A phage protein that binds φC31 integrase to switch its directionality

Summary The serine integrase, Int, from the Streptomyces phage φC31 mediates the integration and excision of the phage genome into and out of the host chromosome. Integrases usually require a recombination directionality factor (RDF) or Xis to control integration and excision and, as φC31 Int only m...

Full description

Saved in:
Bibliographic Details
Published inMolecular microbiology Vol. 80; no. 6; pp. 1450 - 1463
Main Authors Khaleel, Thanafez, Younger, Ellen, McEwan, Andrew R., Varghese, Anpu S., Smith, Margaret C. M.
Format Journal Article
LanguageEnglish
Published Oxford, UK Blackwell Publishing Ltd 01.06.2011
Blackwell
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Summary The serine integrase, Int, from the Streptomyces phage φC31 mediates the integration and excision of the phage genome into and out of the host chromosome. Integrases usually require a recombination directionality factor (RDF) or Xis to control integration and excision and, as φC31 Int only mediates integration in the absence of other phage proteins, we sought to identify a φC31 RDF. Here we report that the φC31 early protein, gp3 activated attL x attR recombination and inhibited attP x attB recombination. Gp3 binds to Int in solution and when Int is bound to the attachment sites. Kinetic analysis of the excision reaction suggested that gp3 modifies the interactions between Int and the substrates to form an active recombinase. In the presence of gp3, Int assembles an excision synaptic complex and the accumulation of the integration complex is inhibited. The structure of the excision synaptic complex, like that of the hyperactive mutant of Int, IntE449K, appeared to be biased towards one that favours the production of correctly joined products. The functional properties of φC31 gp3 resemble those of the evolutionarily unrelated RDF from phage Bxb1, suggesting that these two RDFs have arisen through convergent evolution.
AbstractList The serine integrase, Int, from the Streptomyces phage φC31 mediates the integration and excision of the phage genome into and out of the host chromosome. Integrases usually require a recombination directionality factor (RDF) or Xis to control integration and excision and, as φC31 Int only mediates integration in the absence of other phage proteins, we sought to identify a φC31 RDF. Here we report that the φC31 early protein, gp3 activated attL x attR recombination and inhibited attP x attB recombination. Gp3 binds to Int in solution and when Int is bound to the attachment sites. Kinetic analysis of the excision reaction suggested that gp3 modifies the interactions between Int and the substrates to form an active recombinase. In the presence of gp3, Int assembles an excision synaptic complex and the accumulation of the integration complex is inhibited. The structure of the excision synaptic complex, like that of the hyperactive mutant of Int, IntE449K, appeared to be biased towards one that favours the production of correctly joined products. The functional properties of φC31 gp3 resemble those of the evolutionarily unrelated RDF from phage Bxb1, suggesting that these two RDFs have arisen through convergent evolution.
Summary The serine integrase, Int, from the Streptomyces phage φC31 mediates the integration and excision of the phage genome into and out of the host chromosome. Integrases usually require a recombination directionality factor (RDF) or Xis to control integration and excision and, as φC31 Int only mediates integration in the absence of other phage proteins, we sought to identify a φC31 RDF. Here we report that the φC31 early protein, gp3 activated attL x attR recombination and inhibited attP x attB recombination. Gp3 binds to Int in solution and when Int is bound to the attachment sites. Kinetic analysis of the excision reaction suggested that gp3 modifies the interactions between Int and the substrates to form an active recombinase. In the presence of gp3, Int assembles an excision synaptic complex and the accumulation of the integration complex is inhibited. The structure of the excision synaptic complex, like that of the hyperactive mutant of Int, IntE449K, appeared to be biased towards one that favours the production of correctly joined products. The functional properties of φC31 gp3 resemble those of the evolutionarily unrelated RDF from phage Bxb1, suggesting that these two RDFs have arisen through convergent evolution.
The serine integrase, Int, from the Streptomyces phage phi C31 mediates the integration and excision of the phage genome into and out of the host chromosome. Integrases usually require a recombination directionality factor (RDF) or Xis to control integration and excision and, as phi C31 Int only mediates integration in the absence of other phage proteins, we sought to identify a phi C31 RDF. Here we report that the phi C31 early protein, gp3 activated attL x attR recombination and inhibited attP x attB recombination. Gp3 binds to Int in solution and when Int is bound to the attachment sites. Kinetic analysis of the excision reaction suggested that gp3 modifies the interactions between Int and the substrates to form an active recombinase. In the presence of gp3, Int assembles an excision synaptic complex and the accumulation of the integration complex is inhibited. The structure of the excision synaptic complex, like that of the hyperactive mutant of Int, IntE449K, appeared to be biased towards one that favours the production of correctly joined products. The functional properties of phi C31 gp3 resemble those of the evolutionarily unrelated RDF from phage Bxb1, suggesting that these two RDFs have arisen through convergent evolution.
