=1365-2958&rft.volume=80&rft.issue=6&rft.spage=1450&rft.epage=1463&rft_id=info:doi/10.1111%2Fj.1365-2958.2011.07696.x&rft.externalDBID=n%2Fa&rft.externalDocID=24276779 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-382X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-382X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-382X&client=summon |