The serine integrase, Int, from the Streptomyces phage φC31 mediates the integration and excision of the phage genome into and out of the host chromosome. Integrases usually require a recombination directionality factor (RDF) or Xis to control integration and excision and, as φC31 Int only mediates integration in the absence of other phage proteins, we sought to identify a φC31 RDF. Here we report that the φC31 early protein, gp3 activated attL x attR recombination and inhibited attP x attB recombination. Gp3 binds to Int in solution and when Int is bound to the attachment sites. Kinetic analysis of the excision reaction suggested that gp3 modifies the interactions between Int and the substrates to form an active recombinase. In the presence of gp3, Int assembles an excision synaptic complex and the accumulation of the integration complex is inhibited. The structure of the excision synaptic complex, like that of the hyperactive mutant of Int, IntE449K, appeared to be biased towards one that favours the production of correctly joined products. The functional properties of φC31 gp3 resemble those of the evolutionarily unrelated RDF from phage Bxb1, suggesting that these two RDFs have arisen through convergent evolution.
Author Younger, Ellen
Khaleel, Thanafez
McEwan, Andrew R.
Varghese, Anpu S.
Smith, Margaret C. M.
Author_xml – sequence: 1
  givenname: Thanafez
  surname: Khaleel
  fullname: Khaleel, Thanafez
– sequence: 2
  givenname: Ellen
  surname: Younger
  fullname: Younger, Ellen
– sequence: 3
  givenname: Andrew R.
  surname: McEwan
  fullname: McEwan, Andrew R.
– sequence: 4
  givenname: Anpu S.
  surname: Varghese
  fullname: Varghese, Anpu S.
– sequence: 5
  givenname: Margaret C. M.
  surname: Smith
  fullname: Smith, Margaret C. M.
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24276779$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/21564337$$D View this record in MEDLINE/PubMed
BookMark eNqNkE1u2zAQRokiReOkvULBTZFurPJPFLnowjDSxICNbFKgO4KiRjENWXJFGrYv0Ov1SqFiJ9kFmQ0H4JuZD-8CnbVdCwhhSjKa6scqo1zmY6ZzlTFCaUYKqWW2_4BGLx9naER0TsZcsT_n6CKEFSGUE8k_oXNGcyk4L0boZoI3S_sAeNN3EXyL49JGXPq2Cvj_vymn2LcRHnobAMcOh52Pbol9DLjyPbjou9Y2Ph4-o4-1bQJ8Ob2X6Pev6_vp7Xh-dzObTuZjJxSVKUwFklgKzBIpqSiFtjkDXXLtXK2c4rYuQXDClSgrTaxgvGC0cpUomahrfomujntT3r9bCNGsfXDQNLaFbhuMKqiWeSFEIr-_SVLCiErLc5JQdURd34XQQ202vV_b_pAgMwg3KzN4NYNXMwg3T8LNPo1-PV3ZlmuoXgafDSfg2wmwwdmm7m3rfHjlBCtkUejE_TxyO9_A4d0BzGIxGzr-CNILnP4
CitedBy_id crossref_primary_10_1007_s00253_019_09901_0
crossref_primary_10_1093_nar_gkaa401
crossref_primary_10_3389_fbioe_2021_804295
crossref_primary_10_1096_fj_11_186940
crossref_primary_10_15252_msb_20156663
crossref_primary_10_1371_journal_pcbi_1007849
crossref_primary_10_1128_JB_00618_13
crossref_primary_10_1016_j_jmb_2014_05_014
crossref_primary_10_1093_nar_gkw861
crossref_primary_10_1093_nar_gky005
crossref_primary_10_3109_10409238_2013_831807
crossref_primary_10_1093_nar_gkx474
crossref_primary_10_1093_nar_gkx1233
crossref_primary_10_4161_bact_24186
crossref_primary_10_1128_microbiolspec_MDNA3_0046_2014
crossref_primary_10_1002_biot_201200283
crossref_primary_10_1016_j_gene_2011_12_003
crossref_primary_10_1016_j_mib_2017_04_006
crossref_primary_10_1007_s00253_014_5523_z
crossref_primary_10_1049_enb_2019_0020
crossref_primary_10_1007_s13213_018_1397_0
crossref_primary_10_1049_enb_2017_0006
crossref_primary_10_1186_1472_6750_14_51
crossref_primary_10_1016_j_isci_2019_100805
crossref_primary_10_1093_nar_gkx567
crossref_primary_10_1186_1472_6750_13_87
crossref_primary_10_3390_synbio1020012
crossref_primary_10_1111_mmi_14654
crossref_primary_10_1007_s10295_011_1069_6
crossref_primary_10_1038_s41587_022_01494_w
crossref_primary_10_1128_AEM_02767_16
crossref_primary_10_1016_j_plasmid_2012_05_004
crossref_primary_10_1016_j_ymben_2020_08_007
crossref_primary_10_1016_j_jmb_2013_10_013
crossref_primary_10_1093_nar_gkaa104
crossref_primary_10_3390_cimb45020076
crossref_primary_10_1016_j_jmb_2018_09_007
crossref_primary_10_1126_sciadv_ade1285
crossref_primary_10_1016_j_ab_2013_07_024
crossref_primary_10_1111_febs_16037
crossref_primary_10_1038_ja_2017_130
crossref_primary_10_1038_s41467_018_04786_5
crossref_primary_10_1002_1873_3468_13023
crossref_primary_10_1016_j_bpj_2023_11_009
crossref_primary_10_1021_acssynbio_7b00308
crossref_primary_10_1128_MRA_00793_23
crossref_primary_10_1002_jccs_202300051
crossref_primary_10_1073_pnas_1210964109
crossref_primary_10_1128_AEM_02403_15
crossref_primary_10_1371_journal_pone_0080434
crossref_primary_10_1186_s12896_017_0382_1
crossref_primary_10_1016_j_sbi_2014_01_003
crossref_primary_10_1111_1574_6976_12058
crossref_primary_10_1534_genetics_114_173187
crossref_primary_10_1093_nar_gkw616
crossref_primary_10_1128_JVI_03363_13
crossref_primary_10_1098_rsif_2016_0618
crossref_primary_10_1111_j_1365_2958_2012_08018_x
crossref_primary_10_1093_abbs_gmw115
crossref_primary_10_1093_nar_gkw1326
crossref_primary_10_1093_nar_gkt580
crossref_primary_10_1093_nar_gkx466
crossref_primary_10_1128_microbiolspec_MDNA3_0059_2014
crossref_primary_10_1371_journal_pgen_1003490
crossref_primary_10_1093_nar_gkz245
crossref_primary_10_1111_j_1365_2958_2011_07699_x
crossref_primary_10_1111_mmi_12253
crossref_primary_10_1016_j_gene_2012_11_016
crossref_primary_10_1093_nar_gkt1101
crossref_primary_10_1128_JB_00019_17
crossref_primary_10_1016_j_tibtech_2013_02_002
crossref_primary_10_1109_TBCAS_2016_2526668
crossref_primary_10_1186_1759_8753_4_2
Cites_doi 10.1128/JB.00986-09
10.1093/nar/29.11.2205
10.1016/j.virol.2010.03.044
10.1016/j.virol.2004.11.015
10.1016/S1097-2765(03)00444-1
10.1042/BST0380388
10.1111/j.1365-2958.1994.tb00462.x
10.1046/j.1365-2958.2000.02142.x
10.1099/00221287-144-12-3351
10.1016/j.pep.2008.09.008
10.1046/j.1365-2958.2003.03723.x
10.1016/j.virol.2004.10.028
10.1016/j.str.2008.04.018
10.1093/nar/gni192
10.1093/nar/gni086
10.1128/JB.181.23.7291-7297.1999
10.1073/pnas.95.10.5505
10.1111/j.1365-2958.2005.04517.x
10.1093/nar/27.10.2145
10.1128/JB.182.23.6577-6583.2000
10.1126/science.1134426
10.1093/nar/gkh538
10.1128/9781555817954.ch7
10.2174/156652306779010642
10.1128/JB.185.17.5320-5323.2003
10.1128/jb.175.24.7848-7855.1993
10.1146/annurev.biochem.73.011303.073908
10.1073/pnas.0711649105
10.1093/nar/gkn269
10.1371/journal.pbio.0040186
10.1046/j.1365-2958.2002.02891.x
10.1073/pnas.1033041100
10.1111/j.1365-2958.2003.03942.x
10.1093/nar/gki922
10.1093/nar/gkp485
10.1016/0003-2697(76)90527-3
10.1111/j.1365-2958.2003.03950.x
10.1016/j.jmb.2005.03.043
10.1073/pnas.95.10.5752
ContentType Journal Article
Copyright 2011 Blackwell Publishing Ltd
2015 INIST-CNRS
2011 Blackwell Publishing Ltd.
Copyright_xml – notice: 2011 Blackwell Publishing Ltd
– notice: 2015 INIST-CNRS
– notice: 2011 Blackwell Publishing Ltd.
DBID IQODW
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QL
C1K
7X8
DOI 10.1111/j.1365-2958.2011.07696.x
DatabaseName Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Bacteriology Abstracts (Microbiology B)
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Bacteriology Abstracts (Microbiology B)
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList CrossRef

Bacteriology Abstracts (Microbiology B)
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1365-2958
EndPage 1463
ExternalDocumentID 10_1111_j_1365_2958_2011_07696_x
21564337
24276779
MMI7696
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Biotechnology and Biological Sciences Research Council
  grantid: BB/H001212
– fundername: Biotechnology and Biological Sciences Research Council
  grantid: BB/H001212/1
GroupedDBID ---
-DZ
.3N
.55
.GA
.GJ
.HR
.Y3
05W
0R~
10A
123
1OB
1OC
24P
29M
2WC
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5HH
5LA
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAKAS
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABJNI
ABPVW
ABTAH
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZCM
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AHEFC
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BAWUL
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
C45
CAG
COF
D-E
D-F
DC6
DCZOG
DIK
DPXWK
DR2
DRFUL
DRSTM
E3Z
EBS
EJD
EMOBN
ESX
EX3
F00
F01
F04
F5P
FEDTE
FIJ
FSRTE
FZ0
G-S
G.N
GODZA
GX1
H.T
H.X
HF~
HGLYW
HH5
HVGLF
HZI
HZ~
IH2
IHE
IPNFZ
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OBC
OBS
OEB
OIG
OK1
OVD
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TEORI
TR2
UB1
V8K
W8V
W99
WBKPD
WH7
WIH
WIK
WIN
WNSPC
WOHZO
WOW
WQJ
WRC
WUP
WXSBR
WYISQ
X7M
XG1
Y6R
YFH
YUY
ZGI
ZXP
ZY4
ZZTAW
~IA
~KM
~WT
AAJUZ
AAPBV
AAUGY
ABCVL
ABHUG
ABPTK
ABWRO
ACSMX
ACXME
ADAWD
ADDAD
AFVGU
AGJLS
AKALU
IQODW
XFK
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
ACRPL
ACYXJ
CITATION
7QL
C1K
7X8
ID FETCH-LOGICAL-c4816-38de60a1e2a06614b49a52e9b39ccf8c83afbe430384bd90a423721dcd4b24ff3
IEDL.DBID DR2
ISSN 0950-382X
IngestDate Wed Dec 04 03:57:19 EST 2024
Wed Dec 04 08:45:50 EST 2024
Fri Dec 06 04:41:57 EST 2024
Sat Sep 28 07:47:51 EDT 2024
Sun Oct 22 16:05:55 EDT 2023
Mon Nov 18 03:21:25 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Virus
Protein
Phage
Language English
License CC BY 4.0
2011 Blackwell Publishing Ltd.
http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4816-38de60a1e2a06614b49a52e9b39ccf8c83afbe430384bd90a423721dcd4b24ff3
Notes Joint first authors.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/j.1365-2958.2011.07696.x
PMID 21564337
PQID 1020837250
PQPubID 23462
PageCount 14
ParticipantIDs proquest_miscellaneous_871965744
proquest_miscellaneous_1020837250
crossref_primary_10_1111_j_1365_2958_2011_07696_x
pubmed_primary_21564337
pascalfrancis_primary_24276779
wiley_primary_10_1111_j_1365_2958_2011_07696_x_MMI7696
PublicationCentury 2000
PublicationDate June 2011
PublicationDateYYYYMMDD 2011-06-01
PublicationDate_xml – month: 06
  year: 2011
  text: June 2011
PublicationDecade 2010
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: Oxford
– name: England
PublicationTitle Molecular microbiology
PublicationTitleAlternate Mol Microbiol
PublicationYear 2011
Publisher Blackwell Publishing Ltd
Blackwell
Publisher_xml – name: Blackwell Publishing Ltd
– name: Blackwell
References 2009; 63
2010; 38
2006; 75
2005; 331
2005; 332
2010; 403
1999; 27
2008; 16
2008; 36
2006; 6
2006
2008; 105
2006; 4
2002
2001; 29
2006; 314
2003; 50
2003; 12
2004; 51
2000; 38
2001
2009; 192
1976; 72
2004a; 32
1999; 181
2002; 44
2005; 349
2000; 182
1994; 13
1998; 144
1998; 95
2005; 55
2005; 33
2004b; 51
2003; 100
2009; 37
1993; 175
2003; 185
21564340 - Mol Microbiol. 2011 Jun;80(6):1417-9
e_1_2_6_32_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_30_1
Campbell A. (e_1_2_6_7_1) 2006
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_17_1
e_1_2_6_18_1
e_1_2_6_39_1
Breuner A. (e_1_2_6_5_1) 1999; 181
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_42_1
e_1_2_6_21_1
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_40_1
e_1_2_6_9_1
e_1_2_6_8_1
e_1_2_6_4_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_24_1
Sambrook J. (e_1_2_6_27_1) 2001
e_1_2_6_3_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_22_1
e_1_2_6_29_1
e_1_2_6_28_1
e_1_2_6_26_1
References_xml – volume: 175
  start-page: 7848
  year: 1993
  end-page: 7855
  article-title: The Cox protein is a modulator of directionality in bacteriophage P2 site‐specific recombination
  publication-title: J Bacteriol
– volume: 95
  start-page: 5505
  year: 1998
  end-page: 5510
  article-title: In vitro site‐specific integration of bacteriophage DNA catalyzed by a recombinase of the resolvase/invertase family
  publication-title: Proc Natl Acad Sci USA
– volume: 349
  start-page: 331
  year: 2005
  end-page: 348
  article-title: Synapsis in phage Bxb1 integration: selection mechanism for the correct pair of recombination sites
  publication-title: J Mol Biol
– volume: 51
  start-page: 1787
  year: 2004
  end-page: 1800
  article-title: The large resolvase TnpX is the only transposon‐encoded protein required for transposition of the Tn family of integrative mobilizable elements
  publication-title: Mol Microbiol
– volume: 75
  start-page: 567
  year: 2006
  end-page: 605
  article-title: Mechanisms of site‐specific recombination
  publication-title: Annu Rev Biochem
– volume: 33
  start-page: e87
  year: 2005
  article-title: Natural and synthetic tetracycline‐inducible promoters for use in the antibiotic‐producing bacteria Streptomyces
  publication-title: Nucleic Acids Res
– volume: 192
  start-page: 624
  year: 2009
  end-page: 635
  article-title: Control of directionality in bacteriophage mv4 site‐specific recombination: functional analysis of the Xis factor
  publication-title: J Bacteriol
– volume: 144
  start-page: 3351
  issue: Part 12
  year: 1998
  end-page: 3358
  article-title: Site‐specific integration of bacteriophage VWB genome into and construction of a VWB‐based integrative vector
  publication-title: Microbiology
– volume: 55
  start-page: 1896
  year: 2005
  end-page: 1910
  article-title: Integration and excision by the large serine recombinase φRv1 integrase
  publication-title: Mol Microbiol
– volume: 36
  start-page: 3879
  year: 2008
  end-page: 3891
  article-title: A motif in the C‐terminal domain of φC31 integrase controls the directionality of recombination
  publication-title: Nucleic Acids Res
– start-page: 66
  year: 2006
  end-page: 73
– volume: 185
  start-page: 5320
  year: 2003
  end-page: 5323
  article-title: Integration site for phage φBT1 and the development of novel site‐specific integrating vectors
  publication-title: J Bacteriol
– year: 2001
– volume: 314
  start-page: 1747
  year: 2006
  end-page: 1751
  article-title: P[acman]: a BAC transgenic platform for targeted insertion of large DNA fragments in
  publication-title: Science
– volume: 63
  start-page: 102
  year: 2009
  end-page: 111
  article-title: A simple and efficient expression and purification system using two newly constructed vectors
  publication-title: Protein Expr Purif
– volume: 182
  start-page: 6577
  year: 2000
  end-page: 6583
  article-title: The large resolvase TndX is required and sufficient for integration and excision of derivatives of the novel conjugative transposon Tn
  publication-title: J Bacteriol
– volume: 12
  start-page: 1101
  year: 2003
  end-page: 1111
  article-title: The orientation of mycobacteriophage Bxb1 integration is solely dependent on the central dinucleotide of and
  publication-title: Mol Cell
– volume: 50
  start-page: 463
  year: 2003
  end-page: 473
  article-title: Mycobacteriophage Bxb1 integrates into the gene
  publication-title: Mol Microbiol
– start-page: 118
  year: 2002
  end-page: 148
– volume: 29
  start-page: 2205
  year: 2001
  end-page: 2216
  article-title: Control of directionality in integrase‐mediated recombination: examination of recombination directionality factors (RDFs) including Xis and Cox proteins
  publication-title: Nucleic Acids Res
– volume: 44
  start-page: 299
  year: 2002
  end-page: 307
  article-title: Diversity in the serine recombinases
  publication-title: Mol Microbiol
– volume: 33
  start-page: e189
  year: 2005
  article-title: Iterative in vivo assembly of large and complex transgenes by combining the activities of φC31 integrase and Cre recombinase
  publication-title: Nucleic Acids Res
– volume: 27
  start-page: 2145
  year: 1999
  end-page: 2155
  article-title: The complete genome sequence of the temperate phage φC31: evolutionary relationships to other viruses
  publication-title: Nucleic Acids Res
– volume: 51
  start-page: 1719
  year: 2004b
  end-page: 1728
  article-title: Switching the polarity of a bacteriophage integration system
  publication-title: Mol Microbiol
– volume: 38
  start-page: 232
  year: 2000
  end-page: 241
  article-title: Control of directionality in the site‐specific recombination system of the phage φC31
  publication-title: Mol Microbiol
– volume: 16
  start-page: 1275
  year: 2008
  end-page: 1286
  article-title: Tetrameric structure of a serine integrase catalytic domain
  publication-title: Structure
– volume: 181
  start-page: 7291
  year: 1999
  end-page: 7297
  article-title: Novel organisation of genes involved in prophage excision identified in the temperate lactococcal bacteriophage TP901‐1
  publication-title: J Bacteriol
– volume: 332
  start-page: 284
  year: 2005
  end-page: 294
  article-title: Cooperative interactions between bacteriophage P2 integrase and its accessory factors IHF and Cox
  publication-title: Virology
– volume: 4
  start-page: e186
  year: 2006
  article-title: Control of phage Bxb1 excision by a novel recombination directionality factor
  publication-title: PLoS Biol
– volume: 6
  start-page: 633
  year: 2006
  end-page: 645
  article-title: The φC31 integrase system for gene therapy
  publication-title: Curr Gene Ther
– volume: 105
  start-page: 3238
  year: 2008
  end-page: 3243
  article-title: Two‐step site selection for serine‐integrase‐mediated excision: DNA‐directed integrase conformation and central dinucleotide proofreading
  publication-title: Proc Natl Acad Sci USA
– volume: 33
  start-page: 6101
  year: 2005
  end-page: 6113
  article-title: Rearranging the centromere of the human Y chromosome with φC31 integrase
  publication-title: Nucleic Acids Res
– volume: 403
  start-page: 78
  year: 2010
  end-page: 84
  article-title: Complete genomic sequence analysis of the temperate bacteriophage φSASD1 of S
  publication-title: Virology
– volume: 13
  start-page: 685
  year: 1994
  end-page: 695
  article-title: Identification of an HP1 phage protein required for site‐specific excision
  publication-title: Mol Microbiol
– volume: 38
  start-page: 388
  year: 2010
  end-page: 394
  article-title: Site‐specific recombination by φC31 integrase and other large serine recombinases
  publication-title: Biochem Soc Trans
– volume: 331
  start-page: 325
  year: 2005
  end-page: 337
  article-title: Complete genomic nucleotide sequence and analysis of the temperate bacteriophage VWB
  publication-title: Virology
– volume: 72
  start-page: 248
  year: 1976
  end-page: 254
  article-title: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein‐dye binding
  publication-title: Anal Biochem
– volume: 100
  start-page: 8176
  year: 2003
  end-page: 8181
  article-title: Identification of the lambda integrase surface that interacts with Xis reveals a residue that is also critical for Int dimer formation
  publication-title: Proc Natl Acad Sci USA
– volume: 32
  start-page: 2607
  year: 2004a
  end-page: 2617
  article-title: Synapsis and DNA cleavage in φC31 integrase‐mediated site‐specific recombination
  publication-title: Nucleic Acids Res
– volume: 37
  start-page: 4764
  year: 2009
  end-page: 4773
  article-title: DNA binding and synapsis by the large C‐terminal domain of φC31 integrase
  publication-title: Nucleic Acids Res
– volume: 95
  start-page: 5752
  year: 1998
  end-page: 5756
  article-title: A bacterial two‐hybrid system based on a reconstituted signal transduction pathway
  publication-title: Proc Natl Acad Sci USA
– ident: e_1_2_6_8_1
  doi: 10.1128/JB.00986-09
– ident: e_1_2_6_20_1
  doi: 10.1093/nar/29.11.2205
– ident: e_1_2_6_39_1
  doi: 10.1016/j.virol.2010.03.044
– ident: e_1_2_6_11_1
  doi: 10.1016/j.virol.2004.11.015
– ident: e_1_2_6_12_1
  doi: 10.1016/S1097-2765(03)00444-1
– ident: e_1_2_6_32_1
  doi: 10.1042/BST0380388
– ident: e_1_2_6_10_1
  doi: 10.1111/j.1365-2958.1994.tb00462.x
– ident: e_1_2_6_34_1
  doi: 10.1046/j.1365-2958.2000.02142.x
– ident: e_1_2_6_36_1
  doi: 10.1099/00221287-144-12-3351
– ident: e_1_2_6_21_1
  doi: 10.1016/j.pep.2008.09.008
– ident: e_1_2_6_19_1
  doi: 10.1046/j.1365-2958.2003.03723.x
– ident: e_1_2_6_35_1
  doi: 10.1016/j.virol.2004.10.028
– ident: e_1_2_6_42_1
  doi: 10.1016/j.str.2008.04.018
– ident: e_1_2_6_9_1
  doi: 10.1093/nar/gni192
– ident: e_1_2_6_25_1
  doi: 10.1093/nar/gni086
– volume-title: Molecular Cloning: A Laboratory Manual
  year: 2001
  ident: e_1_2_6_27_1
  contributor:
    fullname: Sambrook J.
– volume: 181
  start-page: 7291
  year: 1999
  ident: e_1_2_6_5_1
  article-title: Novel organisation of genes involved in prophage excision identified in the temperate lactococcal bacteriophage TP901‐1
  publication-title: J Bacteriol
  doi: 10.1128/JB.181.23.7291-7297.1999
  contributor:
    fullname: Breuner A.
– ident: e_1_2_6_33_1
  doi: 10.1073/pnas.95.10.5505
– ident: e_1_2_6_3_1
  doi: 10.1111/j.1365-2958.2005.04517.x
– ident: e_1_2_6_29_1
  doi: 10.1093/nar/27.10.2145
– ident: e_1_2_6_38_1
  doi: 10.1128/JB.182.23.6577-6583.2000
– ident: e_1_2_6_37_1
  doi: 10.1126/science.1134426
– ident: e_1_2_6_30_1
  doi: 10.1093/nar/gkh538
– ident: e_1_2_6_2_1
  doi: 10.1128/9781555817954.ch7
– ident: e_1_2_6_6_1
  doi: 10.2174/156652306779010642
– ident: e_1_2_6_16_1
  doi: 10.1128/JB.185.17.5320-5323.2003
– ident: e_1_2_6_41_1
  doi: 10.1128/jb.175.24.7848-7855.1993
– start-page: 66
  volume-title: The Bacteriophages
  year: 2006
  ident: e_1_2_6_7_1
  contributor:
    fullname: Campbell A.
– ident: e_1_2_6_17_1
  doi: 10.1146/annurev.biochem.73.011303.073908
– ident: e_1_2_6_15_1
  doi: 10.1073/pnas.0711649105
– ident: e_1_2_6_26_1
  doi: 10.1093/nar/gkn269
– ident: e_1_2_6_14_1
  doi: 10.1371/journal.pbio.0040186
– ident: e_1_2_6_28_1
  doi: 10.1046/j.1365-2958.2002.02891.x
– ident: e_1_2_6_40_1
  doi: 10.1073/pnas.1033041100
– ident: e_1_2_6_31_1
  doi: 10.1111/j.1365-2958.2003.03942.x
– ident: e_1_2_6_24_1
  doi: 10.1093/nar/gki922
– ident: e_1_2_6_23_1
  doi: 10.1093/nar/gkp485
– ident: e_1_2_6_4_1
  doi: 10.1016/0003-2697(76)90527-3
– ident: e_1_2_6_22_1
  doi: 10.1111/j.1365-2958.2003.03950.x
– ident: e_1_2_6_13_1
  doi: 10.1016/j.jmb.2005.03.043
– ident: e_1_2_6_18_1
  doi: 10.1073/pnas.95.10.5752
SSID ssj0013063
Score 2.370711
Snippet Summary The serine integrase, Int, from the Streptomyces phage φC31 mediates the integration and excision of the phage genome into and out of the host...
The serine integrase, Int, from the Streptomyces phage φC31 mediates the integration and excision of the phage genome into and out of the host chromosome....
The serine integrase, Int, from the Streptomyces phage φC31 mediates the integration and excision of the phage genome into and out of the host chromosome....
The serine integrase, Int, from the Streptomyces phage phi C31 mediates the integration and excision of the phage genome into and out of the host chromosome....
SourceID proquest
crossref
pubmed
pascalfrancis
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage 1450
SubjectTerms Attachment Sites, Microbiological
Biological and medical sciences
Escherichia coli - virology
Fundamental and applied biological sciences. Psychology
Integrases - genetics
Integrases - metabolism
Microbiology
Miscellaneous
Molecular Sequence Data
Phage Bxb1
Protein Binding
Recombination, Genetic
Streptococcus Phages - enzymology
Streptococcus Phages - genetics
Streptococcus Phages - metabolism
Streptomyces
Viral Proteins - genetics
Viral Proteins - metabolism
Virology
Virus Integration
Title A phage protein that binds φC31 integrase to switch its directionality
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1365-2958.2011.07696.x
https://www.ncbi.nlm.nih.gov/pubmed/21564337
https://search.proquest.com/docview/1020837250
https://search.proquest.com/docview/871965744
Volume 80
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NatwwEB5CIBAobZO0jdMkqJCrF1uWJesY8tvA5hAa2JuRbIksAe8Se0nbB-jr9ZUykrxJHFIopRfjgyVbMxrNN9L4G4ADViWJRuAaS6EKDFBSGReFobFj-kD0bbjwVErjS35-zS4m-aTPf3L_wgR-iMcNN2cZfr12Bq50OzRyn6El86Jn4hRc8pHDk2kmXHbf8RV9OlDoi6rJ3NHJ0skwqefVjgae6s1ctSg0G6pdvAZHh-jWu6fTd3C7HFjISrkdLTo9qn6-4Hz8PyN_D297FEsOw7TbgBXTbMJaqGv5YwvODsn8Bhcq4lkgpg3pblRHMAavW_L711GWkp6lojWkm5H2fopzh0y7lgQPO-3Dgw9wfXry7eg87is2xBUrUo6SrQ1PVGqoSpzj10yqnBqpM1lVtqiKTFltGLrNgulaJsol5dC0rmqmKbM2-wirzawx20CoNcIKYzPuK7TnSlhcjwzLNS5BIqcRpEvtlPNAzFE-C2hQQKUTUOkEVHoBld8j2B-o8bEh4hTBhZARfFnqtUQzc2cnqjGzRYtdUwSrAgFjBOQPz2DsKXkuGIvgU5gTTy9wnDxZJiLgXrN__cnlePzV3e38a8PPsB62wd3G0S6sdncLs4c4qtP73kLwejZJHwD0Rw0B
link.rule.ids 314,780,784,1375,27924,27925,46294,46718
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6hIgQS4g0Nj2IkrlkljmPHx6pQttDtAbXS3iw7sdVVUXbVZMXjB_D3-EuM7WxLUJEQ4pZD7CQzHs8348k3AK9ZnWUGgWsqha4wQMllWlWWpp7pA9G35SJQKc2O-PSEvZ-X86EdkP8XJvJDXCTcvGWE_dobuE9Ij608lGjJshqoOAWXfIKA8jpaf-7ru958pJdHCkNbNVl6Qlk6H5f1XDnTyFfdXukOxeZiv4urAOkY3wYHtX8XPm0-LdalnE3WvZnU335jffxP334P7gxAluzGlXcfrtn2AdyIrS2_PoR3u2R1insVCUQQi5b0p7onGIY3Hfnxfa_IyUBU0VnSL0n3eYHLhyz6jkQnuxgihEdwsv_2eG-aDk0b0ppVOUfRNpZnOrdUZ973GyZ1Sa00haxrV9VVoZ2xDD1nxUwjM-3rcmje1A0zlDlXPIatdtnabSDUWeGEdQUPTdpLLRxuSZaVBnchUdIE8o161Cpyc6hfYhoUkPICUl5AKghIfUlgZ6THi4EIVQQXQibwaqNYhZbmj090a5frDqemiFcFYsYEyB_uwfBT8lIwlsCTuCguH-BpeYpCJMCDav_6ldVsduCvnv7rwJdwc3o8O1SHB0cfnsGtmBX3eaTnsNWfr-0LhFW92Qnm8hOLuhAx
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwEB6hIhAS4r8QfoqRuGaVOI4dH6uWpQW2QohKe7PsxFZXlbIrklULD8Dr8UqM7WxLUJEQ4pZD7CQznplv7Mk3AK9ZnWUGgWsqha4wQcllWlWWpp7pA9G35SJQKc2O-MExezcv50P9k_8XJvJDXGy4ecsI_tob-KpxYyMPFVqyrAYmTsElnyCevM44lZ5Hf_8TvTxRGLqqydLzydL5uKrnyplGoer2SncoNRfbXVyFR8fwNsSn6V043XxZLEs5nax7M6m__Ub6-H8-_R7cGWAs2Y3r7j5cs-0DuBEbW359CG93yeoEPRUJNBCLlvQnuieYhDcd-fF9r8jJQFPRWdIvSXe2wMVDFn1HYohdDPnBIzievvm8d5AOLRvSmlU5R8k2lmc6t1RnPvIbJnVJrTSFrGtX1VWhnbEM42bFTCMz7atyaN7UDTOUOVdsw1a7bO0TINRZ4YR1BQ8t2kstHDoky0qDPkiUNIF8ox21iswc6peMBgWkvICUF5AKAlLnCeyM1HgxEIGK4ELIBF5t9KrQzvzhiW7tct3h1BTRqkDEmAD5wz2YfEpeCsYSeBzXxOUDPClPUYgEeNDsX7-yms0O_dXTfx34Em5-3J-qD4dH75_Brbgl7jeRnsNW_2VtXyCm6s1OMJafO2kO4A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+phage+protein+that+binds+%CF%86C31+integrase+to+switch+its+directionality&rft.jtitle=Molecular+microbiology&rft.au=KHALEEL%2C+Thanafez&rft.au=YOUNGER%2C+Ellen&rft.au=MCEWAN%2C+Andrew+R&rft.au=VARGHESE%2C+Anpu+S&rft.date=2011-06-01&rft.pub=Blackwell&rft.issn=0950-382X&rft.eissn=1365-2958&rft.volume=80&rft.issue=6&rft.spage=1450&rft.epage=1463&rft_id=info:doi/10.1111%2Fj.1365-2958.2011.07696.x&rft.externalDBID=n%2Fa&rft.externalDocID=24276779
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-382X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-382X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-382X&client=summon